SYNTHESIS OF PHENOLS FROM METAL-CARBYNES AND DIYNES

Authors:
Timothy M. Sivavec and Thomas J. Katz

Performing Organization Name and Address:
Thomas J. Katz
Columbia University Chemistry Department
New York, NY 10027

Report Date:
March 7, 1985

Number of Pages:
6

ABSTRACT
Metal-carbynes RC≡M(CO)Br with diacetylene give specific phenols in good yield. The reactions take only a few minutes at or below room temperature.

Keywords:
- Acetylenes
- Metal-Carbynes
- Metallacycles
- Polyacetylenes
Synthesis of Phenols from Metal-Carbynes and Diynes

by

Timothy M. Sivavec and Thomas J. Katz

Prepared for Publication

in

Tetrahedron Letters

Columbia University
Department of Chemistry
New York, New York

March 7, 1985

Reproduction in whole or in part is permitted for
any purpose of the United States Government

This document has been approved for public release
and sale; its distribution is unlimited
SYNTHESIS OF PHENOLS FROM METAL-CARBYNES AND DIYNES

Timothy M. Sivavec and Thomas J. Katz*
Department of Chemistry, Columbia University
New York, New York 10027, USA

Summary: Metal-carbynes RCE\(\text{\(\text{M(CO)_{4}}\)}\)Br with diacetylenes give specific phenols in good yield. The reactions take only a few minutes at or below room temperature.

Metal-carbynes, unlike metal-carbenes,\(^4\) have rarely been considered reagents for organic synthesis\(^2\) although those illustrated by structure 1 have been known for a dozen years and are fairly easy to prepare.\(^3\) We reported recently that a number of tungsten metal-carbynes, by polymerizing a variety of acetylenes and cyclic alkenes, behave as though they were reactive metal-carbenes.\(^4\) We are reporting here that, as illustrated in equation 1, they combine stoichiometrically with a variety of diacetylenes to give specific phenols in a seemingly general process that is simple to carry out.\(^5\)

\[
\begin{align*}
\text{X} = \text{CO}_2\text{CH}_3, \text{H} \quad &\overset{1}{=} \\
\text{R} = \text{H, CH}_3, \text{C}_6\text{H}_5 \quad &\overset{1}{=} \\
\text{M} = \text{W, Cr} \quad &\overset{1}{=} \\
42 - 60\% \text{ yield} \quad &\text{(M = W)} \\
31 - 50\% \text{ yield} \quad &\text{(M = Cr)}
\end{align*}
\]

Concurrently, W. D. Wulff and his students discovered that metal-carbenes bring about the same transformations, but the yields are good only when the reaction mixtures are extremely dilute.\(^5\) In contrast, the metal-carbynes, because they are highly reactive, can be used at concentrations twenty-three times as great, and they give high yields after only ten minutes at or below room temperature. The acetylenes with which they combine are not required in large excess, and the reactions can be carried out in simple flasks. (The metal-carbenes require sealed tubes at 70 - 95 °C, and to circumvent concomitant polymerization, large, dilute, deoxygenated excesses of acetylene.)
The transformation reported here incorporates carbon monoxide into the product, whereas previous reactions of metal-carbynes with acetylenes could not, because carbon monoxide was not present as a ligand or reactant.²

The procedure reported here works well with unsubstituted and monosubstituted diacetylenes, but not with disubstituted 2,7-nonadiyne. It gives phenols that are fused not only to five-membered rings, but also to those that are six- and even four-membered, these last being notable because they are strained.⁶

The transformations, summarized in the Table, were brought about by adding 1.2 equivalents of the diynes to stirred 0.1 M solutions of the carbynes in toluene under N₂ at -10 °C. Over a period of 10 minutes the mixtures were warmed to room temperature, and pentane was added to precipitate colored solids, which are probably metal salts of the phenols. The filtered solids were combined with 5 % aqueous HCl (1 part) plus tetrahydrofuran (4 parts), extracted with ether, and chromatographed quickly on silica gel.

The metal-carbynes used for these syntheses did not have to be purified by laborious chromatography at low temperature.³ After a quick preparation, they were simply washed extensively with pentane, filtered, dried, and used as needed.

It is not clear what accounts for the reactivity of the metal-carbynes. It might reflect the facility with which they become coordinatively unsaturated, either (as previously speculated) by isomerizing to metal-carbenes ²₆ and following the course of pentacarbonyl-(1-methoxyethylidene)tungsten,⁵ or perhaps by losing a cis-ligand⁷ and following a path via ¹ or ⁴b,⁸ We hope experiments in progress will distinguish these alternatives.

Acknowledgement. We are grateful for the support of the U.S. Navy, Office of Naval Research.
<table>
<thead>
<tr>
<th>Diyne</th>
<th>Product</th>
<th>Yield</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>54</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>Cr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18<sup>b</sup></td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>52</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>46</td>
<td>Cr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>42</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31</td>
<td>Cr</td>
</tr>
</tbody>
</table>

^aThe methyl-carbynes were used for all experiments except the third in the table, for which the phenyl-carbyme was used. The reactions were run (with one exception, see note b) as described in the text. The H NMR and IR spectra of the 3-methyl-5,6,7,8-tetrahydro-2-naphthol and 2,3-dihydro-6-methyl-1H-inden-5-ol are identical to those published.⁵ The H NMR spectra of the other products, all previously unknown, showed the resonances and intensities required. There were no extra resonances. The high resolution mass spectra displayed the required parent peaks, and the IR spectra plausibly correct absorptions. "Reaction effected at room temperature."

^b The reactions were run (with one exception, see note b) as described in the text. The H NMR and IR spectra of the 3-methyl-5,6,7,8-tetrahydro-2-naphthol and 2,3-dihydro-6-methyl-1H-inden-5-ol are identical to those published.
References and Notes

<table>
<thead>
<tr>
<th>Office of Naval Research</th>
<th>2</th>
<th>Dr. David Young</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Code 413</td>
<td></td>
<td>Code 334</td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td></td>
<td>NORDA</td>
</tr>
<tr>
<td>Arlington, Virginia 22217</td>
<td></td>
<td>NSTL, Mississippi 39529</td>
</tr>
<tr>
<td>Dr. Bernard Douda</td>
<td>1</td>
<td>Naval Weapons Center</td>
</tr>
<tr>
<td>Attn: Code 5042</td>
<td></td>
<td>Attn: Dr. A. B. Amster</td>
</tr>
<tr>
<td>Crane, Indiana 47522</td>
<td></td>
<td>Chemistry Division</td>
</tr>
<tr>
<td>Commander, Naval Air Systems Command</td>
<td>1</td>
<td>China Lake, California 93555</td>
</tr>
<tr>
<td>Attn: Code 310C (H. Rosenwasser)</td>
<td></td>
<td>Scientific Advisor</td>
</tr>
<tr>
<td>Washington, D.C. 20360</td>
<td></td>
<td>Commandant of the Marine Corps</td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>1</td>
<td>Code RD-1</td>
</tr>
<tr>
<td>Attn: Dr. R. W. Drisko</td>
<td></td>
<td>Washington, D.C. 20380</td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td></td>
<td>U.S. Army Research Office</td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>12</td>
<td>Attn: CRD-AA-IP</td>
</tr>
<tr>
<td>Building 5, Cameron Station</td>
<td></td>
<td>P.O. Box 12211</td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td></td>
<td>Research Triangle Park, NC 27709</td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
<td>Mr. John Boyle</td>
</tr>
<tr>
<td>Attn: Dr. G. Bosmajian</td>
<td></td>
<td>Materials Branch</td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td></td>
<td>Naval Ship Engineering Center</td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td></td>
<td>Philadelphia, Pennsylvania 19112</td>
</tr>
<tr>
<td>Dr. William Tolles</td>
<td>1</td>
<td>Naval Ocean Systems Center</td>
</tr>
<tr>
<td>Superintendent</td>
<td></td>
<td>Attn: Dr. S. Yamamoto</td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td></td>
<td>Marine Sciences Division</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
<td>San Diego, California 91232</td>
</tr>
<tr>
<td>Washington, D.C. 20375</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ABSTRACTS DISTRIBUTION LIST, 356B

Professor A. G. MacDiarmid
Department of Chemistry
University of Pennsylvania
Philadelphia, Pennsylvania 19174

Dr. James McGrath
Department of Chemistry
Virginia Polytechnic Institute
Blacksburg, Virginia 24061

Dr. E. Fischer, Code 2853
Naval Ship Research and Development Center
Annapolis, Maryland 21402

Dr. Adolf Amster
Chemistry Division
Naval Weapons Center
China Lake, California 93555

Professor H. Allcock
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania 16802

Professor C. Allen
Department of Chemistry
University of Vermont
Burlington, Vermont 05401

Professor R. Lenz
Department of Chemistry
University of Massachusetts
Amherst, Massachusetts 01002

Dr. William Tolles
Code 6100
Naval Research Laboratory
Washington, D.C. 20375

Professor M. David Curtis
Department of Chemistry
University of Michigan
Ann Arbor, Michigan 48105

Professor T. Katz
Department of Chemistry
Columbia University
New York, New York 10027

Dr. J. Griffith
Naval Research Laboratory
Chemistry Section, Code 6120
Washington, D.C. 20375

Professor J. Salamone
Department of Chemistry
University of Lowell
Lowell, Massachusetts 01854

Professor G. Wnek
Department of Materials Science and Engineering
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Professor J. Chien
Department of Chemistry
University of Massachusetts
Amherst, Massachusetts 01854

Mr. Samson Jennekke
Honeywell Corporate Technology Center
10701 Lyndale Avenue South
Bloomington, Minnesota 55420

Professor William R. Krigbaum
Department of Chemistry
Duke University
Durham, North Carolina 27706

Dr. Richard M. Laine
SRI International
333 Ravenswood Avenue
Menlo Park, California 94025

Dr. R. Miller
IBM Research Laboratory K42/282
5600 Cottle Road
San Jose, California 95193
ABSTRACTS DISTRIBUTION LIST, 356B

Professor T. Marks
Department of Chemistry
Northwestern University
Evanston, Illinois 60201

Professor Malcolm B. Polk
Department of Chemistry
Atlanta University
Atlanta, Georgia 30314

Dr. Kurt Baum
Fluorochem, Inc.
680 S. Ayon Avenue
Azuza, California 91702

Professor H. Ishida
Department of Macromolecular Science
Case Western University
Cleveland, Ohio 44106

Professor Stephen Wellinghoff
Department of Chemical Engineering
University of Minnesota
Minneapolis, Minnesota 55455

Professor G. Whitesides
Department of Chemistry
Harvard University
Cambridge, Massachusetts 02138

Dr. K. Paciorek
Ultrasyncs, Inc.
P.O. Box 19605
Irvine, California 92715

Professor H. Hall
Department of Chemistry
University of Arizona
Tucson, Arizona 85721

Professor D. Seyferth
Department of Chemistry
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139