
NAVAL POSTGRADUATE SCHOOL
Monterey, California

CD

N

IIn

S... DTIC
- ELECTE

< I B8

B-
THESIS

A FRAMEWORK FOR SOFTWARE DEVELOPMENT

by

Eric C. Hughlett

September 1984

Thesis Advisor: Dean Guyer

Approved for public release; distribution unlimited

85 08 13 033

SECURITY CLASSIFICATIO~N THI~S PAGE (W~een bats Entecej___________________

REPORT DOCUMENTATION PAGE BE.'RE COP.I¢TORM

1. 1ePORT NUMiEr 1 2, OOVT ACC9IIO.NO. 3, RECIlPIENT'$ CAYALOG NUMBER

4. TITLE rend Subtti.) 5. TVPE OF REPORT & PERIOD CO'Eatqo

A Framework for Software Development Masterbs Degree, September, 1984

I. P619AORMING ORG. REPORT NUMIER..

7. AUTiORi.) 8. CONTRACT ORRANT NUME"R(•)

Eric C. Hughlect

1. PEft•OM'MING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT, TASKARE A I WORK UN IT NUMIIERS

Naval Postgraduate School
Monterey, Califcrnia 93943

1t. CONTROLLING OFFICE NAME AND ADDRESS It. REPORT OATI

Naval Postgraduate School September 1984
Monterey, California 93943 IS. NUMBER OF PAGES

101
14, MONITORING AGENCY NAME 4 ACORESS(II dllferent from- Controilling Ofico) I$. S'ECURITY CLASS. (of thie fsPeff)

Unclassified

IS,. AASSFICATI ON/oWNGRADINT
S9CkEDULE9

IS. OISTflIOUrION STATEMENT (at thls Report)

Approved for public release; distribution unlimited

"1?. DISTRIBUTION STATEMENT (of the abstract entered in Mlaok 20, it different from Report)

I$. SUPPLEMENTARY NOTES

IS. KEY WOFtOS (Continue on reverev, esde If neceeeary and identify by block number)

metricsstandardization, Ada, maintenance, quality, assurance, stars

20, ABSTRACT (Contin•uer on reverse old* lt necosary and identify by block number)

All sectors of society are confronted with what has been termed the "software
crisis". As the world's largest single buyer of software, the Department of
Defense has undertaken major software initiatives t3 ameliorate software-
related problems associated with major computer sys O-,acquisition6 This
thesis provides an overview of common problems in both embedded and administra-
tive software development and acquisition. It defines quality software in
terms of its characteristics, and provides the project manager/acluisition

DD I ,OR 1473 EDITION OF I NOV 63 IS OBSOLETE
S'N 0102- LF. 014- 6601 1 SECURITY CLASSIFICATION OIF T#4g8 PAGE (fgen Date Entewed)

16 .*k% 9**? ý C t: tttC4s.t L.Lk*9AkL

*=CU14T CLASSIFICATION OF THIS PAOE Ena, Deja EnIe am

ABSTRACT (Conti.nued)

.,.N agency with a set of accepted controls to assure that quality is built in to
software for improved maintainability. The difficulties and limitations of
providing accurate estimates in software development are discussed in terms
of software metrics. A number of DoD current and future standardization
efforts, including the Army's development of a Military Computer Family (MCF),
Ada, and the STARS initiative.

S.. . ..

Accession For
NTIS ORA&I
DTTC TAB [

•.•" ~Just tfircntiton

¢-.s Distribution/

Availability Codes

-Ms

ii
i i

S, 10-1' 14 6 0

2 IEUNIy GLAI•FICTIONOF HISPA~i•Ih Di,, •~oJo,4

Approved for public release; distribution unlimited.

A Framevork
for

Softvare Development

by

Eric C. Hughlett
Lieutenant CQ mmader° United States Navy

E.S.B.A., Appalachian State University, 1975

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
September, 1984

Author:

Approved by:__

Z47~yAfts
Department o A !in ni Siences

Dean of InforK4atfon~ a4Policy Sciences

3

ABSTRPACT

9 All sectors of society are confronted with what has been

termed the4software crisis., s the world's largest single

buyer cf software, the Department of Defense has undertaken
major software initiatives to ameliorate software-related

problems associated with major computer systems acquisition.
This thesis provides an overview of commom problems in both
embedded and administrative software development and acqui-
sition. It defines quality software in terms of its charac-
teristics, and provides the project manager/acquisition
agency with a set of accepted controls to assure that
quality is built in to software for improved maintain-
ability. The difficulties and limitations of providing accu-
rate estimates in software development are discussed in
terms of software metrics. A number of DoD current and
future standardization efforts are discussed, including the

"Army's development of a Military Computer Family (MCF), Ada,
and the STARS initiative. I

ci , I,• ,

4

%i 4 ,MrV a.

7ABLE OF CONTENTS

I. INTRODUCTION .1.... 10
A. BACKGROUND.. o . . o.° . .. 10

B. THE COST OF SOFTWARZ IN DOD6.611

C. PURPOSE ANZ APPROACH 14

II, THE SOFTWARE CRISIS 16

A. PROBLEMS IN SOFTWARE ACQUISITION 16

1. A GAO Report 16

2. The Multi-source Unified Data

Distribution (MUDD) Report . . , 23

3. DoD Weapon System Software Study . , . . ° 24

III. MEASURES OF CCNTROL o 26

A. BACKGROUND o 26

E. CAUSES FOR POOR SOFTWARE ESTIMATING 27

1. Lack of Estimating Expertise. , , , , . . 27

2. Biases in Estimating., ,, ,, . 27

3. Poor Understanding of What Estimate
Means . . . ,0 0 0 0 0 28

4. Estimates as Basis for Incentives 28

C. SOFTWARE METRICS o....... 29
1. Halstead's Software Science 29

2. McCabes' Complexity Measure 31

D. SOFTWARE COSTING 32

1. Analogy 32
2. Decomposition o o.. 33

3. Parametric Models 33

E. CHAPTER SUMMARY 35

5

IV. QUALITY SOFTWARE 37

A. BACKGROUFTD 37

B. DEFINING SOFTWARE QUALITY 38

C. CHARACTERISTIC OF SOFTWARE QUALITY 39

D. QUALITY ASSURANCE • . . . , . .° • 41

E. IHPLEMENTATION OF A SOFTWARE QUALITY

ASSURANCE FRCGRAM 44
1. Procuring Agency Evaluation 45

2. Design Inspection 46

3. Code Inspection '- •S
4o Test * ° e e . a -a e a e e e 49

5. Library Controls 50

F. PARTING COMMENTS .• . o.......... . . 50

V. SOFTWARE MAINTENANCE e o . . o . . eo. . . 51

A. CATEGORIZAI1ON OF MAINTENANCE ACTIVITIES . . . 51

B. TANGIBLE MAINTENANCE COST 52

C. VARIABLES AFFECTING MAINTENANCE COSTS 55

D. INTANGIBLE MAINTENANCE COSTS 56

E. BUILDING MAINTAINABLE SOFTWARE 56

1. Structured Methodology 57

2. Structured Analysis * . .* 58

3. Structured Design* 59

4. Structured Programming a * * . . 60

5. Program Design Language 60

F. PARTING COMMENTS 61

VI. DOD STANDARDIZATION AND SPECIFICATIONS 62

A. INTRODUCTION . . i e a e * e a & * s # a a . o 62

B. SPECIFIC INITIATIVES& . 62

1. Military Computer Family... .66.6. 63

2. Ada 64

3. Joint logistics Commanders Workshop . . . 66

6

B.VII. STARS* , . 69
A. OVERVIEW OP STARS , . • 69

, B.* OBJECTIVES • • 71

C. ORGANIZATICN • • . . . 73

D. EFFECTIVE MEASUREMENTS 73

E. PROJECT MANAGEMENT 74

F. IMPROVING PERSONNEL RESOURCES 76

1. Key Population Assessment , . . . 76

2. Career Structures and Incentives . , . . . 77

3. Exchange Programse . . 77

4. Other Educational Subtasks 77

1• G. IMPROVING PROCESSING TECHNOLOGY 78

H. INCREASING USE OF PROCESSING TECHNOLOGIES . . 79

1. Improve Business Practices 79

2. Improve Tool Usability 80

I. CONCLUSIONo... o *. 81

VIII. CONCLUSIONS AND RECOMMENDATIONS 82

APPENDIX A: GLOSSARY OF SOFTWARE QUALITY ATTRIBUTES . . 85

APPENDIX B: HALSTEAD AND MCCABE'S SOFTWARE METRICS . . . 87

A. HALSTEAD'S SOFTWARE SCIENCE 87

B. MCCABES'S COMPLEXITY MEASURE 92

APPENDIX C: STRUCTURED METHODOLOGIES 94

A. STRUCTURED ANALYSIS, a . 94

B. STRUCTURED DESIGN 95

C. STRUCTURED PROGRAMMING 96

D. PROGRAM DESIGN LANGUAGE 96

LIST OP REFERENCES 97

"INITIAL DISTRIBUTION LIST 101

'7

LIST Of TABLES

1. Cost Trends: Hardware versus Software . . .14

2. l~anguage Level Values . * . . * * a 31

3. Ccmparison of Cost Estimating M1ethods 34

4. Evaluation Factors in Bidder Responses 46

5. Ada Specifications . * * 4 . * , e o * # 65

7. Operator Count . . * 88

8. Operand Count 89

LIST OF FIGURES

2.1 Value of Delivered Software 22

4.1 Characteristics Tree 40

4.2 Cost Impact of Changes 43

4.3 Basic Code Structures .e.... ° . . . o . . 48

5.1 Mlaintenance Cost as Percentage of Budget 53

5.2 Life Cycle Maintenance Costs 54

Pi1 Control Flow Graph Complexity 92

9

-4i

w

!

A. BACKGROUND

"#'And a good south wind sprung up behind;
Thl Al trgss dfd fc~l w,
An every, ,or oor play
Came tc the Irtners hollol

God save tbee a ncient Marine!
From the ien that plaque tnee thus!--
Why lock'st thou so?--Wit h my cr9ss-bow
Ishot the Albatross." [The Ancient Mariner, pt. i]

The albatross around today's program manager neck is often
the software subcomponent of major system acquisitions. Cost

overruns, schedule slippages, and loss of program control

have been the penance for those project managers who have
failed to provide for software with the same intensive and

continuing management typically rendered its hardware
counterpart.

Software is an intangible product that defies descrip-
tion in an engineering sense. Only a few software products

have ever started oft with clear, unambiguous, and defini-
tive requirement specification. Schedules and costs are
often dictated by the system acquisition milestones and

reviews, and not necessarily associated with the phased
software development methodologies advocated by what has

been termed "software engineering"'. Many of the specific
problems that surround software development and acquisition
will be discussed in detail in the next chapter.

.The key oblcli es o soft re en ineerin are a
well! efinj me Uoo ogy h at a 1resses al pashe
software lfe cycle, J2) an established set of software
components to document and show traceability from one devel-
optment step to the next, and (3) A set o0 pedictable mile-
stones tbat can be reviewed as needed [Refo : p 153.

10

I . '... -w V - VW 'Jr- r wr • rr r -.r.-v ,V arW w. J - ,-r -wrw' r 1 - • , , ,, •. . . T -

In the majority cf guidance and managerial principles

available to assist the program manager are directed at the

hardware end. Software is the "new kid on the block." It is

that part of the system that is seldom understood and often

mismanaged during system acquisitions. Computer hardware, on

the other hand, has undergone remarkable improvements in

function, size, performance, and relative cost. Several

hardware generations lave emerged in the course of a single

human generation. Yet, software has experienced more notice-

able growing pain. The gap between hardware-- and software

technology widens.

B. TEE COST OF SOFTWARE IN DOD

"There are two general classifications of software within

"DoD. The first of these is that of the more-traditional,

* -administrative type cf software used in business applica-

- tions. This type of software is typically supported by

commercially available computer that can support a variety

of applications, i.e., Automatic Data Processing (ADPP
systems. The second classification is embedded software.

Embedded software is normally designed to operate as an

integral part of ncn-ADP systems, such as DoD tactical

systems. The most significant difference between these two

classifications of software rest not in the development and

maintenance practices, but rather in the frame work in which

* they are each procured.

The procurement authority for Automatic Data Processing
Equipment (ADPE) and its supporting software and services is

vested in the General Services Administration (GSA), as

directed by Public Law 89-306, 40 USC 759, the "Brooks

"Bill." Within DoD, ADPE is under the purview of the

Assistant Secretary of Defense (Comptroller). weapon system
software is under the cognizance of the Office of the

_*,' 1 1* * *

Undersecretary of refense (Research and Engineering). 2

Although there is a distinct dichotomy of cognizant organi-
zational structures regulating the acquisition of ADP and
non-ADP software, the managerial and software engineering

principles which govern each step of the software life cycle
are, in fact, quite similar. Therefore, the common set of
tools, methods, and methodologies advocated in this thesis
apply to both ADP and non-ADP software.

In writing this thesis, it was noted that the majority
of available DOD guidance for the control and acquisition of

software projects was in support of tactical systems, with
the vast majority being authored for the United States Air
Force. This is not suprising since it has been estimated

(isfe 2 : p. 7] that of the $12 billion that DOD will spend
for software in 1985, over $10 billion will be for embedded

software, with the U. S. Air Force accounting for approxi-
mately half of the expenditures.

Not only does embedded software represent the largest
component of total software costs in DoD•, it is also plagued
to a proportional degree with many of of the software-
related problems, which M.N. Lehman so aptly describes as

cli lecticn of relatively isolated meth9dolo-
"flesvtaln•techn q.ues associated through an experience-
passe, but otterwise arbitrary sequence of
much-aiscussed process phases". CRef. 3 : p. 3]

At this poinlt, it is important to recognize some of the
some of the program characteristics that add to the complex-

ities of DoD's embedded software. These include: CRef. 4 :
p. 77]

*Due In large part to the prov.sfons set forth in the
u.eguent Warner Amen_$Itl the polici es and procedures set
t thn the rook a oes not extend to the tacticalsoftware used in DoD weapons systems.

12

-- gragam size--often in excess of a million lines of

-- rial-time. ratin requirements requiring response
t .me n m. seccnas.

-- ro rams must be flexible to acc9 mmodae •ge in
S seu emv9olutioa over an expected usezu ukl-.e olten
iJ excess of twenty years.
-uaranted reliabilit due t the tight (and many

fIs ie enent ng betwe the st
ue !fe e~ib t c~ui o n temnd1ts user o the opu aion thathe syst M is

aesigned to protect.

-r gr part of the universe which they model

As ccmpared to other software applications, such as ADP

or administrative computing, DoD mission-critical software

is more complex, less understood, more unstable, and must

operate in extreme environmental conditions. Yet it is

essential that DoD software be reliable, adaptable, and

affordable. To achieve these objectives, many problems, of

both a technical and managerial nature, must be overcome.

Symptoms of these problems include slippages in weapon

delivery schedules, system failures, overbudget programs,
and inflexible systems will be discussed at further lengths

in Chapter I.

DoD is recognized as the world's largest buyer of soft-

ware. Based on various estimates in recent literature, it is

calculated that DoD will spend approximately $12 billion for

software in 1985 [Ref. 2 : p. 5]. Table 1 illustrates the

percentage of total computing system costs of harduare as

compared to software for all of DoD computing systems.

Software cost reflect all aspects of the software life

cycle, including: design, development, testing, operations,

and maintenance. The ratio of hardware to software has

reversed itself frcm 4:1 to that what is expected to

approach 1:9 next year. clef. 2 : pp. 5 - 6].

The high cost of acquiring software has naturally

caused ccncern in bcth DoD and the Congress. Literature

13

TABLR I

Cost Trends: Hardware versus Software

(percentage of total cost) 1915
1955 1970 1979 (Estimate)

- - .- .-------------- ------ aaaS---- --------- t

So tware

abounds with studies and recommendations related to software

development in DoD. There is not a shortage of sage advise.
The need for improved managerial controls and software
development practices has been recognized.

C. PURPOSE AND APPROICH

A major goal of this thesis is to present a consolidated

review of* major DoD efforts aimed at reducing software-
related problems. Both management and technical issues will
be addressed. This thesis makes no pretense that it ;rovides
the program manager with all of the technical background and
controls needed to assure the timely delivery of quality
software within budeget. Rather, it focuses on key and
"high payoff" issues involved in managing the acquisition
and development of software. This thesis also addresses
several DoD initiatives which promise to significantly alter
the framework in which software is developed and maintained.

Chapter II identifies many common problems associated
with contracting for general computer software by Federal

agencies. It also identifies major contributing factors to
DoD weapon system software problems. A common denominator in
the formulation of the many software problems is the lack of
estimating expertise by which program measurements can be

.:j W A.- '- . I V , •z I

defined. Chapter III discusses software metrics for defining

quantifiable measurements.

The delivery of good software is an implicit, but most

elusive, goal in software acquisition. Chapter IV defines

"good software" through a set of quality software character-

istics. It also provides a series of controls to be utilized
in the iaplementation of a quality assurance program. Major

dividends from quality software are iealized during the

post-development phase of software, the maintenance phase.

Chapter V analyzes the tangible and intangible costs of
software maintenance, and addresses a number of software
engineering principles through which the costs o: mainte-

Dance can be greatly reduced.
Chapter VI and VII review a number of software and

computer- technology standardization initiatives to under-

taken within DoD. Perhaps the most significant of these
initiatives is the STARS (Software Technology for Adaptable,

Reliable Systems) program.
Finally, Chapter VII provides this thesis' conclusions

and recommendations.

15

"The problem of the 1970's was to reduce the cost of theo lectdronic functions ne ded to store and process
data....
"Tbe problem of the 19$0's if differe t. Now we must
re tuc the cost of e0lctronJ. so~udtous; tkat Is*

Ee i g thq cost cu in d o evce tonub a roduct. SoNvAng His Arolea.t t••rqur
shft frol the component intlerafion of theto
concentration of system level integration in the 19809s.

"We ca4 n w tkat about putting power 9f a mainframe CPU
onas±rg ea cip. This buys ounthing as a c ~tom

however, un ie~ ou can as tnotp ovIt Mad es
comPuting potential; It must be ham essed an dyrivenbysofware to be useful." [Ref. 1 : p.22

The preceding statement was made by the president of one

of the largest manufacturers of computer hardware. It
succinctly summarizes the shift in technological emphasis
from hardware to software.

A. PROBIENS IN SOFTWARE ACQUISITION

To the casual observer, the successful management of a

software development project may seem a simple process. All
that is needed are (1) well-defined requirements, (2) real-
istic cost and schedule estimates, and (3) the right quan-
tity of personnel and hardware at the right time. In

actuality, each of these elements seldom, if ever, happens
by themselves, much less together.

The management of software development projects have
historically been plagued by a myriad of problems, both in
the private and government sectors.

1 I H 2 RepLr.

Recently GAO reported to Congress [Ref. 5 : pp. I -

84] a number of problems that Federal agencies have

16

encountered in contracting for computer software as an

alternative to in-house development. Means for improving

these deficiencies were also recommended.

a. Scope of the GAO Report

GAO sent questionnaires to 163 software

contracting firms and 113 Federal project offices that had
experience with software development projects. The purpose

of the questionnaires was to attempt to identify common

problems in software development contractual process and
what, through hindsight, might have been done to prevent or

improve development efforts.
GAO examimed nine cases of software development

in detail, some ot which had attracted GAO attention because
they were known failures. Only one of these nine cases

yielded a software product that could be used as delivered.
The actual combined total development cost and

time for the nine cases almost doubled the estimates of $3.7

million and 10.8 years.

b. Common Causes of Software Contracting

The nine cases that were studied in detail

illustrated many of the same causes of difficulties that
respondents to the GAC's questionnaires had identified. The

most significant of these findings will now be described:

Federal agencies contract for software development
vith little specific guidance.

Guidelines for software development promulgated

by central agencies are primarily aimed at the technical
aspects of software development. Very little guidance is

provided in support of the contractual process.
Basic responsibilities of the central agencies

are set forth in the Brooks Act, Public Law 89-306. The

17

Office of Management and Budget (OMB) is prescribed general
oversight of Automatic Data Processing (ADP) activities.
-Much of this responsibility has been delegated to the
General Services Administration (GSA) and to the National
Bureau of Standards (NBS). GSA is delegated the responsi-
bility for ensuring cost effectiveness in the selection,
acquisition, and utilization of ADP resources. GSA's

4 guidance for the management of ADP resources is contained in
subpart 101-32 of the Federal Property Management
Regulations.' Policies addressing the procurement of and
contracting for commercially available software is provided
in Federal Procurement Regulation 1-4.11. GAO's review of
both of these documents revealed that there is very little
actual guidance directed at the specific contractual manage-
ment for engaging in custom software development.

Although NBS is tasked with developing technical
standards and guidelines, OMB has indicated that NBS is also
responsible for investigating and assisting in software
system developments. Although NBS representatives advised
GAO that their respcnsibilities involved managerial and
contractual activities for system development, NBS' emphasis

* I has been, and will ccntinue to be, on the technical aspects

of system development, such as the standardization of
government-used Higher Order Languages.

-- Agencies overestimate the stage of their own preliui-
'.•l nary work before they contract.

GAO found two primary reasons why agencies
contract out for software development instead of doing it
in-house. The first is that many of the agencies lack suffi-
cient quantities of, or properly skilled, personnel to do

3 1 f pril 1984 DoD re u ations concerni ngt e
ac~ui~o~ ~ AD resureft In services prev~oscoftad ein s . Dense .Acuasit ion aejulations (DAR) havebeen re laced b DOD su e. ts to th Federal Acquisitionthe an efica ly, Subchapter H, Part 70 ofthe DFAR.

11v

•. ,

the work. Secondly1 the software is often needed sooner than

it can be produced in-house. Often the initial steps of

software development, such as requirement analysis, are

started in-house prior to contracting out for the continued

development of required software. Two common problems have

been observed in this context. First, the agency may overes-

timate the amount of work already achieved in-house
secondly, the agency's preliminary work that is turned over*

to the contractor may be inadequate requiring that it be

done again by the contractor.
Overestimating the stage of software development

.I•a before releasing it to a contractor is likely to result in

additional costs to the extent that any cost benefits that
might have been gained from the development project are
forfeited. It is critical that precise methods for measuring

preliminary in-house work be used in order to achieve real-

istic cost and time estimates. An accurate identification of

the stage of system development is vital in order to prop-
erly determine the type of contract to be utilized. If, for

example, the agency has completed all the preliminary devel-
opment stages required prior to the commencement of coding,

then a firm-fixed price contract for the coding effort might

be the most suitable. If, on the other hand, a systems

detailed design has not been completed by the agency prior

to entering into a contractual agreement, then a phased,
cost-plus- fixed-fee type contract would likely be more
suitable since the exact scope of future efforts is not yet

known.
If agency work that is passed on to the

X contractor is later found to be inadequate, or less than

originally estimated, much of the work may have to be redone

by the contractor. In doing so, there often is a tendency to

attempt to save as much of the original work as possible in
order to remain within the cost and, time ceiling mandated by

19

.?Z

the contract. This is likely to compromise the design of the

new system, resulting in a less efficient system that

mandates higher operating and maintenance cost for the
remainder of its life cycle.

"-- Contracts fail to stipulate what constitutes satis-

factory performance.
Failing to stipulate what constitutes satisfac-

tory performance by the contractor makes it difficult, if
not impossible, to claim poor contact performance.
Furthermore, it reduces the probability of a satisfactory

end-product. Hany disputes over contractor performance could
be avoided if adequate system specifications and testing

criteria are identified in the contract.
Other general requirements and constaints that

can usually be identified at the start of a software project

criteria for software expandability, documentation stan-

dards, maximum computer resources allowable, maintenance,
"and program transfer capabilities.

--. .Aencies tjickly oyercommit thbmselves, and fail to
adhete to st rct p•asing to control contractors.

Phasing divides the development effort into

logical and manageable work phases. One of the most effec-
tive controls available to an agency is in the contractual
identification of phases, coupled with manadatory agency
review and approval following each phase as a precondition
to the contractor's continuation of subseguent phases. Other
advantages associated with phasing include:

-- Identification of milestone and timetables to
mfon i he p ogr~ss of tle prolect, allowing fr
leh ,Initlateion or correct ve actions In a trImefy"" £8asnion.

-- Systematic and orderly development of software.

-CcjJ.o1 ?ffunds based upon quality and accept-Sah ity of ontractor Os work.

-- Increased assgrance that should development effortsare being used.

-- Improved communication between the agencv and the
contractor leading to the increased plobability

Z%20

that the contractor fully understands the agency's
requirements.

-- Ccmgleted phases provide ag adeq uate base upon
whVih subsequent phases can ebuilt.

-- Lack of agency management during contract
execution.

An excessive number of system changes were

requested by the agencies in the cases studied by GAO. These
agency-initiated changes ranged in scope from minor require-
ment adjustments to re-resign of the entire system. Many of

these changes requested and made during the latter phases of
development and contributed significantly to cost and

schedule overruns.
Project managers should be aware of the need for

a well-defined problem statement and the undermining effects

that changes have cn software development. Changes, as
compared to the original requirement specification, are not

usually as thoroughly researched and may cause unforeseen
and rippling effects on other parts of the system. The
systematic and logical flow of contract phasing way be lost

due to the need to modify work that has already been
completed and approved, obscuring the visibility of the
project's status. Purthermore, excessive changes make it

difficult to hold the contractor accountable for the initial

terms of the contract.

-- Agencies to not adequately inspect and test software.

As depicted in figure 2.1, most of the software
delivered in the cases studied was of poor quality. Reasons
for this poor quality was evidenced in all phases of devel-
opment. Quality assurance must be tied directly to the
contractual process. Higher quality software can be
obtained If the contractor maintains quality assurance func-
tions in a number of software development areas. Specific

% examples of these areas include configuration management,
testing, program design, documentation, and working tasks.

21

The latter of these area, working tdsks, is a means for

assuring that procedures are in affect for s~ubdividing the

total work effort into segments andI assigrhing responsibility

for the initiation and completion of work.

NINE SOFTWARE DEVELOPMENT CONTRACTS TOTALING S 6.8 MILLION:
WHERE THE MONEY WENT.

SUCCESSFULLY USED
1832 MILLION)

NOT DELIVERED SOFTWARE USED
(11.91 MILLION) ;UT EXTENSIVELY REWOR KED

OR LATER ABANDONED

SOFTWARE THAT COULD BE SOFTWARE THAT COULD
U59D AFTER CHANCES BE USED AS DELI VERED

(S1W~~o($119,000 oam of U11.A8m0II1o

Figure 2.1 Value of Delivered Software

22

The GAO report concluded by stating the reed for

improvements in contracting for custom software development.

Recommendations were made aimed primarily at GSA and NBS for
both improvements is both procurement and technical areas.

GAO further recommended that GSA and NBS work
together in designing model contracts of various types.

These contracts would have sample clauses for covering the
withholding of payments, testing, etc.. Agencies would used
these samples to extract those clause which best fit there

particular requirements.

The last recommendation that GAO made was that
Federal agencies that extensively contract for software
"development "should train project managers in appropriate
software, contracting, and management skills." [Ref. 5 : p.
293

.::2. U2e JJ.U :.,•.S..g. q•1&.dAs 2&&& 2jjs_ at!• (•.U2)

The MUDD Report [Ref. 6 : pp. 1 - 28] should be

"*: considered "required reading" by all present and future
project managers overseeing software development. It is a
case study of Navy software development practices. The
report is based on over 30 interviews with of those respon-
sible for the development of Navy systems. The year-long
study uses the development of the fictional MUDD system

under development to mirror many of the requirements of Navy
tactical systems either in operation or under development.

It chronicles and analyzes the decisions made on the soft-
ware development effort. The MUDD Report concludes with a
set of recommendations to Navy program managers for avoiding
the pitfalls described in the report.

-: The issues brought to light in the MUDD report are
germane to those problem areas found in large and complex

system development efforts which typify many DoD programs.

23

:11

An adequate summaticr can not be given of the MUDD report

which can do it justice. It should be read in its entirety
for a full appreciaticn of Weiss' recommendations which are
directed at problem areas that infest the fictional MUDD

system development. Most of the recommendations center on
various types of interfacea, such as the interface between

the Navy and contractor, interfaces between people, inter-
faces between and within systems, and interfaces within the

Navy.

3. 292 !Up£2o Ystem 22ftw"S §1".y

The John Sopkins University Applied Physics

laboratory (APL/JHU), in conjunction with the MITRE
Corporation, conducted an extensive study of the management*
of weapon systems software under the auspices of the Office

of the Secretary of Eefense [Ref. 27]. The MITRE and APL
study team reviewed the findings of ten previous

DoD-sponsored studies relating to software. The MITRE
Corporation concluded that the "major contributing factor to

weapon system computer software problems was a lack
"discipline and engineering rigor applied consistently to the
software acquisition activities." [Ref. 7 : p. 50] Other,
more specific, findings of included in the .!ITRE/APL study

included the following: [Ref. 7 : pp. 50 -51]

-- treguent contributors to software cost and schedule
growth include: (a) poorly formula ted initial software
requirements; (t) .han glng requirements and require-
met growtý dur:l gthe Hevel opmnt r ha es; (c)) alse

st~~rtts an need0ucate nv olye ~ orgacilf tonsbefore uiiul otut ianbe 9btai e (d) Inefcient
se APrg lieratoYl oV al eady exlstlng resouries; (el

Yne zzclent testing anN lerif cat on too s ana
metbods; and (f) imiprom r use of standards and
gu, ance documents in spec zlc procurements.

S--Thre is a general need for bet er identifation oiS~software t erms, measures -o Motare qualt es, and
the methods for measuring them.

-- loftyare technolo i aroyemenis pitiufuIrly aimed at
eveloping a softire gnginer nd c i ne are bein

made by endustrv acadeia Ind s ices bu•
require application to reai military systems (in

24

AIN

addition to laboratory tr expert.mental systems) for
evaluation and confirmation

The study resulted in a series of 17 recommenda-
"tions, each of which was directed at a specific problem
area. A sasple of these recommendations included: [Ref. 7 :

pp. 50 - 51)

-- Specify that major computer software involved inweapon s stem development be designated "confi uration
items" and be deliverable during full-scale levelop-ment.

-- Us to-down s spec'f the use of m dujarsoltwa e a rchletsec.•ufe ian&.an or•.erly, phased •esign

aEproach that defines the nigner leve s of the program
.an athen progresses to desgn and test successively
lower levels.

q--Reui~e thq coptractor, o apply a highly disciplined
se o0 engineering practices.

S--stablih a common se requirements and criteria to
e applied...by all serv ces.

-- prepare a series of 'andbooks qf guides covering
important aspects of software acquisition.

While extensive progress has been made in DoD toward

addressing many of the problem areas noted in the preceding
studies, much work remains to be completed. Specific correc-
tive actions that have been adopted, or which are presently
in the formulation stages, will be covered in this thesis,
particularily in the chapters addressing standardization and

the STARS software initiative.

25

9,.

1. BACKGROUND

"You can't contrcl what you can't measure." (Ref. 8 :

P. 3] A disparity exists between the software manager's
definition of what constitutes a project's success as

compared to the user's perception of the same project. With
software projects resulting in utter failures or cost over-
runs of two, to three, times the original estimate, software
managers often consider their projects a success if overruns

are kept below 30% and when "most" of the delivered lines of
code are considered "usable" by the end-user.

DeMarco [Ref. 8 : p. 4] writes that many projects fail
eventhough the project managers have excelled in those

characteristics that he associates with good management.

These characteristics include:

-- project staff members that are highly motivated

-- clear understanding of the issues
-- adequate grasp of relevant technologies
-- evident capability in the political sphere

Demarco attributes the failure of these project managers to

the fact that they have simply failed to meet the original

expectations of the project. He is convinced that in often it
is not the fault of the project team, but rather the faul, of
"inflated and unreasonable expectations." When expectations

exceed what can be delivered, the project is doomed to

failure.

26

RFppnntlICFn AT CiOVIkfh- ~iq I V [XPFNSE

4-,ty A11 J4-40

- 44-

A MA 4

1 *

STa .4-1.
STEPHEN

InI

CANAL) .e..*,4.e'>

PARIS J11e toaDe
of tC/V

I;*0 .. .,,

CRAVEN CONTV

ti*PROOLJCEO AT OOVERNMEN'r FXPFNSE

*0 "00.

I -.

AA $. * .AAd 1. 5 a.

00..

k1k.
.\~~~~~~IGR 4

.'va.. ~
F* / a'-.~.

.. ~ a a . . .

'~~~~'.%~ou
o Mal sa AWMg

N,\ wvIfhýM M% "

OPPRODUCED AT GOVE9RNM N~ f ;XP(ENSE
e6

.,,att ow6 sf. -. 0

as ~flp .4 V ..s.n Ob *.ft_.

I. V

I IN
WIN

*1.
L.a4*V-

S. ~ e~as v....* a.

Bs.. *~'a,.. I., a 1

', M-2_

T p.Jwl ~ f

126

7IVA

\ p4
.- ; 5 ~ Mouzon IMapll7 I

malApeIto I

tý R;Qt

B.. CAUSES FOR POOR SOFTWARB ISTUMATIOG

Estimating is at the core of the difficulties

surrounding software projects. Feedback is essential for
control. Feedback provides a basis for comparing the actual
project's progress against original expectations. These
expectations were formulated on estimates. Main causes cf
poor software estimating are as follows: [Ref. 8 : pp. 9 -
17]

The average software manager will typically rate

himself/herself well below average as an estimater. The

underlying reason for this is simply lack of estimating

practice or experience.
The amount of actual estimating that a typical soft-

ware manager Is involved in will normally take up less than
35 of his/her time. Most software projects may call for

estimates at their beginning, and maybe once-a-month or
prior to management review thereafter.

2. i

Personal biases create a strong tendency to underes-
timate one's own potentials. However, when objectively esti-
mating another's potential, then most of these biases are
minimized. DeMarco suggests an obvious approach to avoid

this phenomenon by stating

"Whoever does the estimating for a preject must be
someone whose entire ego involvement i• if the quality
oftheestimate, rathek than in the project Its eIf....

27

i*d%

3. R •.L.••,.q 2 UI salt A Aging.

At the very heart of probability theory is the esti-

mation of "odds" of the occurrence of a certain event. Yet

software estimates are often void of any explicit probabi-
listic assessment which may govern them. This observation is
closely linked to preceding subsection on the personal

4" kiases involved in estimating. Should a software manager be
asked the probability of finishing a project, say, 20% later
that s/he originally estimated, an answer (right or wrong)

will freely be given. On the other hand, should the same
person be asked the probability of completing the project

earlier than originally estimated, the estimater will likely
give it a zero probability. This represents what Demarco

[Ref. 8 : p. 14] terms

Deauail Definill2a gJ1Z1A~l
"estimate" is the most optimistdiction that

as a non-zero probability of coing true.

Instead, Demarco [Ref. 8 : p. 22] proposes that an estimate
should te defined as "a prediction that is equally likely to

be above or below the actual result." This definition, by

itself, does not scIve the estimating problem. It does,
however, offer a basis from which to start examining meas-
ures and other compcnents of estimates which will be covered

in this chapter.

4. A __Bsif2

Cften estimates are used to establish gcals for

performance. When used in this manner, the software manager

is likely to establish estimates on previously established
goals. To serve as a motivational tools for the development

staff, the goals are set at unattainable levels.

28

Many managers view goal-oriented estimates as the
supreme motivational mechanism for their overly-optimistic
development staff whose self-esteem is placed on the line in
the pursuit of unachieveable goals. As the development staff
is driven toward the completion deadline, the ultimate
victim of of this motivational strategy is the guality of

the finished product itself.

C. SOFTIARE METRICS

The first part of this chapter has done little more than

point out many of the ill-fated approaches which have tradi-
tionally been used tc control software. These approaches
were principally gualitative in nature, having no formal
mathematical basis. Yet, intuitively, a direct relationship
exists between software quality and quantitative software
characteristics such as modularity, size, and logical
paths. As such, software metrics have been advocated by many
authors as a preferred means for deriving inputs for the
estimating process.

This section will examine two of the most popular theo-
ries in software metrics that have grown out of the forma-
tive years of software engineering: (1) Halstead's Software
Science Theory, and (2) McCabe's Complexity Neasure.

Appendix B provides sample algorithms and respective
formulas for each of these two theories.

The first set of metrics to be reviewed were devel-
oped by Maurice K. Halstead [Ref. 9]. Instead of using
"lines of code" (LOC's) to describe the size of a module,
Halstead breaks each line down into a series, or group, of
symbols. Each of these symbols can be classified as either
an "operator" of as an "operand." An operand is a single

29

symbol or group of symbols that identifies the constants or
variables that the module uses to implement its algorithm.

An operator is a single symbol or group of symbols which
affects the value of the operand. Operators also impact the
sequence in which the operation takes place.

Criticisms ccncerning Halstead's theory of measuring
through the use of operators and operands were quickly
registered. The majority of Halstead's work evolved around
algorithms drawn from Algol and FORTRAN. In other algo-
rithmic languages, the definitions of operands and operators
are not nearly as clear. Halstead also omitted declarations
and comments from his calculations--a significant portion of
the widely-used COBOL language. Other studies, however, have
shown that the additicnal declarations and comments actually
brought the estimated program length closer in line with the
actual, completed program. In any case, it is important to
identify the operands and operators of an algorithmic
language to establish consistency. This function can often
be determined by a compiler, through which the operators and
operands are explicitly defined in the final machine

• language product. Guestions abound on the derivation of

Halstead's formulas. The validity of his experiments has
been guestioned because of the small sample size, the small
size of the programs used, and the subjects used were

college students vice experienced programmers.
Halstead proposes that each language can be categor-

ized by a language level# 1, which will vary among
languages. The variances are closely linked to the level of
abstraction by which a procedure can be specified. Halstead
assigns a constant language level for a particular language,
which is in contrast by to the recent works that show that

Slanguage level is a resulting product of both the language
and the programmer. Table 2 provide the language levels
values that have been empirically derived for five common

* languages [Eef. 1: p. 166].

30

TABLE 2

Language Level Values

Language: Mean 1

E gish pose 2.16

Assembler 0.88

2. Agj beo ~ g

In his article, [Ref. 12 : PP. 308 -320] McCabe

proposes a complexity measure of software which is based
upon the control flow representation of a program. Through
the analysis of sevexal FORTRAN programs, he illustrates a
high correlation between the intuitive complexity of a

program and his proposed graph-theoretic complexity measure.
McCabe's software complexity measure is preported to

measure and control the number of paths through a program.
The primary difficulty is this regard is manifested through
backward branches which may possibily result in an infinite

number of paths during program execution. Consequently,
using a path count to measure program complexity is inprat-

ical. However, the complexity measure can be defined in
terms of basic paths, that when taken in combination, will

measure every possible path.

As compared to Halstead's metrics, McCabe's
complexity measure can be applied during the earlier stages
of software development since it is not dependent on the
measurement of code. The cyclomatic complcxity measurement

31

provides an evalmaticn tool by which "goodness" of a module

can be reviewed following its detailed design [Ref. I : p.
169].

D. SOFTWARE COSTING

The role of software in the military and private sector

has grown considerably during the past decade. During the
infancy cf computing, software cost amounted to only a small
percentage of the overall computer system. Today, software
is the cost significant portion of most computer systems.
Accurate estimates of software development cost seldom
occur, with the final costs normally running considerably
higher. There are two fundamental problems which make accu-

rate estimates of software development costs most difficult

[Ref. 13 : p. 45]. These are:

-- the high risks and uncertainties involved in software
development

-- the lack of a guaalt.tative data baqe for previouscost estimates and final costs. i.e., "lessons
learned"

In spite of these significant problems, cost estimate are made

and will continue to be made with varying degrees of accuracy
This section will describe three current methods of cost

estimating and provide a table for their comparison based on
application (Ref. 13 : p. 15 - 17].

1. AzRA12gI

This method estimates the costs for a new system

based upon the the costs of a similar system. The cost esti-
mate is adjusted to compensate for any differences between

the two systems being compared. The analogy method is fairly
simple provide accurate cost data for the existing system is
available and the development methods and resources are
similar.

32

2.

As the method name suggests, a system is broken down
into ccmponents and subcomponents until the level of deccm-
position makes it possible to estimate the costs fairly

accurately. One apprcach of decomposition uses the atalogy
metaiod previously described. In this approach, the process
of decomposition is effectuated until the resulting level of
decomposition can be compared with a similar component which
already exists. A second approach of decomposition divides
the system into compcnents for which a level of effort can
intuitively be estimated for each kind of activity that is
needed to produce that corponent. This latter type of decom-
position normally depends heavily upon the technical knowl-
edge and experience of the estimater The preassumption that
underlies this method of cost estimating is that the costs
for small systems, or components, can be accurately made.

The total system is perceived as the aggregate total of its
subsystem.

As with the analogy method, the parametric model

approach to cost estimating is also heavily dependent on the
accumulation of past and accurate cost data for software
development. Analyses of cost data permits the identifica-
tion of cost variables and a quantification of their rela-

tionship to cost. Any new cost estimate can be derived by
estimating the assigned values of the cost variables, Once
this is done, the cost can be calculated using the equations
which express the cost estimating relationships. The advan-
tages of this method is that it allows for a rapid determi-
nation of cost estimates, using parameters whose values can
be easily modified.

33

~&

w

Table 3 CRef. 13 : p. 16] provides a comparison of
the three cost estimating methods discussed. Combinaticns of
two, or more, methods may be used together, or separately to

test the validity of an estimate. Resultant differences are
adjusted to arrive at a reasonable estimate

TABLE 3
Comparison of Cost Estimating Methods

Analog Compare to prior system
Decomposition Diy~de nto parts,• ", ~ac 1itiv es

"Parametric Equations based on prior
models data about cost relation-

ships

S..
Analog . similar systems with

s mi.1ar resources,
deve opment process

Decomposition . reqource allocation
Pa americ .unique systems

Pa ametric rapid estimation
Models estimater's 3nexperience

in software development
est ma ting risk

Analog. unique systems
di f erent environments

Decomposition initial estimates with no
design

, rapid estimation

Paratetric u stems different from
o oels alta samgle

, .oorly cgrrelated data
SEase

34

%:ea i

Automated costing systems provide another option for
estimating. In these automated systems, the characteristics
of the development organization, such as the staff's experi-
ence level, and characteristics of the software to be devel-
oped are described. Cost estimates are derived from this
input data. As with the other three manual methods, the
derived cost data will only be as good as the empirical dAta

upon which it is founded. If no historical data exists,
then the validity cf the cost estimates is, indeed,
questionable.

2. CHAPTER SUMMARY

McCabe's and Ralstead's software metrics remain a

controversial topic. But they do represent a revolutionary
approach toward providing software managers with quantita-
tive functions for estimating many heretofore elusive char-
acteristics of software. The validity of Halstead's
experiments have yet to be significantly tested. For those
tests that have been performed, the size of the programs
were generally small, and the subjects were college students
vice professional software developers.

As compared to Halstead's metrics, McCabe's complexity
measure can be applied during the earlier stages of software
development since it is not dependent on the measurement of
code. The cyclomatic complexity measurement provides an
evaluation tool by which "goodness" of a module can be
reviewed following its detailed design. Despite the criti-
cisms that normally abound the proposition of new theories,
both Halstead's and McCabe's metrics represent a giant leap

toward adding quantitative measurements to a discipline that
has defied them.

The military's justified and growing concern over
frequent cost overruns for software development is forcing

S35

V

changes in both the management and development of software.
As such, new requirements and changes can be expected that

will provide a more uniform and better control over cost and
software development. This chapter has addressed three of
the most common software cost estimating methods. The STARS
program, Chapter VII, addresses a DoD-sponsored software

initiative which will significantly alter and guide future
software development efforts for DoD weapon systems.

LI .4.&
-S.

:•, 36

"Software correctness remains the most elusive _goal of
comprter scien e. As a result, loftware is tfe most
unsafe, tt lea:st understood* an the most ex ensivecomponet of total clgapuer system, cost. In c Ktras•
oat oz computer clru nave shovn a aramafl c

deckease, espcaly in the cast 15 years, and computer
naraware capability has improved." [Ref. 14 : p. 1J

A. BACKGROUND

The preceeding guotat.on was taken from an article
"authored by the Deputy Under Secretary of Defense (Research
and Advanced Technology), Dr. Ruth Davis. It expresses the
concerns shared by many DoD top officials relating tc the
both cost and safety risks associated with the development
of today's computer systems.

As a percentage of total computer system cost, it is
generally known that the cost of hardware has decreased
dramatically over tie the past 15 years wh.tle the cost of
software bas steadily increased. Today, software represents
approximately 90% of the total computer system [Ref. 14 : p.
18]. There are two basic reasons to explain the change in
the cost ratio between hardware and software. These are:
[Ref. 15 : pp. 55 - 56]

(1) gj: Today's software programs are an order of
magnitude larler than they were two decades ago.
Th s can besa tributed, in part, to the increase in
sWze (and simultaneous decrease in the cost) of
onboard memory. An adaptation of Parkinson's law
suggests that.program instructions will continue to
tpc reasp en y beyond)re ava la~ corte is •ulA u lzea

2)��~ut~a toda are considerably more sophisticate
than thoui apg4cat ions of yes e .year. Both mili-
tarly an, cemeqrcial surtival stratege$ age
bec ming increasingly dependent on maintainng the
ccmpetitive edge in computer superiority.

37

.Zs IN%.;.A ~

Software has beccae a primary vehicles for solving many
of the new and changing problems facing the military. In
many cases, changes to software is often viewed as an effi-
cient and expedient way to solve a variety of emerging prob-
lems or threats facing DoD without having to change the
existing hardware. Yet the virtues of software are often
outweighed by its associated problems as described in
chapter II.

It is not suprising that DoD has identified software as
the most significant factor in determining the total cost of
computer- based systems over their life cycles. Numerous
studies have been ccnducted which show software quality as
one of the most significant factors determining the life
cycle cost of software. This chapter will present many of
the characteristics cf software quality and the means to
achieve them.

B. DEFINING SOFTWARE QUALITY

Defining quality software is, in itself, a task. There
are as many definiticns of what makes software "good" as
there are authors that write about it. Yet these definiticns
are not mutually exclusive. Each author has his own ideas of
what the principle characteristics of quality software are,
and each is right. Defining quality software is as difficult
as defining the virtues of mankind. Air Force Regulation
"(AFR) 74-1, the "Air Force Quality Assurance Program,"

broadly and sensibly defines quality cs "The composite of
material attributes including performance." Other, more
specific, definitions advocated by many of the "gurus" of

software engineering will now be discussed.
Pressman [Ref. I : p. 148] suggests that good software

has three essential gualities:
-- the software w9rks accordinf to the specified

re uirements-- being as fast, elficient, and as func-
tional as needed.

38

4•3

-- tbh ftwae t o aint n -- I can be diagnosed andmodiftied wi'thotgrieat dlflclu ty.

the software ti amore than mqrely 14ne o-t of code--iticlues a he fyiportizig dojumentf• nueta

the 2 rat twoQaUee c!ae ensure that

According to Pressman, good software is based upon good
design, and good design can be gauged by applying a number of
software engineering measures and heuristics.

Defarco [Ref. 8 : pp. 198 - 200] prefers to define soft-
ware quality as "the absence of spoilage" [Ref. 8 : p. 200],
with the term "spcilage" meaning the amount of effort
required to find and remove faults introduced during the
software development process. Equating this amount of effort
to its commensurate cost, Demarco provides a formula to
quantify software quality: (Ref. 8 : p. 200]

Summation of Defect Diagnosis and Correction CostQ ualit y a--------eeeeeeeeeeeeee-.......
Program Volume

X which Program Volume is measured per thousand
i nes o0 executable code (KLOEC)

C. CHARaCTERISTIC OP SOFTWARE QUALITY

One of the most comprehensive and significant works
written to provide a framework for assessing the issues
associated with software quality is found in the study
conducted by Boehm, et al., titled Qc tftrLU2 2
QU•ii .oftwaqe [Ref. 16]. This section will present many
of the highlights retcrted by this study.

In developing a methodology for the assessing the
quality of software products, the authors concluded that
"calculating and understanding the value of a single overall
metric fo.r software quality may be more trouble than it is
worth." [Ref. 16 : p. 3-2] A major problem in developing a
single metric for gauging the quality of software is that
many of tLe characteristics of software are in conflict with

39

one and another. For example, reguiring a high degree of

software portability is achiuved at the expense of software

efficiency. Cole ccnciseness is at odds with maintain-

ability, understandability, and so forth. As such, the study

d4veloped a relational set of importdnt software character-
istics which were reasonably exhaustive and non- overlap-

ping. This set of characteristics would serve to define a
working context for collection and formulation of a set of

candidate metrics used to a.•iesz the degree to which the

software possessed the respective characteristic. Figure 4. 1
shows the resulting characteristic set and their hierarchial

interrelationships (tef. 16 : p. 3-19]. Definitions for
each of the representea characteristics is provided in

Figure 24.1 Characteristics Tree

40

-OWL

appendix A. The characteristics depicted in Figure 4. 1 are
categorized in three hierarchial levels. The higher-level

structure is oriented toward accommodating various user

needs and priorities for a software product. For example,

"As-is" utility is analogous to the "black box" under-
standing of a system; the user is concerned with only the
inputs and outputs of the product and need not understand
the its internal code, nor how to modify or test it. If the
product is going to be changed by the user, then maintain-
ability requires that the user be able to understand,

modify, and test the product.
The lower-level structure depicts those primitive char-

acteristics, which, although strongly differentiated from
each other,, "combine into sets of necessary and sufficient
conditions" [Ref. 16 : p. 3-253 to define the intermediate-
level characteristics. The primitive characteristic provide
the foundation for formulating the metrics used to quantifi-

ably measure a software products relative possession of
those characteristics described in both the high-- and
intermediate layers.

D. QUALITY ASSURANCE

The preceeding section described many of the attributes
associated with good software, as well as their interrela-
tionships. The purpose of this section is to offer a frame-
work through which quality software can be achieved through
planning, specification, and monitoring of quality assurance

(QA) activities.
The purpose of software quality assurance, in short, is

to assure the ultimate quality of the delivered software. A

formal definition of quality assurance is provided by APR
74-1, which defines it as:

41

" A planned 1d sistematic a tern of all actions nqces-
saf yo provf e ae qua to of d ence that ate ia 1 Eta

sup~a~s a *rvXesecontirr to estab~ sed techni c
rejirements and achieve satsfactory performance."

Another definition fcr quality assurance is offered by Pfau
[Ref. 17 : p. 2] who also helped remove some of the subjec-
tivity that surrounds the term "quality" by stating:

"Quality assurance is the name given to the activities
performeid i conjunction with a soft re product tc

tarantee.He pro uc.t meets the s ecifi ed standards.
1Tese activities reduce doubt ane r isks about the
performance of the product in the target environment."

Both of the above definitions are reflective of the direc-
tion that QA has taken over the past two decades toward a
total life-cycle perspective. This evolution of QA has been
divided into three separate generations [Ref. 18 : pp. 2 -

"4]. It is important to understand the differences in these

generaticns in order to avoid the serious pitfalls implic-
itly and explicitly expressed in the first two.

SiL.@ -,,, ,,.-- tO. ,.,,d j: This QA generation

" basically eguateA. QA to software test programs. Tests plans
"and prccedures, types of test, and methods of formal verifi-
cation of performance/design requirements were all essential
to the testing activity.

The cbvious and major pitfall of the test-oriented QA
generation is that "you don't test quality into a software
product." [Ref. 18 : p. 2] Even though testing facilitated
the discovery of deficiencies, the discovery normally took
place too late in the development process to allow their

relatively inexpensive resolutions.

§s.Ingg gi .. zaxion--Develont_2t.-O•al ed : Due to the
inherent failure mechanisms built into test-oriented QA,

corrective actions were taken by an attempt to make the

42

developing contractor responsible for the quality shortcom-

ings of the products they produced. This was done by
assuring that the software delivered under contract fully

complied with the requirements of the contract.
The pitfall to this QA approach is as limited as the

contracting officer technical knowledgeable in the troad
discipline of software en4ineering. Contract delivered what
was specified, nothing more.

I.U~ U ~ 1 a4 1: In this
generation, QA is built into the software from "day one."
The effort is properly focused on the early definition
phases for planning and specifying contractual provisicns
concerning software attributes. Figure 4.2, [Ref. I : p. 25]
illustrates the cost impact of introducing changes during

Severe

41
U

,L Moderate

o Impact of change on costU

Minor

Planning Design Implementation

Figure 4.2 Cost Impact of Changes

various phases of the software life-cycle. Emphasis is
placed on the clear definition of those software character-
istics that were discussed in the first section of this

43

-S k W

*- - - - - - -- -~ -.- ------ *'-- - -------- w WWW U~W WWW WU....~.W .. WVWVWVU'W%-FW WV1_V 71WiWT WV~

chapter, such as maintainability and portability, which have%I
a significant affect on the quality of the product over the
system's life-cycle. The importance of the life-cycle-
oriented QA approach and its impact on life-cycle costs
following software development and implementation is
discussed at length in the chapter on software maintenance.

1. INPLENENTATION O A SOFTWARE QUALITY ASSURANCE PROGRAM
The preceeding section addressed the definition of soft-

ware quality assurance, as well as its evolution to the
present life-cycle-criented perspective which recognizes
that to achieve the highest quality of software it is neces-
sary to include quality checks throughout all phases of the
software life-cycle.

This section will discuss the military standards for the
implementation of software quality assurance (SQA) programs
in defense contracts. The successful implementation of these
programs will provide early • visibility and managerial
controls to detect, report, analyze, and correct software
deficiencies. Although the focus of this discussion will be

Z on defense contracts, the methods addressed herein may be
equally beneficial to in-house development efforts.

y The two most significant military standards affecting
the establishment of SQA programs for defense contract are:
(1) lIL-STD-52779 (A), "Software Quality Assurance Program
Requirements,". providing the basic elements required in an
acceptable SQA program, as well as customer evaluation
criteria, and (2) MIL-STD-1679, "Weapon System Software
Development,." providing detailed software development stan-
dards for the entire weapon system software development
process. Both the software manager and procuring agent
should te familiar with their contents since, together,
these standards provide an effective means to evaluate any
software development Irogram [Ref. 19 : p. 108].

In their article [Ref. 193, Dobbins and Buck discuss
five areas of control which follow the typical chronology of
software development. These are: (1) procuring agency evalu-
ation, (2) design inspection, (3) code inspection, (4) test,
and (5) library controls. The remainder of this section will
address each of areas separately.

1. UJ UA3ga &D ZJI&,

From both a cost and effectiveness standpoint, the

consequences are too important to accept at face value the
claims that a strong SQA program exists in their organiza-
tion. There must exist some means to evaluate the potential
contractor. Major quality items must be addressed as early
as possible in the planning process prior to the Request for
Proposal (RFP) preparation. These quality items should
include those attributes considered as an integral part of
the software design, development, test and evaluation, and
maintainability issues. Table 4 [Ref. 18 : p. 33] provides a
number of factors with which to evaluate bidders' responses
to the RFP process.

Cften the program manager and procurement agency
will have insufficient experience and technical background
to properly identify essential QA issues needed for inclu-
sion in the RFP nor the means or time to evaluate the
contractor proposals. In these situations there are alterna-
tives resources available to evaluate the contractor. The
first of these is the Defense Contract Administrative
Service (DCAS). The program manager can hire the services of
software engineers acquainted current military QA standards.
Depending on the end-application of the software product,

there are other government organizations through which
assistance can be sought. Other alternatives include hiring
the services of a commercial contractor or consulting firm.
Regardless of the resource used, a sound means for
contractor evaluation and selection is essential.

45

i• TA.BI, 14

Evaluation Factors in Bidder Responses

FACTOPS: BIDDER EVALUATION CHECKLIST:
Completeness Does bidder's relponse cover allarea as request. n the fFP?

Scope Is the sco e of the lidder's
nse c nsonant w th

ro~ecti.s bjectives and the level
8f detail~ the EPP ?

Corn;liance Are a1l coupliance docuaents
Doc ments ga~rng tfhe softvare design

Hint i• d?

Design Review joes h idder roose to haveBoarn design hReview bords?
Event Sequences zre the reviews of software design

done in proper sequence?
Droblem ioes tle biddqr propose to formally
Reporting dentif y all design problems?

Action Item Dces bidder provide assurance for
Follow-.Up effective ollowwu• of ael acti on

items resi 1t ng frbu reviews?

Past Experien- What ejperience does the bidder
ces/Res urces have with QA? Does he have a good

resource base?

Although tIL-STD-1679 specifies that "walkthroughs"

should be used as the means to collect statistics during the
,Sesign phase of software development, the process has

evolved to the more formal procedure termed "design Jnspec-
tion." The difference between the two approaches is one 'of

416

A '1.

rigor, not intent" Clef. 19 : p. 1103. The walkthroughs
were informal examinations of the software product by its
authors' technical peers. Little documentation was kept, and
no training requirement placed on the participants of the
walktLrough.

As with the walkthrough, the design review is a peer
inspecticn process Eerformed by teams that inspect one
another's work. Unlike the walkthrough, the design review
is a formal process in which records are kept, and partici-
pants undergo considerable training requirements. It is
conducted when the design is completed, prior to the actual
coding effort. The inspection team is led by a moderator.
The ideal moderator is not only trained in the technical
aspects of software engineering, but in the psychological 4

aspects of software development.
The moderatcr promulgates required inspection

". Kmaterial to the team in advance of the inspection. Each team
member reviews the material and records comments before the
inspection meeting. During the meeting, discussion is

reserved for major error, i.e., those errors that will
prevent the program from functioning properly. Minor errors
simply recorded for subsequent correction. If more than 5%
of the program design must be changed due the errors, the
entire design will be reinspected. Otherwise, the moderator
will assure that the errors discovered during the design
inspection are corrected before proceeding into the next

phase.

4For on o n eth discuss on of the psychojogical
aspects involve•In h softare •evelopment, te re e is
re erred to Gerald Weinberg's book T22 2 11x 9.1

47

•,\ .

3. L242&~
Programming coding may begin only after successful comple-

tion of the design inspection. MIL-STD-1679 reiuires top-
down structured programming and identifies the specific code
constructs allowed. Figure 4.3 [Ref. 20 : p. 62], illus-
trates the five basic code structures, each having a single

INPUT INPUT

PROCESS A . PROES CAS* 1114
$I UFIKE, OUTPUT IF-T PUTI-LS OUTPUT

INPUT INPUT INPUT

PO soTZ AUPT P ROES CASEIL OUPT AE T

Figure 11.3 Basic Code Structures

data entry and exit.
Cnce the program is coded and successfully ccm~il~d,

it is inspected. The process for inspecting col•e is nearly

* identical 'to that discussed for design. Not only is the code
inspection a method cf discovering coding errors, but just
as importantly it assures that the code d~heres to the
approved design.

48

<CAS,-

FALSE

4. *J9&t

Software testing accounts for the majority of technical

efforts expended in software development. Its objectives are
to uncover software errors, and to provide assurances that
the software performs its technical and operational
requirements.

An effective SQA program must start at the front end
of software development, with the requirements specified in
the RFP, addressing the totality of the testing tc be
performed. Three measures of software testing relating to
the EPP include: (Ref. 10598068 : p. 19]

(1) The analysis of software requirements for test-
ability.

(2) The identification of the contractor's software
testing activities as part of his Software QA
Program.

"(3) T e review 9f test documentation and certification
cf test results.

Testing requirements specified in MIL-STD-1679

require that the system software do more than just just meet
the specifications. Software must also be subjected to a
third-partys "stress test," in which the program is judged
unsatisfactory if the program execution can be stopped for
whatever reason. To achieve a degree of software quality
sufficient enough to ;ass this type of testing, it is vitu-
ally essential that the software development program incor-
porate programs of error detection and prevention well in

advance of the actual testing period.

SAs defined in M I1-STD-1679 the third party is neither
the contractor nor t e procurem6nt agency.

49

A key element in any SQA program is the software
5 ilibrary which provides visibility and control of the prod'

ucts documentation and programs. Among the mandatory
controls stipulated by MIL-S-52779(A) is the control to
prevent unauthorized access. Other essential activities in a
software library are the documentation and program storage,
and retrieval and change processing. MIL-STD-1679 requires
a Software Change Control Board (SCCB),, which must authorize
any changes to the controlled library.

1. PARTING CONMENTS

The underlying goal of software development is to
deliver guality software. In doing so, it is vital to
examine the characterics of quality, and their interrela-
tionship, within the context of the user needs and ultimate
application of the program. To understand the characteris-
tics of quality software is to understand the founding prin-
ciples of software engineering. To produce quality software
is much more. The implementation of a software quality
assurance program is the vehicle through which these princi-
ples are applied and the goal of software development
realized.

The benefits derived from quality software support the
saying that "quality is free." But more importantly, as will
be addressed in the next chapter, future cost-avoidance
during the maintenance phase leaves no practical alternative
to acceptance of only quality software.

50

V. SIQZAU i&AA .U .1

This chapter deals with the last phase of the software

life cycle. Canning [Ref. 21 : p. 2] appropriately categor-
ized software maintenance as an "iceberg." initially
revealing only a small portton of maintenance requirements,
but hiding an enormous potential for future problems and

costs under the surface. With few exceptions, computer
programs are always changing in order to correct latent
errors, add enhancements, and seek performance optimization
of the software. A succinct definition for maintenance can
be given as "that activity which is ccncerned with making

changes to software for the purpose of improving or
correcting the software." [Ref. 22 : p. 2] Maintainability
is defined 22 as "a property of software which makes the
maintemance activity easy to perform, i.e., changes tc the
software are easy to incorporate and do not lead to new

* errors in the software." This chapter will primarily address
issues of maintainability which by necessity must be consid-
ered during all phase of the software life cycle.

A. CATPGORIZATION 0 MAINTENANCE ACTIVITIES

IMaintenance is much more than just fixing errors that

escaped detection during the pre-delivery tests and evalua-
tions. Maintenance has been categorized [Ref. I : p. 323]
into four activities that take place after the program is
released for use. These are corroctive maintenance, adaptive
maintemance, perfective mairtenance, and preventive mainte-
nance. Each will now be describea.

- .. • is the ptocess that includes the
diagnosis and correction of latent errors that avoided

51

detection prior to the implementation of the program. It i1

impractical, if not impossible, to exhaustively test complex
programs in order to guarantee 100% error-free software.

AA&911.1 aALUS.q are those modifications made to the
program as a result of changes to the enviroment in which

the program must operate. As an example* it is often quicker
and less expensive tc modify software rather than the harl-
ware in order to modify weapon systems to satisfy new threat

situations.
'4 Wallt.1a is the process used to accommo-

date recoamendations for new capabilities, changes, and
general enhancements requested by the user of system
programmer.

P1gyeai BAJRJt takes place when software Ls

changed in order to improve its future maintainability. This
type of maintenance remains a rare practice in software
engineering.

Based upon a study of 487 software dp.velopment organiza-
tions by Lientz and Swanson, as summarized in reference 1,

V 50% of all maintenance is perfective. Corrective-- and
adaptive maintenance acco,•nt for 21% and 25%, respectively.
All other types of maintenance account for only 41.

B. TANGIBLE RAINTENAUCE COST
Although considered by many software engineers as the

less glamorous and unexciting phase of software development,

maintenance accounts for the majority of tle dollars spent
throughout the software life cycle. The cost of maintenance
has sbcwn a dramatic and steady increase over the past two
decades. As depicted iA figure 5.1, one author [Ref. I : p.
326] estimates that maintenance cost as a percentage cf the
total sof-tare budget will have grown from 35-40% in 1970 to
"70-80 in 1990.

52

;4

354ft 40-60% 70-0%

1970 1980 1990

_iigure 5.1 Maintenance Cost as Percentage of Budget

Although empirical data is aqailabie to account for
total softvure life-cycle cost allocatdble to mainterance,

maintenance costs are very difficult to estimate in advance.

It is known, however, that maintenance costs are often

dramatically underestimated by both industry and government

suring the pre- deployment phases of system acguisition. To

illustrate this point, Boehm [Ref. 23 : p.1271 estimated

that it took $30 to develop a line of code (LOC), but the

cost rer LOC skyrocketted to $4300 in the maintenance phase.

Although $4000 per 'CC may seem unreasonably high, it is not

uz.usu'al to incur such high costs for maintaining mission-

critical software in LoD weapon systems.
Althcugh there is not a set of universal factors that

can Le applied to all software development projects to accu-

rate estimate the relative cost of progrim modificatiou in
each of its life cycle phases., figure 5.2 illustrates the

exponential rise in faintendnee costs in each of the phases.

[Ref. 24 : p.14]

53

$"rARE
n31084

OSSWN GODWO SWFWARE IMITM 10C OPSRATOW
VmRIPICATIO. VAUDATIOI

Figure 5.2 life Cycle t1htntenance Coats

It is apparent ýthat there is more potential .for real-
izing life cycle cost, savings Ly devoting move planning
during the earlier phases in1 order to minimize the require-
menit for maintenance during subsequent phaes "a One of the
primary redsons for the high c-ost during the later phases is
due tc the "ldomiflo effect" of change;ý that must be promul-
gagýed throughout the entire system for what may seem at

first to be a simple cole modification requirement.r 54

C. VARIABLES AFFECTING HAINTENANCE COSTS

As mentioned in the preceding section, an accurate esti-

mate of maintenance costs for a particular program is very

difficult. Sommervile [Ref. 25 : pp. 198 -1993 has identi-
fied five relatively unpredictable factors that contribute
to the difficulties involved in deriving cost estimates for
maintenance. These factors include:

(1) The better the
a CC p jr~~o"l Mgn Sup FEW software is ander

stod the better t1 ystem re uirements can be
state&..The more deZ ni tle the s stem regui ements
are,. ih less per Zect ive mailtenance will bi
reguired in the future.

t) th Tow rd the end of theft, 4Ploe, M lrato o h heprodafalst uc
(2 re occurs dut to the multoltae of eofand ons
tbat the ty ical program has gone through.
1istor ia evt3ence sugsts that pr ggam. ifet1;e
±stEadionalty much loqert1; an oriUlDally esti-
mated. Many systems t are .still running on
programs that were coded in the early 1960's.

t•- external envlronnta the more flexible and
e* an'ab.e that prggram myst be to accommodate modi-
figations due to changes in environment in which it
operates.

t(a-)t is normally easi r for the
(ia) • •a•..• • f tie program to mare changes than
for another programmer who must gain an under-
slanding of t e pro ram by studlyng, its 9ocumenta-
tion.. essman [Her. 11 uses tie term a ien cgde"
to descrIbE th ose progra s that are extreme.iy d.ifrf-
cult to understand by those that must maInta Un tem.
Reasons for alien do include: (1) no current
member on the mazntenance starf was involyed in thq
evelopment of the pro ram, (2) poor design and

iocumefntation of he p ro ram, and (2f moudularl y and
strugture desI.gn concepts were not used in the
developm nt of the program. Hi oh.turnover within the
progra mm. ngprofess on has aaae it a rare occurrence
ior the sam andiv.dual to develop and maintain a
prcgram througbout its lite cycle.

(5) lardvare stabilitY. SQftware is designed to be
_Iqf-itle-.t1"W.I hardware that w411 upport it.
Changes to th hardware configura ton.• 1 .li toely
result in retguirements for software modi•ication.

55

D. INTANGIBLE RAINTRIANCE COSTS

The direct cost of maintenance, although considerable,

may te of secondary concern when compared with the less

obvious and intangible cost of maintenance. A quote by

Daniel McCraken [Ref. 1] summarizes one of these intangible

costs, the development opportunities that are lost due to

the resources that must be allocated to maintenance efforts:

"Backlogs of new applications and ma or cha es that
measure in years are getting longeor. A s an inatistr .ywe
can't keep gp--let alone catch up--with what our Users
want us tg g of

McCraken alludes to what Pressman I call a "maintenance-
bound" software development organization which is no longer
capable of producing new software because all its resources
are devoted to the maintenance of existing software.
Pressman lists other intangible costs including:

"-•!•ql~r •i•JJ0 ign due to the untimely response
1y' 'tesowftware Leveopment organization to the user's
development and saintenance requests

-- uti e at rought abo t by latentuTT ztr~di• i•f mainte ance ol software

-- ihe lofdevelopmenteffortsas personnel and other
TM-4Y-s 2r U- 1I - fon intenance tasks

3. BUILDING AXNYTAINABLB SOFTWARE

Econcmic and efficient support of software is best
achieved when its maintainability is integrated into the
total development effort from day one. The maintainability
of software can be quantitatively measured based on the ease
by which it can be understood and changed [Ref. 26 : p. 14].

Software understandability is a function of the design
and documentation. It is easy to understand due to its

logical and simple structures, and it is supported with

56

documentation that permits an examination of the implementa-

tion without losing an understanding for the entire picture.
Software changeability, on the other hand, is a function of
the design and implementation. As an example, implementa-
tion of modular independence facilitates changes to a
selected segment by minimizing the degenerative affect on

other segments.

1.UK iAl&t4 ik"Q21291

Building maintainable software is based on the usage

of a set of software engineering tools and techniques that
together form a structured methodology for software develop-
ment. As the authors (Ref. 26] write, the principal elements
of this structured methodology include:

" Aand rocess for developing thef"RE, a, '"Snd lntg;ýface remuirement• o• the
software fesi b constructing a log cal model of the
system process.

WuS ursd Des Temouss subdividini the @oft-;F Itcha mMfe nf a way tha• tends to

minimize module independence.
tcdVZudr r•miimn. The discipline of implementing

ncure. of software modules us ng
restrictive set of structures.

RE P_9Aqjan DL) Language processors thatare - e q od M s ware designs in a structured
top-down manner."

Althcugh there are many other disciplines and concepts that
must also be considered as part of a complete structured
methodology, such as top-down implementation, structured
walk-tbroughs, chief programmers teams, and so forth, these
managerial disciplines are used primarily for the software
development effort. The methodologies underlined above will
have a visible affect on the software product long after its
development is completed. A detailed descripticn of the
characteristics of each of these elements is provided in
Appendix C.

57

_4-

Although there are many other disciplires and

concepts that must also be considered as part of a complete

structured methodolcgy, such as top-down implementation,

structured walkthroughs,, chief programmers teams, and so
forth, these managerial disciplines are used primarily for
the software development effort. The methodologies under-
lined above will have a visible affect on the software
product long after its development is completed. A detailed
description of the characteristics, as provided in [Ref. 26]
of each of these elements is provided in Appendix B. A more
general discussion of each will. now be presented.

2. JjU=X" A.M in.1.a"

Structured analysis is often considered the starting

point in the set of structured design techniques. The main
objective of structured analysis is to build a logical model
"of the desired system. This should be done to the greatest
extent possible without premature consideration of physical

implementation.
In its simplest form, the logical model is a picto-

rial representation with accompanying narration describing
the functions, and their interrelationships, of the system

that they comprise. Examples of the some of the most popular
forms of these graphical representations include process and
information flowcharts, data flow diagrams, hierarchy chart

plus input- processing-output chart (HIPO charts), and
procedure analys-is charts.

The net result of the this structured analysis
process should be a logical model that defines the complete

* system which reflects all facets of the system specification
and software requirement document. The model should be a
form of communicaticn easily understood by both technical

and nontechnical personnel, alike. Through the use of thi3
model, the system analyst should be to develop system

58

requirements without undue consideration of physical imple-
mentaticn constraints. On the other hand# nontechnical users
should readily be able understand how the required functions

fit together within the context of the whole system.

3. J~SJ~J2&.

Structured desIgn is the process of of decomposing

the software design into hierarchial modules in a manner
that leads toward independence of modules. Benefits of
structured design to the development and maintenance of
software include increas.3d understandability of the system
and a sinimization of the cost inherent in modification.

Modularity is the key element of structured design.
It allows for software to be better managed. Large mono-
lithic (i.e., single module) programs are often unintellige-
able to the reader. Modularity is based on a "divide and
conquer" concept, breaking complex problems into comprehen-
sible and manageable components. Two primary measurements

of modularity are (1) cohesion, and (2) coupling.

-- is the "relative functional strength"
.el.1 : jo 158) of a module. A module is said to be

tobesive if perfo ms a single task within a
Erogram, reSuiring little inter action with other
•roiram code external to its b Qundaries. In qeneral,
Res g• shnouled ettempt to realize the highest degreeof module cohesion.

-- g.ix ig a measulement oi the connectiv4ty amongdne u les- I• is bas e on (1) the inter face
complexity between modules • (2) the place at which
entry are ref.ejence are Ma~e to a module, and (3)the
type of data ý at passes a~ross the interface BRef.

pp. 161 - 1622. The designer should strive for the
iowist degree of module coupling.

Clearly, then, the objective of structured design is
to minimize the relationships between modules through the

maximization of the functional strength of each.

59

4.

Structured programming is the discipline of imple-

menting module functionality through the use of a limited
set of programming structures.

Structure programming uses top-down design by
starting with the top-level module and decomposing it into
lower-level modules that it will call upon. This decomposi-
tion process repeated as often as necessary until the
tottoo-level modules are defined. At this bottom level,

modules wake use of built in operators and functions; they
do not call on any other module. Each module is separately
coded using the basic set of program instructions. An objec-
tive of structured programming is to maLe the design match
the structure of the program.

Any program, regardless of its size and complexity,
can be designed using three basic programming structures.
The use of this set of programming structures reduces the
procedural design of the program to a small number of
predictable operations, greatly facilitating the development
and maintenance of software. These stnictures are illus-
trated in Figure 4.3.

Program Design Languages (PDI) are language (text) proces-
sors that are used to document software designs in a struc-

tured top- down fashion. The goal of a PDL is to replace or
support traditional forms of documentation of program

design.
The primary benefits of a PDL are: (1) the documen-

tation that it produces is normally easier to read and
understand than flow charts, and (2) the documentation is
always easier to change than are flow charts. Both of these
advantages are essential during maintenance activities.

60

J-,ý W

1. PARTING COUNBITS

The maintainability cf software is inseparable from the

degree of guality that was built in prior to the maintenance

phase. Sound software engineering practices, coupled with
the iuplementation of managerial controls in maintenance
activities, o±.er the key to improved productivity and the
reduction costs associated with maintenance activities.

-'.1

V161

V1. 222 ~EAUYI ZZA!Zf A12 AjqZIZ&XZ21!

_A. 1 INTRODUCTION

In 1980, it was estimated that DoD spends about $7
billion a year on software [Ref. 28 : p. 33. This amount
has been steadily increasing as DOD becomes increasingly
dependent on larger and more complex software products to
support this generation of sophisticated weapon systems. The
upward-spiralling trend in the cost of DOD software has
naturally become an area of great concern to officials in
both military and government. This concern has led to a
number of management initiatives in DoD, several of which
will te discussed in this chapter. At the heart of these
initiatives is the standardization of computer technology
and software. Standardization is seen a means for reducing
costs associated with the development, operations, and
support of DoD computer systems.

B. SPRCUPIC INITIATIVES

In her article [Bef. 29 : pp. 37 - 47] Becker describes
three distinct, but interrelated, initiatives that reflect
the DOD standardization effort. These initiatives are as
follows:

(1) The Army's development of a Military Computer Family
(MCF)

(2) jhe 3doption of Aja as a higher order lanqua e (HOL)or evelopment or embedde computer so ft ar•.

GAn instruction set architectare can be descr ibed as therules and Procedures by wh har ware executes instructicnsor computek software. it can also be defined as the struc-ture a corputer that a programmer must know to writetime-lndependemt machine langtage Ref. 29 : p. 39].

62

() roloed DD _instruction tet architecture' (ISA)
s nt r (Dra t DoD Instruction 500. X) .

The first two of these initiatives will be summarized
from Becker's article. In addition, this section will
address standardization efforts by the Joint Logistic
Commander's (JLC's) panel of Computer Resource Management

(CRM).

The distinguishing characteristic in the Military

Computer Family (MCF) initiative is a common instruction set
architecture. The efforts to develop MCP began in the
mid-1970's with an intensive review of the Army's mission-
critical software. The Army first attempted to obtain an
existing ISA through a licensing agreement from the commer-
cial sector. Following an extensive evaluation of this first
step, the Army concluded a licensing-agreement approach was

severely limited for a number of reasons: ERef. 29 : p. 41]

(1) The adoption of a commercially-available ISA was
perceivye .4s placing .unnecessary technical and
adm.nistrative . restrrIctons both on the partici-
pating vendor and the Army.

(2) The pcotection and sqope of a commercial ISA were
p e~ceved a rotent;La hindrance to the wide usage
being cons!Lered by the Army.

(3) Adopting a single firm's ISA was viewed being of
unfair a vantag to one .compa ny o a selected
segment of the !ndustry, thus gleatly restricting
competition.

As an alternative# the Army engaged the services of Carnegie
Mellon University to develop an ISA, which became known as
"Nebula" ISA and designated by MIL-STD-182A. Nebula has been

rated as both an effective and advanced ISA. Under a memo-
randum of agreement. the Army and the Air Force have worked
jointly to develop and control the Nebula program.

"_ Using Nebula as the keystone, the Army has engaged
in a multiphased competitive-procurement process to develop

63

._'K

a prototype computer model which will be at the heart of the
MCF. Although a number of competing companies will be
involved the the pre-production phases of this development
effort, only one company will be selected to enter the
production phase. The number of units acquired during the
production phase will be based on unit cost as stipulated in
a requirement agreement that wds use-d as a criteria in the
final competition.

4 technological infusion is a major consideration of
4. the MCF strategy, ensuring that the MCP has current tecbncl-

ogie.- included in the mission-critical systems that are
fielded. The Army hopes the the MCP program will result in
improved smrvivabilty and logistics, as well as a reduction
"of life cycle costs of the MCP systems.

2. j~da

About the same time that the Army began its MCP
44 program, the Department of Defense recognized the need for a

state-of-the-art program for embedded computer applications.
In the mid-1970's, DoD was spending about $3 billion a year
on software, with the greatest portion going for embedded
systems [Ref. 30 : p. 268]. After concluding that the
existing programming languages were inadequate for satis-
fying future software development needs, DoD set up the
Higher-order Language Working Group (HOLWG) to investigate
the development of a new programming language. During the
four year period, 1975 to 1979, HOLWG published a series oZ
mandatory specificaticns for the new language. Each set of
specifications were more detailed than the preceding set, as
implied by their names: [Ref. 30 : p. 269]

In 1977, HOIG studied 26 languages, none of which
was able to meet the required specifications. A competitive
language design effort was initiated 1977. By 1979, the 16

64

"%

TABLE 5
Lda SpecifIcations

* StrawmaWicodenman
7inman 1976

ýtee man 13

original propositlons -ubmitted by industry were reduced to
one. The winning language was designed by CII-Honey-Bull,
and was re-named "ida."? [Ref. 30 : p. 269]

The Ada Joint Program Office, under the Deputy Under
Secretary of Defens' (Research and Advanced Technology), is

responsitle for the management and implementation of all

Ada-related ac tivities.
Ada is not without problems and limitations.

Designed to facilitate a wide range of applications, Ada is
an extrevely complex and large language. Using context-free
grammar tokens as a measurement, Ada is estimated at 1600

tokens long, Pascal at 500, and Algol-60 at 600. The devel-
opment of Ada has already been subjected to many of the same
criticisms received by IBM during their effort to design
FORTRAN V1. The resulting language, which incorporated

features from FORTRAN,, Algol, and COBOL was unrecognizable
as FORTRAN and was subsequently renamed PL/I. PL/I repre-
sents the classic "Swiss Army knife" approach to softi are
design in which all conceivable features that a user might

need are built into a single langnage. The final product
being too large and complicated for most programmers to

?Ada is a trademark of the De partm et of Defense, named
or Augusta Ada Lovelaces the world's first programmer, &nd

daught~r of Lord Byron.

65

master [Ref. 30: p. 182]. As with PL/I,, the size of Ada may

lead to similar problems as well as inefficiencies in real-

time application.
Provisions and exceptions will have to be made by

the DOD for existing computer systems whose software is

written in other languages besides Ada and where conversions
to the Ada language may not always be possible or feasible.

However, it will be expected that Ada will be applied where
possible, and deviations to this requirement discouraged.
Full iaplementation of Ada is bound to take some time since

the language, itself, is still in a state of transition and
because of the huge investment DoD presently has in programs
written in other languages.

It typically takes the better part of a decade for a
new language to become fully established, but Ada's initial
acceptance by the commercial sector has been good. Convimced
that the use of Ada will increase "flexibility and aid in
the greater utility qf its software packages," [Ref. 29 : p.

433 IBr has bagun to implement a version of Ada. Another
indication of the general acceptance of Ada is the fact that
the I.aa l2nguage :Ls in its final stages for consideration by

the American National Standards Institute.

In April, 1979 the Computer Software Management

(CSM) subg3roup of the Joiut Logistic Commanders (JLC) Joint
Policy Coordinating Group on Computer Resources Management

(JPCG-CRP), sponsored a workshop at the Naval Postgraduate
-V School in Moterey, California--appropriately extitled

Monterey I. The purpose of the uorkshop was to teview the
services' software acguisition guideliDs. management poli-

dies and procedures, and standardization efforts to see if
there was a basis for the adoption of joint-seivice guidance
in these areas. Monterey I concludad with the recommendation

66

'4VV
li& U

that the services chould adopt common software policies,

development standards# and documentation standards instead
of continuing with each of the service's unique and often-
time redundant efforts pertinent to these areas. The advan-
tages could be attributed to the adoption of joint-services

standards: 1) econcmies, and 2) the best methods of each
service could be adopted for use by all [Ref. 31 : p.192].

Other findings of the workshop included: [Ref. 32 :
pp. 2-1 - 2-9]

(1) No genera1 policy exists for defining a common soft-
ware acquis tion framework for the J int services.

(2) A. jgbe, of diverse regulat.ons and s and rds exist
w n.oD covering the varioustaspects o ±software

acquisition and so tware documen ation.
(3) MIL--52779 " Software. Rulit; Aspuranl rogram

Reguirement6," has ueen dely us nce 1974, and
bas. ecome an officiial jowint services stanJard The
apfplcation of this standard has been met with
"varying degrees of success. its application has been
.consd.red unacceptable due to the imposition ofaddi•ional scIbedule and budget requirements.
Furtherm re, DOD plant represntatives and DCASR
personnei have foung it most difficult difficult to
use in the evaluation and monitoring of software
development contractors.

.(4) acX ot DecoDni2zd sqftw~re acceptange criter$at _a
lack of DODtan gr dizat ion, and a lak 9f 4,s fr±ical data upon wnhich to base acceptance criteria and
procedures.

Recommendations included the following:
(1) Develops a• ge aral policyf ramework for ithe Joint

serv. cs to a r~e as the ebtire software Jife cycle.
(2) Devel#, a unifief set f acquisition fnd development

stan daids for t -service service application.
(3) Develop a comprehensive set of data item descrin-

tions (DID's), subsets which could be used for ard
•' software contract.

(4) Generate a DID for gontractgr's software qualityassurance plan as a joint service DID.

(5) Defin and develop software .acceptanie policy•irocedures and criteria for the cqu siticn o-e ense system software.

The Monterey I workshop concluded with the CSM
developing a plan of actions and milestones for the

67

-,%

•'" '" • ":."-" ":"' • " -= ,."• • ';'/' "'.•".•?i,•:" ' ,• : !:/:•L ",• 1."•;,••: 'i,.':%,

implosentation of the rec'nmmendations listed above~, which

were subsequently approved by the JLC's.

Since r~eceiving the go-ahead from the JLC'sr signif-

icant Vroc~ss haas been made in carrying out the inplemeta-

tion ;Ian C1Ref. 33 :pp. 21 - 221. The basis for this

effort was centerod around the definition of the software

develo~nment life cycle, withL the data~ item descriptions and
stnandrds integrated into the appropriate phases of the life
cyclel. '!wenty'-five tasic DID'st defined for this ;urpose,

repla.ced a total of over 200 previous ones. This has signif-

icantly,,stredalinod the documentation requirements requirsd

for' a gvn~u.~in

Thi optional piactice of c~onducting a prelimninary

deeigz xeview h&s tow b~ee". formalized,, thus focelsing mcre

attention on the reguireignt Oelinitiou area of -the develop-
mert effort, Vhis should lessen the problems associated with
late reguirements ±i.en+ification and c:)nfiguri~tion control.

A now Software Development Standoxd (SDS) has been
written uzsing HIL1-$TZ-1679 (Navy) as one of its basic, doclu-

ments. The S'OS document is at the heart of the development
effort since it deines the contracttr', resoioaisibilities.

it emphasizes sound software 6ngineoring practices, such as

top-down design, structured programm~ing,, and modulizatioD.

Other changes to exi~t~n; standards are beivg implemeated in

areas such as Configuratiot 'tontrol, Equipment and computer
Programs, Specification Practices,, ard Technical Reviews and

Audits for Systems, Equ~ipments and Ccmputer Programs. Two
documents have been prepared in the area ot Quality
Assurance: (1) the SoZtware Quality Assurance Mleasurement
(SQAII) document,, sp-ec~ifying required measurements,, and (2)
The Software Qu~l~ty Pol.icy, detailing the policies

governing quality askuran~e and v4.Vh will likely replace

the current Software Cualimy Assu:;.ance Program R~equirements,,
?IIL-STD-52779.

68

A. OVERVIEW OF STARS

The scope of the STABS (Software Technology for

Adaptable , Reliable Systems) program is perhaps the

broadest and farsighted. software initiative ever undertaken.
It addresses almost every socioeconomic, technological,
political, and psychological aspect associated with the

problems of software development and maintenance for major
military systems. STARS is deliberately structured [Ref. 34:

p. e1] to facilitate and encourage the rapid transition of
new technology into rractice. STARS is intented to te an
impetus for a cooperative environment among the govern-
mental, commercial, and academic sectors of U. S. society in
which technology transfers will freely occur, and through

which highly autcmated and efficient software support envi-
ronments will be developed.

The DoD has a continuing interest in the development of
computer technology. It is in the best interest of the DoD
and the country to maintain a front-runner position in

computer technology. To this end, the DoD has established
the VHSIC ond Ada programs. The YHSIC program (very high
speed integrated circuit) aims "to gain and maintain a gual-
itative lead over potential adversaries by providing afford-

able complex military functions in extremely small,

ultrareliable packages suitable for operation in severe
military environments." [Ref. 34 : p. 16] The Ada program
entails the development of a high-order language for mission

critical computer systems. While both programs have made
strides in maintaining American superiority in computer
technology, a software initiative is being launched to

69

complement them. STABS aims to develop the systems and soft-

ware techniques through which this superiority can be main-
tained.

DOD has found that software changes are easier and less
costly than changes to physical components of military
systems. While this can be a major military advantage, the
needed technology to make these software changes is not
always available. The software requirements are ahead of the
systems needed to institute them. Other problems involved
in the software dilemma besides inadequate technology
include inappropriate acquisition and management practices
and a serious shortage of skilled people. Controlling and
managing software projects is a major concern of DOD. Costs
for software are becoming the major cost factor on many
systems projects. These costs must be predicted and
controlled. The supply of trained professionals is inade-
quate. Currently the gap "between demand and supply has
been estimated in terms of 50,000 to 100,000 software
professionals, and if nothing is done, this gap could become
860,000 to 1,000,000 software professionals by 1990."

V. (Ref. 35 : pp., 52 - 53]

STABS looks at addressing the technology, management,
acquisition and personnel problems in two ways which will
parallel each other. The long range approach is to "leapfrog
current technology and completely change the view of the
software process", as quoted from reference &STAR3.This
approach is deemed necessary since current methodologies do
not appear to be able to satisfy fully the future require-
ments. Opportunities on the horizon which are to be evalu-
ated include: expert systems, very high level languages,
functional programming and program generation systems.
While successful fulfillment of these opportunities will
enhance the software environment, they will take time to
develop. The second approach is to "bridge the gap" until

70

the more futuristic opportunities can be developed. The
- second approach entails an evolutionary strategy of building

upon the existing systems, improving them, adding tech-
niques, refining models, and training people along tradi-
tional lines of software development. As stated by Boehm and

Standish, this approach is necessary to "combat the software
supply-demand gap". By learning how to manage skillfully the
large number of variables involved in software projects and
integrating the key ccncepts existing in the software envi-
ronment, managers can utilize their resources needed for
effective software development. Completeness and integration
are the key concepts of this second approach. ERef. 36 :
pp. 30 - 37]

B. OBJECTIVES

The primary goal of the STARS program is to "improve

productivity while achieving greater system reliability and

adaptability." [Ref. 35 : p. 56] DoD software in many

instances is of vital-importance in providing life-essential
functions, such as computeriznd flight controls. Due to
this stringent requirement, reliability is of utmost impor-
tance. The software must be easily adapted to changes in
mission reguirements. A third key element is that of afford-
ability. As stated Earlier, cost is an important factor and
becoming more sc as more systems are software dependent.

These three items, reliability, adaptability and afford-
"ability form the backbone behind the goal of STARS. As
stated by the initiating task force of STARS, "We need to
improve the state of practice throughout the DoD community
so that we can provide development and in-service support

that is faster, less expensive, and more predictable and
results in software that is more powerful, reliable, and

adaptable." [Ref. 35] Based on this goal of an improved

71

software development environment, three basic objectives are

establisked for STARS: 1) expand tue level and base of

expertise in both the government and private sector; 2)

improve management methods, application- independent-

technical, and application-specific tools; and 3) increase
the use of tools by adding incentives, improvements to
useability and added automation and integration. For each of
the objectives, a task area has been established with
specific plans of pursuing the objectives. This paper will
discuss the task areas of effectiveness measurements,

project management and acquisitions.

"Thfe STARS proiram will he carried out withip the
context of a f#arle.ty of on-going and planne act vi$tes.
it will establ sh a basis to close coordinat on,.
"c Qnsi tenc i, and commonalty whi. e pur3uiag ,he addi-
t I.ona 1wor tbat assures the broal scope andc ear, ocus
of the overall DoD software program." [Ref. 37 : pp. 21
-29)

The progran will be instituted in a 7-8 year period.

Beginning ir FY84 with the preparation stage, the following
three consecutive two year periods include the consolida-

tion, enhancement, and transition stages. The consolidation
stage focuses on putting current technology into practice.

This includes fully utilizing the management tools, auto.-
mated software tools and implementing the latest procurement
strategies. The seccnd stage focuses on enhancing the envi-
ronment established in the first stage. This is an evolu-
tionary process of refinement and improvement. The final
stage will institute a fully funded STARS program. Also in
this transitional stage any R&D developments which have

reached fruition can be transitioned into utilization in the
software environment.

72

'Z

C. ORGAIZZATION

The program is vertically managed under the Under

Secretary R&D. A joint Service team under the Under

Secretary will provide the initial planning and coordinating

of the program. Contractors will assist as required and
selected as appropriate by various DoD agencies. To aid in
the government/contractor/ecademia interface, a free

exchange software enginatring institute will be established

to encourage technology transfer and thus promote a ccmmon-
alty of goals and interest. The teehnology transfer will be
further enhanced by various DoD agencies' RSD centers
concentrating on their particular area of interest rather
than attempting to cover the full spectrum of software engi-
neering. Also each £oD agency will be Assigned respcnsi-
bility of supporting various technology areas. Funding for

the program is proposed to rise from the $60M level in FY84
to the $100M level in FY86 (constant FY84 dollars).

D. UPPECTIVE MEASUREBENTS

Measurement of key elements in a system allow one to

understanding the system process and therefore control the

process [Ref. 38 : pp. 47 - 53]. Maintaining control and
predicting outcomes in software development projects is a
major advance in software technology. Practical benefits of
being able to achieve effective measurements include: 1)

provides a description of the software environment; 2)
allows possible prediction of project parameters such as

cost, delivery time, constraints, and quality; 3) permitting
the expression of reguirements and goals quantitatively; 4)

ability to track progress and provide feedback; and 5)
providing a means of analyzing costs and benefits. while
these benefits are great, obtaining the ability to have
reliable measurements is a task unto itself.

73

Two areas needing effective measurement are software

performance and user performance. Software performance
becomes more important as software plays a larger role in
the overall system. Software systems must be able to inter-

face and effectively synchronize to function properly.
Performance of users has an impact on the cost and time
required to produce systems. Studies have shown that devel-
oping reliable models to predict such performance is near to

impossible.
STIRS intends to institute a uniform methcd of

approaching the measurement task. In keeping with the
overall goal of STARS, an environment conducive of model and
metric development will be evolved. In general terms, the
development and refieewent of existing models will continue.
More data will be gathered and the iterative process of
hypothesis testing will continue. There will be a widespread
emphasis on using measurement tools and models. Manual as

well as automated tocls will be made standard as much as
possible. With an increasing data base, baselines will be
defined and maintained. These baselines will include size,
effort, reliability, and the use of methods and tools. All
in all the benefits of the measurements will be to allow the
assessing of methods and tools in order to get the most
product from the least amount of resource expenditure.

I. PROJECT MAIAGENEIT

"The primary ob ectives of the project manaq emtenyt task
area are: 1) e9ha~ce the buyer manager's ca ability i2
early Ero3ect pln g 2! n ovide a bettet means or
"coamuniqa ing and coorai4natn between and within buyer
"and produ er Irganizations; 3) furnishing tools to &id
managers in .den •iying and cg rrecting pH b ems before
hez affect sch &ulo functional capabllity; and 4
a.nc ease the availabil ty of software engineers educated

in the principles cf project management." [Ref. 39 : p.
57)

74

II

Most software system development projects involve the DoD

and a contractor with the DoD component being the buyer and

the contractor being the producer. Early project Planning

performed by DoD project managers is often lacking. Many

projects reach the award stage before prope" planning has

taken ;lace in the areas of mission analysis, requirements

definition, scheduling and cost identification. This causes

problems of unspecified work statements and misguidance of

contractors in the early contract period. The bottom line is
that poor planning ccsts money. STARS intends to overcome

this thrcugh general guidelines; in the pre-award contract

phase.
The second objective deals with communication between

the contractor and the government and the overall

contracting process. Communications are intended to be

improved through better documentation and the building of
closer working relations between the contractor and the
government. The ccnmtracting process will be addressed

through the establishment of a software acqu.isition panel.
The panel, made up of various service representatives
including STARS and input from industry, will reccmmend

appropriate acquisiticn policies, contract incentive mecha-

nisms, and make reccmmendation and promote changes to the
software systems acquisition process.

The third objective is to equip the manager with a stan-

dard "tool kit" consisting of management tools which will
allow identification of problems before they can impact

greatly on the project. This tool kit should also be avail-
able to the contractor so that communication will be along
the same lines. Examples of tools are: data base managers,

word processing, telecommuuications, graphics, spreadsheets,

schedule generator, cost estimation and general reporting
systems. The aim of the tools is to automate the tracking of

the project.

75

The final objective is that of educating the prcject
managers into tho proper management perspective. This calls
for the development of standard job descriptions followed by
training in the areas of project management. This objective
is important since most individuals involved in project
management of software systams were or are software profes-
sional and not management professionals.

P. IMPRCVING PERSE1ONL RESOURCES

Cverall, the demand for software is increasing at 12%
per year, uhile the supply of software-producing personnel
is itncreasing at ar annual ratp. of only 4 percent.
[Ref. 40: p. 31] If this treDd continues, the shortage of
software-producing Sersonnel will increase tenfold tc an
estimated shortage Juat under one million software profes-

sionals ty the year 1990. Each of the services have already
reported shortages cf qualified software personnel and

predict that thrse shortages will become critical by the
late 1980's. [Ref. 35: p. 53 J Another area of concern is
maintaining the skill levels of present software personnel
abreast of the skill level demanded by rapidly changing

"technology.
The task objective to improve personnel resources is

based on two fuDdamental premises: (1) increasing the level
of expertise, and (2) expanding the base of expertise avail-
able to DoD. The strategy and major subtasks for achieving
this objective is presented in detail in the article by
Orglesby and Urban [Ref. 41 : pp. 65 - 70] and will now be
highlighted.

1. JJ2 Z~.;:Jj ksssMf1Lui

This major subtask is designed to assess the human
resource issues of the availability, the utilization and the

76

7ý4..4

future requirements of software-related skills. only through

these assessments can skill requirements for software-

related skills be determined. Quantitative measurements
based on educational units and/or task period performance
would then be used to for qualification and classification
of employment and career development of software
professionals.

2. A4R2nie

Once the key population assessment is completed and

skill requirements known, career structures (career ladders)
can be developed and put into place for each of the occupa-
tional subspecialties within the software-development field.

3. jjcaaUjP2.jm

This subtask is structured to increase the number of
software personnel exchanges for prescribed periods among
government, industry, and academia. Regulations are already
in place permitting personnel exchanges between the services
and between DoD and state organizations. These established
exchange programs are to be better publicized and supported.
Exchange programs will be initiated with industry, DoD and
academia. These programs offer an excellent medium for tech-
nology transfer, training, and a better understanding cf the
problems associated with a counterpart community, be it
inside or outside of DOD.

Other educational subtasks contemplated under STARS
to improve human resources include: (1) academic programs

that will encourage the development or enlargement of soft-
ware engineering programs in colleges and universities, (2)
training programs utilizing governmental or nongovernmental
programs to advance the educational technology in software

77

Ve

% . .. "

engineering with efforts oriented toward Ada technology, and
(3) learning aids that focus on automated instructional

systems and knowledge-based tutorial systems.

G. IMPROVING PROCESSING TWHEROLOGY

The second approach taken by STARS to help develop a

software support environment is through the improvement of
processing technologies. Processing technology includes the
"techniques, methods, practices, and tools snpporting soft-
ware over its complete life cycle". rRef. 37 : p. 22]

One way in which this objective can be met is through
improved application-independent technical tools. These are
tools that support projects of all types, regardless of
application. Examples of application-independent tools
include operating systems, linkers, loaders, compilers, and
programming languages. An example of the latter is Ada,

which is the cornerstone of current efforts directed toward
the development of the Ada Programming Support Envircnment
(APSE). The long-term objective of APSE is to provide a

common high-order language through which programming support
environment tools can be interfaced. However, for the short-

term it is necessary for APSE to accommodate the multilin-
gual inheritance of DoD's diverse, programming-support tool
inventory. [Ref. 42 : p. 15]

A second way in which this objective can be achieved is
through improved application-dependent technical methods and
tools. [Ref. 34] Exasples of thi3 category of tools include
Very High Level Languages (VHLL), libraries, test drivers,

and simulators.
Mid-- to long-term objectives of these application-

specific task areas involve the uze of emerging technology,
such as VHLLs, Knowledge-based systems, and program genera-
tors. The short-- to near-term objectives (next seven years)

*: 78

Ii

of this task are are centered around the software
"reusability" problem in which software for each new system

has been developed in t otal, from- the-ground-up, as though
it is the first and last system of its kind. Future efforts

will be directed toward the development of Ada-based

reusable software. Reusable software is hardly a new idea,
but past attempts to create sets of reusable software have
failed for lack of guality control. To overcome similar

problems, DoDs scftware must be developed vith the
following characteristics: [Ref. 37 : p. 79]

-- precise statements and validations of module func-
tions and interfaces.

-- genera'ized performance functions to increase scopeozapp ication.

-- use of high programming standards and widely-accepted
programming metiodolog es.

-- robust behavior. Not on must softw4re be reusable,
reusable software must b~o be accessible by software
developers. Technigues for cataloging and ware-
housing reusable soRware must also be implemented.
Current data base mana ement techniques for the
Query, mana agemept, aN retrieval are consid red
arpropriate for this application. (Ref. 4$3 : p. 18]

H. INCReASING UjE 07 PROCESSING TECHNOLOGIES

Improved processing technology for software development

can only make a difference if people use this improved tech-
"nolog7. Another objective of the STARS program is to

increase the appropriate use of these technologies. Two of
the subtask area in supporting this objective are (1)
improve business practices, and (2) improve tool usability.

This subtask is aimed at changing current DoD regu-
lations in order to facilitate the acquisition of software.
Another goal of this subtask is to utilize financial incen-

tive schemes to encourage capital investment by industry

79

directe at the coortinated pursuit'o± new technology devel-
Jpm~nt.

2.

This s"'task focuses an improvirg the interaction
Sketveen computer-~a~~ n�ayst~ ad the users or developers

of software,. In her article, •fe' 19' Elizabeth K rUesi
Slist.s three baoic objectives in this area,

- to expand the technology base by supyortirg the continueddveloppenntno knovlede m 6o., ds to 1 0, i orativg nuinn factor Cotjcerns into, IyAt~ Obave. fowt
-- tg'extand the exterience, be .through the application of_A t is echnology tc actual oeveormezatproa ect, and
-- toU osurg effective human factor eng ne'eing qf datcmatedpror amuing Sup porl eonvironaent* ocousing on thespecial needr. or software professlon as.

Although Fruesi suggeste many techniques and methods
for improving tool usability (such as dafining user inter-
lace go•Us, early user testing, predictive tools for inter-
face design, a4d following proren interface-design
guidelines), she sees imperical testing as the one human
engineering method cffering the most promise. Although
noticeably lacking in the past development of tools and
environments for software personnel, imperical testing is
viewed by Kruesi as an especially "rich source of ideas for
user interfaces, particularly in the design of advanced
software environments such as Smalltalk and Interlisp...."

Although one of the benefits that will be realized
from the improvement of tool usability is increased produc-
tivity, the primary tenefit may very well be in the avoid-
ance of human error in the design, development, and
maintenance of life-dependent and wission-critical DoD
systems.

80

o. CCOCIUSIO1N

This chapter has presented many of the managerial and
technologically-oriented objectives that DoD has inccrpo-
rated under the STAIS program. This software incentive is
enormously broad in its scope, including all major sectors
"of society in both present and future efforts to keep this
country at the forefront of software technology. Although
still in its infancy, STARS has defined many existing soft-
ware problems and has established both evolutionary and
revoluticnary strategies to minimize these problems in the
future. The conceptual foundation of STARS is sound and
promises to improve future software development should the
program receive the financial support that it deserves.

STARS is an aggressive approach to a well defined set of
problems. The key to the success of STARS, as is true of any
government initiative, is the widespread acceptance of the
concepts surrounding it. The key element driving STARS is
that of standardization as supported through commonalty of
methodology, uniform metrics and baselines. The software
institute calls for a sharing of information and the ever-
increasirtg technology transfer.

81

The gains made in sottvazce en-gineering over the past two

decades have been sii"inificant, yet software projects fail-
ures continue vJth alarming regularity as both the iize and
complexity of computer-based systems continue to grov.

There is no shortaye of proposals to Confront the prob-
leas that plague the development and, avcquisJtion of. soft-

ware. Yet, the very nature of software continues to defy its
guantitative ana.Iis resulting in obscured visibility and
ineffective controlw in the developmont and 'maintenance
process.

lithcugh great strides have taken place in the fornaula-
tion of software metrics as management information tools and
as a medium to provide feedback to software engineers,

attempts to devise metrics to Suantify software quality have
remained elusive. Software quality assurance programs, s4ch
as described in NIL-STD-52779(A), provide a planned and
.ystematic approach for building quality into software.

Successful implementation of these programs have given
credence to the saying the "quality is free," in the long
run primarily through cost savings inherent in truely main-
tainable software.

Software maintenance is the neglected phase in the soft-
ware life-cycle. Haintenance accounts for well-over half of

all resources expended on software throughout its life. The
trend in the amount of efforts needed to maintain software

is increasing at a 4ramatic rates, consuming resources that
were once reserved fo:z developmental efforts. Yet, project
management does not often give sufficient consideration to
building maiatainabilty into software as an indisEensihle

criteria in the design process. Various technical and

82

managerial approaches can be implementod within the mainte-
nance activity with minimum upheaval, but the most influen-
cial factors leading to the maintainability of software
occur during the phases prior to the- maintenace phase.

Chapter VI focuses on various high-level efforts
directed at the standardization of computer technology and
software within DoD. If the appropriate selection of tools,
methods, and methodologies advocated by current software
literature and directives were to be put into practice,
better software would be realized in DoD. In order to
assure the success of thL.s undertaking, it has been
suggested by numerous authors that the project manager
should be provided with sufficient technical background.
This approach is the likeliest to assure failure. Today, the
framework in which DoD software is acquired and developed is

both disjointed and perplexing. The myriad of instructions
and guidelines offer platform of confusion not resoluticn.
Significant progrecs has been made by groups such as the JCL
in attempting to standardize, through joint-service instruc-
tions, many of the aspects affecting the acquisition and
maintenance of software. Much remains to be done.

The immaturity of the software engineering discipline
has been too often been pointed to as the primary culprit of
software failure. Software engineering must never mature; it
must continue to evclve at a pace set by advances in our
technological society. Software engineering is but one of
the factcrs contributing to the delivery of quality soft-
ware. Standardization is the key in reversing the trend of
the delivery of overbudget, overschedule, inferior software.

The managemeut and development of software today is like
trying to understand a Uuited Nations assembly without
interpreters. Today there are far more programming
languages than there are different languages at the United
Nations, with revisions bastardizing the integrit7 of its

83

parent programming language as dialects bastardize their
mother language. Yet programming languages is just one
aspect of the total standardization effort that must take

place in DoD. The best of today's management systems can be

consolidated into a single, joint-service system understood

by management personnel in both DoD and industry. The adop-
tion of any one set of tools, methods, and methodologies for

the development and acquisition of software is far better
than attempting to live by all of the sets available.

Benefits derived through standardization stould be
exploited to their fullest. The broadest and most farsighted
of these efforts is the STARS program, which addresses most
aspects that define the total software life-cycle
environment.

84

GLOSSARY 07 SOPTWIRZ QUALITY ATTRIBUTES

Definitions provided in this appendix are derived from

M [Ref. 18 : Appendix S] and [Ref. 16 : pp 3-"4 -3-24].

ACCESSIBILITY: Code possesses the attribute accessi-
bilitj to the degr ee that it facilitates selective use of
its F rt s.

billCCOUTA ILI TI: Co4V tofsel e tht attribute accountg-
tylNCto te degree thait degree t at its usage can b

measured.

deg;eCg tat tsCg ow.ts are su icentl pre se~rc to stiy
terintended use.

AUGZIENTADNT I T: C e possesses 21 attribuateaui ment-
ablt t o the degree togat ft can easily accommodate 0xpafl-
sion ih component ccaputational functions of data storage
requirements.

C OflUNICATI VE1R SS: Cod 08osieses the attribute Collni-
cativ enegs to the, dere ftha ifacilitateg the spec ~Ca-
tio'nof inputs al provides outputs whose form and content
are easy to assimilate.

JCCPLETENESSe C vde possesses the attribute coppletene7ssto te 6 egree ttat its parts are present and each part is
fully developed,

Tbis Iimlies that extaraal references a~e ovailable and
required fubci ons are co e~ and present as desig ned.

CCNCISENESS: Code posse&r se thq attribute conciseness to
the degree t at excessfve anforaation is not present.

thqCISISTENCY: Code pos esses the attriblte consisten to
and svffbolog I vitkn ts1#l and external consistencyoegre ~tbat the cuontent .s traceable to the requiremento.

DEVI$E Z FICIENC!: Code ponses sos this attr ibute to the
deqr q q1bat it that tl e operatione Zunct ionitor instructions

pr vidod thel Co40 ar et gvormed without waste of
Nesolurces wit respect to ta ev ca.

D IVICE-INDEPSKENDiCE: Code rgo~sssses this atltribu te to
the 4 egree thti can be xe uted on computer hardware
configurations otther than the current one.c

tha Pisesseo1 this attribu e to the degreethat rposo v thout blaste o resources.
HJUMAN ENGINERI Cod pjossesses thsatiueto the

deirve tpat ~E~thlio ai roe wthoutlevating the
usra to me energy, or egra ~tsrerir morale

85

L WGI 1L1TYilCode ossqss~es thitnaatttibutet the degree
thet Its easil siarned by read.% g the co3de.

H A flAjNjjILITY * Code osse this ttribute to the-
degree tat t aciitate a ufdatifng "to satis ry new reguir~e-

m sor to correct deficiencies.

MCDUFIABIL IT* Cde possessef this at tribute to the
derethat it ~aciMitq8 t ahe, iorpor~ti o caes,
oncethenature of t e desi.red change has beteindoetercmianel.

PQRTABIL;TY: Code poss es sea t isttribute to the d q roe
that it can be aoprated eOff and we 1 on computer con ±1 u-
ratiocns cther tbin its curren one.

?LJIABILITY:eCodetpossesses his ttri ute otedecroee
that itcan e expect d o p eriorm its intendoedfuenctons
satisfactory.

tht BUSTNESS Cod posessqs t8atrbt to t~etfegrei
the assumptions in its spe ifacat 0 ns.

SEI-F-CCNTAINPDNESS: Code jossesseq thi s Ittribute ttothe
d~re ebg.,itj a eoras al its explIcit and impliCitnc-

4ELP-DESCRIPTIVENESS; Code possesses this qttribute to
the deree that it con in nou gh infor'mation for a r ader
to de grmine and yei fts Objetvs asupos"
constrain~ts, inputs, o thputs,, co ponents; and r Gvision
stat us.

STUOPTUR DNESS:, iode Rosqfefsos this attj.ibute to the
degzee that it, contains a definite pattern of organization
of its interdependent par-ts.
ThatABt1TI codeta possesses this attribute to the de ree

thatAB.7t IY Codte the establiqhment of verificalion
criteri a afna supports evaluation of its performiance.

UVDWE SjAf?%B&ILIT: "odeljossess ~s this attribute to the
degree t at ts purpose Is clear to its inspector.

USABILITY* Code losfsesos this attribute to the degree
that it is relia.ýle, Gficient, and human-engineered.

86

HALSTEID AND MCCABE'S SoFTVAPE METRICS

As generally addressed in Chapter TTI, this appendix
will present quantifiable measurements of various software
charateristics using both Halstead's Software Science Theory
and McCabe's Complexity Measure.

A. HALSTEAD'S SOFTWARE SCIENCE

Halstead begins with four basic metrics:
1. ni--the number of unique or distict operators cn

tLe program.

2. n2--the number of unique or distinct operands in

the program.

3. N1--the total usage of all the operators in the

program

4. N2--the total usage of all the operands in the

program.

Tables 7 and 8 show the resulting counts of the operators

and operands used the algorithm used in table 6 . [Ref. 10
: pp. 3 - 1P]

The gg."Sjj (n) of a module is described as the sum
of its unique operators and operands:

n ni + n2

87

S .•`. '.-- r C-"- -- .• r - ;•* . -• -.•-.., -•.. "..• .=-.: - =..•.•-.

TABLE 6

A Sorting Subroutine

SUBROUTINE SORT (SgN)
DITENSIONXIN)
IF M LT 2) RETURN
DDO o 2, j

IF (X (1) G.G X~j GO TO 10
SVE

10 CCNTINUE A
20 CONTINUE

END

TABLE 7

Operator Count

Operators Count

1. End of statement
Array subscript

4.IF C5. DO
1: And of program

nl 1 10 N1---28

Sivilarly, the lIent (N) of a module is defined as the
sun of all operators and operands used in the module:

N N1 + N2

88

Lr

TABLE 8

Operand Count

Operands CountI: 2

5. N 2
S. 52

n2 -7 N2 2

Halstead also introduced a formula for the _

* NH - nllog2nl + n2log2n2

The estimated length equation (NH) has proven an accep-
table estimator for the length, N, of a module. The useful-
ness of NH seems to be somewhat sensitive to actual program
length. Test have shown that this formula works best for
programs if N is in the range between 2000 and 4000. In this
light, errors can minimized by breaking down modules to
where they are within these parameters CRef. 11]. Halstead
attributes this finding to the presence of "impurities', in
the program requiring optimization.

When compared against the actual length of the above
listed algorithm one finds that N = 50 and NH - 52.9, a
difference of less than 5.8% in this particular case.

Additional metrics were defined by Halstead using the
terms already presented. Of interest is another measure of
program size called Y.9•, %V), which ib measured in bits:

V N N x log2n

89

Volume may also be interpreted as the number of mental
comparison., needed tc write a program of length N, assuming
a binary searchu metbod is used to select a member of the
vocabulary size u. ,The most s uccint form in which an algo-
rithm can be expressed requires prior existence of a
language it which the required operation has already been
defined cr implemented, In such a case, the implementation
of that algorithm would require no more than naming of oper-
ands for its arguments and J.ts resultants (eg. SORT(X)).
Vihese algorithms are considered minimal in size and are said
to have tbe 4 2ijjm Y.!

V* =(2 + n2) x log2 (2 + n2*)
(where n2* is the different input and ouput parameters)

Any program with volume V is considered to be implemented at
the j2.jSgj ljy21, L, defined as:

L =" V*/V

Notice that for the most succint version of any algorithm,
the resultant is 1. As the unigkue operators (nl) ircrease
and the reuse of operands (N2) increases ths resultant
approaches 0. The term "difficulty" is derived from the
logic that as the volume of a program increases, the program
level (L) decreases and the difficulty increases. Thas,
• (D) is the inverse of the program level

D a I/L

Since the volume (V) is the number of mental couEari-
sons, and the difficulty (D) is the measure of the average
elementary mental discrimination required for each mental
comparison, then by ccmbining the formulas for L and D, the
total humber of elementary mental discriminations, e2fo,2
(E), required to generate a program can be derived from

3 a V/L

90

The advantage of Holstead's measurement of effort (E) is

a significant break from traditional use of LOC's. The use
of ICC's required the collection of data and regression
analysis. Only the number and use of operators and operands
are needed to derive measurements for effort, thus over-
coming the forementioned difficulties of using LOC's method-
ology. Another advantage of using E is that it is a strong
indicator of the ccmprehensiblity of a program and its
propensity for errors [Ref. 10 : p. 16] and [Ref. 11 : p.

B xplcring the formula for L further, it can be noted
that as the potential volume (V*) increases, the program
level (I) decreases proportionately. Consequently, the
product L times V* remains constant for any one language.

This product, the Im.•9 1 , which is denoted as
LAMBDA, is derived by the following formula

LAMBDA z L x V*

The last of Holstead's formulas to be discussed is used

to measure the pro min t.ij (TH) for a progran in

seconds. Halstead adopted the concept introduced by John
Stroud, a psychologist, who defined a "moment" as the time
required by a human brain to perform the most elementary
discrimination. These "moments" according to Stroud, occur
at a rate of 5 to slightly less than 20 per second.
Halstead then determined that the programming time of a
program could mathematically be defined as

TH a E/S

(where S a the "Stroud" number a 18)

Halstead reason for selecting "18" for the value of the

Stroud number remains a mystery, but it fits his formula

nicely and is likely to remained unchallenged until the
disciplines of cognitive psychology and software science

merge.

91

.7.

2 B. MCCABESIS COMPLEXITY MEASURE

A prcgram graph is used to represent control flow, as

"•;• g•Entr Node

IR

Figure B.l Control Flow Graph Complexity

illustrated in Figure B.1 ([ef. 12 : PP. 308 -320] The

circles represent processing tasks, which can be one or more
source code statements. Arrows depict control flow
(branching) between processes. Thus, iin Figure 8.1 , process
""tall may be followed ty process tb," t "I," or "d,t1 depending

on which condition was satisfied in process "a."' The ccntrol

flows depictei by arzcws going from process "e" to processes
"bo" and "c" represent "backward" branching. "Regions" way be

described as the enclosed areas on the plain of the graph

represented by RI througjh R5 in Fijure ICCABEFIG. These
regions represent the bounded areas within the prcgram
graph, as well as the unbounded area outside of the graph.

92

McCabe uses a software complexity measure that is based

on what be terms the "cyclomatic complexity" of a prcgram

graph for a module. One approach that can be applied in
determining the cyclomatic complexity, V (G), is by calcu-

lating the numbers of regions in a planar graph. in Figure

B.L e for instance, 7(G) is equal to 5. Another method is

through the formula

1(G)- e - n + 2p

in which "e" is equal to the number of "edges," i.e. number

of arrows, "n" is equal to the number of "vertices," or
processes, and "p" is equal to the number of connected
components. In Figure B.1 , the values of these elements

are:

n - 6 (a, b, c, d, e, f)

e = 9 (a to b, a to c, a to d, b to e, e to
b, e to a, d to c, e to f, c to f)

p-i

By inserting these values into the above formula, the

resulting cyclomatic complexity metric, V(G) is again equal
five. McCabe also contends that the V(G) measure can provide

a quantitative indication of the maximum size, testing

difficulty, and rellabilty of a module. Through empirical
investigation, he has found that a cyclomatic complexity

measurement of 10 to be a practical upper limit for module
size. Exceeding this upper limit makes it increasingly

"difficult to adequately test a module.

93

p

ST'RCTURED METHODOLOGIES

As discussed in Chapter V. the design of maintainable

software is based on the application of a set of engineering

princirles and practices that include:

-- Structured analysis

-- Structured design

-- Structured programming

-- Program design language

This appendix presents the detailed characteristics cf these

elements as provided in ERef. 26 : Appendix A3.

A. STRUCTURED ANALYSIS

When applied to software development, the characteris-

tics of structured analysis and the logical model are as

follows:
-- A sytem is described b. vthe systematic deco.mpositiol

of Droad Isystem un4on nto subunctions op
progressive y fimer detai.

-- Each .unction and subfunction is defined by
describ3ng

Its inputs and outputs
Processing activities and requirements

Nontransient data stored by the function
4-- Functions and sutfunctions are analyzed to access

The support of functions by hardware and software
"Algorithm and computational requirements
(Function, precision, range, timing, etc.)
The need fcr perfozmance and tradeoff studies

-- Stored and interface data are analyzed to access

Access requirements
Structured, format, and storage requirements.

94

-- Functions an data ae analyzed to evaluate the

requirements for execution an a pport software.

The net result of the this structured analysis process
should be a logical model that defines the complete system
which reflects all facets of the system specification and
software requirement document. The model should be a form of
communication easily understood by both technical and
nontechnical personnel, alike. Through the use of this
model, the system analyst should be to develop system
requirements without undue consideration of physical imple-
mentation constraints. On the other hand, nontechnical users
should readily be able understand how the required functions
fit together within the context of the whole system.

B. SIRUCTURED DESIGN

Structured design is the process of subdividing the
software design into hierarchical in a manner that tends to
maximize module independence. Benefits provided to the
development and maintenance include increased understan-
dility of the system and a minimization of the expenses
associated alteration of the software.

The structured design approach has the following charac-
teristics:

-- Hierarchicial functional tree charts are developed
ihoeln q §erieV of boxes reDprsenting descendin

Lev is or functions ada subfunattons. These chartsdepI ctthe functionality in the same sense that a
;rolect work treakdown structure (WBS) depicts

n~erarchies of work to be performed by a contract or.
S-- Modulari t y of cpon e nts is emph sized, A key charac-

teristic of umoular ity is a maxim m indepen dene of
ne component from othe This fndeeende nce a lcwsM a c ncentration on definition of inputs, outputs

an d processing of each component. It also fac li-
t teadesign clarity, which facilitates future modi-
ficat ons.

A each levelf cogonent design, stron em hasis is•laced on defining 0~us o~utp~ts,, and 'romgbssing. of
e~cn compongnto entq a kejcaracteristic of Do bstructurea design anu

analysis.

95

C. STRUCTURED PROGRINIIG

Structured prograrming requires that a programmer use

only a limited set of three basic program structures.

These are depicted in Figure 4.3, and are as follows:

-- Sequence of two or more operations

-- Conditiol operations and
return (211a 4111 ELSE C)

R-- epetition of an operation (DO WHILE)

Any program, regardless of its complexity, can be imple-

mented using these basic program structures. The use of only
these structures limit the procedural design of a program to
a small amount of predictable operations. It should be
noted, however, that use of only these three structure may
lead to inefficiencies in situations such as when an escape
from a set of nested conditions or loops is needed. In situ-
ations such as these, the designer if left with the options

of re-design to avoid these conditions or allow for devia-
tion from these basic structures in a controlled manner.

Two extensions to the basic structures, also illustrated
in Figure 4.2, are the DO UNTIL and CASE structures. These
are special cases of the other structure which improve both
redability and source code without degrading programming
structure.

D. PROGRAM DESIGN LAIGUAGE

A program design language is a basically a test
processor that is used to document a structured design. It
has the following two characteristics:

-- It iroduces an Enqlish-like representation of. compo-
nen s of code that are easy to read and comprehend.

-- It is structured in the sense that it ysei structured
programming constructs to show nested log c.

96

LIST OF REFERENCES

1. Press~, H G.+,4 iin ig A

3. Lehman,..., "The Environment of Program Development
and Maintenance.," 11 ea il

4. Schnidleri Max, "Defense Dept. Looks to STARS for

Better Software," PjMjc R,. 12 May, 1983.

5. General Accounting Office Report FGMSD-80-4,
"-e f0men o e• S u

6. Naval Research Laboratory Report 7909, Us J UDD

7. Technical Management Committee of the Aerospace
Industry Association, "Suggestions for DoD Management
of Computer Software," =g_9leps, vol. 5, no. 5,
Autumn# 1982.

8. Defarco T., Qgtrol.iLK Softwatq 2.gglepts, Yourdon
Press, i982.

•. ~9. Halstead, m. j. •je,.stf _q~•.Xj §ceSe.nq,,

North-Holland, 1977'

10. Fitzsimmons, A. B. and Love, L. T., "A Review and
Evaluation of Software Science,", ACj §211ey
vol. 10, March, 1978.

11. Conte, S. D., Dunsmore H. E. and Shen, V. Y.
"Software Science Revisited:. A Eritical Analysis o;
the Thgory and Its Empirical Su ort,"o JZ

S12. McCabe, T. J. Software Coiplexity Measure

4. 97

AN

13. Electroc Sste Divisin ASC R tISD-TR-76-2
d~" , by MiTWh CR2! *tf~fFViII,1 i"ý

14. Davis,, . M., "Reducing Software Management Risks Of

Maptj" 4A.e3 MaAgenI~ al Ju RU 0Vol. 1 no.,

15. Knight, B. M,, "Software Quality and Productivity."
~j~i ~f t a flaZnacaftk gUJgLU, vol. 1,, no. 7 -

16. Boehm, B. W,., and others, ertýe .q •Afj.,
. ., vol. 1, North-lHollanf, T9•7

17. Pfau, P., ,"Applied QualitL Assurance Methodology,"

18. Aeronautical Systems Division (U. S. A. F.) Report ASD
TR788eem Group,, November,, 1§77.~

19. Buck, R. D. and Dobbins, J. A., "Software Quality
Assurance,"o tuA:M s vol. t Defe.se System
Mamagemenf Cu 1119 4i,-Defnseuyste

20. Willoughby, V J "Software Reliability by Design: ACriticavl. 1, no eea"'"S ut.* , 9 . t6,a '% t •• . e ,

va0 ,,no. 6. SM as piaSLU~u 1d

21. Canning, R., "The Maintenance 'ICeberg', " j
B AIL*a,, vol. 10, no. 10, October, 1972.

22. Naval Postgraduate School Report SPS-54-82-002,

23. B. W. Boehas, "The High Cost of Software,."

24. Aeronautical System Division (U. S. A. F.1 Report
IS3TB-78-430 19ptr Rz~a Aj~eag, ,Dcemb er,

25. Scumerville, I., So$_Ltjrg Z giJig, Addison-Wesley,
1982.

26. Aeronautical System Division (U.S.A.F.) ReportASD-TR-80-5028 b

98

Uk 'S

27. Assistant Sec retar of Defense Report APL/JHU 'R 75-3.
A by

28. Frost and Sullivan, Inc.,1h1ra 22MAU AR"I_
it he . S., vol. I, June,9

29. Becker, L. G. "Military Computers in Transisiton:
Standards and Strategy, .A.L.. vol. 5, no. 4,
Autumn, 1982.

30. Maclennan B, D. M., o f ,ulg..kja~g u :

31. Klucas, C. H. and others, "Joint Service Software
Policy and Standards," (Z'ne tg, vol. 5, no. 4,
Defense Systems ManagemeIt-•ol-lge, Autumn, 1982.

"32. Air Force Logistic Command =2 21 of
gai14J& 9 q!mrL1 7

33. Marciniak, J. L. "A Perspective on Military Software
Standard zation ifforts "tJ9 So;4_w•e

34. Martin Edith W. "The Context of STARS," Colutr,
vcl. 19, no.11, IIEE, November, 1983.

35. E.W. Martin, "Strategy for a DoD Software Initiative,"
opM _er, vol. 16, no. 3, IEEE, March, 1983.

36. B.1. Boehm T.A. Standish. $Software Technoloqy in the
1990's: 6sinq an Evolut1iny Paradigm,," 1.2Rte,
vol. 16, no. 11, November, 98

S37. L.E. Druffel, S.T. Redwine, Jr., W.E. Riddle, "1he
* STARS Program: Overview and Rationale,"' Q99 .•, vol.

16, no. Ill IE11, November, 1983.

38. J.R. Dunham !. Kruesi "The Measurement Task Area,"
QjJ,, voIo. 16, no. ip, IEEE, November, 1983.

39. H.C. Lubbes, "The Project Management Task Area,"
jQMjg=,, vol. 16, no. 11, IEEE, November, 1983.

40. Boehm, Barry. W., and Standish, Thomas A. "Software
Technilog; in the 1990's: Using an ivolutionary

gm, Qp..iye, Vol. 16, no. 11, IEEE, November,

/41. Orley, Charles I., and Urban, Joseph E., "The Human
Resources Task Area,," Cgjputf, vol. 16, no. 11, IEEE,
November, 1983.

~.1 99

"42. Schnidler Max, "Defense Dept Looks to STIS forBetter so~tware," Sljgtjl 21 a, 12 May, 1

43. Kruesi, Elizabeth, "The Human Engineering Task Area,"p.. vol. 16, no. 11, IEEE, November, 1983.

- ,

4o

100

INITIAL DISTRIBUTION LIST

No. Copies
1. Defense Techntical Information Center 2

Cameron Statiqn
Alexandria, Virginia 22314

2. Litrary, Code 0142 2
Naval 0ostgraufate Scl0ol
Monterey, Calfornia 93

3. Department ChairEan, Code 54 2_A sav S ciences Department
Naval PostgraG ate Sc~QQ±
Monterey, Cal. crnia 939•3

4. Poffessor Norman co Lyons, Code 54LB
Adz n strativy Sc ienc.s Department
Naval Post ra uate SchooQ
Monterey, California 93943

5. Cmai der ?fan C. Guyer, USN, Code 54GU1
A m nIstra v Scienc.es Department
Naval Post rau ate Scnool
Monterey, California 49?43

"6. Cor uter Teihnoloy Proirams, Code 37
Com uter Scence part ent
Monterey, CA 93943

101

