
AD-R151 935 CONTINUED DEVELOPMENT AND IMPLEMENATION OF THE L/2
UNIVERSAL NETWORK INTERFA .(U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFS OH SCHOOL OF ENGI. C T CHILDRESS

UNCLASSIFIED DEC 84 AFIT,'GE/ENO/84D-i7-VOL-1 F/G 9/2 U

Ehhhhhmhhhhhlo
mmmhmhmhhhhhl
mohhhEmhhhhEEI

~"1.012.0

111112 11.'

MICROCOPY RESOLUTION TEST CHART
NATIONAL HIORFAU OF STANOAPDO S1963 A

REPRODUCED AT GOVERNM"TI-MPENWE

In

S 1 .

D I
DWIUTINSTATEMENT-A. L TC

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

03 13 171

AFIT/GE/ENCG/340-17

DTICSELEGTE
MAR 2 9 195

.*.*.*...*-'-.-.**.-

*~~~F - 1 9~rr ~ ~ .

AFIr/GE/L1:Nc/34D-L7

WONTt.NUED OEVELOPAENT AND 1IPLE9EN AHE3M
O F rThiE

iJNUE'RSAL NEfW.ORK 11TERFACE DEVICE ('JNI) If

:)iIrAL ENGIN XIG LASORArotty NErwo~.! (DELINEr
VOL I OF 11

THESIS -
- Presented to tha Faculty of the 3SzhooL c~f Fn7,inearing-

of the Air Force Institute oJ Tach nolsgy,

ki U.AJrSty

in Paril FI~iIllta~t of th2

Req'nir .!menti fo~r the Del-r.e o'f

Master of Scia-ace in Electrical Engtm!!rIng

Creed f. (AiiidreS3, Jr., BS ZiE BS 10E

02ce'Th.tb, 19,34

Appvov-' d Coc Publi c W I; i:tr tbu ~i~ iInt

PREFACE

his research effort describes the cont~iued development of an

improved Universal Network Interface Device (UNID E1). the UAID 11's

architecture was based on a prelininary design project At the Air Force

Institute of fechnology. The UNt1 11 contains two hardware ,nodules; -1

local nodule for the network layer software and a network -nodul! for the

datn link layer software and physical layer interface. Each module is

in independent single board computer (SBC) residing on an Intel multibus

chassis, complete with its own meory (EPROM and RAA), serial link

interfaces, and rnultibus interface. rhe local nodule is an i33. 544 and

the network module is an iSBC 38/45. [his report doc--eiits the detailed

hacdware and software design, test, and integration of tis systsa.

I :-specially thank my thesis advisor, Dr. Gary Laaont, for his

persistence and persekvrance in nudging ne through this ctanlenging and

.cce~ssul endeavor. My thanks as well to Major Walter 3card ana Major

Cetn Gas tor for their viluabl_ coa:aen s, .1,1,2igest L:s, and

,:ac'Puraga:-ent durlag the course of this investLgaticn. I greatly

igreciata the 'iiststancA from Mr. ,rvil.le Wright, Mr. .harlie Powes,"

Qa-t Lee Baker, and 4r. Robert Durhan for their te,'hnical aad supply

su0pport. T-, Capt n i! & oes sptctal appreciation for the sti-!.lating

and chillegic .e cal, eTh.-iacal and recreational conversationa in-

the Uq!) develop,1:?tal phases during the dead of the siht. Last, but

oertiL .Ly not Least, to my two sons, larek and Derrick: We 'ill soon

h,: ri .e tLine tor the fishing, skiing, hikiag ind hunting that we have

toreg.,. the.3e last 3 'noaths; thank you for your patience. To nly wife.

_ 2-.ina ,ce3 -pectit appreciation for her pa:ience and inderstanding.

it

table of Contents

Page

Preface . it

Table of Contents . i

List if Figures . Vii

List of rabies . ix

Abstract K

1. Introduction and Background 1-1

introduction..................
Background.
Current Status.................
Problem Statement.............
Scope....................
Asiiiaptions. 9
Summary of Current Knowledge 9
Standards 0
Approach...................
E~quipment...................

0 ther Support..................
Conclusion

i1. 'NIJ) [1 and DELNET Requircrnents.......

Introduction..................
USID iU Requirements Summnary..........
DELNFr Functional Requirements........
Protocols. 6
ISO Reference Model. 7

Subnet. 10
Nietwork Layer 1
Data Link Layer 12 -

Physical Layer. 14
'CclusiLon. 15

*Ill. UNII) H -ardwara Design 3-1

Introduction.
[nittal Designs.
origtiL LpenentatLon. 3
Revised Implementation 4
Current Implaienntition 7
Conclusion 9

tit

Cable of Contents (cont)

Page

IV. UNID 11 Software Design and Implementation 4-1

Introduction"I
Devalopment Language Selection 1
UNID i1 Data Structures 2

U1TD [I Network Layer Software Design 6
UNIT I Data Link Layer Softwcare Design 17
UNI;) I Software Development ro3ls 24

UJ:ID 11 System Memory Map 30
Conclusion 32

V. rest Philosophy and Design 5-1

Introduction I
rest Philosophy
Overall 'rest Design 2
'Major Diagnostic Test Tools 3
Phase One Testing 3
Phase rwo Cesting 5
Phase rhree Testing 9
Phase Four resting 14
Conclusion 16

V1. Conclusions aod Reconiendations 6-1

latroduction -.
"onclusions
Rec xnmenda tions 2
Concluding Reiark:3 4

Bibliography B-3-1

Appendix A. 'JiID II Data Flow Diagrams A-I

U'41O [I Data Flow Diagra.n (30:26-34)

:Appendix 3. RS-232C and aS-422 Signals B-i

,S-232C :id IS-422 Signals I

Appeadix C. Lmpleamentition Corrections C-I

Intcoluction . . .".
Softtware Gorractions.
:1irda-ure Corrections. 5

[v"

.
. .., .,.,, ..., .. - - -' '- °- '- , ' "- -' 'nl ' ' '-m ' ; , .J"$J " La -,, -' ° °

" "- ''
- - ' " % '- - ' . . . ml n I1, ," l'a

" - *
%

-

7N

Table of Contents (cant)

Page

Appen~dix 1). O)ELcET/WII dader Information D-1

DELNEMI'/ND Hieader Information.....

App.-ndix E. UNTO Se.-aphor2. Ind Protected Ze.gtIS...

'JN'10 Semaphores and Protected tegions....

Appendix F. Transmit Reqtiest/iraasntit Ackno.4ledge

Handshake. F-I

Transmnit RaqUest/Cransmnit Acknowledge Handshake 1

Appendix G. IJNIG 11 Software Data Dictionary- 1

)-ita Dtctioaary

1. Networlk Layer Si-mul3tion. 2

Constanits. 2
\tariabls 3
Procedures 5
Link and Locate Batch Fila

2Data Liak Layer Simuilatioa.

Conitants. 7
iariables. 3
Procedures.................
Lin , ind Locate Batch File. I I

3. SBC 544 Vailation. 1

Constanlts.2
Variablas 14
Link -Ind Locate 3:itch File.......

4. tlOSt CPAI SiIu13tion.......

Cori ir cts.............

SVariables. 6
Procedures. H
Link and Locate Batch File. 19

Sv

Table of Contents (cont)

Appendix UI. UNI[D If Software Listings U-1

3oftwace Listings I

1. Dita LLnk Layer Simulation 2

2. Netwock Layer 3imultion 33

3. SBC 544 Validation 73

4a. Host CP/M Siiulatfon in PL/1 80 lil1

4b. Assembly Language Module 134

5. SOC 544 Mlonitor 147

VLa V-i

~]

II

(*A.''..

FA,

List of Figures

Figure Page

I Figure 1-1. Initial Concept of a Muiti-Ring Base

Level Netw'ork (75). 1-3
I - 2 Figure 1-2. DELNEC krchitecture (75). 7

2 - I Fi,,;ire 2-1. ISO OSI Reference ode1 Applied to OELNEf

and UNID (75) 2-7
2 - 2 Figure 2-2. iSO OSI Reference aodel it h the Internet

Protocol (IP) 9

2 - 3 Figure 2-3. Frame and 3ther LeAder Information . . 12

3 - I Figure 3-. UNID I Block Diagram (30:43) 3-2

3 - 2 Figure 3-2. UNIO 11 Block Diagram (Revised) (64:1-9) 5

3 - 3 Figure 3-3. Current UNID 11 Block Di3gram

4 - I Ftyure 4-I. Original UNIO Data Structures and Flow.. 4-4

4 - 2 Figure 4-2. UNID [L Data Structures and Flow 5
4 - 3 FiLgure 4-3. "etwork Layer digh Level Structure Chart.
4 - -4 Figure 4-4. Route$Ia Procedure Structure Chart.. 8

- 5 Figure 4-5. Route In Procedure Pseudocode 9-
V - 6 Figure 4-6. RouteaOut Procedure Structure Chart. . . 11

4 - 7 Fi'ure 4-7. Route$Out Procedure Pseudocode t2
-1 3 Figure 4-8 UNISidost Transmit Request/Transmit

Acknowledge landshake 13
--9 Figure 4-9. !J'LD r7/PA Allowable States

4 - 10 Figure 4-10. Receive interrupt Procedure
4 - 1L Figure 4-11. transmit Interrupt Procedure 17

4 - 12 Figure 4-12. Data Link Layer High Level Structure

Chart 19
4 - 13 Figure 4-13. Route$In Procedure Structure Chart . 19

4 - 14 Figure 4-14. Routei$n Procedure Pseudocode (Part 1) 2)
4 - 15 Fl, ure 4-15. Route}ln Procedure Pseudocode (Part 2) 23
4 - 16 Figure 4-16. 'JNID LI tetwork Link Layer Sinulation

Dita Structures and Flow
4 - 17 Figure "-17. 'IND i Oata Link Layer Simulation Data

Structures ind Fl:,Tw 27

4 - 13 igure 1-3. .. i) Li .!eiory :lap 3)

5 - [Fig;ure 5-1. td.r, Li,er Simulation Data Struc tur 2

and FL.w 3-7
5 - 2 FiLjure)-i. Dilt Lin Layr Simulitiol Dita Structure

d Flow 3

3 - 3 Figure 5-3. NAtork Lay:!r iSiulitton 4[th tn /1
"''s tera Ind ff) 13

3 - 4 Figure 5-4. JiIl) (I iict ql',D. Konnection L4......[4

,L1

List of Figures (cont)

Fig3ure Pg
A - I Figure A-i. UN[1 [I Overview-2............A-2

A - 2 Figure A-2. Input Local Infor-,ation 3
A - 3 Figure A-3. Format According to Outgoing Protocol. 4

A - 4 Figure A-4. rrans:nit Network Message 5
A - 5 Figure A-5. Input Network Infor!ation 6
A - 6 Figure A-6. Transmit Local Information 7

3 - I Figure 8-1. RS-232C Pin Asslgnnents 3-2
3 - 2 Figure 3-2. 'IS-422 Pin Assignments 3

C - I Figdre C-I. Acknowledge and imeout Cruth rable. . . C-3

I) - I Figuce 0-1. DEL.'E!UN!D Detailed Header Information. D-5

E - I Figure E-1. Pseudocode for SBC 544 to SBC 38/45
Packet ovement E-3

E - 2 Figure Z-2. Pseudocode for SBC 38/45 to SBC 544
-ac'et >ovement

- Figure F-i. NETOS Transnit Request/Transmit
\cknowledge Handshake F-2

- 2 Figure F-2. UNID ER/TA Allowable States 3........
F- 3 Figure F-3. State Oiagram of the TXTa Handshake. . 4

viii

. . - ,' -. .

List OtL Tables

Table Pa

fabl.o 11 - I Table 11-1. UAID 11 Requiremffents (54) 2-3

Cable VI - I [able ';I-[. *Tasks Xccornplished 6-1

[K

Abstract

rhis research effort describes the continued devalopment of an

i nproved Universal Network Interface Device (UNID I). The UNID It's

acchitecture was bised on a preliminary design project at the Air Force

Institute of Technology. the UNID I[contains two nain hardware

odules; a local module for the network layer software aad a network

iodula for the data link layer software and physical layer interface.

Each nodule is an independent single board conputer (SBC) residing on an

intel multibus chassis, complete with its own memory (EPROM and RAM),

serial itax interfaces, and multlbus interface. [ha local aodule Is an

Inlel iS3C 544 and the network nodule is an Intel iSBC 38/45. rhe

network layer software supports the CCIr[K.25, datagram option,

protocol and the data link l-yer soEtware supports the ccirr K.25 IAPB

0. (HULC) protocol. This report documents the detailed hardware and

software design, integration, validation and test of this syst e..n.

-
7.

...
..................................

............... A ° . - ~- a a t~*.

L

CONTINUED DEVELOPMENT AND IMPLEMENTATION
OF THE

UNIVERSAL NETWORK INTERFACE DEIECE (UNIO) [1
E ~IN MHE

DIGitAL ENGINEERING LABORATORY NETWORK (DELNEO)

I. Introduction and Background

Introduction

This thesis describes the development and tnpLerntaton of the

Universal Network Interface Device (UNID) I. Chapter One providei in

introduction to the UNID and the Digital Engineering Laboratory Network

(DELNEr). Chapter Two elaborates on the requireaents and standards u:3ed

in the UNIO and DELNEt. Chapter Three explatns the hardware

architecture and Chapter Four elaborates upon the supporting software

design. Chapter Five describes the testing phiLosophy, design and

reaults while Chapter Six concludes the thesis with a su-rmmary and

recoammendations for future work.

Chapter One begins with the background of the Digital Englneeriag

Laboratory Network (DELNEr) and the Universil Network Interface Device

(UNID) I. It then covers the current status of the UNID 11, probleqi

stta,7ent, 3cope, assunptions, standards, approach, equipmeiat, nd other

zsuppoct required zo develop arid implameat a working UNjI Ti.

Barcground

In 1977, a -eport frotn the 1342nd Electronics Engineering ,Group

(,kFCC) stated that i local area network (LAN) would be an ideal

candidate to connect the iyriad of electronic data devices resident on a

typical Air Force Base (1). The iuthors of the report saw the need for

•~.. ..o. - . o° °. -. °-..... -

some mathod of connecting these equipments In such a way so that user

datA processing and telecommunications needs could be efficiently and

effectively satisfied. The report summarized that a multi-ring network

concept would be a primary candidate for a typical base level

teleprocessing and narrative message network of the late 1980"s. A key

to the multi-ring concept was the development of five different

functional devices to handle the requirements of Interfacing the diverse

user equipment to the multiple ring structure. this basic idea was

expanded and tasked to Rome Air Development Center (RADC) for

Lncorporation into a post doctoral study program (75). An initial

concept of the multi-rLng, base level network is shown in Figure 1-i.

1-2*

3'os1 Dial-Up
,,. " C Users

offE
2 Base 2 2Digi tal,

47' Sites ESS

/Off 77
1 /2 Base i2 ~7.

- Sites

2 2 21
User

CUiy Community 2
-- i _- 21 C -2T s e r -_

, \ Community 5_
rZ B

2i

-- r

'Hs E Access Processor

0 L _4 i aurooIN, I/

__N, Access
Processor

1. Inter-Ring Interface Node

2. TernLal Interface Device
3. Processor Interface Device
4. DDNAIUTODIN I Interface Device

*"5. Dial Central Office Interface Device

Figure 1-1. Initlil Concept of a Multi-Ring Base Level Network (75)

Further investigation of the system requirements and functional

definitions reveiie:i that the five different devices could be

incorporated into one piece of hardware. Since the single device must

interface many different user equipments with the multiple ring

structure, it wis given the name Universal Network Interface Device, or

. . UNID, for short.

. .-.

. ..

p.U I I. * I, .. . i. ~ -, . ' . 11 MIL- -- .' - -.- l1 it E i ". ' ? ? ' ' - --' - - .
.
.. - ? -* , - -. --

it was at this point that the Air Force Institute of technology

(AFir) became involved. An overall plan was developed for the

architectural, hardware and software designs of both the DELNEr and the

UNID. The plan also included the use of the DELNET and UNiD for

educational purposes in computer network courses and research.

Master's level thesis efforts began in 1978 with Sluzevich who outlined

the initial conceptual hardware and software designs for the UNID.

Sluzevich separated the design of the UNID into four tasks (84):

1. Define the functional requirements of the UNIO.

2. Translate functional requirements into system design.

3. Design the UNIDs hardware.

4. Design the UNIDs software.

rhe UNID began its evolution in a modular design which would allow

the required degree of universality. The design consisted of three

logical parts. The first part interfaced the UNID with the host

" qui'pment. The second interfaced the UNID with the multiple ring LAN.

-he third part was a processor to provide the control and processing -.

capabilities for the first and second pieces. In 1979, Brown (7)

upgraded the basic design by expanding the processor into two

processors, one for Lhe local host equipment and the second for the ring

LAA. A shared block of memory was also included in the deslgn to allow

the two processors to move data fron the local to network hardware an"

vice versa. In 1980, Baker (4) addressed the need for further software

development and testing of both the hardware and soft,4are required to

obtain an operational devLce. le also improved existing hardware and

software development tools to accomplish the U1tD hardware and software

testing,. In 193L, Papp (74) leveloped the operational hardware for the

14

U11D. ttis work also included complete documentatLo, and testing. Cuomo

(11), in 1982, improved the hardware design by changing the processor

.neinory from dynamic to static, including four ports for the local host

processors, and improved the internal wiring to minimize noise and

spurious interference. Spear (86), in 1983, began a through redesign

and implementation of the UNIO I hardware to eliminate many timing and

other airing problems that had heretofore eKisted.

%t the same time Sluzevich began the UNID development, Ravenscroft

began work on the conceptual design of a local area network for the

Digital Engineering Laboratory (DEL), later called the DELNEI (73).

Hobart (33), in early 1981, began the conceptual development of the

software which would eventually be needed for the DEL. qe used

structured analysis and design techniques (SADTs) to develop the initial

daca flow diagrams (DFD) for the network. In 1981, Geist (29) began the

protocol development for the UNID. He used the International Standards

Organization (ISO) Open Systems Interconnection (OSt) (12) model -s the - -

basic fraaework for software design and develop iient in ca effort to

provide i standardized set of network protocols. lie further refined the

Initial dIata flow requirements and documentation. In 1932, Hazelton (32)

Lproved the first three protocol layer designs. He developed the basic

software for the implementatior of the Consultive Commnittee for

International relephone ind relagraph (CCHrT) Link Access Protocol (LAP)

at the data link Layer iad the basic structure of the CCET K.25

protocol for the networK layer.

in 1933, Phi.3ter (75) improved the data link layer software,"

.ieveloped the initial ietwork flyer software for datagram use, and

developed the initial StLrt of the transport flyer protocol ustng the

1-5

...... - 5

.

C.CEFT X.121 and fran-smission Control Protocol/ Internet Protocol

(rcp/[?). The DELNEf standards were also established during this effort

and are described In (75:Appen C). The requirements and documentation

are discussed in detail In Hobart (33), Geist (29), H-azelton (32), ind

PhIster (75:Appen C) and re!viewed for completeness In Chapter Two of

this thesis. With the application of the stiadirds 3nd a hardware and

* software modification to the origial work (84) to allow the ring

comniunicate in both clockwise and counterclockwise directions, the

*DELNET architecture evolved as shown in Figure 1-2. There are a maximum

of 16 (INIDs on any one dual ring. ITNIDs one through 15 service various

local area networks and host users. ULND 3 Is reserved to connect the

AuTai rings of UNIDs together. The addressinga scheme follows the

standards established In (75) and is discussed in greater detail in

(175:Chap 2).

-6

..

(Locl Ara kist ALocal Area
\ Network 'Network

qNt 2 ;_UNID _15

Local Area

Network >_ENID I ND0

Local krea

Ne ~ok JNIO 7151

~UNID2 NDO0

Local Ar~a' IJNID t Local Area
NetwrkNetwork .

UNIi) 0

UIT 15 N)I

Local Area" UNIt) 2 lios t
Networ4~~

Local Area,
Ne tworbk

1iur -?. DELNEr Acchitecture (75)

Concurrent developrnant of -in improved [Iii'), caUL.d the C','ID It.

based on tha Intel 30.36 family af processors, began in, IBil twhn 7,rivin

(30) deveLope2d the initial design. lie used the currefiz nardware2

architecture of the UNIO I as his starting point. '11is -',ia 1.i ,1W-1 to

design a UNTO If which would be compyatible and operaite with the U-Nit) L.

in 1932, Palmer (73) used 5'rvn design and began the nirdware2 and

software Iiplamenitation. While P31mer was ai! to buill both the locil

host hardware inA the ne-twork hirdwara and interface it with in ott-the-

-7

shelf 83086 based processor board, the implementation was not completed.

In 1933, 4atheson (64) followed with the hardware impleamentation ind

begYan the translation of the system software developed by Phister into a

language compatible with the Intel development systems. 'iatheson

Jiscovered durlig his prelininary hardware Imple,naentation that the

network hardware designed by (73) would not work properly as originally

designed (64). He then began an intensive hardware redesign effort to

produce a working hardware design. He obtained a feasible hardware

design but at the cost of limited software translation from the UNID I

system and test of the UNID 1i system. It is at this point where the

current effort begins.

Current Status

A hardware design for the UNIO LI exists (64). Another alternative

i O using off-the-shelf single board computers was investigated with the

result that the UNID IL development could proceed iore reliably using

shigle board computers. rhe hardware architeztural and implementatLon

charges using intel SBC 544 and SBC 88/45 single board compatecs are

discissed in greater d3tail in Chapter Three.

Prob --n Statement

lateorat2 the SBC 5 4 and 83/45 single board co..ip~iters and

implenent the existing scttware designs to produce a functional U.'ID [I.

3pecifically:

1. implement the integration of the Intel 3BC 83/45 .and SBC
544 boards.

2. Convert the network (data link liyer) ?L/Z software to
PL/'4 and vilidate its functionality.

• IC

3. Validate the functionality of the already transl.ited
Local (netwock Layer) PL/M software.

4. Integrate the Local (network layer) and network (data

link layer) software and test the UNIO [i as i functional
entity.

5. Integrate Into aad test the UNI'O 11 In the DELNEC.

Scope

Che SBC 33/45 and SBC 544 single board conputers will be checked

for functionality. Development and implementation of the necessary

software to validate the functionality of the SBC 544 and the SBC 38/45

boards as a single functional entity will follow. Conversion of the

r !mLning TNID I PL/Z software to PL/1 and its functional validation is

the next step, followed by a functional simulation ol the UNOD II

software on the Intel ISIS software development system. Inte.rattion of

tn. local lad network software and its functional vaLidation on tae UNID

I[ii ne-t wIta the integration and test of the !NID iI in the DEL'Ef is

12 I list step.

3 \su:nptions

I. it is ass3 nad that the local and network hoards io,ck

pcoperly.

2. It is isstied tnat the Local software design a
previously devaoped and translaited functions prooerly.

3. It is assuied that the network software design as
J,!veloed functions properly.

Sum.mary of Current Knowlede

[re aost tip to late sumfnary of the U.NID and the DELNEf is describei

in detail in Phister (73). [he backgr,)umJ in this chapter gives a

chronoloicail hLstory of tne ,evelopna.nt of the UNID. lhe cucrcet

1-)

• . .

..

status of the U4[0 11 is described above. Detailed information may be

found in the bibliography.

Standards

The 3tandards used in this thesis effort wilL follow those used for -.-

the DELNEr and the UD I as developed by Pnister, et al, in their work.

These standards inclLude:

1. ISO Open Systems Reference Model DP-7490.

2. CCITT x.i, x.2, and X.95 for Class of Service.

3 CCI T.121 for routing control.

4. Transmission Control Protocol/Internet Protocol (f'CP/IP).

5. CCITT X.25 for network control.

6. ISO 3309-1976(E) for data link control.

7. qigh level Data Link Control (HDLC) protocol.

j *3. CUIT AB

9. kS-232C, RS-422 and RS-449 at the physical layer.

the standards ire international and ii-tional in their scope and

application and will be followed as previously implemented to maintain

e:at;itbility 4ith the UAID I and other data processing, telepr.-Cessing,

ia3 telecomamunication equipnents. The standards 4il reviewed in

farther detail in Chapter Two.

Approach

Fhe first step will oe to simulate the functionality of the local

(network layer) and a,_twork (data Link layer) software ,nodules. Thi3

will be iccoaplished on the Intel System III in tne Computer

Co an ninca- t tons and 'e tworks Laboratory. The Inpu t/ou tput (/O)

requirements of the 3oftware can b' itisfied by the use of the [SC

0 - .

-" ."''"" ." ' -" ' ." ' . '" - ." "I""' "" .'" .". . " '''"" ", ." " ." ' . '" ." ' - '' ." ' -" ' " " ' " "" ' ' " ' """" " "' "' "

operating system functions. The software can then be validated and

corrected as necessary without the use of the target hardware. this

approach allows a 'simpler' and time efflzient software developnent and

validation phase.

The second step is to incorporate the target system initialization

software into the local and network software developed Ia the first

step. A final software module is built which can then he programmed

Into EPROls for the SBC 544 and SBC 88/45 boards. A CP/3 system will 1e

,sed to simulate a local host for the software validation hosted on the

single board computers.

The third step Is to integrate the UNID 11 into the DELNE and

begia the software validation of the UIID I software in its intended

evi ronment.

E.ui pment

Ihe Intel System III is required for PL/M software coaversion,

development, and system software sinulation. The Intel Systen £1/21-.

is required for word processing. Wirewrap tools, wirewrap wire,

soldering Iron and solder, assorted pliers and other tools are required.

Other Support

Supply and contracting support foc the icquisitton of integrated

circuits, hardware, software and other inanufacturer's ninuals will be

required. A workbench, desk and admlinListrative supplies are required.

I.

Conclusion

[he chapter be-in with the historv of the Digital Engineering

Liboritory Network (OL.AET) ani the Uniier.il '42-tworK Illterface Device

I - 7.

I!

...

(UIPJD) 1. Et then covered the current status of the UI9 [H, problem

statement, scope, -assumptions, standards, approach, aquipn.aeLt, and other

support required for the further devalop.mne't a.nJi mplementation of the

IJNID EL to a working system. The next chapter discusses the UJNID 11 And

DELNET require!ments.

0

I 1

11. UNID 11 and DELNET Requirements

introduction

this chapter summarizes the requirements established in previous

thesis work (30, 75, 64). A sinmary of the UNID It requirements Is

first followed by a summary of the DELNEC requirements. This smmiry is

repeated in large part from 4,atheson-s work as ,o new requirements have

beea established nor deleted except as noted later in the chapter.

UNiD II Requirements Summary

the ortginal !jNID design was based on the foll.)wing general

criteria l84):

1. The UNI9 should function as a store 4ad forward concentrator
and have message routing capabilities.

2. The UNID might require specialized i/3 ports foc unique
t O communlcation requirements.

3. The UNED should be capable of interfacing to variou.3 network
operating systems and orotocols.

4. The UNIT should provide an eavironment for conputecr

comunication network studies.

Chese concepts ace still valid and are the prirniry design ,oals tor

the UJtO 11. the UNID i1 Is projected to be used In rhe DELNEr. 1'he

UN[is are configured in a dual ring with the host systems orming a itir

at each node. However, the UNID 3hold be desigaed to interf ice, ith

other network configurations which could be inpl iernted - i later date.

fhe UJ'JD nardware should be as flexible 13 possibl2 so that chanes in

nietwork protocols can be done in software or fir-n ware rather than by

changing or redesigning the hardware.

At the low-stg or hardware, level ot" protocol the interfaces have

been defined to conform with tne EIA {S-232C ([3) and S- 449 (9) -. -

2-1

standirds. [he local interfaces to computers or termLnaLs will use RS-

232C and the network Interface between UNIDs ire configured for RS-422

and RS-449. Higher levels of protocol should interface so that changes

in the upper levels can be accornaodated with changes in UVID software

rather than hardware. The various levels should have clearly defined

Interfaces to make updates and changes easier and faster.

Structured analysis and design techniques (SADTs) were used to

dev-lop the functional requirements of the original UNID (34). N design

using a -nodular approach was then developed. Three separate hardware

nodules were identified: (1) a local input/output (113) nodule for

interfacing the UNID to the user's computers, terminals, or modems; (2)

a network I/O module for interfacing the USID to other UNILs over the

network; and (3) a dual processor ;nodule for matching the local [/O to

the network eaviconmeat (84:154-155). The three module types were

selected after analysis o. the requirements using SAD' fiethods (34:11-

31)

In [931, a thesis ffort was begun to design an i-procved UNIO, the

:30%6 based ULJON 01. The original functLioLil reqLuicements (34, 32) were

used to jproduce data flow ILiagrams (DFDs) (30), and a new functional

requirm:nents iodel was developed for the U'JAD [i. The require2ents

whi-1h were used to develop the requirements moodel ace listed in Table

LI-I. The reSult indicated thit t'o distiact groups of requirements

were presenlt. One group dealt with the handling of local nessages and

the other with the handling of network aiessages. While there were n J"

sLLlirlties in function, both groups were considered necessary. The

JFDs served ;is the hs is for thni 0i:71n of the iUN[) [I and -re of

sufticient letill to iLd in tie LnpL2,7antitlon oc thoe "111) [I. [he

..

original OFDs are reproduced Ln Appendix k.

Table U1-I. 1JNI) U[;equireinents (64)

[. Interface a wide variety of network components and
handle various topologies.

A. Acconnodate dissimilar computing e.Iuipment

1. Nccomplish code conversion

2. Perform data rate speed conversion

3. Interface peripherals and user terminals to tOe

network

C. interface host computers to the network

D. Provide a network to network interface (a Zacewav)

11. Perform independently of network components

k. Aandle network data transmission and rnception

1. ccon.nodate network throughput requirements
and flow control

2. Adapt to different protocols

a) Handle ooth synchronous and asynchronous
communication

'b) Edit and oack characters into form;atted
es sa ges

c) Unpack a m essage

.) Perform parillel to serial and serial to

parallel data conversion
e) Handle error control functions such as

message aknowLedge, no acknoiledge,

repeat, and tiout

3. Ptertorm error checking and recovery pcocedures

3. .elieve host computers fron ,,etwork specific
functions

1. Provide a buffer to sinooth nessage traffLc
Poll comnunications lines if t'ey are

rQul t [dropped'

3. H-anlle interrupts

4. Route ,essiges to desired de3tinations

3. Collect performance, traffic, and error
statistics

I[. Provide i testbed for co,7outer tietwork st idies and research

• o" =,

DELNE? Functional Requirements

A survey of potentLal DELNEf users was taken in 1981 as part of

another thesis effort (32). The responses to the survey were used to

formulate a set of functional requirements for the DELNEF. A suni.ary of

the requirements which were considered to be the most important are:

1. Ability to transfer files across the network.

2. Ability to share peripherals attached to the hosts on the
i)ELNEF.

3. Flexibility with respect to the network topology, protocols,
and transmission media.

4. Performance monitoring capability.

5. High percentage of availability.

6. User transparancy to network configuration and specific
operating systems of hosts.

3ther additional features were identified in the survey but were

not considered as important for the Initial implementation. So.me Of the

identified features which nay be considered in the future include:

1. Permit software tool sharing.

2. Perform distributed processing.

3. Use distributed databases.

4. incorporate fault tolerance.

5. Provide 3 Yieans to connect to other networks such as the
AF~IrNEF and ARA,\ET.

6. Connect to the local Cyber 750 and DEC VAX 11/78) (UniV).

7. Pcovide data privacy.

3. Provide security for classified projects.

While providing security For zlassified projects isa desirable

goal, it is not within the 3cope of the DELIEC nor the UJAIDs to

accoinplish this goal. Air Force and other security directives

............... ..'......-.. '.........-.... - .

impl.2mented by the Eliectronic Security Co nmand (ESC) -dill not approve a

i-ecure network in the *\FI U environment due to: tack of physical

s3ecurity; lack of rEAP4PS U approved equ ipmnnt; and Lack of trus ted

coriputerc software, and it-s associated hardware, validated and approved

bythe 4ton1Secrt Ageacy (NSA). Providing data privacy,

Lincluding user autheaticaition irnd verification procedures, for the

DELNET users, also) d sirable goals, is within the scope and pervue of

the DELAEf anid the O:N10s. keconmendar-Lons In this area are discussed

further In Chapte r Six.

Utilizing the user generated list of functional requiremnents, a -set

of roqut rements for the DE.LNET hardware and software was established. A

cl--i.g topology w-as Initiilly selected for the DETAE[coninections with

oich node proviiing a star subnet to the local users. rhis is the same

lbuisc configuration racoa--imeided ini the 1342 E~u F-2chnic.il Rteport (1) for

Ibase lvlconniunications systems axcept for the star subnet. T'h e

reoport seemned to Indicate a sine usec it each networ% intercface while

zhe OELNET require'nent Is for multiple hosts, up to four in the Ccrent

it*s i gn, t-m e icr nzetwork niode. With the ring topology, deve lopct14,I of

r)utin- ailgori thmns is easiLer and sys tenr ex.pans ion 3 i -plt If iL ' (3 7 :hap

1,stnce, in elaiborate routing scheme is not neeaded Anitd niew noda-s cin be

2isily connec tel to the network.

Vhe s3ystem re!,ulr :;iants outlined in the original thesis (84)

evolved -ind bec-tae the basis for a -series of add itlorvl inivestications.

Further reflieet of the D)FDs was a3ccooiplished 033), followe d by

iI2lnentig itandards, developing software procedure2s and writing the

Tnece.s 3 1ry C0110 (29, 3 2, 7 5, 6 4). k t the s i ne I -ic, the 114 E D h-ird aa r

de 1i"n .4 is ,Iod Ifle L,,. nd re2t Ime d (4 LI, 7 4, 3 3 to correc t lrn-iwn

problems, improve reliaoiLity and create the duil ring topology of the

ULiD network (75). Oemonstrations of the DELNE were accomplished in

1931, 1933, and 1984 but were limited due to the lack of complete

-of tware above the network layer.

Protocols

[n establishirig the protocol standards for the DELNE[, various

protocols recommended by both national and international standards

organizations were revizwed and those 4hich seemed to 'best' meet the

stated requirements were selected. A packet switching protocol using

the CCE[[K.25 standard was originally chosen (29).

Since the work was and will continue to be accomplished in stages,

with flexibility remaining a design goal, a recommneodation was made and

accepted (32) chat the ISO OSE Reference Model (12, 37) be used for the

overall DELNEr protocol design. The development of specific protocols

for the OELNET and implemented on the UNID are ,.75):

1. CCIr K.23, LAPB (HDLC) in the data link layer.

2. CCEr'r K.25, datagram service in the network layer.

3. CCI[l X.121, internet descrtptions in the transport layer.

4a. £CP/IP In the transport layer for datagram service.

b. Federal Inlor-nation Processing Standards (FIPS) ind

Nattoal Bureau of Standards in the transport layer for

virtual circuit service.

Since the 1N[O dill be nodes In the DELiET', it will support the

[SO OSI R eference odel. Previous aork (75) established that the UN1410

would initialy 3upport a datagrain service, with the three l)wer liyers

of th- zodel, called the 3ubnet, Implemented in the UID. rhe host

would I nplement the upper four fLyers. r'i-s partLcal ir separatLon of

2 - 1 .. '"

the hldras is common for a datagramn service network (87:Chap 3). As an

;i[d to understanding both the model and its implemeatation on the DELNEr

and the UNIO H, a orief description of the model and the above

standards follow.

ISO Reference Model

The ISO OSE (eference lodel is intended co be a vehicle for the

development of specific standard protocols within its seven layers as

shown in Figure 2-1. The layering divides a very complex task into

smaller tasks with each being relatively independent of the others.

Other organizations, such as the National Bureau of Standards, have

established and further clarified standards which operate within the

franework of the OSI -nodel (21, 22, 23, 24, 25, 26, 27).

SLevilLayer Layer Unit

Host A Host B

7 Appllcation ---------------- Application "sg"
6 Presentatloa ---------------- Presentation :s.
5 Session - - -------------- Session 'Isg
4 Transport - --------------- Transport 1sg

3 Network - - Network - - Network - Network Packet
2 DOta Link - - Data Link - - Data Link - - Data Link Frame
I Physizal - Physical - Physical - Physical Bit

UNID ------- UNLD ------- UNiD ------- J11D

Figure 2-1. ISO OSI Reference Aolel \ppli4ed to DELiEF and U:J (75)

At any given layer (except the physical layer), a program in one

l;iyer co;niLicat2s with a cocrespoadirig progran in the same layer in

nother host or node in what is cilLed 3 "peer process'. While the two

iosts logically cori-itnicate lirectly with eich other (the dotted lines

2-7

• °~~ ~~.-o-- -....... -%. . . . °. -- ..- °.

In Figure 2-1), i1 conunications in fact ,ust pass through the Lowest

layer sice the only physical connection is at that layer (the solid-

line in Figure 2-1). Each layer, while Logically communicating witl its

peer process In another host, provides various services to the next

higher lajer above it. For example, the physical layer provides the

physical communications link services for the data link layer.

The content of the applications liyer is determined by the user

requirenents. 'This layer may represent data base exchanges, user to

user interactive traffic, or message traffic as examples.

[he pcesentation layer handles the data format transformations

which can include data compression, file translation, end to end

.ncryption, and virtual terminal protocols.

The session layer normally performs addressing and connection

nanagement of the network for the host, but in fact, some of these

functions are often subsumed in the transport or presentation layers In

an actual implemntation (37:Chap 3, Chap 9).

)ace the data is formatted and addressed, it must be transmitted.

[ha trinsport layer provides the host nessages to the com-unLzations

Lacilities for eventual transmission. This layer shouid provide error

fr e, end to end com..unizations between hos ts. So!.c examples of

services at this level include error checking !ind recovery, flow control

for Lhe host, sequencing of the i12ssajes, and establishneint and

termiinitLon of ,i host to host connection. Fhe P Is i;aplenented at

this liyer in the U-NIDs id the DELJEf (75: \ppen).

The LP protocol is usually imple2.nentd between the transport and

network Layers to Interface networks with different protccols and dati

entity formaits through a co inon, stin! ird protocol (37: Chip 3). [he

2 - 3

. ..-.- -.'

. -,..,. T .*-; '- -,-, ,% -- ,'-,' ' -' -,- ' ' - - ' _ ,-.- -.•-,, ' .-.. .,-- _

'nost cJnmon Implementation of the 1P is wher- two lifferent networks are

coanec ted through a gateway. A gateway is a set of co-nputer hardware

and software pcogr-i:as through which two different networks can

com:.enicate. The most com-nn implementation of a gateway Is where the

functions of the gateway are divided in half and implemented at nodes of

the two different networks. The 12 protocol is Limplemented as the

co nrion protocol between the gateways and the next higher and lower

layers, the transport layer and the network layer, respectively. The IP

protocol is effectively sandwiched between the transport and network

layers, foLmiag another layer that could be zalled the internet layer,

layer three-and-one-half. rhe sandwiched layer representation is shown -

in Figure 2-2 as applied to the ISO OSI in the UNID and the DELNEr.

Althoigh the IP Is used between two different networks, it may also be

used between a host and the host-s servicing packet switching node. The

1P protocol is implemented In the 0NE1 anl the OELAEr (75: Appen C).

Lev:! iLave r Layer Unit

Host A Host '

7 AppLication-- ------- ----------- Application A sg-

6 Presentation ---------------- Presentation 'Isg

5 Session ---------------- Session Asg

4 Transport ---------------- Transport Asg

3.5 Internet ---------------- Interne t DatA-

gram

3.5 Internet -------------------- nt-rneC Dq tagral

3 Network - - Network -_ _ twork - - Network Packet

2 Data Link - - Dita Liak - - Data Link - - Oata Link Frame

I Physical ---- Physical ---- Phystizal ---- Physical Bit

UN[D ------- UNID ------- UNID --------- ND

Fi'ura 2-2. [3o OS ieference odel with the Internet Protocol (IP).

.2-.

Subnet

Che Lowest three Layers comprise the subnct. rhese layers route

data through the network froo one host to 3nother while the higher

Levels are concecned with the dialogue between the communicating host

peer processes. In the OELNEr and UNID applications, the UNID contains

the subnet protocols. rhe access protocol selected for the subaet is

the v.25 reconnendation of the CCLIi. rhis standard was chosen to

establish and naintain compatibility with other networks. This protocol

standard describes the interface and procedures for packet sditched

3ervice and is defined in three independent architectural levels which

are conmonly used for the three subnet layers. Each of the subnet

layers is discussed in some detail because they enco,-ipss the software

mad hardware functions of the JAID.

'-2twork Layer

£he network layer, referred to as the packet level by the CC[fr, is

.he top level of the subnet and is primarily responsible for routing,

-equencLng and flow control. It determines the path that A -essage, or

packet, should take through the network fron the originating host to the

destination host. In most networks the two host compiters may be

separated by nodes which are not directly connected la the articular

connection. rhere is asually more than one path between the two

connected hosts, as weli. Each node in the network must determine which

way to send the data so that it will reach the Intended destination.

In the 1930 revision of the Y.25 standard, some significant

technicil enhancements were n ide (28). rwo of the most inportant to the

I)ELNET and the UNID are: the adition of provisions Eor ditagram service

."2 - I.

. '..~. .'.. *.''.....

and the addition of a fast select facility to the virtual call service.

Datagrans are self-contained packets which contain sufficient

address information to be routed to their destinations itthout the

aistablishnent oL' a virtual circuit through the subnet. Virtual circuit

call establishment procedures, with their attendent overhead, are not

needed since the datagram is considered a comipLate message unto Itself

and independent of all others la the network. The fast salect facility

provision allows ai full 123 bytes of user dat-a to be exchanged 'luring

the call set tip -i'id clearing procedures for A virtu3l call. I -,10 re

letailed description of these services c-in be fouad in trie literature

(23, 15, 37).

rhe iiataork layer -nust also deal With congestion. The network can

become overloaded if the hosts initiate data Into the -network faster

than it can be processed and delivered. Somea method oF controlling the

1i9ount or d-ata In the network has to be used. One of th2 iaore commT,.on

aethods i3 the exchanige of flow control messages with the network layers

of other iodies. These massages can Include information such -As

icknowlad-em~ent of receipt .)f data, the riumber of free "Messlae buffers,

or the fact that the niode is uniable to receive d-2ti at the -oresernt time

(37). rhesa features -ire not as yet impleriented in the tJNiD.

messages fron the transport layer may have a priority, And if so,

it is the task of the rietwortc layer to insure that hig-her priority

messages dre haailed first. It mus3t -also deliver iih prie)rity nessiges

to the transport liyer Cirst before lower priority meisages are

d,2I.ve red. i'hii aspect of the network liyer is particularly Important

i n rl i tarcy And soame co iiineca 3COM I lIliCa tins systes w 4he re a h i r arc hy

of priorities e..(ists.

2 I

Data -Link Layer

rhe datA linK tiVr coinbiaes groups of bits into Logi2.1 unlits

c 11Led f rames. it Is the fune tion of the d-At i link layer to cre-ate,

cecogni ze, and control the flow of the Logical hit, tr-insferred to and

t ro n the ne tqork and phys Lca1 layers. The bit oriented Ilink acce-SS

*:-ontrol proce~dur4e s?eClfied in the X.25 stiadard is the Lirnk \cca.s

Procedure B (LAPB), whichi is equivJalent to the [SO -uigh L,!viL Data Liak

Cotrol, HOLC, stand-ird (23). The frame torniat specifiad by the

staad-ird ind i!.iple,-nented in the U1ELNEC and the JN'IO LL is sh04.1 in

Figyure 2-3. The figure represents aj col-nposite of thp! JDLC protocol, X.25

dcotOcOl ,-ith th-2 datagram servica optioni, rind the TCP/ IP use 1 ii tae

sofct43re Lmpla-.1ntttLon of the UNUDs I ind it.

*11 '-1- 71 6 1 5 I 4 1 3 2

IPT SPV23) 42 I 2 I I 1 'AiDI 21 N I 1 Y Ar ~I !N'D ~S

I ~ ~ ~ ~ ~ ~ -I .------ ~~- 2J---------
1 'IC-:3-27 i --525I 24 1 23 12 2i 2)

-Y -7E3 I i 913 1 17 1: ~ "b 1I

Ffh !ii? [,! 2-3v.lo Fr ixr ind Ih r i i2 I~i i-I i I

2~~~~ -' Io12 IIAAr i

Defense computer nectwurks and i required protocol. for DoD conlputer

j networks, is partially inpiemented in the transport layer of the UNIDs I-

icid It. Thoe source and destination iddresses are shown for each of the

Lrama, packet, and datqgram where each structure is broken into smaller

:3- e rints to s ho 4 itz caespec t ive con tenats. rhe coitrol (Cr), country

(C), rietwork (NC), host (dC), and port (PC) codes arz! shown for the

i ap1 leeationi of the C.CIF1T X.121I s tandard In the IP header used with

the lr"4ILs. A imoce do tat led deseciption of the hie der s truc ture and

coctteiats is In Appeadix D and (75: Appen C).

icethe data link layer can re!ceive bad data fro~n the physical

ilayer, a zerror detection capability is included. A seat of 16 bits

nasead onl cycic redundencey Check (CRC) calculations, of tn cii ted a

checmvKmmra, Is; :ppended to Lhe address, control and infor-iation bits is3

j lltoy _ica iaeat. Phis checksum is co-npared with a locally generated

ch -eck3u'F ;it the receiving node. 'Wlen the checksu as iritch, then it Is

-si~ hat Lhe re ceived fr3a is correct, otherwise the reoeiver Knows

th-ic ia error hnis iccurred during- trans iioa and che trals nitter is

!otL-L1,d to retctlsnit thit part~culalr Erame. Fihe IetiiLi of C:if,

e cL-u Lit ion aire explained l a th In.a 5 s tand ri (2.3), whil1e tl e

,.tLaTSIivoived ace explained1 in the Ltteratute- (37, 62). F igu re,

2-3 doe!s no t sho 4 the f Iag or chacksumn biLts, e vea though they -ire

presnit , as these, ire iu to-n itical Ly calcu Ii ted, addurd, acid de L2ted by

the dig1itil trans-t~te;r aad r-ceier hardware it the network physica-l

I vul. I he fi-ig bits v~e also ippa~iie!d to the data link layjer [ramne.

Yhezse C 1 ig bits a.ir- used- for syachroaLz Lao the 'airdwar2 to the beginning

)c*a 1rgi thlt d it I. B o th thLhe f la -Aad the CU' hits -ire uisaall~y

i p,?aAd iii o f 1L, tat, i-u to aa ti L i lIy 'Iy r.he physi cal 1 1, e I h i d w i re. Th i a

2 - 13

h irlwur2 inethol is impleaTented [ri the UNID 11 h-irdware.

Phyia Layer

'[he physical Layer is the lowest level in the network. It provides

Tha physicil, ilectrical, ne chanical, functional, ind procedural

; ?rvizes to def'ine the physical connection betw4een ewr nds h

phys ~cil interface standarl referenced by the C;M Er for the host

COIputer to networ'< node is the 'K.21 digital interface stad ird. rho

s tanda1rds be-tween ye tLwork aoiles are not def med by CCIfri for thae 'K.25

;tirdird, thereafo-r, the RS-422 and RS-449 standards are ujsed Li the

)FL: E betwe2en the JIiD,; to maintaini atandardiza Lion. Ilhe host compaitdr

or 13:?r Jevire is defined -is the iata terinal equipm-?nt, (DO) aind the

net,4 1 ode (the L1iID) Is considered data co anunications oint

(C,'. , hiLe the X .21 3Ltnndnrd is not widely Implemhented nationally or

int ro itionalli duz! tc tha lack of true dii l co inuricatien- sys te,2:s

th (Z~bs i ftnosdInis lce Fhe '(.21(bt-3) samedIs

-3o l to interface digji l aquip-nent w1itn italagcii)ctctonss es

'Ile te TU11tad States2 ge2nerally does niot s,! the .lbs stnc,

t th <>2 3st a nda-rd I~ mno st f t en u ;e d I n I ts plI 1 is' th2 ~S- 232 C

itind3!7d is functionally equivalent to the K.2L(bis) stiaardj (3r; Che

(3- 23 2C standard Ls the stnidard implemented berwaen the host inJ che

UiDs in the DELNEE'. [he origial dwr~c of SLtizevica (i4) 1rcie a20

* iiliirare current loop -is a hig(hlyr likely physical Iterface betw.eni

the :jNL) and ce~rtain host eiquipmenats. [his requirenerint, Whi le va Iil in

1)7'3 itIA arl iar when -a cons ide rabla i ol:u t O- ifl 10lent u.3111g this

jnterCficP o-is ted, is ao longer valid :id w~ill *ao t 1b! I nple ,iatrd ofi the

IJN T_) i1. N1ost of thne 2)milii ameecurrenat I op 2,11tj)nentl ;I i ha,2

2 -14

cep)L-ic.d with aewer, tiare advaaced equipmeiit using the RS-232C mild .I1LL-

SD-133 stindirds, evea in i-iilitary communication eavlronai.-flts.

Appendix 3 shows the actual RS-2 32C and s.-42 gn3iS used in the

T)!LJEU ind UIJ~D 11.

Conclusion

rhis chalpt.~r suiviarized the re2quireil2cts for the J:NIi I[-3,d tne

)EL:NEC. ChE! [SO 031 fRefereace lodel arid X25 protocol standard war2

[,a.tcoduced --nd their correlation to the IJNID I[[functions was brie:fLy

:p La (e d. Th2 requicemqents in ra.bLea [1-1 and data fLow diagrams of the

finctional requirein.ents model in Appendix A form the basis 0 fo he

lasigr and Inpiarnentattorl of the UNEB LI. Chapter rir-ae discusses tida

.NI) [I h~irc'iwnre die--ign and tmapiementaltion.

%0

ii. UNID 11 Hardware Design

Introduction

!his chap tz!r deals w ith the hacd.4ace desiLgn of the 'UNID IU. The

3)e u diesigas (30, 73, 6.4) are f irst reviewel t,) shod the design -

,2 1iu tloa. The curreat desiLgn is then discussed in light of the past

digni -IS. rile s tr. ng ths and w,:tknesses of each desiga -ire reviewed.

iriiiDesigns

The initial- I-ID 11 design began in i).3L (30). Fne Inve-stigation

~n~eed round scetril possible configurationis [or the impienentatlon

)f ai 'P410 H using the [atel .30,36 family of processors as a successor to

LLAf:) L, which 4as bas3ed oa the 7ilog Z30J processor. Tlhe 303b family

o~ ooce~')rwis ln';esti ted for use .ith the2 UNIO10 i because OC their

:nce.~edproncess irg qo-wec and ;ability to gener-ite relocatable code.

i Ie ":iai preLi Tiinary des ign i 3 shown ina Figure 3- 1 0~0: FJ 3-4). [h!

-,i turittoci laas Lao Inirilvicr su1-bsyst,2 :is the r,>J.or'(an local

;usy; ento allow each subsys t2, to be re LqtLv'ely indapendent of the

:,t: % nui L L 1s. '11o aetwor ,z :uSys t-2:r consists of the -3o3ti i-d CJ39

r C.>i) r S ' it: tih2 I S oc iat !:J inp1u L/o utp u t 1/0) hardwaire, private bus

ircaitcy iaid -i2nory ind aoil t ibu s iiterface circitry. h

,~' iisubys a acon ist o the !our caanne I ~e-r iL O1/ aild a 3033'

0 0r. lain hA i t oa to thegenera-l s ys eO t oren~teets (3see Chapter -

Fs . L- tis 3he s i s, th e ia sig L g urji: i J e I "Co ai LoDw t'ae anet-4o r k

the! Ie!'L1Ork Ssuh-;yst tI COat in3 in 3J3a:)j ind sLive! 303) (30:63)."

3I !,2 i'ri i Li I -i4 t w)rk f/ t o h i hdl~ I j J sii,vste while the

* .I)c iL I/) w)i-I ho h !,I 'dev Lh2),,her C)..yt- a 1'2 1at- :71 11So0

00 0 C/3 -40

-- 4

1: -4

'0 -4 Li Ai 0

LA w
0a

0

00 -4

.- 44

* 0

el)0 - c

6-4.

-0 0

4 SW

~~2

.7 "_ -

allowed a network and Local software to be physically as wa3I i

logically separated and henice, -added another degree of modularity in the

software design. Th- largest contribution to the .NI 1 effort,-"

however, was actually twofold. Not only was a completed preliminary

design for the 8086 based UNID 11 provided, but a functional analysis

w~hich !ad to the data flow diigrams in Appendix A (30:26-34) was

o-mptotd as well. Processor to processor data transfers were specified

to be froa datn buffers ia shared memory. These buffers were 3eparate

from the receive and transmitt data buffers -ind functionied as a FIFO

A U,21e. Pointers and seaphores were included in block headers to

3ylhronize the coinmunlcatlon between the 8036 and 3039 processors. The

:tware de-ion is discussed ingar-ater detAll La Chapter Four. Mr

latailel aaalysia, niy be found In reference (30).

*r * ~1implementto

Ih ac cvjil liirdw -ire, as impl2-eentad (30), beca-ne three circu it

c- crd-- Li a vi [rnte ;,uitibus card rack. rha imple-mentation follow.,ed fran

thle pre II'itriiry design In Figure 3-1 'exactly'. The local procae.sor WIS

v lit~l IJI12xAja)oard cnpt r he fouc channel seriaL 1/0 cird

4:1 -; L z 2Cf ac ! d :the S3(3 3 ~/12 A th ruh t.1 he p ar alle1 por,1:t o f 3e SC.

1 X3J36/3039 card wj is Locally coastttrcted irewrap carA which f it in

the j I t I ou c icu c w-e. The ictiual circuit Jesign was bised on in Intel

ippLic:-it~ins ote 053). Dit-i triisfEr fro n tne Local hoit 4:is t-hrough

thei. tour channe -l 3serI t card connecztad t,) the 33(, 3)/ 12N through the

piraLel port. [he dit-i 4ti ihni'iiie ppropriately and put in

y s t n S ha red m n 0ury An 11tho n the ioe t w or< caird 4i s in te crrup1te d tO

.r v tc t h - d it a i th 11 h ir -21- n-i o vy. [h! 313o/ W339 hoard wou d the!n

-3

.

K --.. . .

nanipulate the data and send the data to the 3039 and 1/0 hardware.

Note that all the data transfers between the hosts and the SBC 30/12A -

were through eight bLt universal synchronous/asynchronous

receiver/trinsmitters (USARf) and the eight bit parallel port of the SBC

i,/12A, even though the data was further manipulated by a 16 bit

processor. Xfter the SBC 86/12A manaipulated the Incoming host data, it

Iouid 3eni the data to the 8086/8039 card through reserved blocks of

i:ieuory ia the shared memory space. The uiultiple protocol communications

controllers ('.IPCC), while allegedly capable of handling 16 bit data

transers, can in fact only handle eight bit data transfers (20:5-267).

The APCCs on the narket at that tine were capable of interfacing with a

Lo bit processor, however the actual data transfer was eight bits of

data and eight oits of status or control infornation. The end result is

cha.c the d:ata transfers to anu fcon the A PCCs and the p coce sor are

still. eight bit data transfers. The IPCCs available on che market as of

"ij. 1!334 are s till, with the possible exception of vecy specialized

iategcrted circuits, designed 1ith eight bit data plths. The

inp!_ment-itton did produce a ninimalLy functioning system, ho,4aver the

pcoyross was inapered by w irlno errors wnlch were discovered darinag the

network board checkout phase (73:Chap 4). rhe only software

i nplnented -it this ti.ne w:as [or use 4ith checkout inI test of the

circuit boards. Mere det-il nay be found in reference (73).

Revised implementatiol

Furtaer --"Eorts (64) continued the UJNID 11 implernentatLon. During

th2 it t|a review of the design, it was licovered that the original

I .si n would not iock properly. The n in pcobl._ as ,were tacolak-idtib[a

[3-![

iddress mapping in the 3U86/8089 board (64:3-11) and the fact that the

3089 can handle only two external 1/0 devices. While there are only two

IPCCs on the board, each has a transmit and receive section which must

be erviced by the 3039. There were essentially four devices to be

serviced by hardware that could only service two devices, therefore a

3econd 8039 was chosen in lieu of the 303 processor. The redes[a

efforts resulted in a complete hardware design for the aetwork board.

The four channel local host board was stLll interfaced through the 3SC

36/12A prIlilel port. Figure 3-2 shows revised UWID 1i design (64:Fig

7). - monitor program was put into EPU.4 tor the SBC 36/12A board to

eventuaLly nininize use of the in circuit emulator, the iCE 86 (41), and

the local side soft4are was translated ifrom PL/Z to PL/4 (64). rhe work

corcl.!ded with a functional validatioa of the locil subsystem hardware

0 1nd sof tware. rhe converted UNID I code was only cursorily validated.

.ore de-ail nay be found in reference (64).

..

:.-

(4) -. 4

-4 -

o -4~ Od L0 L4 0 u w.
CD .4..~

CO~~~~ ~1 .ii 4 4 ~ . ~ C~

>)1 0E

-4 W4 0~-

~I04 CC.

01

-3 >0

La)

fAI

EnL~1
1) -an

4-. -n

v -

Current implementation

fhe current implementation maintains the same basic architecture as

the original and revised designs (30,64). The main difference is In th-

hardware implemearit-ition. Fhe current design utilizes off the shelf

singie board computers (SBCs) iaanufactured by Intel. These two SBCs,

the iS3C 33/45 and the iSBC 544, are designed specifically for a data

co 971unicatioas enviroazient (46, 47). The choice of Intel as a source

)f the SBCs was due to the SBC availability. Other manufacturers, such

as Advancel lcro Devices (AID), could have comparable hardware although

a ieairch of othec -aaauacturer products was not conducted. fhe choice of

toe lntel SSCs snould not be taken as an endorsement, either expressed

)c inplied, that [atol prodacts are the "oest" choice. rhe selection

should be irde in light of the system requirements.

Che currenc architecture is shown in Figure 3-3. Fhe heart of the

lesit. coa;tists oC an 3033 processor servicing two high speed ACC.

-hrouh a irect wnory access (DA) arraagenent for Lhe.

Interface and an 3035 processor servicing four interrupt drive.i JSA.(T3

for the Local hos . Literface. Both boards have (up to [6k bytes) shared

nemory ad private ne iory segments a.s well as Electrically Drogra.i-nable

.,ad .July Memory (EPRO01) (3k to 6'4k) which w-is only partially designed

ia the previous designs. 1"he use of the DMA oa the high speed aetwork"

board fultifillis the "Om,\-I[e& operation (39) of the 3A3 s in1 the

revised design. fhe interrupt capabilities used on the 3,35 basel Local

board simplLfies the software design and implementation of the USARf

3upportitng software. Zich 5BC has spare coun'er/timers which nay o?

used for reaL tLme counters, tiTers, or clocks to support the tineouts

required of the network .nd data Link layer protocols. lore detiled

3 7

.. .

.

. -....

0-'4

c 0
* IJ

" 'I-- -I'_ -I

.4I .

(I " -C

j J j " " I

1.:~~X Q. ..

r -4O m I 1

, ..

0U °

"-,-.% ,.:. -. .1 :.22.2-2 2.-.'...2..2.:.'..:.'-..,i.'-2, -..-'4,"-:-4 2.'...J ;-i... ...".2 ..i 2.2.i.2.2- ,",b':.,.-

±xpLanatLon of the BC nay be found In refereaces (46, 47).

Cne use of these SBCs elLoinates the hardware desiga,
linplementation, and hardware debug phases of an in-house design effort.

Che hardware reliabiLity of a known hardware/software nianufacturer, the

availability of the software development tools (a full screen editor,

Lhe PL/'1 coapiler, 3035 -and 8386 assenblers), the ivailability of PL/180

atid PL/136, both high order languages, anl the ease of hardware

- inson to support software expansion lead to this Lmplementation

,ieci[s [oa.

;onclusion

"his chatev zxpLained the hardwace design of the UNID II. fhe

pc3vLu (1:3tgcs (30, 73, 64) ere first reviewed to show the evolution

of tne design. The current design was then discussed in light of the
. e .ir. ,d1signs. The strengths and weaknesses of each design were

'i>. .e CnApt: r Four discusses t e UNI.) If software design and

-

3-

'
" " ' """p ' - " °-'-'"-"°'•%"-% -% % '""

IV. UIJND 1i -Sottware Desig n and Implementation

introductioni

fihis chapter discilsies the detailed design and iunplerentatLon of

the 041iD LI solt4are. Vile discussion is divided iato six sections based

upon the tup-down design approach: Developmeant Language Selection; UNIJ

11 Dita Structures; UNID IL Network Layer Softvrare Design; UNLD 11 Data

Link Layer Software Design; UL141 Hi Software Development Fools; e3nd 1JNfD

k [U Systen' Mlemory lA-p.

-Development Languag,,e Selection

Che davel!opmeat language used for the the TNID ii is a high order

1. afgU3ecalled PL/M, a subset ,,)f PL/1I. The choice- of a hi--h order

* language versus asseably language Eollows.' current sof tware engineering

L rinds: modula-1r ity , ease o f desiLgn and ima In tenaace , ease of

* uder~ar~dlgself doculentig ablity, well de[fined module- interlacas,

*co mind daIta nlid ilig and S ifljle p arameter pas slag. k 5n1311 i.-3scmoly

I.gml odule was used, however, Lu-i a supporting test p~rogra!n~ dile to

tne feit 'tiat th-e partLc'Jlir iaodule require nents 'were 33tisif i.2d by Ia

known .irin nd relt l ,inodlul2. Chap ters Five and Six address

testing Ia. E4rther detail.

Eha. cholce, of ?L/Yl is simply pragmatic: the compiler, other

sof tware2 tools, ind the devalOP sent sYSte n on which to run theni dere

aivatLAbl3 Lin thle kr Force lnstititeof TechnoI.Day cornputer networks

d-,!vilopmTent laibor.-tory. While both Pascal and C compile rs were!

aivatibLe for the 3035 proces3sor, neither iere aviaila for the

30)6/8038 proces-sors at the start of thi3 Investigation. And whLie both

-'-1:3C 31 and C coil1)e Oz3s-d ia fu tucre onhnncenents of the TJ I) ;,)f twir

developnent, tni author reco:mmends the use of Q inito id on P iscil

because of C's ability to ma nipulate data it the bit and byte level aia

tho -av-ailability of C oia many UNID host systems. Pasc I1 ca niot

idequately manipulate data at the bit and byte level. Manipulation of

data at the bit and byte level is required for the correct

interpraetition and ,iaipulition of infocnation in the data entity

headers. PL/A is nore than adequate for use oa the UAiD hardware, i.e.,

he 3S 344 and SC 88/45, however further Lmplemeatations of the UNIO

nay aot use this hardware and hence the software developed with PL/ is

'lot ceadily tc insportable to another hardware system. The reader :3

cautioned, however, that implenentations of the UNID software in any

language will require that the developer write the low level softwire

drivers for the USA[s/AOPCCs. The low level drivers provided with

aPscil and C coapilers typically interface to a host development system

operating system services which do not exist in the UNID soft4are. Low

level [/i software drivers may need to be written as well to support the

ardw-are serial link to the UNID.

U N[D ii Data Structures

As previously discussed in Chapter [wo, the main purpose of the

UQ[0 [software is to move informition [ron one point to nother point

in a tlnely ad orderly fashion. The means to iccomplish that end,

wnile strou.gly dependent on the syst hardware, is ilso highly

dependent oa the 3y iten software. The DFDs in A,)pendix A, while

outlinilg the ateps to move the data and iiplying a data structure, do

aot specify or ewpLiLa in sufficlent detailL how the data i3 to b..e

*),~nI ~.dor noved. Si ac2 tha Imp Lointa tI-o of th2 PL/A I Iin~ij e Pis

-4 2

.... -' '--- " -. -.--.- '--.- ' --- -................ ,..........-..* -. i..

ttie tf asily and efficientLy to indexed ICrays (56, 37) A nd prevLoui

iof tw ira I npl1,ntatLon offorts (29, 30, 64, 75) used indeed Arrays,

Indaied arrays were chosei as the data structure for tha input and

ou tou t bu f fers f ron and to the input and output serial per ts. The

ictuiL idexed irra.ys are ipaenented as circular first-in, fIrst-out

(FIFIO) queues. A FIFO linked list structure could also be used, ho.dever

dyiamLc aemory Alocattoa for the linked List in the PL/4 language is

not ivuil ml a ,nd the Ltmplamantatlon details of how to Laplement linked

Lists is not clear froA the available anufactuer's dita, therefore,

constdacahLe adJltLoaaL effoct would be spent developing this type of

.upporting software. Furthermore, this authors a<perience with Linked

Lists Ln the PL/I linguage is limited, further contributing to a longer

devVlopment Lime developing such supportitag structures. Where it was

more eff Iciant Q., terms of minimizing vamory usag, both for dati tables

and code size, and increasing processin speed, the dit is left in an

lr.at; sod 1 ooLat-r to the current data Is passed to the usl ;-, aoduies

(11).

Seniphores are used between the local 3.ad network SBCs io protect

critical reglons of executable code aid data ([3). Appendix E -xolains

in aora Mtail the rational fr use of the 3e3'aphor-s and which ccttLcal

cegons of code they protect betw!, a the local And net4orK sgcs.

Mne ,lita itricture relitLonships 13 iMpientad Ka the 2arier

deve)d ient .fforts (32, 64, 75) ira Qown in Figure 4-i. The hsNI

.Atructure is in [ide:ed array, or taoLa, 13 imiphiLd by Lhe VFis [.

I)oi[.\ (*N. There ir-2 tibles f or each rece iye (LCO:MR(, 4 OxRX) "nd

tr.tn; it (C')x, N NhxK) port ,mi well c.i n non table (LCN kFB, I4CH CS)

S-h 'ro 1 ' ,nory. ti idittion, the orL jniL doislgn k 2) Inclule I the-

. ..-.

tables (LCLCEB, iNNPTB between the receive and transit tables in both

the Local and nietuork modules. Fhe f igure iso shot-s the type of the

dat.- enitity (datajgram, packet, frame) In each table along with the :ize

of that data entity (128, 133, 135 bytes respectively) belod the tables.

Mhe original design, as well as the current it'nplamnertation, Allows ten

Aata entitie-s per table (32, 64, 75). rhe nuiaber of datai entitias per

c-012C i:- not based oni aay aaalytical techni iues or studies but ra ther

DLcked is -a reasonable number of entries per table for the initial

inpilflentatlons. Exact table! sizing Is discussed in the recom:rdnda tionrs

3ectlon of Chapter Six. rhe last pair of Linas indicate where th-e

ipplicabLa OS! lajar fits into the data structures, the solid lines

connec ting the tables indicate the data flow be tw aen the data

.- tr -I ctur

-)uIT" X

C7 'IPJT
rRLx

F n A SPORT i :'I.-*

5 .-AQ L AL. '

Figure 4-1. OriginLral 'INLD Dits i StrUc't11C,! .11ni FLOW.

p 1he rTnod if iedi (I ti i triic ture.-, is I ip L,2 -en ted i thi I s 1,2J2 lop aenit

4-

-2

ef fort -ire shIOwn in iFtgure 4-Z. rhe inde xed Irralys on Lhe transmit -Ind

receive buffers of the s-eril ports haive been r:!Liined. fhe rez~ztve

bufL! r~s are La ,,Ile rleiory aiva Llable to b,-)th processors whi te th

triasm Lt buffercs are priLva te to each processor. the local-to-local,

t~or-tonetwrklocal-to-network, and aet ,ork-to-Locil tables in the

origiiaL iiiplrnent-ition are not required and have oen eL Lnated. they

Inc eaa.3 both the size of the required code b)y virtuje of their size anl-d

t-ic rease tite proc essirig tine to rove the datn.

L___ -- LO 23Y N T) T (1

-- ----------------- LCU 3RX ---- ~
* -------- - ------ LC04,RA -

-' I TX

< TX)2T-

Ai-otr - -P LPWNTER ~ALDtr

,A 1P r ,P0N 'N

A7,'. 2 3/ 3ZI~33 -T

T7 i3 LA'

FL7gure 4-2. 11f i Data Structures and Flow

?oiatocs (LP;)INCFP, NP)IAfFl) to the current data el121nent to b'2

t'i.! (I a,.~ t ir1fl , .)acka t wird C c-ima) -ire pi mssd to th(e sijbord ma t.?

.30 f t 4aire a nodu les La orde r to n tIn L n t ze bo th p roc'a2-;., 115i - poed and code

size. en iphores (LSEM, NSEA) are used to indic ie when i data element

is ready to be noved. kppendix F e.plains their structure and use in

more detail. Data elenent movenent occurs only when :in element must be

oved Cron the receive buffer to the transmit buffer. Ns in Figure 4-1,

w[1 ure 4-2 also shows the type of the data entity in each table along

w ith the size of that lata entity below the tables. The last lines

indicate where the applicable OSI layer fits LIto the data structures.

[he solid lines conaecting the tables indicate the data flow bet4een the

datl structuces.

UJID I Network Layer Software Design

The basic design of this software nodule follows the DELNEr

-eqoIrenents elaborated upon in Chapter Two. The ccirr .25 Oatagca-n

orotocol das partially L[iplemented to gain a nininally working software

1'-odule (p.g., pass datngra!as and packets). The DoD s3tandard £CP/ 1

(3), 7) po otocoIs and a variation of the CCI[K.121 internet

~'I.....lng protocol (75:.Appen C) were irnple2meae ted. The , ariatlon Is I

ces-ult of stdying the X.121 addressing concept as pplied to the.

iddress ing s2 c e available In the IP protocol header. kAs the reader

a[lI recall fro..1Cher Iwo, the variant X.121 interne t iddressing

protocol is Wlbedded in the 32 bit source and destination iddresses of

the 12 protocol. ",One shoilA also recall that connunicatLon between

1i3yets Ls accoun)p Lished tihrough the infor ,atton In the datA n ei nent

he ilc. In ad-ltion, the LP, and its suppoting software in the UN4[0

.And host(s), beh.ve is half -iteways interf-ctlng two networks (37:Chap

)

[he balsic function of the noetwork lay]er is to icce~t datiiri~s Eron

. . .)

an attached host, determine the datagrArn destination fro n the [P

destination address, and route the datagram either to another host

attached to the same UNID or to the data link layer after constructing a

packet header for the data link layer. Figure A-I in Appendix A is the

applicable DFD for this level of inplementation. The network layer also --

accepts packets Eron the data link layer, interprets the destination

Croq the packet header, and routes the resulting datagramn to the

iattached host. X data dictionary is in Appendix G and conpiled listiags

are I,- Appendix It for the entire sat of software programs used In this

,-ffoct.

Figure 4-3 represent a prinitive structure chart showing the high

Level structure of the iietwork level software.

-~~~~r -n__ -a___ n___ ~ -~

roUC$in route$outl

Figure 4-3. Network Layer High Le2vel StructLir Chart.

0 Fi3urie 4-4+ shows the structure chart representation for the

cout;,.in procedue ind Figure 4-5 eliborates the coute$in procedure in

p].aln laaguage pseudocode. fhe 'do'-'end" construct is taken directly

fron the PL/,11 inguage to explicitly lelLneate a spe:ifi z,?lock of code.

The coastruct functions a':actly is the "hgn-Thnd" construct in

P i3caL. [he routein procedure routes dirat c,,)rn ri into the UNIO to Lts

-r ZSpective destination. [he first part of the code Ls r-epresentative of

47

.-

the code for each of the four ports on the SBC 544 board with the

addition of a differentiating number in the variable names to delineate

to which port the code belongs. The second part of the code is

representative of the code for each of the two receive channels from the

nlet4ork (data link layer) software. Again, differentiating numbers in

the variable names are used to delineate fcom which network port the

packet arrived.

destinalion I:Oxns destinations

destnafionddrS iddress

sreaddress 3£-
-,DesIr 31dddres

A

* i .:r (cowns) ortum .):COxrx I)cOns+5 ;

, Q destinati-nS

* I 44 '1, d'jress
IcOxrx(,O'ns) .er netrx-.

p,',rtnum

Figure 4-4. Route$In Procedure Structure Chart.

4-3

..

.
.

Lt 11 Lag rami Ii rtc eive buffer Chen
d o

* determine destination address
iE destination is back to loc1l host Chen

do
Move data-ram to local host transinit buffer

* adjust receive buffer pointer
e ad

eleif destination is to reilote host then

do
if network done then

send packet to netw'ork
end

eLse
do
increinent. error count
adjust receive buffer pointer
end

-2ad

If packet Eron network then
do
deternine local address
If legal address then

Move datagran to local hiost transuiit buffer
0 3eC aetwork 3erqephore done

N gare 4-5-. Route$ln -3rocodure 2selidocode

ifh~ deterine destination. addcaess k(14.2$.iddr) procedUre Lnterroga!tes

th:! inco cirig IF' datagram header to deterfaine the desttiuctfon for that

d-itagraRn. If the destination Is for a UNID other taan that 3servieing3

tiie currentL host, the sourCe address is also d2Leriainod. EhIs routing

[nfors~ i;coa 1 i vailabl? throug7h the! use- of global variibles for the

send.~pack t prcedure. T he 7sendipaC'Kt proc-adure builds The f ive byte

packet haader on the dAtigran Informrition, nov,!s the- pointer to :i

varlI iba Ic n share-d sys ten, nrory, aild Sets I s3ennofhore to the

appropriant state and incre-nents the receive table poitnter. Jttauls of

the iaof Salaphre fOr 200 nanicattLon be tweir the 33C 5 4'. and i3C

4-

63/45 boards are explained in Appendix E. If the datagram is destined

for a host on the same UNID, only the destination information is

determined. The destination information is then used with the nove to

local table (movetolocal) procedure to move the datagram to the correct

traasmit table. If an error exists in the destination information, the

destination variable is set to a nonexistant destination to indicate an

error in the destination. in all three cases above, the receive table

pointer is adjusted to indicate the movement of the incoming datagram.

If the senaphorc from the SBC 83/45 board is not appropriately set, the

received datagram is not processed and receive table pointer is not

Adjusted for local to network data movement. The datagram will be

interrogated again when the route$in procedure is next executed.

The second part of the route$in procedure determines if a packet

from the network is destined for a local host. if so, then the local

host port address is determined. When the host port address is valid,

then the datagrin .s moved from the packet to the host transmit buffer

Co transmission to the host. rhe se qaphore to the SBC 38/45 board is

thea set appropriately to irdicate the packet has been processed. Note

h-ac the semaphore is set to indicate completed processing even though

the local address may he in error. Furthermore, the incoming data is

not noved to any local trans-nit 5uffer if the locil address in the

packet header is in error. Similar processing occurred with the local

host to n;etwork movement; datagrans or p:ickets with incorrect

destination information are not moved and are effectively 'thrown away.'

rhe net effect is that bad data is not allowed to -1o through the UNI;

it Is destroyed.

Tha send;picket procedure fiLLs the packet header with the

4 - I-

.. ;
i'- - -o .-. . . - c. -. - ,. .• .. . ,, - , .,-. . -, .-.- .. : .- , . .•2° -f.,l~

destination and source Iaformation determined by the de ter-nine

destination procedure. it then puts the pointer to the current data

into a variable in comiotn system memory for the SBC 88/45 and the data

link layer software to read. A semaphore is then appropriately set to

indicate to the data link layer software e:ecuting on the SBC 88/45

board that a packet is ready for transmission into the network. the

buffer index is then updated.

the determine local address (det$addrSnl) procedure is used when a

packet is received fro. the data ilnk layer software destined for i

local host. The procedure interrogates the packet header to determine

for whnicn host the packet is determined. An error ia the packet

addressing will return a nonexistant address to indicate to the calling

procedure that the header addressing is in error and the packet should

not be sent to a host ;nd should instead be destroyed.

rhe .Iove tD local table (mnoveto$local) procedure receives a pointer

to the zurrent daagram to ,iove to the host indicated)y the deteriine

local address procedure. fhe procedure moves the lata tron the ro.o

sy-3ten ianory to the local host transmit buffer and adjusts the buffer

pointer 3ccordiagly.

The companion procedure routea$out detects if a datagcimn is present

ii the host transn-it buffers. Figure 4-6 is a represen-tation of the

ipplic.ibie structure chart.

Frou te$out5

output i ask
tr.snP it interrupts
request

Figure 4-6. :oute$)ut Procedure Structure ChArt i

4 -IL

disable interrupts
* f mask receive iJSAcT interrupt off

enable interrupts

ifdata-rain available and not sending then
do

* if rRrA$handshake and (not sending and not receiving) then
do
set transmit request true
set sending true
send transmnit request

end

if not TPrAshandshake or (sending and not receiving) then
do
set sending true
disable Interrupts
mrask transmnit USART interrupt on
enable interrupts
enad

and

Aisable intercupts
mask receive USAir interrupt on
enable interrupts

4 E'Lgure 4-7. Route$it ?rocedure Pseudocode

FL'igure 4+-7 sihows the pLai-n lingdige pseudo~ code tor the routtsoat

p~roc 2dure. If a daita-ramn I s pre sent, then the proc~idure nustc check

:e rta,-Ia 1o0l2e1n Efi.-s to d,.!teritlne Lt.~ sof twir handshaka i s in -ise

; I rh tlie ule.sired host. fhe terC,a '3ol tware hrandshake- is ised here to

:1112,11 the procass by' which tw~o comi unicitta.7 progra.-is courdinate and

~syaccoaize the s3ending or ceceivian, of i d-iti entity such as a

latalran. So-rne- 1)c3S~S y virtueo of their 1-irdwara2 3d .software

irchi tee tur * canino t receitve -ii t-13rali s(or ot"he r da ta :!nti ties) on a

randiii basis. These type of :systns iui;l, ise polled itiput/output

Schenes a3 opposed to interrupt driven I/J sche-ez!s. i'herif'ore, thts type

of s y.;t-, n canno t re 1L ibly receiLve o)r trcvis -iLt t n f)r c Lai n nti Li Lt L s

rea;dy to do Vo ne ;,1 ins, to co ri';inl i t to i i the r prOC 2- it)ir Lh i t Ilit

4 -

-..................- -' -. " -- . .1...-.

...........

traasnLssion or reception is ready to comTnence Is often accomplished

through a software handshake. rhe AFIf LSI-ii Network Operating System --

(AE[OS) is such a system (31, 72) and will be discussed in more detail

related to UNID 11 testing in Chapter Five.

Che software handshake mechanism can be described as follows. When

i host deslreas to send a packet to a UNID, it first sends a transmit

re,> e-J (11?) to ti-ia UNID. rhe receiving UNID then, when it recognizes a

[w a4s sent to it, will send a transmit acknowledge ([A) back to the

host when it is ready to receive a packet. The sending host, when it

recoganlzes the rA froa the receiving UNID, sends the datagran to the

receiving UNID. There is no final acknowledge sent by the UNID to the

host to acknowl2dge the reception of the datagram. The Ti/TA mecha

[he companion procedure route$out detects if a datagram is present

in the host transmit buffers. Figure 4-6 is shown in Figure 4-3.

UNID Host

Idle DatagLam to send.1 [a ."
Recv r. - ----------------------- Send TR

Wait [or rA

CA 1
Send [A ---------------------- > leov [A

Look for
Dat -5""ra

Oatagranat iigri a"

Racy Ditigram < ---------- - -- end Datgr am

Figure 4-8. UNID/Aost Transmit Request/Frinsmit c-nowledge Handshake.

The handshake mechanism is ilnpiemented Li the UNID LI softwire with

- 13

. ..-Qq .. . ° . . .°.° •° . ,.- ,- ° ° ..

fouL booleatn flags for each host port. Four flags are required since

both the host and the UNI will send and receive datagrams using the

*R/rA mechanism, providing a full handshake for each direction. The

1;*NID must know which state it is in so that it can com;nunicate correctly

with the host. The four flags are rrans nit transmit request (TKTR),

Fece.lve tcaaisrit acknowledge (RXTA), Receive transrnit request (RXTR),

and Transnit transmit acknowledge (XTA). Each flag has the value TRUE

or FALSE. The initial staLe is all four flags FALSE. Of the 16

possible states, the five -llowed states are shown in the truth table in

Figure 4-9. A '0' represents FALSE and a "1' represents TRUE.

xfA &XrA RKTR rXTA

0 0 0 0 Initial state

1 3 0 0 Datagram to send

1 1 0 O OK to send datagrxam"

L 1 0 Send the datagram-

0 3 0 03 Reset the flags atter

sending datagra.

0 0 1 3 Oatagran receive request

0 1 1 OK to receive datagram

0 0 1 1 Receive datagrac

0 0 0 R Reset flag after
receiving datagram.

Figure 4-9. UNiD TR/rA Allowable States.

Note that the nechanism starts in the all zero, or FALSE, state

ith no ratagrams to send or receive and riturns to the all zero stte

it the conplation of sending or receiving a dtagrin. Nlso, only ocle

4

process of sending a datagram or receiving a datagramn is .allowed At onle

tiLme.

If the 'handshake is present, then the boolean flags (nay only be In

c"tertain it-ites befora seniding the datagram, i.e., the UNID cannot

p transmit if it is receiving a dataqram from the host and it cannot

r ceive- a datagram If it is transmitting a datagraln to thz host.

AkppendiK F explains the use of the software handshake used in the NECOS

and In conjunction 4Lth LNID [I testing.

Note in Fig-uca 4-7 that the Interrupts are disabled Defore masking

"off" or "on" of a particulir interrupt bit. The Interrupts must be

disabled before changing the interrupt -nask as it Is possible that an

Interrupt could occur which would change the interrupt mask during the

ti-ne that the interrupt mask Is being changed in the route$)U--

procedure. Since the interrupt nmask could be changed by an Interrupt

procdurewhil? another process is attempting ocanetenak h

littor process is zhen a critical necon and must ae protected before an:j

maniulatioas of the Interrupt mask ocr(37) ute I~~so

of critil regions nav be Couad in Appendix '1and (13).

The COpaICio n procedures that cornmunicatae with the route$out

procedure usl!13, the software handshake are the tranismit and receive

Interrupt procedares. Cach of these procedures muIst be zapable of

Sending and rece~vnga &Ata r3-s correctly depending on the particular

Stlt!)fthe rR/ LA booilan states. The procedures -iust, in addition, be

capable of trans-fittting and receiving datagrams from a iiost that does

aot require the N,/CA handshake. The plain languag-e pseudo code for the

9 receive Interrupt Is :3flJwata i Figure 4-1:) and the for the transmit

Lnt~ri:uipt ii shown in Ft'igure- 4-11. Note that the cod.!, along, with the

4 -15

co .le of th,- ro'ite$out proceduc.! La Figure 4-7, imrplements the logic ot

L1h- four boote!in '3rtlb012s in the truth tibla in Figure 4-9.

if (knot trtai) or ((rxtr and txta) and (iiot txtr) -in d
(not CKt-i)))) then

do
put rece ived ch-aracter in nt empty 'bufter spice
incremieat cec.!Ived chlracter count
incrtndflet receive buffer indtex
If rec.?I.ved character :oun~t = ditagrra size then

di'

adjist polnt~r to next datagramn area
if receive buffer index >= max index then

reset Index
reset re ceive character count
reiat rxtr rulse
reset txti fal.e
reset send false
end

If trta t h.-n
do
I f receive character transmIt. acknowledge then

&If ((ty tr 3ind (not rxta)) and ((not. rxtr) iad
(not txt.a))) then

do
set cxKta true
reset s-end f3l32
and

if receive character = transmit request then
Uif (((not r-tr) and (L-ot txta)) and ((niot txt) md

(not rxta))) thea

set rxtr true
set txta true

* set send true
serid ta to host

adn

cleic lancript

Figure 4-10. leceLve Enterrupt Proceidure

flue imnptlC'etation of the four boo Lean variables :,rrintees thIt.

the so0ftwac, will be 2:cut- d kexa:ctly -iccording, to the logic In tiie

truth table. 4ote also that the routine counits the number of bytes

received and ince!ments the index in the buffers. When a full datigra,

is received, then the pointers and rW/TA variables are adjusted for the

next datatirain reception. fhe variable send is us.ed to guarintee that

the software does not attempt to send a datagram when transmission of a

Iat.grain has already begun. This prevents the UNID from atteipting to

send the a;ae ditagram ,nore than once before a slow host can r.spond to

the Initial datngramn transmission.

if ((not trta) or ((txtr and rxta) and ((not rxtr) and
(not txta)))) then

do
send next character to host
increment transmitted character count
increment transmit buffer index
if number bytes sent >= datagram size then

do
nask transmit interrupt bit off
reset transmitted character count
if transmit buffer index >= aax index then

reset
reset txtr false
ceset rxta false
reset send false
e nd

end

clear Lnterrdpc

Figure 4-11. rrans nit Interrupt Pcocedure

.NID II Data Link Layer Software Desi&n ..

Ehe ,ba3ic design of this software nodule follows the DELN.Ef

requ[r? nenti -iliborated upon in Chapter Two. The cCLir '(.23 LAPB

standard (23) was Inplenented Ln previous work (29, 32, 75) with one

variation which 4-is retained In tnis work. Che variation rel-ttes to the

ti nber of unackno.4-dg,-'d f ra,1s the data I iyer link sof twire wiLl allow

4 - 17

2'

b~forei retLranisrnittin- the n-ect CrAmt- to 3and. Che fAPB standird allows

trebit,,, or eight Crames, for use with its Sliding dindow protocol

.3 7 :14 3-15 3) Uha irpl.eentattonq Li the previous aork use only one2

* bit irid illow only ot-L unacknowledged fra e oore retr.insmission in

ocder to ,aia - iiillilly working software modulz! that passes francas

corr2ctly (29, 32, 75). Che use of one bit in this protocol is kaown is

io-ie bit slidlag wi-,do-w protocol (37:131). This -,ork fo)lows previous

t ork anjid ii-;e s o nIy onea b it a ad onei u n a ckaow 1 22d -ed(ra m e b e C o r

re traa3M is-si Lon. As Lin the network layer, c,)nuntiratoas be tween La-yers

is sccomolished thr:oughl the hteader inforiaition, in thi3 Ca3e with tile

packet hoader.

th-e basiic Cunc tI,-n of the Jata 1lak l~iyer Is to iccept E times froil

the ae twork ,ai rouit.e -themr either to the network layer or to ano'ther

Ini ateewr n(I 3cce pt pacK3 ts f ro.n th, .e etwork Iaye r and rout-2

-~ o te ie wor. oquna .L~ ad low conitro)l between JYII11s Iii the-

twr i3 don IAt ti "I yeifr. F i gu re -A-I1 i Ap peal 11: A thQ

ipp 1 Icaole DFD tor :bhsIS vi !V-.Of irplen-IentaItio)n. The data d ictioaary ti

A~oad C' olth .')piedLits L-a Appendix it cokntalai Ithe eai

inpi.e-aetnt ton of trils sot tw3re odle

Eigare 4-12 rrsnsa prii'itive- structure chart :sho)ia the high

1uevel structure of th-e 1-ata Lin-, Layer software. Packe ts amid f rone, s ire

r0u u~d in to And Out ofthe UNID it Th-!is l1y2Cr.

Lf _ - -n

, t =erouteout

Figure 4-t2. Data Link Layer High Level Structure Chart

Figure 4-13 shows the structure chart representation for the

rmteiin procedure. the "do--'end" construct is taken directly froIa the

PL/IA language to explicitlj delineate a specific blozk of code. The

construct functions exactly as the "begin--'end" construct in Pascal.

LEoute$inj

I Ti I
t:b _L2iuia framne$hdr tabLenuM tabLanurn

I input~seq 0 '

$bit ta h ?5nun

r
!itl tacK je t$,jes t$twoj 1)uild3framei . d ab$hskp Fsvc-tab$

hsp

Tram e hd r table$num taole num

det~iest~nl] uil ra~Ee zindLlfrane

Figuce 4-13. 7Ioutealn Procedure itructuce Chart

- , 1': - .

[a frr-ie has been received froia aetwork then
.] do

if the frame is a supervisory frane then
do
if the sequence bit is true then

do
3et this sequence bit true
if tiis sequence bit equals transmitted sequence bit

then do
toggl_ the crnsnit sequence bit
initialize the icknowledge variables
and

e nmv!
eSae

do
set this sequence bit false
if this sequence bit equils transmitted sequence bit

then do
toggle the transnit sequence bit
initialize the acknowledge variables

end
end

end
else trame is an infor-matLon frame

do
determine destination of information frame

0 if destination is network to network then
do
if frane sequence bit is true then

set iliput sequence bit true
e

set input sequence bit false
build a supervisory frame

oove frame to transmit buffer
service traasmit buffer pointer

end
if de;tination is network to local then

io

if frame sequence bit is true then

set input sequence bit true

,eis a
set input sequence bit false

"uil a s3upervisory frame
si-vve frane to loc-al buffer
service local buffer pointer
end

end
end
.service receive buffer poLnter

'nd

Fi:gure 4-14. Prout.$ [r 2rocedire Pseudocoda (Ptrt I)

• 4.-

.°.-

Figures 4-14 and 4-15 elaborate the route$in procedure in plain

language pseudocode. Figure 4-14 represents the software for one of the

two UNID 11 data channels communicating with the rest of the network.

Only one set of channel software is shown here for clarity.

In Figure 4-14, the software determines if a frame ts in the

receive buffer. T4hen a frame is received, the frame header is

interrogated to determine if the frame is an information frame or a

supervisory frame. A received supervisory frame is, in this software

implemeatatioa, an acknowledgement from the next UNID that an

information frame has been received correctly from this UNID. Other

supervisory inforrmation may be coded in the frame header however these

features were not Implemented ia the current work. A received

information frane is data from aaother UNID destined for another UNID or

a host ittached to this UNtD. The supervisory and Information frames

aust he detected first before the destination of the frame in order to

correctly determina the disposition of the received frame. An

Lnfocanation frame is not intended to be sent to the host attached to the

jiD. Che sequence oit is interrogated to determine its state. If the

received sequence bit is the same state as the expect.ed received

sequence bit, the information frane received -t the distant UNID was

received correctly and in order is denoted by the .atching sequence

bits. If the sequence bits do not :natch, then an error has occurred ia

the traasa itted information frane or the received supervisory frae and

this UND jill retrans ait the informaation lranae to the distant UND.

W4hen the received supervisory frame nitches the ,expected supervisory

frame, the sequence hit is toggled to Its next state ind the acknowledge

varLables are retnitialized.

4 -2L

.

When in inforiaation f rame2 is received, its header is interrogated

f or cits des tination and the received sequence bitL. Fhe received

I nf or -a t ion f ramte nay go to :iao the r ULN I o r to ail a t tactied ho st. In

z ither case, a supervisory frame is generated to the sender using, the

3equenice bit received in the infornation frame header and the frame is

n,.oved to the next buffer. Niote that tae UNID is not responsile for end

to end sequencing; the U1ID is only responsible for 1JNID to UI~D

.3equenc in-. If tha sender did not receive the acknowledgement in the

supervisory frame correctly, It will reseand the same information franc

and the UNID will acknowledg-e accordingly and move the received

inf ormaation. It is the responsibility of the transport layer software

to Insure that seq~uencing of the information is correct frona the network

before- passing information to the att-iched host. Notice that if the

received frame header is corrupted and the software cannot determine if

to

the Fran is a supervisory or Information franc, the buffer pointer Ls

adjusted for the deest frni ane d the frame just received is effectively

deqtroyed. bhis type of interrogation keeps corrupted frames from being

boed throughout the network taJ to the hosts.

Figuren 4-15 is the plain language pspudacode for lhe second oart of

the rouN$ih procedure.

-22

[nforiaatioil.~~~~~~~~~~~~ It[h epniiiyo h r-sotlyrsfwr

if packet has been received from network layer then

do
determine network destination

if destination for channel 1 then

do
determine If information in transmit buffer I
if no info fratae in transmit buffer then

do

build an information frame
service local buffer pointer

end

end

if destination for channel 2 then

do
determine if information in transmit buffer 2

if no Info frame in transmit buffer then

do

build an Information frame

service local buffer pointer

end

end
end -"

Figure 4-15. Route$1n Procedure Pseudocode (Part 2)

Nhis section of software determines if a packet has been received

lor transmissiont into the network. The paclket header is in~errogated to

leteriine its lestination. The network transait buffer !s then

interrogited to determine if an unacknowledged information fraine is in

the buffer destined for another UN!D. If an unacknowledged i ociatlon

frame is in the network transmit buffec, then the packet is not lioved

Into the network transmit buffer. It will be left untouched whiere it is

until the soft,4ire reinterrogates the local to network buffer. If the

network traas-it buffer does not coutain an unacknowledged information

frame, tiien the software builds an infornation frame and moves the

packet and frame header Into the network transmit buffer awaiting

transmission to another UNID. Routiag determination to either channel one

or two Is simply deternLned by tha shortest path to the destination

4 -23

...\'.,, ..- ,..... * ...

NID. The routing calculation is very simple based upon the fact that

the UNID network architecture is a b-directional ring.

During the revi- w of the data Link layer software from previous

work, several implementation errors were detected. For example, the

received frames from another UNID were first interrogated for their

destination rather than their infornation or supervisory function. hi s

,!rror caused supervisory frames to be generated for received supervisory

frames. Since the supervisory frames would be acknowledged at both

UNIDs ad infinitum, the network would quickly become overloaded with

supervisory fraines and the network would cease to function. This error

and others are discussed in more detail in Appendix B.

UNID II Software Development Tools

To develop the UNI) Il software in a reasonable length of time,

'oo:rtaiu software tools were developed. The tools were used nainly In

the testia area and are discussed here as they relate to the overall

.3oftware ,esign of the UNTA) [I software development. Det-iled

descriptions and use of these tools are discussed in Chapter Five and

cooaplete listings are in Appendix q.

3oltware was developed on the host Intel Systen IH to slimulete

both the network 3ad data link layer soft,are. Each of these

sinuLation3 allow-d the operation and validation of the UNID I software

oi the software -dev-lopment system where it was relatively easy to make

software changes in order to correct errors in design and

inpiementation The main thrust of this development was to use the

propo-ed wperational ;oftware with the ability to insert test dat~grains

into receive buffers to siLmulate the reception ot a datagran from a

4 - 24

7.,-

Lhos t. fh.! softwqire has a sof tware loop fro.n the transdiLt side back to

the cecelve buffer to show the simulation of the action and response of

the network. [he datagrarns, p-irke ts and Eranues were observed to be in

:-ert-iin buffers at certain points In the programI execution, thereby

valdatiL1g the fict th-it tne datagran, packets and frames were correctly

1:oU te d. M'e cce1&vel datagram, packet -ind fraime were displayed on the

12valopi-nent syt a t,) cont Lr1q thit the lata entity did, in fact, r.2tura

to Lts3 origini. Figure 4-16, similar to Figure 4-2, shows the the data

.;tructurea and flow used'1 or the aatwork .ae tnlain h nee

-irriy ines, potrster tian'!s iad 3elaiphore aames are identical with those

i3el i-i Flasre 4-2.

4 25

_ _--- -- LC0 1RX
LC02RX
LCO 3 tX
LC04R.(

].~~ CO 2 EX_-]]

<" LC03T'rX NTjlax

--LC04 EX T02RX

'Lptr -- > LPOINTER -- > ^Lptr

Ready -- > LSEM -- , Ready

Done "-- -- Done

"ptr Q-- NPOIlER <--:I[)tr

Done -- > NSEY -- > Done
Ready (-- <-- Ready

A rAGA RA DArAGRAM/ PACKE f /FRAME FRAIE
128 8frES 123/13:/135 SYFES 135 BYTfS

CRA NSPOr NE r'OR K DATA LINK
A L\ER LYER LAYER

Figure 4-15. UNLD 11 Network Link Layer Simulation
Data Structures and Flow

Figure 4-17, similar to Figure 4-1, shows the data :tructuce and

flow used for the dita link layer si.lulation. Tha indexed arrAy a ames

and pointer names are identical with those used in Figure 4-1.

4 2

.-..

..

t 17 1ry

1336 r~ES L35 BYTES

A EC "OAK D.XLA LINK PMiYSLCAL
L- KLAYE{ LAYER

Figure 4-17. UIDf 11 Data Link Layer Simulation
Data Structures and Flow.

The devzlopmrnet syitnn hlost operating system call3 were used for

th2 operator tinteractiLon and console 1/0 required of tile simulationt.

rhis aethod saved the t.,s-ie and effort of programming EPRO'Is and

ittempting software validation on the target hardware SBC. Once tile

.o --wace was validated to show that it did, indeed, coute- datagra,1s,

3aICketi Irnd rinsCOrreCtly, it was transferred to EPRO>1s mid ln.3tallad

)a he it~tSBC dith thle -appropriate h-r'ware lnitiali-7atioa

U~oner softwar-ie program .ias developed on the Systain III for use on

a host procassor 3ystemn to transmit and receiv..e datagcams between the

homut and the UJDJ I[at thle network layer. The 'host uised Cor thle 33C 544

tntt.rface was the a CP/1 .30 system. This host was chosen because the

simulation software on the CI systerm- could be aasiLy developed in

PLIA30, the soft-dare could be debugged oni the System LEI software

!evelop.anent system, the hardware interface between the UNID 11 and the

~2/1sysem ~stelad la1st but not lea1st, the software wouid 2.(ecute

onl the ie/Al :iys Lt m W Ith the rippropri a 2t IntL2rf ace to the 1/0 and

.4

. ***.~**J

operating system. rhis method was used with the S13C 544 board and could

be used with the 3tBC 38/45 board simulating the UNIt) to UNTOI initerface.

'~his software validatIon method and system were essential to further the

validation of the UN4ID 11 sof tware. fhe UNIt) 11 software could then be

excerctsed in A inore realistic operational environment wher-i the errors

of design. oversight and real time operation could be 2xcercised.

k !aoriLtor prograin for the SBC 344 was developed frcon -a inonltor

available [or the S3C 36/12A board. The monitor was Installed in EPaOiM

and proved Invaluable in the initial checkout and functional operation

of the S8C 344 board. The paper tape read and write functions were

deleted as these functions were not needed 'or the SBC 544. The display

of nenory data was modifiad to Include an ASCII display of the metaory

da ta. A fill a block of netuory with a constant function wa3s also added.

[he s3ame monitor used for the 33C 86/12A board may also be used for the

SBC 33/45 board with -minor aardware tinitializ:Ation changes.

;NID 11 System NeLMnrl MIaP

[he systern -naaory nap is importanit because it is necessary to

insiura that the tables, pointers ad 3enap'ores conaon to both the SBC

544 and 3BC 33/45 boards are correctly positioned and known to the

aietwork and dati 11iaK layer software executing on eaich booard. Each

board has its owa IAYI, part of which is capable of being nipped into

whi*t Intel calls tae 3yst--.n nemnory. System- namory is thait -aetory, with

its own local board address, that Is physicailly re sident on a 31ven SBC

which is also napped onto the inultibus Laiterface as nenory available to -

any BC nthsa nutb. [h ne iory address -mappiag on the

iauLtibis is the address that thit section of 1AA occupies in the syst2m

4) '3

memory. When a processor writes into a section of local memory which is

ilso ,napped into the system memory, the data which is written is also

changed at the corresponding mapped address in the system memory. When

i processor reads from .a section of local memory which is also mapped

into the system nemory, the data which Is read reflects the data La the - -

Locations from the corresponding napped address in the system naemory.

he systemn memory ;nap used for the U.ID 11 is depicted in Figure 4-

B.. Ii- addresses are shown in the hexidecimal number base (hex). Note

that the SBC 544 only has an addressing space of 0 - FFFF hex while the

system memaory and SBC 33/45 have address spaces of 9 - FFFFF hex.

4

- 2')%

V .~..

SBC 544 Ad ress S/stem S3C 88/45

lemory Loc3 ' S st3im 1enMry 'Aerry

----------- -----------

Data Link

I Layer

I I I Software

I I (EPR0OM)
IFEOS

I II

,' / //
I 14000 I I

S--
I I

12000 1 -I
SBC 544 Has I 'hri)n ToDes, I

No ternory Above I coiners,
FFFF 10000 1 Sema3phores I

--------- ------- +---------------------------+---------------------

II I

Not I ; 1 I

Used I

-- - -- - --4- - - -- - - - - - - - - - - - -- - - - - - - - - - - - -

I O 0 I 0 I I

I'.33Dork L 3,/er I. L

I TblLs, I

.. o Lnters, --- I -000 i I

1S.,maprhores I I

(E; W4) I 0.300 I 3(3000

-------------------------- -4---------------------------+---------------------+

7,44 -cra ,:hp'h R,'41 i F:',] I I I

1tQ3 .4003 1

. -) I l. 'a L .i.nk

I Livyer

5ol f tore s Tibl es,._- •

"(EPROWM) 0C00 I I .0I.0

F u c a 4-13. {JN[ID 11 ,enocy "lap

4" lo

., . . .0 .. ,

The common tables, pointers and sem iphores are In system m2 mory

between 10090 and IIFFF hex. Fhe SBC 544 can map 1000, 2000 or 4000 hex

of its available 4000 hex memory onto the multibus at even 1000 hex

boundaries (47), but only 2000 hex is required to be napped into

system nenory to accomnodate the comnoa tables, pointers and semaphores.

The phys ical &AM for the common sof tware parane ters is on the SBC 544

Doard and must be there because the 3035 processor space on the board

innot .each to the 13000 hex ind above addresses and therefore cannot

read or write above FFFF hex. The above memory napping is also useful

durlog the testing phase as it allows another SBC to view the SBC 544

1aeoory coatents. This feature is explained in more detail in Chapters

Five and Six.

£he SBC 38/45 board, however, can reach the entire system nemory

spaa as its host processor is the 8088. This arrangement allows access

to shar-ed system memory by both boards. rhe SBC 88/45 board caa nap

either 3000 he.x or aone of its available 4000 hex ,nenory into syste,.

me aJry. No 33C 33/45 board memory is !napped into system memory for this

design. Che SBC 83/45 bo-ird :einory could be mapped tato a-ty section of

systen ., nory not otherwise used by another board on the -,ultibus. It

is reco:,:nended by tnis author that any SBC 33/45 board memory mapping be

above 10000 hex. This allows another 33C, such as the SBC 6/12A or

36/30, to view the menory of the SSC 33/45. rhis feature ii extrenly

useful for troubleshooting problens during the testing phase, -s further

e<plained In Chapters Five and Six.

rhe 'P1O3. for the S3C 544 resides in the local menory at 0 - IF".

hex. Uhe 2000 hax size Is the naximun for that board usi[._ two 27 32A

EPRO,-Ms. fhe ZPR01 for the 33C 33/45 hoarJ Ls at FCO00 - FFFFF her. rhe

4 - 3 1

• . ° - - % .° -.% % - ° .. - .. % % % -. °- -•. ,...-.-...-..-...............•.....................•..........-.........-......•..,............-..."............ .

4000 hex size, wniie not the maximum of 3000 hex, is adequate for this

-ipplication, rhe board uses four 2764 EPROMs.

Conclusion

ihis chaptar dLscussed the detatlad design and implameatation of

the UM4D [I software. The discussion was divided into six sections which

included: Develop.mant Language Selection; UNID 11 Data 3tructres; UJID

[I 14aCwork Layer Software Design; 1InIt) [I Data Link Layer 3oftware

Desig1; UNIO 1[Software Development Tools; and UNID If Systein Senory

,lap. Chapter Five discusses the UNID LI testing philosophy aiii design.

4 3-

- n..lki...t? .~~ t. - -

I

V. rest Philosophy and Design

Introduction

This chapter outlines the test philosophy and design of the UNID [.

3oftware and hardware developed Ln this reseairch and development effort.

Che basic test philosophy is discussed first, followed by a description

of the overall test design. The major diagnostic test tools used for

testing are then discussed followed by a description of each of the

testing phases. resting results are included in the discussion of each

phase of testing.

Test Philosophy

Fhe overall, philosophy of -nost any test is to "prove', by 3o:.ie

specifiel ,nans and tools, that a certain specified event does, does not

0 or to some degree occurs. the word 'prove' may take on many meanings to

:nany people. 'WhLle some desire to see a detailed .,athematical tretise --

to pr)ve a hypothe3is, others are satisLfied with a nore prag".atic or " or

economic approach of observing a demonstration as a means of "roof

In so-m definItLons, the formal mathemlatical proof is ca !led

veritcation while the more economic dem;ostrat~on is called ;validation.

Validation also provides the developer and user with some Level of

confidence that the iten iader test functions as desired. This effort

uses the validation approach because of the cheiper economics to

da,nonstrate the system works as described coimpared with a d2tail-,d

mathematical proof that the system works as described.

,ihile most design efforts begin with i top-d:own approach to the

,artlcjLar proble3, using step-wise refinenent techniques to finalIy

'-'.- chleve a trac table ,olutton, i considerable ! otint o ttIi effort '-"

5 - i t

bV

begins at the bottom and works its way to the top. the testing of the

UNID 111 hardware and software takes the bottom-up approach. The

approach follows that often used with software testing, specifically:

.module testing, integration testing, and overall systems testing. While

there are many testing methodologies, such as static and dynamic

testing, applied to three phases of testing, the general methodology

used in this effort, in following with previous testing efforts (75:3-

L), will he path testing. Boundary condition testing, while i:portant

in its own right, was not emphasized during the testing. Some boundary

testing md provision for display of the boundary violations is provided

in the software design itself and available to the tester.

Overall Test Design

Since the iltimate goal of the UNID II is to provide the

comunLcations aedia for host computer systems, the testing is oriented

towards the validation of host-to-host coin-aiunications through the UNED.

To that end, UNID Ht testing was divided Into five phases. rhe testing

began at the lower level software ,nodules and progressed to the larger

rogra.ns which integrated the lower level ,nodales. Both of these phases

used the Intel System III and simrulation es the test venizl.?. the

third phase was involved with the interface and preiiminary system test

Jf the 3SC 544 with a simulated host on i -P/ systen. [hls phase

involved the use of the operational softwmre on the BC 344 and

s9 nuation softra-re on the CP/A host. The fourth pha3e 4as i system

test of the S3C 544 with the LSI-lI NE[OS. [ha SBC 544 with operational-

softwire, the host C/I systen, a display terinal, and four if the

nodes in the LSI-ii 'EFO)S w .re the test vehicles. [he fifth ind Wlt

..

phase was to connect two or more UNID Ils In their operational network

configuratLon and attach host computer systems to the UNIDs and conduct

host-to-host communications through the UNID network.

Only the first four phases were conducted. The fifth phase was not

conducted because only one UNID 11 was available for developmnent and

test. As more UNID It hardware is acquired, this last phase is the next

logical step in the development, test and operation of the UNID II in

the DELNEr.

Major Diagnostic Test Tools

While the test philosophy, design and methodology outline the major

steps to determine if an entity is operating properly, the test tool is

the basic instrument used to implement the actual testing. Path testing

-s the major methodology used in the U'ilD IU testing to determine if the

~ e oftware was operating properly. Path tasting essentially shows that

th2 entity under test follows a desired path while traversing so'ie media.

froi, its source to its destination. To impliement the pa-th testing

nethodology, three major liagnostic tools were developed and used.

rhe major diagnostic tool used for path testing in this, and

previous work (64, 73), is to insert diagnostic messages at strategic

Locations In Lhe various software nodules to show that a process or the

data did, in fact, follow a certain path. The diagnostic messages are

typicaLly displayed on a computer terminal attached to the hardware

under test or at the terminal of a development system, as dictated by

the particulir test. When a message is displayed when it should be

displayed, tha observer is assured that the software under test did, in

Clct, follow the desired path. If a massage i3 dispLyed when it should

..

not be ,]spL-ayed, the observer is assured that the software traversed an

rd Incorrect path. If a message is not displayed when It should be

displayed, the observer could conclude that a problem exists in the

hardware, software or their own perception of when the message should be

displayed. The lack of a displayed message Is not conclusive proof that

a problem exists in the softwace as other conditions may exist to

prevent the display of the message. The observer needs to look further

it the conditions of the test, or even generate other tests or

diagnostics, to determine If the software is at fault.

Another major diagnostic tool used in the UNID IL testing was to

use the monitor program on SBC 86/12A with the SBC 544 to view the data

tables, variables, pointers, flags and semaphores in the SBC 544 me nory.

As the reader will recall from Chapter Four, the memory of the SBC 544

was mapped into system memory for two reasons: to pass data, pointers

and semaphores to the SBC 38/45 and to allow an external processor to

view the nemory contents of the SBC 544 during operation. rhis tool ,was

usied where it was not feasible to insert diagnostic messages, such as

attempting to display the contents of a large number of variables or

data, as well as to view the memory contents during the operation of the

UNID [1. The ability to observe the contents of the variables proved

to be Invaluable while attempting to trouble shoot software that did not

work as designed.

The last major diagnostiz tool was a CP/A system used to simulate a

host to the UN[D IL. This tool's advantlge lies with the ability to

send and receive datagrams from the UNID U[. [his ability -allowed the

UN ID [[to be tested la a more reil tine environment aad provide a ..iore

real[stIc test of the UNLDl ;I f twre. [his tool wa- chosen because the

. . -

. ~-. -..

system was readily available where others were not, the simulation

software was relatively easy to develop, the RS-232 hardware interface

to the UNID 11 existed.

Phase One Testing

Only a few of the low level software modules from the original

software (64, 75) were tested on a module basis. The tested modules

were related to the display of the diagnostic path testing messages on

the host operating system or other display terminal. A small print

program was developed to validate the correct interface with the ISIS

operating system calls. Messages were typed at the operator keyboard

and then displayed on the ISIS terminal. The remaining modules had been

previously tested (75:Ch 3, Ch 5) and were assumed to be correct with

the exception of Implementation errors during the software conversion

from PL/Z to PL/4.

Phase Iwo Testing

A simulation capability was developed on the soft4are development

the intel System r[I, which allowed the development and test of the

individual modules through the fully integrated, single board computer

level programs. The simulation method allowed the functional validation

and testing of the fully operational software on the developneat system.

When che validated sot tdare was then installed on the single board

computer, it was known to correctly receive, iterpret datagram, packet

and frane headers, and route the data correctly siace it had just been

validated via simultion with a large degree of confidence that the

software functioned properly.

[h Is s Im-u L it ion c ipabhi Litty w -is d e Lde] u pon be c iu se tit w is

55

"simpler' aad fore time efficient to test the software functionality

before installing the software on the single board computers and testing

with the in-cLrcuit emulator (ICE), the ICE 86A, the CP/M system, or the

N Ef0S. There was also no ICE 85 (40) available for the SBC 544 board

during the testing period. In addition, the iCE is used mainly for new

designs where the hardware is designed and developed from scratch and

does not use off the shelf single board computers. The simulation

capability allowed the testing of software nodules where incorrect

software functioning could be readily detected and corrected without the

necessity of executing the unproved software on the target hardware

system. Experience with the systems showed that software changes could

be readily made, the program recompiled and retested in approximately 10

to 20 minutes where similar changes for the target hardware required 30

or more minutes to complete.

The interface of the programs 4ith the System III required the use

of the ISIS operating system calls for message display and operator

keyboard interaction. ppropriate software procedures were developed to

insert datagrams and packets in the buffers of the operating software

*and to display the contents of the buffers. Figures 5-i and 5-2 show

the operating software data flow and the software loops. The labels are

the sane used for Figures 4-1 and 4-2.

In Figure 5-1, datagrans were inserted in the LCOIRX receive buffec

with operator options allowing the choice of destination and number of

datagrams. The destination was chosen by selecting a UNID number. The

operator then had the option of choosing the lestination port by

selecting a host code between 0 and 2i5. the network ltyer software

'-. then routed the datagram through the tibLes and displayed the received

.'°""•'-

datagram on the simulation terminal. 'rest point messages displayed to

the System III terminal were embedded in the software In each procedure,

and in some cases, within the if-then-else and case statements to

validate the execution of a particular section of code.

LC02RX

• i CO2TX -------

.L 4rzlTOa

Ready--> L -- > Ready
Done <-- -- Done

Nptr <-- [iP:O:ITE R <-- "Nptr

to Done F--> --- > Oone
Ready <-- <-- Ready

O1'AGR Al D AT kGRAN/ PACKET/ FRAME FRAME
123 BYfES 128/133/135 3YTES 135 3UYrES

[aANSPORT N ,E rWORK 9NTA LIK-
LAYER LAYER LAYZRt

Figure 5-1. Network Layer Simulation Data Structure and Flow

The test datagrams were simple messages with a modulo 10 datagram

counter imbedded in the datagram. rest nessages were inserted at certain

locations where an out of range error would occur to advise the operator

that an error had occurred. This is an example where boundary testing

was designedl ,ito the path testing messages. The IP header was also

displayed for troubleshooting and validating that the 3oftware did

5-7

....................................-.-. -

manipulate the header as and when it should. A software loop from the

transmit tables to the receive tables simulated communication with

another UNID through the data link layer and DELNET. Datagrams were

inserted in each of the four receive buffers with each of the transmit

buffers as their destination. This test was successfully accomplished

both In the local-to-local host communication and local-to-distant host

communication modes.

The same type of testing was used with the data link layer software

shown in Figure 5-2.

Nr02RX "l i'

PACKET FRAME
133 BYTES 135 BYTES

ANETWORK DATA LINK PHYSICAL
LAYER LAYER LAYE,

Figure 5-2. Data Link Layer Simulat-on Data Structure aad Flow.

Packets were inserted in the LCNTTB buffer with operator selected

destinations and number of packets to send. The receive test packets

were read from the NTLCFB and displayed with their modulo 10 counter to

the operator on the System III terminal. In this test, the test

messages were also inserted in various strategic locations in the

software as with the network layer software. Test messages were also

inserted at certain locations where an out of range error would occur to

advise the operator that an error had occurred. This is another eample

..... *.... ,".

where boundary testing was designed into the path testing messages. The

packet and frame headers were not displayed as there was no need to do

so. The test messages showing the flow of the datagram sufficed to

validate the software. A software loop from the transmit tables to the

receive tables simulated communication with other UNIDs through the

DELN4Er. This test was successfully accomplished through all the

tables.

The simulations on the System Ill were conducted with the actual

operational software that would execute on the SBC 544 and SBC 88/45

single board computers. As errors were found in the design or logic of

the original software, appropriate modules were corrected or rewritten

(nd tested both on a module by module and overall program basis. The

implementation errors from previous work are discussed in Appendix C.

Phase Three Testing

Phase three testing consisted of testing the network layer software

on the SBC 544 with a simulated host on a CP/M system. As previously

mentioned, the data link layer software was not tested on its host SBC

88/45. The simulation software was nodified to delete the iSIS

operating system calls, install the procedure that displayed messages on

an Heath H]9 terminal attached to the SBC 544, and install the

procedur.s to initialize the special purpose large scale integrated

circuits on the SBC 544. Once these steps were accomplished, the

software was compiled and programmed into EPROMs for the SBC 544.

Programmsing the EPR01s Involved the use of one of two EMO" programmers

for the two different EPMOMs used. kn Intel EPROM programmer (60) wa s

attached to a 3econd Intel system, a Systen 210. A software program on

5 -9

...

I7

the System 210 was used to program 2716 EPROMs. A Bytek EPROM

programmer (8) was attached to the CP/M system to program 2732A EPROMs.

A communications progran on the CP/M system downloaded the softwara to

the inteilegent programmer to program the 2732A EPRQOls. Software

transportability between the System II and the System 210 was

accomplished with single sided, single density ISIS formated diskettes.

Both Intel systems can read and write single sided, single density

diskettes. The above procedures were developed for this test as there

were no prior established procedures.

Two different size EPROMs were used because the initial testing in

this phase used only one receive and one transmit table for the network

layer software and did not require a large amount of memory, the

interrupt handling procedures for the SBC 544 needed to be developed and

tested, and the 2716 EPROM programmer was directly available. This

approach was taken until the interrupt handling procedures worked

properly. in addition, the appropriate compiler constructs for the PL/M

compiler aeeded to be validated in order to correctly locate the receive

and transmit tables in the SBC 544 memory. Then the software was

expanded to its full size, compiled and installed in the 2732A EPRO\Is.

Transporting the software from the System III to the CP/M system

required an intermediate translation process on the System 210 as the

software was on an ISIS for'natted diskette on the Systemn III and needed .-

to be in a standard C?/M format for the CP/IM system. A commercialLy
L

available program, procured by a ?revious researcher (64), was available

to run on the System 210 under the C?/1 operating system. The program

Is a file format translation program which converts fties from ISIS to

,;P/14 or GP/M to iSIS formatted 11skettes. After the network laer-.

- [-):

* --.--....

;. , , ,: ,. ., .,,: .,.- ,- .. , ,... -..,..,.. -.,,,,.,, . .-.. .,-.,.., , .-,

software was translated, it was then downloaded to the EPROM programmer

from the CP/M system. the EPROs were then installed on the SBC 544 and

*. the program executed.

The simulated host software that executed on the CP/M system was

also developed on the System III. The software was translated on the

System 210 as explained above and transported to the CP/M system where

it was executed. The software used many of the procedures already

developed for the network and data link layer simulations. The

additional software required consisted of interfacing the operator query

and response to the CP/M console through CP/l operating system calls.

The serial communication interface between the SBC 544 and the CP/M..

system was a standard RS-232C cable with USARr 1/0 driver software on

the CP/M system provided by an assembly language program for that

- purpose. The assembly language program was already available (Nppendix

1) and only needed slight modification to interface with the PL/M

procedure calling conventions and add the CP/M operating system call

- interface for the main PL/M program. The register usage of the PL/M

-*l procedure calling conventions are identical to many of the CP/M

operating system calls and allowed a smooth interface.

The simulated host software was able to send and receive up to ten

datagrams at one time as specified by the operator. The operator could

also specify the routing of the datagram as in the network layer

simulation. The testing then consisted of sending datagrams from the

simulated host to the SBC 544, observing the diagnostic messages

" displayed on the H19 terminal and observing the response fron the

simulated host. When incorrect or unexpected software behavior occurred,

. .. the test messages were used in conjunction with the software listings to

5 11

. *

trace the flow of the program through its execution. In addition, the

use of the SBC 86/12A and its monitor were used to observe table,

counter and boolean flag contents to aid the determination of where the

software was not functioning correctly. The H19 was connected to only

one port during the test for simplicity. The RS-232C cable was

connected sequentially on the three remaining ports and datagrams sent

from the simulated host to the SBC 544 and returned on each of the tnree

SBC 544 ports. Both a simple local-to-local port loop and as well as a

local-to-distant host loop were tested successfully for all three ports.

rhe transmit request/transmit acknowledge handshake, discussed in

Chapter Four and Appendix F, was also validated. Figure 5-3, similar to

Figure 5-1, shows the network layer data flow and structures with the

addition of the H19 monitor and the CP/M system used in this phase of

testing.

5 - 12..: .

"" i -

i:. 4 LCOIRX.

~LC02R-X

> LCO3RX .

' COCOMI

LC03TX < TOIRX

LC04 fX W rO 2RX

-Lptr -- > fLOINTER -- > ^Lptr

Ready -- > LSEM] -- > Ready
Done <-- (-- Done

-Nptr <-- 1NTE3 -- Nptr
Done --> NSE -- Done

Ready <-- <-- Ready

oArAGRAM DArAGRAM/PACKEF/FRAME FRAME
128 BYTES 128/133/135 BYTES 135 BYTES

tRANSPORt NEfWOL< DATA LINK
LXYER LAYER LAYER

Figure 5-3. Network Layer Simulation with the CP/M System and iM4

This phase of testing was particularly significant for two reasons.

First, both the receive and transmit side of each of the SBC 544 serial

ports are interrupt driven. This is significant because the software

had to behave rationally while transmitting and csr.iving random

datagrams on a real time interrupt basis while "simultaaeously" routing

dat3,grams. Second, it was quickly discovered by observing incorrectly

behaving software that certain sections of the e-ecuting software needed

to be protected from outside interference while they were axecuting.

These sections of :ode are called critical regions (13:77) and are

discussed in Chapter Four and Appendix E. This phase of testing als..

allowed the testing to occur under more real conditions than the

s~mulationS And demonstrated the !f fects of real time Lnte!rrupt

"5 - 1"

....................... h** **- ' . *.* • .

pcogramming and critical regions that were not possible during the

simulations on the System I[E development system.

Phase Four Testing

This phase of testing consisted of testing the network layer

software from the phase three testing on the SBC 544 while the SBC 544

was connected to the LSL-1I NErOS (72). Figure 5-4 shows the connection

of the UNID I with the NEOS.

CP/

A. K

i Iff-Host

Figure 5-4. UNID 11 and NE[OS Connection

The letters A, C, .J, and K are the designations for Lhe NEDOS nodes

used for this test. Each NETOS Is a LSI-1I processor e:-ecuting the

NEr s network software (72). the ioftware executing on the NEfOS was

developed as part of a class at the Air Force Institute of Technology.

the software iiplemented a half-gateway (87:Chap 3) interfacing the

NEros layer four protocol with the U.i[D [l. The UNIO l1 half-gateway is

impltmeated in the network layer software that interprets the Internet

Protocol (1P) header. Both the Nf'S and the UN used the [P header

for Internet datagram routing. Node .J is the central node through which

5 - 14

all the NErOS nodes are connected in a star configuration. Node C was

used to insert NEfOS messages into the NErOS destined for the UNID t.

Nodes A and K were connected to two of the UN[D [I ports while the CP/M

host and the H19 were connected to the two remaining UNID ports. rhe

CP/M host and the dI9 terminal were used as in the phase three testing

while node C was inserting NETOS messages into the NETOS and through the

UNID.

Local-to-local routing was tested where aess-ages inserted in the

NErOS circulated clockwise and then counter clockwise in the ring A-J-K-

UNIO-A in Figure 5-4. This test validated the local-to-local routing

process in the UNID network layer software. Other messages were

injected at node C to address another node hosted on another UNID. This

test simulated one NErOS node sending messages through two UNIDs to

another NErOS node and receiving replies by the same path. In this

test, the messages traversed the path C-J-K-U4ID-UMID-A-J-C. ihe UNID-

UNI'D designatLon represents the software loop in the network layer

software. This software loop remained in the networK layer software for

this test As a second UNIO 1i was not available.

.essages were also inserted at the CP/M system while the NErOS

nodes A and K were sending and receiviag messages with the U ilO. Ehis

test was done to provide a somewhat higher message loading on the UND

to subjectively observe any detremental effects. There were no

detremental effects to the NErOS messages by the insertion of additional

.nessages by the CP/L system during the subjectiie observation. This

phase of testing validated the local-to-ne twork an network-to-local

routing process in the ULNiD network layer software.

Of particular note during this test were instances where the UND-

". -i15

sottware "lost data from the sending node. The lost data was a result

of the code In the UNIO required to protect a critical region and of the

code in the NETOS which sent the NEOS messages. The NETOS iiessages

were broken into two datagrams which were sent to the UNIO in rapid

succession. rhe UNID successfully received the fIrst datagrain from node

K and while atteaptLng to send that datagram to node A, the second

datagram began arriving from node K. The lost data occurred during the

reception of the second datagrain from node K. The cause of the lost

data was the result of the disabled interrupts required to protect a

critical region In the UNID software. Data was continue]' to be sent by

node K, but while the U.NID interrupts were disabled during transnission

of the first datagram to node N, some of the data from the ;econd

datagram simply overflowed in the UNIO USART and 4ere lost. The fact

that bytes were In fact being lost was determined by using the ,SC

86/12- nonltor to chek,' the program variables In the SBC 544 nemory. r

w"as luickly observed by checking the received byte count that only 125

bytes of the 128 byte ditagrai dere received in the SBC 544 nenory. A

"quick fix" patcii was iade to the NLIENS 3.)ftwace t. inccase i d elay

between transmission of characters to the UNiD. The patch wis nade to

the NE[S 3oftware Lnstead of the UNID softwire as the UNI) sf twalre had

to be reinstiled in EPROM s before c etestinag. The addi ttonal

tcansnission delay between characters f om the N[)3 to the UNIO

illeviated the proble.m during the testing. rhe solution lies withia the

UNIO 3oftware and has not y-t been established.

Conciusion

This chapter outlined the test philosophy ind design of the UN[D IL

- -

-AlIM 935 CONTINUED DEVELOPMENT AND IMPLEMENTATION OF THE 2/2
UNIVERSAL NETWORK INTERFA .(U) AIR FORCE INST OF TECH
URIGHT-PATTERSON AFB OH SCHOOL OF ENGI.. C T CHILDRESS

UNCLASSIFIED DEC 84 AFIT/GE/ENG/84D-I?-VOL-I F/G 9/2 NLmommommommomm
EEEEEEEEEEEEEE
EEEEEEEEEEEEEEEEEEEEEEEEEEEE
EEEEEEEEEEEEl

.

36s 1111 2

Im0111112.0

IIIJL 25!.? 11.6,

MICROCOPY RESOLUTION TEST CHART
NATIONAL BURFAU OF STANDARDS IRAF A

software and hardware developed in this effort. The basic test

philosophy was discussed first, followed by a description of the overall

test design. The major diagnostic test tools used for testiLag were then

discussed followed by a description of each of the testing phases.

Testing results were included in the discussion of each phase of

testing. the first four of five phases of testing were completed. rhe

next chapter discusses the conclusions of this thesis effort and

recommendations for further research and development.

(0

(,- ---?

'. *. ..* *'...

Vi. Conclusions and Recommendations

Introduction

The purpose of this investigation was to develop the UMID II and

implement the existing software designs to produce a functional unit.

4ell over the majority of the tasks in the problem statement in Chapter

One were accomplished as described in Table VI-t. The integration of

the network layer and data link layer software on the SBC 544 and SBC

r88/45 and test and validation as a functional U4ID II was not

accomplished.

Table VI-I. Tasks Accomplished.

1. A software monitor for the SBC 544 was developed.

2. The SBC 86/12A and SBC 544 were integrated for operation
on a multibus chassis.

3. The functional operation of the translated network layer
. PL/M software was validated by simulation and test.

4. The integration, test and validation of the aetwock
layer software hosted on the SBC 544 was completed.

5. The data link layer PL/Z software (75) was translated to
PL/M -and validated for correct functional operation by
simulation on a software development system.

* 6. The preliminary Integration, test and validation of the
network layer software and SBC 544 in the DELNET was

I. accomplished.

Conclusions

The development of the UNID II in the DELNEr has progressed

considerably. The use of functional simulations on a host software

development system has enabled the developer to validate the software

before installation and test on the target hardware system. This

6

.

capability can save considerable time and effort attempting to

troubleshoot and problem solve on a target system by eliminating most of

the errors in the software design and code before the software is

executed on the hardware.

The integration of the network layer software hosted on the SBC 544 -:"-

wIth the NETOS is a major milestone not achieved before this thesis

effort. Two different hardware systems executing software designed and

implemented by two different groups of people successfully transferred

information. AIthough work remains to be done to fully implement the

UNID in the DELNET, a solid foundation has been developed which should

make the task less formidable.

Recommendations

As this investigation is a continuation of previous research and

4O @development, the recommendation by this author Is to continue the UNJTD

it and DELNEf development. This project has provided a test bed for

some of the practical experience required in applying the theory learned

in the classroom. Specific examples from this effort are L'he real time

interrupt programming and critical regions of software. Both of the

examples are discussed in the classroom environment, however one does

not gain the full Impact of the theory and what needs to be done to

properly design the software until one actually designs, tests and

validates software of that type.

Not only has this project provided valuable practical experience,

but the U.S. Air Force has a growing need for a UNID. The ALr Force and

other DoD departments are incorporating a considerable number of single

and multiple user nicroprocessor based systems in the office

- 2

S.-o".."."..." ." -."• " -.".." .. -," "" ".".. "." -" -," ." "." .' ".""." "."...."."..."..".....'..."...',..."..,......'.,....,.....-..,..'....".'-....................-..-......

environment. While many of these systems have some common media for

transferring information, many do not. The UNID can more than

adequately fill the gap In linking these systems together to transfer

their Information. If for no other reason, the UNID development should

continue to fill that gap.

Other specific recommendations not yet addressed are:

1. The analysis of the buffer sizes, throughput, delay, and host

and network serial data rates has not yet been accomplished since the

U141D development began in 1978. This analysis is required and must

eventually be accomplished in order for the UNID to adequately support

the user data traffic. The methods outlined in (87:Chap 2, 81, 82)

could be used as a starting point for the analysis. This task could

develop into an entire thesis effort.

2. Only the first four of the five test phases were conducted in

this effort. The fifth test phase of integrating the network layer and

data link layer software on the SBC 544 and SBC 88/45 and validating as

a functional UNID 11 in the DELNET remains to be accomplished. This

test and validation can be accomplished as more UNIO 1l hardware is

acquired. rhis la3t phase Is the next logical step in the development,

test ind operation of the UNID E1 in the DELNEf and is required to be

done.

3. the timing problem (Chap Five) which arose during the testing

of the UNID 11 and the SEIOS needs to be resolved.

4. The data link layer software needs to be installed on the SBC

38/45 single board computer and validated in a network environment.

5. The further implementation of the X.25 network layer protocol

remains to be accomplished, as well as the implementation of the higher

6- 3

..................................*

7. 7 -7 7 7 -71

layer protocols for UNID hosts computers and the internet protocol (IP)

for networks connecting to the UNID. These implementations must occur

for a functional DELNET to exist.

6. Use the C language for further software development, especially

in the transport through the presentation layers of the OSI modal.

7. The DELNET and the supporting UNIDs would comprise an excellent

tool for research and development of user data privacy, user

authentication, and user 'verification' implementations. While

classified traffic cannot be supported in the AFIT environment, the

basic groundwork for a classified system can be supported. The DoD has

a considerable interest in this area (2) and much can be gained. Some

previous investigation at AFIT has been started (86) with a considerable

amount in the commercial sector (5, 10, 14, 15, 65, 79, 83). (10)

and (83) provide introductory material while (5, 14, 15, 65, 79)

provide more advanced material. Research and development in these areas

can easily encompass several theses.

Concluding Remarks

A considerable amount of time, effort and resources have been

applied to the design, implementation and testing of the UNID and the

DELNET. There is, however, still much work to be done before the UNIDs

can perform in a local area network function. It is this author-s

opinion that this project is valuable and can pay large dividends, both

to satisfy U.S. Air Force operational needs and as a learning tool,

when continued to fruition.

6 -4

.......................................
. !

. ~ *. * *

.,

Bibliography

1. 1342 EEG/EEIC. An Engineering Assessment Toward Economic, Feasible
and Responsive Base Level Communications Through the 1980"s.
Technical Report rR 78-5. Richards-Gebaur AFB, Missouri. October
1977.

2. Air Force Automated Systems Program Office (AFASPO) (AFCC).

Private conversations with the program management staff regarding
multi-user and multi-level security issues related to the
Integrated-Service/Agency Automated Message Processing Exchange (I-

S/A AMPE). Gunter AFS, AL, June-July 1982 and March-April 1983.

3. Arthurs, Edward, Gregory L. Chesson and Barton W. Stuck.
"Theoretical Performance Analysis of Sliding Window Flow Control,"
IEEE Journal on Selected Areas in Communications, SAC-i: 947-959
(November 198--.

4. Baker, L. "USAF Prototype and Software Development for Universal
Network Interface Device." MS thesis, AFIT-GCS-EE-80D-4. School
of Engineering, Air Force Institute of technology (AU), Wright-
Patterson AFB OH, December 1980 (AD A100787).

5. Beth, Thomas. Cryptography. Lecture Notes in Computer Science, •
number 149. Berlin and Heidelberg West Germany: Springer-Verlag,
1983.

(- 6. Borgsniller, Michael. "The Serial Communications Interface Board."
Project Report, School of Engineering, Air Force Institute of

Technology (AU), Wright-Patterson AFB OH, March 1933.

7. Brown, E. "USAF Prototype Universal Network Interface Device." MS
thesis, AFIr-GE-EE-79-8. School of Engineering, Air Force

Institute of Technology (AU), Wright-Patterson AFB OH, December
1979 (AD A080173).

8. Bytek Corporation. EPROM Programmer Manual. Manufacture's data.
Santa Clara CA, 1982.

9. Cole, Kenneth. Private conversations regarding data structures.
School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, June - September 1984.

10. Cooper, James Arlin. Computer Security Technology.
Lexington Massachusetts: D.C. Heath and Co., 1934.

11. Cuomo, Gennaro. "Continued Development of the Universal Network
Interface Device." MS thesis, AFIf-GE-EE-82D-28. School of
Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, December 1982.

12. Day, John.). and Hubert Zimmermann. "The OSI Reference Model,"
. Proceedings of the IEEE, 71: 1334-1340 (December 1983).

BIB - I

*° *. * *

13. Dettel, Harvey M. An Introduction to Operating Systems. Reading
Aassachusetts: Addison-Wesley, 1984.

14. Denning, Dorothy E. Cryptography and Data Security. Reading

.Massachusetts: Addison-Wesley, 1982.

15. Dinardo, C. T. Computers and Security. The Information Technology
Series, Volume III. Montvale NJ: American Federation of

Information Processing Societies, Inc., 1978.

16. DOD Standard: Transmission Control Protocol Specification.
Arlington VA: Defense Advanced Research Projects Agency (DARPA),

September 1981.

17. DOD Standard: Internet Protocol Specification. Arlington VA:
Defense Advanced Research Projects Agency (DARPA), September 1981.

18. EIA Standard RS-232C. Interface Between Data Terminal Equipment
and Data Communication Equipment Employing Serial Binary Data
Interchange. Washington, D.C.: Electronic Industrial Association,
April 1975.

19. EIA Standard RS-449. General Purpose 37 Position Interface for
Data Terminal Equipment and Data Circuit Terminating Equipment
Employing Serial Binary Data Interchange. Washington, D.C.:
Electronic Industrial Association, November 1977.

20. Fairchild Camera and Instrument Corporation. Microprocessor
Products Data Book. Manufacturer's data. Santa Clara, California:
Fairchild Camera and Instrument Corporation, January 1983.

21. Specification for Message Format for Computer Based Messae
Systems. Proposed Federal Information Processing Standard.
Washington DC: Institute for Computer Sciences and Technology,
National Bureau of Standards, Department of Commerce, kpril 1982.

22. Specification of a Transport Protocol for Computer Comunicationsb
Volume 1: Overview and Services. Draft Report ICST/HLNP-33-1.
Washington DC: Institute for Computer Sciences and Technology,
National Bureau of Standards, Department of Commerce, January 1983.

23. Specification of a Transport Protocol for Copue Comunications,
Volume 2: Class 2 Protocol. Draft Report icsrlHLNP-33-2.
Washington OC: Institute for Computer Sciences and Technology,
National Bureau of Standards, Department of Commerce, February
1983.

24. Specification of a Transport Protocol for Computer Comunications,
Volume 3: Class 4 Protocol. Draft Report ICST/RLNP-83-3.
Washington DC: Institute for Computer Sciences and rechnology,
National Bureau of Standards, Department of Commerce, February
1933.

BIB -2

•. -S-

25. Specification of a Transport Protocol for Computer Comunications,
Volume 4: Service Specifications. Draft Report ICSr/dLNP-33-4.
Washington DC: Institute for Computer Sciences and Technology,
National Bureau of Standards, Department of Commerce, January 1983.

26. Specification of a Transport Protocol for Computer Comunications,
Volume 5: Guidance for the Implementor. Draft Report ICST/HLNP-83-
5. Washington DC: Institute for Computer Sciences and Technology, -..

National Bureau of Standards, Department of Commerce, January 1983.

27. Specification of a Transport Protocol for Computer Comunications,
Volume 6: Guidance for Implementation Selection. Draft Report
ICST/HLNP-83-6. Washington DC: Institute for Computer Sciences and
fechnology, National Bureau of Standards, Department of Commerce,
February 1983.

28. Folts, Harold C. Revised CCITT Recommendation X.25, 1980. NCS TIB
80-5. 4ashington D.C.: National Communications System, Office of
Technology and Standards, August 1980 (AD A092394).

29. Geist, John W. "Development of the Digital Engineering Laboratory
Computer Network: Host-to-Node/Host-to-lHost Protocols." MS thesis,
AFIr-GCS-EE-81D-8. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, December 1981.

30. Sravin, Andrew G. "Preliminary Design of a Computer Communications
(Network Interface Device Using INTEL 8086 and 8089 16-Bit

Microprocessors." MS thesis, AFIr-GCS-EE-81D-9. School of

Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, December 1981.

31. *artrum, Thomas C. Private conversations regarding the AFIf LSI-11
Network Operating System (NETOS). School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB Od, Tune -

September 1984.

32. Hazelton, Craig H. "Continued Devalopment and Implementation of
the Protocols for the Digital Engineering Laboratory Network." MS
thesis, AFIT-GE-EE-82D-37. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH, December
1982.

33. Hobart, William C., Jr. "Design of a Local Computer Network for
the Air Force Institute of Technology Digital Engineering
Laboratory." MS thesis, AFIf-GE-EE-31M-3. School of Engineering,
Air Force Institute of Technology (AU), Wright-Patterson AFB OH,
March 1981.

34. Intel Corp. Alter Text Editor User's Guide. Manufacturer's data,
121956-001. Intel Corp., Santa Clara CA, 1982.

35. Intel Corp. Component Data Catalog. Manufacturer's data, 210298-
0:)i. Intel Corp., Santa Clara CA, 1982.

BI8- 3

36. Intel Corp. Development Systems Handbook. Manufacturer's data,
210940-001. Intel Corp., Santa Clara CA, May 1983.

37. Intel Corp. Distributed Control Modules Databook. Manufacturer's
data, 230972-001. Intel Corp., Santa Clara CA, 1984.

38. Intel Corp. iAPX 86, 88 Family Utilities User's Guide.
Manufacturer-s data, 121616-003. Intel Corp., Santa Clara CA, 1982.

39. Intel Corp. IAPX 86/88, 136/138 User's Manual: Programmer-s
Reference. Manufacturer's data, 210911-001. Intel Corp., Santa
Clara CA, May 1983.

40. Intel Corp. ICE-85B In-Circuit Emulator Operating Instructions for

ISIS-I Users. Manufacturer's data, 980463-003. Intel Corp.,
Santa Clara CA, 1982.

41. Intel Corp. ICE-86A/ICE-88A Microsystems In-Circuit Emulator
Operating Instructions for ISIS-It Users. Manufacturer's data,
162554-002. Intel Corp., Santa Clara CA, 1982.

42. Intel Corp. Intellec Series III Microcomputer Development System
Programmer's Reference Manual. Manufacturer's data, 121618-003.
Intel Corp., Santa Clara CA, 1981.

43. Intel Corp. Intellec Series III Microcomputer Development System
Product Overview. Manufacturers data, 121575-002, 1931. Intel

* (O Corp., Santa Clara CA, 1981.

44. Intel Corp. Intellec Series III Microcomputer Development System
Console Operating Instructions. Manufacturers data, 121609-003.
Intel Corp., Santa Clara CA, 1981.

45. Intel Corp. ISBC 86/12A Single Board Computer Hardware Reference
Manual. Manufacturer's data, 983074-01. Intel Corp., SantA Clara
Ck, undated.

46. Intel Corp. iSBC 88/45 Advanced Data Communications Processor
Board Hardware Reference Manual. Manufacturer s data, 143324-001.
Intel Corp., Santa Clara CA, 1983.

47. Intel Corp. iSBC 544 Intellegent Communications Controller Board
Hardware Reference Manual. Manufacturer's data, 9306168. Intel
Corp., Santa Clara CA, 1983.

43. Intel Corp. ISIS-1I User's Guide. Manufacturer's data, 980306-
05. Intel Corp., Santa Clara CA, 1979.

49. Intel Corp. ISIS-Il PL/M-80 Compiler Operator's Manual.
Manufacturer's data, 930300-004. Intel Corp., Santa Clara Ck,
undated.

BIB- 4

...-. :.-. :.-.... . -. ".. : : -":-. .".-. .. " -, i?.::: .. "-,i:.-:-' "'.

- . .. - - - - - - - . -..

50. Intel Corp. ISIS-If PL/M-86 Compiler Operator's Manual.
Manufacturer's data, 980473-004. Intel Corp., Santa Clara CA,
undated.

51. Intel Corp. MCS-86 Absolute Object File Formats. Manufacturer-s

data, 980321A. Intel Corp., Santa Clara CA, 1977.

52. Intel Corp. MCS-86 Software Development Utilities Operating
Instructions for ISIS-II Users. Manufacturer's data, 980639B.
Intel Corp., Santa Clara CA, undated.

53. Intel Corp. Memory Components Handbook. Manufacturer's data,

210830-002. Intel Corp., Santa Clara CA, 1983.

54. Intel Corp. Microprocessor and Peripheral Handbook.

Manufacturer's data, 210844-001. Intel Corp., Santa Clara CA,
1983.

55. InteL Corp. OEM Systems Handbook. Manufacturer's data, 210941-
004. Intel Corp., Santa Clara CA, 1984.

56. Intel Corp. PL/M-80 Programming Manual. Manufacturer's data,
980268-002. Intel Corp., Santa Clara CA, undated.

57. Intel Corp. PL/M-86 Programming Manual. Manufacturer's data,
930466-003. Intel Corp., Santa Clara CA, undated.

53. Intel Corp. Prototyping with the 8089 1/0 Processor.
Manufacturer s data, AP-89. Intel Corp., Santa ClaL- CA, May
1930.

59. Intel Corp. Software Handbook. Manufacturer's d-ta, 230766-001.
Intel Corp., Santa Clara CA, 1984.

60. Intel Corp. Universal PROM Programmer User's Manual.
"1anufacturer's data, 9800319-01. Intel Corp., Santa Clara, 1978.

61. Intel Corp. 3039 Macro Assembler User-s Guide. Maufactur-r's
data, 980933-02. Intel Corp., Santa Clira CA, 1980.

32. Lin, Shu, and Daniel J. Costello, Jr. Error Control Coding:

Fundamentals and Applications. Englewood ClIffs, New Jersey:
?rentice-Hall Inc., 1933.

63. 4adnick, Stuart F. and John J. Donovan. Operating Systems. New
York, New York: .cGraw-HiLl Book Co., 1974.

64. latheson, William F. "Continued Development of a Universal Network

Interface Device Using the INrEL 30.36 and 3089 16-Bit
Microprocessors." MS thesis, AF[r-GE-EE-33D-42. School of
Engileering, Air Force Institute :f technology (AU), Wright-
Patterson AF3 o q, December 1933.

631B- 5

65. Ylerwin, Richard E. Secure Operating System Technology Papers for
the Seminar on the DoD Computer Security Initiative Program.
American Federation of Information Processingy Societies Conference
Proceedings, National Computer Conference. 4Mcntvale 14J: kmerican
Federation of Information Processing Societies, Inc., June, July
1979.

66. Militar, Standard. File Transfer Protocol. MIL-STrD-1730 (Draf t),
US Government Printing Office, Arlington, Virginia: 1983.

67. Military Staadard. Internet Protocol. !IIL-sTD-1777, US Government
Printing Office, Arlington, Virginia: 1933.

68. Military Standard. Simple Mail 'Transfer Protocol. MIL-STO-1781
(Draft), US Govern-ment Printiag Office, Arlington, Virginia: 1983.

69. Military Standard. Transmission Control Protocol. MIL-STD-1778,
US Government Printing Office, Arlington, Virginia: 1933.

70. Military Standard. rELNET Protocol. !IIL-STD-17,32 (Draft), USg
3overnment Printing Office, Arlington, Virginia: 1984.

71. Transport Layer Specification. Draft specification. Documentation
and programs availabla on UAIX compatible magnetic tape.
4ashington DC, lational Bureau of Standards, December 1983.

72. Hartrum, Thomas C. LSINET The AFIT Digital Engineern Laboratory
(D.ZL) Network of LSI-11 and PDP-11 Computers. AFIr DELNET
Doc!,metatlion, Version 3.1. School of Engineering, Air Force
lns I ute of [echnology (AU), Wright-Patterson AFB OH, Septa-mber
19.34.

73. Palmer, Donall E. "Design of a Prototype Universal Network
DIt"-race Device Using IITEL 836 and 8089 16-3it Micropcocassors."
IS thesis, AFrr-Gcs-EE-32D-52. School of Engineering, Air Force
Institute of rechnology (AkU), Wright-Patterson AF'B oH, December
1982.

74. Papp, Charl2s E. "Prototype DEIAE'll Jiing the Universal Network
Interface Device." M1S thesis, AFi1'-GE-EE-31D-46. School of
Engineering, kir Force Institute of 'Technology (AU , Wright-
Pitterson AFB 01, December 1931.

75. Phister, Paul 4. Jr. "Protocol Standard and implamentation Within
the Digital Engineering Laboratory Computer Network (DELNEr) Using
the Universal Network Interface Device (UNID).' MS thesis, kFUr-
3E-EE-33D-59. School of Engineering, Air Force Institute of
fechnotogy (AU), Wrighnt-Patterson AFB OH, December 1983.

76. Pickens, R. Andrew. "Widaband Transmission :Ieli3 iH: Satellite
Commnications," Computer Com -unica tions, Volume 1_ Principles,
edited by Wushow Chou. Englawood Cliffs, N4. J.: Prentice-Hiall,
Inc., 1983.

BIB -6

77. Pingry, Julie. "Local Area Networking Becomes A Standard Feature,"
Digital Design, 14: 70-83 (March 1984).

73. Ravenscroft, D. "Electrical Engineering Digital Design Laboratory

Communications Network." 4S thesis, AFIT-GCS-EE-73-16. School of
Engineering, Air Force Institute of Technology (AU), Wright-

Patterson AFB OH, December 1978 (AD A064729).

79. Rivest, Ronald L., Adi Shamir and Len Adleman. A Method for

Obtaining Digital Signatures and Public-Key Cryptosystems.
Massachusetts Institute of Technology publication MIT/LCS/TM-32.

Laboratory for Computer Science, Massachusetts Institute of

Technology, Cambridge MA, April 1977.

30. Rubin, Izhak and Luis F. 4. De Moraes. "Message Delay Analysis for

Polling and Token Multiple-Access Schemes for Local Communication
Networks," IEEE Journal on Selected Areas in Communications, SAC-i:
935-946 (Novenber 1983).

31. Sauer, Charles H. and K. Mani Chandy. Computer Systems Performance

I dodeln. Englewood Cliffs, New Jersey: Prentice-Hall Inc., 1931.

32. Sauer, Charles H. and Edward A. MacNair. Simulation of Computer

Conmunication Systems. Englewood Cliffs, New Jersey: Prentice-Hall
inc., 1983.

(33. Sinkov, Abraham. Elementary Cryptanalysis. Washington DC:

"1thematical Association of America, 1966.

34. Sluzevich, Sam C. "Preliminary Design of a Universal Network

interface Device." MS thesis, AFfr-GE-EE-73-41. School of
Engineering, Air Force Institute of Technology (AU), Wright-

Patterson A'B 01, December 1978 (AD A064059).

85. Spear, Mark C. "Hardware Design and Inplementation of the

Universal Network Interface Device (UAID)." ;iS thesis, AFIlr-GE-EE-
34M-KX. School of Engineering, Air Force Institute of Technology

(AU), Wright-Patterson AFB OH, :atch 1934.

86. Steinmetz, Jay S. "A Secure Computer Network." AS thesis, AFir-

GCS-EE-32D-34. School of Engineering, Air Force Institute of

rechnoiogy (AU), Wright-Patterson AFB Oq, Novenber 1982.

37. Tannenbaum, Andrew S. Computer Networks. Englewood Cliffs, New

Jersey: Prentice-Hall Inc., 1)3.

88. 4itt, :lichael. "An Introdiction to Layered Protocols." Byte: 385-

393, September [983.

39. ZLlog, Inc. PLZ User Guide. Manufacturer's data, 03-3096-01.
Z[lug Lic., C~ipertino CA, Jlily 1)79.

-[B 7

I I lI I.. .. I e i. -t Ii i

Appendix A

UNID II Data Flow Diagrams

This appendix contains the Data Flow Diagrams (DFD) for the UNID IT

which were developed in a previous thesis effort (30:26-34). These DFDs

show the UNID It message processing functions and the internal flow of

messages between the local and network I/O hardware ports. The DFDs are

still current and are shown in this thesis for completeness. The DFDs

ar2 presented La the following order:

Figure Page

A-1. UNID II Overview A-2

A-2. input Local Information A-3

A-3. Format according to Outgoing Protocol A-4

A-4. Transmit Network Message A-5
*0

A-5. Input Network Information A-6

A-6. Transmit Local Information A-7

A I

- .

ao .Nd .lo-4Li a V 3

c~ a t

C~0 00

4L

0 -4 0

La b

0 C Cn

0 0W

0aJ cc4-

0 a

-4 0 -

(00

e La 1-j

La.- ALa 0 1-

0 Li

-4-

4. In 0 3
w r4

/j LiQaO

w 0

10 Jcj
u 0

-4 44

1 04 C6I

-44L

AA-'

0~ 1 C .

Cc c ,). . -. . .

IV CL
0 1-4 0

00

>O 0

0 .4

L40

4 -4
41 =

I U4
0 -4U i

A- W - =a . e

0 4tL,

c 0

c3r 0 -

E 0) 0 u 0 w

to 0 / a)

c,00
,,. , F- Ai....

E t It, I , I W, o ".

I CJ ,.bCa C , C. I -., . ,

0) 0 J 0 / ,,w € . /In \ 4 o A..) ,N Aj \ A ,

u0! /, oI
// 0 re

tj"

/~ ~ ~ U CM)0 , /

'o 0

-LiL

.) k" 0 .))

cl,.I C,

I E

CJ cm 0

Li 0 c 0 0

U)U

O U .

*J 44.

,: ,.V W-

o 0 u

4) -4

w. . -

-" A - U

'-4 ,I,...-

(Az-4

w \ 0/
1-4 A.4OM -4

-4 r- 0 0
L3 tI0

m 04 I

0 ow

0~r 0~~-

020

E- A

1~'.0

CA 0-4

*- =U-

w . .

tod 1.

0

>1~ 0 -40

0 0w -

-4l 5-' 0
C: C ,

1)04
4-i 30

0 0

U4.

0 -

U) J-4 0 .-

A- 6

...

Ld0

S0 1-4

0~ 0 0-

0

41 ~ ~ ~ ~ J M)

0 0 w ~ -

cc~

>1 cu

Li i

W~ 0

a. LS. U -

w 0 10

'AjU

00

z 0 (1J

444

C) -0

Appendix B

RS-232C and RS-422 Signals

The network layer (SC 544 or similar hardware interface on the

local host side of the U'4ID II) will use the RS-232C standard to

interface with the host computers or other DELNET networks (75:Chap 1,

Chap 2), 3ucb as the NETOS (72). The data link layer (SBC 88/45 or

similar hardware interface on the network side of the UNID II) will use

the RS-422 standard to interface one UNID with another UNID (75:Chap 1,

C2hap 2).

Each standard (1, 19) has a large number of signals specified not

all of which are used by the UNID Its (75: Appen B). The following

figures Indicate the signals that are implemented in the UNID and

OELNEr. Signal direction into or out of the UNID II is shown for the

(0 RS-422 interface. Signal direction into or out of the UNID Il Is not

shown for the RS-232C interface as the SBC 544 board is j-uuper

configureable for either a DrE or a DCE connection. The default

configuration for the RS-232C ports on the SBC 544 board is set to a DCE

to allow most host computers and terminals to directly connect to the

UNID II without the use of a null modem.

i.• • ..- . .- : .- :. , . .- . .: . ••. -*.

DB-25 Pin Implemented
Number Signal Nomenclature in DELNET

1 Frame Ground
2 Transmit Data X

3 Receive Data X
4 Request to Send X
5 Clear to Send x
6 Data Set Ready X
7 Signal Ground x

Receive Line Signal Detect (X)
9 Unassigned

13 Unassigned
ii Unassigned
12 Secondary Receive Signal Detect
13 Secondary Clear to Send
14 Secondary Transmit Data
15 Transmit Signal Element Timing
16 Secondary Receive Data
17 Receive Signal Element riming
13 Unassigned
19 Secondary RequesL to Send

20 Data Terminai Ready X
21 Signal Quality Indicator
22 Ring Detector (x)
23 Data Signal Rate Select (DfE)

24 Data Signal Rate Select (DCE)
25 Unassigned

NOrE: Pins 3 and 22, marked (K), are not required when the UNID
is hard wired to a host computer or terminal. These pins

would normally be used when a particular port is connected
to a modem.

Figure 3-1. RS-232C Pin Assignments

rhe local side connected to host computers or terminals will use

the RS-232C signals shown in Figure B-I. It is assumed that the RS-

232C interface uses a standard DB-25 connector.

I
8-2 I

DB-37 Pin Direction Implemented
Number Signal Nomenclature In Out in DELNET

I Shield
2 Signal Rate Indicator A
3 Spare B
4 Send Data A X X
5 Send riming A K

6 Receive Data A X K
7 Request to Send A x x
8 Receive Timing A X X
9 Clear to Send A x X

10 Local Loopback A
11 Data Mode A
12 Terminal Ready A X X
13 Receiver Ready A X x
14 Remote Loopback
15 Incoming Call X
16 Select Frequency Signalling

Rate Indicator
17 Terminal Timing X

13 Test Mode A
19 Signal Ground "
20 Receive Common
21 Spare A
22 Send Data B x K

23 Send Timing 8 x x
24 Receive Data B x X
25 Request to Send B K x
26 Receive riming B K x
27 Clear to Send B K K
23 Terminal in Service A
29 Data 'ode B
30 rerminal Ready B x
31 leceiver Ready B x
32 Selct Standby A

33 Signal Quality .
34 New Signal

35 rerminal riming x
36 Standby Inicator
37 Send Common

NOTE: The -A and -B 3uffixes on the ignal nomenclature refer
to the non-inverted and inverted outputs/inputs of the RS-
422 signals as the signals use a balanced signalling
,nethod and a reversed connection will invert the desiredsignal. ! i

Figure B-2. RS-422 Pin Assignments

B -3

~~~~........................ ......""""" -"" ...... .. . ....... . .""" :.:-L



rhe UNIDs are connected using the RS-422 standard on the data link

layer (subnetwork) side of the UNID. Figure B-2 shows the pin

assignments and indicates which signals are currently implemented in the

DELNET. In t.his figure, the direction into and out of the UNID is also

shown to clarify the use of a null modem required on one of the two high - -

speed network ports. It is assumed that the RS-422 interface uses a

standard DB-37 connector.

B toi:

St. t. . _ _. ...___ _

~ U. Us . t~. * . °___



Implementation Corrections in Previous Thesis

Introduction

This appendix explains Liplementation errors, and their

corrections, from previous work (29, 64, 75). The hardware errors were

detected during the 3arly analysis of the previous designs (64). The

hardware errors refer to the revised network (data link layer) board

designed by (64). While this design was not used in this effort, the

errors are noted for future reference. The software errors were

discovered during the early analysis of the previous designs and during

the network and data link layer software simulations. All the detected

errors have been corrected.

Software Corrections

@ The toggling of the sequence bit in the transmitted frame for the

one bit sliding window protocol was forgotten. The sequence bit is

never toggled in the I franes, even though the ROUTE$OUT procedure does

Loggle the sequence bit on a true ACK. Since ROUJE$IN checks Lhe input

sequence bit ayainst the transnitted sequence b't to determine a true

acknowledgement, a true acknowledge -nent will only occur on the first

transmitted frame. The software will then hang up resending the second

frame ad infinitum. The corrective action is to include the sequence

bit in the 3UILD$I$FRAME procedure.

k counter and error recovery for the aaximum number of

retransmissions in the ROUrE$OIjT procedure is needed. There currently

" is none. The result is that if a feran is never acknowledged ind the

tiner times out, the software will hang up sending the frame forever!

[he zorrective action is to include a retransmission counter which will

C- I

p%



perform a specified action if the maxi-mum number of retransmissions is

exceeded.

The design for interpreting the incoming frame in the NT0IrB and

ATO2TB tables is incorrect. The current design first detects if the

incoming frame is to continue around the network (NN) or is destined for

the local UNID (NL). If the frame is NN, then an S frame is sent to the

sender of the frame and the received frame is then sent around the loop.

This situation is correct for an I frame, but causes havoc with an S

frame, in effect, S frames are generated as acknowledgements for other

S frames and consequently, S frames will be generated at a geometric

rate and will choke the network. The XL logic is satisfactory. The

solution is co interpret the incoming frame to determine if it is an I

or S frame, then determine it-s destination. This solution will prevent

S frame flooding and route the frames correctly.

A problem exists in the ROUTE$OUT procedure when ACKNOWLEDGE$A(B)

Is true. The frame to send is correctly discarded, hoiever,

_CiK(O',JLEDGE$A(B) is never reset false, the timeout flag and counter are

not reset, and the number of retransmissions counter, assuned to be

implemeaited, is not initialized. [he ACKNOWLEDGE$A(B) reset to false

was placed In the incorrect place. [his will only allow sending the

first frame whereupon the software will not send any other packets. The

corrective action is to include the proper resetting of the flags and

coulters when the CKNOWLEDCE$A(B) is true.

An error with the implementation logic of the one bit sliding

window tineout and the acknowledge exists. Both timeout and acknowledge

need to be considered together (87:43), not ;eparately as implemented

(75). [he software design arid inplementation can he derived from the

IC 2

....................... " ,t". "- '-". , " "- ,''-"- -" " '"'. -' '- . "''.'."'. '"- -''"" ".',"" '''-i-" ' -
-- - --" -. ". "-. -" "'-- - """ - -° --"" -_ . % ""-'-.-,-. '''. . _% _ 

' ' ' '

"' " - " - .' " L . ---./ - Z - " - '



truth table in Figure C-. The corrective action is to implement the

software according to the truth table.

ACK CIMEOU f FUNCrIO4

0 Increment [IMOUT counter

0 1 (re)send a frame

1 0 service transmit table, reset
flags and counters

I I same as the (1, 0) case

Figure C-i. Acknowledge and Timeout Truth Table

rhe INPUr$SEQ$BIT and THIS$SEQ$BIT require the suffix "$A" and "$Br

to separate the sequencing of the I and S frames for the A and B loops

otherwise the software becomes confused when both the A and 3 directions

are transmitting and receiving frames. The corrective action is to

Inplea.ent the INiUJ[SEQ$3iT and THIS$SEQ$BIT for both the $A and $8

sections of sof tware.

The original software design does not insure that one and only one

SCram.e Is in the OJVFRAME$C{A(B)$TB table at a given instant of time.

[he ore bit sliding window protocol requires that the current I frane be

retained until a positive acknowledgement is received. If two or more I

frames are in the transnit buffer at the -aae tine, the transmit

software will send them both and subsequently confuse the sequence bits.

This results in the software continually retransmitting the frames until

the maximum cetransmit counter is ecceded. the corrective action is to

generate a procedure to determine if an I frane is In the transait

buffer and inforn the calling procedure accordingly. [he calling

-3

. ° o . . , .. .. • ". ., °, °° • , ., ,•°°,, ° " • o~° .. ",. °. ., .



procedure should then load an I frame only when there is no I frame in

the transmit buffer.

An error exists with the implementation of the bit masking used for

the detection of the acknowledge frames and the sequence bits. The bit

masking was implemented in reverse order, that is the eighth bit is

masked for detection of an S frame where the first bit should be masked.

Similarly, the sixth bit is masked for detection of the sequence bit

where the third bit should be masked. The source of the problem is

interpretation between the left to right ordering of the bits in the

source documentation and the left to right implementation in the

software. The source documentation shows the least significant bit on

the left and the most significant bit on the right, however the bit mask

coding is just reversed with the most significant bit on the left and

the least significant bit on the right. This reversal did not affect

the original implementation because the software was the same at both

ends of the UNID connection and each end saw the correct information

where it should have. Consequently, this error was not oreviousiy

detected. The corrective action is to implement the bit masking

correctly.

The 3UI[LD$1$PACKET procedure in the original network layer software

contained a case statement that performed the same assignment statements

regardless of the case selector (64, 75). While this is not an error to

the software as It than existed, it did use extra memory. rhe procedure

was rewritten using pointers and semaphores as explained in Chipter

Four.

- "4. . . .

. . . . . . . . . . . . . . . . . . . . .. . .



Hardware Corrections

A design error exists in network board schematic. Data lines D8 -

D15 and DO - D7 in the memory array need to be controlled by AO and BHE*

(generated by the 3089 processor), otherwise the memory will not be

accessed correctly for byte read/write operations. The corrective

action is to redesign the memory data control similar to the SBC 86/12A

logic to properly gate the memory data.

A design or typographical error exists with the address decoding

liaes for the 8039 local I/0 space. The address lines A14 and AI5 are

reversed. rhe corrective action is to implement the addressing

correctly and annotate the schematic diagram.

The RS 232/422 DTE/DCE strapping options shown on the schematic are

in the incorrect locations. They need to be between the connectors and

(- drivers, not between the USAiT and the drivers, otherwise the drivers

ire connected output to output and input to input with the USART. the

corrective action is to redesign the strapping options in the correct

location and annotate the schematic diagram.

C- 5

):.: .........:......-.-.....------------------------------------------------.-...----.. ,..-..,:.....-....-.



Appendix D

DELNET/UNID Header Information

This appendix expands upon the TCP/IP datagram, packet, and frame

header information presented briefly in Chapter One (75:Appen C). Each

byte in a complete datagram, packet, and frame is shown with the

appropriate bit information within each byte. The name of each byte

posltion, along with the array index number, is given for each byte.

bThe subscripts 1 and L refer to most significant byte and least

significant byte, respectively. Similarly, the subscripts 3, 2, and 1

indicate the most significant byte, the next significant byte and the

Least significant byte, respectively. The contents of each byte conform

to the standards established in (28, 67, 69, 75:Appen C). Entries that

contain letters refer to specific bits that must be initialized or set

tO according to how and when they are used. For example, the packet source

address will be a constant that depends upon the particular UNIO and

port number to which a host is connected. The Type of Service byte on

page D-2 .epends upon the precedence, delay, throughput and routing

cequired by the transport and higher level protocols. Those bits and

bytes that contain letters are variables that are data and user

dependent. Those bytes that are empty are not yet used by the UN1D It

softwar ! and are currently filled with zeros. The particulir mapping

shown was used for the testing of the U1ID E1 in the LSI-11 NECOS test.

Each byte is further explained in (23, 67, 69, 73:Appen C).

D -I



Name Index Bits
Frame Packet Datagram MISB LSB

------------------------------------------------ --

10 0 0 0 I 0 0 0 01
-------------------------------------------- ------------ -- - --------

Unld Dest/Source 0 d d d d ssss
------ ------------

Control 1 o 0 0 u 1 0 0 s cj
s = 0,1 => sequence +--

c = I => control
-------

Destination Addr 2 I u u u u c c c c
u unid # ---- --

c = channel /
----------------------------- --------- ------- ----- 4

ource Address 3 1 Iu u u u I c c C c
U = unld # -----

c = channel #
-------------------------

Sequence 4 4 2 I n n n n n n n
-------------------------

3pare(') 5 3 o o 00 0 0 0 ol
------------ --------- -4

Spare(O) 6 4 j 0 0 0 0 0 00 O
------------------ ---- ------------- 4

[P eader 7-38 5-36 0-31

Vers .]/IHLength 7 5 0 1 0 0 1 0 0 0
4------------------------- -

Type of Service 8 6 p p p d t r 0 0
p = precedence ---------
d = f)33 => routine datagram-
p = 113 > Internet Control

Total Length(A) 7 2 j 0 0 0 0 0 0 0 0
4-------------- - --

Totil Length(L) 10 3 3 1 0 0 0 0 0 0 0
t--------------------- - -----

User tIent(H) 11 9 ' uuUuIuuuu
4-------------------

User [dent(L) [2 10 5 I u u u u u u u u
-------------- ------ -

Flags!Frig Off(AI) 13 11 6 3 1 0 I 0 0 0 0 0
-4 ---- ------ -- 4

Offset(L) 14 12 7 3 0 0 0 I 0 0 0 0
4-----------------.

rire to Live (60) 15 13 8 0 0 1 1 I 1 1 0 0

Protocol 1B 14 9 10 0 0 0 10 1 1 0
---------------- -----

I;{ader Checksum(H) 17 15 13 0 0 0 0 0 0 0 0"
4--------------------------

D -2

• ~~~~~~~~~." .. '.-.'.... . ...... '. g .'--... . . .-.. ".. .- '... . . . ....... .



Namie Index Bits
Franie Packet Datagram A1S8 LSB

iifeader Checksum(L) 13 1 11 100 0 0100 0 0
-----------------

Source Address:

Control/Country 19 17 12 0 OOOO0 1lO lI
- ---------

Network Code(UID )20 13 13 0i 0 1 ihh h h
Host Code(H) --------- ------

------------------ +

Host Code(L)/ 21 13 14 h h hh p p p p
Port Code(2) -----------

Port Code(l)/ 22 29 15 i ' p p p p p p p
Port Code(0) -- - - -- 4

Destination Address:
4------------------

Control/Country 23 21 16 0iOO00 il10o0i
-------- --- ----------

NetworkCode(UNID) 24 22 17 in n n a Ih h h hi
Host Code(IH) 4 - - - -

4-------------- --

Host Cede(L)/ 25 23 18 h h h h Ip p pp
Port Code(2) - -- - - - - - -- - - -

Port Code(1)/ 26 24 19 p p p p 1 p p p p
Port Cnde(B) t------

------ ----- ---- I

Securi ty(h) 27 25 20 1 0 0 0 I 0 ) 1 0
----------- ---- -

ecurity(L) 23 26 21 I 0 0 0 0 1 I 0 1 1

------ -----------

S FtFldU) 29 27 22

S F oeld(L) 30 28 23 0
------------------- 4

C Fied(H) 31 29 24

4-- - - -

C JFt Cd(L) 32 30 25 I
------- ---- -------

H Field(H) 33 31 26
----------- -----

H. Field(L) 34 32 27 1 1 P
---------------------

fCC Field(2) 35 33 28
4------------------

rcC FieLd(1) 36 34 29
I--------------

rCC FCLd(O) 37 35 30

D- 3

. . . . ..es



Name Index Bits
Frame Packet Datagram MSB LSB

[iF Padding 38 36 31 I0 0 0 0 I 0 0 0 0
4-----------------

LCP Header 39-62 37-60 32-55
--------- --- --

Source Port(H) 39 37 32
- - ------

Source Port(L) 40 38 33
4------------

------- - ------- 4.-

Destin Port(H) 41 39 34
4----------------4-

Destin Port(L) 42 40 35 1 1
4------ - -------

Sequence J(3) 43 41 36 1 1
------------

Sequence #(2) 44 42 37 I 1
-------------------

Sequence #(l) 45 43 38 1 1
4-------

Sequence 1(0) 46 44 39I
S ---------

Acknowledge #(3) 47 45 40 "..
-------------------- -------- ----- -

Acknowledge :--(2) 48 46 41

Acknowldge #(1) 49 47 42
------------------------------------------------

Ackaowledge #(0) 50 48 43
------4 ------------

Data Offset/Resv 51 49 44 0 1I 0 f00 ,
------------------

Reserved/ControL 52 50 45 0 0 u a Ip r s f
------------------------------------------

Window(H) 53 51 46
--------------- --- --------------4

Window(L) 54 52 47

Checksum(AI) 55 53 48
----- - -

Checksum(L) 56 54 49
--------------

Urgent Ptr(H) 37 55 50
+------------

Urgent Ptr(L) 38 56 51

Option 59 57 52 I
-------------------

P'dding(2) 60 53 53 0 0 0 3 0 0 0 0
4-------------4-

pa

D 4

- - -• •....C .... t t .. .. t .t.S . aaA~f



Name Index Bits
Frame Packet Datagram 41S8 LSB

Padding(l) 61 59 54 0 0 0 0 1 0 0 0 0

Padding(0) 62 60 55 lo 0 00 o 0 0 0 I -

1----------------------------

User Data 63-134 61-132 56-127 xx x x x x x xl
4------------

Figure D-1. OELNEr/CINI Detailed [leader Information

D -5



Appendix E

UNID Semaphores and Protected Regions

This appendix explains in detail the use of semaphores as

implenented for the exchange of information between the SBC 544 and SBC

8/43 boards.

[he use of semaphores Is required to protect a critical region

(13:73) of program execution from being disturbed by other concurrent

processe3 in a multiprocess or multiprocessor environment. ks was

earlier noted, the UNID I and II are multiprocessor and multiprocess

systems. Data in the form of packets are exchanged between the two

processors. The process on the SBC 544 board which alerts the SBC 88/45

board chat a packet is ready for the SBC 83/45 process must ensure that

the SBC 88/45 process is not manipulating the last set of data left by

the SBC 544 process, otherwise the SBC 544 process will, In all

likelihood, write over the old data with the new data and cause

Inadvertent destruction of desired data (13:77).

EqualIl as important, the SBC 88/45 process must ensure that the

S-C 544 process is not manipulating data in the critical region of

n.!nory when the SBC 88/45 process wants access to the critical region.

The .iethod to ensure a writeover (race) condition does not exist often

itvolves the use of P and V type semaphore operators (13:89). The P and

V operator3 are often implemented with low level hardware operations,

,uch -as TestAnd3et which is called LOCK for the Intel processors, that

will interrogate and set a flag to ensure that only one process is

nanipulating dati ia a critical region of me-nory at one time.

7Unfortuinately, as mentioned in Chapter Three of this thesis, the SBC 542

r- I

. . . . . . ..'*-...'." . . -% - 'i -. i-i'-'.-.'..-'--,--.--...,-.'-...- -".'.-' -'-.'....'....-..-.. ".. .- .- .i--? -" ..-- . . ... .-- ... . -* i -



board does not have the TestAndSet (LOCK) capability even though the SBC

38/45 board does. the SBC 544 board also does not have the mechanisms

to allow the SBC 38/45 board to use its LOCK operator. Therefore

another method was devised which allows both boards to share certain

portions of the common system memory while allowing only one processor

3nd process to access that shared, critical region at one time, thus

preventing inadvertent destruction of data (13:77). This method uses a

variable with oaly two states, Ready and Done, as the semaphore. The

SBC 544 process will check the variable for the Done state, and if Done,

will update the packet pointer and set the semaphore to the Ready state.

The SBC 38/45 process checks for the Ready state, and if Ready, will

move the packet to another buffer for further processing and set the

semaphore to the Done state. rhe SBC 544 process is allowed only to

0 check the semaphore for Done and set the semaphore to Ready. The SBC

33/45 process is 3llowed only to check the semaphore for Ready and set

the semaphore to Done. By implementing the processes in this manner,

the processes will stay in synchronization and not manipulate data until

the data is ready to be manipulated. Each process is not allowed to

wait until the other process is completed; it will continue performing

other tasks and will, at some later time, reenter the semaphore testing

routine. This mechanism is illustrated in Figure E-1 with the aid of

pseudocode.

. ,.'.-.. ..--~ -~-.-.:-.- . . - . .... . . . .- . ........... ... . ......... ............



If DatagramAvailable then (Process executed by SBC 544)
If LSem - Done then

do;
LPointer = .LocalReceive(NexttoSend)
LSem - Ready
service(.LocalReceive(NexttoSend))
end;

If LSem - Ready then (Process executed by SBC 88/45)
do;
move(LPointer, .NetworkTrans.zi t(NextEmpty), PacketSize)

LSem - Done
load(. NetworkTransmit(NextEmpty))
end;

Figure E-1. Pseudocode for SBC 544 to SBC 88/45 Packet Movement

The first section of pseudocode corresponds to the process on the

SBC 544 board and the second section of pseudocode corresponds to the

concurrent process on the SBC 88/45 board. DatagramAvailable is an

Sindication that a packet is available to move to the network board,

LPoLnter is a pointer to the available packet, LSem is the semaphore,

.LocalReceive(NexttoSend) is the pointer to the available packet in the

SBC 544 memory, .NetworkTransmit(NextEmpty) is the pointer to the next

available entry for a packet in the SBC 88/45 memory. LPointer and

LSem, as well as the packet, are stored in the shared system memory.

The routines 'service' and 'load' adjust the pointers within the tables

given as arguments and 'move' moves a specified amount of data from one

location to a second location. The reader should recall that the tables

LocalReceive, LocalTransmit, NetworkReceive and NetworkTransmit used in

the UNID software are circular FIFO queues whose first-in pointer is

NextEmpty and first-out pointer is NexttoSend.

The above high level code is divisible into smaller sets of

E-3

...................................................



indivisible assembly language code, each of which can be interrupted by

other processes on the respective SBC 544 or SBC 88/45 board. The

sections of code that can interrupt the above processes, however, do not

manipulate any data used by the above sections of code, and will

therefore not disturb the critical sections except for inducing a non

critical time delay. In addition, the remaining processes on each board

never manipulate the semaphore. The LocalReceive buffer is used by

other SBC 544 processes. These are the host receive interrupt routine,

where the table pointer NextEmpty is manipulated, and the send a

datagram from local host to local host routine where the table pointer

NexttoSend is manipulated. The latter routine, while manipulating the

NexttoSend pointer, will only do so when the particular datagratr is for

local to local host movement. The particular routine of which the aoov . .

code is a part interrogates the IP header of the first datagram pointed

to by NexttoSend. If this datagram is for loca! host to lcal host

movement, the datagram Is moved and the NexttoSand pointer updated.

However, if the datagram Is for local host to network movement, the

first section of pseudocode above is called. The pointer NexttoSend

will only be updated if the SBC 88/45 is ready for another packet,

otherwise the pointer is left untouched and the datagram in question is

still at the top of the LocalReceive table waiting to be moved. So

while the NexttoSend poi-ter can be manipulated by another process, it

is done so only if the datagram in question at the top of the

LocalReceive table is going back to a local host and not to the network.

Therefore the NexttoSend pointer will be updated for a network destined

packet only if the datagram in question at the top of the LocalReceive

table is going to the network when the first section of the pseudocode

E 4



is entered.

It should be noted that while both processors have the ability to

access the shared system memory at the same time, and will probablv

attempt to do so, they cannot, in fact, read (or write) to the same

shared location at exactly the same instant. This 'read at the same

instant' phenomena is prevented oy the hardware design of Doth boards.

If the SBC 544 processor is in the middle of a fetch from shared memory,

the hardware design locks out access to the memory to other processors

with access to that shared memory. Therefore, the SBC 88/45 board

cannot access the desired location until the SBC 544 board has co:rpleted

its current instruction, whereupon, the SBC 88/45 may then access the

shared memory. The same holds true for an access of shared memcry by

the SBC 88/45 board. When the SBC 88/45 processor accesses shared

memory, other processors are locked out from accessing the sa:.e shared

memory until the SBC 88/45 has completed its current instruction.

Therefore, if the SBC 88/45 is executing the instructions to set "LSem =

Done', and the SBC 544 is fetching the "LSem" location to interrogate"

for 'Done', there will not be a simultaneous access of the location

"LSem" as explained above. Therefore the SBC 544 interrogation of

"LSem" will find its value either 'Done' or 'Ready' as expected and

execute the critical section accordingly.

The process communication from the SBC 88/45 board to the SBC 544

board is identical to that for the SBC 544 to SBC 88/45 board explained

above. The variable names are different so as to keep the two processes

and functions separated. The two processes function the same and the

discussion above applies to the SBC 88/45 to SBC 544 board

communication. The pseudocode fur the SBC 88/45 to SBC 544 board

E- 5

. . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .



communication is shown in Figure E-2.

If PacketAvailable then (Process executed by SBC 88/45)
If NSem = Done then

do;
NPointer = .NetworkReceive(NexttoSerid)

NSem = Ready

service(.NetworkReceive(NexttoSend))
end;

If NSem = Ready then (Process executed by SBC 544)
do;
move(N-Polnter, .NetworkReceive(NexttoSend), DatagranSize)
NSen. = Done
load( .LocalTransmlt(NextEinpty))
end;

Figure E-2. Pseudocode for SBC 80/45 to SEC 544 Packet Move,.nt

E -6



Appendix F

Transmit Request/Transmit Acknowledge Handshake

This appendix explains the details of the transmit request/trarnsmit

acknowledge mechanismi implemented in the SBC 544 local host software.

The transmit request/trarnsmit acknowledge mechanism Is used to

synchronize the UNID II network layer software with a comparable process

on a local host. The mechanism allows the orderly transmission of

datagrams between the host and the UNID I. This allows the !NiD iI to

reliably send and receive datagrams from a host that is slower than the

speed of the UNID I1, whether the host polls the receive port or has a

slow interrupt response, or a host that does not have an interrupt

driven receive port from the UNID II. This mechanism, or se.methlng

similar such as the DTR-DSR or RfS-C'S hardware handshake, must be

implemented to allow the orderly transmission of datagrams between the

JNID II and its connected hosts. The particular implementation

explalned below was chosen to accommodate the NErOS (LSI-l1) network in

the DELNEf', which uses a software transmit request/transmit acknowledge

scheme. The NETOS uses does not use a hardware handshake such as the

RrS-CTS because the signals are not implemented on that system. Other

* mechanisms, such as XON-XOFF, may be relatively easily implemented in

the UNID II software to accommodate similar the mechanisms in ether

networks.

The particular mechanism used by the NEFOS can be described as

follows (72). When a node in the NETOS desires to send a packet to

another node, It first sends a transmit request (rR) to the desired

node. The receiving node then, when it recognizes a TR was sent to it,

F-'



will send a transmit acknowledge (TA) back to the sender when it is

ready to receive a packet. The sending node, when It recognizes the TA

from the receiving node, sends the datagram to the receiving node.

There is no final acknowledge sent by the receiver back to the sender to

acknowledge the reception of the datagram. The TR/TA mechanism

effectively reduces a normally full duplex channel to a half duplex

channel. The process can be diagrammed as shown in Figurce F-i.

Node A Node B

Idle Datagram to send

T P

Recv TR < ----------------------- Send TR

Wait for TA

TA
Send TA ----------------------- > Recv TA

Look for
Datagram

Da tagram --

Recv Datagram tara---- Send Datagra-'

Figure F-1. NETOS Transmit Request/Transmit Acknowledge Handshake.

The mechanism is implemented in the UNID II software with four

boolean flags for each host port. Four flags are required since both

the NETOS node and the UNID will send and receive datagrams using the

TR/TA mechanism, providing a full handshake for each direction. The

UNID must know which state it is in so that it can communicate correctly

with the NETOS node. The four flags are Transmit transmit request -

(TXTR), Receive transmit acknowledge (RXTA), Receive transmit request

(RXTR), and Transmit transmit acknowledge (TXTA). Each flag has the

F-2

'- .



value TRUE or FALSE. The initial state is all four flags FALSE. Of the

16 possible states, the five allowed states are shown in Figure F-2. A

'0' represents FALSE and a "'1 represents TRUE.

rXTA RXTA RXTR TxrA

0 0 0 0 Initial state

1 0 0 0 Datagram to send

1 1 0 0 OK to send datagram

1 1 0 0 Send the datagram

0 0 0 0 Reset the flags after
sending datagra

0 0 1 0 Datagram receive request

0 0 1 1 OK to receive datagrain

0 0 1 1 Receive datagram

0 0 0 0 Reset flags after
receiving datagram

Figure F-2. UNID TR/TA Allowable States.

Note that the mechanism starts in the all zero, or FALSE, state

with no datagrams to send or receive and returns to the all zero state

at the completion of sending or receiving a datagram. Also, only one

process of sending a datagram or receiving a datagram is allowed at one

tiae. While this is a requirement for the NETOS, and possibly other

networks, the UNID software is totally interrupt driven and can send and

receive a datagram simultaneously without this handshake mechanism. The

UNID II local software on the 544 board has been designed through the

use of a boolean flag labeled TRTA so that the TR/TA half duplex

handshake may be used or not used on any given host port of the 544

F- 3

. o.



board. Tha entire haindshake process may also be represented in a state

diagramn as shown In Figure F-3.

TXTR RXTR

10 0, 0(0,0, 1,

1, 1, 0, 0 0 ,1

Send Recv
Datagram Datagran

NOTE: The four-tuple (0, 0, 0, 0), for example, represents the
state of the boolean variables (TXTR, RXTA, RXTR, TXTA).

Figare F-3. State Diagram of the TXTR Handshake.

F-4



Appendix G

Data Dictionary

This appendix contains the data dictionary for the four programs

that comprise the network and data link layer simulations, the

validation and test programs used with the UNID II and NETOS, and the

host CP/M simulation software (Chapter Five).

The simulation dictionaries are presented first followed by the

dictionary for the software on the SBC 544 and the CP/M system. Each of

the four programs has its own subdictionary which contains a section for

constants, variables, and procedures. Each entry is listed in

alphabetical order.

The batch files used to link and locate the object code generated

by the compiler are also included at the end of each applicable

subdictionary.

The appendix is subdivided into four subdictionaries which are

listed as follows:

Subdictionary Page

1. Network Layer Simulation ..... ............ .-2

2. Data Link Layer Simulation ... ............. G-7

3. SBC 544 Validation ..... ............... ... G-12

4. Host CP/M .......... .................... G-16

G-I



1. Network Layer Simulation

The purpose of this program is to simulate the network layer

software on the Intel Software Development System.

Constants

ASCII(*) - Array of ASCII characters used for converting binary to hex
and hex to binary numbers for display on the console.

DArA$SRAM$SIZE - Number of bytes in a datagram (128) received from a
host.

DATA$TABLE$SIZE - Number of bytes within a data table.

L$RI$DESr$ERR - Local route in destination error.

L$RO$DEST$ERR - Local route out destination error.

MAX$COUNrRY$CODE - Maximum number of countries operational on the

DELNEr.

MAX$NE rwoK$CODE - Maximum number of UNIDs operational within a

particular country.

(0- PACKET$SIZE - Number of bytes in a packet (133).

PACKETS$IN$TABLE - Number of packets in a packet table.

PACKET$TABLE$SIZE - Number of bytes in a packet table.

R$CONN - 1/O handle number for ISIS console call.

SrAT$NBR - Number of the status entries to be included in the status
table.

SYS$MEM$BASE - Base address used to locate the shared table and
variables.

SYS$BASE - Base label used to properly locate the shared table and
variables. Used with SYS$MEM$BASE.

THIS$COUNTRY$CODE - Unique code indicating in which country

THIS$UNID$NBR resides.

THIS$UNID$NBR - Unique UNID number for the UNID performing the interface
between local hosts and the DELNET.

TCP$DATA$SIZE - Number of user data bytes in the TCP header.

G- 2



TA - Fransmit acknowledge character.

TrK Transmit request character.

W$CONN - 1/O handle number for ISIS console call.

Variables

ACTUAL - Number of characters returned from ISIS console read call.

BUFFER - 128 byte buffer used with ISIS console read call.

DESTINATION - Indicates whether a received datagram is destined for the

network or another attached local host.

DESrINATION$ADDRESS - Indicates the destination address of a datagram.

SOURCE$ADDRESS - Indicates the source address of a datagram.

ERRNUM - Number of the error returned from an ISIS system call.

LCO1NE - Pointer in the array LCO1TB pointing to the next available

position for a received datagram.

LC02NE - Pointer in the array LCO2TB pointing to the next available

position for a received datagram.

LCO3NE - Pointer in the array LCO3TB pointing to the next available

position for a received datagram.

LC04NE - Pointer in the array LC04TB pointing to the next available

position for a received datagram.

LCOINS - Pointer in the array LCO1TB pointing to the next datagram to
service.

LCO2NS - Pointer in the array LCO2TB pointing to the next datagram to
service.

LC03NS - Pointer in the array LC03TB pointing to the next datagram to

service.

LCO4NS - Pointer in the array LCO4TB pointing to the next datagram to

service.

LCOISZ - The maximum number of bytes in the LCO1TB array.

LCO2SZ - The maximum number of bytes in the LCO2TB array.

LC03SZ - The maximum number of bytes in the LCO3TB array.

LC04SZ - The maximum number of bytes in the LC04TB array.

G- 3

* .*-*. -*



LCOITB - Local receive table for host port number one.

LCO2TB - Local receive table for host port number two.

LC03TB - Local receive table for host port number three.

LCO4TB - Local receive table for host port number four.

LPTR$1, LPTR$2, LPTR$3, LPTR$4 - Pointer to the current packet to be

passed to the data link layer.

LSE9$1, LSEM$2, LSEM$3, LSEM$4 - Semaphore used by the network and data

link layers to indicate the state of the packet transfer.

LSPARE$1, LSPARE$2, LSPARE$3, LSPARE$4 - Spare memory locations used by

the SBC 83/45 for it's pointer transfer.

NPfR$1, NPTR$2, NPTR$3, LPTR$4 - Pointer to the current packet to be

passed to the network layer.

NSEM$1, NSEM$2, NSEM$3, NSEM$4 - Semaphore used by the network and data

link layers to indicate the state of the packet transfer.

NSPARE$1, NSPARE$2, NSPAftE$3, NSPARE$4 - Spare memory locations used by

the SC 88/45 for it's pointer transfer.

TM01NE - Pointer in the array TXOITB pointing to the next available

4. position for a transmitted datagram.

TXO2NE - Pointer in the array TX02TB pointing to the next available

position for a transmitted datagram.

TXO3NE - Pointer in the array TXO3TB pointing to the next available

position for a transmitted datagram.

TXO4NE - Pointer in the array TX04TB pointing to the next available
position for a transmitted datagram.

TXINS - Pointer in the array TX01TB pointing to the next datagram Lo

service.

TX02NS - Pointer in the array TX02TB pointing to the next datagrair to

service.

TX03NS - Pointer in the array TX03TB pointing to the next datagran, to

service.

TX04NS - Pointer in the array TX04TB pointing to the next datagrar. to

service.

TXOSZ - The maximum number of bytes in the TXOITB array.

TX02SZ - The maximum number of bytes in the TX02TB array.

G -4

" . . . . . ...... . °.. .- .. •'.'*.° ", 4'- " ." 
o

' ' -. . - ."" - . °' .• '"



TX03SZ The maximum number of bytes in the TX03TB array.

TX04SZ - The maximum number of bytes in the TX04TB array.

TXO1TB - Local receive table for host port number one.

TX02TB - Local receive table for host port number one.

TX03rB - Local receive Lable for host port number one.

TX04TB - Local receive table for host port number one.

MESSAGE(*) - lest message array.

STArUS - Error status of ISIS console I/O calls.

Procedures

DET$ADDR - Determine the destination of the datagram from the attached
host.

DET$ADDR$NL - Determine the destination of the datagram passed from the

data link layer.

ERROR - I/O error handler for ISIS operating system calls.

40 EXIT - Graceful method to end the simulation; returns to the ISIS
operating system.

INIT - Initializes the variables to their initial states.

INIT$rAB - Initializes the network and data link layer tables and

pointers to their initial values.

LD$TAB$HSKP - Housekeep a specified buffer table load pointer.

LOOP - Simulates the semaphore check and set operation of the SBC 88/45
board to turn a frame around to the network layer.

MOVETO$LOCAL - Move a datagram from a receive host buffer or the data
link layer buffer to the local host transmit buffer.

READ - Read a line of character input from the console; an ISIS
operating system call.

ROUTE$IN - Route received datagrams from the local hosts to the data

link layer or the local host transmit buffers.

ROUTE$OUT - Send the datagrams in the transmit buffers to the local
hosts.

G- 5

....... . . . . ........ . . . . . . . . . . . . . . . . . .... ... . . . . . . . . . . . . .. .--
. . . . . . . . . . . . . .. . . . . . . . .. .... . . . . . . . . . . . . .



SEND$PACKE'r - Transforming the user datagram into a packet for transfer

to the data link layer.

SERVICESLOOP - Turns a frame around at the data link layer. The source
and destination headers are exchanged.

SET$TRTA - Queries operator for which host channels will use the TRTA
handshake.

SNDSEQ - Takes a message string fron the calling procedure and outputs
It to the ISIS operating system.

SRVC$TAB$HSKP - Housekeep a specified buffer table service pointer.

WRITE - Write a line of character information to the console; an ISIS
r operating system call.
A

Link and Locate Batch File

CAUTION: Do not change address or other parameters in the
following batch file. They are highly hardware dependent
on the System III and the ISIS operating system.

LINK NEWLOC.OBJ,SYSTEM.LIB,PLM80.LiB TO NEWLOC.LNK MAP
LOCATE NEWLOC.LNK TO NEWLOC STACKSIZE(100H) ORDER(CODE,DATA,&

STACK,MEMORY) CODE(5000H) MAP PKINr(NEWLOC.MP2)
O TYPE NEWLOC.MP2

G 6

-. . . . . . . .. . . . . . . . . . . . . . . . . . . . . .

~--...-. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .



2. Data Link aLer Simulation

The purpose of this program is to simulate the data link layer

software on the Intel Software Development System.

Constants

ASCII(*) - Array of ASCII characters used for converting binary to hex
and hex to binary numbers for display on the console.

CONCTC - Network monitor counter timer port address.

CONCMD - Network monitor USART command port address.

CONDAT - Network monitor USART data port address.

DATA$GRAM$SIZE - Number of bytes in a datagram (123) received froY a
host.

DATASrABLE$SIZE - Number of bytes within a data table.

L$RI$DEST$ERR - Local route in destination error.

L$RO$DEST$ERR - Local route out destination error.

MAX$COUNrRY$CODZ - Maximum number of countries operational on the
DELNET.

4AX$NETWORK$CODE - Maximum number of UNIDs operational within a
particular country.

MAXNOA - Maximum number of timing counts for network channel A.

MAXNOB - Maximum number of timing counts for network channel B.

MAXRETRANS$A - Maximum number of retransmissions of a frame for network

channel B.

MAXRETRANS$B - Maximum number of retransmissions of a frame for network
channel B.

PACKET$SIZE - Number of bytes in a packet (133).

-I
PACKETS$IN$rABLE - Number of packets in a packet table.

PACKET$TABLE$SIZE - Number of bytes in a packet table. ..

R$CONN - I/O handle number for ISIS console call.

G

II

. .*. . . . . . . . . .



SrAf$NBR - Number of the status entries to be included ia the status

table.

THIS$COUNTRY$CODE - Unique code indicating in which country
TIS$UNID$NBR resides.

TdIS$UNID$NBR - Unique UNID number for the UNID performing the interface
between local hosts and the DELNET.

TCP$DATA$SIZE - Number of user data bytes in the TCP header.

W$CONN - I/O handle number for ISIS console call.

Variables

ACTUAL - Number of characters returned from ISIS console read call.

BUFFER - 128 byte buffer used with ISIS console read call.

CTCNOA - Progressive number of time counts for network channel A.

CFCNOB - Progressive number of time counts for network channel B.

DESTINATION - Indicates whether a received datagram is destined for the
network or another attached local host.

j (* SOURCE$ADDRESS - Indicates the source address of a datagram.

ERRNUM - Number of the error returned from an ISIS system call.

INPUT$SEQ$BIT$A - Input sequence bit number for channal A.

INPUT$SEQ$BIT$B - Input sequence bit number for channel B.

LCNTNE - Pointer in the array LCNTrB pointing to the next available
position for a received datagram.

LCNTNS - Pointer in the array LCNTTB pointing to the next datsgrarr. to
service.

LCNTSZ - The maximum number of bytes in the LCNTTB array.

LCNrlB - Local to network table.

NTLCNE - Pointer in the array NTLCTB pointing to the next available
position for a received datagram.

NTOINE - Pointer in the array NTOITB pointing to the next available
position for a received datagram.

NT02NE - Pointer in the array NT02TB pointing to the next available
position for a received datagram.

G-8



NTLCNS - Pointer in the array NFLCrB pointing to the next datagram to
service.

N'UINS - Pointer in the array NTOIFB pointing to Lhe next datagran to

service.

NTO2NS - Pointer in the array NT02fB pointing to the next datagram to

service.

NTLCSZ - The naximum number of b)ytes in the NTLCTB array.

NTOISZ - fhe maximum number of bytes iii the NTOITB array.

NUf2SZ - The maximuin nuitber of bytes in the NWT2TB array.

NifLCTB - Local receLve table for host port number two.

NfO1Tb - Local receive Lable for host poirt number three.

LT02TB - Local. receive table for host port number four.

MESSAGE(*) - lest message array.

OUTFRA IE$CdlA$NE - Pointer in the array OU'fFRAME$CHAI'B pointing to the
next available position for a transmitted datagram.

OULjTFRAi'E$CHB$NE - Pointer in the array OUTFRAME$CHB$TB pointing to the

next available posirion for a transmitted datagram.

OUfFRAME$CHA$NS - Pointer in the array OUTFRAME$CHA$TB pointing to the
next datagram to service.

OUTFRAiE'4CH$NS - Pointer in the array OUTFKAME$CHB$IB pointing to the

ucxt datagran to service.

OUTRAHiL$CHA$SZ - The maximum number of bytes in the OUI'FRAME,$CHA$T8 array.

OUfFRA:'iE$CHI8$SZ - The maximum number of bytes in the OJT'F&AAE$CHB$TB array.

OUTFKAME$CHA$FB - Local receive table for host po-t number one.

OUTF&(AME$tCH8$TB - Local receive table for host port number one.

OdT$'LAB$FULL - Boolean to determine when the network transmit table

coL tains a frame.

RE'fKANS$A - Progressive number of retraUsMissions of a frame for channel
A.

RE.T'ANJ$B - Progressive number of retransmissions of a frame for channel

SEQ$6'I'$A - Frar.e ackiiow.ledge bit for channel A.

G 9
I.

. ... .,. .

- - - - - - - - -. . . . . . . . . . .. .' .* - •



SEQ$Iilf$B - Framie acknowledge bit for channel b.

S'ArUS - Error status of ISIS console 1/0 calls.

''dIS4SEQ$B'I$A - Current sequenice bit fur frame to transmit in channel A.

TiaiS$SEQ$bJ f$B - Currizent sequence bit fur fr.iine to transmit in channel B.

LI2IIA - Current time! count for charael A.

ViMCH6 - Current time count for channel B.

Procedures

ET'f$ADDR - Dcc.!rwtaie thLc d,_thifation of the packet from the attached

hos t.

D)$DE0DE EXCEPIlON - External ISIS call to decode error exceptions.

DQ$CLOSE - External iSIS call to cluse an i/O handle.

DQ$DETACil - External ISIS call to detach an 1/0 device.

DQ$EXIT - xternadl ISIS call Lu exit the curreLnt program back to the

ISiS uperatIng 6ystem.

DQ4AITACH - Ext.erual ISIS call to attach an I/0 device.

DQ$CRKLAfE - Externalt ISIS calL o obtain an 1/0 handle.

DQOL.N - Elute'hnal ISIS call to open it flie.

DQ$READ - External ISIS call to read an opened file.

D$WR[ITE- EA.ernal 1.515 call to write an opened file.

ic ilr- laitiilzes the variables to their initial states.

INIF$FAB - laitialize 3 the nctwork and data link layer tables and

point rs to their Initial values.

LD$fAB$HISKP - 1lousekeep a specified buffer table load pointer.

LOOP - Simulates tLhe operatioU of another UNID in the network.

ROUIE$1U - Route received -)uckets and frazuis from the network
layer and the network.

* $OkU, - Send the frames to the network or packets to the network

layer.

G- 10

'. .,'.'. _. _ .- -. _. -_ -. - _,- ... .'_ . .. . . . . .... . ..-. .. . -.... -. .. _ . . _. .. .. .. - . . . .. . -' . ,



BUILD$l$PACKErI - Transforms the nier packet into a frame for transfer
to the network.

SEMVICESLOOP - Turas a frame around in the network. The source
aad destination headers are exchanged.

SNSEQ - Thk. s a me~isage string from the calliag procedure and outputs
it to the ISIS operatiag systeu.

SKvC$TA3$i1SKP - [lousekeep a zpecifled buffer table service pointer.

LinK and Locate hatch File

CAUTION: Do not change address or other parameters in the
following bdtch rile. They are nighly hardware dependent on
the SysLtem III architecture and the ISIS operating system.

runi iLkk86 netaew.ubj, swalL.lib
run locSb aetuiew. lnk ad(sii(code(7300h),const(8b00h),data(9900h), &
stack(bdOOh),ae'nory(c3UIh),??seg(c200h)))

G-I

G - 11 .

.1~..-..........................................................-..-,-•.......



3. SBC 544 Validation

The purpose of this program is to operate the network layer

software on the Intel SBC 544. All the constants, variables and

procedures from the network layer simulation are used in this program

with the following exceptions:

1. The READ, WRITE, EXIT and ERROR ISIS system calls are not used.

2. The constants R$CJNN and W$CONN are not used.

3. The variables ACTUAL, BUFFER, ERRNUM, and sfArus are not used.

The following constants, variables and procedures are additions

to Lhe netaork layer simulation.

Constants

BRFO, BRFI, BRF2, BRF3 - Data rate factor, USART 0, 1, 2, and 3.

SbI$MASK - Set interrupt tna-k mask.

MASTER - Port number fur Master Mode.

SLAVE- Port number for Slav- Mode.

8251A USART Constants:

US$PO$CMD - SERIAL PORT 0 COMMAND
USjPO$SrAr - SERIAL PORr 0 SfATUS
US$PO$DArA - SERIAL PORT 0 DATA
IJS$PI$CMD - SERIAL PORT I COMMAND
US$Pi$STAT - SERIAL PORT I STATUS
US$PI$ATA - SERIAL PORT I DArA
US$P2$CMD - SERIAL PORT 2 COMMAND
US$P2$SfA'r - SERIAL PORT 2 SrATUS
US$P2$DATA - SERIAL PORT 2 DATA
US$PJ$CMD - SERIAL PORT 3 COMAAN'
US$P3$SrAr - SERIAL PORT 3 srATus
US$P3$DATA - SERIAL PORT 3 DATA
US$MUDE - SERIAL PORT MODE
US$COMMAND - SERIAL POKf COMMAND
US$RESET$CMD - RESET USARI'
US$DrR$ON - 'TS,RXE,DTR,TXE
US$CRT$CMD - RTS,ER,RXE,DTRTXE
IJS$''.Y$CMD - R'S,ER,RXE,'FXE

.US$DT$OFF - RTS,RXE,TXE

G - 12

", ° .. . . . . . .. - .- * .. . .. . . . . .. . . . .- .



US$RKRDY - RECIEVER READY
US$TXE - TRANSMITTER EMPTY
US$'TXRDY - TRANSMITTER READY
PARITY$MASK - MASK OFF PARIrY BIT

8253 Interval T'iuer Constants-

IV1$CONT - INTERVAL 'rIMER I CONTROL

ITI$CNTRO - COUNfER 0, USART 0
Irl$CNTRI - COUNTER 1, USART 1
ITI$CNTR2 - COUNTER 2, USART 2
1f2$CONI - INTERVAL TIMER 2 CONTROL
IT2$CNTRO - COUNTER 3, USART 3
1T2$CNTRI - COUNTER 4, CNTR5 OR SPLIT CLOCKS
IT2$CNTR2 - COUNTER 5, RST 7.5

USART$CNTR$M3 - DIVIDE BY N RATE GENERATOR, MODE 3, FOR USART CLK *

16, CLK = 1.2288 MHZ
B19200 - TIMER VALUE FOR 19.2 KBPS
B9600 - TIMER VALUE FOR 9600 BPS
B4800 - TIMER VALUE FOR 4800 BPS

B2400 - TIMER VALUE FOR 2400 BPS
B1200 - TIMER VALUE FOR 1200 BPS
B600 - TIMER VALUE FOR 600 BPS
B300 - f1MER VALUE FOR 300 BPS
B150 - TIMER VALUE FOR 150 BPS
BIIO - LIMER VALUE FOR 110 BPS

(- 8155 Peripheral Interface Constants:

PI$PORTA - PORT A (OUTPUT)

PI$PORTB- PORT B (INPUT)
PL$PORTC- PORT C (INPUT)
PI$SrAT - PPI STArUS
PI$CMD - PPI COMMAND
PI$CNTR$LO - PPI COUNTER LO BYTE
PI$CNTR$[I - PPI COUNTER Hi BYTE
PI$CNTR$LOCNT - PPI COUNiER TIME CONST
PI$CNRSNliCN - PPI COUNTER rIME CONST
PI$INIr$CMIl PPI INITIALIZATION COMMAND 1, A OUT, 8 & C IN, STOP

COUNT
Pl$INIT$CMD2 - PPI INITIALIZATION COMMAND 2, A OUT, B & C IN, START

COUNT
PI$INIE$US$INfI - USART AND INT CONT RESET
PI$INIT$US$INT2 - USARr AND IN£ CONT NORMAL
PI$PORrC$sSTAr - PORT C STATUS
PISPORTC$CL - PORT C CONfROL
PI$M2MI - A-MODE 1, B-MODE 2
PI$OBF - OUtPUr BUFFER READY
PI$IBF - INPUT BUFFER READY

G- 13

~~~~. . . . . . . . ..... ."-- -" .... - . . .. .. J . .*. ** . _ . . .*- ,.,. -... " _ _ Q _ . ."_ _ _ _ _ _ _=-_ m~,m


8259 Interrupt Controller Coustants:

IC$?ORTA - PORT A
IC$PORTB - PORT B
IC$iCWI - INIr COMMAND WORD 1, (A7A6A5) 010; EDGE TRIG; INTERVAL

4; SINGLE; NO ICW4
IC$ICW2 - INIr COMMAND WORD 2, (AI5-AO) = 0 -

IC$ICW3 - INIT COMMAND WORD 3, NO SLAVE IN IR
INIT$MASK - 101010108', INiTIAL INTERRUPT MASK, OCWI; RECEIVE INTR

ON, TRANSMIr iNTh OFF
IC$EOI - ENO UF INTERRUPT CMD, OCW2, ROTATE (PRIORITY) ON NON-

SPECIFIC EOI
IC$UCW3$SMMS - SPECIAL MASK MOOE SET
IC$OCW3$SMMR - SPECIAL MASK MODE RESEt

Variables

BY'LS4RECV$1, BYTES$RECV$2, BYTES$RECV$3, BYTES$RECV$4 - Integer value
Indicating how many bytes of a datagram have been received from a
hostI.

B fES$SEfI$l, BYTES$SENT$2, BYTES$SENT$3, BYTES$SENT$4 - Integer value
indicating how many bytes of a datagram have been sent to the host.

CEAK$I, CHAR$2, CHIAR$3, CHAR$4 - Place holder for the received character
in the receive interrupt routine.

RXTA$l, RXTA$2, RXTA$3, RXTA$4 - Boolean flag to indicate if a transmit
acknowledge has been received.

RXTR$1, RXTR$2, RXTR$3, RXTR$4 - Boolean flag to indicate if a transmit
request has been received.

SEND$1, SEND$2, SEND$3, SEND$4 - Boolean flag to indicate when a host
channel Is sending data to its host.

TA - Transmit acknowledge character.

TR - Transmit request character.

&TA$l, TRTA$2, TRTA$3, TRTA$4 - Boolean flags to indicate if the

transmit request/transmit acknowledge handshake is in use.

TXTA$1, TXrA$2, TXTA$3, TXTA$4 - Boolean flag to indicate if a transmit
acknowledge was sent.

rXTR$i, TXTR$2, TXTR$3, TX'rR$4 - Boolean flag to indicate if a transmit
request was sent.

G - 14

2.*

Procedures

INIr[ALIZE$BOARD - Initialize the hardware integrated circuits on the

SBC 544.

R$MASK - Externial procedure to read the interrupt mask on the 8085
processor. Linked from PLM80.LI8.

Z. S$MASK - External procedure to set the interrupt mask on the 8085
processor. Linked from PLN48O.LLB.

Link and Locate Batch File

CAUTION: Do not change address or other parameters in the
following batch file. They are highly 544 hardware dependent
on the SBC 544 architecture and the network layer software.

LINK NEWLOC.OBJ,PLX80.LIB TO NEWLOC.LNK MAP
LOCATE NEWLOC.LNK 1o NEWLOC STACKSIZE(100[I) ORDER(CODE,DATA,&
SfACK,NIENORY) CODE(60) DArA(OAOOOH)&
RESTARTO MAP IRINT(NEWLOC.MP2)

TiPE NEWLOC.MP2
OBJ{IEX NEWLOC TO NEWLOC.IEX

G - 15

.. .. -.

4. Host CP/M Simulation

The purpose of this program is to simulate a host system to the SBC

544 network layer software. All the constants, variables and procedures

from the network layer simulation are used in this program with the"-

exception that the console 1/0 now occurs through the CP/M system calls

and the actual character I/O to the UNID II is accomplished through

calls to an assembly language module linked to this module.

The following constants, variables and procedures are additions to

the network layer simulation.

Constants

ASCII(*) - Array used for converting hex to binary and binary to hex.

BDOS2 - BDOS call 2-console output.

4. BDOS9 - BDOS call 9-print string until $.

BDOSIO - BDOS CALL 10-read console input buffer.

DATA$GRAM$SIZE - Number of bytes from host.

DATA$TABLE$SIZE - Number of bytes in datagram table.

MAX$COUNTRY$CODE - Indicat,.s country codes in use.

MAK$NETbORK$CODE - Indicates UNIDs operational in the network.

MAX$RXTA$TRIES - Maximum number of TA wait tries.

PACKET$TABLE$SIZE - Number of bytes in packet table.

TCP$DATA$SIZE- rCP data size.

THIS$COUNTRY$CODE - Country code where this UNID resides.

*i ThIS$UNID$NBR - Unique address for this UNID in its country code.

*" Variables

RESULT- Error value returned by BDOS function calls.

- 16

BUFFER(128) - Line buffer used for console input.

CHAN$NUM - Channel number in which to load the test datagrams.

DESTNETCODE - Destination network code for the test datagrams.

DEST$HOST$CODE - Destination host code for the test datagrams.

CHAN$PTR - Pointer to the current datagram.

RXTA$TRIES - Number of received transmit acknowledge attempts.

TRANS1RDY - Indicator when the transmit software is ready to transmit
a datagram.

RXO1NE - Pointer to next available space to receive a datagram.

RX01NS - Pointer to next datagram to service.

RX01SZ - Size of receive datagram buffer.

RX01TB - Receive buffer for datagrams.

rXolNE - Pointer to next available space to send a datagram.

[IOINS - Pointer to next datagram to service

TX01SZ - Size of receive datagram buffer.

TX01TB - Transmit buffer for datagrams.

DESTINATION - Destination of the datagram for program control.

DESTINATION$ADDRESS - Destination address of datagram from IP header.

SOURCE$ADDRESS - Source address of datagram from IP header.

BYTES$RECV - Integer value indicating how many bytes of a datagram have
been received from a host.

BYrES$SENr - Integer value indicating how many bytes of a datagram have
been sent to the host.

CHAR - Place holder for the received character in the receive interrupt
routine.

RXTA - Boolean flag to indicate if a transmit acknowledge has been
received.

RXTR - Boolean flag to indicate if a transmit request has been received.

SEND - Boolean flag to indicate when a host channel is sending data to
its host. --

G .17

1 %- ;-[.

TA - Transmit acknowledge character.

T& - Transmit request character.

TRTA - Boolean flags to indicate if the transmit request/transmit

acknowledge handshake is in use.

TXTA - Boolean flag to indicate if a transmit acknowledge was sent.

TXTR - Boolean flag to indicate if a transmit request was sent.

Procedures

BDOS - External call to the CP/M operating system to perform a BDOS
call.

CHK$RXTA - Procedure to check the receive USART for a received transmit
acknowledge character.

CHK$RXTR - Procedure to check the receive USART for a received transmit
request character.

EXIT - External call to return to the CP/M operating system.

INIT - Procedure to initialize the variables used in the program.

LDTABHSKP - Procedure to adjust the pointers to the next available
datagram position in a buffer table.

LOAD - Procedure to interactively load datagrams into a buffer for

transmission to the UNID.

LOOP2 - Procedure to send and receive a datagram.

RCV$l - Procedure to read a datagram from the USART.

READ - Procedure to read a line of buffered input from the host console. .-

READ$LINE - Procedure to interactively read and interpret a line of text

at the host console.

READ$RXTAB - Procedure to read and display the contents of the receive
buffer table.

READ$TXTAB - Procedure to read and display the contents of the transmit

buffer table.

SCLRCM - External call to clear the USART receive port.

SCMCHK - External call to check the USART receive port for a character.

SCMIN - External call to get a character from the USART.

G - 18

- . ~ S~ i I A ~t. a. . ,.

SCMOIJT -External call to send a character to the USART.

SINIT -External call to Initialize the host CP/M USART port.

IL SNDSEQ -Procedure to send a message to the host console for display.

SRVcsrAB$IHSKP - Procedure to adjust the pointers to the next to service
datagram in the buffer tables.

TRANS$1 Procedure to send a datagram to the USART.

Link and Locate Batch File

CAUTION: Do not change address or other parameters in the
following batch file. They are highly CP/M system dependent.

LINK CPMTMP.OBJ,SBS.OBJ,PLM8O.LIB TO CPMTMP.LNK MAP
LOCATE CPMTMP.LNK TO CPMTMP SrACKSIZE(100H) ORDER(CODE,DATA,&
STACK,MEMORY) CODE(103H) MAP PRINT(CPMTMP.MP2)

TYPE CPMITMP.MP2
OBIHEX CPKMP TO CPMTMP.HEX

G - 19

VITA

Creed r. Childress, Jr., was born on 7 October 1943 in Sant--

3arbara, California. de g-raduated froin South Lake T-ihoe High School in

1361. ae then attended the University of Californi at Berkeley,

Clifornia State University at Sacran,,ento, and the University of

California at Santa Barbara before enlisting in the U.S. Air Force in

October 1965 when 'ie began. training as a Radio Relay M1aintenance

J.-chntcian. After his initial training, he was assigned to the 2063

.-:rnunications G;roup it Lindsey Air Station, Wiesbaden, -ermany, where

in 1)72, he was accepted Into the Airmen Education and Cor.inissioninig

P rogra m. qe attended the University of Michigan, Ann Arbor, Michigan,

and graduated Ln lay 1974 with a Bachelor of Science in La-dustrial and

9perations Engineering and a Bachelor of Science in Electrical

IF)'n-aarc in a. 'Ie then attended Officer Training School af-d was

ir

.~ at r, e-i l r AFB, MIiss iss ipp i, for further trainling In Line
ConImuni-catlotns Enaineer specialty. .its ne~t assignmnent began in Juaae

[:975 as ain instruct-or in the Wideband Systems Evaluatton School. (%Fck.)

-AL RlCIiards-gebaur AFB, Grandview, Missouri. In 'Lovambe.r 1977, he was

assg~edas t*h.e Detachmant Commander of Detichiaeat 2.7 Of the 2137

C3:tiunic.-atlons Grcoup In Martina Franca, I tal1y. Follo1w,4i ng. t ha t

*challenging assionmeat, he was assigned to the Pl-Ans Di1vision of the

Headquarters of the Air Force Operational rest and Eva1luation Center,

Kirtland AF8, New Mexico ia December 1)79. Hie ent.tred the Nir F~orce

* Institute of rachnology in M-iy 1983.

. Pecrmanent Address: 3121 Cecile Way
3Sicr-inento, (.A, 33.126

v-

.-.... . . .

_ililLA- Z1F1Ea-- --

3ECUR. Y C LASSI PI CAT ION OF T HIS PAGE

REPORT DOCUMENTATION PAGE
Tie REPORT SECURITY CLASSIFICA1 ION 1b. RESTRICTIVE MARK(INGS

2. SECURITY CLASSIFICATION AUTHORII Y 3. DISTRIBUTION/AVAI LABILITY OF REPORT

-1 Approved for pubhic release;

2b DE...LASSIFICATION/OOWNGRADING SCHEDULE distribution unlimited.

* 4 PER$-ORMING ORGANIZATION REPORT NUMBERISI 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GF/FNG/84D-1 7 ________ _________________________

6* NAME OF PERFORMING ORGANIZATION b OFFICE SYMBOL 7.. NAME OF MONITORING ORGANIZATION

,If .Jpicabir)

2rl .of Elitirleering AFIT/EN ________________________________
Of_ ADDRESS (City, Stale and IIP Code)i 7b. ADDRESS (City.. Sate and /IhI Code)

Air Force Institute of Technolwogy
r Wriyht Patterson AFB, OH 45433

Gg. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION J III applicable)

4k ADDRESS City. State a,,d ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.

I I T I T I Et inciude Security Classification)

'lo Hox 19 _______ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

12. PERSONAL AUTHOR(S)

Pw SoeBox 19
S13a, TY-fPE OF REPORT -13b. TIME COVERED 14, DATE OF REPORT O'r. Mo.. Day) 15. PAGE COUNT

!'FIjPFROM Tr) 1(8 ecme 331
16S ~UPPLEMENTARY NOTATION

17 COSATI CODLS 18 SUBJECT TERMS i(XonLinue om reverse it necessary and identify by block number)

FIE1 GROUP SUB GR

0(0 Local Area Networks, Network Interface, Protocols,
UNID, ISO Referenice Model, X.25, X.121 , TCP/I1l,/:- .

19 AS"TRACT Wonlinue on reverse if neceuarv and identify by blockI na~n ber,

Title: CONTINUED DEVELOIM4ENT AND IMPLEMENTATION OF THE UNIVERSAL NETWORK 114TE1FACE

DEVICE (UNID) II III THE DLGITAL ENGINEERING LABORATORY NETWORK (DELNET)

Tt.uuia Advisur: Dr. Gary L~amjOrlt

AuJthor: Creed Tr. Childress, Jr., BS EE, BS bEL, Capt USAF pyV r IW17i.

j20 DIST RI BUTION/AVAILABI LIT Y OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED, UNLIMITE 0 a SAME AS RPT L-j OTIC USERS 12 UNCLASSIFIED
2. N4M OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL

DD FURM 1473, 83 APR EDITION OF I iAN 73 IS OBSOLETE. -UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

UNCLA.)STFIED

SECURITY CLASSIFICATION OF THIS PAGE

i

Block 19 (cont)

Abs tract

--. his research effort describes the continued development of an improved
Universal Network Interface Device (UNID II). The UNID II's
architecture was based on a preliminary design project at the Air Force
Institute of Technology. The UNID II contains two main hardware
modules; a local module for the network layer software and a network
module for the datalink layer software and physical layer interface.
Each module is an independent single board computer (SBC) residing on an
Intel multibus chassis, complete with its own memory (EPROM and RAM),serial link interfaces, and multibus interface. The local module is an

iSBC 544 and the network module is an SBC 88/45. The network layer
software supports the (JCI''rT X.25 protocol, d-tagrwi, option, and the data
link layer software supports the CCITT X.25 IAPB (HDLC) protocol. This
report documents the detailed hardware and software design, integration,
validation and test of this system.

i1

I.

II

I.

UMC IA.STFT ED_

S, ," ,,. ., rw', ,€ THIS PAGE

.

"".."2 . .',...\ . , "",:. .,.'. .''."'- - '- -',,5'-. "'*% *o*..: ,_."
"

" "" ' .. " " . .- '"."-- " " -"-- , ---"'"" " '""

FLMED

5-85

DTIC
.

. . .. *~ *

