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I. INTRODUCTION

Simulation is & tool used in the design of new missile systems and in the
modification or evaluation of existing systems. A missile simulation allows
the engineer to actuvally try out his design without the expense of building
and flying an actual missile. Many simplifications are made of course, but a
great deal can be learned through simulation with a substantial savings in

time and expense. These simulations are usually put together with emphasis on

a particular aspect of the design such as guidance, controlability, component
evaluation, etc., and thus vary widely with no single simulatior being a
general purpose analysis tool that is good for every consideration. A central
part of each missile simulation is the missile dynamics equations which govern
how the missile will react to a given force or moment. These equations can be

.implemented in a variety of ways and are often a source of confusion due to

the differences and simplifications made. This report deals with this issue
by developing several common forms of the missile dynamics equations. Methods
of implemmentation and some of the possible simplifications are also discussed,
and a summary is included showing several of the most common forms and their
implementation.

I1. DEVELOPMENT OF THE.EQUATIONS OF MOTION
‘A. Coordinate Systems and Newton's Second Law

The fundamental law governing translational motion is Newton's second
law as given below. .

F = d(av)/dt , (1)
This law is only applicable in an inertial coordinate frame and thus care must
be taken ro’ define a suitable inertial coordinate frame. At this point it
should be noted that an inertial frame can only be defined by the fact that it
is a system in which Newton's laws hold. Thus for this article, an inertial
frame can be taken to be any frame such that effects due to the movement of
the frame are negligible for the purpose of the simulation. Two common types
of coordinate frames used in missile simulations are coordinate frames fixed
to the earth and coordinate frames that translate with but do not rotate with’
the earth, An earth fixed coordinate frame i{s a coordinate frame that rotates
and translates with but does not move with respect to the earth, such as the
North-East~Down system shown in Figure 1.

'One'examplevof the other type is a nou-rdﬁating Eartﬁ centered coordinate
frame. This coordinate frame has its origin at the center of the earth and
translates with the earth but does not rotate (see Figure 2). That i{s the .

. origin of the coordinaté system moves with the earth, but the coordinate frame

does not rotate with respect to the "fixed™ stars. Of these two systems the
non-rotating coordinate frame provides the “best” inertial frame for missile .
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simulation work. However; the earth fixed coordinate frames car be used in
certain cases such as with non-inertially guided missiles when the distances
traveled are small ccmpared to the earth's radius and the velocities are small
compared to the velncity of escape from the ear~h. This will be discussed .
more in Section II, part D.2. : ' :

Now assuming that we have decided upon an inertial reference frame,
Newton's second law may be used to find tue acceleration of the missile with
respect to tnis frame if the forces acting on the missile and the mass of the
missile are known. The forces acting on the missile can be separated into
three main groups which are: thrust, aerodynamic, and gravitatiomal. Thrust

" and aerodynamic forces can be evaluated fairly accurately with standard test
and design procedures such as static firings to obtain thrust versus time
profiles for the engine and wind turnnel measurements to determine the '
aerodynamic characteristics. Gravitational forces can be calcuiated from a
knowledge of the missile's position relative to the earth. The mass can be
estimated from a knowledge of the missile's weight before and after burnout
(from test measurements) by using some sort of relationship (often linear) for
the decrease in missile mass over the engine's burntime. It is not possible
to apply Newton's second law yet, however; as the forces are only known in
magnitude and their direction depends on the misgsile's orientation in the
inertial frame. This leads to the use of a missile body frame which is a
frame fixed in the missile such as shown in Figure 3. The thrust and
aerodynamic fotrces can be easily evaluated in both magnitude and direction in
this frame. All that remains then is to develop the relationship between the
inertial reference frame and the missile body frame. To completely specify
the location of the body frame in the inertial reference frame, six
independent coordinates are needed. These are often referred to ag degrees of
freedom, with a rigid body, in general, having six degreeas of freedom (6-DOF).

" {Note that a rizid body is an object that does not bend.) The six degrees of
freedom are commonly made up of three trs1slational coordinates and three
rotational coordinates. The translational coordinates normally chosen are the
location of the body frame origin in the inertial frame. Usually the missile

., center of mass (c.m.) is collocated with the origin of the body frame. This
simplifies the calculations involved in evaluating the missile's accelera:ion.
The rotational coordinates must then specify how the axes of the body frame

, are inclined with respect to the inertial reference frame. - This is often done
using Euler angles which are three angles that specify the rotational
orientation of the body frame with respect to the inertial reference: frame.
These will be discusaed in greater detail 'in Section II, part C.

B. Rotational Equa:ions

It is apparent from the above discussion that to completely describe- -
the motion of a missile in flight both 1its translational and rotational motion
must be known. The translational motion is governed by equation 1 which is
the standard form of Newton's second law. It would seem logical then that’
there would be 2 similar equation governing rotational motion, which is in
fact the case. Thus the rotational equation of. wotion can be stated as°,

HeH - | - @
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where M is the moment or torque acting on the body and H is the angular
momentum. Note that the reference point about which the external moment and
the angular momentum are calculated must be either at the center of mass:-
(c.m.) of the body or fixed in the inertial frame. For our purposes we will
assume that the reference point (origin of the body coordinate frame) is at
the missile's center of mass. We should also note at this point that the Com.
and c.g. (center of gravity) of the missile can be taken to mean the same
thing for our purposes due to the relatively small size of the missile when -
compared to the change in the gravitational field with respect to distance.»
The angular momentum "H" is given by:'

Ha=Iw | ¢ I

where I is the inertia tensor (3x3 matrix) and w is the angular velocity of
the body. Note that the elements of I are not usually constant except when
givea in a body fixed coordinate system. Thus the us~ of a body coordinate .
system simplifies the application of this equation. The irertia tensor can be
written in matrix form as: - : o

- Ixx  Ixy Ixé N i a
I= |Ixy Lyy Iy, : (4?
Ixz Iyz Iz ' _

and the angular velociti vector can be written in terms of the missile body
rates (P, Q, and R) as: .

) — A A A e
w=Pi +Qj +Rk : . (5)

At this point it is important to clarify what is meant by "referred to"
and "relative to" or "with respect to”. The term “referred to” a certain
coordinate system means that the vector is expressed in terms of the unit
vectors of that system witile the terms "relative to” or "with respect to” a
particular system mean as viewed by an observer fixed in that system and
nmoving with it. Thus the same vector can be referred to either a moving or
stationary coordinate .system, but its rate of change with respect to time as
viewed by observers in the two systems may appear quite different. This is of
some importance when the derivative of a vector veferred to a moving system is
to be determined. Thus fot a general vector "B” referred to a moving
coordinate system (such as a body coordinate frame), the time derivative
relative to an inertial coordinate system (the absolute time rate of change of
B) is:"

’
vy,

n-(a),.+"‘xs ' : : NOR
where (B)r is the rate of change (with respect to time) of. B as viewed by an
observer in the rotating system, and w is the angular velocity of the moving
frame. It is imvortant to note that B is the 'same vector in both the inertial
and moving coordinate frames; it i{s just expressed in the unit vectors of the
moving system and since these unit vectors could be rotating, the time rate of
change of B as seen by an observer in :he moving system is not necessarily the
absolute time rate of change.
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Equation 6 cén be developed using the following analysis. Let

'

-— A A A '
B = Byl + Byj + Bk n
then

A A A A A A
. B = Byl + Byj + Bgk + Byl + Byj + Byk (8)

where 2, 5, and Q‘are simply the velocities cf the tips of the unit vectors
‘which are:

>
[ ]
€]
F
>

de 3 o
[ ]
€|
»
e >

(9)

w>
]
£}
]
>

or

A f
wxB=Bd+B7 + Bk - (10)
and the dérivative relative to the moving frame is:

.:. ".A 'A ‘. A X .

(B)y = Byl + Byj + Bpk : (11)
The geﬁeral equation for the absolute rate of change with respect to time of a
vector referred to a rotating coordinate frame is then made up of the time
rate of change of the vector relative to the rotating coordinate frame axes

denoted by (), plus an (¥ x B) term to account for the rotation of these axes
(unit vectors) relative to the inertial frame.

Now returning to the dévelopment of the rotational equations, equation 6
can be 'used tq .determine the derivative of the angular ~omentum “H" teferred
to che body coordinate frame.

He (), +wxH o (12)

where

<H>r T | L aw
‘and ' ‘ |
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.'Note ‘that equation 8 is simplified due o the choice of a body fixed
coordinate frame (the derivative of the I matrix is zero since it is a

constant in a body Eixed frame).

Ing  Ixz P
Iyy Iyz | |Q
Iyz Iz | |R

- (IxxP + Iny + I.,R)

A
i
A
+(1xyp+1yq+1 ZR) -3
k

+ (LygP + IyzQ + 1,,R)

follows.
Ixx
o= | Iy
Ixz
and

Equations 8 and 9 can be expanded as

wxH e (B0 - BR) T+ (B - 1,2 §+ (mpp - mo) R

= [(IxgP # Iy5Q + I,,R)Q = (IyyP # IyyQ + Iy,R)R]
[(IxxP + IxyQ + Ix,RIR -
[IgyP + IyyQ'+ Ig,R)P = (Ik + IxyQ + Ir,R)Q]

Thus from equation 2, the moment acting on the body is:

I

Mx> - Ixx.;' + Ixy'(Q - PR) + Ixz(i + PQ)
+ (I3 = Tyy)QR + I,,(Q2 - R2)

My = IyyQ + Ty,(R - Q) + Ixy(P + QR)
* (Iex = 1p2)PR + I, (R2 ~ p2)

_ Mz - Izzi + Iu(; “ QR) + ;yz(é + 2R)

+ (Lyy = L )PQ + Ly(P2 = Q2)

‘. .

r J'“.h u"\t\{\ J‘t\\h';‘h"\\ ';;.' {'» \ '. > ....-. -.'.. ..

(Ig,P + Iy,Q + I,,R)P]

> L >

[
= e |-"-'-

‘-\*1'- =" \

(14)

(15)

(16)

(17)

(18)

(19)
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where My, My, and M, are the components of the moment about the x, y, ard 2z
body axes respectively and are governed by the right hand rule.

In order to gain more understanding of the possible simplifications of
equations 19, some understanding of the inertia matrix is required; The
inertia matrix can be derived by considering the rigid body to be a system of
particles that do not move with respect to ane another. The angular momentum
of the rigid body will then be the sum of the angular momentum vectors for
each of the particles.- The angular momentum relative to the poiut 0 is then:

?{‘O = Z (Ei b 4 M.i-ﬁi) . (20)
{ ' .

where Ry 1is the position vector of the particle i (mass My) relative to the

reference point 0. If 0 is fixed in the body, then che magnitudes of all the
Ri s are constant .and thus:

Ri = WX Ri . . (21)
For a rigid body the mass distribution is constant, and thus the
summation can be replaced by a volume integral with mass pdV where dV is a
small volume element and p is the mass density at that point. The angular
momentum Ho for a rigid body is then given by:

Ho = J"’pE x (W x -R-)dV ' ot (22)

Now if the reference point O is considered to be at the origin of a cartesian

system, with the volume element 4V located at (x,y,z), the position vector is
given by '

- A A A \ '
R=Xi+Y)+2k , ' . (23)

and W is given by

— A A A .
wom Wl +Ug + Wk , ' - (24)
'y 3 %
RxGxm=| x v oz .t @

= [(¥2 + 22)uy, - xwy - X2W,] i '
+ [=XYW, + (x2 + ZZ)WY - ZYWzlij (26) '

+ [XZiy = Y2y + (X2 + YW, ] &

10




The moments of ineftia are then defined as:
g = L, (Y2 + 22)av
Iyy = £ o(x2+ 22)av (27)

gz = L (X2 + ¥2)av
and the products of inertia are defined to be:

i S 2 £, eX2av ' ' - (28)

I £, p¥Zdv

yz - Izy -

The angulaf‘momentum équa;ion fot a rigid body can then be written as:

A
H o= (IpggWy + IpgWy + Iy Wp)1
’ A
+ (Ixywx + Iyy y +'Iy2wz)j ' (29)
A
+ (Ixzwx + Iyzwy + Izzwz)k

From equations 27 it can be seen that the moments of inertia are always
positive and are actually just a second moment of the mass distribution with
respect to a cartesian axis system. The products of inertia can be of either
sign and can be zeroed by proper choice of the axis system. In general if a.
three dimensivial body has a plane of symmetry such that the mass distribution
is a mirror image of that on the other side, then the products of inertia
involving an axis perpendicular to the plane of symmetry are zero if the other
two axes lie in the plane of symmetry. An example of this is shown in Figure
5 where the missile shown is assumed to be of constant density.and has two
planes of symmetry such that the product of inertia terms are zero.. Note that
missiles are not in general of constant density, thus the mass distribution
mus¢ be a mirror image on each side of the plane of symmetry for the product
of inertia terms to be exactly zero. Assuming that the product of inertia '

——— terms are zero is a good assumption in many cases though, for missiles having
two planes of symmetry such as shown in Figure 5.

Now returning to equations 19, it can be seen that considerable .
simplification results if the body frame 1s chosen such that the products 'of
inertia are zero. It was noted above that a set of axes could always be found
such that the products of inertia are all zero and thus the ineitis matrix is
a diagonal matrix. . The three mutually orthogonal coordinate axes are known as
the principal axes for this case, and the moments of inertia are known as the
principal moments of inertia. From this it can be seen that the body .
coordinate frame for the missile in Figute 5 is the principal axes system.

‘ Equations 19 then become' :

1
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My = TP + (I, - I, )QR
My = TyyQ + (I = I,)PR | - (30)
My = IR+ (Iyy = Iy)PQ

which are known as Euler's equations. of motion. These are relatively simple
and are widely used in solving the rotational motion of a missile., Note
that as in the case of the external forces, the external moments are made up
of aerodynamic and thrust related moments. These can also be estimated from
standard design and test procedures. ,

The rotational rates of the missile (P, Q, & R) can be evaluated using

equations 30 or equations 19 as appropriate. This, however; does not. provide

us with the angles relating the body coordinate frame to'the inertial
reference frame in a direct wanner as the angular rates (P, Q, & R) are not
the time derivatives of any angles which specify the orientation of the body.
This problem can be solved by the use of Euler angles or quaternions, which
use the angular rates to obtain coordinate transformations from the body
coordinate frame to the inertial reference frame.

C. Euler Angles

Euler,anéles can be used to defime the angular' orientation of a

‘missile to an inertial reference frame. An Euler angle set consists of three

angles and a specified sequence of rotation. In other words to arrive at any
given angular orientation of the missile, the missile axes can be assumed to
be initially aligned with the inertial reference frame axes; and then in a
prescribed sequence, the missile is rotated through each Euler angle about a
corresponding body axis. It should be noted that there are many different
Euler angle sets in use and care should be taken to define which set is being
used as different rotation sequences will usually give different results. An
example of a common set for aerospace engineering is shown in Figures 6
through 8. This set consists of an initial rotation of ¥ degrees about the
missile z-body axis, followed by a rotation of @ degrees about the missile
y-body axis and completed by a rotation of ¢ dégrees. about the missile
x~body axis. This Euler angle set is also shown in Figures 9 'through 1l in a
pseudo three dimensional view., e

Pigure 6. Rotation about the z-Bodzkaiis (heading angle, y).
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Figure 7. Rotation about the y;body axis (pttitude ang}e,'e).

Y‘,Y"

Figure 8. Rotation about the x~-body axis (bank‘aﬁgle,,¢).

In Figures 6-8 and 9~-11, the body axes are aligned with intermediate axes
systems denoted (') and (") after the ¥ and O rotations respectively.

These are labeled so as to facilitate the reader's understanding but are not
used otherwise. Euler angles can be used to specify any desired angular
orientation of the missile. Remember though that the sequeace is important

" and for the case given another sequence such as a 6~y -¢- sequence would

in general give quite different results.

1f the inertial frame shown in Figures 9-11 {is an earth fixed cootdinate
frame such as an N-E-D (Nortli~-East-Down) coordinate frame, the Euler angles
are sometimes referred to as the heading angle (V), the attitude angle

(8), and the bank angle (¢). Thus letting the N-E-D axes correspond to

the Xy, Yy, 24 axes respectively, the angle V¥ would. simply be the heading of
the missile relative to north, the angle 8 would be the attitude of the
migsile relative to the north-east .plane, and the angle ¢ would be the
lateral inclination or bank of the missile. Note that the V-6-¢

sequence used here could also be referred to .as a yaw, pitch and roll sequence.

in missile terminology.

The Euler angle rotations shown in Figures 6-8 or 9-11l égn now be used to
develop a coordinate transformation matrix that will transform vectors from
the inertial frame to the body frame, Referring to Figure 6, the coordinate

- be:

— "/,

14

transformation from the inertial to ‘the intermediate (') system can be seen to-
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x' cosy siny O Xy
y' [=|-sle ¢y cos ¥V 0| Yy : (31)
| KX 0 o 0 1 Z;

Note that in the preceding transformation, the rotation is about the 21 axis
and thus z' 1is collocated with Zy. In a similar manner, the rotation from the

intermediate (') system to the second intermediate (") system can be seen from
Figure 7 to be: ' ’

z2

Ccemeeie erymn e s ——

Figure 9. Roéa:ion about the 2 -'1nertiéi axis,.
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Figure 10.  Rotation about the intermediate Y', Y" axis.

Figure 11, Rotation abnut therx-body axis.
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x" [ cos © 0 -sin 6 ~x!
y'|= L 0 1 0 [ y' (32)
z" sin © 0 cos 8] z'

where the rotation was about the y' axis and thus the. y' and y” axes are the
same. Then from Figure 8, the final transformation is:

IS 0 0 x" :
Yp! = |O cos ¢ . sin ¢ y" : . (33)
Zy 0 =-sin' ¢ cos ¢ z"

where the rotation wa. about the x" axis which was also the x-body axis.
Thesa transformations can be combined into one transformdtion as follows. 1Imn
equation 33 substitute equation 32 for (x",y",z"), then

- - n] : .
Xy Fl (] 0 rc 8 C -s 8 x' L
Yol = |0 c ¢ s8¢ l o 1 0 y' - (34)
_ ZM |0 -s & c o 868 .0 c 8] z' ,
and - Do .
Xy [c 6 0 -s 6 ] [x"
Yp| = |s o2 O c o 8 ¢ * 6 y' , (35)
L Zp ] cod*s 8 -8 ¢ c$* 0 z' v '

where the sine and cosine terms have been writteﬂ in a simplified notation.
Now substitute equation 31 for (x',y »z")

%] [c @ 0 <0 ] [ey sy 0] [x
Yp|= [s 6%z @ ) s d*c A | |8y ey 0 Y4 (36)
[ 2 cd*s 0 =g ¢ c d*e 8Jd 0 0 1J Lz
:hu‘ - - ' - V -‘ A ' ’ ,'. -y - .-'
Xy | c Ok Yy - e 9 rg -8 8 ' Xy
Yp s % 9 *e P i ¢ *s 9,*s¢; s O * 0 Y5
= |-c ¢ *3-4) +c o *clp i : ) (37) .
Zy e b s elfcﬂ) cC o*s 0"y c 6% QJ 24 | 4
N L +s b *sy -8 d*cy . o

v e 8 e«

L S e " S e e .

- . emwme . emo b

Equation 37 can now be used to transform vectors expressed in the Iinertial
frame to the body frame. 1In other words vectors referred to the inertial
frame (expzassed in the inertial frame unit vectors) are transformed so that
they are reterred to the body frame (expressed in the body frame unit .
vectors)., A transformation from the body frame to the inertial frame can also
_be developed trom equation 37 by noting that a transformation matrix iy an
orthogonal matvix and thus its {nverse {s just its transpose, The inverse
transformation can then be ohtained by taking the transpose of the
transformation mutrix in equatisn 37. This can be better undetstood by first
expressing equatica 37 in ma:tix foem as: '

17
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[8] = [T}(1)

(38)

where [B] is the body vector matrix (Xp»YpsZp), [I] is 'the inertial frame

vector matrix (X;,Y;,2y) and [T] is the transformation matrix. Now multiply
by the inverse of the transformation matrix.
. t t
: [T} [B] = [T] [Ti[1] = [1I] (39)
thus
t
(1] = [T] [B] (40)
or _ _ , _ ’ .
Xi] cO*y s od*s 0y co*s 0rey T [Xy
. -co*s Y +8 ¢ *sy
Yi1 c 0 %Y s d*s Q%Y ¢ P *s O *y Yy
- +c ey -8 ¢ *y (41)
Zq | -8 J s ¢ *c 9 c o * 06 }h

Equatiocn 41 can be used to transform vectors referred to the body system (such
as missile acceleration, velocity or angular rate) to vectors referred to the
inertial system. .

" Now that it has been shown how to obtain the transformation matrix when .
given the Euler angles, the next thing is to determine the Euler angles during
the missile flight. This can be done by determining the missile's initial
Euler angles at launch relative to thelinertiél frame and then updating these
over the missile flight using the angular rates of the missile.

Initial Euler angles (before missile launch) can be determined u2ing the
definitions of the Euler angles. Thus the heading angle Y 1is the angle
. between the missile pointing direction and the inertial X axis om the X;-Y;
plane, the attitude angle 6 is the angle between the X;~Y4 plane and the
Xp axis, and the bank angle ¢ is the rotation of the missile about the Xj
axis with respect to the X;~Y; plane. These angles can be used in the
transformation matrix of equation 41 to provide the initial transformation
from body coordinates to inertial coordinates. Once the missile {s launched,
. the angular rates of the missile (P, Q, & R) can be determined wsing equation
19 or 30 and then telated to the Euler angle rates (w, 9, 'Y using'

P= ¢ =~y #*sin 0 . _

Q= 8 *cos o + { *cos 9 *sin o : ‘ (42)

R = @ *cos 8 %cos ¢ -~ é *sin ¢ |
‘Equattont 42 were developed from 1nspection of Figure 12, uhich shows the

relative orientation of P, Q, and R along with y, 9, and ¢. Solving
;quationa 42 for w, 9, and ¢ then yields: :
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]

\Q*sin ¢ + R*cos ¢ )/cos O

Do
]

Q*cos ¢ =~ R*sin ¢ : (43)

P+ @ *sin 6
P + (Q*sin ¢ + R*cos ¢)*tan O

.a.
|

" Equations 43 can be integrated to obtain Y , 8, and ¢ which can then be
used to obtain the transformation matrix in equations 41 and 37. Note that
the w equation has a singularity at 6 = 90 or -90.

D. Translational Equations
1. Translational Equations in an Inertial Frame
Since we now have a way .to relate vectbrs expressed in the body

frame to the inertial frame, the translational equations of motion can be
developed. Equation 1 can be rewritten as:

T =Vm+av - . . (44)
or
P -Va=na (45)

The term vm is due to mass ejection from the rocket motor and 1§ included in
the thrust force. Thus equation 45 can be written as: '

F' = na | , - (46)

where F' 1s the total force on the missile and is the sum of the thrust,
aerodynamic, and gravitational forces, a is the acceleration of the missile
relative to the inertial frame and m is the instantaneocus mass of the missile.
The acceleration of the mirsile referred to the body frane is:

Apx = F'y/m,
My = F'y/m Y

Note that the components of acceleration in equation 47 are referred to the
body frame, as F' is more easily evaluated in this frame. In other words Ay,
,» and Ay, are referred to the body frame since F'y, F'y, and P', are
¥erted to the body frame. . If an accelerometer .triad was collocated
wi:h the missile axis system, these components would be equivalent to the
accelerometer readings plus gravity, The velocity of the missile can then be
deternined using numerical integration, but care must be taken as integrating

- L 20
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equations 47 directly will not give the correct answer since the acceleration
vector is referred to a rotating coordinate frame. In order to get the
correct expression for the velocity derivative, equation 6 for the derivative
of a vector in a rotating frame must be used. This then results in:

[
-

b = (;b.)r +wx Vb , | ' (48)

The angular rate (w) and the velocity (Vb) of the missile are referred to the
body system and are given by:

- A A A A

w = Piy + Qjp + Rky . (49)
and ' ' . .

- A A A o :

Vp = Uiy + Vip + Wky A ' (50)

A .
where 1b, Ip» kb are the unit vectors in the body frame. Thus from equations
49 and 50

- - , A A A
wx Vy = (QW - RV}1y + (RU = PW)J, + (PV = QU)kp (51) -
and equation 48 can be expanded and combined with equation 47 to give:

F'y/m = (QW - RV)

< e
o
H]
[ ]

<.o
o
<

| ]

F'y/m = (RU - BW) | ()

<< e
o
N
]

,?'z/m - (pV ~ QU)

<
o
"
[ ]

= Py/m + Gy = QW + RV
Vpy = Fylu 4 Gy ~ RO+ BW B ¢ )

Vypg * Fz/m + G = PV + QU
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where the F/m terms are the éccelerations that would be indicated by an

- accelerometer triad collocated with the missile body axis system and "G" is

the acceleration due to gravity (mass attraction). -Equation 53 can be
integrated to obtain the velocity of the missile referred to the body frame.
.The coordinate transformation of equation 41 can then be used to determine the
velocity of the missile referred to the inertial frame, and as the inertial
frame 1is not rotating, these velocity com;>nents can be integrated directly

to obtain the displacements referred to the inertial frame.

Another method which could be used to determine the velocity and
displacement of the missile is to use equation 41 to transform the .
accelerations in eyuation 47 to the inertial frame. The accelerations would
then be referred to a non-rotating frame and could be integratzd to obtain the
velocity and displacement without the addition of any cross product terms.

For missile simulation, the velocity of the missile referred to the body frame
is usually needed for aerodynamic calculations. This can be determined by
using equation 37 to transform the velocity from tha inertial frame to the
body frame.

It is i{mportant to remember that when we speak of transforming a vector,
we mean that the vector 1s expressed using a new set of unit vectors, and the
vector itself has not been changed. Thus transforming a vector from the body
frame to the inertial frame is just using the components of the vector
referred to the body frame and the transformation equation (equaction 41)
to find the components of the same vector referred to the inertial frame.

2. Translational Equétions for a Moving Frame

In many cases it is desired to obtain the location aud velocity of
the missile with respect to a given point on the earth. This is especially
important for inertially guided wmissiles, which need to know their location
relative to the earth in order to arrive at the target point.: For this case
an earth fixed system is very convenient to work with, but. as it is not an
inertial system its movement must be considered. This can be done in the
development of the missile equations of motion and is shown in the following.

In order to obtain the equations of motion for a missile in an earth
fixed coordinate frame, equation 46 can be written in terms of the vector Ri

which gives the location of the missile with respect to the inertial frame,
Thus .

F' = mRy S e (54)
whe:e ' '
Ry ~R+T | o (’ss)
22
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e
e and
~T
a Ry =R+T (56)
< : -
e These vectors are shown in Figure 13. Since r is referred to. the rotating
) earth fixed frame, the second derivative of T in equation 56
- : can be evaluated using equation 6.
> : ‘ R A - -
o r=(r)p+wxr (57)
- ' and
V ;;‘_ . T=(t),+vxT + Zw x (r)r +wx (w x r) (58)
L4
iR Now using equation 56 we t-ve:
o :
Ri=(T)p +WxT+2wx (r)r +Vx(WxT) +R (59)

8 .8 ¢ e v, -
AR T P
AR .

R s’

n fixed coordinate frame can now be written as:

. .e
-—

T e .
P
Ay b et e

where w is the angular velocity. of the earth and R 1s the acceleration of the
earth fixed coordinate frame's origin. The equations of motion for an earth

- a=F/mn~ wx(WxT)-2Wxv-wxT-R (60)
- where v 1s the velocity and 7 1s the acceleration of the missile referred to
, the earth fixed system. For an earth fixed frame, w is constant and the
<. acceleration of the coordinate frame's origin is only due to the earth's
. ‘ . rpcation. Thus equation 60 can be writ:en as' .
v | . F=F/m + Wx@xR - Fx(GxD e Mxv (6D
: ' This is sometimes written as:
N .
|..l '
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T=Fu+g + wx(@WaxR) - wx@WxD) - 2wxv  (62).

where the forces have been split 1nto gravitational (mass attraction)
acceleration g and other external forces "F" (aero and thrust). For most
missile simulations the distance flown is small enough that the term w x (wx
T) in equation 62 is neglig;ble and can be neglected without loss of accuracy.

) The general equations of motion referred to an earth fixed coordinate
frame are then given by:

A s 3 .
Ay = Fy/m + Gy = (Wy + Wo)Ry + WWyRy + WW,R, - 2(WyV, = W,Vy)

‘ 2 2 : :
Ay = Fy/m + Gy = (g +W)Ry+WWRx+Wy = 2(WVy = WeV,) - (63)
' 2. 2 . ‘ '
Ay = Fp/m + G = (Wy + Wy)Ry + W Ry + Wl Ry = 2(WeVy = WyVy)

, where the subscripts x,y,z stand for the components along the x,y,z axes of
the earth fixed frame. The coordinate transformation used should now relate
the body and earth surface frames thus allowing the missile body forces or
accelerations to be transformed to the earth fixed frame. Equations 63 can be
integrated twice to obtain velocity and displacement of the missile referred
to the eéarth fixed frame and the velocity of the missile referred to the
missile body frame can be obtained using the inverse coordinate
transformation.

A common earth fixed coordinate frame is the North-East-Down system shown
in Figure 1. For this frame the earth radius is in the down or z direction
thus Ry and R, are zero and W, is zero as the east direction is perpendicular
to the rotation vector. Thus equation 63 can be reduced to: o

= F, . /m + + W W, R, + 2W,V
X x"z%z z'y

by = Fy/m + G - 2y - W) ; N (7))
S 2 '
; = F/m + G, -wlzz-zw,‘vy

‘Now noting that the. eatth’ rot-%ion thte is 0.000073 rad/sec and the earth's
radius is approximately 6,371,000 m, the wx(wx¥® {centrifugal
acceleration) terms in eqnation 64 can be estimated as follows.
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2

WxW,R, = = W cos(lat)sin(lat) * R
. 2 ‘ '
= - (N,000073) * cos(lat)sin(lat) * 6,371,000
= - ,034 cos(lat)sin(lat) m/s? ‘ (65)
2 2 2
Wy R; = W cos(lat) * R

2 ‘ o
034 cos(lat) m/s2 o (66)

Thus the centrifugal. accelerziion terms are small and may be neglected for
many cases depending upon_the desired accuracy of the simulation. This also
Jjustifies neglecting the w x (W x T) term in equation 62 for cases where the
range of the missile " t” 18 much less than the earth's radius "R". The
coriolis ( 2w x v ) terms may also be estimated if the missile velocity is
known., If we assume that the maximum missile velocity is Mach 2 or

approximately 670 m/s, then the coriolis accelerations will be on the order
of: .

2WV = 2*0.000073*670 = .1 m/s2 ' NN (12

Thus coriolis acceleration can also b« neglected for many cases, but becomes
more important for the faster missiles. Earlier it was stated that one of the
requirements, for assuming the earth fixed frame to be an inertial frame was
that the velocity of the missile must be much smaller than the velocity of
escape from the earth. As the escape velocity is approximately 11,200 m/s,

. this can be seen to be a good approximation. From this sinple anslysis it
can be geen that equations 63 can be simolified to:

Ay = Fy/m + G* o .
Ay = Py/m + Gy - ] (68)

A; = F;/m + G,

for many cases 1nvolv1ng short . range, slowet flying missiles which do not use
inertial guidance.

From the above calculations, it might be thought that tha coriolis and
centrifugal acceleration can be neglected for-all flights, but it must be
vemembered that even small errors in acceleration can become significant 1if
they are constant over a long tise. To. get distance these terms are
integrated twice which gives a time squared multiplier. Thus the distance
curves for a constant error are parabolic as shown in Figures 14 and 15.

The error in displacement due to the centrifugal acceleration at a latitude of
30 degrees (calculated from equation 66) is shown in Figure l4. In Pigure
15 the error in displacement due to coriolis acceleration is shown for
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missiles flying at constant velocities at 0 degrees latitude. Note
that these are only approximations to give the reader an 1dea of the magnitude
of the errors involved. .

III. SUMMARY

In order to clarify some of the preceding, a short summary of the possible
choices of equations is presented below. Note that these are not the only
options available, but they are some of the most popular. For each of these

choices, a 'body axis system and an inertial or earth fixed coordinate system

- are needed and should be defined first along with their relative orientations.
The moments and forces (or accelerations) along with the mass and moments of
inertia are assumed to be known in the body system.

A. Rotational Equations
The rotational equations (equations 19 or 30) are the same for each
choice and are used to obtain the missile's angular rates (P,Q,R) from which

the transformation matrix relating the inertial and body coordinate systems
can be developed. Thus

My = Ixx§ + Ixy(é - PR) + Ixz(i + Q)

2 2

'+ (Iz = Tyy)QR + 1,,(Q = R)
My = I,.Q + Iyz(i -PQ) + Ixykp + QR) - -9
2 2

+ (Igx = I;z)PR'+ I (R =P )

My = IR + Ig(P = QR) + Iyz(é + PR)
o 2 2
+ (Iyy = IgdPQ + Ly(P = Q )

or for a nissile with a high degree of symmetry, Euler's equacions of notion
may be used:

My = 1,,6 + (Iex = Iz2)PR = o (30)
My = Izz;t + (Iyy = Ixx)PQ

Therc are several alternatives availablc for solving the translationnl
equattono. These are presented below.
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B. Translational Equations in the Inertial System
One of the simplest methods is to transform the missile acceieration
components from the body coordinate frame to the inertial frame and then
integrate to obtain velocity and displacement referred to the inertial axes
system. The veliocity referred to the missile body frame can then be obtairned
by using the inverse transformation. For this case thLe body accelerations

to be transformed and integrated would be those sensed by the missile’s
accelerometers plus gravitational acceleration due to magss attraction.

Ay = Fy/m + Gy ‘
A, = F,/m + G,
The terms in equations 69 are referred to the inertial coordinate frame where
the "F/m” terms are equivalent to the accelerations measured by the missile's
accelerometers once they have been converted to the inertial frame and the "G~
terms are gravitational acceleration (mass ‘attraction).
C."  Translational Equatibnsvin the ﬁody'System
Another simple method is to use equations 53 to calculate the time
derivative of velocity referred to the missile body axes system.
Vbx = Fx/m + Gy = QW + RV
Vby = Fy/m + Gy - RU + PW (s

Vig = Fz/m + Gy = PV + QU

These can then be integrated to obtain the missile velocity referred to the

- body frame. As displacemen: is usually desired in the inertial or an earth

fixed frame, the velocity components obtained are generally transformed to the
inertial frame and integrated directly to obtain the displacenents referred to
the inertial frame axes systen. :
‘Note that Fx/m, /m, and F,/m, would be the accelaratibna mcaaured by an
accelerometer triad coIlocated with the missile body coordinate frame and that
(N c,, and G would be the acceleration due to: gravity (unss acttaction) along
these axes.

" D Trans'ational Equations in an Earth Fixed System

In order to obtain the missile's motion with respeet to an earch fixed
frame, equations 63 can be used. .
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: -2 2 : :
Ay = Fy/m + Gy = (Wy + W)Ry + wxwyRy>+ WeWoRp = 2(WyV, = WpVy)
2 2 '
Ay = Fy/m + Gy = (Wg + Wo)Ry + WeWyRy + WWyRy = 2(W,Vy = WyeVp)  (63)
' y -
Az = Fp/m + Gy = (Wy + WydR; + WeWpRy + WyW Ry = 2(WeVy = WyVy)

or for the specific case where the earth fixed frame is a North-~East-Down
coordinate frame, these can be reduced to:

Ax = Fy/m + Gy + WW R, + 2W,Vy

Ay = Fy/m + Gy = 2(WzVy = WyV;) - ‘ (64)

d 2 ' .

Note that all the terms in equations 63 and 64 are referred to the earth fixed
system. Thus for this case Fy/m, Fy/m, and F,/m are the accelerations that
would be obtained from the missile's accelerometers after transforming them to
the earth fixed coordinate frame., Gravitational acceleration due to mass
attraction is included as a separate term. These accelerations can be
integrated twice to obtain the velocity and the displacement of the missile
referred to the earth fixed frame.

E. Translational Equations with the Earth Fixed Systen Assumed to
be an Inertiul System

A somewhat simplified case that works for some of the shorter ranée,
slower, non-inertially guided missiles is to reduce equations 63 to

Ay = Fx/m # Gx » . .
Ay = Fyla + Gy | | | . (68)
Ay = Pyl + Gy - ' ’

by neglecting the centrifugal and coriolis accelgr#tion terms. Note that

- again the terms in these equations are referred to the earth fixed system. - -

Thus for this case F,/m, F,/u, and P,/m are once again the accelerations that

would be obtained fron the missile's acceletoneters after transforming them to

the earth fixed coordinate frame and "G” is gravitational acceleration due to
mass attraction, This method is equivalent to alternative B with the earth
fixed system taken as the i{nertial frame. Thus equations 68 can be integrated
twice to obtain the veloci:y and displacement of the missile referred to the
eurth fixed frame, .
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' flight siaulation.

F. Translational Equations in the Body System with the Earth .
Fixed System Assumed to be an Inertial System

. Since alternatives B and E are equivalent if the earth fixed frame
is assumed to be an inertial frame, an alternative equivalent to alternative
C is also possibie if the same simpifications used in alternative E are
used. Thus the equations of alternative C arz again obtained uhere this
time the earth fixed frame is assumed to be an inertial rtaae.

‘;bx-Fx/Ili'Gx-Qw#'RV
;Iby-y/n-&»cy-m,'ihw o - (70)

Vpp = Fp/m + cz S +QU

These can then be integrated to obtain the missile velocity referred to the
body frame. The velocity obtained can then be transformed to the earth fixed
frame and integrated to obtain the displacement referred to the earth fixed -
frame. Note that F./m, Fy/a, and F,/m are the accelerations that would be
measured by an accelerometer triad collocated with the missile axis system and
"G" is the acceleration due to gravity (mass attraction). The terms in -
equations 70 are referred to the missile body coordinate frame.

IV. CCNCLUDING REMARKS

The aissile dynamics equations have been developed using the basic laws in
such a manner as to emphasize their similarity. Basically, the form of the
equations is fixed by the choice of the coordinate asystem in which the integra-
tion is performed, with the critical factor beinyg the movement (rotation) of
that coordinate system relative to the inertial system. The use of the equation
for the derivative of a vector referred to a rotating frame (equation 6) is then
of fundamental importance, and must be understood in order to gain an intuitive.
knowledge of the dynamics involved. Many other key factors to the uuderetanding
of the missile dynamics equations have algso been discuss 4 snd a thorough
understanding of these will greatly enhance the practicing engineer's insight.
This then forms the basis of this report which is intended to be both a primer -
for new engineers and a reference to expetienced,engineere involved in nisaile

¢
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" .is referred to the body frame by using equation 6 twice.

\) -‘\'gi -.‘_‘I II.}\ 'h_.

. The approach used in Section III, part B can be extended to obtain the
displacement of the missile referred to the missile body frame. This is not
ugsually done as the displacement 1s easier to visualize when related to an
inertfal or earth fixed frame, but will be done here in order to complete the
discussion.

Fquation 46 can be written in terms of the displécement vecfor “R" which
Thus

R=(R)p +WxR (71)
and

R-(R)r+wa+2wx(R)r+wt(wa) (72)
Then rewriting equatiomn 46 in terms of.E gives:

F' = mR (73)
or

F'/n= Ry +WxR+20x Ry +%x @ xR (74)

The'acceleration referred to the missile body coordinate frame is then given
by:

PR

(R),

- F/m -wxR-Zx®p-Fx(FxR (75)

‘

This equation can be integrated twice to obtain the displacement “R” referred
to the missile body coordinate frame. It 1s interesting to note, however;
that the first integration of equation 75 does not provide the valocity
referred to the missile body frame. This can be better understood by
examining the equation for the velocity derivative referred. to the body, frame
which is:

L

(M =F/m=WxV (76)
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From equation 6, V is found to be:
V-(E)r+?x-ﬁ | o N

Now writing equation 76 in the form:

L —
L

F/m= (W), +%xV | (78)
and substituting equation 77 for ;l- gives:

;'/m-(z)r+%xz +2;x(R)r+;x(;x-§) ' (79)

which is identical to equation 74. Thus equations 74 and 78 are ‘equivalent
and comparing terms in the equations reveals that:

(V)r = (R)r +VWXxR+W x (R)r ' o ' , (80)
and
éx-\;-.;x (E)r,d-;.x (W x R) (81)

From equation 80, it is apparent that the derivative of V does not equal the
second derivative of R when both are referred to the moving coordinate frame
axis system. Thus integrating equations 75 and 76 will give dif.erent results
for the velocity.

'
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