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I. INTRODUCTION

Simulation is a tool used in the design of new missile systems and in the
modification or evaluation of existing systems. A missile simulation allows
the engineer to actually try out his design without the expense of building
and flying an actual missile. Many simplifications are made of course, but a
great deal can be learned through simulation with a substantial savings in
time and expense. These simulations are usually put together with emphasis on
a particular aspect of the design such as guidance, controlability, component
evaluation, etc., and thus vary widely with no single simulatior being a
general purpose analysis tool that is good for every consideration. A central
part of each missile simulation is the missile dynamics equations which govern
how the missile will react to a given force or moment. These equations can be
implemented in a variety of ways and are often a source of confusion due to
the differences and simplifications made. This report deals with this issue3 by developing several common forms of the missile dynamics equations. Methods
of implementation and some of the possible simplifications are also discussed,
and a summary is included showing several of the most common forms and their
implementation.

II. DEVELOPMENT OF THE EQUATIONS OF MOTION

A. Coordinate Systems and Newton's Second Law

*. The fundamental law governing translational motion is Newton's second
law as given below.

F - d(mv)/dt (1)

"This law is only applicable in an inertial coordinate frame and thus care must
be taken ro'define a suitable inertial coordinate frame. At this point it

, should be noted that an inertial frame can only be defined by the fact that it
is a system in which Newton's laws hold. Thus for this article, an inertial
frame can, be taken to be any frame such that effects due to the movement of
the frame are negligible for the purpose of the simulation. Two common types
of coordinate frames used in missile simulations are coordinate frames fixed
to the earth and coordinate frames that translate with but do not rotate with'the earth. An earth fixed coordinate frame is a coordinate frame that rotates

and translates with but does not move with respect to the earth, such as the
North-East-Down system shown'in Figure 1.

One'example of the other type is a non-rotating Earth centered coordinate
frame. This coordinate frame has its origin at the center of the earth and

translates with the earth but does not rotate (see Figure 2). That is the
Sorigin of the coordinate system moves with the earth, but the coordinate frame

does not rotate with respect to the "fixed" stars. Of these two systems the
non-rotating coordinate frame provides the "best" inertial frame for missile
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simulation work. However; the earth fixed coordinaze frames can be used in
certain cases such as with non-inertially guided missiles when the distances
traveled are small ccmpared to the earth's radius and the velocities are small
compared to the velocity of escape from the earth. This will be discussed
more in Section II, part D.2.

Now assuming that we have decided upon an inertial reference frame,
Newton's second law may be used to find the acceleration of the missile with
respect to this frame if the forces acting on the missile and the mass of the
missile are known. The forces acting on the missile can be separated into

,three main groups which are: thrust, aerodynamic, and gravitational. Thrust
and aerodynamic forces can be evaluated fairly accurately with standard test
and design procedures such as static firings to obtain thrust versus time
profiles for the engine and wind tunnel measurements to determine the
aerodynamic characteristics. Gravitational forces can be calculated from a
knowledge of the missile's position relative to the earth. The mass can be
estimated from a knowledge of the missile's weight before and aiter burnout
(from test measurements) by using some sort of relationship (often linear) for
the decrease in missile mass over the -engine's burntime. It is not possible
to apply Newton's second law yet, however; as the forces are only known in
magnitude and their direction depends on the missile's orientation in the
inertial frame. This leads to the use. of a missile body frame which is a
frame fixed in the missile such as shown in Figure 3. The thrust and
aerodynamic forces can be easily evaluated in both magnitude and direction in
this frame. All that remains then is to develop the relationship between the
inertial reference frame and the missile body frame. To completely specify
the location of the body frame in the inertial reference frame, six
independent coordinates are needed. These are often referred to as degrees of
freedom, with a rigid body, in general, having six degrees of freedom (6-DOF).
(Note that a rigid body ts an object that does not bend.) The six degrees of
freedom are commonly made up of three translational'coordinates and three
rotational coordinates; The translational coordinates normally chosen are the
location of the body frame origin in the inertial frame. Usually the missile
center 'of mass (c.m.) is collocated with the origin of the body frame. This
simplifies the calculations involved in evaluating the missile's acceleration.
The rotational coordinates must then specify how the axes of the body frame
are inclined with respect to the inertial reference frame. This is often done
using Euler angles which are three angles that specify the rotational.
orientation of the body fkame with respect to the inertial reference'.frame.
These will be discussed in greater detail'in Section I1, part C.

B. Rotational Equations

It it apparent from the above discussion that to completely describe.
the motion of a missile in flight both its'translational and rotational motion
must be known. The translational motion is governed by equation. 1 which is
the standard form of Newton's second law. It would seem logical then that
there would be a similar equation- governing rotational 'motionwhich is in
fact the case. Thus the rotational equation of motion can be stated as:

MR H (2)
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where M is the moment or torque acting on the body and H is the angular
"momentum. Note that the reference point about which the external moment and
the angular momentum are calculated must be either at the center of mass
(c.m.) of the body or fixed in the inertial frame. For our purposes we will
assume that the reference point (origin of the body coordinate frame) is at
the missile's center of mass. We should also note at this point that the c.m.
and c.g. (center of gravity) of the missile can be taken to mean the same

,* thing for our purposes due to the relatively small size of the missile when
compared to the change in the gravitational field with respect to distance.
The angular momentum "H" is given by:

R -w ()

"where I is the inertia tensor (3x3 matrix) and w is the angular velocity of
"the body. Note that the elements of I are not usually constant except when
givea in a body fixed coordinate system. Thus the usn of a body coordinate
system simplifies the application of this equation. The inertia tensor can be

"* written in matrix form as:

- [ixx I xy Ixzl
SI" xy Iyy 1yz (4)

!xz 'yz Izz ..

and thb angular velocity vector can be written in terms of the missile body
rates (P, Q, and R) as:

I • A A A"

Pi + QJ+ (5)

"At this point it is -important to clarify what is meant by "referred to"
and "relative to" or "with respect to". The term "referred to" a certain
coordinate system means that the vector is expressed in terms of the unit
vectors of that system while the terms "relative to".or "with respect to" a
particular system mean as viewed by an observer fixed in that system and
moving with it. Thus the same vector can be referred to either a moving or
stationary coordinatesystem, but its rate of change with respect to time as
viewed by observers in the two systems may appear quite different. This is of
some importance when the derivative of a vector referred to a moving system is
to be determined. Thus for a general vector "r" referred to a moving
coordinate system (such as a body coordinate frame), the time derivative
relative to an inertial coordinate system (the absolute time rate of change of"• ~~~B-).is:'.""

wher e x (B)r+wX ' (6)

where (r is the rate of change (with respect to' time) of, B as viewed by an
observer in the rotating system, and 1 is the angular velocity of the moving
frame. It is important to note that B is the 'same vector in both the inertial
and moving coordinate frames; it is Just expressed in the unit vectors of the
moving system and since these unit vectors could be rotating, the time' rate of
change of B as seen by an observer in the moving system is not necessarily the
absolute time rate of'change.

7 -
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"Equation 6 can be developed using the following analysis. Let

- A A A
B Bxi + Byj + Bzk (7)

then

"-A- A A" "
" "Bx + Byj + Bzk + Bxi + Byj + BSk (8)

"where i, , and k are simply the ,velocities cf the tips of the unit vectors
which are:

i -wx i

.j =-vx j (9)

kwx•

or

w x B- Bxi + B, + Bzk (10)

and the derivative relative to the moving frame is:

. (B)r =Bxi + ByJ + Bzk (11)

The general equation for the absolute rate of change with respect to time of a
vector referred to a rotating coordinate frame is then made up of the time

Srate of change of the vector relative to the rotating coordinate frame axes
denoted by Or plus an (W x B) term to account for the rotation of these axes
(unit vectors) relative to the inertial frame.

* Now returning to the development of the-rotationel equations, equation 6
can be 'used to determine the derivative of the angular -omentum 4H" referred
to the body coordinate frame.

H-(H)r + w x (H12)
U

where

(H)r W (13)

" ~and

* 8
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Si j k
•'w x H = P Q (R4

Hx Hy Hz

N Note that equation 8 is simplified due to the choice of a body fixed
coordinate frame (the derivative of the I matrix is zero since it is a
constant in a body fixed frame). Equations 8 and 9 can be expanded as

* follows.

Ixx Ixy Ixz P

Iw Ixy Iyy IYz Q (15)

Ixz Iyz Izz~ R l
* *A

•I-xP + IxyQ + IxzR) i

+ (IxyP + IyyQ + IyzR) . (16)

+ (Ixz; + Iy Q + IzzR)

and

""'x H (HzQ HyR) i + (HXR -HZP) + (HyP .HQ) k (17)

A"[(IxzP + IyzQ + IzzR)Q - (IxyP + IyyQ + IyzR)RI i

[(IxxP + IxyQ + IxzR)R - (IxzP + IyzQ + IzzR)P] A (18)

Af[(IxyP + IyyQ.+ IZzR)P - (Ixx? + IjyQ + IxzR)Qk

Thus from equation 2, the moment acting on the body is:

Mx IxxP + Ixy(Q PR) + Ixz(R + PQ)

+ (Izz - Iyy)QR + Iyz(Q2 - R2)

NY M yYQ + Iyz(R - PQ) + txy(P + QR) (M9

+ (Ixx- 1zz•) ,t I'(R 2 - p2)

Izzi + 1xZ(; QR.) + I yz( + ?R)

"+ (I'Q Ixy(p 2  Q2 )

9
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A

where Mx, My, and Mz are the components of the moment about the x, y, ard z
body axes respectively and are governed by the right hand rule.

In order to gain more understanding of the possible simplifications of
. equations 19, some understanding of the inertia matrix is required. The

inertia matrix can be derived by considering the rigid body to be a system of
particles that do not move with respect to one another. The angular momentum
of the rigid body will then be the sum of the angular momentum vectors for
"each of the particles. The angular momentum relative to the poiLlt 0 is then:

I;-
o (Ri x MiRi) (20)

where Ri is the position vector of the particle i (mass Mi) relative to the
reference point 0. If 0 is fixed in the body, then the magnitudes of all the

Ri's are constant ,and thus:

Ri w x Ri (21)

For a rigid body the mass distribution is constant, and thus the
Ssummation can be replaced by a volume integral with mass pdV where dV is a

small volume element and p is the mass density at that point. The angular
momentum Ho for a rigid body is then given by:

Ho f pR x (w x R)dV (22)

* v

Now if the reference point 0 is considered to be at the origin of a cartesian
- system, with the volume element dV located'at (x,y,z), the position vector is

given by:

' - A A A

R R-Xi + YJ + Zk (23)

and • is given by

-oA A A

w Wxi +Wyj + Wzk (24)

UA
I A Ak.

"R x ( x R) X y Z (25)

(Zw- YWz) (XWz -ZWX) (YWX -xY)

[. (y 2 + z2 )wx,- XWy -.XZW2J 1

+ [-XyWx + (x2 + Z2 )wy - zywz2  j (26)

+ [-xZWx - yZW, + (x2 + yZ),ZJ I(

10
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The moments of inertia are then defined as:

"Ixx f P(Y 2 + Z2 )dV

I yy p(X2,+ Z2 )dV (27)

'Izz 2 •p(X 2 + y 2 )dV

and the products of inertia are defined to be:

Ixy I yx - pXYdV

Ixz Izx v pXZdV (28)

yz =Iy - '. pYZdV

The angular momentum equatiop for a rigid body can then be written as:

• "i n - (~w IWy + IZ=Wz)i
A

S(IxyWX + IyyWy + yiWz)j (29)

4+ (IxzWx + IyzWy + IzzWz)k

* . From equations 27 it can be seen that the moments of inertia are always
positive and are actually just a Second moment of the mass distribution with
respect to a cartesian axis system. The products of inertia can be of either
"sign and can be zeroed by proper choice of the axis -system. In general if a.
three dimensioial body has a plane of symmetry such that the mass distribution
is a mirror image of that on the other side, then the products of inertia
involving an axis perpendicular to the plane of symmetry are zero if the other
two axes lie in the plane of symmetry. An example of this is shown in Figure
5 where the missile shown is assumed to be of constant densityand has two
planes of symmetry such that the product of inertia terms are zero.. Note that.
missiles are not in general of constant density, thus the mass distribution
must be a mirror image on each side of the plane of symmetry for the product
of'inertia terms to be exactly zero. Assuming that the product of inertia

----- terms are zero is a good assumption in many cases though, for missiles having
two planes of 4ymmetry such as shown in Figure ,5.

Now returning to equations 19, it can be seen that considerable
simplification results if the body frame is chosen such that the' products'of
inertia are zero. It was noted above that a set of axes could always be found
such that the products of inertia are all.zero and thus the ineftia matrix is
a diagonal matrix. The three mutually orthogonal coordinate axes are known as
the principal axes for this case, and the moments of inertia are known as the
principal moments of inertia. From this' it can be seen that the body
coordinate frame for the missile inFigure 5 is the principal axes system.
Equations 19 then become:

11%
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Mx= IxxP + (Izz - Iyy)QR

ILI IyyQ + (Ixx - Izz)PR (30)

/
Mz IzzR + (Iyy - Ixx)PQ

which are known as Euler's equations. of motion. These are relatively simple
and are widely used in solving the rotational motion of a missile. Note
that as in the case of the external forces, the external moments are made up
of aerodynamic and thrust related moments. These can also. be estimated from
standard design and test procedures.

The rotational rates of the missile (P, Q, & R) can be evaluated using
equations 30 or equations 19 as appropriate. This, however; does not provide
us with the angles relating the body coordinate frame to 'the inertial
reference frame in a direct manner as the angular rates (P, Q, & R) are not
the time derivatives of any angles which specify the orientation of the body.
This problem can be solved by the use of Euler angles or quaternions, which
use the angular rates to obtain coordinate transformations from the body
coordinate frame to the inertial reference frame.

C. Euler Angles

Euler.angles can be used to define the angular'orientation 'of a
missile to an inertial reference frame. An Euler angle set consists of three
angles and a specified sequence of rotation. In other words to arrive at any
given angular orientation of the missile, the missile axes can be assumed to
be initially aligned with the inertial reference frame axes; and then in a
prescribed sequence, the missile is rotated through each Euler angle about a
corresponding body axis. It should be noted that there are many ,different
Euler angle sets in use and care should be taken to define which set is being
used as different rotation sequences will usually give different results. An
example of a common set for aerospace engineering is shown in Figures 6
through 8. This set' consists of an initial rotation of * degrees about the
missile z-body axis, followed by a rotation of 8 degrees ,about the missile
y-body axis and completed by a rotation of O degrees, about the missile
x-body axis. This Euler angle set is also shown in Figures 9'through 11 in a
pseudo three dimensional view.,

Figure 6'. Rotation-about the z-body axis (heading angle,*).

13



X.

z Zb- Z. .

ZiX'

Figure 7. Rotation about the y-body axis (attitude angle, 0).

Figure 8. Rotation about the x-bodZ axis (bank angle, *).

In Figures 6-8 and 9-11, the body axes are aligned with intermediate axes
systems denoted (') and (") after' the ' and e rotations respectively.
These are labeled so as to facilitate the reader's understanding but are not
used otherwise. Euler angles can be used to specify any desired angular
orientation of the missile. Remember though that the sequence is important
and for the case given another sequence such as a 0- ý- sequence would
in general give quite different results.

If the inertial frame shown in Figures 9-11 Is an earth fixed coordinate
frame such as on N-E-D (North-East-Down) coordinate frame,.the Euler angles
are sometimes referred to as the heading angle (*), the attitude angle
(9), and the bank angle (6). Thus letting the N-E-D axes correspond to
the Xi, Yi, Zi axes respectively, the angle * would, simply'be the heading of
the missile relative to north, the angle 8 would be the attitude of the
missile relative to-the, north-eastplane,ýand the angle 6 would be the
lateral inclination or bank of the missile. Note that th .'-e-
sequence used here could also be referred to as a yaw, pitch and roll sequence
in missile terminology.

The Euler angle rotations shown in Figures 6-8 or 9-1l can now be used to
develop a coordinate transformation matrix that will transform vectors from
the inertial frame to the body frame. Referring to Figure 6, the coordinate
transformation from the inertial to. the intermediate (',) system can be seen to
be:

14



cs sin 0 3xiJ
] [Y

nsi cos 0 
(31)

0 0 Zi

Note that in the preceding transformation, the rotation is about the Zi axis
and thus z' is collocated with Zi. In a similar manner, the rotation from the
intermediate (') system to the second intermediate (") system can be seen from
Figure 7 to be:

y eo

Yi X0

FtiotZ

Figure 9, Rotation about the Z -inertial axis,

i , i i15.



xf.

Z1 .Z'

Figure 10. Rotation about the intermediate Y', Y' axis.

x.

Yb•

Yi

Figure 11. Rotation about the x-bodY axis..
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IFx"I cos e 0 -sin 01 rx1
y" 0 1 0 y' (32)
z". sin 0 0 cos O Lz'

where the rotation was about the y' axis and thus the y' and y" axes are the
same. Then from Figure 8, the final transformation is:

rXbl 0 x
Yb [0 cos, sin% y (33)

where the rotation wa.. about the x" axis which was also the x-body axis.
These transformations can be combined' into one transformation as follows.' In
equation 33 substitute equation 32 for (x",y",z"), then

Xb 1 0 0 c 9 0 -s

yb] 0 c s 0 1 0 y' (34)
Zb L -s * c 6 s 0 c C z'

and

Xbl [CO 0 -se *e ' ,
Yb 81 s9 c S4 s**C yJ (35)

Ij ct*se -s *c .0 G [X1

where the sine and cosine terms have been written in a simplified notation.
Now substLtute equation 31 for (x',y',z')

Xb c fc 0 "s es 0 xi
Yb S As 9 c s8 1C -s* cp 0 Ii (36)
LZb * -s c 0 *c a 0 0 1 Zi

thus ' JF

b c 0 *c C c9 *s , -se Xi

S '- i *s, + c *c* (37)

;b c *s c *c4j c C* s *0*sl* c * *c e Zi
•. + s •*s* - a 6 "€,' J V6

Equation 37 can now be used to transform vectors expressed in the i'nertial

frame to the body frame. In other words vectors referred ,to the inertial
frame (expressed in the inertial frame unit vectors) are transformed so that
they are re.erred to the body frame (expressed in the body frame unit
vectors). A transformation from the body frame to the inertial frame can also
be developed trom equatlon 37 by noting that a transformation matrix is an
orthogonal mattix and thus its inverse is just its transpose.. The inverse
transformation can then be ohtained by taking the transpose of the
transformation matrix in equation 37. This can be better understood by first
expressing equation 37 in matrix form as:
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[B] [T]fI] (38)

where [B] is the body vectar matrix (Xb,yb,Zb), [11 ist'Oe inertial frame
vector matrix (Xi,Yi,Zi) and [TI is the transformation matrix. -Now multiply
by the inverse of the transformation matrix.

t t

t u TJ [B] I TI [T[Il [1] (39)

t
(1i - ITI [B] (40)

or
xi C ae*c ) 0*5 8*c~ c 0*8 0*~

Yi c 0*4'ý sO*se9*8 * *8ses~ YbI(1
+ cf*~cp 8 t *c (41)

Zi -s 8 3' *c e c f* c a NJ

EqUat4 on 41 can be used to transform vectors referred to the body system (such
as missile acceleration, velocity or angular rate) to vectors referred to the
inertial system.

Nov that it has been shown how to obtain the transformation matrix when
given the Euler angles,'the nexr thing is to determine the Euler angles during
the missile flight. This can be done by determining the missile's initial
Euler 'angles at launch relative to the inertial frame and then updating these
over the missile flight using the angular rates of the missile.

Initial Euler angles (before missile launch) can be determined using the
definitions of the Euler angles. Thus the heading angle *J is the angle
between the missile pointing direction and the inertial X axis on the Xi-Yi
plane, the attitude angle 0 is the angle between the Xi-Yi. plane and the
.Xb Axis, and the bank angle Oo is the rotation of the missile about the Xb
axis vith respect to the Xi-Yi plane. These angles can be used in the
transformation~matrix of equation 41 to provide the Initial transformation

-____ - from body coordinates to inertial coordinates. Once the missile is launched,
.the apgular rates of the missile (P, Q, & R) can be determined lising equation
19 or 30 and then related to the Euler angle rates ('~~ )using:

P- 0 ' *sin 9

Q *Cos 0 4*+ *Cos e*sino (42)

R P*Cos 9 *Cos 41 j- *sin0

Equations 42 were developed from inspection of Figure 12, which-shove the.
relative orientation *of P, Q, and R along with 9, , and *.Solving
cquacions 42 for ,9,and 4then yields:
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4j kQ*sin * + R*cos • )/cos 0

O- Q*cos * -R*sin • (43)

-=P+ *sin 0
- P + (Q*sin * + R*cos *)*tan 0

Equations 43 catt be integrated to obtain 9 , 8, and * which can then be
used to obtain the transformation matrix in equations 41 and 37. Note that
the , equation has a singularity at 0 9 90 or -90.

D. Translational Equations

1. Translational Equations .in an Inertial Frame

Since we now have a way to relate vectors expressed in the body
frame to the inertial frame, the translational equations of motion can be
developed. Equation I can be rewritten as:

F"- v m +'a v (44)
or

F"-vm ma (45)

The term vm is due to mass ejection from tho rocket motor and is included in
the thrust force. Thus equation 45 can be written as:

F- (46)

where F' is the total force on the missile and is the sum. of the thrust,
aerodynamic, and gravitational forces, i is the acceleration of the missile
relative to the inertial frame and m is the instantaneous mass of the, missile.
The acceleration of the miisile referred to the body frame is:

Abx- F'xlm,

Aby - F'y/m (47)

Abz F'z/m

Note that the components of acceleration in equation 47 are referred to the
body frame, as F' is more easily evaluated in this frame. In other words Abx,
Ab.., and Abz are referred to the body frame since Fx,.,Fy., and F'Z are
re erred to the body frame., If an accelerometer, triad was collocated
with the missile axis system, these components would be equivalent to the
accelerometer readings plus gravity. The velocity of the missile can then be
determined using numerical integration, but care must be taken as integrating
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equations 47 directly will not give the correct answer since the acceleration
vector is referred to a rotating coordinate frame. In order to get the
correct expression for the velocity derivative, equation 6 for the derivative
of a vector in a rotating frame must be used. This then results in:

1 Ab (Vb)r + w x Vb (48)

The angular rate (w) and the velocity (Vb) of the missile are referred to theI .body system and are given by:

"" - Pib + QJb + Rkb (49)
and

A A A

Vb Uib + VJb + Wkb (50)

A A A

where ib, Jb, kb are the unit vectors in the body frame. Thus from equations
49 and 50

"" x Vb - (QW- lRV)ib + (RU- PW)Jb + (PV - QU)kb (51)

and equation 48 can be expanded and combined with equation 47 to give:

Vbx F'x/m- (QW - RV)

Vby F'Y/m (RU PW) (5)

Vbz -,F'Zm -(PV QU)

or

VbxO -x/m + Qx W• + RV

S
Vby Fy/m + P + • ÷ (53)

Vbz Fzlm +G•z PV +QU
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where the F/m terms are the accelerations that would be indicated by an
accelerometer triad collocated with the missile body axis system and "G" is
the acceleration due to gravity (mass attraction). Equation 53 can be
integrated to obtain the velocity of the missile referred to the body frame.

* The coordinate transformation of equation 41 can then be used to determine the
* velocity of the missile referred to the inertial frame, and as the inertial

frame is not rotating, these velocity com-onents can be integrated directly
to obtain the displacements referred to the inertial frame.

Another method which could be used to determine the velocity and
! displacement of the missile is to use equation 41 to transform the

accelerations in equation 47 to the inertial frame. The accelerations would
then be referred to a non-rotating frame and could be integratcd to obtain the
velocity and displacement without the addition of any cross product terms.
For missile simulation, the velocity of the missile referred to the body frame
"is usually heeded for aerodynamic calculations. This can be determined by

I using equation 37 to transform the velocity ,from the inertial frame to the
body frame.

It is important to'remember that when we speak of transforming a vector,
we mean that the vector is expressed using a new set of unit vectors, and the
vector itself has not been changed. Thus transforming a vector from the body
frame to the inertial frame is just using the components of the vector
referred to the body frame and the transformation equation (equation 41)
to find the components of the same vector referred to the inertial frame.

2. Translational Equations for a Moving Frame

In many cases it is desired to obtain the location and velocity of
the missile with respect to a given point on the earth. This is especially
important for inertially guided missiles, which need to know their location
relative to the earth in order to arrive at the'target point. For this case
an earth fixed system is very convenient to work with, but. as it is not an
inertial system its movement must be considered. This can be done in the
development of the missile equations of motion and is shown in the following.

In order t6 obtain the equations of motion for a missile in an earth
fixed coordinate frame, equation 46 can be written in terms of the vector R1
which gives the location of the missile with respect to the inertial frame.
Thus

I-

F= mmi (54)

where

Ri R + (55)
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and

R= R + r (56)

These vectors are shown in Figure 13. Since r is referred to; the rotating
"earth fixed frame, the second derivative of r in equation 56
"can be evaluated using equation 6.

r r + v x r (57)

N and

r=(r)r+vx +2x(--r+ w x ( ) (58)

"Now using equation 56 we .,ve:

Ri (r r+ wxr7+ 27w x(r), +vx wx7) + 1 (59)

"where 'w is the angular, velocity, of the earth and R is the acceleration of the
"earth fixed coordinate frame's origin. The equations of motion for an earth
fixed coordinate frame can now be written as:

a FI/m- x (x r)- 27xv-w x r- R (60)

where v is the velocity and a is the acceleration of the missile referred to
the earth fixed system. For an earth fixed frame, w is constant and the
acceleration of the' coordinate frame's origin is only due to the earth's
rotation. Thus equation 60 can be written, as:

a V/m + X X 1; x Tx. ) 2 (6 1

This is sometimes written as:
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a-F/m+g + wx (wAR)- w•x(wx r) - 2 wxV (62)

where the forces have been split into gravitational (mass attraction)
acceleration "g' and other external forces "F" (aero and thrust). For most
missile simulations the distance flown is small enough that the term w x (w X
r) in equation 62 is negligible and can be neglected without loss of accuracy.

The general equations of motion referred to an earth fixed coordinate
frame are then given by:

2 2
Ax = Fx/m +Gx - (WY + Wz)Rx + WxWyRy + WxWzRz - 2(WyVz - WzVy)

2 2
Ay- Fy/m + Gy - (Wx + Wz) + WxWyRx + WzWyRz - 2(WzVx - WxVz) (63)

2 2
Az- Fz/m + Gz- (Wk + Wy)Rz + WxWzRx + WyWzRy - 2(WxVy - WyVx)

where the subscripts x,y,z stand for the components along the x,y,z axes of
the earth fixed frame.' The coordinate transformation used should now relate
the body and earth surface frames thus allowing the missile body forces or
acceleratioas to be transformed to the earth fixed frame. Equations 63 can be
integrated twice to obtain velocity and displacement of the missile referred
to the earth fixed frame and the velocity of the missile referred to the
missile body frame can be obtained using the inverse coordinate
transformation.

A common earth fixed coordinate frame is the North-East-Down system shown
in Figure 1. For this frame the earth radius is in the down or z direction
thus Rx and Ry are zero and Wy is zero as the east direction is perpendicular
to the rotation vector. Thus equation 63 can be reduced to:

Ax - Px/m + Gx + WxWzRz + 2WzVy

Ay - Fyle + G - 2 (WzVx - WxVz). (641)

2

Az - F/m z WxRZ 2WxVy

-Now noting that the.earth's rot-tion rate.is 0.000073 rad/sec and the earth's
radius is approximately 6,371,000 m, the ; x(; x R) (centrifugal
acceleration) terms in equation 64 can be estimated as follows.
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2
WxWzRz- - W cos(lat)sin(lat) * R

2
- - (0.000073) * cos(lat)sin(lat) * 6,371,000

- - .034 cos(lat)sin(lat) m/82 (65)

2 2 2
Wx Rz W cos(lat)* R

2
- .034 cos(lat) m/s 2  (66)

Thus the centrifugal, accelertaion terms are small and may be neglected for
many cases depending upon the desired accuracy of the simulation. This also
justifies neglecting the w x (wx r) term in equation 62 for cases where the
range of the missile "r" is much less than the earth's radius R. The
coriolis ( 2w x 7 ) terms may also be estimated if the missile velocity is
known. If ve assume that the maximum missile velocity is Mach 2 or
approximately 670 m/s, then the doriolis accelerations will be on the order
of:

2WV - 2*0.000073*670 - .1 m/s 2  (67)

Thus coriolis acceleration can also b, neglected for many cases, but becomes
Smore important for the faster missiles. Earlier it was stated that one of the

requirements, for assuming the earth fixed frame to be an inertial frame was
that the velocity of the missile must be much smaller than the velocity of
escape from the earth. As the escape velocity is approximately 11,200 m/s,
this can be seen to be a good approximation. From this simple analysis, it
can be seen that equations 63 can be simolified to:

Ax - Fx/m + Gx

Ay - Fy/m + Gy (68)

Az Fz/m + Gz

for many cases involving short range, slower'flying missiles which do not use
inertial guidance.

From the above calculations, it might be thought that the.coriolis and
ccntrifugal acceleratiod can be neglected for-all flights, but it must be
tlemembered that even small errors in acceleration can become significant if
they are constant over a long tite. To get distance these terms are
integrated twice which gives a time squared multiplier. Thus the distance
curves for a constant error are parabolic as shown in Figures 14 and 15.
The error in displacement due to the centrifugal acceleration at a latitude of
30 degrees (calculated from equation 66) is shown in Figure 14. In Figure
15 the error in displacement due to coriolis acceleration is shown for
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missiles flying at constant velocities at 0 degrees latitude. Note
that these, are only approximations to give the reader an idea of the magnitude
of the errors involved.

IIIr. SUMMARY

In order to clarify some of the preceding, a short summary of the possible
choices of equations is presented below. Note that these are not the only
options available, but they are some of the most popular. For each of these
choices, a 'body axis system and an inertial or earth fixed coordinate system
are needed and should be defined first along with their relative orientations.
The moments and forces (or, accelerations) along with the mass and moments of
inertia are assumed to be known in the body system.

A. Rotational Equations

The rotational equations (equations 19 or 30) are the same for each
choice and are used to obtain the missile's angular rates (P,QR) from which
the transformation matrix relating the inertial and body coordinate systems
can be developed. Thus

MX Ixx + Ixy(Q PR) +Iicz( + PQ)

2 2
+ (Izz - Iyy)QR + Iyz(Q - R )

Hy IyyQ+Iyz(R-PQ) +Ixy(P +QR) (19)

2 2
+ (Ixx -,Izz)PR÷ Ixz'(R. P )

Mz- IzzR + IXZ(P - QR) + I÷2(Q + PR)

2 2
('yy - lxx)PQ + Ixy(P - Q)

or for a missile with a high degree of symmetry, Euler's equations of motion
may be used:

Mx - IxxP + (Izz lyy)QR

M I=yyQ + (I•v -IzZ)PR (30)

Mz IzzR + (Iyy - xx)PQ

There are several alternatives available for solving the translational
equations. These are presented below.
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B. Translational Equations in the Inertial System

One of the simplest methods is to transform the missile acceleration
components from the body coordinate frame to the .inertial frame and then
integrate to obtain velocity and displacement referred to the inertial axes
system. The velocity referred to the missile body frame can then be obtained
by using the inverse transformation. For this case the body accelerations
to be transformed and integrated would be those sensed by the missile's
accelerometers plus gravitational acceleration due to mass attraction.

Ax - Fx/m + Gx

Ay- Fy/m + (69)

Az = Fz/m + Gz

The terms in equations 69 are -referred to the inertial coordinate frame where
the "F/m" terms are equivalent to the accelerations measured by the missile's
accelerometers once they have been converted to the inertial frame and the "G"
terms are gravitational acceleration (mass attraction).

C." Translational Equations in the Body System

Another simple method is to use equations 53 to calculate the time
derivative of velocity referred to the missile body axes system.

Vbx - Fx/m + Cx QW + RV

Vby - Fy/m + Gy- RU + PU (53)

Vbz- Fz/m + Gz PV + QU

These can then be'integrated to obtain the missile velocity referred to the
body frame. As displacement is usually desired in the inertial or an earth
fixed frame,, the velocity components obtained are generally transformed to the
inertial frame and integrated directly to obtain the displacements referred to,
the inertiaý frame axes system.

Note that Fx/m, F /m, and Fz/mwould be the accelerations measured by an
accelerometer triad collocated with the missile body coordinate frame and that
CGX C7 , and Gz would be the acceleration due to gravity (mass attraction) along
these axes.

D. Transational Equations in an Earth Fixed System

In order to obtain the missile's motion with respect to an earth fixed
frame, equjations 63 can be used.
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2 2
Ax Fx/m + Gx- (Wy + Wz)Rx + WxWyRy + xWWzR 2(W 2yVz WzVy)

2 2
Ay Fy/m + - (Wx + WZ)Ry + WxWyR + WzWyRz - 2(WzVx - WxVZ) (63)

2 2
Az - Fz/m + Gz - (Wx + WyIAZ + WxMPx + WyWzLy - 2(WxVy - WyVx)

6
'4

or for the specific case where the earth fixed frame is a North-East-Down
coordinate frame, these can be reduced to:

A% - Fx/m + G. + WxWzRz + 2WzVy

Ay = Fy/m + Gy - 2(WzVx - WxVz) (64)"

2
Az - FzIm + Gz - WxRz - 2WxVy

Note that all the terms in equations 63 and 64 are referred to, the earth fixed
system. Thus for this case Fx/m, Fy/m, and Fz/m are the accelerations that
would be obtained from the missile's accelerometers after transforming them to
the earth fixed coordinate frame. Gravitational acceleration due to mass
attraction is included as a separate term. These accelerations can be
integrated twice to obtain the velocity and the displacement of the missile
referred to the earth fixed frame.

E. Translational Equations with the Earth Fixed System Assumed to
be an Inertijl System

A somewhat simplified case that works for some of the shorter range,
slower, non-inertially guided missiles is to reduce equations 63 to

A Fx/m + Gx

Ay Fylm + Gy (68)

Az - Fz/m.÷ Gz.

by neglecting the centrifugal and coriolis acceleration terms. Note that
again the terms in these equations are referred to the earth fixed system.--
Thus for this case Fx/m, Fy/m, and Fz/m are once'again the accelerations that
would be obtained from the missile's accelerometers after transforming them to
the earth-fixed coordinate frame and "G" is gravitational acceleration due to
mass attraction. This method is equivalent to alternative B with the earth
fixed system taken as the inertial frame. Thus equations 68 can be integrated
twice to obtain the velocity and displacement of the missile referred to the
e&rth fixed frame.
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F. Translational Equations in the Body System with the Earth
Fixed System Assumed to be an Inertial System

Since alternatives B and E are equivalent if the earth fixed frame
is assumed to be an inertial frame, an alternative equivalent to alternative
C is also possible if the same simpifications used in, alternative E are
used. Thus the equations of alternative C are again obtained where this
time the earth fixed frame is assumed to be an inertial frame.

Vbx - Fx/m + - QW + RV

Vby - Fy/m + - RV + PW (70)

Vbz - Fz/m + Cz PV + 'QU

These can then be integrated to obtain the missile velocity referred to the
body frame. The velocity obtained can then be transformed to the earth fixed
frame and integrated to obtain the displacement referred to the earth fixed
frame. Note that Fx/m, Fy/n, and Fz/m are the accelerations that would be
measured by an accelerometer triad collocated with the missile axis system and
"G' is the acceleration due to gravity (mass attraction). The terms in
equations 70 are referred to the missile body coordinate frame.

IV. CCNCLUDING REMARMi

The missile dynamics equations have been developed using the basic laws in
such a manner as to emphasize their similarity. Basically, the form of the
equations is fixed by the choice of the coordinate system in which the integra-
tion is performed, with the critical factor being the movement (rotation) of
that coordinate system relative to the inertial system. The use of the. equation
for the derivative of a vector referred to a rotating frame (equation 6-). is then
of fundamental importance, and must be understood in order to gain an intuitive
knowledge of the dynamics involved. Many other key factors to the understanding
of the missile dynamics equations have also been discuss. d and a thorough
understanding of these will greatly enhance the practicing engineer's insight.
This then forms the basis of this report which, is Intended to be both A primer
for new engineers and a reference to experienced--engineers involved in missile
flight simulation.
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The approach used in Section III, part B can be extended to obtain the
"displacement of the missile referred to the missile body frame. This is not
usually done as the displacement is easier to visualize when related to an

K inertial or earth fixed frame, but will be done here in order to complete the
discussion.

Equation 46 can be written in terms of the displacement vector "R" which

is referred to the body frame by using equation 6 twice. Thus

R ( r +wxR (71)

and

a
R (R)r + x R + 2w x (R)r + x (w x R) (72)

Then rewriting equation 46 in terms of R gives:

"1' mR (73).

g or

F./m- (R)r +wx R + 2;7x (R)r +''x (x) (74)

The acceleration referred tb the missile body coordinate frame is then given
* by:

(R)' P'/m - x R- 2wx (R)-r x xR) (75)

This equation can be integrated twice to obtain the displacement 'R" r ferred
to the missile body coordinate frame. It is interesting to note, however;
that the first integration of equation 75 does not provide the velocity
referred to the missile body frame. This can ,be better understood by
examining the' equation for the velocity derivative referred to the body frame
which is:

(VrF'/ .w xV (76)

A-2
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From equation 6, V is found to be:

V - (R)r + x X R (77)

Now writing equation 76 in the form:

F'/m- (V)r +wxV (7.8)

and substituting equation 77 for V gives:

F,/m (R)r +w x R + x (Rr + x (xR) (79)

which is 'identical to equation 74. Thus equations 74' and 78 are equivalent
and comparing terms in the equations reveals that:

V) " . --

(Mr " (R)r + w x R + 7x (R)r (80)

and

wxV-w x (R)r+wx(vxR) (81)

From equation 80, it is apparent that the derivative of V does not equal the
second derivative of R when both are referred to the moving coordinate frame
axis system. Thus integrating equations 75 and 76 will give dif.erent results
for the velocity.

A.3
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