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20. ABSTRACT (Continued)

' A second experimental technique uses the measurement of particle velocity
in the material surrounding an exploded cavity to provide outward and rebound
motion at several radii for geologic materials and simulants.

Additional experimental techniques use direct measurements of the tran-
sient and long-term stress and strain surrounding an exploded cavity.
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Hydrofracture, particle velocity, stress, and strain results for a rock-
matching grout representing saturated Nevada Test Site tuff show the followings

© A beneficial residual stress forms around an exploded cavity, and :
containment of gases is achieved at normal overburden. - @

: ® Permanent volume compression exists in the region surrounding
N an exploded cavity.

L ® Containment may be possible with depth-of-burial and overburden
less than those of normal practice. Ll
® Strain rate changes do not have significant effect on particle - .

velocity when the scale factor is doubled.

Hydrofracture and particle velocity results for G-tumnel and P-tunnel
tuffs show the following:

e A beneficial residual stress forms around an exploded cavity.

® A larger exploded cavity is formed in the P-tumnel ﬁuff, thus
reducing cavity gas pressure and the possibility of spontaneous
fracture.

® Permanent volume dilatation exists in the reeion near an exploded
cavity, suggesting that microcracks are formed.

Hydrofracture and particle velocity results for weak grout and recon-
stituted desert fines representing test site alluvium show the following:

® C(Contaiment may be achieved because cavities are large and
pressures are low.

® The residual stress field around an exploded cavity in the grout
is weak but it aids containment by providing crack growth stability.

® Postshot loss of confining tectonic stress resulting from differ-
ential compaction may result in cavity fracture.

Particle velocity results for dome salt show the following:

® Negligible residual stress forms around an exploded cavity
because the weak material produces no rebound motion.

® A relatively small exploded cavity forms, which keeps the
pressure high.
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20. ABSTRACT (Continued)

® Microcracks associated with volume dilatation probably develop
near the exploded cavity.

® Extensive dynamic fractures from the cavity develop.

Hydrofracture and particle velocity results for granite and granite
simulant representative of hard rock show the following:

® Dynamic fracture of the cavity is likely. ,;1‘3
® A beneficial residual stress may form around an exploded cavity, '-'1j
i and gases may be contained in a region near the cavity. Sl
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CONVERSION FACTORS

S To Convert From To Multiply By

. bar kilo pascal (kPa) 1.000 X E +2

' foot meter (m) 3.048 X E -1

g inch meter (m) 2.540 X E -2

: mil meter (m) 2.540 X E -5
ounce kilogram (kg) 2.834 X E -2

. poise kilogram/meter-second (kg/mes) 1.000 X E -1

’ pound-force (1bf avoirdupois) newton (N) 4.448

3 pound-force/inch2 (psi) kilo pascal (kPa) 6.894

E pound-mass {(lbm avoirdupois) kilogram (kg) 4,535 X E -1

- -
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The exploded cavity hydrofracture technique was applied to
cylinders of RMG 2C4 and cylindrical cores of NTS tuff to assess the
effects of material properties and other parameter variations on the ) 6
residual stress field of the basic containment experiment. The :
reference parameters of the basic experiment were the material (2C4), S
charge size (3/8 gram PETN), overburden pressure [1000 psi (6.895 MPa)], %:%{.::i
viscosity of the hydrofracture fluid (1 centipoise), and rate of fluid ®
flow into the exploded cavity (122.4 cm3/min)- Surface gages monitored

fracture arrival in selected tests.

Al eciccl

An independent series of basic tests was performed on spheres and ;j
cylinders of RMG 2C4 and cylinders of geologic material to obtain
particle velocity profiles in the region surrounding exploded cavities.
These records provide valuable restraints on the calculational modeling

of dynamic material properties.13’14 -

P PRI

A final series of tests was performed on RMG 2C4 spheres to measure
directly dynamic and residual stress and strain in the region surround-

ing an exploded cavity.
The specific areas of investigation were as follows: . @

® Material property hydrofracture. Cylindrical cores of NTS
G-tunnel tuff, taken from the vicinity of the working
point of a Sandia National Laboratory (SNLA) 1 ton high
explosive test, were hydrofractured immediately following
charge detonation, and the pressures were compared with
those for RMG 2C4.

e Differential compaction. The radial confining pressure on
exploded cavity cylinders of weak (l-day-old) RMG 2C4 was

released following charge detonation to simulate the "u_' ]
tectonic stress change assoclated with differential °
compaction. The axial load was maintained constant. The - <

release rate of the radial pressure was varied to study
sudden and long-term differential compaction. A hydro-
fracture test was performed shortly after the pressure

release.

® Depth-of-burial. Exploded cavity RMG 2C4 cylinders with a
charge embedded at various depths and subjected to a range
of external pressures were hydrofractured to determine the
effects of depth-~of-burial on containment. A free surface
was provided at the top of the cylinders to simulate a
finite depth-of-burial. 1In a separate series of tests,
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Our laboratory investigations during the last year have focused on
containment. One purpose of the experimental program has been to under-
stand the mechanisms of underground nuclear explosions and containment
of the cavity gases. An essential part of this understanding is the
generation of data under controlled reproducible conditions for valida-
tion of the continuum mechanics computer codes of calculators working

for the DNA program.11-14

Although the experiments are not strictly scalable to underground
nuclear events, they are designed so that much of the physical behavior
is represented. Consequently, the effects on containment of various
physical conditions in past or planned nuclear events can receive a

preliminary assessment.

In our basic containment experiments, a small sphere of PETN"
powder explosive in a thin-walled Lucite container is cast at the center
of a sphere of rock-matching grout (RMG 2C4). After aging, the grout
has properties similar to those of Nevada Test Site (NT§) tuff. Also
cast in the grout sphere is a stainless steel access tube located on a
radius and ending'just short of the Lucite container. External pressure

1s applied hydraulically to the sphere to represent overburden pressure.

The explosive is detonated to create the exploded cavity. The end of ?2_2 i.x
the steel tube is located so that it just protrudes into the exploded Eﬂ;;ﬂ;}'f
cavity. Fluid is pumped into the cavity at a constant rate until . 'Y .
fracture is initiated and propagated to the outside of the RMG sphere. :
During the pumping, fluid pressure and flow are monitored so that a

hydrofracture record can be constructed.

The effect of the explosively generated residual stress field on - <
containment is assessed by conducting a separate hydrofracture test on a
sphere with an unexploded cavity comparable in size to the exploded

cavity,

4
"4

*Pentaerythritol tetranitrate (C5H8012N4).
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SECTION 1

INTRODUCTION, SUMMARY, AND CONCLUSIONS

1.1 INTRODUCTION

During an underground nuclear explosion, spherically divergent
ground motion is produced in the medium surrounding the expanding
cavity. This motion is eventually brought to rest by the outward energy
radiation of stress waves; by the energy dissipation of crushing, dis-
tortion, and crack formation; and by the combined resistance of tensile
tangential stresses and overburden pressure. This combined resistance
eventually causes a rebound of the medium that may cause further plastic

work around the cavity and intensify the residual stress field.

Radioactive gases produced by the explosion must not be released
into the atmosphere. Consequently, tunnels from the cavity must be
stemmed, and the cavit§ gases must be contained by the adjacent sur-
rounding medium. Containment of the gases may be aided by the residual
stress field created by the explosion. The extent of this aid is
governed by residual stress field strength relative to cavity gas
pressure, relaxation, and potential weaknesses in the field strength
caused by nearby geological and man-made features typical of those found
at the Nevada Test Site. Although containment has been achieved for
many years and stemming has generally been successful in recent nuclear
tests, the complexities associated with underground testing requir: that

planned events still receive extensive containment evaluation.

Over the years, the DNA stemming and containment program has
consisted of five parts: code development for ground motion, tunnel
closure, and grout flow calculations; material properties determination;
laboratory investigations; scaled high explosive tests; and field
diagnostics. Over the past several years, SRI has been conducting

laboratory 1nvest1gations.1-1o
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particle velocity components parallel to the free surface
were measured at various depths.

® Particle velocity technique validation. A series of tests
was performed in RMG 2C4, GS4, and granite cylinders to
assess the effects of gage installation in geologic cores
on particle velocity records. The areas examined were
gage wire material (copper versus aluminum), gages cast in
place versus gages embedded in precast material, and the
groove width (wide versus narrow).

® Scaling effects. Strain rate effects in RMG 2C4 were
assessed by doubling the charge diameter and gage radii
(increasing the weight of explosive by a factor of 8) in a
series of particle velocity tests.

® Material property particle velocity measurements.
Particle velocity pulses were measured at various
distances from the explosive charge in coupled exploded
cavity cylinders of geologic material and simulant. The
materials tested were SNLA G-tunnel tuff, P-tunnel tuff,
Grand Saline (Texas) dome salt, California grey/white
granite, granite simulant GS4, and alluvium reconstituted
from NTS desert fines.

® Strain measurements. Dynamic circumferential strain and
subsequent strain relaxation were measured at several
distances from an exploded cavity in RMG 2C4 by means of
embedded constantan wire loops. Radial and circumferen-
tial components of strain were independently monitored by
strain gage grids encapsulated in room temperature
vulcanizing (RTV) plastic.

® Stress measurements. Dynamic radial stress and subsequent

stress relaxation were measured near an exploded cavity in

RMG 2C4 by means of embedded piezoresistive ytterbium

grids encapsulated in RTV.
In addition, the pressure pulses generated in the overburden fluid
during exploded cavity tests were monitored for quality control and to
provide additional data for verifying calculations. Volume strain in
the region surrounding an exploded cavity was determined from the
particle velocity records for several materials. Finally, an elastic
analysis was performed to assess the extent of the plastic region

surrounding an exploded cavity in granite by studying particle velocity

attenuation.

Section 2 describes existing experimental techniques and recent
developments. Section 3 presents and discusses the hydrofracture,

particle velocity, stress, and strain results. The tests performed are
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tabulated according to specific areas of investigation in Section 3.1.

RN | A
!

Appendix A contains the particle displacement records obtained from the
particle velocity measurements, and Appendix B contains the pressure
pulses measured in the overburden fluid during exploded cavity tests.
Appendix C describes the elastic analysis for determining particle
velocity attenuation, and Appendix D describes the procedure for
generating volume strain from particle velocity records. Appendix E
contains the procedure for measuring particle velocity in alluvium
reconstituted from desert fines. Appendix F describes material proper-
ties for rock-matching grout RMG 2C4, reconstituted alluvium, granite
simulants GS3 and GS4, and a variety of NTS tuffs.

1.2 SUMMARY
The principal findings of the above investigations were as follows: -

® Reproducibility of hydrofracture and particle velocity
records 1is good for all configurations and materials
tested.

® TFor SNLA G-tunnel tuff, exploded cavity hydrofracture
pressures are comparable to those for RMG 2C4. Particle : T
velocity pulses are also similar in the plastic region,
but peak velocity attenuation is less in tuff as the
elastic region 1s approached. Volume dilatation occurs in
the tuff only (Figures 3.1 and 3.33 through 3.41).

® Loss of radial confining pressure following charge :i
detonation (differential compaction) in a weak RMG results
in cavity fracture (Figures 3.2 through 3.4).

i

r

® Depth-of-burial and overburden variations define a failure
threshold in RMG 2C4 (Figures 3.5 through 3.7 and 3.111
through 3.114).

® Changes in particle velocity gage wire material and groove -
width have negligible influence on particle velocity
records in RMG 2C4. Gages cast in place and gages
embedded in precast material ylelded similar results
(Figures 3.8 through 3.27).

® Doubling the charge and gage diameters causes a small
increase of the scaled particle displacement for RMG 2C4
(Figure A. 5) .

® For P-tunnel tuff, peak particle velocities are higher and
pulse duration is longer than in SNLA G-tunnel tuff.
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Dilatation occurs in both materials (Figures 3.42 through :if*
3.49). o
® Grand Saline dome salt shows no rebound following outward o
- motion. Permanent dilatation and dynamic cracking occur
- near the cavity (Figures 3.50 through 3.56).
-
- ® Dynamic fracture results from charge detomation in an
. uncut cylinder of California grey/white granite.
O Thickness of a bonded interface influences particle - -
velocity records. Stepped and plane interfaces yield o
! similar results (Figures 3.57 through 3.77).
' ® For granite simulant GS4, no cracks form in a cast
. exploded cavity sphere; however, dynamic cracking occurs :
¢ along the bonded interface in a precast cylinder. .
Particle velocity records showed little sensitivity to a . @

propagating fracture (Figures 3.78 through 3.85).

® Particle accelerations at the wavefront in exploded cavity

alluvium cylinders increase with initial saturation.
- Dilatation occurs in 88%-saturated material (Figures 3.86 S
- through 3.110). "

. @
3 ® Loops of constantan wire embedded in an exploded cavity T
1 RMG 2C4 sphere yield strains consistent with results
- obtained from particle velocity tests (Figure 3.115).
" ® Peak dynamic stress in an exploded cavity RMG 2C4 sphere, L
g ) as measured by an ytterbium grid encapsulated in RTV, . —
‘i agrees with a calculated result. Pulse shape 1is ' -5!

influenced by the inclusion effect of an embedded gage
(Figure 3.118).

1.3 CONCLUSIONS

Based on hydrofracture, particle velocity, stress, and strain
results for the rock-matching grout 2C4, the implications for under-

ground explosions in similar tuff-like materials are as follows:

® A beneficial residual stress will form around a coupled e
exploded cavity, and containment of high pressure gases )
will be achieved at normal overburden pressure.

® A well-defined failure threshold relating depth-of-burial RO
and overburden exists. Containment may be possible with <
depth-of-burial and overburden less than those of normal
practice.

® Strain rate effects are not changed significantly when the
scale factor is doubled.
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¢ The response of an embedded stress gage package will be

influenced by inclusion effects.

Based on hydrofracture and particle velocity results for SNLA
G-tunnel tuff and particle velocity results for P-tunnel tuff, the
implications for containment in these materials are as follows:

® A beneficial residual stress will form around a coupled

exploded cavity, and containment of high pressure gases at
normal overburden pressure is expected.

® The larger exploded cavity formed in the P-tunnel tuff
reduces cavity pressure and the possibility of spontaneous
fracture.

Volumetric dilatation occurs in a region near the exploded ’.‘
cavity and this suggests that microcracks are formed.

Based on hydrofracture results for weak RMG 2C4 and particle

velocity results for reconstituted desert fines, the implications for

O T

underground tests in alluvium are as follows: °

® An exploded cavity may provide adequate containment at
normal overburden because large cavities are formed and
pressures are relatively low.

® Postshot loss of confining tectonic stress resulting from
differential -ompaction may result in cavity fracture. L 3
The resulting asymmetric stress field will encourage crack U
growth In vertical planes.

® Pore pressure will develop in a material with sufficient :;f}:;
initial saturation. The pore fluid may aid containment by L
quenching cavity gases and lowering cavity pressure. 51;*“

Based on particle velocity results for Grand Saline dome salt, the

implications for underground tests in this material are as follows:

® Negligible residual stress will form around the exploded RN
cavity because the weak material is incapable of producing o
rebound motion. Containment may be jeopardized because a B
relatively small exploded cavity is formed.

® Microcracks associated with volume dilatation will develop
near the exploded cavity.

o Extensive dynamic cavity fractures will probably develop.
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Based on hydrofracture and particle velocity results for California
grey/white granite and granite simulant GS4, the implications for

underground explosions in hard rock are as follows:

® Dynamic fracture of the cavity is likely.

® A beneficial residual stress field may form around a
coupled exploded cavity, and containment of gases in a
region near the cavity may be possible.

Laboratory research during the next phase of the containment

program should include the following:

® Stress Measurements. With the particle velocity data ;**""“J
augmented by stress measurements, the constraints on . S o
material modeling will be much more severe, and )
consequently the combined data will be an extremely
valuable aid to calculators.

® Particle Velocity Measurements. Past experiments with et e rmanad
G-tunnel tuff have given particle velocity records with .
peaks that are much more rounded than for other tuffs at RS
stations close to the charge. This result has been attri- AR
buted to the high level of heterogeneity and anisotropy of
the G-tunnel tuff. The circular wire gage gives the
average radial  velocity. Consequently, to determine
angular dependency, we recommend experiments with particle
velocity gages having sensing wires extending only over a
small arc. The additional work on G-tunnel tuff is
important because of the program in which the results of
the SNLA l-ton test, our laboratory tests, and the
theoretical material modeling research are coordinated.

® Saturation Percentage. We should continue to determine
the dependence of particle velocity (and stress) measure-
ments on saturation percentage for NTS tuff and alluvium.

® Hydrofracture Measurements. Currently, we have only one
hydrofracture record for tuff. More experiments should be 4
performed to consolidate the hydrofracture data. o

® NTS Features. Further hydrofracture experimentation is Lol
recommended to obtain the effect of key NTS features on S
the residual stress field and hence on containment.
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SECTION 2

EXPERIMENTAL TECHNIQUES

2.1 CONCEPTS

Hydrofracture

The experiment shown schematically in Figure 2.1 was devised4 to

simulate in the laboratory several conditions associated with under-

ground nuclear tests. A small amount of PETN powder explosive sealed in ,‘,a- -
a thin-walled Lucite sphere represents the device. The charge is cast K
at the center of a rock-matching grout sphere (or cylinder). After :G
aging, the grout has properties similar to those of an NTS tuff. Also -.;;*;J

cast in the grout sphere is a stainless steel access tube located on a

radius and ending near the charge [Figure 2.1(a)]. External pressure is
applied hydraulically to the sphere to represent overburden pressure
[Figure 2.1(b)). The explosive is detonated to form the exploded
cavity. The end of the steel tube is located so that it just protrudes
into the explosively formed cavity [Figure 2.1(c}]. Fluid is pumped
into the cavity at a constant rate until a fracture has initiated and
propagated to the outside of the grout sphere [Figure 2.1(d)]. Fluid
pressure and flow are monitored while fluid is being pumped so that a

hydrofracture record can be constructed.

Alternative configurations and techniques have been developed to

simulate test site conditions. These include the following:

® Performing hydrofracture tests on cylindrical cores of
geologic test site material.

® Applying independent axial and radial confining pressures
to a cylinder to simulate tectonic stress. The confining

stress may be relieved at a controlled rate following _»‘-
y charge detonation to simulate the effects of differential - j
= compaction. . :

® Embedding an explosive charge near the free end surface of
a cylinder to simulate reduced depth-of-burial.
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FIGURE 2.1 SEQUENCE OF OPERATIONS iIN CONTAINMENT EXPERIMENTS
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The hydrofracture experiments determine the effect of the residual
stress field on containment by allowing comparison of the cavity
pressures required to crack grout specimens with and without residual
stresses. In the experiments without a residual stress field, spherical
cavities are cast in the grout; these unexploded cavities are comparable

in size to the corresponding coupled exploded cavities.

Particle Velocity

The experiment shown schematically in Figure 2.2 was devised15 to
provide laboratory measurements of particle velocity in the material ) ¥
around an exploded cavity. Circular loops of wire are embedded
symmetrically about an explosive source and move radially to follow
particle motion. A voltage proportional to velocity is generated in

each gage as the wires cut externally induced magnetic flux lines.

The experimental procedure with grout specimens readily allows
embedding of stress and strain gage packages for measurement of

transient and residual stress and strain.

2.2 EXISTING EXPERIMENTAL TECHNIQUES

Figure 2.3 shows the experimental apparatus for hydrofracture
tests. A l2-inch-diameter (30.48-cm) RMG sphere is shown inside a
steel vessel containing water that can be pressurized to the desired
overburden. The sphere is suspended from the 1id by the stainless steel
tube cast in the grout. The fluid in the vessel i1s maintained at a
constant pressure throughout the test by incorporating a high pressure
nitrogen reservoir and valve in the water supply line. A quartz gage
mounted in the bottom of the vessel monitors the pressure pulse

generated by charge detonation.

The constant flow-rate system shown schematically in Figure 2.4
conforms with standard hydrofracture practice. The specifications of

this system have been described in a previous report:.8
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Compliance of the hydrofracture system is measured by performing a
pressure test in which the cavity is replaced by a rigid vessel of
equivalent volume. The pressure-volume curve for this test is then used °
to compensate for the effects of system compliance on the hydrofracture S

records.

Brief descriptions of existing experimental techniques for exploded

cavity hydrofracture tests in cast and geologic materials, particle

velocity measurements in cast and geologic materials, and surface

fracture detection are given below.

Hydrofracture Tests in Cast Materials -,.
The basic configuration for exploded cavity hydrofracture tests in ﬁ_lii
cast materials is shown in Figure 2.5. 1In an alternative configuration, 1-i;f
a cylinder replaces the sphere. The charge consists of 3/8 gram of PETN ~.~—-~4
in a 10-mm-0D Lucite case with a wall thickness of 20 mil (0.508 mm). A = _j_\ﬁ
S

10-mil-thick (0.254-mm) coating of lomalite epoxy seals the charge. A

constant explosive density of 1 g/cm3 was used for reproducibility; PETN L ﬁ
weight varied slightly from charge to charge as a result of variations ;;;rié¥4
in machining accuracy. Hence, 3/8 gram was the nominal weight of the

explosive. Charge assembly has been described in a previous report.8

Cavity gas pressure was measured and hydrofracture was performed by
following the sequence of steps shown in Figure 2.6. Before charge ; °
detonation, the entire system was filled with hydrofracture fluid. The R
steel ball sealed the end of the access tube [Figure 2.6(a)]. Charge o l
detonation expanded the cavity past the end of the tube [Figure 2.6(b)], }:El;iﬁi
and the ball continued to seal the access tube until cavity gas and n‘
hydrofracture fluid pressures reached equilibrium [Figure 2.6(c)]. The
fluid pressure was measured by a transducer located in the supply

line. Pumping began immediately with charge detonation. &

Hydrofracture Tests in Geologic Materials

The basic configuration for exploded cavity hydrofracture tests in

cylinders of geologic material is shown in Figure 2.7. A sequence of
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FIGURE 2.5 OVERALL CONFIGURATION FOR UNVENTED EXPLODED CAVITY TESTS
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SECTION 3 "o

EXPERIMENTAL RESULTS

3.1 TEST SERIES

Hydrofracture tests previously performeds-lo on exploded and

unexploded spheres and cylinders provide a data base for comparing
pressure records and assessing the coantribution of residual stress to
containment. The current hydrofracture tests were performed on exploded
cavity cylinders to assess the influence of material properties and - 1
specific test site features on contaimment. Particle velocity tests 4
were performed to provide data for material modeling in computer codes,
to validate existing techniques, and to assess potential technique ;“ﬂ¥-;%
improvements. Stress and strain tests were performed to provide addi- :
tional data for material modeling and to monitor the formation and decay iﬁieiﬁﬂ
of a regsidual field surrounding an exploded cavity. The specific . .
parameters studied during the investigaﬁion include material properties, - ]
scaling effects, differential compaction, and depth-of-burial. This

section provides a complete description of the results. Conclusions

based on these findings are in Sectiomn 1.

The types of experiments performed and the principal observations i:ﬁ.“;ﬁ
are summarized in Table 3.1. Additional observations are summarized in '

Table 3.2. Exploded cavity hydrofracture tests are grouped in Series 1

through 3, particle velocity tests are grouped in Series 4 through 13, .f{{fﬁni
and stress and strain tests are grouped in Series 14 and 15. In ‘ ‘ '
general, at least two tests were performed in each series to establish a
measure of reproducibility. The specific areas of investigation were as ;3ﬁ$:?;
follows: :
® Material Property Hydrofracture (Series l). Results of - ’_ 1
previous tests on rock-matching grout RMG 2C4, a material SRR
that approximates the documented properties of NTS tuff,

were chosen as the standard of comparison. Effects of ﬂlfjl:i
material property variations on containment were studied Lo
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surrounding grout. The fractional change in resistance is equal to the
product of the fractional strain and a gage factor. 1In a separate

calibration test, stretching of a constantan wire under uniaxial stress
yielded a gage factor of 2.0.

In the second configuration, a commercially available constantan

grid* was encapsulated in a small sphere of RTV and cast in RMG 2C4.

Gage packages were oriented in radial and circumferential directiouns at . S
a given distance from the charge. DEETRRE

Stress Measurements in Cast Materials _ -

. . - ;
PR AV S L g

The gage package developed for measuring stress in exploded cavity hvﬁf“fi
grout spheres is a commercially available piezoresistive ytterbium grid** f: N
encapsulated in RTV. The RIV was molded into disks and spheres so that :5““;;i
the inclusion effects associated with simple geometries could be . o
studied. SR

ST
d

*BLH Electronics, Waltham, MA. Type FAE-035-12-56EL-1.

**Dynasen, Inc., Goleta, CA. Type Yb8-50-Ek.
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Stainless Steel Access Tube
(0.250 in. OD, 0.180 in. ID)

Cylindrical Core
of Geologic Material

)
g
r H
]
1 grain/ft MDF
Epoxied in Access RS
Tube - T
o |

+
3

GS4

-
: —Stemming
Column
Circular :
Particle Velocity [ Explosive Charge
Grooves N Epoxied to Access
/\ '3 ] E: Tube
'l _ § R 1 1 q 1
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FIGURE 2.12 STEPPED INTERFACE CONFIGURATION FOR PARTICLE VELOCITY [ ]
TESTS IN CYLINDRICAL CORE OF GEOLOGIC MATERIAL
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Particle Velocity Gage Installation

An alternative configuration for installing particle velocity gages
in cylindrical cores of hard geologic material (see Section 2.2) is
shown in Figure 2.12. The new technique required the precision grinding
of an axial plug in the upper half of the cylinder and a matching hole
in the lower half. A tapered axial hole having a hemispherical bottom
that matched the charge was drilled in the upper half. Narrow circular
grooves 9 mils (0.229 mm) wide were cut concentrically about the hole in
the upper half. Particle velocity gages were epoxied in the grooves,
and the sections of the cylinder were epoxied together in the region
outgide the plug. The charge and access tube were positioned in the
axial hole and grouted in place with granite simulant GS4.

Dynamic Fracture Detection in Geologic Materials

The basic configuration for particle velocity tests in cylindrical
cores of geologic material employs a bonded interface extending through

the charge (Figure 2.9). A technique for detecting fractures along this

interface was deyeloped. After agsembly of a standard partiéle velocity
model, holes are drilled the length of the cylinder at desired distances
from the axis. A commercially available fracture gage consigting of a

series of brittle wires® 1is placed in each hole and positioned to bridge

the bonded interface. The holes are then filled with epoxy, except for
a thin region at the interface. Fracture along the interface changes

the gage resistance, which is monitored electronically.

Strain Measurements in Cast Materials

Two basic configurations were developed to measure strain in

exploded cavity grout spheres. In one configuration, concentric loops

of constantan wire were cast symmetrically about the charge. The wires

change in leagth and resistance as they follow the motion of the N

*Micro-ueasurements, Romulus, MI. Type TK-09-CPB02-005.
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FIGURE 2.11 CONFIGURATION FOR FAILURE CRITERION TESTS
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FIGURE 2.10 CONFIGURATION FOR DIFFERENTIAL COMPACTION TESTS
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Surface Fracture Detection R

Surface fracture of selected grout spheres and cylinders was R
detected by means of a 1/16-inch-wide (1.5%-mm) stripe of electrically o !xv.
conductive silver-based paint. Selected regions of the surface were L
covered so that fracture could be detected with a minimum number of

gages.

2.3 EXPERIMENTAL TECHNIQUE DEVELOPMENTS

Differential Compaction Simulation

Differential compaction in material near an underground explosion ‘ N
relieves the horizontal component of tectonic stress. This feature was :r i>ili
simulated in the laboratory by relieving the confining hydrostatic f}iZ :~d
pressure on a grout cylinder while maintaining a constant axial load. igi"-i;*

) immessnmaid

The apparatus 1is shown schematically in Figure 2.10. Confining pressure ®
was applied hydraulically in the containment vessel. A hydraulic flat- . i}i;;iﬁq
jack located at the bottom of the vessel provided the axial load. For {{ijf;j
slow release of confining pressure, the water was vente. through a valve L
in cthe top of the vessel. For rapid release of confining pressure,‘the
water was veanted through an explosively ruptured diaphragm located in

the wall of the containment vessel.

Depth-of-Burial Simulation

The depth-of-burial of a nuclear device is an important parameter

affecting both the safety and economy of underground tests. This

feature was simulated in the laboratory by embedding a charge at various . o
depths along the axis of a grout cylinder and by providing a gas inter- -.? o ed
face at the top of the cylinder. The coufiguration for the depth-of~ ﬁ‘ﬁj;%:f
burial hydrofracture and particle velocity tests is shown in Figure o ]

2.11. The hydrostatic confining pressure on the cylinder was also

. B
varied to simulate changes in overburden stress with depth. - ? 1
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drilling operations produced the tapered axial hole extending to the
center of the cylinder. The bottom of the hole was formed into a
hemispherical surface having a diameter equal to that of the charge to
ensure proper coupling. The access tube with attached steel ball and

explosive charge was then grouted into the hole.

Particle Velocity Measurements in Cast Materials

Particle velocity profiles for cast materials were obtained in
ll-inch-diameter (27.94~cm) spheres (Figure 2.5) or ll-inch-diameter
(27.%~cm) and 1ll-inch-long (27.94-cm) cylinders (Figure 2.8).
Concentric circular loops of wire were cast symmetrically about the
charge, and a magnetic field was generated normal to the plane of the
loops by passing current through a coil that surrounds the sphere or
cylinder. Charge detonation produces radial motion of the loops that
cuts the magnetic flux lines. In accordance with Faraday's law, the
voltage induced in each conducting loop is proportional to the particle
velocity. A history of particle velocity at several radii was thus

obtained for validatioﬁ of material modeling in codes.

Particle Velocity Measurements in Geologic Materials

Particle velocity profiles for geologic materials were obtained in
cylindrical cores from the test site. The cylinder was first sectioned
along the midheight plane, and an axial hole was drilled in the upper
half (Figure 2.9). Central hemispherical cavities were machined in
matching faces of each section. Circular grooves were scribed concen-
trically about the cavity in the upper section, and particle velocity
gage wire was epoxied in the grooves. The charge and access tube were
epoxied in the axial hole, and the two halves of the cylinder were then

epoxied together.
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Table 3.2

POSTTEST OBSERVATIONS

BT AT T T T e T e

Exploded Cavity Dynamic
Diameter? Fractures Developed
Material (cm) During Test
Rock-matching grout 2.05 None
(RMG 2C4)
Weak (l-day-old) RMG 2C4 2.86 None
Low—-density grout 2.38 None
(LD 2C4)
NTS tuff 1.75 None (Tests 340 and 360); along
(SNLA G-tunnel) bonded interface, extending 4 cm
from cavity (Test 341); along
stemming colummn (Test 359)
NTS tuff 2.14. None
(P-tunnel)
NTS tuff 1.27 Along bonded interface, extending
(Strong G-tunnel)b 4=5 cm from cavity (Test 295)
NTS tuff 1.27 None (Test 327)
(N-tunnel)b ) -
Salt 1.59 Three or four plane surfaces,
(Grand Saline) extending 3 cm from cavity
(Tests 364 and 365)
Granite 1.17 Typically along bonded interface,
(California grey/white) extending 3-4 cm from cavity
(7 tests); also through unsectioned
material, extending 5 cm from
cavity (Tests 375 and 376)
Granite simulant 1.27 None in cast sphere (Test 357);
(GS4) along bonded interface in prccast
cylinder, extending 5 cm from
cavity (Test 358)
Reconstituted alluvium 3.02 None
(dry)
Reconstituted alluvium 2.54 None
(40% saturated)
Reconstituted alluvium 3.02 None

(88% saturated)

3Charge diameter = 1.05 cm.

bSee reference 10.
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by testing a G-tunnel tuff taken from near the working
point of an SNLA high explosive test.

e Differential Compaction (Series 2). The effects of 'y
differential compaction at the test site were simulated in
the laboratory by relieving the confining radial pressure
on a weak grout cylinder following charge detonation while
maintaining the axial load. The rate of pressure release
was varied to study the effects on countainment of sudden v
and long-term differential compaction. . ;

® Depth-of-Burial Hydrofracture (Series 3) and Particle
Velocity (Series 13). The effects of depth—of-burial on
containment were assessed by performing hydrofracture
tests on exploded cavity RMG 2C4 cylinders subjected to a
range of external pressures and having the charge embedded -
at various depths. A free surface was simulated by [
providing a gas interface at the top of the cylinder. 1In T
a separate series of tests with the same configuration,
particle velocity components parallel to the free surface
were measured at various depths.

e Particle Velocity Technique Validation and Improvement 'Y
(Series 4 and 9A). The effects of gage installation on
particle velocity records for geologic cores were examined
by performing a series of tests in cylinders of RMG 2C4,
granite, and GS4. The parameters were gage wire material
(copper versus aluminum), gages cast in place versus gages
embedded in precast material, groove width (wide versus ®
narrow), and shape of the bonded interface (plane versus
stepped).

® Scaling Effects (Series 5). Strain rate effects are an
important parameter in developing an equation of state for IR
a material. Rate effects in RMG 2C4 were assessed by T
doubling the standard charge and gage diameters in a . @
series of particle velocity tests. The weight of explo-
sive was correspondingly increased by a factor of 8.

® Material Property Particle Velocity Measurements (Series
6, 7, 8, 98, 10, 11, and 12). The particle velocity
profile associated with charge detonation in a material
provides a measure of the residual stress field intensity -
and represents a valuable source of data for verification L
of material modeling in codes. Particle velocity profiles
were measured in several geologic materials and simulants. S
The materials tested were SNLA G-tunnel tuff, P-tunnel S
tuff, Grand Saline (Texas) dome salt, California grey/ '
white granite, granite simulant GS4, and alluvium (with
various saturations and pore pressures) reconstituted from
NTS desert fines.
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® Strain Measurements (Series 1l4). Direct measurement of
strain in an exploded cavity test provides a means of
verifying particle velocity records and allows for an
assessment of residual strain relaxation. Circumferential
strain was measured in RMG 2C4 by means of embedded
circular loops of constantan wire. Radial and circum-
ferential components ¢. strain were independently measured
by strain gage grids encapsulated in RTV.

® Stress Measurements (Series 15). Measurement of stress in
an exploded cavity test provides a means of quantifying
residual stress field strength and stress relaxation.
Dynamic radial stress and subsequent stress relaxation
were measured near an exploded cavity in RMG 2C4 by means
of embedded piezoresistive ytterbium grids encapsulated in
RTV.

3.2 EXPLODED CAVITY HYDROFRACTURE TESTS

Details of the exploded cavity hydrofracture experiments are shown
in Figures 2.1, 2.3, 2.4, 2.5, and 2.6. The modified configuration
shown in Figure 2.11 was used for depth~of-burial failure criterion
tests. The standard external pressure applied to the test specimens was
1000 psi (6.895 MPa). Water dyed. with Rhodamine B was the hydrofracture
fluid.

Series 1: Material Property (SNLA G-Tunnel Tuff)

Cylindrical cores of G-tunnel tuff taken from near the working
point of a proposed SNLA l-ton high explosives test were received from
NTS. The samples, which were 9-1/2 inches (24.13 cm) in diameter, were
cut to a length of 11 inches (27.94 cm) so that hydrofracture tests
could be performed. The configuration developed for exploded cavity
hydrofracture tests in cores of geologic material is described in

Section 2.2 (see Figure 2.7).

Figure 3.1 shows the exploded cavity hydrofracture pressures for
SNLA G-tunnel tuff (tests 359 and 360). For comparison, results of
previous tests (244, 245, 248, and 254) on 12-inch-diameter (30.48-cm)
RMG 2C4 spheres are included. The hydrofracture records for tuff in

test 360 and for RMG are similar, suggesting that comparable residual

et e—————
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stress fields are developed in the two materials. Similar particle
velocity response for the tuff and RMG (see Series 6) is additional
evidence that comparable residual stress fields are formed. Hydrofrac- .;92,._
ture of the tuff cylinder in test 360 resulted in a nearly horizontal S
fracture surface through the cavity. Hence, the grout stemming column

had no apparent influence on containment.

The 16w hydrofracture pressures for tuff in test 359 (Figure 3.1) -
indicate the existence of a vent path that allowed gases and hydrofrac- :i”;APQ}
ture fluid to escape from the exploded cavity. In fact, posttest 25314]31
examination of the cylinder revealed two vertical fracture planes o d
intersecting the grouted axial hole. Although the grout stemming column ._;;f-jJ
was not fractured, weak bonding between the grout and tuff permitted the SRR
venting. The low hydrofracture pressure obtained in this test caused by
fracture from a weak grout/tuff interface implies that care is necessary

in the design and construction of stemming of line-of-sight tunnels.

Pressure records in the overburden fluid obtained-ffom quartz gage
measurements. are shown in appendix Figure B.l for tuff and RMG.
» Similarity of the pulses for a given material_indic;tes charge repro-
ducibility. Higher pressures for the tuff are attributed in part to
differences in the size and geometry of the tuff and RMG models.

Series 2: Differential Compaction in Weak RMG 2C4

Differential compaction represents a test site asymmetry that
allows for a local relief of the horizontal tectonic stress component
near an exploded cavity. This feature was simulated by relieving the
radial component of overburden pressure on an exploded cavity cylinder
after charge detonation. Because weak naterials (e.g., alluvium) are
potentially most vulnerable to the effects of differential compaction,
the material tested was a weak (approximately l-day-old) 2C4 grout.
Unconfined crush strength determined from two tests was 600 psi {(4.137
MPa). Splitting tensile strength determined from two tests was 60 psi
(0.414 MPa).
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A preliminary standard hydrofracture test (339) at constant 1000

psi (6.895 MPa) overburden pressure was conducted on a weak 2C4 grout ':,: -

cylinder to assess the basic containment capability of the material. o
Figure 3.2 shows the pressure record for test 339. For comparison, - .
hydrofracture records for tests on standard 2C4 grout and low—density

(LD) 2C4 grout are also shown. The LD 2C4 has an air void content (13%)

similar to that of alluvium. Hydrofracture pressures for weak 2C4 grout .,-iiz,j
are less than those of the other materials, but cavity gases appear to : e

be contained after charge detonation.

The first differential compaction test (333) was performed with
axial and confining pressures initially at 1000 psi (6.895 MPa). Figure R

2.10 shows the test configuration. After charge detonation, the axial
pressure was nmaintained while the confining pressure was relieved slowly
as shown in Figure 3.3. No hydrofracture fluid was pumped into the
cavity. When the confining pressure dropped to approximately 600 psi
(4.137 MPa), a loss of cavity pressure was observed. For reference,
test 344 (Figure 3.3) was performed to measure the.pressure of cooling
cavity gases in a weak 2C4 grout exploded cavity cylinder subjected to
1000 psi (6.895 MPa) overburden. )

The second differential compaction test (334) was performed with
axial and confining pressures initially at 500 psi (3.447 MPa). After

charge detonation, the axial pressure was maintained while the confining
pressure was relieved slowly, as shown in Figure 3.4. No hydrofracture
fluid was pumped into the cavity. When the confining pressure dropped
to approximately 100 psi (0.689 MPa), a loss of cavity pressure was

observed.

A final differential compaction test (345) was performed with axial ;L”}}*?}
and confining pressures initially at 1000 psi (6.895 MPa). After charge fﬁ}?fﬁf
detonation, the axial pressure was maintained while the confining e
pressure was relieved rapidly in approximately 20 ms. Measurements ' -9 _—
showed that loss of cavity pressure coincided with the loss of confining

pressure.
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In all three differential compaction tests, the cylinders fractured
through the cavity along vertical planes of least principal stress. The
differences between the axial and confining stresses at fracture for
tests 333 and 334 were about 450 and 400 psi (3.103 and 2.758 MPa),
respectively. The unconfined strength of the l-day-old 2C4 grout was
600 psi (4.137 MPa). Hence, in test 333 cavity pressure caused failure
before the confining pressure dropped enough to cause overall failure of
the cylinder. 1In test 334, complete removal of the confining pressure
with no cavity pressure would not have caused failure of the cylinder so
the cavity pressure combined with reduced confining pressure caused

failure.

Series 3: Depth-of-Burial Failure Criterion Below an Air/RMG 2C4
Interface

Depth-of~burial represents an important éontainment parameter
affecting both the safety and economy of underground tests. A depth-of-
burial study was conducted in exploded cavity RMG 2C4 cylinders by
providing a free surface at one end in the form of a gas interface,
varying the distance befween the charge and the free surface, and
varying the overburden pressure. Hydrofracture tests were performed to
determine the threshold of failure. Fracture gages were painted on the

free gsurface to detect dynamic fracture.

In tests 342 and 343, the depth—of-burial was 2 inches (5.08 cm).
The overburden pressure was 1000 psi (6.895 MPa) in test 342 and 1500
psi (10.342 MPa) in test 343. The configuration and hydrofracture pres-
sure records for these tests are shown in Figure 3.5. Also shown 1in the
figure for comparison are the configuration and hydrofracture records
for standard exploded cavity tests on RMG 2C4 spheres. The shallow
depth-of-burial in tests 342 and 343 resulted in dynamic cracking from

the cavity to the free surface and venting of cavity gases.

In tests 337, 338, and 346, the depth of burial was 4 inches (10.16
em). In test 337, the overburden pressure was 1000 psi (6.895 MPa),

whereas in tests 338 and 346, the overburden pressure was 500 psi (3.447

59

]
A

Lt et
alaal

- R
T "
L
RO
BN
]
0
A 4
; 3
3

: .

« 0t

b e te e
[P R ]

oo L
A
YRR .'l



A AT it
e e

LIl

{EYE ANV Zve S1S31) 103443 TvIHNG-30-H1d3a — $¥IZ OWH NI
S1S31 ALIAYD 030017dX3 GILNIANN HO4 SIHNSSIHd JHNLOVHIOHAAH G'€ 3WNOId

¢-eLES-vr

(s) INIL
9 G v 14 4 0
(A% \
Eve
U/ wd 47z aley mojy4 1sd 0001 o— >
iaem pin|4 ainjaeajoIpAy Jem
Gg/g  ezgabiey)
[~ ] ey 57 (=)
$3Z 9wy feuaie _2:_8\ . esoyds tr—-

_ y

c z rI.LI.JL
- ¢ ) vy oo absey) y 4 v / \

13puyhg T “\\ / “ / \
(€9E) 159 0051 _ 2| f\ \\ CARES '
| (zve) 19 0001 — } vse\ - y. .t bL
veoN ul SN/ ~ 7/
vz -~ /77
]
159} “ \
11144 \ ” v
/
by o —_—— ]~ e -

9 — a%epng 18 pa1dalag Hoesd

(EVE'ZYEID

0001

000¢

000€

000t

0005

0009

000L

(1sd) 3YNSS3IYd

et e Al e e Ca



R R R N A

MPa). The configuration and hydrofracture pressure records for these
tests are shown in Figure 3.6. Dynamic surface cracking was observed
when the overburden pressure was 500 psi (3.447 MPa). However, in test
338, a typical hydrofracture record was obtained, whereas in test 346,
cracking extended from the cavity to the free surface, and the cavity
gases vented. No dynamic cracking was observed in test 337 in which the
overburden pressure was 1000 psi (6.895 MPa), and a typical hydro-

fracture record was obtained.

The depth-of-burial results are summarized in Figure 3.7. A
failure threshold curve consistent with all available results is
included.

3.3 PARTICLE VELOCITY MEASUREMENTS

The basic configuration for particle velocity measurements is shown
in Figure 2.8. The techniques developed to construct the models and
perform the tests are described in Sections 2.2 and 2.3. Shown in the
particle velocity figures are the times at which the generated wave
reflects from the surface of the sphere or cylinder and veturns to each
gage. Hence, before these times the results are representative of

motion in an infinite wedium.

Series 4: Technique Validation in RMG 2C4

The standard technique developed for particle velocity measurements
in RMG 2C4 consists of casting loops of copper wire symmetrically about
an explosive charge in a gphere of grout. An alternative technique,
required for tests in cores of geologic material, is to precast a grout
cylinder, section the cylinder along the midheight plane, embed the wire
loops in circular grooves, and epoxy the cylinder along the plane of the
gages (see Figure 2.9). A serles of four experiments was performed to

validate these techniques.

In test type 1, we considered the effects of gage wire material on
the particle velocity records. Copper (density 9.0 g/cm3) was replaced
by aluminum (density 2.7 g/cm3) to assess inertial effects in RMG
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(density 2.2 g/cm3). In test 353, aluminum wire loops were cast in a
sphere of RMG 2C4 at four radial locations (1.27, 1.90, 2.54, and

4,00 cm). The aluminum wire was 5 mils (0.127 mm) in diameter, the same
as the copper wire. Figures 3.8 through 3.11 show the resulting
particle velocity records. For comparison, results of previous tests6
(272 and 273), in which copper wire loops were used, are included. The
good agreement among the results from each location indicates that the
inertial effects are small. In particular, agreement is excellent just
behind the wave front where particle accelerations, and hence inertial
forces, are at a maximum. The slightly shorter duration of outward
motion associated with the aluminum wire is considered to be within the
limits of experimental reproducibility.

Pressure pulses in the overburden fluid obtained from quartz gage

" measurements are shown in Figure B.2. Reproducibility of these pulses

is consistent with the reproducibility of the particle velocity records.

Test type 2 considered the effects of gage installation technique
on the particle velocity records. In test 354, circular grooves 40 mils
(1.02 om) wide were machined in a precast RMG cylinder at four radial
locations'(1.27, 1.90, 2.54, and 4.00 cm). Copper wire 5 mils (0.127
mm) in diameter was epoxied in the grooves. Figures 3.12 through 3.15
show the resulting particle velocity records. For comparison, results
of a similar previous test® (293) are shown. Also shown for comparison
are the results of tests 272 and 273, in which gages were cast in the
grout. The generally good égteement among the results at each location
indicates that the technique for installing gages 1in precast cylinders,

and hence in cores of geologic material, is adequate.

The configuration for test type 3 was similar to that of test type
2 except that aluminum wire replaced the copper wire. Hence, the
effects of gage installation technique on the particle velocity records
were further assessed. Figures 3.16 through 3.20 show the resulting
particle velocity records for test 355. For comparison, results of test
353, in which aluminum wire gages were cast in the grout are also shown.

The excellent agreement between the records at each gage location
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confirms that the gage installation technique required for cores of

geologic material 1is suitable.

Test type 4 considered the effects of groove width on the particle

velocity records. In test 356, circular grooves 9 mils (0.229 mm) wide

were machined in a precast RMG cylinder at four radial locations (1.27,
1.90, 2.54, and 4.00 cm). Aluminum wire 5 mils (0.127 mm) in diameter L
was epoxied in the grooves. Figures 3.21 through 3.24 show the result-
ing particle velocity vrecords. For comparisomn, results of test 353, in
which aluminum wire loops were cast in RMG, are also shown. Agreement
between the records 1is excellent at PV1 (Figure 3.21) and satisfactory
at PV2 (Figure 3.22). However, agreement is not satisfactory at PV3
(Figure 3.23) and PV4 (Figure 3.24), where particle acceleration behind
the wave front in test 356 1s erratic. One possible cause of this
response is seen in Figure B.3, where pressure pulses in the overburden "
fluid from similar tests (354, 355, and 356) are shown. The lower peak
pressure in test 356 suggests that an attenuating mechanism, such as a}r
volds, was present in the groutl The narrow grooves used in test 356

are a technique refinement that should be incorporated in future tests.
- - o
Particle displacements obtained from an integration of the pafticle -
velocity records for the above tests are shown in Figures A.l through

A.4. The displacements for Test 353 (Figure A.l) were used to generate

the volumetric strain profile shown in Figure 3.25. The procedure for
generating volume strain from particle displacement is presented in
Appendix D. As shown in Figure 3.25, permanent compressive volumetric
strain is induced in RMG 2C4 as the material 1s crushed by the outgoing
spherical wave. This result is consistent with the measured exploded
cavity diameter for tests in RMG 2C4 [0.808 inch (2.05 cm)]. That is,

when the displacement records are combined with an assumption of incom-

pressibility, the calculated exploded cavity diameter [0.739 inch (1.88
em)] 1s less than the measured value. Hence, permanent volumetric
compression is required for agreement hetween calculated and measured

values.
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Attenuation of peak particle velocity with range for RMG 2C4 is
shown in Figure 3.26. The same attenuation curve applies to cast and
precast material. Wavefront propagation distance versus time from
detonation for RMG 2C4 is shown in Figure 3.27. A constant wave speed
of 3.29 mm/us applies over the range of the gages.

Series 5: Scaling Effects in RMG 2C4

Strain rate effects in RMG 2C4 were assessed by performing two
particle velocity tests in which a nominal 3-g charge replaced the
standard 3/8-g charge. The corresponding linear scale factor of 2.00
[1.e., (3/0.375)1/3] was applied to the 3/8-g configuration to determine
charge dimensions and gage locations for the 3-g tests. All tests were

performed in ll-inch-diameter (27.94-cm) spheres.

The actual weight of explosive in the 3-g and 3/8-g charges was
3.14 g and 0.35 g, respectively. Hence, the corresponding linear scale
factor of 2.08 [i.e., (3.14/0.35)1/3] applies. To compare the 3-g and
3/8-g results, we first scaled the 3-g results in range and then in
time. That 1s, if R represents the radius of a gage in the 3/8-g tests,
then 2R represents the radius in the 3-g testé. However, the actual
gage location should have been 2.08R in the 3-g tests. Hence, the
particle velocity amplitudes at the 2R location were modified according
to the attenuatfion for 2C4, as shown in Figure 3.26. The time in the
3-g tests was then scaled by a factor of 2.08.

Results of the 3-g tests (335 and 336), scaled to those of previous
3/8-g tests (272, 273, and 293), are shown in Figures 3.28 through 3.32.
Hence, the gage locations shown (PV1 through PV5) are those in the 3/8-g
tests. The attenuation factors used to scale the range in the 3-g tests
were 0.936 (for gages PVl and PV2) and 0.911 (for gages PV3, PV4, and
PV5). In general, the 3-g and 3/8-g records show good agreement,
indicating that the results may be scaled over the small range con-
sidered in these tests. One significant difference in the results is
that the 3-g charge produces more displacement than the 3/8-g charge at
gages PV3 (1.90 cm) and PV4 (2.54 cm), as shown in Figure A.5. However,
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corresponding exploded cavity diameters were 1.656 inches (4.21 em) and
0.808 inch (2.05 cm), and the resulting ratio (2.05) is in good agree-
ment with the scale factor (2.08). This is further evidence that the
results may be scaled.

Series 6: Material Property (SNLA G-Tunnel Tuff)

Cylindrical cores of G-tunnel tuff taken from near the working
point of a proposed SNLA 1l-ton high explosives test were received from
the test site. The samples, which were 9.5 inches (24.13 cm) in
diameter, were cut to a length of 11 inches (27.94 cm) so that particle
velocity tests could be performed. The charge and gage installation
technique previously developed for geologic materialsl® was applied.
Gages were embedded at six radial locations (0.64, 1.27, 1.90, 2.54,
4.00, and 8.00 cm). Figures 3.33 through 3.38 show the resulting
particle velocity profiles for tests 340 and 341. For comparison,
results of previous tests (272, 273, and 293) on ll-inch-diameter
(27.94~cm) RMG 2C4 spheres or cylinders are included.

The particle velocity records for the tuff and RMG 2C4 are similar
during both outward and rebound phases of the motion. This result
indicates that the initial residual stress field surrounding exploded
cavities in these materials may be gsimilar. However, estimates of
exploded cavity diameter based on integrated particle velocity records
(Figures A.l and A.6) and an assumption of incompressibility yield
0.705 inch (1.79 cm) for the tuff and 0.739 inch (1.88 cm) for RMG 2Cé4.
Posttest measurements yield a smaller diameter of 0.688 inch (1.75 cm)
for the tuff but a larger diameter of 0.808 inch (2.05 cm) for RMG 2C4,
indicating permanent volumetric dilatation in the tuff and compression
in the RMG 2C4. Figure 3.39 shows permanent dilatation for tuff in the
region between gages PVl and PV2. The smaller cavity in tuff results in
a higher cavity pressure, which increases the potential for cracking.
In fact, posttest examination revealed cracking along the plane of the

gages in test 341; however, no cracking was detected in test 340.
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Because the records for these two tests are similar, cracking apparently

had negligible influence on the dynamic response.

The absence of rebound at gage PV3 (Figure 3.35) in test 341 is
attributed to a possible break in the gage at the end of the outward

motion.’

As shown in Figure 3.40, attenuations of peak velocity for the tuff
and RMG 2C4 are similar over most of the range covered by the gages.
Figure 3.41 shows the time of arrival of the wave front at each gage
location. A constant wave speed of 3.16 mm/us for the tuff and

3.29 mm/ps for RMG 2C4 applies over the range of the gages.

Pressure records in the overburden fluid obtained from quartz gage
measurements are shown in Figure B.4. The similarity in pressure pulses
of the tuff and RMG 2C4 is consistent with the similarity of the

particle velocity records.

Series 7: Material Property (P-Tunnel Tuff)

One 12-inch-diameter (30.48-cm) cylindrical core of P-tunnel tuff .
received from the test site was recored to a diameter of 9-5/8 inches
(24.45 cm) and cut to a length of 11 inches (27.94 cm) so that a
particle velocity test could be performed. The charge and gage instal-
lation technique previously developed for geologic materialslO was
applied. Gages were embedded at five radial locations (1.27, 1.90,
2.54, 4.00, and 8.00 cm). Figures 3.42 through 3.46 show the resulting
particle velocity profiles for test 350. For comparison, results of
previous tests (340 and 341, Series 6) on 9-1/2-inch-diameter (24.13-cm)
SNLA G-tunnel tuff tuff cylinders are included.

Peak velocity and duration of outward motion are greater for the
P-tunnel tuff, but the rebound velocity is comparable for the two
materials. These results are consistent with the measured exploded
cavity diameter of 0.844 inch (2.14 cm) for P-tunnel tuff and 0.688 inch
(1.75 cm) for G-tunnel tuff. An estimate of exploded cavity diameter

for P-tunnel tuff based on the integrated particle velocity record of

100




1000 I T T 1 T

200 +— —
‘m‘ —
E 100
>
=
3
= 50 — SNLA G-Tunnel Tuff (—des) ]
> (Tests 340, 341)

w RMG 2C4 (———}

=4 (Tests 272, 273, 293,

= 353, 354, 355, 356)

< 20 [— —
s

>

=

>

§ 10 =

\ a
\‘
2 — —
: 1 L [ 1 N L
0.1 0.2 0.5 1 2 5 10 20
DISTANCE FROM CENTER OF CHARGE (cm)
JA-3876-95A
FIGURE 3.40 MAXIMUM PARTICLE VELOCITY VERSUS DISTANCE FROM CENTER I

OF CHARGE FOR SNLA G-TUNNEL TUFF AND RMG 2C4 B

101




8 T T T T
/
SNLA G-Tunnel Tuff (—@—) / .
7 (Tests 340, 341) ]
r AMG 2C4 (— e —) /
(Tests 272, 273, 293, /
353, 354, 355, 356)
§s ] :
W .
Q .
2 .
< g
w5 — j
a g
2
o -
2 o
g 4 . T
< L
Q. RS
] S
[v'ed T
& - .o
o S
« S
2
=2 — '
1 —
0 : : : l O
0 5 10 15 20 25 DR
TIME FROM DETONATION (us) ' .
JA-6372-43

FIGURE 3.41 WAVEFRONT PROPAGATION DISTANCE VERSUS TIME FROM DETONATION
FOR RMG 2C4 AND SNLA G-TUNNEL TUFF




——

(TINNNL-9 VINS GNV TINNNL-d} 13NL Ni
SNOISOTdX3 Q31dNO0D 40 HILNID FHL WOHS WO £2°]1 ALIDOT3A 31D011HVd Z¥'E 3HNOIS

vZ-TLES-Vr
(s7) NOILVYNO13Q WOY4 INIL
08 oL 09 0S ov (0 0C o1 0

0c-
(—-d — .
lﬁ - - - ~— - e dh el r -
~ 1 0
~\ - Ohm”
/ ~ —g oz
D
(——)13puniAg yn) BuUNy-9 yINS ~~ N DN
== {——) 13punAg yyn} jauun}-g / < ov z
N\ 3
(SAd) 4 w3008 0o = o
- (PAd) 4 w3 0D’} o 9
(EAd) ¥ WI 4§Z M .
(ZAd) 4 W2 06' N
— (LA} ¥ w (' 08 5
Ind I o
- i -4 oot 2
e W 3
] / LN
i ove oct
b ovlL
— 091
0se
159)
L ] 08!
4 — |eAly asind pa123)ay




LIVS NI 1531 ALIDOTIA 3101LHVYd ¥ WOH4 QINIVLIEO NIVHLS JIHLIANNIOA vS'E IYNOI
IYL-CLES-VT
{s") NOILYNOLIAQ WNOHL FNIL
08 0L 09 (03] oy ot (0)4 ol
ﬁ. "‘,‘ I - - - b @ o @ WD A > w - - - o ‘-'ll-"r'
f ~~
m y
V’,l,l‘ s amp e TS A SR N
‘j * ﬁ’ - - II
lv -~ b
H ~ \
N LN -
N N '
ars a
Japuiikg 1 vAEAd |\ \{ !
awo(q aules puerg // M
— (vAd) ¥ W 00y ) H
(EAd) ¥ W 4§ \/ h
(ZAd) 4 W 061 _ '
(1Ad) ¥ wo 121 e N
2
vt
159]
\, ZAd-LAd
Y — |eALUY 3s|ng Palda)jay

oL

S'0-

S0

(U1

51

0¢

S'¢C

(3uadsad) NIVHLS D18 LINNTOA JAISSIHAWOD

117




velocity for salt. This lack of rebound is attributed to the dynanmic
radial cracks that reduce the restoring circumferential component of
stress. Posttest examination of the salt cylinders revealed blackened
fracture surfaces (three in test 364 and four 1in test 365) extending

about 2 inches (5.08 cm) from the cavity.

An estimate of exploded cavity diameter for salt 1is 0.699 inch
(1.78 cm), based on the integrated particle velocity record of PV2
(Figure A.8) and an assumption of incompressibility. The measured value
is 0.625 inch (1.59 cm). A calculated diameter larger than the measured
value implies an apparent dilatancy of the material behind the wavefront.
This dilatancy 1s shown in Figure 3.54 and is attributed to the observed

dynamic cracking.

Figure 3.55 shows the decay of peak velocity with range for salt
and RMG 2C4. Near the charge, the rate of attenuation for these
materials is comparable. As the distance from the charge increases,
however, attenuation becomes more pronounced in RMG because of the

greater energy absorbed in closing pores.

Figure 3.56 shows the time of arrival of the wavefront at each gage
location for salt and RMG. A constant wave speed of 3.56 mm/us for salt
and 3.29 mm/pus for RMG applies over the range of the gages. Note,
however, that a shock wave speed of 4.40 mm/ps applies to salt between

the charge and gage PV1.

Series 9A: Technique Improvements for Hard Rock (Granite)

Three 1-foot cubes of California grey/white granite were cored to a
diameter of 9-5/8 inches (24.45 cm) so that particle velocity tests
could be performed. The standard charge And gage installation technique
previously developed for geologic materialslo
epoxied in grooves 40 mils (1.02 mm) wide and 40 mils (1.02 mm) deep at
five radial locations (1.27, 1.90, 2.54, 4.00, and 8.00 cm). Figures
3.57 through 3.61 show the resulting particle velocity profiles for

tests 349, 351, and 352.

was applied. Gages were
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PV2 (Figure A.7) and an assumption of incompressibility yields 0.800

inch (2.03 cm). Crushing of the P-tunnel tuff appears to contribute to
the formation of the larger exploded cavity. Figure 3.47 shows
permanent compaction in the region between gages PV1 and PV2. The
larger cavity results in lower cavity pressure, which decreases the
potential for cracking. Posttest examination of the cylinder revealed

no evidence of cracking even along the bonded plane of the gages.

Figure 3.48 shows the decay of peak velocity with range for
P-tunnel tuff, SNLA G-tunnel tuff, and RMG 2C4. Overall, the rate of
attenuation for these three materials is comparable. Figure 3.49 shows
the time of arrival of the wavefront at each gage location for the same
materials. A constant wave speed of 2.78 mm/us for P-tunnel tuff, 3.16
mm/us for G-tunnel tuff, and 3.29 mm/us for RMG 2C4 applies over the

range of the gages.

Pressure records in the overburden fluid obtained from quartz gage
measurements for P-~tunnel tuff and G-tunnel tuff are shown in Figure B.S5.
The higher pressure for the P-tunnel tuff is consistent with the
particle velocity results.

Series 8: Material Property (Grand Saline Dome Salt)

A 500-1b (227~kg) block of salt wrapped in plastic was received
from the mine in Grand Saline, Texas. Two 1l-foot (0.3-m) cubes were cut
from the block and cored (without the use of water) to a diameter of
9-5/8 inches (24.45 cm) so that particle velocity tests could be
performed. The standard charge and gage installation technique pre-

viously developed for geologic materialslo

was applied. Aluminum

wire gages were epoxied in grooves 9 mils (0.23 mm) wide and 25 mils
(0.64 mm) deep at four radial locations (1.27, 1.90, 2.54, and 4.00 cm).
Figures 3.50 through 3.53 show the resulting particle velocity profiles
for tests 364 and 365. For comparison, results of previous tests® (272

and 273) on ll-inch-diameter (27.94-cm) RMG 2C4 spheres are included.

The pulse shapes for salt and RMG are similar during outward motion

but differ during the rebound phase because of the lack of rebound
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The pulse at each gage location 1s characterized by a sharp peak,
short duration of outward motion, and negligible rebound. The resulting
small displacements produce an exploded cavity diameter of 0.460 inch
(1.17 c¢m). The small cavity results in high cavity pressure, which
represents a potential for cracking. 1In fact, posttest examination of
the granite cylinders revealed evidence of dynamic cracking along the
bonded plane of the gages 1in test 349. Although no similér evidence was
detected in tests 351 and 352, the high calculated pressure suggests

that cracking probably occurred.

Because particle velocities are influenced by cracking, techniques
were developed to (1) monitor crack arrival and (2) prevent cracking

along the particle velocity gage plane.

Two 1-foot (0.3-m) cubes of California grey/white granite were
cored to a diameter of 9-5/8 inches (24.45 cm) so that combination
particle velocity/crack arrival tests could be performed. The standard
charge and particle velocity gage installation technique previously

developed for geologic materialsl®

was applied. Gages were epoxied in
grooves 9 mils (0.23 mm) wide and 25 mils (0.64 mm) deep at two radial
locations (1.27 and 2.54 cm). 1In addition, two fracture gages (see
Section 2.3) were installed in axial holes on opposite sides of the
charge to monitor crack arrival along the bonded interface. These gages
were located at a radius of 1.90 cm. Figures 3.62 and 3.63 show the
resulting particle velocity profiles and the time of crack arrival for

tests 366 and 367.

The earliest crack detection was at 8.82 pus (test 366). Assuming
that cracking started when the detonation wave in the explosive reached
the granite (1.32 us) and propagated from the cavity at a constant rate,
we arrive at a crack velocity of 1.84 mm/ps, which is 35% of the 5.29
mm/us compressional wave speed. Hence, crack arrival at PV1 (1.27 cm)
and PV2 (2.54 cm) would occur at 5.39 and 12.29 us, respectively.
Particle velocity response before these times, which includes peak

velocities, may be unaffected.
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Posttest examination of the granite cylinders in tests 366 and 367

confirmed that dynamic cracking occurred along the bonded plane of the
gages. Evidence of cracking was visible to a radius of 2 inches (5.08

cm).

Figure 3.64 shows the decay of peak velocity with range for granite
and RMG 2C4. The lower rate of attenuation in granite is consistent

with the negligible energy lost to crushing of voids.

Figure 3.65 shows the time of arrival of the particle velocity
pulse at each gage location for granite. A constant wave speed of

5.29 mm/us applies over the range of the gages.

Unconfined crush strength determined from one test on a granite
cylinder 2 inches (5.08 cm) in diameter and 4 inches (10.16 cm) long is
20,660 psi (142.45 MPa). Splitting tensile strength determined from one
test on a similar cylinder is 3240 psi (22.34 MPa).

Two additighal 1-foot (0.3-m) cubes of granite were cored to a
diameter of 9-5/8 inches (24.45 cm) so that a technique to prevent
cracking along the:plane of particle velocity gages could be tested. In
the new configuration, an axial hole was drilled to the center of the
cylinder so that the charge and access tube could be grouted in place
with granite simulant GS4, as shown in Figure 2.7 (Section 2.2),.
However, the cylinder was then cut and bonded along a plane 1/2 inch
(1.27 cm) below the center of the charge. Circular loop gages were
epoxied in grooves 9 mils (0.23 mm) wide and 25 mils (0.64 mm) deep at
four cylindrically radial locations (1.27, 1.90, 2.54, and 4.00 cm) on
the charge side of the interface.

Figures 3.66 through 3.69 show the particle velocity profiles for
tests 369 and 370. The results shown are total velocities obtained from
the cylindrically radial components measured by the gages. Overall
pulse shapes are similar to those described above. Peak velocitles are
not well-defined, however, because of reflected pulses at the bonded
interface. Maximum particle displacements normal to the interface,

obtained from the particle velocity records, ranged from 4.2 mils
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as well as gage wire material and overburden pressure may have only a
small influence on the particle velocity records. Posttest examination
of the cylinder revealed cracking along the gage plane in both tests.
The crack in test 377 extended through the plug. ‘

The measured exploded cavity diameter in tests 361 and 377 was
0.460 inch (1.17 cm). An estimate of exploded cavity diameter based on
the Integrated particle velocity record for gage PV1l, Test 361 (Figure
A.9) and an assumption of incompressibility yields 0.461 inch (1.17 cm).
Hence, there 1is no apparent crushing of the granite. Figure 3.75 shows
that negligible permanent volume strain is produéed in the region
bhetween gages PV1 and PV2.

A summary of peak particle velocity attenuation for tests in
granite is shown in Figure 3.76. Although scatter exists at a given
range, the rate of attenuation is generally consistent from test to

test.

Series 10: Material Property (Granite Simulant GS4)

Two particle velocity experiments were performed in granite simulant
GS4 to validate the basic technique for obtaining results in a hard rock
simulant. Aluminum wire 5 mils (0.127 mm) in diameter was the gage
material. Test 357 was performed to generate standard results for gages
cast in place. Circular loops of wire were cast in a sphere of GS4 at
five radial locations (1.27, 1.90, 2.54, 4.00, and 8.00 cm). Test 358
was performed to consider the effects of the gage installation technique
on the particle velocity records. Narrow circular grooves 9 mils (0.229
cm) wide were machined fn a precast GS4 cylinder at four radial locations
(1.27, 1.90, 2.54, and 4.00 cm), and the aluminum wire was epoxied in
the grooves. Figures 3.77 through 3.81 show the resulting particle
velocity records for tests 357 and 358. [Note that gage PV2 (Figure
3.78) in test 357 broke before the test.])

Complete records for tests 357 and 358 are available at two locations
{PV3 (Figure 3.79) and PV4 (Figure 3.80)]. These records show good

agreement during the outward phase of motion but reveal significant
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vertical planes. After each cut, dyed water was pumped down the access
tube and into the cavity to determine if the cut had intersected a
fracture. This process showed that in both tests, a dynamic vertical
fracture extending 2 inches (5.08 cm) from the cavity had formed as a
result of charge detonation. Hence, dynamic cracking has been shown to
be an inherent feature of particle velocity tests in California

grey/white granite.

Pressure pulses in the overburden fluid from quartz gage measure-
ments for tests 375 and 376 are shown in Figure B.8. The results are
similar to measurements made during previous particle velocity tests
(Series 9A).

An additional l-foot (0.3-m) cube of granite was cored to a
diameter of 9-5/8 inches (24.45 cm) so that a technique to prevent
cracking along the particle velocity gage plane could be assessed. The &
configuration 1s shown in Figure 2.12 (Section 2.3). A hole and plug :
were precision ground in matching faces of a sectioned granite cylinder
to provide a stepped interface. Circular grooves 9 mils (0.229 om) wide
were machined in the upper half of the cylinder at four radial locations
(1.27, 1.90, 2.54, and 4.00 cm). Copper wire 5 mils (0.127 mm) in
diameter was epoxied in the grooves, and the cylinder was epoxied along
the plane of the gages. The charge was centered in the gage plane at
the bottom of an axial hole. This configuration requires that a crack
extending from the cavity propagate through granite before reaching the

interface.

The configuration shown in Figure 2.12 was used in test 377, where
the overburden pressure was 2300 psi{ (15.86 MPa). Figures 3.71 through
3.74 show the resulting particle velocity records. ([Note that gage PV1
(Figure 3.71) broke before the test.] For comparison, results of test
361, in which a plane bonded interface exteanded through the charge as
usual, are also shown. In test 361, the overburden pressure was 1000
psi (6.89 MPa) and aluminum wire 5 mils (0.127 mm) in diameter was

epoxied in grooves 9 mils (0.229 mm) wide. The good agreement between

the results for tests 361 and 377 indicates that the new configuration
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- (0.11 mm) at PVl to 0.6 mil (0.02 cm) at PV4., The thickness of the
kﬁ epoxy layer at the interface was 10 mils (0.25 mm). One technique

improvement would be to reduce or possibly eliminate the epoxy layer.

Pressure pulses in the overburden fluid obtained from quartz gage
measurements for granite are shown in Figure B.6 (tests 366 and 367) and
il Figure B.7 (tests 369 and 370). In tests 369 and 370, the pulse crossed
tf the bonded interface before reaching the quartz gage, and the impulse

was reduced.

h: Series 9B: Material Property (California Grey/White Granite)

Particle velocity tests in granite cylinders have resulted in

dynamic cracking along the bonded plane of the gages (Series 9A).

Because particle velocity records are influenced by cracking, a series

of tests was conducted to determine (1) 1f charge detonation in granite

results in dynamic cracking even when the cylinder has not been

sectioned and (2) if a technique could be developed to prevent cracking
.. along the particle velocity gage plane.

Two l1-foot (0.3-m) cubes of California grey/white granite were
cored to a diameter of 9~5/8 inches (24.45 cm) so that exploded cavity
tests could be performed. Figure 3.70 shows the configuration developed
for charge installation. A stepped axial hole i3 first drilled to the
center of the cylinder. An access tube with attached explosive charge
18 then grouted into the hole. Granite simulant GS4 is used to stem the
access hole in granite. The bottom of the hole is hemispherical and has
a diameter equal to that of the charge to ensure coupling between the
charge and surrounding material. The central charge is detonated by a
strand of 1 gr/foot mild detonating fuse (MDF) epoxied in the access
tube.

In tests 375 and 376, overburden pressure was Increased from the
standard 1000 psi (6.89 MPa) to 2300 psi (15.86 MPa) to reduce the
potential for dynamic cracking. Following charge detonatfon, the
cylinders were removed from the pressure vessel, the access tubes were

drilled out, and the granite was sectioned along several horizontal and
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differences during rebound. 1In test 357, rebound occurs smoothly. 1In
test 358, however, rebound occurs erratically as a series of accelerat-
ing and decelerating motions. This erratic motion is attributed to
dynamic cracking along the bonded plane of the gages. A crack extending
2 inches (5.08 cm) from the center of the cavity was detected during
posttest examination of the cylinder. Hydrofracture of the sphere used
in test 357, however, indicated that no dynamic fracture had occurred in
that test.

In both GS4 tests, a 0.625-inch-diameter (1.59-cm) exploded cavity
was formed. An estimate of exploded cavity diameter based on particle
displacement (Test 358, PV1, Figure A.10) and an assumption of incom-
pressibility yields 0.665 inch (1.69 cm). The larger calculated value
indicates that the GS4 i3 permanently compacted near the cavity. The
volume strain (Figure 3.82) shows permanent compression in the region

between gages PV1 and PV2,

Attentuation of peak particle velocity with range for GS4, granite,
and RMG 2C4 {s shown in Figure 3.83. Figure 3.84 shows the time of
arrival of the wavefront at each gage location for granite, GS4 and
RMG. A constant wave speed of 4.20 mm/us for GS4, 5.29 mm/us for
granite, and 3.29 mm/us for RMG 2C4 applies over the range of the gages.

Pressure pulses in the overburden fluid obtained from quartz gage
measurements are shown in Figure B.9. Similarity of the pulses indi-
cates charge reproducibility and consistency in the material properties
of GS4.

Series 11: Material Property (Reconstituted Alluvium with Zero Pore
Pressure

The procedure described in Appendix E for measuring particle
velocity in reconstituted alluvium was applied in six tests. The gage
material was 10-mil-diameter (0.254-mm) copper wire insulated with a
5-mil-thick (0.127-mm) layer of Teflon. Overall gage density was 3.1
g/cm3. Gages were embedded at five radial locations (1.27, 1.90, 2,54,
4.00, and 8.00 cm). Figures 3.85 through 3.89 show the resulting
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particle velocity profiles for dry alluvium (tests 381 and 382) and 40%-
saturated alluvium (tests 379 and 380). Figures 3.90 through 3.94 show
the corresponding profiles for 887Z-saturated alluvium (tests 383 and
384).

The'particle velocity records show predominanély outward motion.
This result is consistent with the negligible tensile strength of the
material. The records also show that accelerations at the wavefront are
highest for the 88%-saturated alluvium and lowest for the dry desert
fines. This result indicates that compaction of pores has a strong

influence on the initial particle velocity response.

A measure of pore compaction in the reconstituted alluvium is
obtained from the volumetric strain response of the materfal. Figures
3.95 through 3.97 show this response as derived from the particle
velocity records. Similar volumetric strain response was obtained for
dry alluvium (Figure 3.95) and 40%-saturated material (Figure 3.96).
Compressive strain was produced over the entire region monitored by the
particle velocity gages, and a maximum strain of 10Z was measured. 1In
contrast, if the reflected wave 1s weak and does not contribute to
volume strain, then volume dilatation occurred for tﬁe 88%-saturated
alluvium (Figure 3.97), and the maximum compressive strain measured was
only 3Z. These results suggest that pore fluid pressure develops in the

88%-saturated material as pores are compacted.

Note that for the 88Z-saturated alluvium (Figure 3.98), volume
strain in the region between gages PVl and PV2 1is less than the strain
between gages PV2 and PV3. This result indicates that gage PVl did not
respond satisfactorily to peak particle velocity. The lack of a
pronounced peak in the particle velocity record (Figure 3.91) also
indicates the same result. A closer match between gage wire density
and alluvium density may be required in regions of large particle

acceleration.

Posttest examination of the alluvium revealed well-formed spherical
exploded cavities with diameters of 3.0 cm for dry and 88%-saturated

material and 2.5 em for the 40Z-saturated material. Hence tensile
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circumferential strains at the cavity were the same for dry and 88%-

saturated material even though volume strains differed.

Figure 3.98 shows the attenuation of maximum particle velocity for
the alluvium tested. In general, velocity at a given range increased
with saturation. Figure 3.99 shows the time of arrival of the wavefront
at each gage location. For dry and 40%-saturated alluvium, the wave
speed was a constant 1.15 mm/ps over the range of the gages. For 88%-
saturated alluvium, the wave speed decreased over the range of the gages

from 2.12 to 1.31 mm/ps.

Series 12: Material Property (Reconstituted Alluvium with 2000-psi Pore
Pressure

Three particle velocity tests were performed in reconstituted
alluvium using an assembly technique different from that described in
Appendix E. 1In these tests, alluvium was reconstituted in the labora-
tory by tamping water—saturated test site fines in a 10-inch-diameter °
(25.4-cm) and 10-inch-long‘(25.4~cm) cylindrical mold to a demsity of
1.99 g/cm3. The fines were tamped in l-inch (2.54-cm) layers to provide
a uniform density. Particle velocity gages in the form of iO-mil-
diameter (0.25-mm) Teflom~coated wire loops were embedded in the
alluvium at the midheight of the cylindet. The gage radii were 1.27,
1.90, 2.54, 4.00, and 8.00 cm. An explosive charge epoxied to the end
of the access tube was positioned at the center of the gages along the
axis of the cylinder. The saturated alluvium was pressurized internally
and externally to 2000 psi (13.79 MPa) by the same nitrogen source.
Hence, the material was in an undrained state. Figures 3.100 through
3.104 show the resulting particle velocity profiles for tests 362, 363,
and 368. For comparison, results of previous tests (272 and 273) on 11~

inch~diameter spheres are included.

The particle velocity records for alluvium show outward motion
only. This result {s consistent with the negligible tensile strength of
the material. The results for tests 362 and 368 are similar but differ

noticahly from those of test 363, particularly at the outermost gages.
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The different responses are attributed to slight differences in the
degree of saturation. The material in tests 362 and 368 apparently

retained more unfilled voids during saturation.

Volumetric strain response for tests 362, 363, and 368 is shown in

. Figures 3.105, 3.106, and 3.107, respectively. The generation of volume

dilatation for these nearly saturated materials is consistent wit: the

response of the 88Z-saturated alluvium shown in Figure 3.97 (Series 11).

Figure 3.108 shows the attenuation of maximum particle velocity for

the three tests in alluvium. Figure 3.109 shows the time of arrival of

the wavefront at each gage location. In test 363, the wave speed @
decreased over the range of the gages from 2.93 to 2.00 mm/us. In tests )
362 and 368, the wave speed decreased from 1.55 to 0.93 mm/pus. Wave
speeds in tests 362 and 368 that are lower than the 1l.5-mm/ps wave speed
in water indicate unfilled voids in the alluvium.

B -Series 13: Depth—of-Burial Failure Criterion Below an Air/RMG 2C4
Interface)

Depth~of-burial represents an imporﬁant containment parameter °
affecting both the safety and economy of underground tests. A depth—of-
burial study was conducted in exploded cavity RMG 2C4 cylinders by
- providing a free surface at one end in the form of a gas interface,
varying the distance between the charge and the free surface, and
- varying the overburden pressure. Hydrofracture tests were performed

(see Series 3) to determine a threshold of failure. Particle velocity

tests were performed to further aid the development of a failure

criterion.

The configuration for particle velocity tests 347 and 348 is shown
in Figure 3.110. Although the intended depth-of-burial was 4 inches

(10.16 cm), the actual depth was greater in each test as shown. Loop :
gages were embedded in the horizontal plane of the charge (PV1 and PV2), f:!j;;
in a plane 2 inches (5.08 cm) above (PV3 and PV4), and in the free
surface (PV5 and PV6). The overburden pressure was 500 psi (3.447 MPa)
in test 347 and 250 psi (1.724 MPa) in test 348.
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MAXIMUM PARTICLE VELOCITY (m/s)

500 — —
Reconstituted Alluvium
with 2000-psi
Pore Pressure
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Test 368 (== =dr —}
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DISTANCE FROM CENTER OF CHARGE {(cm)
JA-5372-99

FIGURE 3.108 MAXIMUM PARTICLE VELOCITY VERSUS DISTANCE FROM CENTER OF CHARGE
FOR PRESSURE RECONSTITUTED ALLUVIUM WITH 2000-psi PORE PRESSURE
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RMG 2C4 Cylinder 1"

{11 in. dia., 11 in. long)
3/4"
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FIGURE 3.110 LOCATION OF PARTICLE VELOCITY MEASUREMENTS FOR FAILURE
THRESHOLD TESTS IN RMG 2C4




_________________

Particle velocity records for tests 347 and 348 are shown in
Figures 3.111 through 3.113. (Note that in test 347 gages PV2 and PV4
broke before the test.) The records for the two tests are similar
except for the long-term response of the surface gages (PV5 and PV6,
Figure 3.113). The difference is attributed to dynamic fracture. 1In
test 348, posttest examination of the cylinder revealed surface cracking
extending along the free surface and down the sides to the plane of the
charge. In test 347, no surface cracking was detected, and a subsequent
hydrofracture test indicated that the vented exploded cavity was not

fractured.

The particle velocity records from gages PVl and PV2 (Figure 3.111)
are representative of corresponding results from standard tests? on RMG
2C4 spheres subjected to 1000 psi (6.895 MPa) confining pressure. The
reduction of overburden in tests 347 and 348 had negligible influence on
these records because the maximum mean normal stress assocliated with the
particle velocity “pulse 13 much larger than the overburden, and the work
done by the overburden in closing pores represents a small part of the
wéve energy. However, the particle velocity records from gages PV3 and
PV4 (Figure 3.112) yield peak veloéities less than those from the
standard tests. The reduction in overburden in tests 347 and 348
influenced these records because the maximum mean normal stress at the
range of PV3 and PV4 is comparable to the overburden, and a relatively
large part of the wave energy 1s required to close pores. Standard
particle velocity tests at reduced overburden should be performed to

verify these results.

The depth-of-burial results from hydrofracture and particle
velocity tests are summarized in Figure 3.7 (Series 3). A failure
threshold curve consistent with all available results is included. As
shown, the combination of a 4-inch (10.16 cm) depth-of-burial and a 500~
psi (3.447 MPa) overburden pressure represents a point on the threshold
of €ailure.
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3.4 STRESS AND STRAIN MEASUREMENTS

Series l4: Strain Measurements in RMG 2C4

As preliminary work for stress gage measurements, techniques were
developed to measure dynamic and long-term strain in exploded cavity RMG

spheres (Section 2.3).

In one configuration, loops of 4-mil-diameter (0.102-mm) constantan
wire were cast concentrically about an explosive charge at four radfal
locations (1.27, 1.90, 2.54, and 4.00 cm). Each gage output provided a
direct measure of circumferential strain (Ee) at a given radius (r).
Figure 3.114 shows particle displacements (u) obtained from the strain

measurements in test 373 through the relation u = ¢, r. For comparison,

particle displacements obtained from integration ofeparticle velocity
records for tests 272, 273, and 353 are also shown. Good agreement
among the results was obtained at each location. (Note that no record
was obtained from the etrain gage at 1.27-cm radius because of an
electronic equipment problem.) Figure 3.115 shows long-term strain
decay at three radii obtained from the constantan gages in test 373.
Significant strain relaxd&ion was observed for on’y the first 100 ms

following charge detomation.

The second strain gage configuration was a standard 120-ohm
constantan grid [0.32 inch (8.13 mm) by 0.32 inch (8.13 mm)] encap-
sulated in a 0.375-inch-diameter (9.52-mm) sphere of GE RIV 615. The
RTV was considered a possible fluid-like material that would provide a
hydrostatic environment for the active gage element. Two gage packages
were cast in a sphere of RMG on opposite sides of a charge. The active
elements were positioned 1 inch (2.54 cm) from the center of the charge.
The two gages were oriented radially and circumferentially to assess the
fluid-like characteristics of the RIV. Figure 3.116 shows the strain
records obtained from the gages. The strain induced in the radially
oriented gage was compressive, whereas the strain induced in the circum=—
ferentially oriented gage was tensile over most of the recording time.

The RTV appears to have a significant dynamic shear modulus and is not

a fluid-like material. However, the small strain induced in the
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FIGURE 3.115 CIRCUMFERENTIAL STRAIN DECAY 1.90 cm, 2.54 cm,

AND 4.00 cm FROM THE CENTER OF COUPLED
EXPLOSION IN RMG 2C4
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circumferentially oriented gage indicates that the active gage element
was slipping relative to the RITV. This response is bheneficial in
typical stress gage design where in-plane straining of the gage element
should be minimized. Hence, the RIV 1is still considered a useful

encapsulating material for stress gages.

Series 15: Stress Measurements in RMG 2C4

The development of a unique equation-of-state model for any material
requires independent measurements of stress and strain. Techniques for
measuring strain have been described (Series l4). Plezoresistive gages

for measuring stress are being developed (Section 2.3).

A recently developed preliminary stress gage package counsists of a
standard 50-ohm ytterbium grid [0.25 inch (6.35 mm) by 0.25 inch (6.35 SN
mm)] encapsulated in GE RTV 615. 1In one configuration, the RIV was molded ;"*;?
into a 0.75-inch-diameter (19.05-mm) sphere. In a second configuration, S
the RTV was molded into a 0.75-inch-diameter (19.05-mm) and 0.125-inch- ;;;i‘ff
thick (3.18-mm) disk. The packages were calibrated in oil to a pressure = ;:f;

of 1 kbar, and the ytterbium followed the hydrostatic cqefficient during'
loading and unloading. The gages were then cast in a'12-inch-diameCer
(30.48-cm) sphere of RMG 2C4. The grids were positioned to measure
radial stress 1 inch (2.54 cm) from the center of an explosive charge.
Figure 3.117 shows the dynamic pulse measured by each gage in test 371. -;':!;
For comparison, a calculated pulse using an effective stress model® 1s
also shown. Good agreement exists among the results near the wavefront
where the in-plane straining of the ytterbium grids is small. However,
the grids are eventually influenced by strain states that are different
inside the sphere and disk of RTV. 1In addition, the inclusion effects AT
assoclated with the sphere and disk influence the state of stress acting e

on the grids.

*Norton Kimer, S~-CUBED, Del Mar, CA (private communication).
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Figure 3.118 shows the long-term radial stress decay measured by
the gages in test 371. Significant stress decay appears to be limited
to the first three seconds following charge detonation.
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APPENDIX A

PARTICLE DISPLACEMENT FROM PARTICLE VELOCITY RECORDS

The particle displacement profiles in Figures A.l through A.l4 were
generated by integrating the corresponding particle velocity records

presented in Section 3.3.
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APPENDIX B

PRESSURE PULSE MEASUREMENTS IN CONTAINMENT VESSEL

The pressure pulses generated during exploded cavity tests and
measured by a quartz gage ia the bottom of the containment vessel are

presented in Figures 3.1 through B.1l0.

A summary of results is given in Table B.l, where tests are
categorized according to the relevant parameters. Maximum reflected
pressure and pulse duration are listed for each test. For calculation
of pulse duration, the pressure pulse was assumed to end when the

pressure dropped to the initial value.
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Table B.l

SUMMARY OF PRESSURE PULSES FOR EXPLODED CAVITY TESTS

Maximum
Overburden Reflected Pulse
Test ‘Pressure Overburden Pressure Duration
No. Material Geometry (psi) Fluid (psi) (us)
248 RMG 2C4 Sphere? 1000 Water 904 26.1
254 RMG 2C4 Sphere® 1000 Water 748 28.1
371 RMG 2C4 Sphered 1000 01l 722 24.3
372 RMG 2C4 Sphere? 1000 011 503 6.3
373 RMG 2C4 Sphere? 1000 011 575 23.1 !
374 RMG 2C4 Sphere® 1000 011 672 24.3
272 RMG 2C4 Sphere? 1000 011 953 21.2
273 RMG 2C4 Sphere® 1000 011 902 24.5
353 RMG 2C4 Sphere® 1000 011 966 24.2
293 RMG 2C4 Cylinder® 1000 011 1064 22.1
354 RMG 2C4 Cylinder® 1000 011 1092 22.4
355 RMG 2C4 Cylinder® 1000 011 1092 23.8
356 RMG 2C4 Cylinder® 1000 011 700 22.9
359 SNLA G-tunnel tuff  Cylinderd 1000 Water 1038 30.6
360 SNLA G-tunmel tuff  Cylinderd 1000 Water 1906 %.8 |
340 " SNLA G-tunnmel tuff Cylinderd © 1000 o1l 1025 9.8 |
341 SNLA G-tunnel tuff Cylinderd 1000 01l 754 32.3
350 P-tunnel tuff Cylinder® 1000 011 1788 48.2 |
: !
366 Granitef Cylinder® 1000 011 1372 7.3
367 Granitef Cylinder® 1000 ot1 1360 7.2
369 Granitef Cylinder®:8 1000 011 1340 6.5
370 Cranttef Cylinder®.8 . 1000 otl 1100 6.9
375 Granttef Cylinder® 2300 011 1098 6.5
376 Granitef Cylinder® 2300 o1l 1448 7.0
3s7 GS4 Sphere? 1000 o011 927 8.8
358 ¢S4 Cylinder® 1000 ot1 980 9.0

a. 12 inch diameter (30.48 cm).

d. 11 iach diameter (27.94 cm).

¢. 11 inch diameter (27.94 cm), 11 inches (27.94 cm) long.

d. 9-1/2 inch diameter (24.13 cm), 1l inches (27.94 c¢m) long.
e. 9-5/8 inch diameter (24.45 cm), 11 {nches (27.94 cm) long.
f. California grey/white.

g- Bonded interface 1/2 inch (1.27 ca) below charge.
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APPENDIX C

ANALYSIS OF PARTICLE VELOCITY ATTENUATION

INTRODUCTION

An existing elastodynamic analysis1 was applied to allow us to
compare experimentally determined particle velocity decay in granite
with calculated elastic decay. The approach was to first assume that
the particle velocity record obtained from a loop gage represents the
velocity history of a spherical cavity having the same radius. Particle
velocity pulses at larger radii may then be calculated and compared with

experimental results.

FORMULATION

For spherically symmetric motion in a linear elastic medium, radial

velocity may be expressed as!

dt cr 2 (c.1)

where u = u(r,t) is the radial displacement, f = f(s) is the functional
- a

form for an outgoing wave, s = t - L is the time that has elapsed

after the wave has arrived (at radius r, cavity radius a, and dilata-

tional velocity c), and £' = %’
The functions f' and f” may be writtenl
-cs/a (% ct/a
f' = - cae J‘ e v(t)dx (C.2)

o

15, c. cizek and A. L. Florence, "Laboratory Investigation of Contain-
ment in Underground Nuclear Tests,” Final Report, DNA 6121F, Contract
DNAOOL-80-C-0040, SRI International, Menlo Park, California (December
1981).
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f* = - cav + ¢ e

s
2 -cs/a J’ et:.1:/a v(t)dr c.3)

[o}

where v(t) = 'a—u%z"—t')- is the cavity wall velocity. According to equation
(C.1), the particle velocity is

(r g) = —v(s) - (1 - 3] _a_ge-cs/a fs em;/é1 v(z)d~t (C.4)
r a

In the next section, we examine particle velocity records from an
experiment assuming a piecewise linear approximation to the cavity-wall

velocity. Thus, for a velocity at r = a of

v(t)-mit:+-bi t:i_1<t<t:1

where

. v, T Vv, _ - -

m = s—i—'__—l ’ b = : ls i- s P ’ i=12,...;n (c.5)
p -1 i i-1

and where n = number of plecewise linear segments, the particle velocity

at radius r is

-g—:— = ; (m s + bi)
j=1i 8
-1 -2 2, ¢ ~es/a T i ct/a
a-3ha.c, I L 7 @b (€6)
j=1
where sy_, <s( 8y and
S{ ct/a mJ.a2 . (c/a)sj c (<:/a)sj -1
‘[s e (mjf"'bj)df’-:i"(;sj - 1lle - (;sj-l -1le
3-1
. ig_a- e(c/a)sj ) e(c/a)sj_1
C=-2
e N T, - v
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ANALYTICAL AND EXPERIMENTAL RESULTS

The analysis was applied to California grey/white granite because
the small displacements increase the possibility of elastic response
within the range of the gages. Particle velocity was calculated by
means of equation (C.6). A reasonably accurate piecewise linear
approximation for the cavity-wall velocity was made by taking suitably

small time steps.

Figurz C.l compares the theoretical and experimental decay of
maximum particle velocity for the granite cylinder in test 361 (Series
98B). The particle velocity records for gages PV2 through PV4 were each
used to provide cavity-wall velocity. Figure C.2 compares theoretical
and experimental particle velocity pulses at PV4 (4.00 cm). The input
to the calculation was the experimental particle velocity pulse at PV3
(2.54 cm). The results indicate that elastic response is being
approached beyond a radius of 2.54 cm.
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PARTICLE VELOCITY IN THE REGION SURROUNDING A
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Table F.3

STRENGTH PROPERTIES OF ROCK-MATCHING GROUT RMG 2C4,
WEAK (1-DAY-OLD) ROCK-MATCHING GROUT RMG 2C4,
NEVADA TEST SITE TUFFS, CALIFORNIA GREY/WHITE

GRANITE, AND GRANITE SIMULANTS GS3 AND GS4

Unconfined Splitting
Average Compressive Tensile
Material Straianate Strength Strength
(s 5 (psi) (psi)
RMG 2C4 Static 3970 530
RMG 2C4 0.15 5330 900
Weak (l-day-old) RMG 2C4 Static 600 60
Weak tuff Static 870~1860 140-250
Strong tuff Static 2460-5220 580-620
California grey/white Static 20, 660 3240
granite
GS3 : Static 8900 - 1110
GS3 -7 0.15 15,900 1620
GS4 Static 9220 1370




Table F.2
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PHYSICAL PROPERTIES OF ROCK-MATCHING GROUT RMG 2C4,
NEVADA TEST SITE TUFFS, GRANITE SIMULANTS GS3
AND GS4, AND RECONSTITUTED ALLUVIUM

Dry, 40%-, and
88%~Saturated

Typical Tuff

Reconstituted GS3 (Weak Tuff)
Physical Property RMG 2C4 Alluvium? (GS4) [Strong Tuff]
Density (g/cm3)
(Aged 2C4, GS3, GS4) 2.15 1.61,1.75,2.05 2.42 1.87
(2.39) (1.96=2.13)
(1.76-1.87]
Dry 1.75 1.61,1.72,1.80 2.27 1.54
Grain 2.87 2.51 2.80 2.34
Water by wet weight (Z) 18.6 0,6.8,12.1 6.3 17.9
Porosity (2) 39 36,32,28 18.8 34
Saturation (%) 97-100 0,40,88 81.6 97.6
Alr volds (%) 0-3 . 36,19,3.4 3.5 1.8
Longitudinal velocity (km/s)| 3.29 1.15,1.15,1.31° | 4.82 2.95
Shear velocity (km/s) 1.82 - 2.75 1.53
Modulus in compression (psi)| 2.64 x 106 - 6.68 x 106 1.67 x 106
Shear modulus (psi) 1.03 x 10° - 2.65 x 10% | 0.63 x 10°
Bulk modulus (psi) 2.00 x 10% | 1.2 x 10% 4.64 x 10% | 1.55 x 108
Poisson's ratio 0.28 - 0.26 0.32
| Permeability (ud) 3.0 - - -

a. At 1000 psi axial pressure under uniaxial straia.

b. 2.12 km/s in 88% saturated alluvium next to cavity.




Table F.1l

MIXTURES?® FOR ROCK-MATCHING GROUT RMG 2C4
AND GRANITE SIMULANTS GS3 AND GS4

Component RMG 2C4 (%)
Type I-11 Portland cement 32.691
Sand (20-40 Monterey) 21.896
Barite (barium sulfate) 20.848
Bentonite (gel) 2.837
CFR 2 (concrete friction 0.078

reducing compound)
Water 21.650

Microballoons (Q-G%L 300) -

Component GS3 (%) GS4 (%)
Type I-II Portland cement 38.573 38.573
Sand (10-30 granite) 49.295 -
Sand (16~30 granite) - 49,295
Melment 1.035 1.035
CFR 2 (concrete friction) 0.252 0.252

reducing coampound)

Water 10.845 10.845

3Submerged in water for 28-day aging procedure with the following
temperature sequence: raise to 54°C over 48-hour period, hold at 54°C
for 48 hours, lower to 25°C over 36~hour period.
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APPENDIX F

MATERIAL PROPERTIES

Presented here are properties of the following materials:

® Rock-matching grout RMG 2C4

® Nevada Test Site tuffs ranging from weak to strong
® California grey/white granite

e Granite simulants GS3 and GS4

® Alluvium reconstituted from NTS desert fines.

The properties include representative data selected from the results of

recent Terra Tek test ptograms.1—3

Table F.l provides the mixture and heat curing cycle for the rock-
matching grout and the granite simulants. Tables F.2 and F.3 summarize

available physical and mechanical properties of all the materials.

Figures F.1 and F.2 compare the uniaxial strain response of RMG 2C4
and a typical tuff. Figﬁres F.3 and F.4 compare the uniaxial strain
response of RMG 2C4 and GS3.

Figures F.5 through F.8 show the uniaxial strain respoase of dry,
402-, and 88Z%-saturated alluvium as determined by the procedure

lp, S. Gardiner, S. W. Butters, D. O. Ennis, and A. H. Jones, "Material
Properties of Nevada Test Site Tuff and Grout--With Emphasis on the
DIABLO HAWK and HYBLA GOLD Events,” Draft Final Report, Contract
DNAOO1-76~C-0351, Terra Tek, Inc. (November 1977).

2S. W. Butters, J. M. Gromseth, and J. F. Patterson, "Material Proper-
ties of Nevada Test Site Tuff and Grout,” Final Report TR 80-35,
Contract DNAOOl1-78-C-0395, Terra Tek, Inc. (May 1980).

3C. H. Cooley, R. H. Smith, and J. F. Schatz, "Material Properties of
2C4 Grout in Support of the Nevada Test Site Nuclear Test Program,”
Draft Final Report TR 81-56, Contract DNAOO1-81-C-0037, Terra Tek, Inc.
(May 1981).
F-1
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(2) Position accurately a 1/2-inch-diameter steel rod with a
hemispherical end on the upper axis where the spherical
explosive charge and the attached steel tube containing
MDF will eventually be installed. This step eliminates
any possible damage to the charge during subsequent
loading in the Baldwin.

. (3) Position accurately a prefabricated array of concentric
circular particle velocity gages on top of the S5-inch-
deep alluvium and concentric with the central 1/2-inch-
diameter steel rod.

(4) Continue filling the container with alluvium in l-inch-
thick layers, compressing each layer in turn with 1000
psi until the depth is 10 inches.

(5) Carefully remove the central rod and emplace the
charge/MDF tube assembly.

(6) Fill the annular region around the charge and tube with
layers of alluvium and tamp each layer firmly.

(7) Place the piston shown in Figure E.l over the alluvium.
(8) Assemble the remaining apparatus.

(€)) Aéply a vertical stress of 1000 psi, using the hydraulic
flat jack below the specimen.

UNIAXIAL STRAIN RESPONSE

A The uniaxial strain response of dry, 40%-, and 88%-saturated
alluvidm subjected to axial loads in the range 0-~2 kbars was determined.
The procedure was similar to the one described above for determining the
overburden state. A thick-walled steel cylinder (6-inch height, 2-inch
internal diameter, and 6-inch external diameter) replaced the thin-
walled aluminum cylinder. Two strain gages were again mounted 90
degrees apart on the outer surface to monitor circumferential strain
during loading in the Baldwin machine. The cylinder was completely
filled with the desired mixture of desert fines and water so that the
internal pressure would be uniform along the entire length. The
internal pressure required to generate the measured hoop strain was then
calculated using a thick-walled cylinder analysis. This pressure is the
required radial (confining) stress. Volume change of the alluvium
sample was determined by measuring the displacement of a loosely fitting

steel piston. Results are presented in Appendix F, Material Properties.
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When the axial stress was 1000 psi, we obtained the values

o, = 2.10 g/cm3 w o= 0.125pw = 0.263 g/cm3 e 1.84 g/cm3

n = 0.267 v = 0.263 s = 0.985

Thus, the saturation achieved with the above improvement was 98.5%.
Further improvement requires either higher accuracy or vacuum technology

to remove air.

OVERBURDEN STATE

The initial uniaxial strain states for the dry, 40%Z, and 887
saturation alluvium samples are fixed by the initial densities at 1000
psi vertical stress of 1.61, 1.85, and 2.05 g/cm3, respectively. It
remains to determine the radial component of stress. 1In step (3) of the
procedure for determining the saturation percentage, the alluvium sample
was compressed in an aluminum cylindrical shell with a radius-to-
thickness ratio (22.72) chosen to be the same as the larger aluminum
cylindér containing the sample for the particle velocity experiment
(Figure E.l1). The container had two strain gages, which were 90 degrees
apart bonded to the outer surface, to monitor the circumferential strain
during loading with the Baldwin machine. We calculate the approximate
hoop stress from the hoop strain and hence obtain the finternal pressure
on the cylinder. This pressure is the radial stress required. It
turned out that the increase of radial stress with axial loading was
independent of the saturation percentage. When the axial stress was

1000 psi, the radial stress was 390 psi.

PARTICLE VELOCITY SAMPLE

Figure E.l1 shows schematically the experimental configuration. The
procedure for preparing the alluvium samples {s as follows:
(1) Fill the aluminum cylinder (11-7/16-inches internal
diameter) with alluvium to a depth of 5 inches in
l-inch-deep layers. Compress each layer in turn with a

vertical stress of 1000 psi by means of a Baldwin
loader.

E-3
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(4) Compress the wet sample by loading the piston in a
Baldwin testing machine until the axial stress is 1000
psi. Weigh the water squeezed out and measure the
piston displacement (to determine the final volume).

(5) Calculate the wet density at 1000 psi and the water
remaining in the sample (A total of 2.05 g/cm2 and 12.1%
of wet weight, respectively, in our preparation.)

This procedure was performed in an attempt to obtain 100%

saturation. However, our calculations gave 88%. These calculations are

as follows:

Wet density Py ™ 2.05 g/cm3
Weight of water w = 0.121pw = 0,248 g/cm3
Dry density Pq =P, = W= 1.8 g/cm3
Grain density (pycnometer analysis) - p8 = 2.51 g/cm3
Porosity n= (p8 - pd)/pg = 0,283 cm3/cm3
Volume of water v = 0.248 cm3/cm3
Saturation fraction s = v/n = 0.88

In an attempt to obtain 507 saturation, we started with half of the
water retained in step (2) above. In this case, the calculations gave a
saturation of 40%, as follows:

I 1.85 g/cm3 w = 0.068pw = 0,126 g/cm3 = 1,72 g/cm3

Pa
pg = 2.51 g/cm3 n = 0.315 v = 0,126 s = 0.40

Failure to obtain 1007 saturation is attributed to the inadequacy
of step (2) in providing enough water retention. In other words, water
can drain out of the sand while air is still in the pores. We replaced
the cylindrical container with a screen base in step (2) with a cylinder
that had an impermeable base and stirred in enough water to leave a thin
layer of water on top. Later, this excess water is removed. This

process resulted in a water retention of 19.3% of the wet weight.
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APPENDIX E

PROCEDURES FOR PREPARING ALLUVIUM SPECIMENS

In the particle velocity experiments with alluvium specimens,

distortion of the circular wire loops must be prevented when the over-
burden pressure is applied.

highly compressible.

The problem arises because alluvium 1is

BRIl g S N

We avoided distortion of the loops by choosing an

overburden state that corresponds approximately to uniaxial strain; that

is, we suppressed the radial strain.
of the alluvium specimens for particle velocity experiments, including

determination of the saturation percentage and the overburden stress-

strain state.

SATURATION PERCENTAGE

We attempted to achieve 0%, 50%, and 1007 saturation percentages
but obtained instead 0%, 40%, and 88%.

desired percentages is given below.

The following are steps and results of the procedure for 1007

gsaturation:

(1)
(2)

(3

Dry and weigh a sample of NTS desert fines (W,).

Place the dry sample in a cylindrical container (12-in.
height, 2-in. diameter) having a fine screen base plate.
Add water slowly at the top until water begins to drain
through the bage plate. Determine the weight of water
added (wa) and weigh the excess water (we). The water
retained in our preparation (wr =W, - W) .was 15.1% of
the wet weight (Ww = wd + wt; Wr = 8.151 ww).

Place the wet sample in a thin-walled cylindrical
aluminum container (6-~inch height, 4~inch internal
diameter, and 0.09-inch-thick wall) with a perforated
steel base plate (09.03l-inch-diameter holes) and a
loosely fitting piston for compressing the specimen
(drained condition). The sample was 5 inches high in
our preparation.

We describe here the preparation

The reason for not achieving the
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VOLUME CHANGE FROM PARTICLE VELOCITY RECORDS

The records of the particle velocities at several radii for a

spherical wave provide a means of calculating the time variation of the . ®
volume change for the material between the gages. The particle velocity v
d record at each gage location is integrated with respect to time to
k: produce the particle displacement history there, as shown schematically
in Figure D.1. At time t = <, the radial displacement at gage location
r, is u,. Figure D.2 shows schematically the displacements u, plotted
against the radius r  at time r.

A spherical shell of material of outer radius r,,, and inner radius S

r, has changed at time 7 to a spherical shell of outer radius r . +

. u 4y and inoner radius r, + u,. Hence the volume of the spherical shell o

n

at time < is

4 3 3
vn+l/2 (z) = 3T [(rn+1 + un+1) - (rn T un) ] (D.1)

The volume change is therefore the value of equation (D.l) minus the

original volume

4 3 3
Vatr72 O =3~ [rn+1 -]

(D.2)
The fractional volume change at time t is simply the difference between
the volumes of equations (D.l) and (D.2) divided by the original volume
of equation (D.2).

The procedure was used to obtain the volume change results

presented in Section 3.
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described in Appendix E. Stress difference (axial minus confining)
versugs confining pressure during loading and unloading 1is shown in
Figure F.5. This response was found to be independent of the initial
state of saturation. The overburden stress state at which particle
velocity tests were performed is designated on the loading path. Mean
normal stress versus volume strain for dry, 40%-, and 88%-saturated
alluvium under drained conditions is shown in Figures F.6, F.7, and F.8,
respectively. The density at which particle velocity tests were

performed is shown on the loading path in each figure.
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