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Beam Trapping in High Current Cyclic Accelerators

with Strong Focusing Fields

I. Introduction

In cyclic induction accelerators, such as the conventional 2 ,3 and the

modified betatron4 7 .the energy of the particles increases slowly in

synchronism with the vertical (betatron) magnetic field., For example, the NRL

modified betatron8 has been designed to increase the energy of the gyrating

particles by - 1/3 KeV per revolution.

As a consequence of the slow acceleration, the charged particles must be

confined by the weak focusing magnetic field over long periods of time,
9,10 11-15a

typically milliseconds, and thus field errors, instabilities and

radiation losses can impose limitations on the acceleration process. These

limitations can be substantially relaxed if the acceleration were to occur

rapidly, say over a few microseconds. An appropriate name for such an

accelerator is REBA-TRON (Rapid Electron Beam Accelerator).

A possible configuration for a rebatron is shown schematically in Fig.

I. The high gradient localized electric field, responsible for the rapid

acceleration, is produced by a convoluted parallel transmission 
line, 15

although, other transmission lines are also suitable. Since the acceleration

occurs over a few microseconds, the vertical magnetic field cannot be

increased in synchronism with the energy of the particles. Therefore, a

16-20
strong focusing field is needed to confine the high current electron beam. 16 2 0

The confining properties of torsatron magnetic fields in rebatrons have been

21
studied recently and the results are very promising.

In this paper we consider a possible mechanism which could trap a high

current electron beam in the strong focusing magnetic fields of the rebatron.

Manuscript approved January 18, 1985.
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The beam trapping process in rebatrons is inherently difficult since the strong

focusing fields result in particle orbits which are relatively insensitive to

an energy mismatch. 20 Thus small changes in the betatron magnetic field are

not sufficient to move the beam from the injection point to the center of the

chamber.

The proposed injection scheme is based on the presence of a drag force

chat acts on the beam centroid when the chamber walls are resistive.
13

Consider a pencil-like electron beam inside a straight, finite conductivity

chamber. In the absence of strong focusing fields the image or induced

forces, due to the self fields, cause the beam centroid to undergo transverse

motion within the chamber. In a perfectly conducting chamber the induced

force, F, which is directed normal to the chamber wall, together with the

external longitudinal magnetic field produce a F x B force on the beam. This

force causes the beam to execute transverse bounce oscillations within the

chamber. However, when the resistivity of the wall is finite, the decay of

the wall currents produce a component of induced force which is directed

tangentially to the wall. For a straight electron beam, this drag force,

together with the longitudinal magnetic field, causes the beam to spiral

outward towards the chamber walls. For a cyclic electron beam, the beam
2 2

centroid spirals inward towards the center of the chamber if nsrb/a < 1/2,

where ns is the self field index, rb is the beam radius, a is the wall radius

and the external field index has been set equal to 1/2.

In the presence of strong focusing fields, the bounce (poloidal) motion

of the beam is due mainly to the gradients of the external magnetic fields and

its direction can be selected to provide an inward drift velocity of the beam

centroid, resulting in an inward spiraling motion.



The implications of the resistive wall on the stability of the beam must

*e carefully considered. However, since the relativistic cyclotron frequency

corresponding to the iertical field varies rapidly with time, it is likely

that longitudinal instabilities and in particular the resistive wall mode can

be avoided.

The present injection scheme is probably also applicable to the Racetrack

nduction Accelerator, 2  a device similar to the rebatron but without a

vertical magnetic field.

To determine how rapidly the beam can be moved from the wall to the axis

of the chamber, we have analyzed the beam dynamics inside a straight

cylindrical pipe having resistive walls. Our analysis indicates that for a

fairly wide range of parameters the beam centroid can spiral inward from its

injection position, near the wall of the chamber, to the axis of the chamber

in less than 50 nanoseconds.

II. Dynamics of the Beam Centroid

To make the problems analytically tractable, the dynamics of the beam is

studied in cylindrical geometry, i.e., toroidal corrections associated with

the fields are neglected.

Consider a pencil-like electron beam inside a straight cylindrical pipe

of circular cross section as shown in Fig. 2. The pipe thickness is denoted

by A, the minor radius by a, and the wall conductivity by a. The centroid of

the beam is located at the coordinates (x,y) relative to the center of the

minor cross section of the chamber.

The transverse components of the torsatron fields or rotating quadrupole

magnetic field near the z-axis are of the form

3



b = b k (y -os k z - x sin k z), (ia)X 3W r W

b = b k (x cos k z + y sin k z), (ib)y o w w w

where k. 27/1, Z is the period of the magnetic field and b0 is a constant

that is a measure of the field strength. Along with the external transverse

periodic field in Eq. (1) we also have a constant uniform axial magnetic field

given by B = B e , which is the sum of the torsatron axial field and any
0

additional external axial magnetic field. The induced electric field due to

image charges on the walls of the conducting chamber is not affected by the

finite wall conductivity and is given by

2
- 2m c a

E - 0 V (2)End el 7 fx(t) e + y(t) e (
a

where a is the radius of the chamber, mo is the electron mass, c is the

velocity of light, let is the magnitude of the electronic charge, and v is
2

Budker's parameter. This parameter can be expressed as v = (w br b/2c)

where w b - t4wle i2m/Mi) /2 is the beam plasma frequency and rb is the beam

radius. The induced magnetic field at the center of the beam is due to image

currents flowing in the finite conducting wall. This magnetic field is

modified by the finite wall conductivity and can be written in the form

2
2m c 2 e

Bind =lei 7"s o  G(t-r) (y(r) ex - X() e dT,
a

where So Vo/c, Vo is the constant axial beam velocity and G(t-T) is the

magnetic diffusion function. The induced magnetic field in Eq. (3), in the

form of a convolution integral, denotes the fact that the field is a nonlocal

4
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function of time. The function V(t- ) has been derived elsewhere and we

will simply state it when needed. For infinitely conducting walls

;(:-T) - 3(t-T) and the induced magnetic field in Eq. (3) reduces to its usual

f o rm.

The transverse velocity of the beam centroid is nonrelativistic, i.e.,

xl, iyi << c, whereas the axial beam particle velocity is highly relativistic

and is assumed constant. Using the external field in Eq. (1) and the induced

fields given in Eqs. (2) and (3), together with the external solenoidal field

Boe, the equations governing the transverse motion of the beam centroid are
0~ Z'

x(t) - sX(t) + 'o 0 (t) - W 0oWw Lx(t) cos w t + y(t) sin wwt]

2 2 °  G(t-) X(T) dT, (4 a)

Y(t) y(t) - (t) + W L [y(t) cos w t - x(t) sin wt'
s w 0 W

2 2 2 t

= - O 6 G(t-T) y(-) dT, (4b)

2 2 3 2
where ws = 2c v/(y a ), o = Jej B /(y m 0c), Wo lelb /(y 'm c),w = kvo

Y= j- 2 )-1/2
Yo and 6G(t-T) = G(t-T) - 6(t-T). The right hand side of Eqs.

(4a,b) contains the finite wall conductivity effects and vanishes for

perfectly conducting walls. In obtaining Eqs. (4a,b) we have set z = v t in

Eqs. (la,b) since we are seeking the time evolution of a cross-section of the

beam centroid. Rather than solving Eqs. (4a,b) directly it has been found

convenient to first transform these equations to a frame rotating with a

5
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frequencV about the z-axis. The transformation that rotates the beam

centroid coordinates in these two frames is

x(t) = x'(t) cos(w t/2) - y'(t) sin(w t/2), (6a)w w

yv(t) = x'(t) sin(wt/2 ) + y'(t) cos(w t/2), (6b)
wi

where x'(t) and yj(t) are the coordinates of the beam centroid in the rotating

frame.

Substituting Eqs. (6a,b) into Eqs. (4a,b) and rearranging terms we find

that the macroscopic beam motion, in the rotating frame, is given by

2!

x(t) + 2 X'(t) + ( o-w ) Y'(t)

t
=- o  6G(t-T) [x'(T'COS w(t-T)/ 2 + y'(T)sin wt-T)/2] dr, (7a)

6 [0(0 6 s

2) + t
y"o w

= - sY B 0 t5G(t-T)[y-(T) cos a (t-T)/ 2 
- x'(T)sin w (t-T)/2] dT, (7b)

where

Q (o - O /2) w /2 wx 0 W W S 0 W

y

Dropping the primes on x and y and taking the Laplace transform of Eas. (7a,b)

we find that



x F) (St~o) 's), (a)

s~s F (s,:-o),'D( s) (3b)

where x(s), y(s) are the transforms of x(t) and y(t) respectively,

D(s) I' + Q~ + "w y B SC(S)l fs + )I + w -y B5CS

+ W(~ - ) S+ W Y 6SS) t9a)
0 ws0 0

and

1

59(s) = 6G(s - i'w /2) - 6G(s + iw /2)), (9 c)

are the transforms of 6G(t)cos(w wt/2)and SG(t)sin(w wt/2) respectively.

The initial conditions on x, y, x and ' are contained within the

functions FI(s,t=o) and F (s,to). The exact forms of these functions are not

of interest since we will be mainly concerned with the roots of the function

D(s) which is independent of initial conditions.

For an infinitely conducting chamber, i.e., when a ~ the functions

5(;(s) 5 S(s) vanish and D(s)I D (s) becomes

D,.(s) (s + n) (s + Q) + s (SI -W) ,(0

the roots of Do,(s) =0, which will be denoted by s09 determine the

characteristic frequencies associated with the beam centroid motion and are

given by

7



X I
+ 2 + C'0

-< ,; , -I , , (*(1l)

?erforming a Tavor expansion about s so we find that the roots of

D(s) = 3 in Eq. (9) are given by

D(s )
S = So - D(s)/s 

(1

s= s
0

where is given in Eq. (11),

2 2
x v

D(s ) 1'Y 0 3 s 0 - 2 6G(s ) + (2 - W ) S 0S(s )I (13a)0 sO o0 0 w 0 0o

SD(s) 2 2 2 2 l:

I 4 s rs + (P + n + (2 w (13b)
o= o) y o0

S=S
0

Substituting Eqs. (13a,b) together with Eqs. (9b,c) into Eq. (12) yields

222 2 '2
-wo 1o, (s )6G(s + iw/ 2 ) + Q (s )6G(s- iw/2)I (1/a)

4so[s + (Q + v + (Po - w )/12]

where I
2 2 2 2 "1

(s s + (,Q + 2 )/2 + is 2 - w)- (14b)

As mentioned earlier, the derivation of the Laplace transform of the

diffusion term, G(s) = G(s)-1 will not be repeated here. It has been derived

elsewhere 13 and found to be given by

8
1
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SG(s) = 2/(F(s)-I), (15a)

where

b[i + u(s) tanh p(s)]

F(s) = -A 1(15b)
[tanh P(s) + b(s)]

and

2 2 1/2
(s) A [4wcs/c + 1/a . (15c)

Equation (14) together with Eq. (15) completes the formal derivation for the

roots of D(s)=o which in turn determines the dynamics of the beam centroid

within the resistive chamber.

The real part of s determines the macroscopic motion of the beam. If

Re(s) < 0 the beam centroid spirals inward towards the center of the

chamber. If Re(s) > 0 the beam is unstable and its centroid spirals outward,

away from the center of the chamber. To utilize this mechanism for trapping

the beam it is required that Re(s) < 0 and that the magnitude of Re(s) be

sufficiently large in order for the beam to spiral to the center of the

chamber in a reasonably short period of time.

lIla. Growth Rate in the Absence of Torsatron Fields

We first consider the trivial case where the torsatron magnetic field

vanishes, i.e., 0 - 0. In the absence of the strong focusing field it is

unnecessary to transform to the rotating frame, hence, we also take w - 0.

For w /Q << I we find that
s o

9
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2 2
-- 0 4 0 0

0 00 
..

where s o  and 'B= * UstI. The real part of s is given by

22
Ws Yo Be

Re(s) = -= zmSG(iw B (17)

W BQ o

where SG is given by Eq. (15).

When the chamber thickness A is much greater than the skin depth

associated with the beam centroid bounce frequency, i.e., A/8 B >> 1, we find

that

6G's °  + i 2 /Q - 2 1/ - i sin r/41 , (18)
Gs0 =W ic 0 w~ a fco -~- In

where 5 = c/(2 alwBI) 1/2 is the skin depth. Substituting Eq. (18) into (17)

yields

222 2
_ o 3 0v c o B

2 - > 0 (19)
IQ I a yoa IQoI a

which always results in instability.

Ilb. Decay Rate in the Presence of Torsatron Fields

In the presence of the strong focusing field4, i.e., when w 0, we may
2

neglect the self field contribution, i.e., w in the evaluation of the

characteristic frequencies of the macroscopic beam motion.

Using the definitions

10
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Ew = !W .i (20a)

and

E o 2 w/ = 2 b/B, (20b)

and assuming e W, o << 1 we find that the characteristic frequencies given by

Eq. (11) are
2

2 ( -slow
S - 2 2 (21)

4 (1- Ew l + C o

- -, fast.

2 2

Since e , E_ << 1, the upper sign in Eq. (11) represents the slow drift motion

of the beam centroid and the lower sign denotes the fast motion. In what

follows only the slow macroscopic beam motion will be considered since we are

primarily interested in beam trapping.

From Eq. (21), the roots of D(s)l 0 corresponding to the slow beam
a o

motion are given by so = iwB, where

2
WB t - oEw (1-Co/2)/2, (22)

2

is the bounce frequency. Since e << 1, the bounce frequency in the rotating
0

frame is approximately w /2.
w

For wB > 0 the roots of D(s) 0 0, given in Eq. (14a), become

11
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is Y o ,'2 iw )G(i(W + w /2)) + _ (iw )6G(i(w - w
W o+ 3 0 13 + 3 3 w

3.W P2 w 2 /J
- (1 - - ')1

(23)

where

2

n (iw) = 2 (1 + 2 (24)

2 { w - w

To evaluate the real Dart of s in Eq. (23) we require the imaginary part

of 6G(i(u B + w,/2)), where 6G is given by Eq. (15). Using Eq. (15c) it is

found that

2 i/2

t2i(I-E 2/4))1/2

wti(wB w/2)) - 2 1/2 (25)

0

where

= c 2 O~wl - 1/2

6 c '21rlw 1 2  (26)

wo

is the skin depth associated with the frequency w, vo w

Case (i), A/6 << 1

6 For A6/ << 1, 6G is given by

-{1 + i (-co/4)&)

6G~i(wa* w /2)) - 2 -1 (27)

- i o )

and the decay rate becomes

6 ao(w £YB20 (1 - w )I1
Re(s) - w 2 (28)

B.'" I + (c 42 1 +
B wO

"[. 12

*
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2 2_ 2
where aA/6, s W Q E C < <  and <<

Case (ii) (AI/)e //2 >> I
0

For this case 6G is given by

- (i)1/2

6G(i(wB * w/2)) = - /2 , (29)a -1/2
2(- i)-/E

0

and the decay rate becomes

Q 2(l - )

r Re(s) 0 ( E E 21 w (30)2 B(1 - E s o o o 3
0

In both (28) and (30) we have made the assumption that s' Cw' o O

E B < < I and y > > .

The decay rates given by (14) together with (15) are shown in Figs. (3)

and (4) for various sets of parameters.

Discussion

In this paper we have investigated a possible mechanism for trapping an

intense relativistic electron beam confined by strong focusing fields. In our

model the electron beam is assumed to be injected into the torsatron fields

off axis, near the chamber walls. The finite resistivity of the walls results

in a drag force on the beam centroid which may cause the beam to spiral inward

towards the axis of the chamber. We have analyzed this mechanism and obtained

r
decay rates for the inward spiraling motion.

As an illustration of the trapping process, we consider a 15 kA(v 0.86),

2 MeV(y° - 5) electron beam injected near the wall of a 10 cm radius resistive

chamber of thickness A - a/150. The axial magnetic field is taken to be

13



3 = 2.5 kG, the torsatron coefficient 5 is 250 C and the magnetic neriod
O0

1of the torsatron field is 12.8 cm. With these parameters we find that

= 0.(102, E = 0.25, c = 0.2, EB = 0.12 and , = 8.8 x 10 sec - . The

maximum decay rate for these parameters occurs (See Fig. 4) at AM = 0.5 and

3 7 -
is r w 5 x 10 Q = 4.4 x 10 sec . The conductivity of the chamber wall

0

2 12 -1 9 -1
is a= c (2Triw 16 = 4 10 sec , w = E P = 2.2 x 10 sec and

W w w O

5 = 2A 0.13 cm. The e-fold time for the inward spiraling motion of the beam

is T = I/r - 22 nsec, which is sufficiently fast to trap the beam. It should

be noted that in this example for Z = 12.8 cm the linearized fields of Eq.w

(1) are valid only within a small distance from the axis. In practice, the

more exact expressions for the fields should be used and the problem addressed

numerically.
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Figure 2 Model of cross section of rebatron chamber showing the tranverse

location of the electron beam. The beam transverse dynamics

is influenced by the torsatron field, axial magnetic field and

induced fields.
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