NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

N~
0
o
o DTIC
L ELECTE
g APR3 1985
|
g B _
A FRAMEWORK FOR SOFTWARE DEVELOPMENT
by
-
8 Eric C. Hughlett
September 1984
L |
=
c>
Thesis Advisor: Dean Guyer
=

Approved for public release; distribution unlimited

85 03 ;5 083
R A R A e T R R R R D R s

T T T T A T T R AR T T T e TR T TV RT3 AR TR T T TR e T TERE R W IR e W TR RS v ST e By -

SECURITY CLASSIFICATION M8 ‘WIS RPAGR (When Date Entered)

N
REPORT DOCUMENTATION PAGE BEF Ot b B NG R
NUM 2. BOVY ACCESSION NO.! 3. alalstiNT‘i EA* ALOG NUMBER
4. TITLE rand Subtitle) 5. TYME OF REPORT & PERIOD COVENRED

Master's Degree
September, 1984
¢, FERFORMING ORG, REPORT NUMBER

T ATTRORT . ¥, CONTRACT OR GRANT NUMBER?S)

A Yramework for Software Development

iric C. Hughlett
9. PERFORMING ORGANIZATION NAME AND ADORESS 1. ﬁgga.m ELEMENT, PUROJ'tﬁT, TAIR |

WORK UMIT NUMBERS
Naval Postgraduate School
Monterey, Califcrnia 93943

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATK
Naval Postgraduate School |’Septﬁ$P::Pi3€f
Monterey, California 93943 '"””'101 €

T " MONITORING AGENCY NAME & ACORESS/I! different from Controlling Oftice) | 18. SECURITY CLASS. (of this report)

Unclassified

'I‘l'a'._go ct ASSIFICATION/ DOWNGNADING ‘
SCHEDULE

6. OISTRIBUTION STATEMENT (ol this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If ditfecent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WOHRDS (Continue on reverae aide If necessary and tdentify by block number)

metrics, standardization, Ada, maintenance,quality_agsurance, stars

-

20. ABSYRACT (Continue on reverse slde It necessary and Identity by block number) .

All sectors of society are confronted with what has)been termed the "software
crisis". As the world's largest single buyer of soktware, the Department of
Defense has undertaken major software initiatives ti ameliorate software-
related problems associated with major computer sys ems. acquisition. This
thesis provides an overview of common problems in both embedded and administra-
tive software development and acquisition. It defines quality software in

terms of its characteristics, and provides the project manag?r/aczuisition

DD ,an'5s 1473 zoimion oF 1 Nov 6318 omsoLETE
$/N 0102- LF- 014- 6601

1 SRCURITY CLASSIFICATION OF THIS PAGE (#hen Data Bntered)

RS IRIRI I BT IR, N

Al A din il ey ' Rl e e Shinde iy
rwsy AR E R R TR TR Ve AW RAETTTE TR TR R T W R R TR VTR AT T BT - R s VIR IR RRR R R TE N R A e voenT i AL R L e A b Al A AL, Il

Ol

o SECURITY CLASSIFICATION OF THIS PAGE (When Dete Bnterer)

"

A ABSTRACT (Continued)

s

-;«‘ agency with a set of accepted controls to assure that quality is built in to
A software for improved maintainability, The difficulties and limitations of
. providing accurate estimates in software development are discussed in terms
A of software metrics. A number of DoD current and future standardization

Er o efforts, including the Army's development of a Military Computer Family (MCF),
e Ada, snd the STARS initiative.

b
R

o

N

-~
T)

]
e
}’f
f;;{
J]
ey
}'l:
?:.' J°9°”%°'¥ For
30 NTIS ORA&I ¥
\ DTIC TAB 0
Unannounced O
Justitication. |
By..
Distribution/
N Avgi@lg_ility Codes
Avail “and/op

Dist Speaial

|

SN 0102- LF. 0146601

2 SECURITY CLASSIFICATION OF THIS PAGE(When Data Balcrod)

oy

e e e e T T L A N A o bl AR b e L L B L e R S R h R

E RIS TR GRGIT Y
RSO SRR

S T T T T T T T T T e T T TR TR Bl ST ARSI T AT TR TR TR AT W ARSI TSR S TR T e R Wre e

Approved for public release; distribution unlinited.

A rra::uork
Softwvare Development

by

Lieutenant Czﬁic gé fa giggg Stat N
o ates Nav
E.S.B.A., Appagacggan State Univers ty, 1;75

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS
from the

NAVAL POSTGRADUATE SCHOOL
September, 1984

Author: 45’ C chS%i£:>
grhor éé%ﬂmg STt

Approved by:___ 5521:4//

- Ds C& GUYEY,; TREEISRIViSTE

;aaMVUM ﬂ’ '
Ne Re s, CE=-RAVISSr™

\ \W\. m“"ﬂi ITman,

Department o Asﬁiniéﬁrat ve Sclences

T Mend AN
Hart

Re T 3LT
Dean of Information an.g Poiicy Sciences

RS £ LY o2 LN R RN LA N e A A ST S

SR —————————E SRR ARSI S MM FE G4 A Bk AT E b L L R E SR NETOR WY WL N e

N

. ‘4.-‘

3 \

C

o \\ ABSTRACT

."‘.':' N\

N N

; —’ 111 sectors of society are confronted with what has been
{7 termed theQ“software crisis.¥ As the world's largest single
.ﬁﬁ buyer cf software, the Department of Defense has undertaken
.Y major software initiatives to ameliorate software-related
??‘ problems associated with major computer systems acquisition.
B This thesis provides an overview of commom problems in both
- embedded and administrative software development and acgui-
;ﬁ sition. It defines quality software in terms of its charac-
;% teristics, and provides the project manager/acquisition
o agency with a set of accepted controls to assure that
L quality 4is built in to software for improved maintain-
§§ ability. The difficulties and limitations of providing accu-
iﬁ rate estimates in scftware development are discussed in
_:3 terms of software nmetrics. A number of DoD current and
- future standardization efforts are discussed, including the
~fj Arny's development of a Military Computer Family (MCF), Ada,
j; and the STARS initiative. Czjbi,fwnul é{jw"d‘: 4%@5°-
‘1'3' !7-{{,‘_ . ‘/,'7), ass wr a,,m:e.r/ P"U f, c~7'/or~; (

1 - L.

L <THES conypy b r “”':j'a’"‘} STARS 50F7‘;’“)

. ble (Refiable Dyslees,

::h' /7?//41 o ,U‘ 14 ﬁ’ r Ci A/av 7‘@ ‘7)
g; [od(/WC/-'V'fy V

H ﬂ7

3

}i

¥Y

o

.}

R

x'

N 4

AR TR T A R
RSOSSN

TABLE OF CONTENTS

INTRODUCTION ¢ « o o o o o o o o o« ¢« o« « o o« o « o 10
A. BACKGROUND o « ¢« ¢ ¢ o o ¢ o o « o ¢ ¢ ¢« « « « 10
Be THE COST OF SOFTWARE IN DOD ¢ ¢ o ¢ ¢ o « « « 11
C. PURPOSE ANL APPROACH o« ¢ ¢ ¢ o ¢ ¢ o ¢ o ¢ o« o« 14

THE SOFTWARE CRISIS ¢ o o ¢ o« @ @ « o o o « o o « 16
A. PROBLEMS IN SOFTWARE ACQUISITION 2 ¢« « « « « o 16
Te A GAO REPOrt « o ¢ o o « ¢ o o« ¢« s o o« o o« 16

2. The Multi-source Unified Data
Distrikbution (MUDD) Report . « « « + o« o o« 23
3. DoD Weapon System Software Study . « « « . 24

MEASURES OF CCNTROL =« « o o e a o o o o o ¢ o o o 26
A. BACKGROUND o« « 4 o o o o o s o o o o o o o o o 26
E. 'CAUSES FOR POOR SOFTWARE ESTIMATING .« « o« « o 27
1. Lack of Estimating Expertise. « o 27
2, Biaces in Estimating « « ¢« ¢ o o ¢ o o o o 27

3. Poor Understanding of What Estimate
MEARS =« ¢ o o o o o » o ¢ o o o o o o o o 28
4, Estimates as Basis for Incentives 28
Ce SOPTWARE METRICS ¢ ¢ o ¢ ¢ o o o o o o o o « o« 29
1. Halstead's Software Science .« . « « « « « 29
2. McCabes' Complexity Measure . . .« « « « « 31
De SOFTHARE COSTING « o « o o o o o o o o o o o o 32
Te BANALOQGY « ¢ ¢ o o s o o o o« o o o o o o« o 32
2. Decompcsition <« « ¢« ¢ ¢ 4 ¢ o o o o o o o 33
3. Parametric Models . ¢« ¢ ¢ ¢« o ¢ ¢ « o« o o 33
E. CHAPTER SUMMARY .+ « o ¢ o o o ¢ o a « o o o« » 35

.';;Ac_aglfx'hi‘i&"r}'r '.'k\:.:;"h 'x't ;&ui-’%}gm

TANRY S 2D XTI I
EReETE AR IR R

WO T T - BT LTI VW S ad

* %l ,_!i‘

EERLK 3 W

4
By :

3 Iv. QUALITY SOFTHARE o o o o o « o o o o o o o o o o o 37
. A BACKGROUND @ « « o « o o « o o o o o o o « o o 37

o

B. DEFINING SOFTWARE QUALITY . ¢« ¢ o « o ¢ « « o 38
C. CHARACTERISTIC OF SOFTWARE QUALITY « . « « + o 39
De QUALITY ASSURANCE . o « o ¢ ¢ ¢ o o o o o » o 41

rSraR

.
Y

o
E2
g

&t E. IMPLEMENTATION OF A SOFTWARE QUALITY

' ASSURANCE ERCGRAM o 4« ¢ o ¢ o e o o« o« = = o « W4
k 1. Procuring Agency Evaluation . . « ¢« « « « 45
'§§ 2. Design Inspection . . « ¢ ¢ o ¢« o o o « o U6
R 3. Code INSPection .« « « « ¢ o o o « « o o+ o &8
e Te8L o ¢ ¢ o o ¢ ¢ o o ¢ o o o o o o o « o U9

K 5. Library ControlsS . « « « « s o « « o o o « 50

& F. PARTING COMMENTS o « o o« o o o o o o« o o o « o 50
K v. SOPTWARE MAINTENANCE o o « o o o o o o o o o o + o 51
~ A. CATEGORIZATION OF MAINTENANCE ACTIVITIES . . . 51

3 B. TANGIBLE MAINTENANCE COST + « o « + « o o o o 52

'% C. VARIABLES AFFECTING MAINTENANCE COSTS . . « « 55

L D. INTANGIBLE MAINTENANCE COSTS « « « « « « « « « 56

i: E. BUILDING MAINTAINABLE SOFTWARE o« ¢« ¢ « o o ¢« « 56

- i 1. Structured Methodology « « o « o« o o o « o 57
b 2. Structured ARalysis .« . « « ¢ « ¢ o o o o 58

- 3. Structured DeSigD « « « o « o o o o o o« o 59

w 4., Structured ProgrammpinNg « « ¢ o ¢« ¢ « o« o o« 60
5 5. Program Design 1Language . « « « « o « o o 60

j{ F. PARTING COMMENTS « « o o « o o o « o o « o o o 61

.{ vI. DOD STANDARDIZATION AND SPECIFICATIONS .« ¢ « « o« o 62
.15 A INTRODUCTION « o ¢ o o = o o o« o o o o o s o o 62
ii Bo SPECIFIC INITIATIVES . ¢ ¢ o« o ¢ o o o » o o « 62

RO 1. H“ilitary Computer Family « o« « ¢« ¢ o « « « 63

é' 2, Ada . 4 o . e 4 e s s 2 s s s e e s s s o B4

gé 3. Joint logistics Ccamanders Workshop . . . 66

K<
k!

s
&
e
o8
y
»
&

-

"} p B VTR TR RGO N AT AN AN N TN IV E OO NN Y W O RIS WS TRV S T ST U TN T o Bal b WO WY R WY W Y TWTR W Mgl

VIT. STARS « o o o o o o o o o o o o o o o s o o « o o 69
A OVERVIEW OF STARS o « o o « o o o o « « o o o 63
B. OBJECTIVES o o o « o = o o « o o « o e o o o« 71
Co ORGANIZATION @ o o « o o « o + « o o o o o « & 13
D. EFFECTIVE MEASUREMENTS o « « « o o o o o o « « 73
E. DPROJECT MANAGEMENT « « o o « o o « o o o o o « T4
F. IMPROVING PERSONNEL RESOURCES .« « « o « « « o 76

' 1. Key Population Assessment . o « « o« « « « 76
2. Career Structures and Incentives . « . . . 77
3. Exchange Programs . « « o o o o « o« o s o 17
i 4. Other Educational Subtasks « « ¢« ¢ ¢« o o o 77
o G. IMPROVING PROCESSING TECHNOLOGY .+ « « o « o« » 78
‘ \;‘f H. INCREASING USE OF PROCESSING TECHNOLOGIES . . 79
= 1. Irpprove Business Practices « « « « « « « « 79
ig 2. Improve Tool UsabilitY « « ¢ o « « o « « o 80
M
‘:}“: IO CONCLUSION ¢« ® ¢ o e o o ® e e e o o o .« e & 81
~':1j VIII. CONCLUSIONS AND RECOMMENDATIONS .+ ¢ o « ¢ o o « o« 82
;~' . APPENLCIX A: GLOSSARY OF SOFTWARE QUALITY ATTRIBUTES o . 85
f APPENDIX B: HALSTEAD AND MCCABE'S SOFTWARE METRICS . . . 87
250 A. HALSTEAD'S SOFTWARE SCIENCE .« « « ¢« o o « o« o 87
B B. MCCABES'S COMPLEXITY MEASURE « ¢ « « o o o o o« 92
‘t APPENDIX C: STRUCTURED METHODOLOGIES « ¢ « o o « o « o + 94
Lt A. STRUCTURED ANALYSIS =« o « o« o o o « o o o« o « 94
2 B. STRUCTURED DESIGN « « o o « « « o « « « o o « 95
C. STRUCTORED PROGRAMMING . « ¢ « o s o o o o« o « 96
43 D. DROGRAM DESIGN LANGUAGE . « o « o « o o o o o 96
ph L
':\%k: LIST OF REFERENCES) L] - . [] L))) . L] [) .] - [- e - e 97
L INITIAL DISTRIBUTION LIST « « o o « o « o o « o « o « o 101
3
b &
1

"Iv' at -N-' P,-\ \ .. -.‘.‘\- - .
£ !..e!r, ettt X

YT CE A ATERE R L

W™ R GRS T W TN T AT T AT R VARG ATURAT WL ST % SIS YT b LT T LT TR AW W R
.

LIST OF TABLES

}; 1. Cost Trends: Hardvare versus Software . « « « « « 14
i) 2. language Level Values <« « « ¢ o o o o o s o « « o« 31
3. Ccmparison of Cost Estimating Methods « « 34
' 4. Evaluation Factors in Bidder Responses . « . « « . U6
5. Ada Specifications . « <« 4 ¢ ¢ ¢+ ¢ o e 6 ¢ o ¢ o . 65
6. A Sorting Subrcutine « « « « ¢ ¢ ¢« « o o o o o o o 88
7. Operator CoURt o« ¢ « ¢ o o o e o = o o« ¢« o o « o « 88
8. Operand Count .« ¢ o o ¢ o o o « ¢ ¢« o ¢« & o o &« « 89

o g
Kty

a el

15 t(, pe

g w3 R
AR

T

i I

S

2
I §

'

L7 -
-'," .3

By, -

%

- i i,

Y
e !

1 i ey i N

L,

.~ ey o . . 8%
p ‘Q’!’ B ‘é‘f; ;,?;%3-!’5'; » X 5 eTE A \‘5

T TEEATIWERE WTRTRTRTTVTR BTN W TR A TR L TR I e T TR T R T TR e T e T e Ve

LIST OF PIGURES

2.1 Value of Delivered Software .« « « « o ¢« o » o o 22
4.1 Characteristics Tree . « ¢ « ¢ « o ¢« s o o o « « 40
4,2 Cost Impact Of Changes « « « « o o « « o « o« o o U3
4.3 Basic Code Structures o « « ¢« « o o ¢« o o o « o U8
5.1 Maintenance Cost as Percentage of Budget 53
N 5.2 Life Cycle Maintenance Costs « « « « « « « « . . 54
o B. 1 Control Flow Graph Complexity . « « ¢ « « « « o 92

';;

) ,("W
M

N

-
{-¢
B

W e K M

5 G > G g
L3 T

O

TR I

N o
e 5

“
- v,
e Yo

:
b

L A e A A T e ke e e e D N e e

»
E

2l o g 2 s N AT
e M ” g
SRCE S T e gt S

e

4

¥ '\‘- Sy Tty

- i g

e o
h "Wy .

s
LS S

o
1

s Nt Py
.

N —— L — e S—— S T—————— L T V" W——— Y. o— T— —"

I. INIRODUCIION

A. BACKGROUND

"And good south wind sprung up behind;
ng é%grtr :s 4 grfgéé or lay
Came fordne farinertatholiof 2Y”
God save ee ancient Marine
gom th Egen lague tﬁee thus!--

Wh lock hou so --w ny cross-bow
zhot the A batross." [Theyhncgent Mariner, pt. i]

The albatross around today's program manager neck is often
the software subcomponent of major system acquisitions. Cost
overruns, schedule slippages, and 1loss of program control
have reen the penance for those project managers who have
fajled to provide for software with the same intensive and
continuing management typically rendered its hardware
counterpart. :

Software is an intangible product that defies descrip-
tion in an engineering sense. Only a few software products
have ever started off with clear, unambiguous, and defini-
tive requirement specification. Schedules and costs are
often dictated by the system acquisition milestones and
revievs, and not necessarily associated with the phased
softvare development methodologies advocated by what has
been termed M"software engineeringt". Many of the specific
problems that surround software development and acquisition
will be discussed in detail in the next chapter.

uen-i“?i 25 822%" il“ °€h§€f583§§s eS‘“ﬁi BaSes é}’ the

software 1 est of software

copponents to doculent an show traceab t f om one devel-
gn nt gstep to the nex a set o ctable mile~-
ones that can be rev ewe as needed [Ref.

10

TR

;g—v VETTET WTTRU T T e R RITATTTeT Y &0 Rt dTET @R e TR W R R T T WD WLV R W U W R W WU WO W W TR ST T L gy (T NG T Ty TURg T eeee Y
N

In the majority c¢f guidance and managerial principles
available to assist the program manager are directed at the
hardware end. Software is the "new kid on the block." It is
that part of the system that is seldom understood and often
mismanaged during system acgquisitions. Computer hardware, on
the other hand, has undergone remarkable improvements in
function, size, performance, and relative cost. Several
hardware gererations have emerged in the course of a single
human generation. Yet, souftware has experienced more notice-
able growing pain. The gap between hardware-- and software
technology widens.

B. TBHBE COST OF SOPTWARE IN DOD

There are two general classifications of software within
DoD. The first of these 4is that of the more-traditional,
administrative type <c¢f software used in business applica-
tions. This type of software is typically supported by
commercially available computer that can support a variety
of applications, i.e., Automatic Data Processing (ADP,
9 systems. The second classification is embedded software.
if Embedded software is normally designed to operate as an
™ integral part of ncn-ADP systems, such as DoD tactical
v systems. The most significant difference between these two
N classifications of software rest not in the development and
. ﬁ maintenance practices, but rather in the frame work in which
they are each procured.

The procurement authority for Automatic Data Processing
Equipment (ADPE) and its supporting software and services is
vested in the General Services Administration (GSa), as
directed by Public law 89-306, 40 USC 759, the "Brooks
Bill." Within DoD, ADPE 1is under the purview of the
Assistant Secretary of Defense (Comptroller). Weapon system
softwvare is under the <cocgnizance of the Office of the

[

0
i

x,
[y
a,

e
-
..
e
-,
'
.
v
»
o*
.
.

1

A WY WM U Y W R W YT ST AREST TR R VY 2 AETNEA RN WGV OV LS VYW VN

T W T T

Undersecretary of TLefense (Research and Engineering).?
Although there is a distinct dichotomy of cognizant organi-
zational structures regulating the acquisition of ADP and
non-ALP software, the managerial and software engineering
principles which govern each step of the software life cycle
are, in fact, quite similar. Therefore, the common set of
tools, metheods, and methodologies advocated in this thesis
apply to both ADP and non-ADP software.

In writing this thesis, it was noted that the majority
of available DoD guidance for the control and acquisition of
softwvare projects was in support of tactical systems, with
the vast pajority being authored for the United States Air
Force. This is not suprising since it has been estimated
[Ref. 2 2 p. 7] that of the $12 billion that DoD will spend
for software in 1985, over $10 billion will be for embedded
softvare, with the U. S. Air Porce accounting for approxi-
mately half of the exrenditures.

Not only does emtedded softvare represent the largest
component of total software costs in DoD, it is also plagued
to a proportional degree with many of of the software-
related problems, which M.M. Lehman so aptly describes as

" nctlgy collecticn of re atlvel 1solated methodolo-
es8 an echn gues assoc ated rough an experience-

ased 5 therwise arbi trary _sequence of

luch—&iscusse process phases" [Ref. 3 : pa 3]

At this point, it is important to recognize some of the
some of the program characteristics that add to the complex-
ities of Doh's embedded software. These include: [Ref. 4 :
p. 77]

2Due in large art to the prov;sions set forth in the I
z bseguent Warne mengigt the policies and procedures set X
o in the Brooks B &oes not extend to the tactical
so tva:e used in DoD weapons systenms. !

12

.
1
]
|
,

ICOTR LT AOR TR % v
LR LRI N R ae N AR N RN

S]: '3' :}n ;:y.x-, ,J.l R ;., f-‘gy. ;_‘-yp;k.f;‘\'&pg AN n&ﬁ XN { '\.\}

Sl s TR T TS T T T W TR WINPT TR TR T R T TN VRO VTR TN TR T e T W T e

- ggggram size-~often in excess of a milliorn lines of
- Egg%— %mgiigggggég s'requiremants reqguiring response
- §ro rans must Le flexible to accgmnodaggl_i£§nge§ in

Ks en evolution over an expecte use e often
excess of twenty years.

- aranteed reliabjlity due the tight {(and man
hep o Aot Shuetha el <Blndthl
esigned to protect.

- t d
ggggggirgff part of the universe which they model

As ccmpared to other software applications, such as ADP
or administrative computing, DoD mission-critical software
is more coaplex, less understood, more unstable, and must
operate in extreme environmental conditions. Yet it is
essential that DoD scftware be reliable, adaptable, and
affordable. To achieve these objectives, many problems, of
toth a technical and managerial nature, nust be overconme.
Symptoms of these rproblems include slippages in weagon
delivery schedules, system failures, overbudget prograns,
and inflexible systems will be discussed at further lengths
in Chapter II.

DoD is recognized as the world's largest buyer of soft-
ware. Based on various estimates in recent literature, it is
calculated that DoD will spend approximately $12 billion for
software in 1985 [Ref. 2 : p. S5]. Table 1 illustrates the
percentage of total computing system costs of hardvare as
compared to softvare for all of DoD computing systeams.
Software cost reflect all aspects of the software 1life
cycle, including: design, development, testing, operations,
and pmaintenance. The ratio of hardware to software has
reversed itself frcm U:1 to that what 1is expected to
approach 1:9 next year. [Ref. 2 : pp. 5 - 6].

The high cost of acquiring software has naturally
caused ccncern in beth DoD and the Congress. Literature

13

B L AR

I —————— S A MU AR SRR Rt T B SRR Bt et ek Ry b YR Rttt

TABLE 1
Cost Trends:; Hardvare versus Software

(percentage of total cost)19 5
_1955 1970 1979 (Estimate)

L XY RLR L T - O R W S D P G W S D I Wl P WD W S R N L T S WD W el s W S

A o8 # B

abounds with studies and reconmendations related to software

~development in DoD., There is not a shortage of sage advise.
The need for improved managerial controls and software
develoyment practices has been recognized.

C. PURPOSE AND APPROACH

A major goal of this thesis is to present a consolidated
review of major DoD efforts aimed at reducing software~ .
related problems. Both management and technical issues will
be addressed. This thesis makes no pretense that it provides
the program manager with all of the technical background and
controls needed to assure the timely delivery of gquality
softvare within budeget. Rather, it focuses op key and
"high payoff" issues involved in managing the acguisition
and development of software. This thesis also addresses
several DoD initiatives vhich promise to significantly alter
the framevork in which software is developed and maintained.

Chapter II identifies many common problems associated
with contracting for general computer software by Federal
agencies. It also identifies major contributing factors to
DcD weapon system software problems. A common denominator in
the formulation of the many software problems is the lack of
estimating expertise by which program measurements can be

4

|
W LY vy Ty v L Ty 0t - ; 1
R N S Y A AR L A R D i AR

A
.
Wi

B
By oatisd i

U_'-"v‘-ﬁ,.n‘ &)’“ .',' :“" . 2

oo im0 - ,‘.!n.
S N G

i, £

FS

e

ko

d3fined., Chapter III discusses software metrics for defining
quantifiahle measurenents.

The delivery of good software 4is an implicit, but nmost
elusive, goal in software acguisition. Chapter IV defines
"good software" through a set of quality software character-
istics, It also provides a series of controls to be utilized
in the izplementation of a guality assurance program. MNHajor
dividends from quality software are realized during the
post-development phase of software, the maintenance phase.
Chapter V analyzes the tangible and dintangible costs of
software maintenance, and addresses a number of software
engineering principles through which the costs of mainte-
nance can be greatly reduced.

Chapter %I and VII review a numher of software and
computer- technology standardization initiatives to under-~
taken within DoD. Perhaps the most significant of these
initiatives is the STARS (Software Technology for Adaptable,
Reliakle Systems) progran.

Firally, Chapter VII provides this thesis' coaclusions
and reccmmendations.

15

PR YRR R DRI R e IE N R R YA NN Wl Kttt

S bt asiien A Stk o fint Al

———— (T Y wy

e

P R

,4" :‘ .
3P,

s

2 P e

{pd
N

P P

o .,
Al e

IT. JHE SOPINARE GRISIS

roblen of the 1970's wasg to reduce the cost of the
ect onic functilicns neede to store and process

ata....
;3 gcgrob%e c3§8:h3£12 oésronig:iftgrgfogs. evg : mgto
ge ;S ﬁrogugt. sgivin tgis gi fgn wgf qgg fte a
sh t fro Le conm onent niegra on of the § 3
concentration of sy ten leve ntegration in the 8 's.

it BT S S

ovevei ou gan g owe. gas are
mg ng oten % mus ar esse an riven
ftware to be useful." [Bef. e 22)

The preceding stétement was made by the president of one
of the largest manufacturers of computer hardware. It
succinctly summarizes the shift in technological enmphasis
from hardwvare to softvare.

A. PROBLEES IN SOFTWARE ACQUISITION

To the casual observer, the successful management of a
softwvare development project may seem a simple process. All
that is needed are (1) well-defined reguirements, (2) real-
istic cost and schedule estimates, and (3) the right quan-
tity of personnel and hardware at the right tinme. In
actuality, each of these elements seldom, if ever, hafgpens
by themselves, much less together.

The management of software development projects have

'historically been plagued by a myriad of problems, both in

the private and goverpment sectors.

1. 24 GAQ Report

Recently GAC reported to Congress [Ref. 5 : pp. 1 -
84] a number of problems that Pederal agencies have

E% encountered in contracting £for computer software as an
‘;g alternative to in-house development. Means for improving
“ these deficiencies were also recommended.

%% a. Scope of the GAO Report
f# GAO sent gquestioannaires to 163 softvare
A contracting firms and 1113 Federal project offices that had
f@ experience with software development projects. The purpose
b3 of the gquestionnaires was to attempt to identify coamon
if problems in software development contractual process and
w; vhat, through hindsight, night have been done to prevent or
. inprove development efforts.

_f‘ GAO examined nine cases of software develorment
{3 in detail, some of which had attracted GAO attention because
o they were known failures. Only one of these nine cases
.- yielded a softvare product that could be used as delivered.
7?3 The actual combined total development cost and
 ﬁ time for the nine cases almost doubled the estimates of $3.7
o pillion and 10.8 years. |
Y
g% t. Common Causes of Software Contracting
;ﬁ The nine cases that were studied in detail
g illustrated many of the same causes of difficulties that
a respondents to the GAC's questionnaires had identified. The
g? most significant of these findings will now be described:

;5 -- Federal agencies contract for software development
: with little specific guidance.

Guidelines for software development promnulgated
by central agenclies are primarily aimed at the technical

j : aspects of software developnment. Very little guidance is
;ﬁ frovided in support of the contractual process.

%ﬁ Basic responsibilities of the central agencies
:g are set forth in the Brooks Act, Public Law 89-306. The
4

R 17

Cffice of Management and Budget (OMB) is prescribed general
oversight of Automatic Data Processing (ADP) activities.
Much of this responsibility has been delegated to the

%ﬁ General Services Adsinistration (GSA) and to the National
$$ Bureau of Standards (NBS). GSA is delegated the responsi-
-ﬁ% bility for enmsuring cost effectiveness in the selection,
s acquisition, and utilization of ADP resources. GSA's
$§ guidance for the management of ADP resources is contained in
%&E subpart 101=-32 of the Federal Property Management
EB Regulations.? Policies addressing the procurement of and
. contracting for commercially available software is provided
gﬁ in Federal Procurement Regulation 1-4.11. GAO's review of
o both of these documents revealed that there is very little
;i@ actual guidance directed at the specific contractual manage-
i; ment for engaging in custom software developnent.

;é; Although NBS is tasked with developing technical
o standards and guidelines, OMB has indicated that NBS is also

responsitle for investigating and assisting in software
system developments. Althodbh NBS representatives advised
GAO that their resrcnsibilities involved managerial and
contractual activities for system development, NBS' emphasis
has been, and will cecntinue to be, on the technical aspects
_ of system development, such as the standardization of
§¢5 government~used Higher Order Languages.

DR

s -- Agencies overestimate the stage of their own prelimi-
e nary work before they contrac

¢t GAO found two primary reasons why agencies
contract out for software development instead of doing it
in-house. The first is that many of the agencies lack suffi-
cient quantities of, or properly skilled, personnel to do

LI eyt
o

Fl

F]

o
AR

AN

pril 1984 DoD regg ations concerniggu gy

soandilefen, o Bits, Sttt DI Gt SR

ggg gggogge(rag) spegffgca ly, gugghaggegr%, Aggg%s%tlon

18

"ﬁﬁéiﬁg“““ﬁg “~*¥g$} 3

Y Y YL G A I s ek Lk K G

the work. Secondly, the software is often needed sooner than
it can be produced in-house. Often the initial sters of
softvare development, such as requirement analysis, are
started in-house prior to contracting out for the continued
develorment of required software. Two common problems have
been observed in this context. First, the agency may overes-
timate the amount of work already achieved in-house
secondly, the agency's preliminary work that is turned over
to the contractor may be inadeguate reguiring that it be
done again by the contractor.

Overestimating the stage of software develcpment
before releasing it to a contractor is likely to result in
additional costs to the extent that any cost benefits that
might have been gained from the development project are
forfeited. It is critical that precise methods for measuring
preliminary in-house work be used in order to achieve real-
istic cost and time estimates. An accurate identification of
the stage of system development is vital in order to prop-
erly determine the tyre of contract to be utilized. 1If, for
example, the agency has completed all the preliminary devel-
opment stages required prior to the commencement of coding,
then a firm-fixed price contract for the coding effort might
be the wmost suitable. If, on the other hand, a systems
detailed design has not been completed by the agency prior
to entering into a contractual agreement, then a phased,
cost-plus- fixed-fee type contract would 1likely be nmore
suitable since the exact scope of future efforts is nct yet
knowne.

If agency work that is passed on to the
contractor is later found to be inadeguate, or 1less than
originally estimated, much of the work may have to be redone
by the contractor. In doing s0, there often is a tendency to
attemrt to save as much of the original work as possible irn
order to remain within the cost and time ceiling mandated by

19

G R R T N e S N N S R T RTINS [IR R RN A AN AL VAN e 8

S

ey 7 T ————_—A LTIV BN T OV U AT e WY

the contract. This is likely to compromise the design of the
new system, resulting in a less efficient system that
mandates higher operating and maintenance cost for the
renainder of its life cycle.
-- Contracts fail to stipulate what constitutes satis-
factory performance.

Failing to stipulate what constitutes satisfac-
tory performance by the contractor makes it difficult, if
not impossible, to clainm poor contact performance.
Furthermore, it reduces the probability of a satisfactory
end-product. Hany disputes over contractor performance could
be avoided if adeguate system specifications and testing
criteria are identified in the contract.

Other general requirements and constaints that
can usually be identified at the start of a software project
criteria for softwaxre expandability, documentation stan-
dards, wmaximunm computer resources allowable, paintenance,
and program transfer capabilities.

g encies uickli ozercommit thimselves, and fail to
adhe e to stfict plasing to contro contractors.

Phasing divides the development effort into
logical and manageable work phases. One of the most effec-
tive controls available to an agency is in the contractual
identification of phases, c¢oupled with manadatory agency
review and approval following each phase as a precondition
to the contractor's continuation of subseguent phases. Other
advantages associated with phasing include:

-- Ide tific tion of mi estones nd tlm ab es _to
mon oi f ro r e pro ect, ow ng for
t correct ve tions n mely
ash on.
-=- Systematic and orderly development of software.

=%t funds based u ty an ept-
biilty off funds baged upon quality and accep

- Increafed assarance that should development efforts
are teing used.

T ZoRTRaco e IEAERS Ol PR o ThcEea a8 FLonaBE 1Y

20

<..‘._-

. T T W T W P U2 TN TGOV T ST W WL SRR W W

TV B R T o o - e MR A \ oy N ! 7, « ‘h}, ;&v&\

N TAY

Ral il Nal. o tar. =pul

el

b
"
:V

AU VAL LMEUWRITORTUN RN E A WAL TN RS ¥ WS LR VWU RIS T T AW W MW PT84 W AT D7 7%} W T3 TV), AT WY

that the contractor fully understands the agency's
requirements.

- Coppjeted phases provile ap pdoguete base upon

- == Lack of agency management during contract
execution.

Ah excessive number of system changes were
requested by the agencies in the cases studied by GAO. These
agency~-initiated changes ranged in scope from minor reguire-
ment adjcstments to re-resign of the entire system. Many of
these changes requested and made during the latter phases of
developrent and contributed significantly to c¢ost and
schedule overruns.

Project managers should be avare of the need for
a vell-defined problem statement and the undermining effects
that changes have c¢n software development. Chaages, as
compared to the original requirement specification, are not
usually as thoroughly researched and may cause unforeseen
and rippling effects on other parts of <the systen. The
systepatic and logical flow of contract phasing may be lost
due to the need to modify work that has already been
completed and approved, obscuring the visibility of the
project's status. Furthermore, excessive changes make it
difficult to hold the contractor accountable for the initial
terms of the contract.

-~ Agencies to not adequately inspect and test software.

As depicted in figure 2.1, most of the software
delivered in the cases studied wvas of poor guality. Reasons
for this poor quality was evidenced in all phases of devel-
opment. Quality assurance nust be tied directly to the
contractual process. Higher gquality software can be
obtained if the contractor maintains guality assurance func-
tions in a number of software development areas. Specific
exanples of these areas 1include configuration management,
testing, program design, documentation, and working tasks.

21

o

NN

\\' -A- "."
hoegiody

T T NS A T R T T A TR R R S TR LRI

The latter of these area, working tasks, is a nmeans for
N assuring that procedures are in affect for subdividing the

total work effort into segments and assigning responsibility
@ for the initiation and completion of work.

NINE SOFTWARE DEVELOPMENT CONTRACTS TOTALING $ 6.8 MILLION:
WHERE THE MONEY WENT.

2 : SOFTWARE
b DEL!VERED BUT NEVER
B SUCCESSFULLY USED

: ($3.2 MILLION)

SOFTWARE
PAID FOR 8UT

NOT DELIVERED
{$1.98 MILLION) SOFTWARE USED

WUT EXTENSIVELY REWORKED
OR LATER ABANDONED
($1.3 MILLION)

Pl Al

-’
.

G, < i R o >4
R
R . - i

SOFTWARE THAT COULD BE SOFTWARE THAT COULD
USED AFTER CHANGES Wi BF USED AS DELIVERED
_ 18198,000) {81 19,000 out of 38.8 million)

* ‘<‘€-ir1"-3’ 9 :

o

i,

Figure 2.1 Value of Delivered Software

-

T

g 3

il o g o4

At Pt e

.

22

.

K
i

PR S Lo AL LR L

J
]
i
]
U

.
Ky
.-
Lg
R

e e
s

. , - oo
LLE Ry

- -

il o o R e WG L
- - T g 1 -
ol o ol fo& . LY

1]
»
.
Al

The GAO report concluded by stating the reed for
improvements in contracting for custom software development.
Recomnendations were made aimed primarily at GSA and NBS for
both improvements is both preocurement and technicsl areas.

GAO further reconmended that GSA and NBS work
togéther in designing model contracts of various types.
These centracts would have sanmple clauses for covering the
withholding of payments, testing, etc.. Agencies would used
these samples to extract those clause which best fit there
particular requirements.

The last recommendation that GAO made was that
Federal agencies that extensively contract for software
development "should +train project nmanagers in appropriate
software, contracting, and management skills." [Ref. 5 : p.
29]

2. 1he Multi-source Unjfied Data Distribution (MUDD)
Report

The MUDD Report [Ref. 6 : pp. 1 - 28] should be
considered "regquired reading® by all present and future
project managers overseeing software development. It is a
case study of Navy software development practices. The
report is based on over 30 interviews with of those respon-
sible for the develorment of Navy systems. The year-long
study wuses the development of the fictional MUDD system
under development to mirror many of the requirements of Navy
tactical systems either in operation or under development.
It chronicles and analyzes the decisions made on the soft-
vare development effort. The MUDD Report concludes with a
set of recommendations to Navy program managers for avoiding
the pitfalls described in the report.

The issues brought to light in the MUDD report are
gernane to those problem areas found in large and complex
systenm development efforts which typify many DoD progranms.

23

o e —— v v e e e Ty - ——— Betdehdeain S dudolietdend

An adequate summaticr can not be given of the MUDD report
5 which can do it justice. It should be read in its entirety
for a full appreciaticn of Weiss' recommendations which are
directed at problem areas that infest the fictional MUDD

'f$ system development. Most of the recommendations center on
'%! various types of interfaces, such as the interface between
:7_ the Navy and contractor, interfaces between people, inter-
ﬁ faces between and within systems, and interfaces within the
 ;; Ravy.

3. DRoD Weapon System Software Study
. 3} The John Hopkins Oniversity Applied Physics

5 laboratory (APL/JHU), in conjunction with the MNITRE
Corporation, conducted an extensive study of the management-
of weapon systens software under the auspices of the Office
! of the Secretary of Lefense [Ref. 27]. The MITRE and APL
study team reviewed the findings of ten previous
DoD-sponsored studies relating to software. The MIIRE
Corporation concluded that the "major contributing factor to .
5u weapon system computer software problems was a lack q;
discipline and engineering rigor applied consistently to the
. softvare acquisition activities." [Ref. 7 : p. S50)] Other,

more specific, findings of included in the MITRE/APL study
) included the following: [Ref. 7 : pp. 50 -51])

--Freguent contributors to software c¢ost and schedule

d rowth include: (a) oorl tornul ted initia soft are
e rements hanging re ents an req

£ t grovtl dur the velopm hages;

2 nee - ucate nvo or an ons
L= be ore u ul o ut an be btai ne c

> égrg erat i sea tin resour es; %
N c ent ng an cat on tools
.- ods; r r usa standards and
. anceé docnments in sp ¢ c procurenents.

¢ | --Th re is a eneral need for better ijdentification o
e tvare ter neasu es of software qualities,

‘. the sethods for Jeasur hen.

. 3853& int°§“28h3¥:§"§§°1§“22h P&f p1t 53’&%“58 a4
50 mad ndustr acadenia nd services b
By require application to real nilitary systens in

o 24

e A s e s e T R R A A A A R e

. 1” Ml Bt Aok BN R Bab® Ea8 Wbt Bl B I TR A - 0 R Rl B R Rl e LS Sie Rlal Ll iive 8 R bl She Ut e) P MR IR h Sa 5 - - NI IS IS i i e B ek B el e i g ecd e b i d
)

i

addition to %aboratorg gr experimental systems) for
evaluation and confirmation.

The study resulted in a series of 17 recommenda-
tions, each of which was directed at a specific problem
area. A sanmrle of these recommendations included: ([Ref. 7 :

pps 50 - 51]

A A S

--Specify that major computer software involved in

we€apen sgstem developuent be designated "conflguration
} § 1te§s' d be deliverable during” full-scale develop-
ment.

- --Us down esign pecify. the use of medular
o 1 I P gtec uf & an or ef1y g ased a"3es i
- aggroach that def nes t e g eveis o] rog ram

frogresses to gn and test succe smve y
lcver leve

--Re uire th conptractor to apply a highly disciplined
2 enggneerfng practgces?p ¥ ghLy P

[~ ~--Establish_a conmcn set of requirements and criteria to
; Ee appiied...by all servfces?

--Prepare a series

gandbooks guldes covering
important aspects of software acguxs;t

on.
” While extensive progress has been made in DoD toward
b addressing many of the problem areas noted in the preceding
studies, much work remains to be completed. Specific correc-
tive actions that have been adopted, or which are presently
in the formulation stages, will be covered in this thesis,
particularily in the chapters addressing standardization and
the STARS software initiative.

a '
e 25

PR —————————RC LSRR R U S S SRS 48 Ai an L K Bt R KA A A A R K WKW RN NI T, L L UANAT YT T AW VR LS

III. MEASURES OF CONIRQL

A. BACKGROUND

"You can't contrcl what you can't measure." [Ref. 8 :
P. 3] A disparity exists between the software manager's
definition of what constitutes a project's success as
compared to the user's perception of the same project. With
gsoftvare projects resulting in utter failures or cost over-
runs of two, to three, times the original estimate, software
managers often consider their projects a success if overruns
are kept below 30% and when "most" of the delivered lines of
code are considered "“usable™ by the end-user.

DeMarco [Ref. 8 : p. 4] writes that many projects fail
eventhough the project managers have excelled in those
characteristics that he associates with good management.
These characteristics include:

--project staff members that are highly motivated
-=-clear understanding of the issues

--adeguate grasp of relevant technologies
--evident capability in the political sphere

Demarco attributes the failure of these project managers to
the fact that they have simply failed to meet the original
expectations of the project. He is convinced that in often it
is not the fault of the project team, but rather the faul: of
"inflated and unreasonable expectations." When expectations
exceed what can be delivered, the project is doomed to
failure.

26

A R AR A R S AR

Is

T
<
b

i‘l IE ,)) 3

4”A
w) A

"

T TR TR TR TR T T T R Wy U TR T R R TWTRT R A NTRE A Y A R TR W RTTR TR AR TR TRA A T R EMEYYW R AT I W W W W TR TR '--J-w-mv'nlq:- e RaTesE et Te e el e o i R T wTrware E S

REPRODUCED AT GOVE bitehie WT FXPENSE

L BNEE N\ e

- u\'",n

‘Y. b

af the

PARISH
of

ST STEPHEN,

n

CRAVENCOUNTY
Exbibiting sView afthe feveralPlaces
Practesble far making o
NAVIGABLY, CANAL
between
SAN TEE and CO OFERRIVERS
from an Actun] Survey

Dyl IENRY MoUZ 0N,
177

ASCALE OF WHB S AND CHAIN S
6g? I\‘IIU"' toa chnu

b Jt‘[-“:)ft ""u. 3
/ \d- .,

- Yoyt
Comea ane 4Ca RA0‘] .‘ ,"
.y .J'k et / £
cS e "o, & A

/

A LT R AT e R A T £

- T

€ -X.

e e e

ik

=

i

REPRODUCED AT GOVERNMENT

FXPENSE

W W WA RraR ey

T

DR ey rrora
ATt Fends e Puoes b otind 1 e qﬂ’v‘u

Pnpste S sdy 00O Mool wwt 2y Busss O“L

Castemary Mesvs. « LTI SR ;lr‘-q L
County Awmes . PRI j} b e 3
T e '

Swasmpe . s ‘e -
Priagor, - .
Nouss oop Aﬂomma.. .“
(LT IT] - - W
Plauen Mractiromn poo WOM‘ W ehed
Mo wrnoe A 0 L rapreseed s ee 046 ones oo e
MMV (@ At apmns o 10 Aage §.Mmeen oo She g
0/ ho ma-. .' My e ﬂ-nn

Peits g Coapt: Miwgr

Pron Grasntiad Swamp Srevgn vbe m
o Wwgas dwomp A Aygges B py
Mo e vy) Sbe Biswrt Broied @ Sie. .
Moo atuasoe hede A Watbey B oy .
Fowwm Bpena it Crosh n W-r: Mroaige 1,.
Fovem SBnPos Er8ed B Doy,

FIGURE 4
Mouzon Maj

o T T T R T T TR T T T T R R R R e R T T e SR R T T T e R T T TR VAT TN T TR R TR R TR TRAE Ny YT AR Te T Rt Al

REPRODUCED AT GOVERNMEN | (XPENSE
26

»y

—BEEENENCES—

. Acdiie Woads oo Baps & o0l s hoa by hef Vqetimaty . [omem
Frrale Moade 00 Neade Avet sa? ag Basg o Sol e o | Swranas
Cuatomary Mesvo. . Cawm < 9

. e d -
Cownty bingy - r; . . weo mem
[RPY TV U ew e |
Ll 1 B o ‘e - v h@"_
Sreopen, o ‘ eli e n -
enses o m-mm:.. “ LI
Caucraey . - e ' h
Pimese Mroetioani pos wabag o tb-il‘ v oh.l
Mo 14006 M B U o rpral Bu Aus 44 ¥omee oovt Aee
A B R suwns o ove Mage S 801 14 00 s imag

v n. Nahu (4 nl- l—a ..nu

comvm smvms e e

]
C11mares pran Bonise M B e vsorset Mvmlb.. .
Moits ap Cosper Merqr .
Fron@ivsshal Sunmp Moy e Nuss Brenss) o
& Heopen Swems A @rppie Seidpy } i
Feam DAY Posagh 29 Bomtd drwivid & Side. |

Feovs Atovases hudo b Werbes Brogs !

'
From Stvansot Crovb A n.rf.a Brostgs .",.'..' k
From Sonise Crovr A §:¥a,, ..

S,

FIGURE 4
Mouzon Map,1771

VIR RII L E T b e 2 TR T N I TT L EASTE T T g

o e

TR

tgv-_..‘w e e s A e et A A i S A i A A L bl A M S e il TET M TEN A R A AT T T WV LV TR R W Y

i%é: B. CAUSES FOR PUOOR SOFTWARE BSTIMATING
0 Estinating is at the core of the difficulties
. surrounding softvare projects. Feedback 1is essential for
gw' control. VFeedback provides a basis for comparing the actual
%Y project's progress against original expectations. These
i expectations were formulated on estimates. Main causes ¢f
poor softvare estimating are as follows: [Ref. 8 : pp. 9 =
17]

1. lack of Estipating Expertiss.

o The average software manager will typically rate

".‘ %

5ﬁ: himself/herself well below average as an estinater. The
'&Q underlying reason for this is simply lack of estimating
el practice or expoerience.

The amount of actual estimating that a typical soft-
3&8 | ware manager is involved in will normally take up less than
}§j 3% of his/her time. Most software projects may call for
estimates at their beginning, and maybe once-a-month or
prior to management review thereafter.

) i;x

KV, .

o 2. Biases ip Estimating

My

'X:‘ Fersonal biases create a strong tendency to underes-
e timate one's own potentials. However, when objectively esti-
'ﬁg mating another's potential, then most of these biases are
ﬁﬁ minimized. DeMarco suggests an obvious approack to avoid
)

%gj this phenomenon by stating

"Whoever does th estimatin for a pust_ be

; Bo2°h o "85k
someone whose euntire ego inv %vement i he ualltx
o% he estimate, ratheft than

@Le

n the project itself....

TR R ECIR I AL TIPS IR T 2R da S SET Al

3. [P nndana:sﬁdins of Hhat Estipate leans

At the very heart of probability theory is the esti-
mation of "odds" of the occurrence of a certain event. Yet
softwvare estimates are often void of any explicit probabi-
ligtic assessment which may govern them. This observation is
closely linked to preceding subsection on the personal
tiases involved in estimating. Should a software manager be
asked the probability of finishing a project, say, 20% later
that s/he criginally estimated, an answer (right or wrong)
will freely be given. On the other hand, should the same
person be asked the fprobability of completing the project
earlier than originally estimated, the estimater will likely
give it a zero probability. This represents vwhat DeMarco
[Ref. 8 : p. 14] ternms

Default Defipition of "Estjimate"

An "eﬁtimate" is the most gg imis ic ediction that
as non-2zero probab ty o ng true.

Instead, DeMarco [Ref. 8 : p. 22] proposes that an estinmate
skould ke defined as "a prediction that is equally 1likely to
be above or below the actual result." This definition, by
itself, does not sclve the estimating problem. It does,
hovever, offer a basis from which to start examining neas-
ures and other compcnents of estimates vhich will be covered
in this chapter.

4. Estimates as Easis for Incentives

Cften estimates are used to establish gcals for
performance. When used in this manner, the software manager
is likely to establish estimates on previously established
goals. To serve as a motivational tools for the development
staff, the goals are set at unattainable levels.

R R R A e R P

1 aé‘r €!

Lol e

=D
g

vt o R LR o

NG LBt

et €, e

e,
&

¥

§. ook

o

TR W TRV R WTART W T R R TN T W R TR e e TR aadidtin g Rl adhddianod el e M sk otk s o hacai b e Bl Ras Th oun MLAL DEL AL RN B2 Sl 4

Many nmanagers view goal-oriented estimates as the
suprene notivational mechanism for their overly-optimistic
development staff whcsge self-~esteem is placed on the line in
the pursuit of unachieveable goals. As the development staff
is driven toward the c¢ompletion deadline, the ultimate
victin of of this nmotivational strategy is the gquality of
the finished product itself.

C. SOPTRARE METRICS

The first part of this chapter has done little more than
point out many of the ill-fated approaches which have tradi-
tionally been used t¢ control software. These approaches
were principally gqualitative in nature, having no formal
mathematical basis. VYet, intuitively, a direct relationship
exists between software guality and gquantitative software
characteristics such as modularity, size, and logical
paths. As such, software metrics have been advocated by many
authors as a preferred means for deriving inputs for the
estimating process.

This section will examine two of the most popular theo-
ries in software metrics that have grown out of the fornma-
tive years of software engineering: (1) Halstead's Software
Science Theory, and (2) McCabe's Complexity Measure.
Appendix B provides sample algorithms and respective
formulas for each of these two theories.

1. Halstead's Software Science

The first set of metrics to be reviewed were devel-
oped by Maurice K. Halstead [Ref. 9]. Instead of using
"lines of code" (LOC's) to describe the size of a module,
Halstead breaks each line down into a series, or group, of
synbtols. Fach of these symbols can be classified as either
an "orerator" of as an "operand." An operand is a single

29

e

AT [N P T X = QAT B bR I R L AT T L T A e W L A A
N L L L T e gy o e S b M S A gt T T

B S0y B A A S

- - Er Wy mee WY W e WevE W WTTY W RN WPIW WM WS W W TN W W W—SR W WA WOUE VIS Wem R WOCONE WU SROW SR WO OWOW TS s I we wewm TRLE WTW - e

R

— i e
‘-

> Xl

synbol or group of symbols that identifies the constants or
variaktles that the @mocdule uses to implement its algorithm.
An operator is a single symbol or group of symbols which
affects the value of the operand. Operators also impact the
: sequence in which the operation takes place.

. Criticisms ccncerning Halstead's theory of measuring
through the use of operators and operands were gquickly
registered. The majority of - Halstead's work evolved around
algorithus drawn from Algol and FORTRAN. In other algo-
rithmic languages, the definitions of operands and orerators
are not nearly as clear. Halstead also omitted declarations
and comments from his calculations--a significant portion of
the widely-used COBOL language. Other studies, however, have
shown that the additicnal declarations and comments actually
brought the estimated program length closer in line with the
actual, completed program. 1In any case, it is important to
identify the operands and operators of an algorithric
I language to establish consistency. This function can often
l e determined by a compiler, through which the operators and
operands are explicitly defined in the final machine
language product. guestions abound on the dJderivation of
Halstead's formulas. The validity of his experiments has
been guestioned because of the small sample size, the small
size of the programs used, and the subjects used were
college students vice experienced programmers.

Halstead proroses that each language can be categor-
ized by a 1language level, 1, vhich will vary among
languages. The variances are closely linked to the level of
abstraction by which a procedure can be specified. Halstead
assigns a constant language level for a particular language,
which is in contrast by to the recent works that show that
language level is a resulting product of both the language
and the programmer. Table 2 provide the language levels
values that have been empirically derived for five common
languages [Ref. 1: p. 166].

e
A,

(e CE ls g e e

v,
L

5

&
B e

e

e o e
.- 2w
=8, -_‘r-j't_":r

o e
R by

i
o B "
e e

e T x e

.

x4

e

S W g
e g i o

k2%,
RS

e

L
';'r‘.\""‘iw:‘:.‘-."

g i B

R

[)
I

30

TR TIETEN T Y W e T T WA

2
!
* TABLE 2
e Language lLevel Values
.% Language: Mean 1

£y

* English pose 2.16

Bpgyien P 133
ALGOL/66 %.1

' FORTRA <14
\ Assenbler 0.88
3
a
;Y:
hx 2. DNcCabgs! Coprlexity Heasure
o In his article, [Ref. 12 : PP. 308 =-320] McCabe
3 . proposes a complexity measure of software which is based
» upon the control flow representation of a program. Through

‘ the analysis of several FORTRAN programs, he illustrates a
: high correlation between the intuitive complexity of a
;ﬂ program and his proposed graph-theoretic complexity measure.
;} McCabe's softvare complexity measure is preported to
%f measure and control the number of paths through a progranm.
w The primary difficulty is this regard is manifested through
@ backward branches which may possibily result in an infinite
;" number of paths during program execution. Consequently,
'fi < .
gf using a path count to measure program complexity is inprat-
o ical. However, the complexity measure can be defined in
?ﬂ terms of Lkasic paths, that wvhen taken in combination, will
{} measure every possible path.

As compared to Halstead's nmetrics, McCabe's
complexity measure can be applied during the earlier stages
of software development since it is not dependent on the
measurement of code. The cyclomatic complcxity measurement

5

AP |-

A

31

Moeis et o duy

LB T R R TR R AT R AT R NP MR T W
vk S x',,s'{‘. ‘*% Y SA .’%,, 31 R S
B A L S L T, R R S LR AR AL AT

wa— = WA ST W . T SRR T W e B T TR e

provides an evaluaticn tool by which "goodness" of a module

& can te reviewed following its detailed design [Ref. 1 : p.
. 169].
]

4l

i D. SOFTWARE COSTING

il

’ The role of softvware in the military and private sector
% has grown considerably duriﬁg the past decade. During the
b infancy cf computing, software cost amounted to only a small
% percentage of the overall computer system. Today, software

is the &most significant portion of most computer systems.
Accurate estimates c¢f software development cost seldon
occcur, with the final costs normally running ccnsiderably
higher. There are two fundamental problems which make accu-
rate estimates of software development costs most difficult
[Ref., 13 : p. 45]. These are:

SR e i e
> oy,

S e

oty WA

-~ the high risks and uncertainties involved in software
development

-- the lack ,of a gqua té{at ve data base for Rievious

. cost estimates “an na costs. Y- éssons
learned"

In spite of these significant problems, cost estimate are made
;] and will continue to be made with varying degrees of accuracy
N This section will describe three current methods of cost
by estimating and provide a table for their comparison based on

y application [Ref. 13 : p. 15 - 17].

5 1. Apalogy

This method estimates the costs for a new system

based upon the the costs of a similar system. The cost esti-
) mate is adjusted to compensate for any differences between
the two systems being compared. The analogy method is fairly
b simple provide accurate cost data for the existing system is
: available and the development methnods and resources are
[similar.

32

. .-‘~ R 'g‘,‘."(; ,,-- -”)'y.
oA

%

o

TS R L RTA LS IR TR N AR,
. LTV R NI BN LP AT R 3
%‘:&;‘;‘(ﬁ'\.{ "{ TN \.‘n{‘xi'n{f’.';.&ux;lrv o

2. Degomposition

As the method name suggests, a system is broken down
into ccmronents and subcomponents until the level of deccm-
position makes it [rossible to estimate the costs fairly
accurately. One apprcach of decomposition uses the aualogy
met20d previously described. 1In this approach, the process
of decomposition is effectuated until the resulting level of
decomposition can be compared with a similar component vhich
already exists., A second approach of decomposition divides
the system into conmpcnents for which a level of effort can
intuitively be estimated for each kind of activity that is
needed to produce that component. This latter type of decom-
position normally derends heavily upon the technical knowl-
edge and experience of the estimater The preassumption that
underlies this method of cost estimating is that the costs
for small systems, or components, can be accurately nade.
The total system is perceived as the aggregate total of its
subsysten.

3. pagametric Models

As with the analogy wmethod, the parametric model
approach to cost estimating is also heavily dependent on the
accumulation of past and accurate cost data for software
development. Analyses of cost data permits the identifica-
tion of cost variables and a gquantification of their rela-
tionship to cost. Any new cost estimate can be derived by
estimating the assigned values of the cost variables, Once
this is done, the cost can be calculated nsing the equations
which express the cost estimating relationships. The advan-
tages of this method is that it allows for a rapid determi-
nation of cost estimates, using parameters whose values can
be easily modified.

i
4

AR
N
)

M

A~ | KR

>~
A sk B,

ZRET

s N LA

g e
h e, n .

Gt ol Sl e
[NV R

.M
il

L

5
d

L

TR TTW v fats Ram Sat dob gbait gy R W

Table 3 [Ref. 13 ¢ p. 16] provides a comparison of
the three cost estimating methods discussed. Combinaticns of
two, or more, methods may be used together, or separately to
test the validity of an estimate. Resultant differences are
adjusted to arrive at a reasonable estinmate

TABLE 3
Conparison of Cost Estimating Methods
IIRE DESCRIPTION
Analog Compare to prior systen
Decomposition Divjde into parts
P artiviti P
Parametric Equations based on prior
Models data about cost relation-
ships
“Tzxee eooD'EOR
Analog o im lar s stems with
s ar r sources,

development process

Decomposition . resource allocation
.« unique systems

Parametric . ragid estimation
Models o mater's nexperience
n softvare development
o estimating risk

fi Uue systenms
« different environments

Decomposition . init1a1 estimates with no
n rap 3 estimation
gafetric . g;stems different fron
ta_san

« poorl grrelated data
ase

34

L e R g T i e
T ORI SS CAARNAS A SRR

S T T e R Rbanaaitd

oMl o

o Sl

by Autonmated costing systems provide another option for
_'ﬁ estimating. In these automated systems, the characteristics
¥, of the development organization, such as the staff's experi-
&y ence level, and characteristics of the software to be devel-

oped are dJdescribed. Cost estimates are derived from this
A input data. As with the other three manual methods, the
derived cost data will only be as good as the empirical data

o 18 s

} upon which it is founded. If no historical data exists,
k- then the validity c¢f the cost estimates is, indeed,
ke questionable.

L E. CHAPTER SUMMARY

McCabe's and Halstead's software metrics remain a
controversial topic. But they do represent a revolutionary
approach toward providing software managers with quantita-
E , tive functions for estimating many heretofofe elusive char-

f acteristics of software. The validity of Halstead's
g experiments have yet to be significantly tested. For those
g tests that have been performed,' the size of the fprograms

were generally small, and the subjects were college students
| vice professional software developers.

) As compared to Halstead's metrics, McCabe's complexity
measure can be applied during the earlier stages of software
develorment since it is not dependent on the measurement of

ﬁ code. The cyclomatic complexity measurement provides an
'i evaluation tool by which T"goodness" of a module can be
! reviewed following its detailed design. Despite the criti-

cisms that normally atound the proposition of new theories,
both Halstead's and McCabe's metrics represent a giant leap
towvard adding quantitative measurements to a discipline that
has defied thenm.

,J The pilitary's Jjustified and growing concern over
frequent cost overruns for software development is forcing

35

A3 L LR (e L DAL LIy Ot fy 24

e e T AR ST W T VTR X 4 N T X T T W W Y Y T T VIO T O AT R T R T Lt 2R o ol Ba b B e M L i b B3 iy -) M

changes in both the management and development of software.
As such, new requirements and changes can be expected that
will provide a more unifcrm and better control over cost and
software development. This chapter has addressed three of
the most common software cost estimating methods. The STARS
rrogram, Chapter VII, addresses a CLoD-sponsored software
initiative which will significantly alter and guide future
software development efforts for DoD weapon systenms.

'l
L rl

K

¥

e e, 73,
[,

it T T
AL oo

K

i

o a Te W

-

f] rlal

N

&
«fx

36

A,

4

PO i N ToXok i‘\w

é:: \u}\ Y :.$::l‘y- : . -' i ‘ A‘.- . ‘ V! ; V o » rf s i . ‘ n L AA..AV "p m A’J A i}}}.

IV. QUALITY SQFINWARE

®"Softvare ¢ rrectness remains the most elusive tgoal of

comggter s¢C eni As a result, oftware is
uns eas understoo and the most expens e
congoneﬂt o tota fer system cost. In c tras&
con t t ave shown ranatic
ec ease, esp i a the ast ears, and comguter
hardware capab lity has iopr ved." Ref. s

A. BACKGROUND

The preceeding quotation was taken from an article
authored by the Deputy Under Secretary of Defense (Rese€arch
and Advanced Technology), Dr. Ruth Davis. It expresses the
concerns sahured by meny DoD top officials relating tc the
both cost and safety risks associated with the development
of today's computer systenms.

As a percentage of total computer system cost, it is
generally known that the cost of hardware has decreased
dramatically over tle the past 15 years while the cost of
software has steadily increased. Today, softvare represents
approximately S0% of the total computer system [Ref. 14 : p.
18]. There are two basic reasons to explain the change in
the cost ratio between hardvare and software. These are:
[Ref. 15 : pp. 55 -~ 56]

(1 H Today's software programs are an order of
iﬁﬁ%&ﬁe “’"%eifl seed, R e b S ke T e easa 0
Onge (and multaneous decfease in_the cost) _of

oard memor . An adaptation of arkinsont's law
zu ests thailpro ram instructions will continue to
e

e 332 core is f iy‘ﬁ?i ggﬁquently beyond)

* gthaﬁﬁﬁﬁﬁ toaa] aft d58alderably BBae"SopRlR 1 cR 1R
targn 3 EEimerclan 1val s%réte e

n ncreasin e engen+ on maint 1nfna tﬁ
ccmpetigive edge ig‘gompgter superiority. ©

37

R A b A e e e L R R B A R D P L A8 14T S

A R SAE el Vart MLl Rl Ml Sal R LK Sl MMM L Lt B P T B S A A g7 pe g aeal awa ol & gt B At oA el ol L RD s e s 4l R D g e e a b ha e B S———

. 1 WL ok e AL - aoh wweiail e el A i Y S A A EA LA LR QR 8 e b

S —————E RS S RS b R S

Softwvare has beccme a primary vehicles for solving many
of the new and changing problems facing the military. 1In
many cases, changes to software is often viewed as an effi-
cient and expedient way to solve a variety of emerging prob-
lens or threats facing DoD without having to change the
existing hardware, Yet the virtues of software are often
outweighed by its asscciated problems as described in
chapter II.

It is not suprising that DoD has identified software as
the most significant factor in determining the total cost of
computer~ based systems over their life cycles. Numerous
studies have been ccnducted which show software guality as
one of the most significant factors Adetermining the 1life
cycle cost of software. This chapter will present many of
the characteristics c¢f software gquality and the means to
achieve then.

B. DEFINING SOFTWARE QUALITY

Defining guality software is, in itself, a task. There
are as many definiticns of what makes software 'good" as
there are authors that write about it., Yet these definiticnms
are not mutually exclusive. Each author has his own ideas of
vhat the principle characteristics of guality software are,
and each is right. Defining quality software is as difficult
as defining the virtues of mankind. Air Force Regulation
(AFR) 74-1, the "Air Force Quality Assurance Frograa,"
troadly and sensibly defines quality cs "The composite of
material attributes includirng performance." Other, more
specific, Adefinitions advocated by many of the "gurus" of
softvare engineering will aow be discussed.

Pressman [Ref. 1 ¢ p. 148] suggests that good software
has three essential qualities:

-~ the software works accordin the specified

to
requirements-- being as fast, e%ficient, and as func-
tional as needed.

38

e e S R A T A K S R o SN R S R P P A 1

o T T T R R R TR T R TR TR R R e BT AT AR TR WA TR TR WA TR T e b ddhdanial @ TER T T TR T

T aed RIS iR "gasR TRt L con Be dlagnosed and
o ihéxs§£§"2ff ehe ;ﬁ%é@ﬁ’g “3§§%K.%t”’to Jhas2a%tnat
the first two qua es ar&§ achleveable.
According to Pressman, good software is based upon good
design, and good design can he gauged by applying 2 number of
software engineering measures and heuristics.

DeMarco [Ref., 8 § pp. 198 -~ 200] prefers to define soft-
ware quality as "the absence of spoilage" [Ref. 8 ¢ p. 200],
with the ¢term '"spcilage" meaning the amount of effort
required to £find and remove faults introduced during the
software development process. Equating this amount of effort
to its commensurate coat, Demarco proviles a formula to
guantify software quality: [Ref. 8 : p. 200]

Sunpation of Defect Diagnosis and Correction Cost

Q uality B - 0 s e D A - D DA D DR B U D D AP W S W

Program Volunme

n which Progranr Xolum is meagsured per thousand
ines of exelutable code (KLOEC)

C. CHARACTIERISTIC OF SOFTWARE QUALITY

One of the most comprehensive and significant works
written to provide a framework for assessing the issues
associated with software gquality is found in the study
conducted by Boehn, et al., titled Characteristics of
Quality Software [Ref. 16). This section will present many
of the highlights rercrted by this study.

In developing a methodology for the assessing the
quality of software rroducts, the authors concluded that
“calculating and understanding the value of a single overall
metric for software guality may be more trouble than it is
vorth." [Ref. 16 : p. 3-2] A major problem in developing a
single metric for gauging the guality of software is that
many of the characteristics of software are in conflict with

39

—— SR ———————— S L SR PR R AR T TR A TS R R B el B bl g WIS W BV T TR VAR WL

onu and another. For example, reguiring a high degrea of
software portability is achivved at the expense of software
efficlency. Cole ccnciseness is at odds with wmaintain-
ability, understandability, and so forth. As such, the stuldy
daveloped a relationul set of importdnt software character-
istics which were reéasonably exhaustive and non- cverlap-
ping. This set of characteristics would serve to define a
wvorking context for <c¢ollection and formulation of a set of
candidate metrics used to assess the degree to which the
software possessed the respective characteristic. Figure 4.1
shows the resulting characteristic set anl their hierarchial
interrelationships [kef. 16 : p. 3-19). Definjitions for
each of the represented characteristics is provided in

VI S8 1t PENOENES

LTINS
. -
. accumey
PORTARILITY
— cons 13TRACY
iy MLIANILITY
MVICE EPPICIINCY
N srrieiexey
AL
[F.
LI { incnine |
(P .
MINTAIN.
AILITY
HOBI FIABILLTY

Pigure 4.1 Characteristics Tree o

40

»~

AR SR A SR R PR e

T T T T T T T T T T T R R R e T RN TR T TR R R T R TR e T R il

appendix A. The characteristics depicted in Figure 4.1 are
categorized in three hierarchial levels. The higher~level
structure is oriented toward accommodating various user
needs and priorities for a software product. For example,
"as~is" utility is analogous to the "black box" under-
standing of a system; the user is concerned with only the
inputs and outputs of the product and need mnot understand
the its internal code, nor how to modify or test it. If the
product is going to te changed by the user, then maintain-
ability requires that the user be able to understand,
modify, and test the product.

The lower~level structure depicts those primitive char-
acteristics, which, although strongly differentiated fronm
each other, "conmbine into sets of necessary and sufficient
conditions" [Ref. 16 : p. 3-25] to define the intermediate-
level characteristics. The primitive characteristic provide
the fcundation for formulating the metrics used to gquantifi-
ably measure a software products relative possession of
those characteristics described in both the high~- angd

" intermediate layers.

D. QUALITY ASSURANCE

The preceeding section described many of the attributes
associated with goecd software, as well as their interrela-
tionships. The purpose of this section is to offer a frame-
vork through which quality software can be achieved through
planning, specification, and nonitoring of guality assurance
(QA) activities.

The purpose of software quality assurance, in short, is
to assure the ultimate guality of the delivered software. A
formal definition of guality assurance is provided by AFR
74=-1, which defines it as:

41

ILITENONI ST AATFI N)

RIS

————— - TAER LW T T AW TR VY P W UM MW M TR W BN Y WISV ERE LS I TR YRR TN WV LSRR A

.3% planned stematic Etern of all actions n ces-
ke sar o pro § uate co§£ dence that teg; i
oy E es, ervz es conforr to establishe techn

e\ rements an eve sat sfactory per ormance."

K, A Another definition fcr guality assurance is offered by Pfau
% % [Ref. 17 : p. 2] who also helped remove some of the subjec-
.‘h} tivity that surrounds the term "quality" by stating:

;ﬁﬁ "Quality assurance is the name given to the activities
.yﬂ; grformzd fg con gnction with ga sofigg prod ug

0N uarantee e neets the spec stan ard

VY hese activi es reduyce doubt an sks about the
R pertformance of the product in the target environment."
gg Both of the above definitions are reflective of the direc-
f@q tion that QA has taken over the past two decades toward a
‘g} total life-cycle persrective. This evolution of QA has been
L divided into three separate generations [Ref. 18 : pp. 2 =
55N

o0 41 It is important to understand the differences in these
N generaticns in order to avoid the serious pitfalls implic-
B itly and explicitly expressed in the first two.

i Eigst Generation--Test-Oriented QA: This QA genmeration
533 tasically eguatei QA to software test programs. Tests fplans
hki and prccedures, types of test, and methods of formal verifi-
i; cation of performancesdesign requirements were all essential
f&f to the testing activity.
”ij The cbvious and major pitfall of the test-oriented QA

k . generation is that "you don't test quality into a software
F product." (Ref. 18 : p. 2] Even though testing facilitated
the discovery of deficiencies, the discovery normally took

.33 place too late in the development process to allow their
A;% relatively inexpensive resolutions.
c"\ i

Second Generation--Development-Oriented QA: Due to the
L inherent failure mechanisms built into test-oriented Qa,
y

- corrective actions were taken by an attempt to make the

" 42
1)
B
§

‘S.&{&A!L

TER TR T VTRV TRE T TR VW TR e e T T T RETes YR .

¢ developing contractor responsible for the quality shortcom-
ings of the products they produced. This was done by
assuring that the software deliverad under contract fully
S complied with the reguirements of the contract.

i The pitfall to this QA approach is as linited as the
contracting officer technical knowledgeable in the Lroad
p discitline of software enygineering. Contract delivered what
! was specified, nothing more.

9 Ibird Genepatiop--Life-Cycle-Oriented QA: In this
generation, QA is tuilt into the softvare ifroa “day cne."
The effort is properly focused on the early definition
phases for planning and specifying contractual provisicns
concerning software attributes. Figure 4.2, [Ref. 1 : p. 25]
illustrates the cost impact of introducing changes during

P R R N

T N

d Severe
5 e
: u
- q
§ Moderate
o
y -
: "]
5 3 Impact of change on cost
‘; Minor
¢ .
4 Plannin Desi
; g esign Implementation

Figure 4.2 Cost Impact of Changes

various phases of the software life-cycle. Emphasis is
; Flaced on the clear definition of those software character-
4 istics that were discussed in the first section of this

43

Ty T RIT e T e TR T T TR T T ETEERTE e S TR T TR TR T e TR T e T e eV e TR e e Ne TR N RV RN LRI N W YRR LR TWEREE R W R, THER LEL N, W, YL

chapter, such as maintainability and portability, which have
a significant affect on the guality of the product over the
systen's life-cycle. The importance of the life-cycle-

?E oriented QA approach and its impact on life-cycle costs
iﬂ following softvare developnment and implementation is
W discussed at length in the chapter on software maintenance.

E. IHBPLEMEFTATION OF A SOPTWARE QUALITY ASSURANCE PROGRAM

"

fﬁ The preceeding section addressed the definition of soft-
'T ware guality assurance, as well as its evolution to the
o3 present life-cycle-criented perspective which recognizes

fsﬁ that to achieve the highest quality of software it is neces-
;ﬁ; sary to include quality checks throughout all phases of the
:; softvare life-cycle.

This section will discuss the military standards for the
implementation of software gquality assurance (SQA) programs
in defense contracts. The successful implementation of these
programs will provide early . visibility aad managerial
controls to detect, report, analyze, and correct software
deficiencies. Although the focus of this discussion will be
on defense contracts, the methods addressed herein may be
equally beneficial to in-house development efforts.

The two most significant nmilitary standards affecting
the establishment of SQA programs for defense contract are:
(1) MIL-STD-S52779(A), "Software Quality Assurance Program

7Y ,('~f~1‘ 7,
e,

[

. '*H'-J‘ -
F s e el
LI

> .

S

;f Requirements,”" providing the basic elements required in an
P acceptable SQA program, as well as customer evaluation
’3, criteria, and (2) MIL-S1D-1679, "“Weapon System Software
1%5 Develorment," providing detailed software development stan-
'i&v dards for the entire weapon system software development
iz process. Both the software manager gnd procuring agent
’kg should Le familiar with their contents since, together,
) these standards provide an effective means to evaluate any
o software development frogram [Ref. 19 : p. 108].

-

A4

LY LR L% L% v"-"«r' e PRI B 3‘: ',‘i; "y ",'\l‘: ’g'-n' v
A G g A e L G R Y R AR O EATRER LS,

U e B R R TR R T TR R R R T T T W T e T T e TR A R TR T TR TR B TR T T T BT T TR T TN TR T e T Y e .

In their article [Ref. 19), Dobbins and Buck discuss
five areas of control which follow the typical chronology of
software development. These are: (1) procuring agency evalu-
ation, (2) design inepection, (3) code inspection, (4) test,
and (5) library controls. The remainder of this section will
address each of areas separately.

1. Rrocuring Agency Evalyation

From both a ccst and effectiveness standpoint, the
consequences are too important to accept at face value the
claims that a strong SQA program exists in their organiza-
tion. There must exist some means to evaluate the potential
contractor. MNajor quality items must be addressed as early
as possiltle in the planniag process prior to the Request for
Proposal (RFP) preparation. These guality items should
include those attributes considered as an'integral part of
the software design, development, test and evaluation, and
paintainability issues. Table 4 [Ref. 18 : p. 33] provides a
number of factors with which to evaluate bidders' responses
to the RFP process:

Cften the program manager and procurement ageﬁcy
will have insufficient experience and technical background
to properly identify essential QA issues needed for inclu-
sion in the RFP nor the means or tima to evaluate the
contractor proposals., In these situations there are alterna-
tives resources available to evaluate the contractor. The
first of these is the Defense Contract Administrative
Service (DCAS). The program manager can hire the services of
software engineers acquainted current military QA standards.
Depending on the end-application of the software product,
there are other government organizations through which
assistance can be sought. Other alternatives include hiring
the services of a commercial contractor or consulting firm.
Regardless of the resource used, a sound means for
contractor evaluation and selection is essential.

45

v— T TR YT FYERT WYY YT WY W VT T e Sy v NY - & R POy TN TR TR TR L N WX

i
g TABLE 4
'Qf Evaluation Factore in Bidder Responses
;if FACTOES: BIDDER EVALUATION CHECKLIST:
}Z Comrleteness Lces bidder's regpgnse cover all
%; area as requested in the RFP?
o Scope Is the scope of the i deﬁ'
X response c gsonant e
: gioiect g ectives and the level
b etail in"the RFP
Lr Conmpliance Are a comgliance documen s
g1 Docunents isggg igd e software design
5
s v the bjdder prqpose to have
Degign Reviev ooy the biddef Rrgpgse to he
b Event Sequences sze the reviews of softvare design
g one in proper sequence?
\.)
K. Proble ges e bjdder propos o formall
o Report?ng | Edent ?y ai gesg 2 rob ens? ¥
' Action Itenm Dces bjdde rovide assurance for
b Follow-Up gffect ve § low-ug of ail agtion
323 tems resn ng m reviews?
. Past Experien- hat eigerience does the bidder
L~ ces/Resources have with QA? Does he have a good
f resource base?
.:3
g
i~
;...
¥ 2. Design Lnspection
ﬁf Although MIL-STD-1679 specifies that "walkthroughs"
fi: should be used as the means to collect statistics during the
fﬁﬁ design rhase of softvare development, the process has
‘fﬂ evolved to the more formal procedure termed "design jinspec-
i
_i% tion." The difference between the two approaches is one Vvof

i,

Lé

SAAAE

i
L

A% TR U L T LT T WA TN VTR TV R 3% TR T AT AT W R AR UHW TR W TR R TR N AT I TTARE T MU T G W AT W T T 8 B T W Rt § 4 Y 1 T ST ey e T {1 v Sy + o % 7oy e = e w12 oot e e o ——————

o

- e

rigor, not intent" [Bef. 19 ¢ p. 110]. The walkthroughs
x vere informal examinations of the software product by its
authors' technical peers. Little documentation was kept, and
no training reguirement placed on the participants of the

B P A o o

ke

P
g

i valktlrough.

. As with the walkthrough, the design review is a peer
5 inspecticn process rerformed by teams that inspect one
.}é another's work. Unlike the walkthrough, the design review
; is a formal process in which records are kept, and partici-

W pants undergo considerable ¢training reguirements. It is
conducted when the design is completed, prior to the actual
" coding effort. The inspection team is led by a moderator.
.§j The ideal moderator is not only trained in the technical
aspects of software engineering, but in the psychologicals
aspects of software development.

‘g The nmoderatcr promulgates required inspection
2 material to the team in advance ¢f the inspection. Each team
- member reviews the material and records comments before the
inspection meeting. During the meeting, discussion is

.
?; reserved for major error, i.e., those errors that will
R0 -prevent the program from functioning properly. Minor errors
b simply recorded for subsequent correction. If more than 5%
g of the program design must be changed due the errors, the
:;; entire design will be reinspected. Otherwise, the moderator
{ﬁ‘ will assure that the errors discovered during the design
3{ inspection are corrected before proceeding into the next
;{q phase.

;ﬂ

:'

s

‘_,\h

o AFor n depth discus f the psycholo 1
aspocts; hrofySd 15 ‘GRityareTIvE SRty RO ESASE S
£ 1CA0:09

f: computer Prodramming.

N 47

S AT L Lo Tl

T R LE G, TSR R TR I RN A TR T e TR TR TR Ty TR e e n e m o R T T e T T T T

E}éf 3. Sode Lpspecticn

Programming coding may begin only after successful comple-
™ tion of the design inspection. MIL~STD~1679 reyuires top-
down structured programming and identifies the specific ccde

2@ constructs allowed. Figure 4.3 [Ref. 20 : p. 62), 1illus-

ke trates the five basic code structures, each having a single

"

%

I

.’ :‘

i

K3 INPUT INPUT

‘ ! ' FALNE

4 (rrocess v)

f , & rl(‘KlS?A (Pu(‘)!u:s)

i (ocessn) . ™

B\ s

l_"..‘ v .

) SEQUENCE rhut IF-THEN=ELSE QuTPUT

2 INPUT INPUT

bl

WY

ke PROCESS A

o

» FALSE .

‘ ' , DECISION

L ¥

" 00 mriy UTYT 20 WNILE outpur

! .

\ 4

3

'y Figure 4.3 Basic Code Structures

3 data entry and exit.

? Cnce the program is coded and successfully ccempiled,

% it is inspected. The process for inspecting cole is nearly
identical to that discussed for design. Not only is the code

-

: inspection a method cf discoveriny coding errors, bLkut just
b as ipportantly it assures that the code alheres to the
q approved design.

i 48

A ""i') ‘.;r..’-r.

ety rrettnit H NS i

e T T gt

8

Pty

Toavan i e i A G

£

e o

£

p'yc:m;u

S T R A R TR TR TR TR TR T TV T SRR T TR RS AT R BT TR S

4. Jest

Software testing acccunts for the majority of technical
efforts expended in software development. Its objectives are
to uncover software errors, and to provide assurances that
the software performs its technical and operational
requirements.

An effective SQA program must start at the front end
of software develorment, with the requirements specified in
the PRFP, addressing the totality of +the testing tc be
performed. Three measures of software testing relating to
the RFP include: [Ref, A059H068 : p. 19]

(1) The_ analysis of softwvare requirements for test-
ability.

) ThgeiienkiEiGIHeE 2f MR CORUTREETIS..RNS RS
Prograi. '

(3) The review f test documentation and certification
cf test results.

Testing regquirements specified in MIL-STD-1679
require that the sYstem software do more than just just meet
the specifications. Software must also be subjected to a
third-partys "stress test," in which the program is judged
unsatisfactory if the program execution can be stopped for
whatever reason. To achieve a degree of software guality
sufficient enough to rass this type of testing, it is vitu-
ally essential that the software development program incor-
porate programs of error detection and prevention well in
advance of the actual testing period.

SAs defined in MJI1-STD~1679 the third party is neither
the contractor nor the procurenént agency.

49

ki YT

Lozl

» .

T TLATE R e .

S. library conticls

A key element in any SQA program is the software

i libraxy which provides 'visibility and control of the prod-
'g ucts documentation and programs. Anong the mandatory
%“ controls stipulated by MIL-S-52779(A) is the contrel to
) prevent unauthorized access. Other essential activities in a

 ?; software library are the documentation and program storage,
{; and retrieval and change processing. MIL-STD~-1679 requires
»ii a Software Change Control Board (SCCB), which must authorize

any changes to the controlled library.

R F. PARTING COMMENTS

‘fﬁ} The underlying goal of software development is to
‘wf deliver quality sof tware. In doing so, it 4is vital to
é;% exanine the characterics of guality, and their interrela-
En tionship, within the context of the user needs and ultimate
e, application of the progran, To understand the characteris-
aa tics of quality software is to undersfand the founding prin-
E%; ciples of software engineering. To produce quality software
1% is much more. The implementation of a software quality
;- assurance program is the vehicle through which these princi-
RZ ples are applied and the goal of software development
S;ﬁ realized.

,Eﬁ The tenefits derived from guality software support the
H?ﬁ saying that "guality is free." But more importantly, as will
{~ be addressed in the next chapter, future cost-avoidance
§ f during the maintenance phase leaves no practical alternative
?iﬁ to acceptance of only guality software.

il 50

V. SOYINARE MAINIENLNCE

This chapter deals with the last phase of the software
life cycle. Canning [Ref. 21 : p. 2] appropriately categor-
ized softwvare naintenance as an "iceberg," initially
revealing cnly a small portion of maintenance requirements,
kut Biding an enormous potential for future problems and
costs under the surface. With fex exceptions, computer
programs are always changing in order to correct latent
errors, add enhancements, and seek performance optimization
of the software. A succinet definition for maintenance can
be given as "that activity which is ccncerned with making
changes to software for the purpose of inaproving or
correcting the software." ([Ref. 22 : p. 2] Maintainability
is defined 22 as "a property of software which makes the
maintenance activity easy to perform, i.e., <changes tc the
software are easy to incorporate and do not lead to new
errors in the software." This chapter will primarily address
issues of maintainability which by necessity must be consid-
ered during all phase of the software life cycle.

. o

A. CATZGORIZATION OF MAINTENANCE ACTIVITIES

Maintenance is much more than Jjust f£ixing errors that
escaped detection during the pre-delivery tasts and evalua~

i 2l e g Pant
SV S il

e tions. Maintenance has been categorized [Ref. 1 : p. 323]
@ into four activities that take place after the program is
& released for use. These are corrective maintenance, adaptive
ﬁ naintenance, perfective mairtenance, and preventive mainte-
@ nance. Fach will now be described.

3 corrective pajintensace is the process that includes the

STl

-

) ' diagnosis and correction of latent errors that avoided

51

LRI ek

T B R e S R L

ol it L b B AW WIS PVRWVEVVEEINTIRII RO

@ ——— - Y Ty

detection prior to the implementation of the program. It iz
impractical, if not impossible, to exhaustively test conmplex
programs in order to guarantee 100% error-free softwvare.

Adaptiye nalntenapce are those modifications nade to the
program as & result of changes to the enviroment 4in which
the program must operate. As an example, it is often quicker
and less expensive tc modify software rather than the hari-
vare in order to modify weapon systems to satisfy new threat
situations.

Perfective majntenance 1is the process used to accomno-
date reccrmendations for new capabilities, changes, and

general enhancements reguested by the user of systen
Frogranmer.

Preveptive majintepapce takes place when software is
changed in order to improve its future maintainability. This

type of maintenance remains a rare practice in software
engineering. ‘

Based upon a study of 487 software development organiza-
tions hy Lientz and Swanson, as summarized in reference 1,
50% of all maintenance is perfective. Corrective-- and
adaptive maintenance acceunt for 27% and 25%, respectively.
All other types of maintenance account for only Uu%.

B. TARGIBLE HAINTENAKCE COST

IR

1

Although considered by meny software engineers as the
less glamorous and unexciting phase of software developnent,
mainterance accounts for the majority of the dollars speat
throughout the software life cycle. The cost of maintenance

.n:}—?v
X

SAAAS 37

N
Ql has shcwn a dramatic and steady increase over the past two
p decades. As depicted in figure 5.1, one author [Ref. 1 : p.

326)] estimates that pmaintenaznce cost as a percentage cf the
s total software budget will have grown from 35-40% in 1970 to
21 70-80% in 1990.

S

52

v
ERR CR G
€ ‘?A’lﬁzﬁ&

A T R R R R A R A F BRI

TP IR T W W Ve RN AN Wi WM BT WY BT TR IR TR A ERE R T A TR WY T A TR OV RN WRET T B R TR AT TR TR T TR TR TR R R ETT R EEEETRN T WO TRV TR T e
«
.

315-40%

Dewsiopment Mauisenance
1970

s s o

Figure 5.1 Maintenance Cost &s Percontage of Budget

Although empirical data is availabie to acceunt for
total software 1life-cycle cost allocatable to mainterance,
maintenance costs are very difficult to estimate in advance.
It is known, however, that maintendnce costs are often
dramatically underestimated by both industry and government
suring the pre~ Jdeployment phases of system avguisition. To
illustrate this point, Boehm (Ref. 23 : p.127] estimated
that it took 230 to develop a line of code (LOC), but the
cost fper LOC skyrocketted to 34000 in the maintenance phase.
Although $4000 per 1€C may seem unreasonably highk, it is not
unusval to incur such hiyh costs for wmaintaining mission-
critical software in LoD weapon systens.

hlthcugh there 4is not a set of universal factors that
can ke applied to all software development projects tu accu-
rate estimate the relative cost of program wmodification in
each of its 1life cycle phases, figure 5.2 illustrates the
exponential rise in rpaintenance costs in each of the phases.
[Ref. 24 : p.14]

53

.,

TR e e A T A T T LT

o N RN Y

FINCLVUWETG AER VUSSR IR VN VRN A IR AR AT

-”1

RELATIVE

MOOIFY
SOFYWARE

ILOGARITHM
CALE)

A

DESIGN CODING SOPTWARE SYSTEM
VERIFICATION VALIDATION

Figure 5.2 Life Cycle Maintenance Costs

It is apparent that there is more potential for real-
izing 1life cycle «cost savings by Jdevuting more planning
during the earlier phkases in order to minimize the regquire-
il ment for maintenance duriny subseguent phases. One of the
, Primary reasces for the high cost during the later Fhaceés is
' due tc the ™domino effect" of changes that omust be promul-
gaved throughout the entire system for what may seem at

first to be a simple code modification requirement.

54

C. VABRIABLES AFFECTING MAINTENANCE COSTS

As mentioned in the preceding section, an accurate esti-
mate of maintenance costs for a particular program is very
difficult. Sommervile [Ref. 25 : pp. 198 =199] has identi-
fied five relatively unpredictable factors that contribute
to the difficulties involved in deriving cost estimates for
maintenance. These factors include:

" RS, A r§°ﬁt§§§32§§“§§£§§
stated The more d fg it ¥ he stem regq fements

are less erfective mai tenance Y]
regﬁire3 $n the fufare.

ggsgmslﬁe.ﬂi e g

r occurs dug the multitu of mo ons
stor i§e§gé su gg%g that one Eg% he
éitio much ig er than E?%inal es 1-

ma e systens y are st runn on

prcgrams tha were coded n"the early 1960

§§§§Qexterna§lenv ronmggé?rgﬁ §§§t15§3§§§3i 5%3%§°%n

the nore flex ble and
able that progranm m to accommodate modi-
oség: ggs due to ch ngeq environment in which it

t is normall easier for the
g%?ggna§‘§g%i%§10f tg progranm toymake rgan es than
for anot er rogrammer who must gain an under-
standing of tkhe rogram bg stud{%ng its documenta
ticn. E essman ses e term al en c 9"
to_descr hoze pgo grads that are extreme Z

cult to un erstznd ho e that must maintain t em.

Reasons no cgrrent
member on the .na ntenance sta ‘was invol ed n th
evelopment of the pro ranm, (2) oor gn an
ocumefitat on of the ram, and (3 modular y an
structure g ce ts were no used

deve ogmgnt of he ogran. gh, turnover within the
rograhm gepro fess on as ma & it a rare ocgurrence
or the sa viduals to develop and maintain a
prcgram throug out lts life cycle.

g%i§§§§§19“§ig%lif§ hag 55?2‘?ha%° desi gedoto 12?
resu gsigoregufrementgrgorcgggtggggtmggigicitigi.e;y

55

At AdICIRoat il SEN R IENECEC AL OE IO TN AP ¢

D. INTANGIBLE MAINTRNANCE COSTS

The direct cost of maintenance, although considerable,
may te of secondary concern vwhen compared with the less
obvious and intangible cost of maintenance. A quote by
Daniel McCraken [Ref. 1) summarizes one of these intangible
costs, the development opportunities that are lost due to
the resources that nust be allocated to naintenance efforts:

"Backlog fn of new p;lications and ua or chaggstr that

measure ears are ett onger. an in s WE
can'! eeg Eg-- et one citch p--with what our users
want us

McCraken alludes to what Pressman 1 call a "maintenance-
bound" software development organization which is no longer
capable of producing new software because all its resources
are devoted to the maintenance of existing software.
Presspan lists other intangible costs including:
- g%;iggegg due to the untimely response
§3§§§g§§og§%a op%ent organization to xhe uger 's
evelopment and naintenance requests
- ht boyt b tent
ER0REioR. 28 RREHUARR: THRHAE L L PERLARE c2P0Y S DR e "
.- en Q rso el and oth
¥§§§§§%és9§rag¥§ﬁ§f%aw3t%iﬁar on o nteggnce tasks °r

E. BUILDING MAXINTAINABLE SOFTWARE

Econcnic and efficient support of software is best
achieved when its wuwaintainability is 4integrated into the
total development effcrt from day one. The maintainability
of software can be gquantitatively measured based on the ease
ky which it can be understood and changed [Ref.'26 ¢ p. 14].

Software understandability is a function of the design
and documentation. It is easy to understand due to its
logical and simple structures, and it is supported with

56

R AR T A R R R R R AR

b
Al

i

vr-.w v R PR AT R T M T T T T TR T T T T T T TR TR AR T T T T N e e TR T T W TR TR TN TR W T W TR TWTTR TR W T RTTE e R T T Te T W T T T Y e

documentation that permits an examination of the implenmenta-
tion without losing an understanding for the entire picture.
Software changeability, on the other hand, is a function of
the design and inmplementation. As an example, iwmplementa-
tion of modnlar independence facilitates changes to a
selected segment by minimizing the degenerative affect on
other segments.

1. Stryctured Nethodology

Building maintainable software is based on the usage
of a set of software engineering tools and techniques that
together form a structured methodology for software develop-
ment., As the authors [Ref. 26] write, the principal elements
of this structured methodology include:

" u egg%x rocess for developin the
%§£f§§§§§g ’i'and intg face re uirementg og the
software si constructing a logical model of the
systen proces

S"f“*}m E§§ f8heniatogBa0Tes® 05 UPSIYIHIRY thend8ttS
ninimize dule independence.

tructured rog % The discipline of implem ntin
%eétr:gﬁgve§set oi—iigﬁctgres?Oftware modules i
SFa9FaE,Po8898 RARSRR9R EREL. G3RT5A4° RTogeSERE, Shak
top~down manner."

Althcugh there are many other disciplines and concerts that
must also be considered as part of a complete structured
methodology, suck as top-down inmplementation, structured
walk-throughs, chief programmers teams, and so forth, these
managerial disciplines are used primarily for the softvare
develorment effort. The methodologies underlined above will
have a visible affect on the software product long after its
develorment is conmpleted. A detailed descriptien of the
characteristics ¢f each of these elements is provided in
Appendix C.

57

pEb J 'i.& ;ﬁ.\{‘m\.'n,}\-;.t\.{‘\t;x;\. %C}t\ REWR, q ..\1}'\‘ 'I‘if

‘;?”U".”)
i e -

.

i a A Ll
v 317

- »

B

=7

IR

e sty

o i
i :

K
'3

N
§

i
!
{
i
i
i
|
i
i
()
L

-y - -

Although there are many other disciplines and
concepts that nust also be considered as part of a conmglete
structured methodolcgy, such as top-down inplementation,
structured walkthroughs,. chief programners teanms, and so
forth, these managerial disciplines are used primarily for
the software develornent effort. The aethodologies under-
lined above will have a visible affect on the software
product long after its development is completed. A detailed
description of the characteristics, as provided in { Ref. 26]
of each of these elements is provided in Appendix B. 1A more
general discussion of each will now be presented.

2. gStruyctured Apalvsis

Structured analysis is often considered the starting
roint in the set of structured design techniques. The main
objective of structured analysis is to build a logical model
of the desired system. This should be done to the greatest
extent possible without premature c¢onsideration of physical
implementation.

In its simplest form, the logical model is a picto-
rial representation with accompanying narration describing
the functions, and their interrelationships, of the systen
that they comprise. Examples of the some of the most popular
forms of these graphical representations include process and
information flowcharts, data flow diagrams, hierarchy chart
plus input~ processing-output chart (HIPO charts), and
procedure analysis charts.

The net result of the this structured analysis
process should he a logical model that defines the conrlete
systen which reflects all facets of the system specification
and software requirement document. The model should be a
form of communicaticn easily understood by both technical
and nontechnical perscnnel, alike. Through the use of this
model, the system anralyst should be to develop systenm

58

SRR

AR SN NS EsChes s

i —— T ST ST YT AR TR FRMCBR LI VD VR T TV SO LY R T Y ““MN""\T!‘WW““D‘-'NW

AN

ST T T T T T R T T T T T T T T TR R T T T R T TR TR R T T T e AR T R TR T R T T TR T T T e TR TR e e TR TR T e TR TR R TR T VW T e T T T

j requirements without undue consideration of physical imple~
& mentaticn constraints. On the other hand, rontechnical users
‘ should readily be able understand how the required functions

4
.: fit together within the context of the whole systen.
% 3. structured Design
2o Structured design is the process of of decomposing
@ the software design into hierarchial modules in a manner
ﬁ that leads toward independence of modules. Benefits of

N structured design to the development and maintenance of
software include increas:d understandability of the systenm
and a rinimization of the cost inherent in modification.

Modularity is the key element of structured design.
B It allows for software to be better managed. lLarge mono-
lithic (i.e., single nmodule) programs are often unintellige-
able to the reader. Modularity is based on a *"divide and
conquer" concept, breaking complex problems into comprehen-
. sible and manageable components. Twoe primary measurements
| of modularity are (1) cohesion, and (2) coupling.

"

- 8h§§i%g is the "relative functional strength

o i] of a module. a module is said to be

) ohesive £ perf Ofms g task within a
- rrogranm, reg uxr;ng 1nte act i other
ro ram code eéxternal to ts bzun ari es. gegeral,
attempt to realize the highes egree

es ggule ¢ohesion.

3 - a measu eme the onnectiv amon
ggﬂ dules. f gase ? erfac
complexit tween modules 2) t e place at w hich
entry rg re gence are made to module, and he
ty € of a at passes agross the nterface Bef.
g gner should strive Ior
1ow st degree 9 module coupling.

Clearly, then, the objective of structured design is
to minimize the relationships between modules through the
maximization of the functional strength of each.

-
T
A s

ru & s -,

i)
&
]

59

R R Y R T B

e L e il Bhchsd S d WIS W TR R e e

4. Sszuctured Rrogramning

Structured programming is the discipline of imple-
menting module functionality through the use of a limited
set of programming structures.

Structure programsing uses top=-down design Dby
starting vith the tcr~level module and decomposing it iato
lover-level modules that it will call upon. This decomposi-
tion process repeated as often as necessary until the
rotton~level modules are defined. At this bottom level,
modnles make use of tuilt in operators and functions; they
do not call on any other module. Each module is separately
coded using the basic set of program instructions. An objec~-
tive of structured rrogramming is to male the design match
the structure of the rrograum.

Any program, regardless of its size and complexity,
can be designed using three basic programming structures,
The use of this set of programming structures reduces the
procedural design of the program to a small number of
predictakle operations, greatly facilitating the development
and maintenance of software. These structures are illus-
trated in Pigure 4.3. '

5. Rrogram Design language

Program Design Languayes (PDL) are language (text) proces-
scrs that are used to document software designs in a struc-
tured top- down fashion. The goal of a PDL is to replace or
support traditional forms of documentaticn of progran
design. S
The primary benefits of a PDL are: (1) the documen=-
tation that it produwes is normally easier to read and
understand than f£low charts, and (2) the documentation is
alvays easier to change than are flow charts. Both of these
advantages are essential during maintenance activities.

| e ,?1,“-. -

o oy W
o

=»

si’r"q'qs» Do

%
[

W
i,

F. PARTING COMMENTS

The wnpaintainability c¢f software is inseparable from the
degree of guality that was built in prior to the maiqtenance
phase., Sound software engineering practices, coupled with
the isplementation of managerial controls in mnaintenance
activities, offer the key to improved productivity and the
reduction costs associated with maintenance activities.

Bt

PRI
= N

2z

. - St - mn
RARBOSE ¥

Ll

VI. DOD SIABRARDIZATION AND SRBGIPICATIONS

A. INTRODUCTION

In 1980, it was estimated that DoD spends abecut $7
billion a year on software [Ref. 28 : P 3 This amount
has been steadily increasing &s DoD becomes increasingly
dependent on larger and nmore complex software products to
support this generaticn of sophisticated weapon systems. The
upward-spiralling trend in the cost of DoD software has
naturally become an erea of great concern to officials in
both military and government. This concern has led to a
nunber of management dinitiatives in DoD, several of which
will re discussed in this chapter. At the heart of these
initiatives is the standardization of computer technology
and softvare. Standardization is seen a means for reducing
costs associated with the development, operations, and
support of DoD computer systeams.

B, SPECIFIC INITIATIVES

In her article [Ref. 29 : pp. 37 - 47) Becker describes
three distinct, but interrelated, initiatives that reflect
the DoD standardization effort. These initiatives are as
follows:

(1 ?ﬁgrfrmy's development of a Military Computer Family

(%) 87 380B1a50e01 202 00 2ab 40008 05 der Janguage (HoL)

rules an roce rdvare executes instructicns
or computer software. "It can also e defined as the struc-
ture ¢ _ a cgmguter hat _a grogrammgr gust know to write
time-independeht machine languagé (Ref. 29 : p. 39).

SAn nstruc&%ggssg§ aﬁig%tggtare can be desciibed as the
t 1l

62

RS ML TE VPR R MRS AL RIS AR & JE B E (e T g

VRN AMARAGCAVNATE NN W N WETWIFW PO W W R G WW WA RS WL W ST W WY W W U T A G SR e ST 5 W WA W T v T TR W W W S N w— bt]

3) A proposed Dol instruction set architectureé (ISA
() stgnggrg (Draft DoD Instructgon 5000.§X). ()

The first two of these initiatives will be summarized

S from Becker's article. In addition, this section will

R X

& address standardization efforts by the Joint Logistic

‘,‘

. Commander's (JLC's) panel of Computer Resource Management
(CRM) »

1. Military Computer Family

The distinguishing characteristic in the Military
Computer Family (MCF) initiative is a common irstruction set
architecture. The efforts to develop MCF began in the
2id-1970's with an intensive review of the Army's mission-
W™ critical software. The Army first attempted to obktain an
- exiéting ISA through a licensing agreement from the commer-

; cial sector. Following an extensive evaluation of this first
z step, the Army concluded a licensing-agreement approach was
' severely limited for a number of reasons: ([Ref. 29 : p. 41]
.- (1) The adoption of a, 6 commercially-available ISA wvas
RN O PR o i s W
»n pating vendor and the Army.
N (2) The g:otgction and sgggehgﬁdra commercial iésa vere

, Beic ive gg a rotent ance to the wide usage
] eing considered by the Army.

g’ (3) Adopting a single firm's ISA was viewed being of

p unfair “a vantagi to one compan¥ oi a seléected

Y) segaent © the industry, thus greatly restricting
"y cofipetition.

5\ As an alternative, the Army engaged the services of Carnegie
B

;g Mellon University to develop an ISA, which became known as
,é "Nebula" ISA and designated by MIL-STD-182A. Nebula has been
£ rated as both an effective and advanced ISA. Under a memo-
fﬂ randum of agreement. the Army and the Air Force have worked
;Q jointly to develop and control the Nebula progranm.

- O

'iz Using Nebula as the keystone, the Army has engaged
b in a npultiphased competitive-procurement process to develop
;ﬁ

65 63

P S A
N RS Y I

RIA T

Rtk S e At diaan A B R A LR B d LA Al NRA VAL SR S RO AT, RO AR, L8y S ve By S vl As" Ve 8 Y N N

S~

i
-
b

.

B4 AP,
i
:
i

a prototype computer model which will be at the heart of the
MCF. Although a number of competing companies will be
involved the the pre-production phases of this develcpnment
effort, only one company will be selected to enter the
production phase. The number of units acquired during the
Froduction phase will be based on unit cost as stipulated in
a reguirement agreement that was used as a criteria in the

EAA LA

.
- G K XS G

A EE——

: final competition.
% Technological infusion is a major consideration of
: the MCF strategy, ensuring that the MCF has current techncl-
ogies included in the mission-critical systems that are
_fﬁj fielded. The Army hopes the the MCF program will result in
.gf improved survivabilty and logistics, as well as a reductien
. of life cycle costs of the NCF systems.
, 2. ada
;ﬁf About the same time that the Army began its NCF
?‘Ju:

program, the Department ¢f Defense recognized the neced for a
state-of-the-art program for embedded computer applications.
In the mid-1970's, DoD was spending about 33 billion a year
on software, with the greatest portion going for embedded
systems [Ref. 30 p; 268). After concluding that the
existing programming languages were inadeguate for satis-
fying future software development needs, DoD set up the

3 * i ak “ah e
s A A

’ﬁﬁ Higher-Order Language Working Group (HOLWG) to investigate
jj the development of a new programming language. During the
RS four year period, 1975 to 1979, HOLWG published a series of
‘f nandatory specificaticns for the new language. EPBach set of
f& specifications were more detailed than the precading set, as
;ig implied by their names: [Ref. 30 : p. 269)
é{ In 1977, HOLRG studied 26 languages, none of which
: was alle to meet the required specifications. A competitive
K language design effort was initiated 1977. By 1979, the 16

B R Ty N O O R N A

S T TR T WLTME TR R TR T TR TR RV T T TR R MAASET Y SOV R R ST LW R T ETIAOT W T BN M AR T e B N TR O W T e 181 g T A 8 At S S8 s e < e o oy S e

TABLE 5 |
2da Specifications

Strawman 1375
el Mg
sEosiaan 1338

original propositions subnitted by 4industry wvere reduced to
one. The winning language was designed by CII-Honey-Eull,
and was re-named "ida."? [Ref. 30 : p. 269

The Ada Joint Program Office, under the Deruty Under
Secretary of Defens2 (Research and Advanced Technology), is
responsitle for the mahagement and implementation of all
Ada-related activities.

Ada is not without problems and limitations.
Designed to facilitate a wide range of applications, Ada is
an extrerely complex and large language. Using context-free
grammar tokens as a measurement, Ada is estimated at 1600
tokens long, Pascal at 500, and Algol-60 at 600. The devel-
opment of Ada has already been subjected to many of the sane
criticisms received Ly IBM during their effort to design
FORTRAN VI. The resulting 1language, which incorporated
features from FORTRAN, Algol, and COBOL was unrecognizable
as FORTRAN and was subsequently renamed PL/I. PL/1 repre-
sents the c¢lassic "Swiss Army knife" approach to software
design in which all conceivable features that a user might
need are bDuilt into a single language. The final product
being too large and complicated for most programmers to

7Ada is a trademark of the De Srtmggt of Defense, naped
5 uqta Ada lovelace, the world's rst progracmer, &nd
aug r of lord Byron.

65

e

|

R R B L B R R

TS R WO AT W R W R TR R RAE

e g T Y T W B W

master [Ref. 30: p. 182)s Aas with PL/I, the size of Ada nmay
lead to similar problems as well as inefficiencies in real-
time application. ‘
Provisions and exceptions will have to be made by
the DoD for existing computer systems vhose software is
written in other languages besides Ada and where conversions
to the Ada language may not always be possible or feasible.
Hovever, it will be expected that Ada will be applied where
possitle, and deviations to this requirement discouraged.
Fuil igplementation of Ada is bound to take some time since
the language, itself, is still in a state of transition and
because of the huge investment NDoDd presently ‘has in programs
written in other languages. | |
It typically takes the better part of a decade for a
new language to become fully established, but Ada's initial

'ﬁ&: acceptance by the conmercial sgector has been good. Cunvinced

PN that the use of Ada will increase "flexibility and aid in

$§~ the greater utility <f ifs software packages," [Ref. 29 : p.

s 43] IBY% has bagun to iapleament a version of Ada. Another

:ifé indication of the general acceptance of Ada is the fact that

f;; the 2da language is in its final stages for consideration by

o the American National Standards Institute.

ﬁl 3. dJdoint Logistjcs Commapders Horkshop

gﬁ In April, 1979 the Computer Software Management

gﬁ (CSM) subgroup of the Joint Logistic Commanders (JLC) Joint i
£ Policy Coordinating Group on Computer Resources Management |
Tiﬁ' (JECG-CRM), sponsnred a wvorkshop at the Naval Postgraduate ﬁ
“i; School in Mouterey, California--appropriately euntitled |
'3$ Montexeyv I. The purpose of the uworkshop was to review the

services' software acquisitior guidelines. management poli-
cies apd procedures, and standardization efforts to see if
R there was a basis for the adoption of joint-service guldance
in these areas. Monterey I concluded with the recommendation

66

'S -ti‘;ﬁf.t

TR S M Tae

L -,-(- B,“"
IR OR,

R RS

.‘,.,..é.

Tl

RS sL A A

NN A VB T A R AT WNWRUTEN VR Y BRI PN P E S W MBIy Tl WG S TS MITV L Y U S i W e gn ™ BT W Wiy e g w
. . .

that the services should adopt common software policies,
development standards, and documentation standards instead
of contlinuing with weach of the service's unique and often-
time redundant efforte pertinent to these areas. The advan-
tages could be attributed to the adoption of juint-services
standards: 1) econcnmles, and 2) the best nmethods of each
service could be adopted for use by all [Ref. 31 : p.192].
Other findings of the workshop included: [Ref. 32 :

pp. 2=1 = 2-9]

1) No genera olicy exists for defini a common soft-
(1 war acquisftionyframework for the jgint services.

b t 8 rd t
(2) 3 BRERoB B cavasing «Fe arioNs 20D eetanoaras euiRt

acquisition and so tware documentation.

(3) HIL— -52779 " gtware lit uran 3
gu rements, " has sen_w ; ASEncangs, . ap
ecome ah official Jeint ervices standar e
l cation of this stan ard has_ been nmet
ng degrees of success. Its apglication has been
cons1 re unacceptable due he imposition of
addlt onal schedule an ud et requirements.
Furth ermgr DoD ant grgientat ves Aand DCASR
personnel have foun mos fficult difficult to
use _in the evaluat;on and monitoring of software
developnent contractors.

- (4 recognized sqoftware acc tan crite
(4) 2 o% boD &t ang radzat gon, 2al 2 fack ﬁ; tord
ca data upon whlch to base acceptance Ctherld and

rrocedures.

groqram

Recommendations included the following:

1) Develo a geperal olicy framework the oint
t serv gs togaggress ghe e tlre softwar ife cygle.

(2) Develn nified set of acquisition and development
abas £ d i

stan or tri-service service app ication’
3) Develo comprehensive set of data item descrip-
(3 ions pDID's{ P subsets which could be used for ag
software contfact
(4) Generate DID for c¢ontractyr's software gquality
assurance plan as a Jjoint service DID.
5 Defln and 4d velo oftware acceptan olic
(%) procedures an eria for: the cqu sition Lt
ense systen software.

The Monterey I workshop concluded with the cCSHM
develoring a plan of actions and nmilestones for the

67

T oWt W wmywe ey

TR W Y Yy m e we— vy we

e R ———————— e VLSS PSP T SRR S A RO S AR A G g Bt n SR AL R S L TR LT TR AT R T L CTUN N ORY

ivplegentation of the recnmnendations listed above, which
vere subsequently aprroved by the JLC's.

5ince receiving the go~ahead from the JLC's, signif-
icant process has been made in carrying out the irplemeta-
tion plan ([Ref. 33 : pp. 21 =~ 22). The basis for this
effort wvas centered around the definition of the software
devaeiornent 1ife cycle, witlhk the data item descriptions and
gtandards integrated into the appropriate phases of the life
cycle. TWenty~five kagic DID's, defined for this rpurfgose,
replazed a total of over 200 previous ones. This has signif-
icantly stredulined the documentation reguirements reqguired
for a given 2cquisiticn, _ '

The optional practice of <onducting a preliminary
degigs review has now beex formalized, thus focusing mcre
attention on'the regniremant definition area of the Jdevelop-
mert effort, This should lessen the problems associated with
late requirements Identification and configuration control.

A nev Softvare Development Stzndstd (SDS) has been
weitten using MIL-STL-1679 (Navy} as one of its basic docu-
ments. The £0S dochment is at the heart of the developmeat
effort since it defines the cuntractur's responsibilities.
It emphasizes sound scftware engineering practices, such as
top-dcwn design, structured programaing, and modulization.
Other changes to existingy standards are beipg implemeated in
areas such as Configuratiorn Control, Equipment and Computer
Programs, Specificaticn Practices, ard Technical Reviews and
Audits for Systems, Fquipments and Ccmputer Programs. 1Two
documents have been prepared in the area of Quality
Assurance: (1) the Soitware Quality Assurance ﬂe¢surement
(SCAM) document, specifying required measurements, and (2)
The Software Quality Policy, detailing the policies
governing quality assurance aand wbich will 1likely replace
the current Software Cuality Assu-ance Program Requirements,
MIL-STD-52779. |

Mo 4T WM S
f:;u’_nbi_lf.... 2 ,ﬁi".kﬂ.k_ LI, 3{4.3:‘ i‘r

viI. STARS

A. OVERVIEW OF STARS

The scope ~ of the STARS (3oftware Technology f£for
Adaptable , Reliable Systems) program is perhapé the
broadest and farsighted software initiative ever undertaken.
It addresses almost every socioecononmic, technological,
political, and psychological aspect associated with the
problems of software development and maintenance for major
military systems, STARS is deliberately structured [Ref. 34:
P 14] to facilitate and encourage the rapid transition of

' new technology into rractice. STARS is intented to le an

impetus for a cooperative environment among the govern-
mental, commercial, and academic sectors of U. S. society in
wkich technology transfers will freely occur, and through
which highly autcmated and efficient software support envi-
ronments will be developed.

The DoD has a continuing interest in the develcpment of
computer technology. It is in the best interest of the DoD
and the country to maintain a front-runner position in
computer technology. To this end, the DoD has established
the VHSIC and Ada progranms. The VHSIC program (very high
speed integrated c¢ircuit) aims "to gain and maintain a gqual-
itative lead over potential adversaries by providing afford-
able couplex nilitary functioans in extremely small,
ultrareliable packages suitable for operation in severe
military environments." [Ref. 34 : p. 16)] The Ada progranm
entails the development of a high-order language for mission
critical coaputer systenms. While both programs have made
strides in wmaintaining American superiority in computer
technology, a softwvare initiative is being launched to

69

W ew N

Wt {-."‘7{“&’1;.’5.-,;‘7-,’.,5'3;,' At -.i::'-ég A S
A «-}'.Le‘ﬁz;: ,{kﬁ.‘;ﬂm&ﬂgk Wil ¥

W ey oW P ewd Wy e AW PR TN ITAR e T TR T TG FeR R PR AR YR

conplement them. STARS aima to develop the systems and soft-
ware techniques through which this superiority can be main-
tained.

DoD has found that software changes are easier and less
costly than changes to physical components of o@military
gystems., While this can be a major military advantage, the
needed technology to make these software changes is not
alvays available. The software requirements are ahead of the
systems needed to institute then. Other problems involved
in the software dilemma besides inadequate technology
include inappropriate acquisition and wmanagement practices
and a serious shortage of skilled people. Controlling and
managing software projects is a major concern of DoD. Costs
for softwvare are becoming the major cost factor on nmany
systems projects, These costs must be predicted - and
controlled. The supply of trained professionals is inade-
quate. Currently the gap "between demand and supply has
been estimated in terms of 50,000 to 100,000 software
professionals, and if nothing is dome, this gap could become
860,000 to 1,000,000 software professionals by 1990.%
[Ref. 35 : pp. 52 - E3]

STARS looks at addressing the technology, management,
acquisition and perscnnel problems in two ways which will
parallel each other. The long range approach is to "leapfrog
current technology and completely change the view of the
software process", as gquoted from reference §&STAR3.This
approach is deemed necessary since current methodologies do
not appear to be able to satisfy fully the future require-
ments. Opportunities on the horizon which are to be evalu-
ated include: expert systems, very high level languages,
functional programming and program generation systens.
While successful fulfillment of these opportunities will
enhance the software environment, they will take time to
develop. The second approach is to "bridge the gap" until

h 'r"v:ﬂ“/‘v"‘r i ~:,'_-; ,""::. i
Bl AW S e
i S Y R ¥ e A N S -

el

a a e e

70

s

;- . -
.

! CL A e B N T W VLS e
RN TR N N A AL A S -r“-r} k;-ﬂ S NSNS
LR AR ORI Il SR O TR AL T STAARAL)

T

] ”‘: 5'”, ‘

.:

%ﬁ the more futuristic opportunities can le developed. The
™ second approach entails an evolutionary strategy of building
5y upon the existing systens, inproving then, adding tech=-
{: nigues, refining models, and training people along tradi-
;g tional lines of software development. As stated by Boehnm and
e Standish, this approach is necessary to "combat the software
o supply~-demand gap". By learning how to manage skillfully the

large number of varialles involved in software projects and
integrating the key ccncepts existing in the software envi-
ronment, managers can utilize their resources needed for
effective software development. Coﬁpleteness and integration
are the key concepts of this second approach. [Ref. 36 :
pPp. 30 - 37)

B. OBJECTIVES

M

i . The primary goal of the STARS program is %o "improve
Sl

14 productivity while achieving greater system reliability and

. adaptability." [Ref. 35 : p. 56] DoD software in many
f instances is of vital-importance in providing life-essential

% functions, such as computerized flight controls. Due to
éf: this stringent requirement, reliability is of utmost impor-
f; tance. The software must be easily adapted to <changes in
gf nission requirements. A third key element is that of afford-
‘g ability. As stated earlier, cost is an important factor and
;Q becoming more sc as more systems are software dependent.
§ These three items, reliability, adaptability and afford-
bk ability form the backbone behind the goal of STARS. AsS
}éﬁ stated by the initiating task force of STARS, "We need to
ﬁ; improve the state of practice throughout the DoD community
;%E so that we can provide development and in-service support
?i that is faster, less expensive, and more predictable and
§2 results in software that is more powerful, reliable, and
Q: adaptable."” [Ref. 35] Based on this goal of an improved

71

T 0L RS NN SR I AP IR ISR ek CA G NI

AT ST NI A

U

o2

‘or

'Qd

A

the

software development environment, three basic objectives are
estallisted for STARS: 1) expand tae level and base of
expertise in both the government and private sector; 2)
improve managemeat pethods, application~ independent-
technical, and application~specific tools; and 3) increase
use of tools by adding dincentives, improvements to
useability and added automation and integration. For each of
the objectives, a task area has beeén established with
specific plans of pursuing the objectives. This paper will
discuss the task areas of eeffectiveness measurements,
project management and acquisitions.

the
es.

out wit

carr ed in
lanned activiti

ro rap will be
a ety of on-
establ sh™ a bas s 2 close coord nat on,
commonalt wh gursul %
Eat assures broa sc pe_an g ear ocus
DoD eoftware program." [Ref. ¢ pp. 21

"The STARS

context of
will

c nsi enc

‘cna wor

of Ehe averal

The progran will be instituted in a 7-8 year period.
Beginning in FY84 with the preparation stage, the following
three consecutive two year periods include the consolida-
tion, enhancement, and transition stages. The consolidation
stage focuses on putting current technology into practice.
This includes fully utilizing the management tools, auto-
nated software tools and ianplementing the latest procurement
strategies. The seccnd stage focuses on enhancing the envi-
ronment established in the first stage. This is an evolu-
tionary process of refinement and improvenment. The final
stage will institute a fully Zfunded STARS program. Also in
this transitional stage any RED developments which have
reached fruition can ke transitioned into utilization in the
software environment.

72

DALY A Rt oL N A TN

TR ETT WO WSRO TR R TG R R

AR R an

PR

T T e o T TR TR R R e T T R R R T e BT T TR T TR T R SRR e T T T e o hatihhihadibtinding b A addhodiin atthes Al dhdibendie o 4 i atvinndiig

Ce OBRGANIZATIOR

The "program is vertically uwanaged under the Under
P Secretary RED. A Joint Service team under the Under
s Secretary will provide the initial planning and coordinating
K of the program. Contractors wiil assist as required and
§ selected as appropriate by various DoD agencies. To aid in

f the government/contractor/academia interface, a free
3 exchange software enginesring institute will be established
4 to encourage technclogy transfer and +thus promote a ccmmon-

alty of goals and interest. The technology transfer will bea
further enhanced by wvarious DoD ageucies' RED centers
concentrating on their particular area of interest rather
than attempting to ccver the full spectrum of software engi-
neering. Also each LoD agency will be assigned respensi-
bility of supporting various technology areas. Funding for
the program is proposed to rise from the $60M level in FY¥84
to the 3100M level in FY86 (constant FY84 deollars).

IS v LN T

PR

Do EFFECTIVE MEASUREMENTS

.J Measurement of key elements in a system allow one to
understanding the system process and therefore control the
process [Ref. 38 : pp. 47 - 53]. Maintaining control and
predicting outcomes in software development projects is a

b major advance in software technology. Practical benefits of

N being able to achicve effective measurements include: 1)

‘; provides a descripticon of the software environment; 2)

“ allows possible prediction of project parameters such as

cost, delivery time, constraints, and quality; 3) permitting

the expression of reguirements and goals quantitatively; &)

ability ¢to track progress and provide feedback; and 5)

¢ providing a means of analyzing c¢osts and benefits. While
these benefits are great, obtaining the ability to have
) reliable measurements is a task unto itself.
73

g i -

O T S R N e A R

W n\‘ e W, RS
e TR

A N VAT S P)

iy

- i

Two areas needing effective mneasurenent are softwvare
performarce and user performance. Softvare performance
becomes more iaportant as softvare plays a larger role in

Aerirne

i

i2a? *

g the overall system. Software systems must be able to inter-
j face and effectively synchronize to function properly.
Performance of users has an impact on the cost and time

Yo
A R

required to produce systems. Studies have shown that devel-
oping reliable models to predict such performance is near to

'3 impossible.
Q STARS intends to institute a wuniform methcd of
approaching the measurement task. In keeping with the

i
L.
-~

overall goal of STARS, an environment conducive of model and
metric development will be evolved. In general terms, the
devaelorment and refinewent of existing models will continue.
More data will be gathered and the iterative process of
hypothesis testing will continue. There will be a2 widespread
enphasis on using measurement tools and models. Manual as
well as automated tocls will be mnade standard as much as
possible. With an increasing data base, baselines will be
, defined and maintained. These baselines will include size,
:.4 effort, reliability, and the use of methods and tools. All

b3 in all the benefits of the measurements will be to allow the
assessing of methods and tools in order to get the nmost
L product from the least amount of resource expenditure.

g
’e'

..
M
T

e A

-y

" E. PROJECT MANAGEMENT

N "The primar ob ectives of the project managenm task
N arei gre- Y i a ce the buyerpmagager's ca EEI ?g
B ear ovide“a bette nean

) nunz fCt fn inatin etween and v r
b uger grga ons') fur shing t o s

mana ers n and correctin ems e ore
1 h fect sch functional ca ab lgt 4
3 eaee the ava 1a

of softwvare enaine & educate
5p’]the principles cf progect management Ref. 39 : p.

T4

A R L A I B R

K Most goftware systen develorment projects involve the loD
» and a contractor with the Dol component being the buyer and
the contractor being the producer. Early project planning
performed by DoD project managers is often lacking. Hany
projects reach the award stage before prope: planning has
taken place in the areas of sission analysis, requirements
definition, scheduling and cost identification. This causes
problens of unspecified work statements and misguidance of
contractors in the early coatract period. The bottonm line is
thac poor planning ccsts money. STARS intends to overcome
this thrcugh gereral guidelines in the pre-award contract

sy

SR S

X phase.

‘ﬁ The second objective deals with communication between
nf the contractor and the government and the overall
3; contracting process. Coumunications are intended tc be

"@ improved through better documentatinn and the Luilding of
'f% closer working relations between the contractor and the

{ government. The ccntracting process will be addresséd
b through the establishment of a software 'acquisition ranel.
}3 The panel, made uf of various service representatives
A@% including S$TARS and dinput from dindustry, will reccmmend
; appropriate acqguisiticn policies, contract incentive mecha-
nisms, and make reccmmendation and promote changes to the

i} software systems acquisition process.

 ¥ The third objective is to equip the manager with a stan-
1 dard "tool kit" consisting of wmanagement tools which will
; allow identification of problems before they can impact

greatly on the project. This tool kit should also be avail-
F able to the contractor so that communication will be along
‘: the same lines. Exanples of tools are: data base managers,
L] word fprocessing, telecommunications, graphics, spreadsheets,
schedule generator, cost estimation and general reporting
systems. The aim of the tools is to automate the tracking of
K- the project.

75

1
WY

B ML o, Y

r R R LR LR ALV RIER E R AT S LT PR)
'ff' “‘.\- ‘J. o 5‘.’"{‘ y e o bl e X d ot - {ﬁ&‘»"‘fﬁi\‘

The final objective is that of educating the prcject
managers into the prorer management perspective. This calls
for the development of standard job descriptions followed by
training in the areas of project management. This objective
is important since most individuals dinvoived in project
nanagenent of software systams were or are software profes-
sional and not management professionals.

E. IMPROVING PERSONNEIL RESOURCES

Cverall, the demand for software is increasing at 2%
per year, xhile the supply of software-producing personnel
is ihcreasing at ar annuwaili rate of only 4 percent.
[Ref. 40: pe. 31) If this trenrd continues, the shortage of
software~producing ypersonnel will increase tenfecld tc an
estisated shortage Jjust under one miliion software profes-
sionals Ly the year 1990. Each of the services have already
reported shortages c¢f qualified software personnel and
predict that these shortages will become <critical by the
late 1980's. [Ref. 35: p. 534 Another area of concern is
maintaining the skill levels nf present software personnel
abreast of the skill 1level demanded by rapidly charging
technology.

The tack objective +to improve personnel resources is
based on two furdamental prerises: (1) increasing the level
of expertise, and (2) expanding the base of axpertise avail-
able to DoD. The strategy and major subtasks for achieving
this objective is presented in detail in the article by
Orglesby and Urban [BRef. 41 : pp. 65 -~ 70) and will now be
highlighted.

1. Key Populaticn Assessnpeni

This major suttask is designed to assess the human
resource issues of the availability, the utilization and the

- .
PRI R]

LY -~ p . .ttt T e,

" s ' - B RNy . -
»“‘. AN 300 "." Whe T e e gy A% 5
St ton et e A ok M N Al

K3
»
L W

e TR AR RARIRATR R VTR IR L WLV CV T IOV S STRUTRTA UV T I W XU T E Y F O N N 7N T VI T T VO WSl W TRy e w
L)
R

P
X)
S

R

.

future requirements of software-related skills. Only through
these assessments can skill requirements for software~
related skills be determined. Quantitative nmeasurenents
based on educational units and/or task period performance
would then be used to for gqualification and classification
of employment and career developnent of sof tware
professicnals,

2. Gageer Structures and Incentives

¥ Once the key population assessment is completed ani
skill reguirements kncwn, career structures (career ladders)
\ can be developed and put into place for each of the occupa-

X tional subspecialties within the software-development field.
v 3. Exchange Progganms

B

! This subtask is structured to increase the number of

;% ' software personnel exchanges for prescribed pericds amcng
) government, industry, and academia. Regulations are already
in place permitting personnel exchanges between the services
and between DoD and state organizations. These established
- exchange programs are to be better publicized and supported.
L Exchange programs will be initiated with industry, DoD and
acadenmia. These programs offer an excellent medium for tech-
i nology transfer, training, and a better understanding cf the

% problems associated with a counterpart community, be it

-m inside or outside of roD.

{

2% 4. cther Educational Subtasks
b\

B Other educaticnal subtasks contemplated under STARS
ﬁﬁ to improve human resouvrces Jinclude: (1) academic programs
:g that will encourage the development or enlargement c¢f soft-
Q ware engineering programs in colleges and universities, (2)
A
. training programs utilizing governmental or nongovernmental
» programs to advance the educational technology in software
{

3 ; 77
B
b
B o S R T O g N SR R A L

A DT v 0 R Rl Vil B e £ T g e B b Tl R Pt e e R B P

engineering with efforts oriented toward Ada technology, and
(3) learning aids that focus on automated instructional
systens and knowledge-based tutorial systens.

G. IMEROVING PROCESSING TECHNOLOGY

The second approach taken by STARS to help develop a
software support environment is through the improuvement of
processing technologies. Processing technology includes the
"techniques, methods, practices, and tools supporting soft-
wvare over its complete life cycle". [Ref. 37 : p. 22]

One way in which this objective can be met 4is through
imprcved application-independent technical tools. These are
tools that support projects of all types, regardless of

application. Exanples of application-independent tools
include operating systems, linkers, lcaders, compilers, and
programming languages. An example of the latter is Ada,

which is the cornerstone of current efforts directed toward
: the development of the Ada Programming Support Envircnment
f{ (APSE). The long-term objective of APSE is to provide a
‘?: conmon high-order language through which programming support
environment tools can be interfaced. However, for the short-
tern it is necessary for APSE to accoammodate the multilin-

L? gual inheritance of DuD's diverse, prograamming-support tool
jﬁ inventory. [Ref. 42 : p. 15]

fﬁ& A second way'in which this objective can be achieved is
5&’ through improved application-dependent technical methods and
i tools. [Ref. 34) Examples of this category of tocls include
R Very High level lLanguages (VHLL), libraries, test drivers,
;% and simulators.

Mid-- to long~-term objectives of these application-
Y. specific task areas involve the use of emerging technology,
‘ such as VHLLs, Knowledge-based systems, and program genera-
tors. The short-- to near~term objectives (next seven years)

&

"

78

i e T T I R A R R T A Tt

% M i

B
AT e e L ot T

#4 A R ik L 2a SR LA R e R e e B o Blal A8 il Ko B Lo Lra BT Uie huas RMx SN St 2o L g L Lia his Brh Sla Log b o b fa Rha Bl g fie Lot Ja SR sabe Sl tite S0 Loa 228 2.3 LA A S DAL Rt Al |

i
[
|

of this task are are centered arnund the software
“reusability" problem in which software for each new systen
has been developed in total, from- the-ground-up, as though
it is the first and last system of its kind. Future efforts
will be directed toward the development of Ada-lased
reusaltle software, BReusable software is hardly a new idea,
but past attempts to create sets of reusable software have
failed for lack of guality control. To overcome siwmilar
problens, DoD's scftware nmust be developed with the
following characteristics: [Ref. 37 : p. 79]

-=- precise statements and validations of module func-
icrs and interfaces.

- nera%;zed erformance functions to increase scope
. application.

-- use of high programwing standards and widely—-accepted
programmigg getg dologge ¥ J

robust_ behavior. Not onig nust softwqge be reuﬁable
eusable software must alSo be accessible by software !
evelopers. Techniques for cataloging, and ware-

housing reusable software must also be lmplemented.

Curren data hase management technigues for

uer manageme ard retrieva alfe cons;d red
g;prgﬁria fg ﬁls application. %Re %3 2 ?

Ho INCREASING USE OF PROCESSING TECHNCLOGIES

Improved processing technology for software develcrment
can only make a difference if people use this improved tech-
nology. Another objective of the STARS program is to
increase the appropriate use of these technologies. Two of
the subtask area in supporting +this objective are (1)
improve business practices, and (2) improve tool usability.

B e

-~

rras

S kg
SHEN LA

1. Iprrove Busipess Practices

This subtask is aimed at changing current DoD regu-
lations in order to facilitate the acquisition of software.
Another goal of this subtask is to utilize financial incen-
tive sclemes to encourage capital investment by industry

A e

YT T

n
Lo

gs

M

=,

o 79

S,’

-

A

Y

3

K]

.

- gRasl Lol sl dour ates avel auns Saer aier sum el soi i dufe WL Siar Tra oivin Jnss-aoin Srets dreds ek snedll S ah SR b i AR At MG S . A T, S i 2 te st T i E. A v |

TR RRE AT RN TS RPN RTINS - Wb B R e LB e L

v TR SOl TTR L T2 ARSI LR Tur RS \ TN
o,

S T R AT T R o

Bl
‘i :
e \ |
 ﬁ%j ’ directéd at the coordinated pu:suit of new teghnology devel-
'?§ - cpment. ‘ O
i . A ;mamxs Igel naﬂzni&x
f?; ‘ ° Tnis suhtask focuses on imp;oving tbs interactxon '
%f‘ 3 ketveen computer-based 3yst$ms aad tha users or developers
- of software. In her. article, 'Ref 19y Elizabeth Kruesm
g o ‘lists three basic objectives. in this areas ’
.
R ggvg’fs;nsn:hz tpeiien b ot °°n§éz;;§9
s rating human facter cofceras nta 3ysten deve! bpmsn
;?% ‘ - to gxgecgng%gg§xggr§g%§:1bgggelggﬁgg hpgg ecggfigg don of
v%? | ‘ - égogggggineffggtive}hugggifagggg engﬁneefingscf autcmatgg
b :pe al needf o tware ptofess ona 5
ng% Although Kruesi suggests many techniques and methods
?5 for improving tool asability (such as defining user inter-
ft% face goals; early user testing, predictive tools for inter-
g0 face design, and 'follouing proven interface~design
Q@ guidelines), she sees imperical testing as the onme hunman
1@1 engineering method c¢ffering the most pronise. Although
%4 noticeably lacking in the past development of tools and
e environments fcr software personnel, imperical testing is
I viewed by Kruesi as an especially "rich source of ideas for
.%Q user interfaces, particularly in the design of advanced
™ software environments such as Smalltalk and Interlisp...."
i Although one of the benefits that will be realized
11 from the isprovement cf tool usability is increased produc-
f% tivity, the primary Lenefit may very well bs in the avoid~
§§ ance of human error in the design, develnpment, and
%7 maintenance of life-dependent and wission-critical DpoD
év systens.
:
o
L

) 80
i

[N I NN W SR NI W NPy ARG il " P -

RVl PG

LA W ORI TR WMOTOROTUATUNNC IO T CUAITTNDE PN TPV T PYLG R BCAG TITY. T TR T LT 0, Lo M ST WA T8 1471730 S b s IR CWTA WA W e P XYk s 3 140, e 3 s e

I. CCHNCIUSION

This chapter has presented many of the managerial and
technologically-oriented objectives that Dol has inccrpo-
rated under the STARS program. This software incentive is
enormously broad in its scope, including all major sectors
of society in both rresent and future efforts to keep this
country at the forefront of software technology. Although
still in its infancy, STARS has defined many existing soft-
ware problems and has established both evolutionary and
revoluticnary strategies to minimize these problems in the
future. The c¢onceptual foundation of STARS is sound and
promises to improve future softvare development shoulid the
program receive the financial support that it Jeserves.

3TARS is an aggressive approach to a well defined set of
problems. The key to the success of STARS, as is true of any
government initiative, is the widespread acceptance of the
concepts surrounding it. The key element driving STARS is
that of standardization as supported through commonalty of
methodology, uniform metrics and baselines. The software
institute calls for a sharing of information and the ever-
increasing tedhnology transfer.

81

A L e W i B ANk Boe Pk B AT AT ANANE W LY SRR e]

v ARG T TR 4 AR AN P BTN S PR TS RN CRP AT PO AT TR £ NSO AW

i ————r e v -

V1. SORCINSIONs AmD m;gmnmm

"§§ '\ The qains made in saftware engineering over the past two
.ﬁv ' aecadas have been signi‘;cant, yot software projects fail~
ol ures centinve ¥ith alarming *egularity as hoth the size and‘
.&; ‘ ccmplexity of computer-based systeus continue to grow.

ng \‘ There is no shortage of P:oposals to confront the prob-
e o lems that plague the development 'and acguisit;on\ of soft-

ware. Yet, the very nature of software continues to defy 1ts
guantitative analycis resulting in obscured visibility and
; ‘ inaffective corntrols in‘tha defe}oPmont and \mginténance_
i : process. ‘ o

Althcugh great strides have taken place in the formaula-
tion of software metrics as management information toole and
- 35 as a medium to provide feedback to software engineers,
- attenpts to devise metrics to guantify software guality have
remained elusive. Software quality assurance progranms, such
as described in MIL-STD-52779(A), provide a planned and
systematic approach for buildirg quality into software.

Softwvare maintenance is the neglected phase in the soft-
A vare life-cycle. Maintenance accounts for well-over half of
all resources expended on software throughout its life. The
trend in the amount of efforts needed to maintain software
is increasing at a Aramatic rates, consuring resources that
were once reserved for developmental efforts. Yet, project
-7y management does not (ften give sufficient consideration to
building maintaipability 4into softvare as an indisgensitle
¥ criterja in the dJdesign process. Various technical and

! Successful implementation of <these programs have given
s credence to the saying the "gquality 4is free," in the long
13’ run primarily through cost savings inherent in truely main-
_‘ tainable softvare.

ey

R

-

82

) 'N"f‘i Wi W R WENTRTILRT S TIRTURT VR TG FETWRIT AT MR N RNE Y TR N T W REWE UE TE WWOETW AT VRO ATV T YR YO WS R YW R UTRYWNTRCWE WORPW T A R TR
I

managerial approaches can be implemented within the mainte-
nance activity with minimum upheaval, but the most influen=-
. cial factors leading to the maintainability of software

28 occur during the phases prior to the maintenace phase.

;g Chapter VI focuses on various high-level efforts
'ﬁ' . directed at the standardization of computer technology and
Z software within DoD. 1If the appropriate selection of tools,
;5 methods, and methodologies advocated by current software
fs literature and directives were to be put into practice,
5 better software would be ;ealized in DoD. In order to

assure the success of this undertaking, it has been
o\ suggested by numerous authors that the project manager
should be provided with sufficient technical backgrouad.
) This approach is the likeliest to assure failure. Today, the
framework in which DoD software is acguired and developed is
toth disjointed and ferplexing. The myriad of instructions
&2 and guidelines offer platform of confusion not resoluticn.
Significant progrers has been made by groups such as the JCL
in attempting to standardize, through joint-service instruc-
tions, ©nany of the aspects affecting the acguisition and
iﬁ maintenance of software. Much remains to be done.

f\ The immaturity of the software engineering discipline
has been too often been pointed to as the primary culprit of

R i
O

! software failure. Software engineering must never mature; it
'f must continue to evclve at a pace set by advances in our
ff technological society. Software engineering is but one of
‘{. the facters contributing to the delivery of guality soft-
g ware. Standardization is the key in reversing the trend of
Y the delivery of overbudget, overschedule, inferior software.
ff The management and development of software today is like
b trying to understand a United Nations assembly without
- interpreters. Today there are far nmore programming
.i} languages than there are different languages at the United
:ﬁ' Naticns, with revisions bastardizing the integrit;y of its

=4
.
.'?-
e
-
]
" 7,
»

83

Ll RN TR LX)

parent frogranming language as dialects bastardize their
mother language. Yet programming languages is just one
aspect of the total standardization effort that nmust take
place in DoD. ‘The best of today's management systems can be
consolidated into a single, Jjoint-service system understood
by management personnpel in both DoD and industry. The adop-
tion of any one set of tools, methods, and methodologies for
the development and acquisition of software is far better
than attempting to live by all of the sets available.

Benefits derived through standardization should be
exploited to their fullest. The broadest and most farsighted
of these efforts is the STARS program, which addresses most
aspects that define the total softvare life-cycle
environment.

84

5

P o7

s

s
P,

5

e, !

JODERI U w0

pn

WLl ot ok ok gl
P R G

o e bl

s

APt

Sl - g e

£

1 A

&

ARRIERIX B
GLOSSARY OF SOPTWARE QUALITY ATTRIBUTES

Definitions provided in this appendix are derived fron
[Ref. 18 : Appendix B] and [Ref. 16 : pp. 3~4 -~ 3-2047.

ACCESSIBILITY: Code possesses the attribute accessi~-
E%lit r%o the degree that it facilitates selective use of
S F S.

b1113§5000 tha dejresotRal ot i85 ee 1Rt tHEL " (82580200 B0

measured.

ACCURACY: Code 6ssesses t ttribute agcuracy t¢, the
degree that its omtpﬁts are su%gicientiy precgse toysatis%y

théir intended use.

QUGH NTAHIL&TY: Code ossesses tff attribute augmnent-
abil tz o the degree that 1t can easily accommodate éxpan-
sion i component ccaputational £functions of data storage
requirements.

- COMMUNICATIVERESS: Co osgesges e attribute co ni-
cgtivene s to ihe‘ge ree ggag ft ?aciiitate the s ecg%gca-
tion of nguts af« §rovides outputs whose orm and content
are easy to assimilate.

' CCMPLETENESS: Code possesses the attribute cuppleteness
to tﬁe ée ree that gts Barts are present an& eacgp patct 1s

fully developed.

requized #ahotone At "Eo0ed ana" PECEERE 0 ReTRAR2PLE 20

SCNCISEN SS: Code possesrsges the attribute conciseness to
the degree that excessive inforaation is not present.

SCNSISTE CY¥: Code Eos esses the attribuyte consistenfy to
th egree that it ci tailngs uniform notitlon, termino ogg,
nd s bglogg vithin ts? and external consistency to the
egre@ that the content is traceable to the requirement.

DEVISE EFPFICIENCY: Code Egnsesges tfis attribute to the
de ris 3 at 1t that the ogera on, function, or instructions
rdvide DI the code are erformed wvithout waste of
esources with respect to that device.

D VICE~I€E§§EK£E§CB: Code ¢cssess8es this attribute to

the egre t cap Dbe execute on computer hardware
configugat ons other than the current one. P

that T1E FuTeilis TR0 RORScooTeEote Ltribate, L, she degree
HUMAN ENG NERERI Cod;tgoasesses this attribute to the

Go
degree that | £ugfills r thout t th
user's tine and energy, or egraggnsoggegr dorales ing €

85

o T e AT TRE R TR W T e el T e T TR v AT

GETTE TR et W YT

ot ey TR AT VS VY T TSN R P RN I W MY WAV BT

LEGIBILITY: Code rossgsses this attribute to the degree
that it is easily 3isc£rne3 by reading the code. ¢

MAINTAINABILITY:. Code gssesses this attribute to the
degrae gga{ it iacilitates usgating to satisfy new reguire-
mehts or to correct defticiencies.

HCDIFIABI&ITY'
degree that it s
onfe the nature o

aci it tBeoEns et ot a oot St angene
¢ie desired change a8 Deen dctermined.

PgRTABIL 7Y: Code gosseifes tgis gttribute to the dggree
that 1t can be ogerate eas and wvell on computer configu-
raticns cther than ite current one.

RFLIABILITY: Code pgssesses this attribute to_the degre
that f% can be expectgg £ pecfornm its nten&ed gunct ons
satisfactory.

ROBUSTNESS: Code possesses this attribute to the ge reg
that 1t cag continue to ger orm despilte some violatich o
the assumptions in its spesifications.

togr SETISOTATINESS] Cofe poTCREtEE i Bt HAREAR Rl
t10ns within itself.

ixLF-DESCRIPTIVENESS; Code possesses this attribute to
the degree that it contilns fnough nformation for a re¢ader
to determine and ver fx s “objectives, assumgt ons,
gggfﬁga.nts, inputs, outputs, cohponents, and reéevision

SIRU%TUR DNESS: ode os eises this attgibute to he
degree that 1t contains a definite pattern of organization
of "its interdependent parts.

TE$TABILIT{; Code possesses this attribute to the degree
that it fgci itates the establishment of verification
criteria and supports evaluation of its perfornmaace.

UNDEPSTANDABILITY: 4ode_possesses this attribute to the
degree t az ggs purpose is clgar te its ?nspector.

USABILITY; Code rossesses thig attribute to the degree
that it %S reliasie, gtffcient, and human-engineereg. g

86

o AN) B L L Y L POy

T g T e T T A TRV T T TR R R T TR TR TR TR R T TR T AT R T A o TR S TR R . Rt lnadiiafish 2 Diinahaintine Saandih bt i i bl o

ARRENDIX B
HALSTEAD AND MCCABE'S SOFTWARE METRICS

As generally addressed in Chapter ITI, this appendix
will present guantifiable measurements of various software
charateristics using both Halstead's Software Science Theory
and McCale's Complexity Measure.

A. HALSTEAD'S SOFTWAKE SCIENCE

Halstead begins with four basic metrics:
1. n1--the number of unique or distict operators c¢n
tke program.

2. n2--the number of unique or distinc¢t operands in
the program.

3. N1--the total usage of all the operators in the
progranm.

4. N2--the total usage of all the operands in the

progran.

Tables 7 and 8 show the resulting counts of the oferators
and operands used the algorithm used in table 6 . [Ref. 10
2 pp. 3 - 18]

The yggabylary (n) of a module is described as the sum
of its unique operators and operands:

n=n1+ n2

87

P R S - T WA W N

TABLE 6
A Sorting Subroutine
SUBROUTINE SORT (S.N)
DIMENSION XéN)
IF éN «LT. h RETURN
DO 20 I = 2
po 10 3 = 1,1
IF (X(I) .GE. x 3)) 6o T0 10
SAVE = f
XiI; = J
X(J) = SAV
18 CCNTINUE
20 CCNTINUE
RETURN
END
TABLE 7
Operator Count
Operators Count
1. End of statement 7
g. ﬁrray subscript %
4. IF
g. DO 0 %
. $nd of rrogram
8. .11, Erog i
10. GO TO]
nt= 10 N1 = 28

Similarly, the lepgth (N)
sum of all operators and operan

N= N1

88

of a module is defined as the
ds used in the module:

+ N2

T e T T T AR TR R R TR T TR T AT W T T e TR AT R VTR TR hiamtan bl od TR T BUTIRE AN DR T E T 4 T

5%
i
}

»

».

o v e
o
P AL AN o S

§ TABLE 8
éﬁ‘ Operand Count
fi; Operands Count
B ‘ 1. X 6
5 i) 7
B . N 2
) T safe 2
‘?;' - ! «.......1.‘-..‘--..
32 T Th2 =1 | N2 = 22 |
e ‘
3 o |
‘gﬁ Halstead also introduced a formula for the gggiggggg
* isngth (NH): ‘ ‘
3{3 NE = nllog2nl + n2log2n2
4§§ The estimated length egquation (NH) has proven an accep~
s . table estimator for the length, N, of a module. The useful-
?; ness of NH seems to be somevhat sensitive to actual progran
ég length. Test have shown that this formula vorks best for
g; programs if N is in the range between 2000 and 4000. In this
gi light, errors can minimized by breaking down modules to
?b, vhere they are within these parameters [Ref. 11]. Halstead
,5 attributes this finding to the presence of "impurities” in
*3' the program requiring optimization.
§f5 When compared against the actual length of the above
%?Q listed algorithm one finds that N = 50 and NH = 52.9, a
;:: difference of less than 5.8% in this particular case.
‘§ﬁ Additional metrics vere defined by Halstead using the
'15 terns already presented. Of interest is another measure of
f ; Frogram size called yolume, (V), which is measured in bits:
el

V=NIXx log2n

T 89
X
X

o T PR R RN TR R TR TR R TV T TR Radhaibdiasfitind)

S T R AT A AR TR L B T T IRRC e T WEIEN HRUL IAGVIGA WL SORL N CRR e T e UL Ko e TR I A XS

- Volunme may‘alsoW‘he interp:etea‘as‘the‘ nunber of mental
comparisons needed tc write a prograk of length N, ‘assuning
‘a bihﬁry search mettod is used to - select a member of the
vocabulary size n. - The most succiat form in which an algo-
rithm can be expressed"requires prior existence 'cf\ a
language in which the required operation has already been
‘defined cr implemented. 1In such a case, the implémentation
of that algorithnm vould require no more than naming of oper-
ands for its arguments and its resultants (eg. SORT (X)).
‘hese algorithms are considered minimal in size and are said

 to have the poteptial yolume Y*:

V& = (2 + n2) x log2 (2 + n2#)
(vhere n2* is the different inmput and ouput parameters)

Any program with voluse V is considered to be implemented at
the progras level, L, defined as:
| L = vy

Notice that for the most succint version of any algorithnm,
the resultant is 1. As the unigue operators (n1) inrcrease
and the reuse of operands (N2) increases the resultant
approaches 0. The term "difficulty" is derived from the
logic that as the volume of a program increases, the progranm
level (L) decreases and the difficulty increases. Thus,
difficulty (1) is the inverse of the program level

D = 1/L

Since the volume (V) 4is the number of mental cosrari-
sons, and the difficulty (D) is the measure of the average
elementary mental discrimination required for each mental
comparison, then by ccmbining the forasulas for L and D, the
total nusber of elementary mental discricinations, effort,
(E), required to generate a program can be derived froam

E= VL

90

The advantage of Holstead's measurement of effort (E) is
a significant break from traditional use of LOC's. The use
of 1CC's required the collection of data and regression
analysis. Only the number and use of operators and orerands
are needed to derive measurements for effort, thus over-
coming the forementioned difficulties of using LOC's method-
ology. Another advantage of using E ‘is that it is a strong
indicator of the c¢cmprehensiblity of a program and its
propenéity for errors (Ref. 10 : p. 16] and [Ref. 11 : p.
34].

Explcring the formula for L further, it can be noted
that as the potential volume (V*) increases, the progran
level (1) decreases proportionately. Consequently, the
product L times V* remains constant for any one language.
This product, the Jlanguage level, vhich is denoted as
LAMBDA, is derived by the following formula

LAMBDA = L x V*

The last of Holstead's formulas to be discussed is used
to nmeasure the prograpning time (TH) for a prograr in
seconds. Halstead adopted the concept introduced by John
Stroud, a psychologist, who defined a "moment" as the time
regquired by a human brain to perform the most elementary
discrimination. These "moments" according to Stroud, occur
at a rate of 5 to slightly 1less than 20 per second.
Halstead then determzined that the programming time of a
program could mathematically be defined as

TH = BE/S
(vhere S = the "Stroud" number = 18)

Halstead reason for selecting "18" for the value of the
Stroud number remains a aystery, but it fits his formula
nicely and is 1likely to remained unchallenged until the
disciplines of cognitive psychology and software science
merge.

91

FRCC TR R WA W) ARV LN W PN R WXV TG 2P JAVE RO B LI W Wl WL I S S oo T PUTEL R, PRI LI WY DN WS S W WPW e :

AN AL P TR AW, T TR AT, P L TR T TR RTUTR RIS WA T GO LTI LT WL vl).r-mb'.m'm.‘itu'\';u‘ﬁ)u‘i.‘m’v}'&ﬁ&ﬂlﬂ?\?ﬁﬁi’ﬁ“

L L e R RS T L o 2

u.

.l

B. MCCABES'S COHPLEXITY MEASURE

A prcgram graph is used to represent control flow, as

Entry Node

Exit Node

Pigure B.1 Control Flow Graph Coamplexity

illustrated in Figure B.1 [Ref., 12 : PP. 308 =~320] The
circles represent processing tasks, which can be one or more
source code statements. Arrows depict control flow
(branching) betwveen frocesses., Thus, in Figure B.1 , process
"a® pay be followed Ly process “b," "c," or "J," depending
on which condition vas satisfied in process "a." The cecntrol
flows dericted by arrcws gyoing from process "e" to frocesses
"h" and "c" represent "backward" kranching. "Regions'" mpay be
described as the enclosed areas on the plain of the graph
represented by R1 through RS5 in Fijure MCCABEFIG. These
regiois rerresent the bounded areas within the prcgran
graph, as vell as the unboundud area outside of the grapgh.

92

RN YR TW A W VT R WY WY W N WA Y T VTS EY O O T M TR G T TR I WY LA WKW T e

McCabe uses a software complexity measure that is rased
on what he terms the "cyclomatic complexity" of a pregram
graph for a module. One approach that can be applied in
determining the cyclomatic complexity, vV(G), is by calcu-
lating the numbers of regions in a planar graph. In Figure
B.1 , for instance, V(G) 4is egual to 5. Another method is
through the formula

V(G) = e = n + 2p

in whick "e" is equal to the number of "edges," i.e. number
of arrows, “n" is equal to the number of "vertices," or
processes, and "p" is equal to the number of connected
components. In Figure B.1 , the values of these elements
are:

n=26 (a, b, ¢, 4, e, I

e=9 (a tob,atoc, atod, b to e, e to
b, e toa, 4d toc, @ to £, ¢ to £f)
. p=1 '

By inserting these values into the above fornula, the
resulting cyclomatic coﬁplexity metric, Vv(G) 4is again egual
five. McCabe also contends that the V(G) measure can provide
a gquantitative indication of the maxianuam size, testing
difficulty, and reliabilty of a module. Through empirical
investigation, he has found that a cyclomatic complexity
measurement of 10 to be a practical upper 1limit for module
size. Exceeding this upper 1limit makes it increasingly
difficult to adequately test a module.

93

ot . v e mrn e — o B el mimme ey B Y WS RS WemTewT AR Y WY T T DT R OW GRS WGV WM BTN W LW VR T LSk B Ff Sk a L

ARRENDIX &
STRUCTURED METHODOLOGIES

As discussed in Chapter V, the design of maintainskle .
softvare is based on the application of a set of engineering
princifples and practices that include:

== Structured analysis

-- Structured desiyn

== Structured programming
-- Program design language

This aprendix presents the detailed characteristics c¢f these
elements as provided in [Ref. 26 : Appendix 1i].

A. SIRUCTURED ANALYSIS

When applied to software development, the characteris-
tics of structured analysis and the 1logical model are as

followus: .
- gfsygtem is des ribeg b ihe syfﬁggatic decon ositiog :

i

B 8 3 N e A R AR S N T B S R e

roag systen unctions subunctlons o
) Frogressively finer detail. |
- 890 -- Fach _ function and subfunction is defined by !
ixf escribing

Ay Its inputs and outputs !
k. w p i
&; Processing activities and requirements !
'y Nontransient data stored by the function

:ﬁﬂ -- Functions and sukfunctions are analyzed to access

f%ﬁ The support of functions by hardware and software

Q%Q Algorithm and computational requirements

a (Finction, precision, range, timing, etc.)

_33 The need fcr performance and tradeoff studies

.: i -= Stored and interface data are analyzed to access

§§% Access requirements

gff Structured, format, and storage requirements.

s

E{L 94

9o

b,

-

Y “;".

LY .
2 A R T AT R R Y MOUR TR N MY o b e i W T b N T B RO Y

e R T ey -
e as T rn A A A S L Y e

Qe S B I AR I M

The net result of the this structured analysis process
should be a 1logical model that defines the complete systen
vhich reflects all facets of the system specification and
softvare requirement document. The model should be a form of
communication easily understood by both technical and
nontechnical personnel, alike. Through the use of this
model, the systen analyét should be to develop system
requirements without undue consideration of physical imple-
mentation constraints. On the other hand, nontechnical users
should readily be able understand how the required functions
fit together within the context of the whole systenm.

B. STRUCTURED DESIGR

Structured design is the process of subdividing the
software design into hierarchical in a manner that tends to
raximize module independence. Benefits provided +to the
develorment and maintenance include increased understan-
dility of the system and a minimization of the expenses
associated alteration of the software.

The structured design approach has the following charac-
teristics:

-~ B er§rchicial functlonal tree charts are _develgped

§ cs O%e gunct; ns a§3xg§bf§:g€fgggting gggcengrtg
st

ect work unggegna%wn rucgusgme wggnse geaicts
giegarchies of work to be performeﬁ by a contrac or.

-= Modyla it of on nts 1s en sized key charac~

teristic f g4iar ty 212 Indebolachasass

m

gne com onent from o heg gndegend nce a lews
concentration on defini tion of puts, outputs

an roceismglar teac component. also facili-

tes whic facilitates future modi-
fications.
-~ At each leyel. of component design, strong emphasis is
giaceg on ze% fng nguts out gts, 3 grocgsging of
h ongonent. emp asis regresent§ ke
characteristic of oth "structure destgn an
analysis.

95

TR NI TR W W I W R TR WA T WE TSN VNIV ITER IRV TR I SR T T NER WUV IWE GRS

R £ T T8 4y A AL 4 b e 2y T AL b

C. STRUCTURED PROGRAENING

Structured prograsming reguires that a programmer use
only a limited set of three basic program structures.
These are depicted in FPigure 4.3, and are as rollows:

-~ Sequence of two or more operations

- gggg%gi?ggla %§%gcg EEgE g?e of two operations and

-- Repetition of an operation (DO WHILE)

Any rrogram, regardless of its complexity, can be imple-
mented using these basic prograa structures. The use of only
these structures limit the procedural design of a program to
a spall amount of predictable operatioans. It should be
noted, however, that use of only these three structure nay
lead to inefficiencies in situations such as when an escape
from a set of nested conditions or loops is needed. In situ-
ations such as these, the designer if left with the options
of re-design to avoid these conditions or allow for devia-
tion from these basic structures in a controlled manner.

Two extensions to the basic structures, also illustrated
in Figure 4.2, are the DO UNTIL and CASE structures. These
are special cases of the other structure which improve both
redability and source code without degrading programming
structure.

D. PROGEAM DESIGN LANGUAGE

A program design language is a basically a test
processor that is used to document a structured design. It
has the following two characteristics:

-= It produces an English-like representation of compo~
nents of code that are easy to read and comprehend.

-= It is sﬁfuctured in the sense that i& isef structured
Frogran ogic.

ng constructs to show neste

96

[———————er tR e e W T R e Ve At T g o LT far £l dg) cg LT £l ike i DA La -2 MU R ILR IR A Bt Y

A AR X by W R NI W IR 2 P 2 IR FANS N N PR AR A D e

Y LY B WS W TS e W T W YT R W VW RTW W NTW Y WO W RV T W W VRO T Y P T WITETLIF AR S VA=W

1IST OF REFERENCES

$! i
> 1. Presspa g
E: Practitloner:d avprdadn, »BOFHURRR. Figgheerinat
. 2. Glaseman tw
A ' Adcquisit igg £exin§§n2§ 19353112- id Zoltvare
§ 3. Lehman, M.M., "The Environment of Pro ram Development
N and Haintenance." gggg ings, §3 Interpational
o Somputer Symposiy
. 4. Schnidler Max, "Defense Dept. Looks to STARS for
. Better Software," Electornic Deésigm, 12 May, 1983,
"
A 5. General Accountin FGMSD-80-4,

5 cibitie et 551 Soitisen e tions Hibienedizisnang

6. Naval Research Laboratory Report 7909, !gi nggD
L

ﬁgiégiggs, bgésgvla“ﬂgxwgfss§§1*y5315'%§$5.De

7. Technical Management Committee of the Aerospace
M Industry Association, "Su est;ons for DoD Management
s of Computer Software," pts, vol. 5, no. S5,
Autumn, 1982.

X 8. DeMarco, T., GControllipg Software Projects, Yourdon
- Press, 5982.

e g
e A

" 9. Halstead, M. B&H. ents_o
}: North-Hoiland, 1937 Rlepepts.of Joftsale 3clence.

?4 10. F1tzszmmons, A. B. and Love, T., "A Review and
p Evalua% on of SOftware SCience," Agg goggggg; Surveys.,
f' vol. + March,

i

D 1. Conte, S. D,, Dunsmore H. E. and Shen, .

L. "Software science Revislte A Eritical Anal sis o

I8 nd 1Its iir ca Su pcrt

- 5£2ﬁ§fg§29§geg£ §_£L_§£§ EBS neering, vo ﬁ‘

3: 12, McCabe, T. J. "A Software Complexity Heasure " 1£§§
- g§5§§%§§191§7695 Software Engimeering,

.

i

. ; .

? 97

2ok Sl it

s

o o g o T

- ~agt Tk {1 P AN SRR AT WL

13.

14,

15.

16.

17.

18.

19.

20,

21,

22.

23.

24.

25.

26.

lsc ro ¢ nl‘ AFSC Report
NN IO o R IR 3 6
D . M., "Reducing Software Management Risks,"
: iz ;.

¢ R
iﬁgg? ;;#g Managenept Beviey, vol.” 1, no.

Knight, B. M., "Software Quality and Productivityé

pgigise Jyshens ‘Napagement Review, vol. 1, no.

goehm, B. W., and others,llan8;g$§7§;§;i£§ of QJQ&;$1

oftwagre, vol. 1, North-Ho

pfau, P., "Applied Qualit Assurance Methodoleogy,"

aﬁfgﬂﬁ”icn L, 508 Seftyaze Qualliv and Assurdice

%gfonautical Systens Diviséon (0. : F.) Report ASD
Hiliras iR, b 4

Buck, R. D. % and Dobbins, Je Aoy "Software Quality

Assurance," Noe. Defense Systenm
Mapagemen g§§8§&§ﬂutumn, 168320 Y

Wlll
rit

b "software Reliability by Design: A
vo Sué

oughby,
i??l Need,“ §§§n§§9§§§;£n§ Yanagement Review,

no. 6,

Canning, R., "The Maintenance 'ITteberg'," EDP
Apalyzer, vol. 10, no. 10, October, 1972.

Naval ostgraduate School Report NPS-54~ 82-002
iiitang, uliigiies | fersidlh , plraig) be
d, 8Z.

Be Boehms, "The High Cost of Software," (]
;g;gz s fat "DevelofindIafte Softuare SEITHfL

Aeronautical System Division (U, A. F.% Regort
%397 78-43, {caputer Prodram nainssgsnge. ecemnber,

ggz erville, 1., Softwvare Engineering, Addison-Wesley,

Aeronautical System Division (U.S.A.P. e ort

TR TN T T T

28

VTR T TN WETISRWE T e

k4% Lol ¥t Yy Lf AR L

27.

28.

29,

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

DI Yk }l&& \\

Assistant Schetagi of dDefense Reaort APL/JggEER 75-3,

Rggsi§§8§¥§ A§¥§§ o§§£§§g£§un§i oY

t and Sulli Inc. M
igo&g aﬁ. st‘x'lvgg?.hncuae:'thgg%uﬂu software Market

Becker, L. "Military Computers in Transisiton:

standards and S{rate vol. 5 no. U
Rutann, 3 gy. Geopcepts, ’ P

rasianm e, iadit B RS, SR BEREERIALES hebepsest:

Klgggs ng. sg'nd:ggs 3thers, "Joint Serv%ce Sogtwaﬁe
o a a no.
pofente Systems Hanagémeggnsg§§§ge, Aatumn .’ 1982 f

%égé%g;;e Logistic cOmmanii_izg g* ﬁg gé of _g§ g_i%_

Marxciniak, J, L., "A Perspective on uilitary Software
standardization ff

Engineering §;§n§§£§;rtsﬁEElgg%pu¥ Bgogfe%§, 18§§'Q‘e

Martin Bdith V¥. "The Context of STARS," Comput
vecl. 6, no.11, IﬁEE November, 1983. =QBRUSSL,

E.W. Martin, "Strategy for a DoD Software Initiative,
Computer, vol. 16, nd. 3, IEEE, March,

B.W. Boehn T A. Standish€ #Software Technolo Yy in the
i

1990's; Evolu ona Paradigm
vol. 16, no. q November, 85y gu," Lomputer,

ﬁiﬁﬁs gruffel, S;T. iaedw139 gr. 1 Eﬁ Riddle, "Tge
[rogranm: erview an onale vol.
16, no. 11, IEEE, November, 3 o CompuLer,

J.R. Dunhanm E. Kruesi, "The Measurement Tas
coppyter, vol. 16, no. i IEEE, November, 198

H.C. Lubbes, "The Project Management Task Area,"
compyter, vol. 16, no. 11, IEEE, November, 1983.

X Area,"
3

Boehn, Barry ., and Standish, Thomas A. "Softwvare
Technglogz in the 1990's: Usi nq an ﬁvolutionary
gsgg gm compuyter, vol. 16, no. 1, IEEE, November,

O iolrcoBRash tica, M ionrntaz, vosePheEs,. "The HEEE"
e ea Ole no.
November, 1983. ¢ RULek. ’ ' '

89

YL 5. e a
Ry, 3&"-"

1 BB ut B8 0 0 Auh gt Siadd pubes b G- B A (L ANL By g W gt

Schnidler Nax "Defense Dept Looks to STARS for
Better Software," Elec - 35;133, 12 May. 1585° ¢

Kruesi, Elizabeth, "The Human Engineering Ta

sk Area,"
¢compyter, vol. 16, no. 11, IEEE, November, 1983

100

B N T e R e e T T e i G e e g A L e T TP At T T T R —— I

...... TR BTTREE TR EE. - hnadadies At Bab oLl J A R AT IR IR KA RN
.

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Techgical Information Center 2
Cameron ftat gn
Alexandria, Virginia 22314
2. Litrary, Code 0142 : 2
Navai gost raduate School
Monterey, gaiitornia 93943
. n ha - 4 2
" LA caene
Monterey, gai crnia 833 3
4. Professor Norman R. Lyons, Code 54LB 1
Administrat Sciences gepartnent

v
Naval Post ra?uate SCgog
Monterey, California 93943
Se C¢mpander an €. Guyer, USN, Code S54GU 1
TR T, Chasels peperendnt
c

Monterey, 8 1l gornia 33843
6. Comruter Te hnologx Programs, Code 37 1

ConEuter S¢ egge parthent

Monterey, CA 943

101

TR WA, AT SN L R SRE P e SR 5 il ¥ P oF T T R PR e R Tl T R g N R Tt N N L Y R IR I LG R O O Ry

