MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 963-A
TECHNICAL REPORT RR-84-10

RAYLEIGH CRITERIA RESOLUTION OF OPTICAL CORRELATIONS

Don A. Gregory
Research Directorate
US Army Missile Laboratory

SEPTEMBER 1984

U.S. ARMY MISSILE COMMAND
Redstone Arsenal, Alabama 35898

Approved for public release; distribution is unlimited.

DTIC ELECTE
MAR 21 1985
85 03 15 057
DISPOSITION INSTRUCTIONS

WHEN THIS REPORT IS NO LONGER NEEDED, DEPARTMENT OF THE ARMY ORGANIZATIONS WILL DESTROY IT IN ACCORDANCE WITH THE PROCEDURES GIVEN IN AR 380-5.

DISCLAIMER

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

TRADE NAMES

USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL HARDWARE OR SOFTWARE.
This report describes an investigation into determining the resolvability between correlations produced by Fourier transform matched filters made of very similar scenes. Knowledge of this type is needed to accurately predict the total number of matched filters needed to completely identify a scene or object regardless of its rotational position. Similar experiments may be done for scale and tilt as the variable. This report introduces the Rayleigh criteria as the standard by which distinguishability may be measured in a Vander Lugt type optical recognition system.
ACKNOWLEDGEMENT

The author wishes to acknowledge the able assistance of James C. Thompson, currently of Auburn University, for his development of the plotting routines used in this report.

<table>
<thead>
<tr>
<th>Accession For</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RTIS GRAI</td>
<td>□</td>
</tr>
<tr>
<td>DPIC 71</td>
<td>□</td>
</tr>
<tr>
<td>Unrestricted</td>
<td>□</td>
</tr>
<tr>
<td>Judaism</td>
<td>□</td>
</tr>
</tbody>
</table>

Availability Codes

<table>
<thead>
<tr>
<th>Dist</th>
<th>Avail and/or Special</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td></td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

I.	INTRODUCTION	1
II.	THEORY	2
III.	EXPERIMENTAL RESULTS	4
IV.	CONCLUSIONS	5

v (vi blank)
I. INTRODUCTION

Considerable interest has been generated in using Fourier transform matched filters for object discrimination and tracking. In order to recognize several objects or several orientations of the same object many matched filters may be needed. Interest has been shown in storing several of these filters in a small area [1,2]. This has been done by multiply exposing the photographic plate or by using arrays produced by holographic elements or other means [3,4]. Arguments are presented here which investigate how closely packed these filters can be and still have good resolution between them. In this instance close packing refers to double-exposing a photographic plate to an input scene at two slightly different rotation positions. Classic line-shapes are used to model examples of experimental results and some conclusions are drawn using the Rayleigh criteria as a guideline.
The Gaussian intensity distribution has the form

\[I_1 = I_0 \, e^{-2\frac{r^2}{w^2}} \]

(1)

where \(r \) is the radius from the center of the distribution and \(2w \) is the full line width at \(I = (1/e^2)I_0 \). If another distribution of the same form is located a small distance \(\delta_1 \) away

\[I_2 = I_0 \, e^{-2\frac{(r-\delta_1)^2}{w^2}} \]

(2)

then the sum of these distributions is

\[I = I_1 + I_2 = I_0 \left[e^{-2\frac{r^2}{w^2}} + e^{-2\frac{(r-\delta_1)^2}{w^2}} \right] \]

(3)

Let

\[\rho_1 = \frac{I(r=0)}{I(r=\frac{\delta_1}{2})} \]

(4)

Substituting from the above gives

\[\rho_1 = \frac{1}{2} \left(e^{\frac{\delta_1^2}{2w^2}} + e^{-3\frac{\delta_1^2}{2w^2}} \right) \]

(5)

\(\rho_1 \) is thus the ratio of the peak at \(r = 0 \) to the height of the valley between the two distributions. Solving for \(\delta_1 \) using the fact that the second term is much smaller than the first gives

\[\delta_1 = \frac{w}{2 \ln (2\rho)} \]

(6)
Using the Rayleigh criteria as a rough guideline, \(\rho_1 = 1.23 \) and substituting this into Eq. (6) yields

\[
\delta_1 = 1.34 \, w .
\]

(7)

The same sort of analysis may be applied to a Lorentzian distribution having the form

\[
I = \frac{A}{r^2 + (\sigma/2)^2} + \frac{A}{(r-\delta_2)^2 + (\sigma/2)^2}
\]

(8)

where \(A \) is a constant equal to \(I_o(\sigma/2)^2 \), \(r \) is the radius and \(\sigma \) the full linewidth at half the maximum intensity. This produces a \(\delta_2 \) of

\[
\delta_2 = \frac{\sigma}{2} \left[4 \rho_2 - 3 + \sqrt{16 \rho_2 (\rho_2 - 1) + 1} \right]^{1/2}
\]

(9)

Then for \(\rho_2 = 1.23 \) as a value of the intensity ratio

\[
\delta_2 = 1.03 \, \sigma.
\]

(10)

For a \(\text{sinc}^2 \) distribution

\[
I = I_o \left(\frac{\sin \alpha r}{\alpha r} \right)^2 + I_o \left[\frac{\sin \alpha (r-\delta_3)}{\alpha (r-\delta_3)} \right]^2
\]

(11)

where again \(r \) is the radius from the center of the distribution and

\[
\alpha = \pi/r(o)
\]

(12)

where \(r(o) \) is the value of \(r \) at the first zero of intensity. This distribution yields

\[
\rho_3 = \frac{\alpha^2 \delta_3^2 + \sin^2 \delta_3}{8 \sin^2 (\alpha \delta_3/2)}
\]

(13)

which must be solved graphically or by iteration using \(\rho_3 = 1.23 \). For small values of \(\delta_3 \), note that \(\alpha^2 \delta_3^2 > > \sin^2 \delta_3 \).
III. EXPERIMENTAL RESULTS

Figure 1 shows three distributions compared with experimental data taken using visible (Helium-Neon) real-time optical correlation methods. The input scene is fed via an RCA television camera (model number TC 1005) into a Videotek Monitor (model VM-12PR) which is used as the input to a Hughes liquid crystal light valve (the same one used in Ref. 4) which produces the coherent image that is fed into a real-time Vander Lugt type correlator. Experiments of this type are described in detail elsewhere [5]. All three distributions have been arbitrarily fit to experimental data at \(r = 0 \) and \(r = 2.94 \) using \(w = 2.80^\circ \), \(\sigma = 2.07^\circ \), and \(\alpha = 0.775 \) deg\(^{-1}\). This gives \(\delta_1 = 3.8^\circ \), \(\delta_2 = 2.13^\circ \), and \(\delta_3 = 4.0^\circ \). Note that these widths should depend upon the spatial frequency of the input scene as well as other factors and thus serve only as examples here. In this particular experiment the input scene was a low resolution black and white aerial photograph of Huntsville, Alabama. The photograph was placed on a rotatable stage and matched filters made at the desired rotation angles. Experimental data in Figure 1 is the correlation intensity for a filter made at \(0^\circ \) rotation of the input scene. After development of the film plate (Kodak 649F) it was replaced in the correlator and the input scene rotated slowly as the corresponding correlation intensity was measured using an RCA CCD camera fed into a television monitor then digitized by a Colorado Video Analyzer (model 321). This signal was then recorded by a Hewlett-Packard model 680 strip chart recorder. Figure 2 is representative of actual data taken as the input scene was rotated through the position \((0^\circ \text{ rotation}) \) where the matched filter was made.

In order to investigate multiply stored filters, a single plate was exposed twice with different rotation angles of the input scene. After development using standard techniques for Kodak 649F plates, the filter was reinserted into the correlator and data taken as before. Figure 3 shows the actual data and a plot of Equation 8 using the Rayleigh criteria. The exposures were made using the same criteria for \(\delta_2 \) of \(2.13^\circ \) of scene rotation. The agreement is reasonably good. Some variation is expected due to the difficulty in obtaining equally intense correlations for the two filters. This depends upon the exposure times used, film response, and several other variables. In the theoretical analysis the calculations could easily have been done using distributions having different peak heights but then the value of \(\delta \) would depend upon these heights which can't be known with any certainty in advance of doing the experiment. In the calculations presented, it was also assumed that individual correlation intensities should be added directly rather than adding the corresponding fields then squaring for the intensity. This has been justified experimentally by storing one filter made of \(0^\circ \) scene rotation and another filter at \(90^\circ \) scene rotation then adding the resulting correlation intensities algebraically. This distribution was then compared with data similar to Figure 3. The results were found to be essentially equal. This indicates that there is little if any phase addition contribution to the sum of the two correlation intensities.
IV. CONCLUSIONS

In this brief report a method of analyzing closely spaced optical matched filters has been presented along with experimental data which tends to support the findings. The use of the Rayleigh criteria may not be strictly correct in that this criteria is for a Bessel function intensity distribution only but it serves as an initial guideline [6]. Experimental data seems to suggest that the separation criteria will become more stringent as laboratory methods improve.
Figure 1. Correlation intensity vs angle of rotation of input scene

Gaussian
Lorentzian
Sinc²
Experimental
Figure 2. Correlation intensity as input scene was rotated through 0° where matched filter was made.
Figure 3. Plot of Eq. (8) compared with actual data for two filters stored 2.11° of rotation apart.

INTENSITY (ARBITRARY UNITS)

SCENE ROTATION (DEGREES)
References

DISTRIBUTION

Commander
US Army Research Office
ATTN: AMXRO-PH, Dr. R. Lontz
P. O. Box 12211
Research Triangle Park, NC 27709

US Army Research and Standardization Group (Europe)
ATTN: AMXSN-E-RX, LTC D. R. Reinhard
Box 65
FPO New York 09510

Commander
US Army Materiel Development and Readiness Command
ATTN: Dr. James Bender
 Dr. Gordon Bushey
5001 Eisenhower Avenue
Alexandria, VA 22333

Headquarters, Department of the Army
Office of the DCS for Research, Development & Acquisition
ATTN: DAMA-ARZ
Room 3A474, The Pentagon
Washington, DC 20301

OUSDR&E
Room 3D1079, The Pentagon
Washington, DC 20301

Director
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

OUSDR&E
ATTN: Dr. G. Gamota
Deputy Assistant for Research (Research in Advanced Technology)
Room 3D1067, The Pentagon
Washington, DC 20301

Director of Defense Research and Engineering
Engineering Technology
Washington, DC 20301
DISTRIBUTION - Continued

Director
Defense Advanced Research Projects Agency/STO
ATTN: Commander T. F. Weiner
 D. W. Waish
1400 Wilson Boulevard
Arlington, VA 22209

Commander
USD Army Aviation Systems Command
12th and Spruce Streets
St. Louis, MO 63166

Director
US Army Air Mobility Research & Development Laboratory
Ames Research Center
Moffett Field, CA 94035

Commander
US Army Electronics Research & Development Command
ATTN: AMSEL-TL-T, Dr. Jacobs
 DELEW-R, Henry E. Sonntag
Fort Monmouth, NJ 07703

Director
US Army Night Vision Laboratory
ATTN: John Johnson
 John Deline
 Peter VanAtta
Fort Belvoir, VA 22060

Commander
US Army Picatinny Arsenal
Dover, NJ 07801

Commander
US Army Harry Diamond Laboratories
2800 Powder Mill Road
Adelphi, MD 20783

Commander
US Army Foreign Science and Technology Center
ATTN: W. S. Alcott
Federal Office Building
220 7th Street, NE
Charlottesville, VA 22901

Commander
US Army Training and Doctrine Command
Fort Monroe, VA 22351
DISTRIBUTION - Continued

Director
Ballistic Missile Defense Advanced Technology Center
ATTN: ATC-D 1
 ATC-O 1
 ATC-R 1
 ATC-T 1
P.O. Box 1500
Huntsville, Al 35808

Commander
US Naval Air Systems Command
Missile Guidance and Control Branch
Washington, DC 20360

Chief of Naval Research
Department of the Navy
Washington, DC 20301

Commander
US Naval Air Development Center
Warminster, PA 18974

Commander, US Naval Ocean Systems Center
Code 6003, Dr. Harper Whitehouse
San Diego, Ca 92152

Director, Naval Research Laboratory
ATTN: Dave Ringwolt
 Code 5570, T. Gialborinzi
 Washington, DC 20390

Commander, Rome Air Development Center
US Air Force
ATTN: James Wasielewski, IRRC
Griffiss Air Force Base, NY 13440

Commander, US Air Force, AFORSR/NE
ATTN: Dr. J. A. Neff
Building 410, Bolling Air Force Base
Washington, DC 20332

Commander, US Air Force Avionics Laboratory
ATTN: D. Rees
 W. Schoonover
 Dr. E. Champaign
 Dr. J. Ryles
 Gale Urban
 David L. Flannery
 Wright Patterson Air Force Base, OH 45433
DISTRIBUTION - Continued

Director
Defense Advanced Research Projects Agency/STO
ATTN: Commander T. F. Weiner
D. W. Waish
1400 Wilson Boulevard
Arlington, VA 22209

ATTN: Commander T. F. Weiner
D. W. Waish
1400 Wilson Boulevard
Arlington, VA 22209

Commander
US Army Aviation Systems Command
12th and Spruce Streets
St. Louis, MO 63166

Commander
US Army Air Mobility Research & Development Laboratory
Ames Research Center
Moffett Field, CA 94035

Commander
US Army Electronics Research & Development Command
ATTN: AMSSEL-TL-T, Dr. Jacobs
DELEW-R, Henry E. Sonntag
Fort Monmouth, NJ 07703

Commander
US Army Night Vision Laboratory
ATTN: John Johnson
John Deline
Peter VanAtta
Fort Belvoir, VA 22060

Commander
US Army Picatinny Arsenal
Dover, NJ 07801

Commander
US Army Harry Diamond Laboratories
2800 Powder Mill Road
Adelphi, MD 20783

Commander
US Army Foreign Science and Technology Center
ATTN: W. S. Alcott
Federal Office Building
220 7th Street, NE
Charlottesville, VA 22901

Commander
US Army Training and Doctrine Command
Fort Monroe, VA 22351
DISTRIBUTION – Concluded

Professor Anil K. Jain
Department of Electrical Engineering
University of California, Davis
Davis, CA 95616

Terry Turpin
Department of Defense
9800 Savage Road
Fort George G. Meade, MD 20755

Dr. Stuart A. Collins
Electrical Engineering Department
Ohio State University
1320 Kenneair Road
Columbus, OH 43212

US Army Materiel Systems Analysis Activity
ATTN: AMXS−MP
Aberdeen Proving Ground, MD 21005

US Army Night Vision Laboratory
ATTN: DELNV−L, Dr. R. Buser
Ft. Belvoir, VA 22060

Dr. F. T. S. Yu
Penn State University
Department of Electrical Engineering
University Park, PA 16802

Dr. William P. Bleha
Liquid Crystal Light Valve Devices
Hughes Aircraft Company
6155 El Camino
Carlsbad, CA 92008

AMCP−PE−E, John Pettitt
−PE

AMSMI−LP, Mr. Voigt
−O
−Y
−R, Dr. McCorkle
−R, Dr. Rhoades
−RN, Jerry Hagood
−RE, W. Pittman
−RD
−RG, J. A. McLean
−RR, Dr. R. L. Hartman
Dr. J. S. Bennett
Dr. J. G. Duthie
Dr. D. A. Gregory
Commander, AFATL/LMT
ATTN: Charles Warren
Eglin Air Force Base, FL 32544

Environmental Research Institute of Michigan
Radar and Optics Division
ATTN: Dr. A. Kozma
 Dr. C. C. Aleksoff
 Juris Upatnieks
P. O. Box 8618
Ann Arbor, MI 41807

IIT Research Institute
ATTN: GACIAC
10 West 35th Street
Chicago, IL 60616

Dr. J. G. Castle
9801 San Gabriel, NE
Albuquerque, NM 87111

Commander, Center for Naval Analyses
ATTN: Document Control
1401 Wilson Boulevard
Arlington, VA 22209

Dr. J. W. Goodman
Information Systms Laboratory
Department of Electrical Engineering
Stanford University
Stanford, CA 04305

Eric G. Johnson, Jr.
National Bureau of Standards
325 S. Broadway
Boulder, CO 80302

Dr. nicholas George
The Institute of Optics
University of Rochester
Rochester, NY 14627

Naval Avionics Facility
Indianapolis, IN 46218

Dr. David Cassasent
Carnegie Mellon University
Hamerschage Hall, Room 106
Pittsburg, PA 15213