AD-A151 287  ANNUAL SCIENTIFIC REPORT GRANT AFOSR-81-8285(U) TE*ﬁS
UNIV AT AUSTIN DEPT OF COMPUTER SCIENCES
K M CHANDY ET AL. DEC 84 AFOSR-TR-85-8208 RF??E—?%;?ZBE

b 4
-

UNCLASSIFIED




ke AL . T

EXENITATEIOTNL T AW

.

o w

e s

LR

W

32
ol 2

“O
rrl‘rEEEE

ol 22

L
22 it nie

——
———
————
——
———
.
——
rr
r
fr

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

TEITNIS RLIwW TR




REPRODUCED AT GOVERNMENT EXPENSE -

“osggsm.-'ss-moo @ <§

AFOSR  AnnuAL  RePorT
AFOSR 81-02058

6/15/83 - 6/14/84

AD-A151 287

K. M. CHANDY AND J. MisrA

' Approved for publie release’
r distributionunlinmited.
r
- 3
Z; DEPARTMENT OF COMPUTER SCIENCES '-
. :;_5 THE UNIVERSITY OF TEXAS AT AUSTIN !
&) )
: wl AUSTIN, TEXAS 78712

ot

e
. ~3

|35
.

'jw'\l'-l'w-vv\\ AR ek~ A i o e it~ ol udedh 2 hantch A MCEC MR gl il a2 -ades - nay Tow L ad il ainl- - T
. T - - a o e = - - Caliiruiiary

R O T T T T st Matntr e e A e
N e R N T ———




AFOSR  Anwuag ReporT
AFOSR 81-0205p

6/15/83 - 6/14/84

K. M, CHANDY anp J. Misra

Y

4 , £
. Y |
2
A |
!
‘ AIR FORCR OFPICE OF SCIENTIPIC RESRARCH (APSC) .
- NOTICE OF TRANSWITTAL TO DTIC :
This technic2l repnr=t has hoean revicrwad and i3 .
approved for putlic v asre LU LS L3012,
Distribution is uniauited.
- MATTHER J. KERPER
! Cbief, Technical Information Divieion
)



yoos ¥Vt

YTy
B

T YT T T YTy

Lol an S ool St

P A e Sund seut e AP mbei gt L aie i asai~a ey T e,

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

N Eadi= ol D SN N o S R L o

19 REPOART SECURITY CLASSIFICATION

UNCLASSIFIED

10. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release; distribution

20 DECLASSIFICATION/DOWNGRADING SCHEDULE

unlimited. !

4 PEAFORMING ORGANIZATION REPORT NUMBERI(S)

5. MONITORING ORGANIZATION AEPORT NUMBER(S)

6s. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL
University of Texas (1f appiicabdie !

To. NAME OF MONITORING ORGANIZATION

Air Force Office of Scientific Research

6c. ADDRESS (City. Stete and ZIP Code)
Dept of Computer Sciences
Austin TX 78712

70. ADDRESS (City. State snd ZIP Code)
Directorate of Mathematical & Information
Sciences, Bolling AFB DC 20332-6448

Bs. NAME OF FUNDING/SPONSORING
ORGANIZATION

8b. OFFICE SYMBOL
(4! appliceble)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

AFOSR NM AFOSR-81-0205 B
8c ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS. B
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.
Bolling AFB DC 20332-6448 61102F 2304 A2

11. TITLE (Include Security Classification)

NUAL - SCIENTIFIC REPORT, GRANT AFOSR-81-0205, 15 JUNE 1983 - 14 JUNE 1984

12. PERSONAL AUTHORI(S)
_K.M. Chandy and J. Misra

13a TYPE OF REPORT 13b. TIME COVERED

ANNUAL FRAOM 1§£§£§§ T014/6/84

14. DATE OF REPORT (Yr, Mo., Dey) 15. PAGE COUNT

DEC 84 145 —

16. SUPPLEMENTARY NOTATION

COSATI CODES
GROUP

SUB. GR.

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

systems so that they may be studied.

achieved in an asynchronous system.”

19. ABSTRACT (Continue on reverse if necessary and identify by dlock number)

Work in the last year has continued in the direction of constructing unifying frameworks
for the study of distributed' systems and algorithms.
work which unified all known detection algorithms (Distributed Snapshots:
Global States of Distributed Systems, by Chandy and Lamport) and unified treatment of con-
flict resolution (Drinking Philosophers Problem, by Chandy and Misra).
developed a general theory for studying computability issues in asynchronous distributed
The authors have obtained simple proofs for important
results such as, '"there is no robust commit protocol," or "common knowledge cannot be

In a similar vein, the authors now have a paradigm
for the development of a very efficient stability detection algorithm (Deriving Properties
of Distributed Systems by Overlapping Monitoring, by Chandy and Misra).

U

The authors have previously reported
Determining ‘

They have recently

L r————— L e SRR "

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT

uncLassitieo/uNLIMITED K same as mer. O oricusens O

21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

220. NAME OF RESPONSIBLE INDIVIDUAL

CPT John P. Thomas, Jr
DD FORM 1473, 83 APR

85 . 02

P DA R Y

SR R

220 TELEPHONE NUMBER
(Include Aree Code)

22¢. OFFICE SYMBOL

EDITION OF 1 JAN 7318 OBSOLETE.

(202) 767- 5026

UNCLASSIFIED
2 0 4 7 SECURITY CLASSIFICATION OF THIS PAG
SRR

S N A RN I R E I S T

e lllctosiiastelfimmtedineeli




ey L and ann e sidr adeiy - — T A WL A T LR R e W TR TSGR YTV oW W IW T LW WL W oW e s . & " v
= ¢ 4 - =

i
:
3

Annual Report for AFOSR 81-0205W

1. Objectives

We have now been active for several years in the area of distributed systems. It has become
apparent to us that this subarea of parallel programming or concurrent programuing systems is
tractable: a precise theory for distributed, message passing computations may be developed;
important paradigms can be abstracted and applied in a number of practical situations and
reasoning techniques can be developed for distributed programs which can also be effectively

employed in their developments.

i We have becn active in all these areas. Qur goal is to make distributed programming,

conceptually as simple as sequential programming. The added burden of distribution could be

handled if adequate general theories were available. We have had experience in developing )
specific algorithms {deadlock detection, knot detection, shortest path etc.); theories specific to a

class of problems and reasoning techniques applicable to a class of properties of distributed

programs.

e .

Our thrust of research in the past year has been to move from specific to general, by

abstracting the relevant concepts from specific problems and applying them to a general class.

Our outstanding contributions in the past year are:

o development of a general theory for studying computability issues in distributed
systens,

e vt
AP o

e a paradigm for development of very efficient stability detection algorithms,

4 ¢ extension of our proof theory to encompass a wider varicty of properties that can be ﬁ
: proven. R
- :_:
1 . . . . -4
1 We have continued our, very successful, work on modeling and distributed simulation. -
{

ﬁ Our work has attracted considerable international attention. Professor K. M. Chandy was

4 in.ited to deliver the keynote address at the ACM Priuciples of Distributed Computing

‘-

g Conference, the premicr conference for this area, in 1981; he was also invited to give talks at

s . M.1.T., Stanford, Corncll, University of California at Berkeley, University of Minnesota,

; Pennsylvania State University, IBM Research at Yorktown Heights, and Computer Society of

] India. Professor J. Misra was made a member of the prestigious International Federation of

\ Information Processing Working Group (IFIP WG 2.3), member of the Editorial Doard of the

L Journal of the ACM; he delivered invited talks at the University of California at Berkeley, e
E University of California at Los Angeles, Cal Tech, University of Washington, IBM Research at <
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San Jose, Xerox Palo Alto Research Center and at several workshops.

PR VG P

We sketch the technical aspecets of our recent work in the following pages.

2. Work in 83-84

2.1. A Computability Theory for Asynchronous Distributed Systems

Sequential systems had a well-developed theory, founded in logic and developed by Church,
Turing, and Godel and others [5], before any sequential program was ever executed on a
computer. Existence of important theoretical results, such as the unsolvability of the halting
problem, guided programming practitioners. The situation is entirely different in distributed
systems; there is no well-founded theory of computability in distributed systems. IHence
considerable effort has been expended on solving problems which have later been shown to be
unsolvable; designing a distributed database commit protocol which is robust for process failures §

is only one instance (3].

In recent years a number of results of the following form have appeared in the literature:
there is no asynchronous distributed algorithm for solving problem P, where [? is a specific ]

problem. For instance, it is now known that: it is impossible to elect a unique leader process

from among a set of identical processes [1]; there is no symmetric algorithm for solviug the dining
philosophers problem [6'; it is impossible to implement a commit protocol for distributed
databases in the presence of even one faulty process [3]; there is no solution to the Byzantine
agreement problem in a fully asynchronous system [2]; and no protocol exists for achieving
com:non knowledge in an asynchronous system [4]. In each case, ad hoc techniques have been
used in proving these results. Absence of a common computability theory for distributed systeins

has hindered progress in this arca. This is only natural, since the requisite concepts have not

. e e e —— . e B8 4 S

been developed Tor the foundation of such a theory., We contrast the situation with the well-

e developed computability theory in sequential systems. The powerful notion of reducibility has
r been applied in sequential systemns in showing several problems unsolvable: il problem A is
; known to be unsolvable and problem A is reducible to problem B (i.e. if problein I3 can be solved
: then problem A can be solved), then problem B is unsolvable. Such an approach is attractive in
t. . that an entirely new proof of the unsclvability of I? is now avoided. We have no notion of
- problem reducibility in distributed systems and therefore each unsolvability proof is entirely new.
-

.

Secondly, there is no common, problem independent basis for showing that certain classes of

problems are unsolvable; there is no commonly acceptable halting problem for distributed

T,

systems.
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We have recently developed a theory to help solve some of these problems. The theory is

- [
- based on a precise definition of distributed computations and a number of operators on these )
b

computations. The operators are projections -~ study the computation of one or more process

7 Db

from the entire system computation -- prefix -- one computation precedes another -- union and ‘

-
I3

intersection - union being delined only for computations which are prefixes of a common

D‘_

computation -- and gluing -- merging of two computations. Gluing allows us to conclude

properties of distributed systems in the following manner: if C,, C, are system computations

———

then C = glue(Cl,Cg) is also a system computation, where the glue operation is suitably defined.
If C is infeasible, viz. C allows more than one process to be in their one process to be in their
critical sections simultancously, or more than lender to be elected or a commit protocol to
commit to two different values, then we may conclude that either C’l or C2 is not a system H
computation. We have applied this technique to prove a number of properties of any algorithm

for mutual exclusion, electing leaders etc. We have also constructed very simple proofs of the
impossibility of process failure detection, robust commit protocol, Byzantine agreement in

1
asynchronous systems cte. i

We have applied this theory to the study of knowledge and common knowledge (4], We
have derived very simple conditions for the number of tnessages required to establish or
disestablish certain knowledge levels. For instance, if A knows that B knows that C knows fact
J, where f is some fact Jocal to ¢, then at least 2 message transmissions will be required in the +
system before ¢ can falsify f. The bounds we have derived are tight; they can be used to prove
the impossibility of achieving certain knowledge levels, such as common knowledge, because such

computations can be shown to require an infinite number of messages.

There have been a large number of intuitive ideas and ad-hoc results in asynchronous
distributed systems. The goal of any uunifying theory is to abstract a certain kernel and provide
rules for derivation of the dilferent results. We believe that we are working towards an elegant

theory with a small kernel and a small set of rules.

2.2. A Paradigm for Developing Efficient Algorithms for Stable Property Detection

gt g

It is often required to detect whether a system state has achieved stability, i.e. it is not

. going to change. Examples of such properties are termination, number of tokens equals zero
(assuming no process creates tokens), deadlock in a subset of processes etc. In fact many
important distributed algorithms can be best described in which termination is implicit. Last
year, we developed an algorithm in *Distributed Snapshots: Determining Global States of {
Distributed Systems® by Chandy and Lamport, which allowed a process to take a snapshot or

checkpoint of a distributed system during the evolution of its computation. This effectively
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": solved all stability detection problems. However, we recently discovered that stability detection
:-C: does not require taking snapshots. There is a general paradigm for stability detection in which
*; processes are merely observed over overlapping intervals of execution and each process reports
. presence or absence of activity over its interval. We show that if there is a single point common
if_'f to all intervals then the system is stable if every process is inactive over the entire length of its
|.

interval.

This paradigm has led to the design of a new class of algorithms which are simpler to

pt program and prove and which seem very efficient in their execution.
::f_'
t" 2.3. A Proof Theory Based on the Notion of Quiescence
Two general classes of properties in sequential or distributed systems are safety and
..v:- liv2ness. In sequential programs safety properties are proven by postulating invariants and

L
<
o
L
P

liveness properties -- one of which is program termination -- are proven by showing that a certain
metric decreases in each step of program execution. The problemn is much harder in distributed

programs. Previously, we had developed a proof theory for verification of safety properties only.

AR

The difficulty with liveness is thas termination is not a natural property for processes in a

distributed system; normally, a distributed program -- such as an operating system -- never

PP R P

terminates.  During the last year, we made some major progress in attacking the liveness
problem. We identified a new property, quicscence, for a process in a distributed system which
seems to be the natur:! generalization of termination in a sequential process. Roughly, a process
is quiescent if it will send no messages provided it receives no messages. This is the most that can
be derived from a process because a process by nself, cannot guarantee that it will receive no

inputs. A\ network is quiescent if all component processes are quiescent. We introduced a novel

RGNS 7 2 i ot .t el

technical idea which eliminated channels from quiescence consideration.

We have now developed the proof theory where we can (1) prove safety and liveness in a

unified framework, (2) support hicrarchical network structure, (3) develop modular process proofs

and (4) construct proofs which directly map informal proofs into a formal proof in our logic. We
are now experimenting with the applicability of these ideas in various difficult distributed

algorithins.

AR, m..a % A& 2 A

2.4. Other Work
We have continued our work on distributed simulation. These ideas, first published in 79
and continuously being reflined since then, have attracted wide international recognition.

Professor Misra presented a 1 day tutorial on Distributed Computing at the IEEE Fourth

International Conference on Distributed Computing Systems in San Francisco, California on May

'-‘:'- "ot
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18, 1984. This tutorial will probably appear in Con:puting Surveys.
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List of Publications (since Annual Report of September 1983)

1. "Paradigms for Distributed Computing," Invited paper Third
Conference on Foundations of Software Technology and Theoretical
Computer Science, December 12-14, 1983, Bangalore, India.

(Mani Chandy)

2. "Distributed Simulation," Tutorial presented at the 1EEE Computer
Society 4th International Conference on Distributed Computing
Systems, May 14-18, 1984, San Francisco, California. Also
submitted to Computing Surveys.

(Jayadev Misra)

3. "Processor Queueing Disciplines in Distributed Systems,"
Proceedings of the 1984 ACM SIGMETRICS Conference on Measure-
ment, and Modeling of Computer Systems, August 21-24, 1984,
Cambridge, Massachusetts.

(Elizabeth Williams)

4. "The Effect of Queueing Disciplines on Response Times in Distri-
buted Systems," Proceedings of the 1984 International Conference
on Parallel Processing, August 22-24, 1984, Bellaire, Michigan.
(Elizabeth Willams)

5. "Quiescence: Specification of Termination for Nonterminating
Processes," Springer Verlag Lecture Notes in Computer Science,
(ed. K. R. Apt), to appear.

(K. M. Chandy and J. Misra)

i
{
6. "Deriving Properties of Distributed Systems by Overlapped
Monitoring," in preparation.
: 7. "A Framework for Studying Capabilities of Distributed Systems,"
r in preparation. Q
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Update to Last Year's Annual Report (see attached - September 1983)

Item 3: Preserving Asymmetry by Symmetric Processes and
Distributed Fair Conflict Resolution

Status: New Title: Drinking Philosophers Problem
ACM Transactions on Programming Languages & Systems
October 1984

Item 4: A Distributed Procedure to Detect AND/OR Deadlock,

Status: Withdrawn from consideration

Item 5: Detecting Stability in Distributed Systems,

Status: New Title: Distributed Snapshots: Determining
Global States of Distributed Systems

iR S r'r.._w'._,v‘ "
[ ] L : '

ACM Transactions on Computing Systems
(to appear)
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List of Publications (since Annual Report of August 1982)

1. "Finding Repeated Elements," Science of Computer Programming,

No. 2, (1982), pp. 143-152, North-Holland Publishing Company.

(Javadev Misra and David Gries) )
2, "Assigning Processes to Processors in Distributed Systems," ]

Proceedings of the 1983 International Conference on Parallel
Processing, Bellaire, Michigan, August 23-26, 1983, (KTizabeth
Williams)

3. "Preserving Asymmetry by Symmetric Processes and Distributed
Fair Conflict Resolution,'" submitted to ACM Transactions on
Programming Languages and Systems, (K. Mani Chandy and
Jayadev Misra).

4. "ADistributed Procedure to Detect AND/OR Deadlock," submitted
to ACM Transactions on Distributed Systems, (K. Mani Chandy
and Ted Herman).

5. "Detecting Stability in Distributed Systems," in preparation,
(K., Mani Chandy and Leslic Lamport).

6. Design. Analysis and Implementation of Distributed Systems
From a Pertformance Perspective, Ph.Db Thesis, Department of
Computer Sciences, University of Texas, Austin, Texas 78712,
(Elizabeth Williams)

7. Efficient Distributed Simulation Schemes, Ph.D Thesis, (in
preparation), Computer Sciences Department, University of Texas,
Austin, Texas 78712, (Mevendra Kumar).
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l Uses of Travel Funds

Professor Misra delivered a paper entitled, "Detecting Termination
of Distributed Computations Using Markers," at the Second ACM Conference
on Principles of Distributed Computing which is the most important
conference in this area. 'e visited Professor Tony Hoare at Oxford

University to discuss trace theory for program verification, Professors

PR T T ST

Howard Barringer and Cliff Jones at the University of Manchester to
discuss their verification method and Professor Peter Lockemann and
his colleagues at the University of Karisruhe to discuss implementa- ﬂ
tions of distributed simulation. He visited Professors E1i Gafni and
Richard Muntz at the University of California at Los Angeles and
delivered a talk there. Professor Chandy visited Professor Nancy Lynch

at M.I.T. and gave a talk on distributed snapshots.
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1. Goal

The goal of this paper is to discuss the area of distributed computing in
an tnformal manner. 1 shall not present theory, algorithms or
experimental results.  Instead, 1 shall restrict attention to the foll,wing
questions:

e What is distributed computing?
e Why should one study distributed computing?
e What are the fundamental questions in distributed computing?

The answers to these questions will be philosophical, rambling and
subjective; but I think the answers have some merit.

2. What is Distributed Computing?

2.1. A Distributed System

We have to present our discussion in terins of a model of a system. The
model chosen is not important in itself. We could have couched our
discussion in terms of other models.  We shall deseribe our model
informally and only to the level of detail necessary to make our algorithms
clear.

A distributed system D is defined by its set P of component processes aud
set C of directed channels, i.e. D = (P,C). Let there be N > 0 processes
in P and let them be indexed p;, 1IN A channel ¢ in G, is directed
from a (single) component process p; to a (single) component process Pj»
and the channel is defined by ¢ = (pi,pj). Each channel has an infinite
buffer. (Bounds on buffer sizes are discussed later.) A process p; can send
a message along one of its outgoing channels (pi,p,—) whenever it wishes to.
Channels are loss-free, error-free and deliver messages in the order sent.
The state of a channel “’i'l’j) is a queue of messages; the queue represents
the messages sent by p. and not received by Pj-

A process p;in P is specified by a set of process states, an initial process
state and a set of allowable cvents. An event is (1) an autonomous state
transition, (2) a send or (3) a receive. An autonomous state transition at p;
takes p, from a process state s to a process state s'; the autonomous state
transition event is defined by the pair (s,s’), and this event can occur at p,
only il p;, is in process state s immediately before the event. An
autonomous state transition at p; does not change the state of any channcl
or the state of any process besides p;'s.
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A send event at p; is the sending of a message by p; coupled with a
transition of p.'s state. 1t is defined by the states and s and s' before and
after the event, respectively, the message M that is sent and the process I
that it is sent to. This event can occur at p, only il p, is in state
immediately before the event. This event eauses M to be inserted into the
queue representing the state of channel (py.p;)- The states of channels
other than (pi,pj) and processes other than p are not changed by the
occurrence of this event.
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A receive event at p; is the receipt of a message by p, coupled with a
state transition. It is defined by the states s and s' before and after the
event, respectively, the message M that is received and the process Pj that
the message is received from.  This event can occur at p; only if p, is in
state s immediately before the event and M is at the head of the queue of
messages representing the state of channel (pj,pi); this event causes the
deletion of the message at the head of this queue. The states of channels
other than (pj'pi) and processes other than p, are not changed by the
occurrence of this event.
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{ An event may oceur at a process at any time provided the states of E
% processes and channels are such that the event can occur. The process and {
b channel states may be such that one of many events may occur; the X

~election among the potential events is non-deterministic.
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2.2. A Distributed Computation
A process computation z; of a process p; is defined as a sequence of
allowable events <¢;y,¢0,-..> at p, such that the state of p; before event
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[ ¢ K> 1, 0s its state after the previous event ¢, , and p,'s state before the o

. . . . ., . ! . . . -
t first event, ¢, is its initial state. A process computation may be finite or 4
p infinite, empty or non-cmpty, and is prefix-closed, e if z; = j
g < ey > B8 2 computation of p; then every initial subsequence |
F <O O > of 7,8 also a coputation of p., ;‘_i
- g
4 ’ . . . N . . -
9 We define a system computation using Lamport's ideas of partially- 3
3 . o - .
S ordered events. A system computation Z is a set of component process B
> - . ’ . .

. computations, 7 = {z,]1<i<N}, such that the channel rule and partially- !;
- ordered event rules (deseribed below) are satisfied. -
- Channe! Rule »
;_ The k-th message received along a channel in 7 is the k-th message sent _j

. along the chanuel in Z, all k. Formally, let nj; be the number of messages (]
4 received by p; from P inz. Let mj; be the number of messages sent by p; .
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to p; in z;. Then my; 2 all i,j. Furthermore, the k-th message sent by
P, o, in ' is the k-th message received by p, from b; in z;, lgl\Snji. all
).
Partially Ordered Events Rule

The relation -> between events i a partind ordering of the events in
process computations where <> is defined as follows:

e-> e’ if and only if

1. e and ¢' are cvents in the same process computation and e
occurs before e’ in the computation or

2. e’ is the receipt of a message and e the corresponding send of
that message or
3. there cxists an event e* such that e -> e* -> e, j
Graphical Representations of a Computation e
A set of events in a system computation may be represcoted by a -
directed graph whose vertices represent events. There is an edge from (the N !
vertex representing) an event ¢ to an event €' if and only if either (1) ¢ and
o' are events in the same process computation and e immediately precedes R
¢’ in that computation or (2) e represents the sending of a message and ¢’ ___‘_J
the receiving of it. Figure 1 shows an event graph for a system with 2 _da
processes.  The vertical lines represent process computation and the L
diagonal lines represent messages. j:‘_:jl;:

j \
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Figure 2-1: A Graph of a System Computation .1
-9
Let z; = <¢j;,¢9.--> be a computation of p; and let |z be the length of ;
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2, A\ poinl tn process computalion 2, i5 an integer k, ()g_k_glzii. The
process computation z(k) up lo point k in 7z, is defined as the empty
sequence if k=0 and as the sequence <egpp,e) > otherwise, A point K,
in system computation z, is a set K = {ki|k is a point in z, 1<i<N},
such that {z(Kk)|1 <IN} is a system computation. For example, in Figure

{k; = 0, k, = 2} is not a point in the system computation because
{<>,<ey,032>1 is not a system computation since the channel rule is
violated - there is a receive event c¢,, in 2, for which there is no
corresponding send.  We shall represent a system point {k;[k<i<N} by
the vector (k;.ky).  Examples of system points in Figure 1 are

)(2.2),(2,1).

The fundamental difference between concurrent computation and
distributed computing is that a process in a distributed system can only
access information stored in tts memory; processes do not share variables
or a clock. Time has no meaning in a distributed system; only causality
(i-e. the relation -> between events) has significance. ‘Lhe focus of much
of the research in distributed computing deals with the problem of limited
information:  How can a network of processes cooperate in achieving a
global task when each process has only partial information about the task.
For instance, how can the shortest path between two processes in a
network be determined when each process only has information about its
immediate neighbors?

The focus of research in the area of concurrent computations appeurs to
be different.  The fundamental problein is not limited information out
speed. Synchronous solutions to problems (shortest path, detecting cycles
..) in which multiple processors access common memory, are usually quite
different from distributed solutions, because even though the problems
share the same name (for example, shortest path) the assumptions about
the underlying architecture are so different that the problems are indeed
different.

Confusion about the two goals, (1) problem-solving with limited
information and (2) maximum speed should be dispelled before attacking a
problem.  Thus, to solve the shortest path problem as quickly as possible
one would not use an architecture with one processor at each vertex of the
graph. Then why study distributed computing?

Why Study Distributed Computing?

There are systems in which the time required for processes to
communicate is significant compared to the time required for them to
compute (carry out basic operations).

-
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Examples include systems in which processing power is geographically
distributed. Practical distributed sy-tems inelude factory  antomation,
transportation control (managing the flow of trains, ear-traffic in a city,
atrplanes) and communication systems control. We must bear in mind that
problems dealing with such systems are very different from the problems of
super-computing.

What are the Fundamental Problems of Distributed
Computing?

The problems that [ consider to be fundamental may well be different
from those that you consider fundamental. ldentifying the essential issues
is a subjective process. Nevertheless, I believe that it is worth our while to
spend a great deal of time arguing about what is central, and what
peripheral, before we begin attacking a problem.

[ believe that the problem of distributed computation is the problem of
partial information: many processes cooperating in achieving global ends
though each process has limited information. My biased view of
distributed computation leads me to identify the following questions as
being fundamental.

(1) How can a process determine the state of a distributed system that it
(the process) is part of?  This is a natural question stemming from our
viewpoint that the problem of distributed conputation is the problem of
local-informuation. A process has aceess to its local, process state, i.e. it has
local information:  how can it get global information, i.e. the state of the
entire distributed system?  Special eases of this question are practical
questions such ast *How can a process deteet whether a distributed
computation has terminated? How can a process determine whether it is
deadlocked?®

(2) How can one prove properties of a distributed system? This question
is related to the question *How should a process be specified?®

A process may be specified by (a) sets of states and events, (b) a p.ogram
or (¢} its input/output relation. There are advantages to each approach.

(3) How can processes cooperate in sharing resources in a fair manner?
This is also a problem of local information. 1f all processes had immediate
acceess to global data, there are simple solutions to the problem of sharing.
*How can sharing be achieved when no process has all the relevant
information?® ‘That is a much more difficult question.

(4) How can processes cooperate to achieve a global task when some of
the processes may be faulty?  This questions leads to the Bvzantine
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. General's problem and similar problems.

The purpose of this paper is to start a discussion, the object of which is
to pose the right questions. However, we shall include one answer to show
that the answers may be simple.

3. Determining Global States [Chandy and Lamport]

Observation 1

(k;-kyn) is 2 point in system computation Z if and only if for all i,
1<i,j <N, the number of messages received by b from p; in z(k;) does not
exc ed the number of messages sent by p; to pj in z(k,).

Observation 2

(k,-.ky) is a point in system computation 7 if and only if for all i},
1<i,j<N, there is no message sent by p; to P alter the ki-th event in z
which is received by p; after the k,--th event in z;.

States

The state of a process p; at system computation 7 is its state after the
last event on Z[j} in Z. The state of a channel (p;:p;) is the sequence of
messages sent by p. to Pj in Z for which there are no receives by P from p,
in Z. The global system state at Z is the set of states of component
processes and channels.

The state of a system at point K in Z is the state at computation

{7, (MIN<IN} i .

Algorithm to Determine Global State ?

The processes collectively define a point (kj..ky) as follows. For all i, p, ::

4 seleets the kith event. To ensure that the k; sclected correspond to a P
. system point the processes send signals to one another where signals are %
g special messages which have no effect on the underlying computation. !
;:' Sign=1s will ensure that the k; meet the condition of observation 2. )

v

Signal Sending Ruler p, sends a signal along each outgoing channel after
b the ki-th event at p, and before the next (regular) message sent along the
channel, all i

9 .
. :
5 Signal Receiving Rule: kj must be such that the l\'j-th event occurs before "
9 the first receive by P; along a channel following a signal received along that
[ channel. q
[ - . . _1
i I'he sending and receiving rules together ensure that no message sent by .
-
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p; to p; after the ki-th event in Z; is received by p; after the kj-th event in
Z (observation 2).

O ISR 3

The sy-tem state at point K is recorded as follows.  Each process p,
records its own process state after the ki-th event on p; and before the »
k;+1-th event. Bach process records the state of all incoming chaunels:
the state of a channel (pi,pj) is the sequence of messages received by P
after the k;-th event on 1t and before pj receives a signal from p;.

e,

v v

-
-

gt Aan S I
-
,..-.,'A'..

. . AN RO L T . e SoOs

‘..
h‘lil XA AN

‘ot * . e . Cet e UL .-~ A
: * N . o . o . T A Bl . . . -
- . N . . - - -t . IR RN
s N Y aT e - PEA] “

. P . D L < - S R
. e i ~ o . . Lot e . A « . St e . N e . N Y ST . WA W s
DTS PO WHE WU P C ST TP AT PPy WAy Sty Wy R S I N T . S v NLAY) Pt e A s m e AR e ahan, SRS




y Nl ST et e
a0 B N Sadh Had SLAEd g b Sl bt i Mgt M es Jindh Mhad Mt Sol i i & Aaft e dadlind liat ln S it dad dhat Sk din Sla e S e e S e R ) ST - v <

r.><
o
4
' -
..
.-
.
g
.
'

References

1. K. R. Apt. N. Francez, and W. P. de Roever, *A proof system
- for communicating sequential processes,® TOPLAS, vol. 2, July
1980.

2. M. Clint, *Program proving: Coroutines,® Aecta In form., vol.
2, 1973.

LS M W s & A s AL s 2 A e a a

3. K. M. Chandy and J. Misra, *Deadlock absence proofs for
networks of of communicating processes,* Inform. Process.
Lett., vol. 9, no. 4, 1974.

1
I
i
1

4. K. M. Chandy and J. Misra, *A simple model of distributed
programms based on implementation hiding and process
autonomy,® SIGPLAN Notices, July 1980.

5. E. W. Dijkstra, ®*A correctness proof for communicating
processes: A small exercise,* EWDG607, The Netherlands.

6. E. W. Dijkstra, *Two starvation free solutions of a general
exclusion problem,* EWD625, Plataanstraat 5, 5671 AL
Nuenen, The Netherlands.

7. K. W. Dijkstra, *lIlierarchical ordering of sequential processes,®
Operating Systems Techniques, Academice Press, 1972.

8. N. Francez and M. Rodeh, ®A distributed abstract data type
implemented by a probabilistic communication scheme,* 1BM
Israel Seientific Center, TR-080, April 1980 (presented at the
21st Annual Symposium on F.O.C.S., Syracuse, NY, October

1980).
A
. 9. D. I Good, R. M. Cohen, and J. Kecton-Williams, *Principles .
¢ of proving concurrent programs in GYDP'SY,* in Conf. Rec. 6th i
o Annu. ACM Symp. on Principles of Progranuning Lang., San

Antonio, TX, January 1979. )
5 «
S 10. C. A, R Hoare,  "An  axiomatic  basis  for  computer f
t:f programiing,® Commun. Ass. Compul. Muach., vol. 12, 1969. ;
<« .
Ol . - - ‘
« 11. C. A, R Hoare, *Communicating scquential — processes,® |

Commun. Ass. Comput. Mach., vol. 21, no. 8, 1978. .

12.C. A R, Hoare, *A model for communicating sequential
processes,® Comput. Lab., Oxford University, December 1978,

q 13. J. 1. Boward, *Proving monitors,® Commun. Ass. Comput.
Mach., vol. 19, no. 5, 1976.

YTy T T e T Y Y YWY
B A T
AR . \ . . .




|t AaBa R et S el b e aubibat el S ek A i A S Dud B Sl Sl

v
o
vy

T

‘
4

'

O o o }»r,-

P

14.

16.

17.

18.

19.

20.

0

R. M. Keller, *Formal verification of pacallel progeams.®
Commun. Ass. Compul. Mach., vol. 19, no. 7, 1976.

. L. Lamport, *Time, Clocks, and the Ordering of Event. in

Distributed System,® Commun, Ass. Comput. Mach., Vol 21,
no. 7, July 1978,

Daniel Lehmann and Michael Rabin, *On the advantages of
free choice: A symmetric and fully distributed solution io the
dining philosophers’ problem,*  Proceedings of the ILighth
Annual ACM Symposium on Principles of Programming
Languages, Williamsburgh, Virginia, January 26-28, 1981.

G. M. Levin, ®*A proof technique for communicating sequential
processes (with an example),® TR 79-1401, Dept. of Computer
Science, Cornell University, Ithaca, NY, 1979.

Nancy Lynch, °®*Fast allocation of nearby resources in a
distributed system,® Proceedings of the Twelfth Annual ACM
Symposium on Theory of Computing, Los Angeles, California,
April 28-30, 1980.

S. Owicki and D. Gries, *A axiomatic proof technique for
parallel programs,® Acta Inform., vol. 6, 1976.

Glenn Ricart and Ashok Agrawala, *An optimal algorithm for

mutual exclusion in computer networks,® Commun. Ass.
Comput. Mach., vol. 24, no. 1, January 1981,

..........

L AP g a0 S n i i e R A M gt Pl et i

W T Y W T
- - . -

& A 8 BoSos AmSSEe t .o

a a

A ANl s

e AmN. - .




ATC NS St Jhdl Il Sadl At il S et Rl el i Sl Rl Se St S A P P T e e e e e R

-
‘:‘ SECURITY CLASSIFICATION OF THIS PAGE (Whan Dnru‘l-'m«-md)‘
L y s > ;
. R.oAD INSTRUCTIONS
- REPORT DOCUMENTAT|ON PAGE BEFORE COMPLETING FORM
4 1. REPORT NUMBER 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER

PN A

4 TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

Distributed Simulation

. PERFORM!NG OG. REPORT NUMBER

7. AJTHOR(s) 8. CONTRACT OR GRANT NUMBER/s)

Jayadev Misra
AFQSR 81-02058

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

. AREA & VWORK UNIT NUMBERS
Computer Sciences Department
University of Texas at Austin

Austin, Texas 78712

1Y, CONTROLLING OFFICE NAME ANDO ADDRESS 12. REPORT DATE
Dr. Robert N. Buchal
AFOSR/NM 13, NUMBER OF PAGES

Bolling AFB, DC 20332 56 pages

14 MOMITORING AGENCY NAME & ADDRESS/{ different from Controliing Olfice) 15. SECURITY CLASS. (of thia report)

15a. DECLASSIFICATION. DOWNGRADING
SCHEDULE

16. OISTRIBUTION STATEMENT (of this Report)

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

Tutorial presented at the IEEE Computer Society 4th International
Conference on Distributed Computing Systems, May 14-18, 1984,
San Francisco, California

19 KEY WORDS (Continue on revetse side il necesgary and identily by block number)

20. ABSTRACT (Continue on reverse side i necessary and identify by block number)

[ presented a one-day tutorial, at the invitation of IEEE Computer Scoiety, at
the 4th International Conference on Distributed Computing Systems. There were
about 40 attendees, mainly from research and development departments of major
corporations.

Recent advances in computer and communication systems have resulted in demands
for new tools for their analysis. Mathematical modelling techniques have so far
L proved inadequate in dealing with these systems. Only simulation seems to be a

viable alternative. Unfortunately, simulation is proving to be inadequate, be- |

DD 1 ZS:M?B 1473 EDITION OF 1 NOV 65 IS OBSOLETE

T Ty W W, W O r ¥ oW ox oYY

SECURITY CLASSIFlCATION OF THIS PAGE {Whon Date Enf.rod)
\I M - " 'Q . -
- - ~_~~.‘ -'-‘.—'-'--'.:.‘»‘ o

P
i

« . . .
. B .. L .
‘atala AW L. alal

el

St

i

..
-

()

]
.

RPN P |

ey T v = T




:
:

T T T

»
v" .

—y

A

-
]

——-

V————r——
Y

a [T Kl
La <a f it Wl Tt A et Smad S gl Sl Sl SRl SN TV T

LACe arut ot o o rel OP Gava NN Bre ol alie arGE SR SN S A T e e

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

(20)

cause of the sheer magnitude of the problem. For instance, a telephone switch
generates roughly around 100 messages in initiating and completing a local
call made by a subscriber. Large telephone switches can handie around 100
calls per second. Thus simulation of a telephone switch for 15 minutes of
real time requires the simulation of nearly 10 million messages. Detailed
simulation of a telephone switch, even for a 15 minute interval, will require
several hours on a very large uniprocessor.

An alternative is to exploit the cost benefits of cheap micro/mini computers
and high bandwidth lines, by partitioning the simulation prcblem and executing
the parts in parallel. Unfortunately however, the typical simulation algor-
ithm does not easily partition for parallel execution. An entirely new app-
roach to simulation, for multiprocessors, is required.

Recent advances in termination dectection (Distributed Deadlock Detection,
Chandy, Misra and Haas, TOCS, May 1983; a Distributed Graph Algorithm: Knot
Detection, Misra and Chandy, TOPLAS, October 1982; Detecting Termination of
Distributed Computations using markers, Misra, ACM Principles of Distributed
Computing Conference, Montreal, August 1983) have made it possible to design
efficient distributed simulation schemes. The tutorial explored various
jssues and alternatives in this area.

SECURITY CLASSIFICATION AF Tutr OArEalr oo D ocn 7o

o merae e A v s v gnes -

SH

MY T IR




TR TE T T L ST WL WL WL EF TR TRV Y TR Y T T T T TR AT AT AN (YWY AP N R ) D i e T T S P S S L R B ]
DULERY °

- .
N
- .n
_‘-
o
“v__'.
i
Vo
N
(SRR
n .

TUTORIAL NOTES

ICDCS

Tutorial 4

Distributed Simulation

Jay Misra

; IaCcan MRS SISt A it

\ A
&

L - 14 V298 11E INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC. @ IEEE COMPUTER SOCIETY

Y T YV Y Y YWY

~r—Y
- .y

...............................
..........




. e ans e o e SeU ot ions AR D4l A Sy

Distributed Simulation

v
UL e W)

by

Jayadev Misra

’ .
’ Department of Computer Science
University of Texas at Austin
Austin, Texas 78712
¥ Copyright © 1931 Jayadev Misra
¥
¢
S
8
&
¢ .
: ]
)
b
«
\ e ~ '.Ir‘f,‘._ e e IR _:.“;‘. .ol t.“‘.‘-._.'_‘.-'..‘-\‘ :._..; -
. o , _-_ '..- . .- oL o 3',4_:' .. - ‘.k.:k:‘{‘ ':.L‘-'\-- PP U W A SRS T, PR
"- R IR IR TP S ST GPLIAE A S WY, . - o




' Ar Brol d T T w7 .
iy

-
- T s s - AR -

e aadcind Soll St il i

W)
N .

e A

an g g 4
1

1

b

-

Table of Contents

1. An Overview of Simulation

1.1. System Simulation Problem
1.2, Distributed Sunulation

{.3. Scope Of This Monograph
1.4, History

2. Sequential Simulations of Systems

2.1. Physical Systems
2.2, What is Simulation
2.3. The Sequential Simulation Algorithm

3. Distributed Simulation: The Basic Scheme

3.1. A Model of Asynchronous Distributed Computation

3.2. Basic Scheme for Distributed Simulation

3.3. Partial Correctness of the Basie Distributed Simulation Scheme
3.4. Features of the Basic Distributed Simulation Scheme

4. Distributed Simulation: Deadlock Resolution

4.1, Overview of Peadlock Resolution

4.2, Deadlock Resolution Using NULL Messages

4.3, Correctuess of the Simulation Algorithm

4.4 Demand Driven Null Message Transmission

14.5. Rollback and Recovery

1.6. Circulating Marker for Deadlock Detection and Recovery
1.7, Circulating Marker for Deadlock Avoidancee

5. Summary and Conclusion
References

J. Misra - Short Biography
Indéx

P TS

oy

50
n3
b4

L B

AR

L A W Wu N




e T TR R Ty T Tk T F T e T T e Tk T TR T TR e

] i
, List of Figures
. Figure 2-1: Schematics of Car low i
1 Figure 2-2: Schematics of Events in A Car Wash 13
Figure 2-3: Schematics of Message-Flow in the Car Wash System 1
Figure 2-4: A Merge Point pp 1
Figure 2-5: Schematic Diagram of the Example Assembly Line %
. Figure 2-8: Schematic Diagram of Job I'low in a Computer System 19
i Which Has a CPU and Two Peripheral Processors
Figure 3-1: A Primitive Computer System 31
X Figure 3-2: A Distributed Simulation That Does Not Progress 33
- Figure 3-3: A Distributed Simulation That Deadlocks 34
I Figure 4-1: A Physical System with Loop 3X
’
F
]
-9
-
[_’.
e
=
=
[
o
E.u
[ .
»’_-."




U | R
. A :

.,-,—T

v
P Y
s

T

e Y ¥
» P .

@

vy

-~ -
\ s 2 B e ac-Besh e et S i AadhSiulk T T

List of Tables
A Sequence of Events in the Ctar Wash
A Sequence of Message Transmissions in the Car Wash
System
Job Generation Times and Secvicing Tines
Times at Which pp's Send Messages
Message Transmissions in the Simulation of Example |

Table 2-1:
Table 2-2:

Table 2-3:
Table 2-4:
Table 4-1:

Vd
)
]

e e -
ISR Y PN YL, AT PRI )

ratetal

R T P T

1%
19
]

. . .
IR AT P

PP T ey

RS S )




T‘ v ""‘-"ﬁ' S

aatn g
\
i

W T TS T T T e

Preface

This monograph presents an entirely new approach to the problem of system
simulation. System simulations are typically carried out in a sequential manner: 2
single processor fetches one item from a data structure, carries out one step of
simuiation, (possibly) updates the data structure and iterates this process.  “uch
simulations are practical only when the number of events being simulated is modest.

Recent advances in computer and communication systems have resulted in
demands for new tools for their analyses. Mathematical modelling techniques have so
far proved inadequate in dealing with these systems. Only simulation seems to be a
viable alternative. Unfortunately, simulation is proving to be inadequate, because of
the sheer magnitude of the problem. For instance, a telephone switch generates
roughly around 100 messages in initiating and completing a local call made by a
subscriber. Large telephone switches can handle around 100 calls per second. Thus
simulation of a telephone switch for 15 minutes of real time requires the simulation of
nearly 10 million messages. Detailed simulation of a telephone switch, even for a 15
minute interval, will require several hours on a very large uniprocessor.

An alternative is to exploit the cost benefits of cheap micro/mini computers and
high bandwidth lines, by partitioning the simulation problem and executing the parts
in parallel.  Unfortunately however, the typical simulation algorithm does not easily
paru}lion for parallel execution. An entirely new approach to simulation, for
multiprocessors, is required. This monograph presents such an approach.

The text is organized in 5 chapters. Chapter 1 motivates the need for
distributed simulation; it gives a quick survey of the system simulation problem,
sequential simulation algorithm and its shortcomings. The scope of the monograph
and a history of distributed simulation are also included in that chapter. Chapter 2
contains a detailed deseription of the sequential simulation scheme. It is shown why
this scheme cannot be readily parallelized. Chapter 3 introduces the basic distributed
simulation scheme. This scheme is shown to result in deadlock. Several different
approaches for deadlock resolution are discussed in chapter 4. Chapter 5 contains a
summary and assessmment of the entire field.

We believe that distributed simulation offers the most promising approach to
speeding up simulation.  The basic theory has been developed; it remains to

experiment with various alternative heuristics.

This text is mainly oriented toward, (1) machine designers, particularly for those
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- designing multiprocessors for application programs and (i) application programmners
and simulation practitioners.  The material is largely self-contained.  Some
l acquaintance with simulation and distributed systems is helpful though not necessary.
Researchers in distributed software design will find this monograph to be useful in
that,general area. The reader wiil come away with an appreciation for (i) the nature
v of the simulation problem reduced to its barest minimum and (ii) how to approach a
problem for distributed solution.

I apologize for lack of concrete empirical results.  Some results, dealing
particularly with queucing networks, exist but were found to be too problem specific
for inclusion in this monograph.
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: 1. An Overview of Simulation
- : ol
i This chapter motivates the nced for distributed simulation. It gives a quick )

survey of the simulation problem, shortcomings of sequential simulation methods and 3
- an overview of distributed simulation. The scope of this monograph and the history :‘
R of distributed simulation are also included. p
-
i 1.1. System Simulation Problem N
' We consider the problem of simulating physical systems, also called networks, ]
B which consist of one or more physical processes. Ilach physical process operates ]
¢ autonomously except to interact with other physical processes in the system. The
C interaction is by messages. Contents of a message sent by a (physical) process
o depend upon the characteristics of the process (its initial state, its rules of operation) A
. and the messages that the process has received so far. 3

We will describe the problem and the terminology more precisely in the next
chapter. We note that many real systems can be modelled in terms of processes and
messages as described above.  For example, a computer system is one in which the
CPU, disks, memory and job entry terminals may be thought of as processes; the
CPU may interact with a disk by sending it messages requesting or releasing disk
space; a job entry terminal may interact with the CPU by sending it messages, which
are i}'] fact jobs or tasks to be exccuted. Detailed examples are given in the next
chapter.

v,

PN Y VT BT S

G

s Typical steps in simulation consist of, :
9 :
X L. starting with a real system and understanding its characteristics, {
&

q - . . .
= 2. building a model from the real system in which aspects relevant to

b . . . . .

- simulation are retained and irrelevant aspeets are discarded,

5 3. constructing a simulation of the model which can be executed on a

- computer (simulations, other than computer programs will not be

K considered here), and

& 4. analyzing simulation outputs to understand and predict the behavior of

::' the real system.

3

F‘.' In addition, the model and the simulation must be verified and may be refined

i during steps {2) and (3), perhaps iteratively, if they do not meet the expectations. In

9 this monograph, we look at only one step - step (3) of the entire simulation process.
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What is typically called a model in step (2) is actually our physical system; we show
how to go from a physical system to a computer program for simulation of this
system, which in this case, is distributed and hence may be concurrently executed on
several machines. We will not consider the problem of constructing a physical system
description from the real system, nor do we consider how to analyze simulation
outputs to predict the behavior of the real system. Stated another way, we show how
to construct an asynchronous system (the simulator running on asynchronous
machines) from a synchronous system (the physical system, running in real time).
We will further restrict ourselves to discrete event simulations, we assume that events
- in our case, message exchanges - happen at discrete points in time.

Traditional Approach to System Simulation

Traditionally, discrete-event system simulations are done in a sequential
manner. A variable clock holds the time up to which the physical system has been
simulated. A data structure, called the erenf-list, maintains some message
transinissions with their associated times of transmissions, which are scheduled in the
future. Each of these messages is guaranteed to be sent at the associated tume in the
physical system, provided the sender reccives no message bhefore this message
transmission time. At each step, the message with the smallest associated future time
is removed from the event-list, and the transmission of the corresponding message in
the physical system is simulated. Sending this message may, in turn, cause other
messages to be sent in the future (which then are added to the event-list) or cause
previously  scheduled messages to be cancelled {which are removed from  the
event-list). The clock is advanced to the time of the message transmission that was
just simulated.

SThis form of simulation is called event driven, because events (ie. message
trangmissions) in the physical system are simulated chronologically and the simulation
clock is advanced after simulation of an event to the time of the next event. There is
another important simulation scheme, time driven simulation, in which the
clock advances by one tick i every step and all events scheduled at that time are
simulated.  We will not discuss time driven simulation in this monograph. We will,
furthermore, assume that all events are diserete, which is certainly true for any
system which ean be modelled as a message passing system.

Drawbacks of Sequential Simulation

The nature of the event-list mechanism dictates a sequential simulation, sinee in
cach eyele of simulation, only one item is removed from the event-list, its effeets
simulated and the event-list, possibly, updated.  This is unfortunate, because this
algorithm  cannot be readily adapted to concurrent execution on a number of
processors, siiice the event-list cannot be effectively partitioned for such executions.
We contend that a major bottleneck to the growth of widespread simulation is the
sequentiality inherent in the event-list structure. Increasingly complex computer and
communication systems of the future will be intractable mathematically and therefore
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will have to rcsort to simulation for their performance evaluations.  Current
simulation techniques will prove to be inadequate for these systems because with
current technology only a modest number of events can be simulated. A radically
new approach to simulation must be taken which will utilize the power and cost
benefits of small compnters and high bandwidth communication lines.

1.2. Distributed Simulation

This monograph presents a radically different approach to simulation.  Shared
data objects such as the clock and the event-list are discarded. In fact, there are no
shared variables in our algorithm. We suggest an algorithm in which one machine
may simulate a single physical process; messages in the physical system are simulated
by message transmissions among the machines.  The synchronous nature of the
physical system is captured by encoding time as part of each message transuntted
between machines.  We show that machines may operate concurrently as long us
their  physical  counterparts  operate  autonomously;  they  must  wait  for
message receptions to simulate interactions of the corresponding physical processes.

Distributed simulation offers many other advantages in addition to possible
speed-up of the entire simulation process. U requires little additional memory
compared to sequential simulation.  There is little global control exereised by any
machine. Sunulation of a system can be adapted to the structure of the available
hardware; for instance if only a fow machines are available for simulation, several
physical processes may be simulated (sequentially} on one machine.

Several distributed simulation algorithms have appeared in the literature. They
all employ the same basic mechanism of encoding physical time as part of each
messpge. The basic scheme they use, may cause deadlock. Different distributed

stimulation algorithms differ in the way they resolve the deadlock issue. Several new
algorithms for distributed deadlock and termination detection have been discovered
in the last few years.  Combining these algorithms with the basic distributed
simulation mechanism is expected to result in very efficient and practical simulation
o schemes. Empirical investigations are currently under way to assess the performance
[ of different schemes,
-
-
1.3. Scope Of This Monograph
P This monograph is a comprehensive survey of all known (to the author)
. distributed simulation schemes.  In order to make the monograph self-contained,
- basic notions of sequential simulation are introduced and explained in Chapter 2. A
- proof that the sequential simulation algorithm works correctly s given in that
chapter; surprisingly, the author could not find such a proof in any simulation book.
° Chapter 3 introduces a basic distributed simulation scheme and shows its partial
P correctness. 1t is shown wiy the basic scheme may be inadequate, i.e., may result in
.
.
-
- -
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deadlock.  Different deadlock resolution schemes proposed in the literature are

presented in chapter 4. A summary of current results and possible directions for
future investigations are outlined in chapter 5.

This monograph does not introduce a new simulation language, Lecause
distributed simulations can be written using sequential simulation languages for
simulating the physical processes and message communication  languages  [for
deseribing interactions among component machines.  We also avoid a number of
traditional issues in sinulation:  pseudo-random nuwnber generation, statistical
analysis of the outputs ete. Methods developed in these areas for sequential
simulation, see [14], still apply. Our goal in this monograph is to show how the body
of actual simulation can be distributed among a set of interacting machines.

1.4. History

Sequential simulation has a long history; Franta [15]) provides a discussion of a
number of prominent simulation languages and their relative merits, Among the
many simulation packages introduced recently, we mention DIEMOS [5], SAMOA [21]
and MAY (2], DEMOS is a discrete event modelling package implemented in
SIMULA [13]. It provides an extensive list of features for event scheduling, data
collection and report generation. SAMOA uses Ada [1] as the base langnage. May is
based on FORTRAN IV and provides the minimum number of constructs needed to
carcy out simulation; these features have been used to build an extensive hbrary for
date  collection, output analysis and report generation.  The minimality  of
MAY makes it possible for it to be implemented even on personal computers,

The idea of distributed simulation was first proposed by Chandy in 1977 in a
svricé of lectures at the University of Waterloo; these ideas were later refined aud
published by Chandy and Misra [7] and Chandy, Holmes and Misra 2], They
observed that the basic scheme of time encoding may lead to deadlock and they
proposed schemes for deadlock avoidance. Independently RIS Bryant [6] discovered
the basic <imulation scheme. Peacock, Wong and Manning [24,25] and Holmes [17)
proposed mechanisms for avoiding deadlock by periodic use of  probe messages.
Empirieal work by Peacock, Wong and Manning hoas shown that the method s
indeed viable: the time needed for simulation of a class of queueing networks steadily
decreases when  the number of processors available for simulation increases.
Empirical investigations by Secethalakshmi [28] and Quinlivan [26] showed that the
method is also efficient for acyclic physical systems and that performance can be

substantially improved if there are many buffer spaces between machines for
buffering messages.

Chandy and Misra [9] have subsequently suggested a scheme for deadlock
detection and recovery.  Reynolds [27] suggested using common memory  amony
neighbors to avoid deadlock. A notable departure from these schemes is the one

« 2 mEEma & r ¢ "_"a’al,
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. proposed by Jefferson and Sowizral {18]. They suggest that a machine should wait 1o
1 receive messages for a certain period of time; il it receives no messages from sotne
: machine in that period, it assumes that there will be no further messages from that
machine, and it then continues simulation under this assumption.  In cave a
message is received from some machine, which violates this machine’s previous
assumption, it rolls back to its previous state and sends *antimessages® eancelling the

A Sadiiins

messages it may have sent under the false assumption. Smpirical | vestization of the
behavior of this algorithm is continuing,

Bezivin and Tmbert {3] propose an approach similar to Jefferson's. In their
approach, cach process in the simulator maintains a local time and an overall giobad
time is maintained by a central process.  Christopher et. al. [12]  propose
precomputing minitmum wait time along all paths in a network so that, delay
information may be propagated rapidly among non-neighboring processes.  Practical
simulation results, employing many processors, have been reported in [23,249).

.
[ \Gnmipgmn

U e

)~

’ Dev Kumar [20] has combined some recent work in deadlock and termination
detection [22] with the basic simulation scheme. He has developed algorithims which
i are more hierarchically struetured. His secheme has parameters to control the number

of overhead messages. Behaviors of these algorithms on o wide elass of practical
stmulation problems are currently being investigated.
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2. Sequential Simulations of Systems
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This chapter introduces the problem of system simulation. A precise definition
of simulation is given.  The sequential simulation algorithm using the cvent list
structure is presented and proved. It is shown why the sequential simulation scheme
cannot be readily adapted for parallel execution.

2.1. Physical Systems

sitnulation algorithms considerably simpler.

3 We consider physical systems, also called networks, consisting of a finite 1
number of physical processes (abbreviated as pp's). Bach pp represents some .
! component of the real system to be simulated. For instance, in a computer system, d
T the CPU, each disk, each memory bank and cach job entry terminal may be thought
¢ of as a pp. A pp usually interacts with other pp's from time to time. In traditional .
- l simulation terminology, events happen at a pp, and the occurrence of an event at one ]
N pp may cause other events to happen at various other pp's. We will use a slightly ]
l different  terminology in this monograph which makes our deseription of the d

Events that are local to a pp, ie, those which do not dircctly affect the
) behaviors of other pp's direetly may be simulated locally as part of the simulation of
the pp.  Any event that causes events to happen at other pp's may be modelled by
transmitting a message whose reception causes the desired event to happen. For
instanee, if event ¢; at pp 1 causes event ¢, to happen at pp 2, we can model these
event dependencies by (1) pp 1 sending a message to pp 2 and (2) pp 2 causing event
¢y to happen locally, at a proper time after the receipt of the message. Event e, may
cause an event eq to happen at pp 3, in which case it must also be modelled us a
message transmission between pp 2 and pp 3. An event at a pp which causes events
to happen at several other pp's must be modelled as several message transimissions
among a number of pp's.

el AL TR e
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- We next give an example which clarifies the relationship between events and .

S . . . . . '
‘ messages.  The reader is urged to study this example because it shows explicit )

3 message transmissions between pp’s which were not in the original description of the

g problem.
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Example 2-1 (Car Wash)

The following example is a variation of one appearing in [1]. A car wush
system consists of an attendant and two car washes, abbreviated CWI1 and W2,
Cars arrive at random times at the attendant. The attendant directs cars to CW 1 or
CW2 according to the following rule: if both car washes are busy, i.e. washing cars. .
any arriving car is queued at the attendant; if exactly one car wash is idle, the cur at 1
the head of the quene, if any, is sent to that idle car wash; if both car washes are idle. ﬂ

3
]

\ m \-.

N

the car at the head of the queue, if any, is sent to CWI. CWI spends 8 minutes and
CW20 10 minutes in washing a car.  Given some distribution of car arrivals, it is

g \h

reqqured to compute the average amount of time a car spends at the car wush 1
{including the washing time) and the average length of the quene that builds up m R

N -
the attendant. We will not compute the above statistics; we will simply show the

sequence of events and message transmissions in two different views of the car wash
problem.

\ it

P

The schematie diagram of the flow of cars is given below.
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[ l Figure 2-1: Schematies of Car Flow

-

a - . .

r'. Initially both CW1 and CW2 are idle. Assume that 6 cars, Cl through 6,

E'f 3 arrive at the attendant at times 3,8,9,14,16,22. An event in this system is cither a car

- ' soriving at some point, ie, at the attendant, CWI or CW2, or a ear leaving the car

g wash. We assume that the driving time from the attendant to CW1 or CW2 is 7ero.

[ l Abo, when a car arrives at CW1 or CW2, it starts getting service immediately. The

chronological sequence of events is given in Table 2-1.

4

E } An event e, Jepends directly on an event e, if 4‘
: L. ep.ey both happen at the same process and e; happens before e, or
'-'-. ') 2. ey happen at different processes and ¢ is one of the canses of e, deif i

e, had not happened, e, would not have happened.
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Event e is dependent on event ¢, if e depends directly on ¢', or ¢ depends on

- -

- ¢*, which depends directly on e’ Two events are tndependent if they are not
r dependent on each other. [t follows then that independent events can be simulated in
g parallel, while dependent events must be simulated in sequence.
' ! Event Number Time Event
— 1 3 C1 arrives at the attenduant
| ! 2 3 C1 arrives at CW1
.'_. 3 8 C2 arrives at the attendant
1 3 C2 arrives at CW?2
. ! 5 9 C3 arrives at the attendant
) b 11 C1 leaves car wash
l 7 11 C3 arrives at CW1
T ! 8 14 C arrives at the attendant
] 9 16 €% arrives at the attendant
_ . 10 18 2 feaves car wash
: - 11 18 Cd arrives at C\W2
r 12 19 C3 leaves car wash
- ! 13 19 C5 arrives at CW1
. - 14 32 C6 arrives at the attendant
5 27 C5H leaves car wash
A ! 16 27 C'6 arrives at CW]1
2 17 238 CA leaves car wash )
. 13 35 C6 leaves car wash
. 3 Table 2-1: A Sequence of Events in the Car Wash
- 3 ';l)cpondcncics among events is shown in the directed graph of Figure 2-2; an
_ edgd from event ¢, to event e,y denotes that event ey depends directly on event e
therefore ¢) must be simulated before e,

5 16 8

1 1
>y

i
.

oy ¢ Sy
‘ 3 5 “& 9 14
N - >“
4 10 11 17

Figure 2-2: Schematics of Events in A Car Wash

Two independent events, such as event 8 (C4 arrives at the attendant) and
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event 12 (C3 leaves car wash) are independent and hence can be simulated
simultancously.

We now present the car wash viewed as a message passing system. The car
wash svstem has 5 processes: the source, which generates cars at the preseribed
timds, the attendant, CW1, CW2 and the sink (exit). The schematic diagram of i
message communications among these processes is given in Figure 2-3.

CWl
Y
|
source A sink
attenglant
CW2

Figure 2-3: Schematics of Message-Flow in the Car Wash System

_Note that we have possible message flow paths from CW1 and CW2 to the
attegdant. This is because the attendant must know when a car wash becomes idle
(In this particular problem, the attendant can keep track of the times at which he
sent the last cars to CW1 and CW2, and since the washing times are fixed, he can
deduce the times at which CW1 and CW2 will next become idle. This means that the
attendant is simulating CW1 and CW2. In general it will not be possible nor
preferable to do so). The attendant expects messages from CW1 and CW2 each time
they become idle. A complete list of messages for this example is shown in Table 2-2
with corresponding event numbers from Table 2-1. Fach message has a sender, a
receiver and message content. In our case, the content is either a car number or the
status {idle) of a car wash.

This example shows how to model event interactions by message transmissions.
In particular, if an event at one pp causes events to happen at several other pp's, we
will have to model such event dependencies by several message transiissions.
Secondly, the chronological order of simulations of events in sequential simulation
(described later) guarantees that every event simulation precedes the simulation of
events that depend upon it. Our approach in distributed simulation will dispense
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s ;
- Message Event Time Sender Message  Content
I Number Number Receiver
1 - 0 CWl1 attendant 1dle
! , 2 - 0 CW2 attendant idle
= -3 1 3 souree attendant 'l
1 2 3 attendant Cwi Cl
! 5 3 8 sourece attendant O3
) 6 l 8 attendant Cw2 2
N ) 9 souree attendant 3
! 8 6 1 CW1 sink i
- 9 - 11 CW1 attendant idle
10 7 ] attendant CWli 3
! 11 3 1 SOUrCe attendant 18]
~ 12 0 16 SOUFCe attendant 5
13 10 18 W2 sink (]
! | E] - 18 W2 attendant idle
IH I 1% attendant w2 Q]
16 12 19 CW1 sink 3
] g - 19 Wl attendant idle
- 1R 13 19 attendant Cw1l 5
19 H] 22 source attendant 6
! 20 15 27 Cwl sink 5
) 21 - 27 (W1 attendant il e
i 2 16 27 attendant CWi 6
4 23 17 28 w2 sink it
21 - 28 Cw?2 attendant idle
725 R 35 CW1 sink C6
20 - 35 Wi attendant 1dle
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Table 2-2:

A Sequence of Message Transmissions in the Car Wash System

with chronological simulations of events.

In summary, a pp may send messages to and receive messages from other pp's
at discrete times. Message transmission delays are zero, e, any message sent at time
tis received by the ntended recipient at t (Reeall that we are deseribing a physieal
systet, not the computer system on which the sitnalation is to run.) If it is necessary
to model delays in the real world system (viz. driving time from attendant to a ear
wash in the last example), then either the sender of a message idles for some time
hefore sending the message or the recipient of a message idles for some time after
receiving the message: another possibility is to model the communication medium as
a process, incorporating the delay.

There are two conditions which are met by every physical system imaginable:
realizability and predictability, which are deseribed next. We will assume that both
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these conditions hold for all physical systems we consider.

Realizability

A message sent by a pp at time t may depend anly upon the messages it has
received up to and including t. Realizability says merely that a pp cannot guess any
message it will receive in the future.

Note that we admit the possibility of a message that is received at t, affecting 2
message that is sent at t. An example of a pp in which this instantancous cause-cffect
is seen is given below,

Example 2-2 (Instantaneous Message Transmission)

Consider a pp which acts as 2 merge point for several pp's. Schematically, such
a pp, A, 18 shown in Figure 2-

I

Queuc

>

Figure 2-4: A Merge Point pp

Messages arriving at A, cither from the top or from the bottom arc instantancously
<] sent to the queue on the right.  Therefore a message sent by A at t depends upon
::.f messages received at Gt may be argued that pp A cannot be physically constructed.
- However A might represent a real world entity where the interval between reception

[ . and transmission of a message is small enough to be ignored altogether in the
S modelling process; in fact pp A may not even exist in the real world system and s
@ created, during modelling, to simplify deseription of the real system.  Such merge
= points are often used in quencing network deseriptions of systems.
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Predictability

Suppose the physical system has eycles, i.e. it has a set of processes ppy,....pJ1, |,
where pp; sends messages to pp;,, (and perhaps to other pp’s) and receives messages
from pp;_; (and perhaps other pp's)!. Suppose that the message, if any, sent by pp;
at séme time t depends upon what pp; receives at t, for all i; then we have a circular
definition where the message received by every pp at t is a function of itself. Such
definitions lead to *race conditions® in physical realizations. In order to avoid such
situations, we require that in every cycle and for every l, there is a pp whose oulpuls
(messages it sends) along the cdge of the cycle, can be determined beyond ¢, - up to
t+€, for some fired €, €>0 - given the set of input messages to it up to L.
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We next consider some typical simulation examples and show that they satisfy
the realizability and predictability conditions.

e
TN |10

Example 2-3 (Car Wash - Realizability and Predictability)

We consider the car wash problem introduced in Example 2-1. Each pp's
output at time t depends only upon the messages it has received up to t. Of
particular interest is the behavior of the attendant. If it reccives an *idle* message
from either of the car washes at time t, and the queue is not empty at t, then it sends
a message at t. Therefore the realizability condition is  satisfied. ‘The
predictability condition is satisfied because cach eycle contains one of CW1 or CW2,
and given the input to CW1 (CW2) up to t, we can predict the output from it up to
L+ (t+10).
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Example 2-4 (Assembly Line)

An assembly line consists of a series of n work stations. Jobs enter the

ﬁ :lSS('l}’ll)ly line at work station 1; when a job has been serviced at work station i it v
& proceeds to work station (i+1), i=1,2,...,n-1; a job leaves the system after being h
g serviced at work station n. Service times at different work stations are random >
¥ variables. There are queues at stations where the jobs awaiting to be serviced by a :;;1
'E station may be queued. .\ work station takes one job from its input queue when it is R
‘ free, services that job and then sends it to the queue of the following work station. %
4 All work stations service the jobs in a First-Come-First-Served (FCFS) basis. It is -

desired to find the expected number of jobs in the queue of each work station and the -

expected waiting time for jobs at each work station.

Specifically, consider an assembly line consisting of 3 work stations, A, B and
C, which services 4 jobs identified as 1,2,3,4.  Schematically, the assembly line is .
shown below. -

The times at which the source generates jobs and the service time of each work

l.»\ll arithmetic in pp subscripts is modulo n.
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source

sink

Figure 2-5:  Schematic Diagram of the Example Assembly Line

Jobs 1 2 3 4
work statlon
Job Generatlon Source 5 7 30 32
Times
A 4 10 1 5
Service B 12 15 2 7
Times
C 2 3 1 4

Table 2-3: Job Generation Times and Servicing Times

station for each job is given in Table 2-3.

The source {call it work station 0), the sink (call it work station 1) and each
work station is a pp. pp i sends messages to pp (i+1), 1=0,1,...,3. The source sends
messgges (which represent jobs) to work station I at times 5, 7, 30 and 32, If a job j.
j>l', arrives at a work station at time t, then its service at this work station begins
either immediately (at t) if the work station is then idle or it begins immediately after
the departure of the (j-1)st job from the work station. Let ’\j be the time of arrival
of job j at some work station, let Dj be the departure time of job j from this work
station, and fet S, be the service time required for job j at this work station. Then
we have,

D,=0
l)j = nmx(;\j.l)j_l) + Sj, =12

Using the service times and generation times of jobs given in the previous table, we
can construct the departure times from work stations, i.e., tiines at which messages
are sent, as in the following table.

Each work station's output at time t depends only upon the jobs it has received
up to t, and therefore the realizability condition is  satisfied. The
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' essage 1 2 3 4
pPp
Source 5 7 30 32
; A 9 19 31 37
B 21 38 38 45
C 23 39 40 49

Table 2-4: Times at Which pp’s Send Messages

predictability condition is trivially satisfied since there is no cycle in the physical
system.

Example 2-5 (A Computer Network)

Imagine a computer installation that consists of a CPU and 2 peripheral
processors, procl and proc2. Jobs enter the CPU, spend some time there and then
branch to one of the peripheral processors with some given probability.
completion of processing at the peripheral processor, the job may leave the system or
return to the CPU with some probability.  The schematie diagram of the system s
shown Figure 2-6.

[,l'““

tl 1=

! e

N
CPU

1

Figure 2-6: Schematic Diagram of Job Flow in a Computer System Which

Has a CPU and Two Peripheral Processors
a: mean time between arrival of jobs from the outside source, a
random variable.

t. mean time spent by a job at the CPU a random variable
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‘ ty: mean time speat by a job at the peripheral processor 1 (proel), a
2 ‘ random variable
E to: mean time spent by a job at the peripheral processor 2 (proc2), a
random variable
- o probability of a job going to procl
.- 3: probability of a job exiting the system
MM merge points
BBy branch points

This system has pp's for the source, the sink, merge points M, and M., branch
points By and By, the CPU, procl, and proc2. Fach message represents the transfer
.of a job from one pp to another. The realizability property holds, beeause no pp
bases its behavior on anticipation of the future.  Probabilistic decisionts at B3, 13,

cause no difficulty because the inputs to B, 13, up to time t determine their outputs

up to time t {though the outputs may be different at different times due to the

probabilistic nature).  We can realistically assume that each processor spends non-

zeto  time  in processing  a  job. Therefore  the  system  also has  the
predietability property.

This concludes our discussion of modelling real world systems by physical
systems, Le., a system consisting of message passing processes and, operating in real
time. From now on, we will assume that this modelhng has been performed and that.
we are dealing with physical systems with realizability and predictability properties.
Now we define the meaning of simulation, precisely, for such physieal systems.

2.2. What is Simulation

We wish to build a simulator or a logical system, consisting of logical
processes (abbreviated Ip), to simulate a physical system. We will use *simulation®
in a rather strict sense: we say that a logical system correctly simulates a physical
system if it is poasible [or the logical system to predict the exact sequence of message
transmissions in the physical system. That is, il t,0,....,t,... are the times at which
the messages m;,m,,...,m... are transmitted in the physical system and

..“!.“

. am aon Al

F.'- t<ty.. <4<, then the logical system should be able to output the sequence
S <(tpm (L) .. (tm),. > ,

o

= ) We observe the following facts from the definition of simulation just stated.

p

}. ' 1. The logical system must be able to determine the exact chronological

:;f' sequence in which message transmissions take place in the physieal
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system: therefore it is not aceeptable to prediet (t,m) and then ('),
where U<t

2. The logical system may not actually print the sequence, <.t m,)...2>>.
All that s desired is that it should be possible to do so from the logical
* system.

Clearly a physical system is a simulation of itsell. We wish to construct logical
svatems which may not operate at the same speed as the physical system. Our goal -
to construet a logical system out of a machine or machines where the speeds of
processors and communication links (if any) are arbitrary. In other words. we wizh
duplicate the behavior of a synchronous physical system using asynchronous logieul
components,

It should be observed that we can do the typical functions of a stinnbaion

- analyze data, predict performance or future behavior, generate reports ete. - by
using the logical system. We do not address these dssues i this monograph  we
:'. merely observe that since it is possible to ereate the sequence of physieal me sage
2 transmissions in the logical system, all interactions can be reconstructed and

analyzed.
Example 2-8 (Message Transmission in the Assembly Line
Example)

A simulation of the assembly line of Example 2-4 should be able t¢ prediet the
following message sequence.  This sequence is derived from Table 2-1. lu the
following, a message consists of (sender id, receiver id, message content). We will
write ad-tuple (ts.r,m) to denote that at time t, process s seds a message to rowith
content m.

]

Z{Aasouree AL ) {7 source. AL2) (9,A,B.1), (19,A,1,2), (20.1,C,1), (23.Csink. 1),
(30.source, \3), (31L,ADBL3), (3250uree, A L), (36,13,C,2), (37, B.4), (38,B.C.3).

(30.C sink.2), (10.Csink,3), (45,8,C,4), (19,C sink,1)>

2.3. The Scquential Simulation Algorithm !
Two muajor data objeets used by the sequential simulation aleorithim are. |
clock ana event-list. Their meanings are given below.

clock: is o real-valued variable. It gives the time up to which the
corresponding physical system has been simulated.

crent-list: is set of tuples of the form (t,m ), where s some time. t 2
clock and m s a message. (We assume that the identities of e




~ T,

—i iwv, Pl aeact et

v

B S one sBa e de

g Ir‘r‘n"

T

—————T

~ - wv—v-*q‘*'—-“"Tv".‘v'*l"_w_“l._'l'"l_‘"_‘
=TES T T TR TR TR wT Saib S

o N

FET TR E T LR SO S LR T e T T s T .

YY)

-

sender and the receiver are parts of the message.) A (4,m)) 1~ in
the event-list means, if the sender of m, receives no further
messages belween the current lime (given by clock) and {,, then 1t
sends no other message belween clock and t;, and sends i at (,

It is‘required that for every pp;, there must be exactly one event-list entry (t,m ) in
which pp; is the sender. If a pp sends no message in the future, unless it reeeives
further messages, the corresponding event-list entry will be (oo,m), where the message
content in m is arbitrary. A simular entry, (oo,m), will alwuys be in the event-list for
a pp that has terminated.

Example 2-7 (A Snapshot in Sequential Simulation of the
Assembly Line)

In simulating the assembly hue of Example 2-4, a possible value of clock and
corresponding entries in the event-list are shown below.

clock 9

crent-list 19,0, B.2)421,B,C 1),(00,C sink,-),{30,50urce, A 3)

This snapshot of the simulation corresponds to the point in the physical system where
the source has produced jobs 1 and 2 and job 1 has been processed at A and seat to
B. The source has one more job scheduled for production; A has scheduled to send
job 2 to B at time 19, provided A receives no more jobs between 9 and 19; B3 has
schieduled to send job 1to C at time 21 provided it receives no more jobs before then:
C' has scheduled no message because it has received no jobs.

It should be noted that cach entry (t,m) in the event-list is conditional. (t.n)
may ';m! actually occur in the physical system because this message transiission 1y
be cancelled if the sender of m receives a message prior to t. In fact, one can
construet an example where nearly all entries in the event list are cancelled in eacly
eveles There s only one entry {t,m), where tis the smallest time component of any
entry in the event-list, which is guaranteed to oceur. { We assume, for the moment.,

, .
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that there is a unique entry with the smallest value of t-component. The case of |
multiple entries with smallest t-components is discussed below.)  The sequential '

simulation algorithm is based on this fact. We state and prove this resunlt, somewhat
rigoronsly, below. -
. . . |
Simulations of Simultancous Events :

Two message transmissions that happen simultancously 1 the physical systen,

te. at the same time t, require that a sequential stmulation simulate themn in some

order This can lead to problems, as shown in the following example: pp A plans 1o
seped 2 miessage m o to pp Boat time t; pp B s an alarm clock that is scheduled ta oo [

off, Leo send amessage m to pp A, at time t, unless it receives a message from pp A

before or at t. In the physical system, pp B will not send m' to pp A However of
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these message transmissions are simulated sequentially in arbitrary order, a possible
simulation may result in pp B sending m’ to pp A. As the reader will see later, this
problem does  not  arise in distributed simulation. However sequential
simulation requires an ordering of simultaneous events and different orderings may
lead, to different simulations. Certain scquential simulation languages, such as
GPSS [15], provide the user with facilities [or defining these orderings.

In proving theorem 1, below, which forms the basis for sequential simulation,
we will skirt the issue: we will assume that, simultaneous events are independent,
i.e., if {t,m) and (t,m’) are both in the event list and t is the smallest time component,
then both these message transmissions will take place in the physical system.
Therefore these message transmissions may be simulated in either order.

The Simulation Algorithm

The theorem stated Dbelow forms the basis of the sequential simulation
algorithm.

Theorem 1: Let (t,m) be an entry in the event-list such that t<t',
for every other entry (t',m’) in the event-list. Then the message m is
transmitted at tine t in the physical system and no message is transinitted
between the current clock value and t.

Proof: If message m is not transmitted at t, it must be because some
other message is transmitted earlier than t (and after clock value) which
causes the sender of m to cancel transmission of m. Consider the first
message m' to be transmitted after the current clock value; it must be
transmitted at t' where clock < ¢’ < t. The sender of m’ could not have
received any message between clock and t’, because such a message would
e the first message. (t',m’) must be an entry in the event-list, because the
sender of m' sends its message, without receiving any other message after
the current clock value and before t'. t° < t contradicts vur choice of
(t.m). Hence the theorem.

The simulation algorithm, given below, works as follows. In each step, the
message with the smallest associated time is removed from the event-list, its effects
are simulated eausing possible additions to and deletions from the event-list, and the
clock is advanced to the time associated with this message transmission.  This
algorithm is given in a psendo-programming notation below,

Algorithm for Sequential System Simulation
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Initialize::

clock := 0; event=list := {(t;.m;)| message m, will be sent at t, unless
the sender of m, receives a message
‘ before t;; one such entry exists for
’ each pp as the sender}.

Iterute: :

while termination criterion Is not met do

remove any (t,m) from the event-list where t is the smallest
time component;

simuiate the effect of transmitting m at time t;
{This may cause changes in the event-list.

Note however that any addition (t’,m’)

to the event-list will have t’ > t and,

any deletion (t°,m") will have t°>t)

clock := ¢

endwhile
The correctness of this algorithm should be obvious from our presious
discussions.  Note that the sequential simulation algorithm is capable of producing
the scquence of message transmissions in the physical system; it simply prints (t.m).
when it removes (t,m) from the event-list.  Furthermore, this algorithm cannot, in
general, choose to simulate more than one tuple in any step, because as we have

noted carlier, none of the tuples exeept the one chosen by the algorithm may occur
the l)llySl("ll system,

E’(qmple 2-8 (A Sequence of Snapshots in the Simulation of the
Assembly Line)

We consider the assembly line example and show a partial sequence of event-
lists and clock values.

clock event-list message with smallest
associated time

0 <(5,s0urce, A\, 1), (5,50urce,A, 1)
(OO,A,-,-),
(OO,U,-’-),
(OO,C,-,')>

(<3}

<({7,s0urce,A\,2), (7, source, A2
(9,A,B,1),

(o0,B,-,-),

(0,C,--)>
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<(30,s0ource,A,3), (9,A,B,1)
(9,A,B,1),

(OO,B,-,-),

(OO,C,',°)>

9 <(30,s0urce,A,3) (19,A,B,2)
(19,A,B,2),
(21,B,C,1),
(00,C)--)>

Notes on Parallel Execution

It should be obvious that, in general, we cannot do much better than processing
one tuple from the event-list at a time. In order to process more than one tuple, say
at once both (t,m) and (t’,m’), we must be sure that these two events are
independent, i.e., that execution of one will not in any way affect the execution of the
other. This requires us to know more about the cause-effect relationship among
messages. We consider these issues in the next chapter in developing a basic scheme
for distributed simulation, the subject with which this monograph is concerned.
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Chapter 3
Distributed Simulation: The Basic Scheme
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3. Distributed Simulation: The Basic
Scheme

In this chapter, we introduce a model of distributed computation and we show
how a simulation may be carried out by a set of communicating processes. We limit
our discussion here to a basic scheme, one which can result in deadlock. More
sophisticated schemes which resolve deadlock are discussed in the next chapter.

3.1. A Model of Asynchronous Distributed Computation

A distributed system consists of a [inite number of processes and directed
edges connecting some pairs of processes.  To distinguish these processes from
physical processes, we call them logical processes or Ip's. lLach Ip is a sequential
process that executes both its sequential code and two special commands: receive and
send. In a send command, an Ip names an outgoing edge and a message that is to be
sent along that edge. The execution of the send command results in the message
being deposited on the named outgoing edge; the sender then proceeds with the
execution of s code. Each message takes an arbitrary hut finite time to reach its
destination. Messages, sent along an edge, are delivered in the sequence in which they
are sent. In o recetve command, an lp names one or more incoming edges from any
one of which it wishes to receive a message. An Ip wishing to receive may have to
wait antil a message arrives along one of the edges that it is waiting for. Note that
our ¢ommunication protocol is extremely simple and can be implemented readily on
many existing machine architectures.

A set of Ip's D is deadlocked at some point in the computation if (1) every lp in
D is either waiting to receive or is termninated, (2) at least one Ip in D is waiting to
receive, (3) if Ip, is in D and is waiting to receive from lpj, then lpj is also in D. and
(4} there is no message in transit from ij to 1p;.

It follows then that none of the Ip's in D will carry out any further computation
as they will remain waiting for each other.

3.2. Basic Scheme for Distributed Simulation
To simulate any given physical system, we construct a distributed logical

system as follows. We will associate one Ip per pp; Ip; will simulate the actions of

pp;- There is an edye from Ip; to Ipj, if Ip; can send messages to lpj. Messages among
Ip’s will be transmitted along the edges connecting them.
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An Ip can simulate the actions of a pp up to time tif the Ip knows all messages
that the corresponding pp receives up to time t. This is because, from the
l realizability property, no future message {message received by the pp alter time t)
can affect the pp’s behavior at t. We note further that an lp may be able to simulate
a ppreven beyond time t by knowing its input messages up to time t, as shown in the
following example.

5 Example 3-1 (An lp May Predict the Future)
Consider a typical non-preemptive First Come First Serve (FCFS) server which
- spends exactly 10 units of time servicing each job. Assume that a job arrives at tine

t when this server is idle. From this information about input messages up to time
we can predict the behavior of the server up to time t + 10: it will produce no

! output between times t and t 4+ 10, but it will output a message at t + 10, sending
: the job that has been serviced to its next destination.

From these observations, we can construct an algorithm for distributed
simulation.  We note that the times at which pp’s send messages must be encoded
into the message that the Ip’s send. Thus if mmessage m is sent by pp; lo ppat time
t. message (G} widl be sent by Ip; to lpj al somne point during simulation :nul vice
versa.

We make a chronology requirement: if an Ip sends a sequence of messages
A m)(llﬂ,m,,“) .> to another Ip, then t; < tiyq - The implication of this
rvqmrement is, if Ip; receives (t,m) from lp‘ thvu it knows all messages that PP,

receives from pp; up to and including time t, because any future message will have a
higher (compunvm.

P

? Define the ¢dye clock value of an edge to be the t-component of the last
message received along that edge; the edge clock value is 0 if no message has been
received along that edge.  Clearly, every Ip; knows all messages reccived by the
corresponding pp, up to time T, = min {tj}, where Y's are the edge clock values of
all incoming edges to that Ip and the minimum is taken over all these incoming edaes,
Ip; can thus safely simulate pp; up to Ty, i.e., it can deduce every message that pp,
sends up to time T, Ao, lp, may also bL able to deduee pp,’s message transmissions
beyond Ti. In any case, Ip; will send messages, corresponding to all the messages it
can deduce for pp,. The basic simulation algorithm folluwed by Ip; is sketched next,

Algorithm A

Basic distributed simulation algorithm to be followed by Ip;.
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Inttialize:: T, := 0 {All messages received by pp, up to T, are now known to ip,}

while simulation completion criterion is not met do

{simuiate pp, up to T, by doing the following}::

for each outgoing edge, compute the sequence of messages
(t).m). (t.mo) ... (t..m.)>, where t)Ct,. .<t, and, pp, sends
L at time t] along this edge;

send each message in sequence along the appropriate edge;

{NOTE: all messages sent by pp, up to T, can be deduced
by !p; and sent; also some messages to be sent beyond
Ty may be predicted by Ip, and sent. Only nes messages

that have not been sent before, are sent. Also note that
some or all of these message sequences may be empty.}

{receive messages and update T, until T, changes value} ::

T, := Ti;

while 7.* = 7, do
¥3it to receive messages afong all incoming edges;

upon receipt of a message, update Ip;’s internal state and
recompute T,, the minimum over all incoming edge clock values

endwhile;

endwhile

Not.i: Those Ip’s which have no incoming edges, will be called source Ip's. Each
source Ip also follows this algorithm except that it simply sends messages until

the simulation completion criterion is met. A stnk lp simply receives messages
and otherwise does not affect the simulation.

Example 3-2 (Distributed Simulation of the Assembly Line)

Let us review the assembly line example (Example 2-1). In the following, we

have one lp each, for the source, the sink, work station A, work station B and work
station C.

We reproduce Table 2-3 here, which shows the job generation and processing
times.

Py

4 s




Jobs 1 2 3 4

work statlon

Job Generatlon Source 5 7 30 32
Times

A 4 10 1 5

Service 8 12 15 2 7
Times

C 2 3 1 4

Job Generation Times and Servicing Times

The following diagram shows the messages sent by each Ip: an arrow from (t.n)
to (t',m’) means that sending of (t,m) precedes sending of (U, m’).

Source: (5,50urce,A, 1} — (7,Source,A2) — {30,S0urce,A,3) — (32,Sonree A t)

| } } l
A (BABL) — (19AB2) = (BLADB3) — (37.AB41)

1 1 ! 1
B - (QI,B,C,” — (36,8,0,2) - (38,”,0,3) — (IS,B,C,-U

| ! l l
C : (23,CSink,1) — (39,CSink,2) —(40,C,Sink,3) — (19,C Sink,4)

Note in this example that the source can send its messages to A without waiting
for any input; A can send the i-th message to B only after receiving the i-th message
from the source, ete. Two messages on different Ip's between which there is no
sequence of arrows, are independent and hence may be transmitted simultaneously in
the simulator. For instance, (32,Source,A, 1), (31,A,B,3), (36,B,C,2), (23,C,Sink,1) can
possibly be transmitted simultaneously. The five lp's form a pipeline through which
each job passes. If the speeds of the lp's are approximately equal aud the
transmission delays between Ip’s are approximately equal then the pipeline should

work at full efficicney; one job is input and one job is output per cyele after an initial
delay of 3 cycles.

'This is about the simplest simulation example one ean think of.

We study a
harder example, next.
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Example 3-3 (A Primitive Computer System)

Proc2 )

Figure 3-1: A Primitive Computer System

We have one Ip each corresponding to the source, the CPU, Procl, Proc2, M, 3
and the sink. For this example, assume that jobs arrive at the CPU from the
source every 5 time units starting at time 3, that jobs spend 1 unit at the CPU, that
jobs alternately go to Procl and Proc2 from B, and that a job spends 5 units at
Procl, 18 units at Proc2, and no time at B or M. We show the sequence of messages

and their dependencies below. (To simplify the diagram, we have not shown the
arrows between messages at a pp.)

Source:(3,Source, CPU,1)(8,Source, CPU,2)(13,Source, CPU,3)(18,50urce, CPU,4)(23,Source,CPU,5)

CPU : (4CPUBI)  (9CEUB2)  (14CPUBJ)  (19.CPUB4)

(24.CPUB,5)

B : (4,BProcl,l)  (9.BProc22) (14,B,Proc1,3) (19,B,Proc24) (21,B,Procl,5)

Procl : (9,Procl M,1) (19.Proci,M,3) (29,Procl,

Proe2 : [(27.Proc2,M,2

M

: (OMSink.1)  (19.MSink,3) T[27.M.Sink,2)  (29,M Sink.5)

Note the behavior of the Ip corresponding to M. Assume that it first receives
(27, Proe2.M.2) from the Ip corresponding to Proe2. This could be entirely possible f,
for instance, the lp corresponding to Proc2 were considerably faster than the one
corresponding to Procl. Then the Ip for M can ounly infer that it won’t receive any

other message from the Ip corresponding to Proc2 with time component smaller than
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27. However, it cannot assert anything about messages from Procl; it can thus
simulate pp M only up to time 0. Suppose next it receives (45,Proc2 M, 1); it must
still wait. The next input is, say, (9,Proc1,M,1). Then the Ip corresponding to M can
assert that it knows all inputs that M receives up to time 9 and hence predict all of
M's putputs, at least up to 9 and therefore, it can output (9,M,Sink,1), since jobs
spend no time at M. The rest of the outputs of M are easy to sce. Finally note that,
M cannot output (45M,Sink,4) at the very end, because it does not know if it will
receive a message with a t-component lower than 45, from the lp corresponding to
Procl. An extra message must be sent from Procl to M, with t-component excedding
15, to *flush-out® this message. We will discuss this issue later.

3.3. Partial Correctness of the Basic Distributed Simulation Scheme

Correctness of a distributed simulation algorithm cousists of two parts: (1) if a
message m is transmitted in the physical system at time t, then (t,m) is transmitted
in the simulator and, (2) if (t,m) is transmitted in the simulator, then message m was
transmitted at time t in the physical system. These statements are not quite true in
the basic distributed simulation scheme just presented.  As we observed in the last
example , job 4 is sent at time 45 from M to the sink in the physical system, although
the corresponding message is never sent i the simalator. Therefore, we can prove
only one part of the correctness condition stated above: whatever is transmitted in
the stmulator actually happens in the physical system. We will postpone discussion of
the converse statement- if message m is transmitted at time t in the physical system,
then (t,m) is transmitted in the simulator - to the next chapter.

Define a simulation to be correct at some point, (1) if message m is sent at time
t along edge e in the physical system and t is less than or cqual to the edge clock
valug of edge e, at this point in simulation, then (t,m) has been sent ( along edge ¢ )
in the simulation, and (2) if (t,m) has been sent in the simulation, then message m is
sent at time t in the physical system.

We note that in a simulation which is correet at some point, every Ip must have
received a correct input sequence along every incoming edge, i.e., every message on
this edge that has been transmitted in the physical system up to this edge clock
value, has been received along this edge in the simulation and vice versa. We will
assume that every lp correctly simulales the corresponding pp, i.c., if an Ip receives
correct inpul sequences along all incoming edyes, then it sends correet oulpul
sequences along all oulgoing edyes. Clearly a simulation is correct if and only if every
Ip has sent correct output sequences along every outgoing edge. The following
theorem follows, by applying induction on the number of messages transmitted in the
simulation.

Theorem 1: Simulation is correct at every point.

Proof: Simulation is obviously correct, from definition, when no
message has been transmitted in the simulation. Assume that a simulation
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is correct up to some point. The next message in the simulation is sent by

some Ip;. Since simulation is correct prior to this message transmission, lp,

! has received correct input sequences so far. From our assumption that lp,

correctly simulates pp;, the output sequences of lp;, including the last

, message sent, are correct. Every other Ip has sent correct sequences so far,

- “from the inductive hypothesis. Hence the simulation is correct following the
last message transmission.

F In a similar manner, we can derive the following result.

X
l:‘_. Theorem 2: All messages sent by one lp to another are
| chronological in their time components.

3.4. Features of the Basic Distributed Simulation Scheme

The Problem of Deadlock

Theorem 1 tells us only that whatever is transmitted in the simnulator
corresponds to a message in the physical system. As we have noted earlier, not all
messages in the physical system do get transmitted in the simulator using the basic
simulation scheme.  In fact, the next example shows a system in which no message
gets transmitted to a subsystem in the simulator.

Example 3-4 (A Deadlocked Subsystem in a Distributed

Simulation)

’ Procl
2 >
= source B M
.
X Proc2
.
P,
b_:
-
o Figure 3-2: A Distributed Simulation That Does Not Progress
[ . o . .
\ Consider a phiysical system in which the source sends messages to a branch
& point B, B routes the messages to Procl or Proc2 from where, after some finite time,
t each message is sent to a merge point M, after which it enters a network N (see
= Figure 3-2). Consider the case where B sends every message to Procl. Then in the
@

} simulation, the Ip corresponding to M will never receive a message from Proc?. Hener
the edge clock value for the edge (Proe2,M) will remain at 0 and the Ip for M will
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never send a message.  ‘The subsystemn N will thus never recelve a message. | the
simulation continues, certain parts of the system, viz. source and procl will keep on
advancing their clocks; however neither M nor any lp within N will advance its elock.
We can claim that the clock for no Ip in N can progress beyond t=0.

‘ We show another example in which the deadlock arises due to a circular
pattern of waiting among the lp's.

Example 3-5 (Cyclic Waiting in a Distributed Simulation)

25 20

20

&
15

Figure 3-3: A Distributed Simulation That Deadlocks

Consider a network of 3 processes and a source, shown schematically above.
The number on each edge is the edge clock value, i.e., the last message sent from x (o
v and received by y had a t-component of 20 and so on. Suppose that none of x,v,z

will now send a message unless they receive a message, e, they can predict no
future messages.

, A global observer can sce that z will not send 2 message unless x first sends a
mvséngv to y. Hence x need not wait for z; it can process the next message from the
source. However none of the Ip's corresponding to x,y,z have this global knowledge,
they only have local knowledge of the behavior of each individual pp. Therefore x
cannot proceed unless it receives from z, z cannot proceed unless it receives from v
and y cannot procced unless it receives from x, leading to a deadlock.

Simulation Snapshot

In a sequential simulation, it is possible to assert that the simulator has

completed simulation up to the time given by the clock: cvery pp must have been
simulated up to this point in time.

We cannot make a similar statement for
distributed simulation, because each Ip may have simulated the corresponding pp to a

For instance, in the example of the primitive computer
system (Example 3-3), we can assert at the end that the Ip's have simulated the

corresponding pp's as follows: (Source : 23), (CPU : 23), (B : 24), (Procl
(Proc2 : 19), (M : 29).

different point in time.
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) We define T;, the clock value of Ip;, to be the point in time up to which pp; has
o been simulated by Ip;. Thus Ip; has received messages along all incoming edges up to
1 at least T, and has sent messages at least up to T; along every outgoing edge (ie., all
future messages it will send will have t-components exceeding T)). T, is the
maximum value satisfying the above conditions. Define T, the clock value of the
stmulator, to be the minimum of all Ip clock values. We can assert that at any point
in simulation, the physical system has been simulited up to the simulator's clock

. value, even though some individual lp’s may have simulated the corresponding pp's
far beyond T.

Encapsulation of Physical Processes by Logical Processes

The radical departure in the proposed scheme from sequential simulation,
however, is the lack of any global control. (We will show deadlock resolution without
global control in the next chapter.) Since a pp is simulated entirely by one lp,
various different simulations of a pp can be attempted by substituting different Ip's
for it. Furthermore, the correctness of simulation can be checked one Ip at a time
- the proof of correctness is naturally partitioned among lp's, i.e., we show that each
Ip correctly simulates the behavior of the corresponding pp. We have shown that if
cach Ip behaves correctly, the ensemble as a whole behaves correctly.  This
observation will lead to major simplifications in designing complex simulations. In
fact, distributed simulations can be implemented using existing sequential
simulations; instead of reporting to a central event-list manager, an lp sends messages
and otherwise the core of the simulation remains unchanged.
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Chapter 4

Distributed Simulation: Deadlock Resolution
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4. Distributed Simulation: Deadlock 3
Resolution 3
)

We have seen in the last chapter that the basic distributed simulation scheme
may lead to deadlock even in acyclic networks. In this chapter, we present several
different approaches to resolution of deadlock. We comment on some of the wost
viable approaches for deadlock resolution.

4.1. Overview of Deadlock Resolution

In all the examples we have seen so far, the simulator clock value (recall that
the simulator clock value is the minimum of all Ip clock values) remains at some final
value T forever. If T is smaller than the point up to which we need to run the
stmulation, we have to apply some other scheme to advance the simulation.
Simulations stop (other than by conscious choice) when some Ip has more than one
input edge, it can be determined (by an external observer) that it will receive no
more input messages along some particular edge and the Ip cannot proceed further in
its simulation unless it receives this information. [For instance, in the example of the
primitive computer system (Example 3-3), the lp corresponding to M cannot proceed
any further unless it is told that Procl will never send it & message.  Another
example is Example 3-5, where process x must be told that it will never receive any
input along zx until x first sends a message. The first scheme we describe, using null
mesvhges [7], is effectively an implementation of this idea. We will also discuss some
other schemes which avoid deadlock by using different kinds of overhead messages.

4.2. Deadlock Resolution Using NULL Messages

We postulate a new Kind of message to be used in the simulator. (t,nul') sent
by Ip; to lpj means that pp; sends no message to PP; between the current edge clock
value of the edge from Ip; to lpi, and t; therefore any future message from Ip; to lpj
will have a t-component exceeding t. Clearly null messages have no counterpart in
the physical system. A null message is used to announce absence of messages.
Absence of messages in a physical system at time t is recognized by no message being
transmitted at that time. Unfortunately, the basic scheme of the last chapter cannot

guarantee absence of messages to an lp without sending it an actual (non-null)
message having a higher t-component value.

We now propose modifications to the basic algorithun of chapter 3 to
incorporate null messages. Let us first review the basie distributed simulation scheme
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of the last chapter. T; denotes the clock value of Ip, Whenever an Ip; receives a
message, it properly updates T;, and if T; changes in value, then lp, advances the
simulation of pp; up to T;. At this point, Ip; predicts for each outgoing edge, a
sequence of messages that the pp; would have sent. Thus Ip, typically gencrates
<ttﬂ,mjl),(tj,‘z,mj._,)...> for transmission to lpj, for every j to which it has outgoing
edges. Some of these sequences may be empty, in which case no message is sent to
the corresponding Ip. Suppose that Ip; can further prediet that after transmission of
this message sequence pp; will nol send any more messages to PP;, until time t.
Then, in the new proposed scheme, lp; sends (tj,null) to lpj after sending the genuine
message sequence. Since Ip;, knows the state of the corresponding pp up to time T, it
can predict all messages (that are to be sent) and absence of messages, at least up to
T;. Therefore, every outgoing edge will have a last message on it with tme
component equal to or greater than T;. Note that only the last message sent along
an edge may be a null message, in any iteration.

Reception of a null message is treated in the same manner as the reception of
any other message: it causes the Ip to update its internal state including the clock
value and (possibly) send messages.

Suppose it is required to simulate the physical system up to some time z. ‘Then
every source must send messages until the t-component of the last message equals z;
il no non-null message exists with this property then finally (z,null) should be seat.
Example 4-1

Consider the physical system shown schematically in Figure 4-1, below.

: source

1 unit

2 units Y

Figure 4-1: A Physical System with Loop

We will study the progress of one possible simulation run of this physical system.
The source sends out jobs which are processed at X for 2 time units. Jobs are routed
alternately to Y and Z from B,. Y processes a job for 1 unit and 7 for 4 units.
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very job loops through the system twice, i.c., the first time a job arrives at 1, it is
sent back to M, and on the second arrival at B, it is sent to the sink.

Table 4-1 shows a succession of message transfers, where each horizontal row is
a tirge slice and each column corresponds to a single activity of one of the processes.
Concurrency is apparent because there are several activities happening at one tine
slice, i.e., in vne row.

4.3. Correctness of the Simulation Algorithm
The partial correctness results of the last chapter still apply. The only
difference now is the presence of null messages. We define the simulation to be
correcl at some point, if it is correct according to the definition of chapter 3 after
ignoring null messages.
Theorem 1: Simulation is correct at every point
Proof: The proof is almost identical to the previous proof and hence
omitted here.
The next theorem shows the power of adding null messages: we show that we have a
deadlock-free system which can simulate a physical system up to time z.
Theorem 2: Assume that every source process sends messages until
the t-component of a message equals z. Then every Ip will simulate the
corresponding pp, at least up to z.
Proof: Consider the point where the simulation terminates, ic..
where all messages that have been sent have been received and no Ip has
any outstanding message to send. The following observation is eritical: for
every Ip [except a source Ip) there exists an incoming edge to that Ip whose
sedge clock value is less than or equal to the edge clock value of every
Zoutguing edge from that Ip. This observation follows because: (1) an Ip
that has received messages at least up to t along every input edge must
have sent messages (t',m’), t' 2> t, along every outgoing edge, and (2) every
message that has been sent has been received when simulation terminates.
Note that (1) could not be asserted in the basic scheme because an Ip need

not send out messages with higher t-component values than the input
MESsAges.

We now claim that the cdge clock value for every edge is at least z. If
not, consider an edge e for some Ip, whose cdge clock value is t;, with t,
< z. According to the above observation, there exists an edge ey, Which is
an incoming edge to this Ip, such that ey’s edge clock value is t,, where t,
< t;. Continuing in this manner, we can construct a sequence of edges,
i1 S
and we have, t; < z. Since the physieal network is finite, we will
eventually either (i) get to a source Ip, or {ii) we will have a cycle of edges.
[n the first case, since every souree Ip sends messages until the t-component

epCannntye such that for all i, e, | is a predecessor edge of ¢, and t
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of the last message sent is z, we can not have cdge clock value of any
outgoing edge of a source lp smaller than z. In the second case, all edge
clock values in the cycle are equal to t; and t; < z. From the
predictability property (chapter 2), for this cycle and this t,, there exists a
i pp, say ppj, whose outputs can be determined beyond t,, given its inputs
“up to t;- Hence lpj has some messages to send, which contradicts our
assumption that the simulation has terminated. Therefore the edge clock
value of cvery edge is at least z and hence the simulation clock value js at
least z.

We have implicitly used the fact that for any finite z, only a [inite
number of messages may be transmitted in the logical system. This is
derived from the predictability property, in which the paramcter €, € > 0,
is a fixed quantity. A more rigorous proof of this boundeduness
property may be found in [7}.

Discussion

It is interesting to note that the simulator never deadlocks: if the physical
system deadlacks, the simulator continues computation by transmitting null messages
with increasing t-values.  This correctly simulates the corresponding physical
situation, in that while time progresses, no messages are transmitted in the physical
system.  Ultimately, the simulator will terminate with every clock value at least at
z. The simplicity of this scheme is one of its most attractive points. 1t requires small
coding changes in existing distributed  simulations to send out null messages.
Furthermore, the requirement of unbounded buffers between two Ip's is not really
necessary.  The same results hold if there are only a finite number of buffer
spaces between every Ip; and lpj and Ip, has to wait to send if all buffer spaces are
curréntly full. The proof that there is no deadlock in this situation is essentially
contained in [7).

Empirical studies [28] show that this scheme is quite efficient for acyclic
networks, Several Tactors seem to affect the efficiency:

(1) Degrce of Branching in the Network

Consider a network with one source and one sink. The number of distinet
paths between the source and the sink is a (rough) measure of the amount of
branching in the network.  Null messages tend to get created at branches and they
may proliferate at all successive branches (if not subsumed). So one would expect
that the fewer the number of branches, the better the performance. LEmpirical
studies [28] seem to confirm this. Theoretically optimum efficiency is achieved for a
tandem network (the assembly line example of chapter 2, Example 2-4), and excellent
results are obtained fof low-branching type networks. In general, acyclic
networks exhibit reasonably good performance levels.  Note that the metric of
interest in performance caleulations, is the turnaround time, i.c. the amount of time
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it takes to complete the simulation, rather than processor utilization, i.e. the fra~tion
of time the processors are utilized. [n fact, one would expect the processors to be
lightly utilized. The other parameter of interest, line bandwidth, has not received
adequate attention.

‘ Experiments were carried out by Peacock, Wong and Manning [21,25] on
networks of various topologies. Their conclusions: *for some topologies of queucing
networks models, this approach results in a speedup in the total time to complete a
given simulation. lowever, for other topologies, especially those with loops, the
speed-up may not be significant.® They also investigated several different ways of
partitioning the physical network so that more than one pp may be implemented on
one lp.

(2) Time-Out Mechanisms to Prevent Null Message
Transmission

A slight modification may save a considerable number of message transmissions.
A null message (t,m) has no effect if it is followed by another message (t',m’), t'>t.
Therefore it may be efficient to delay transmissions of null messages in the hope that
future messages received by an Ip would make it unnecessary to transmit them at all.
Clearly the amount of time, 7, that an lp waits before transmitting a null message is
of importance. If r =0, we have the algorithm as stated in this chapter. If 7= 50,
null messages are never transmitted and then we have the basic algorithm of chapter
3. which may lead to deadlock. Other values of 7 are of potential interest, but no
empirical studies have been performed to substantiate our claims. ‘

(3) Amount of Buffering on Edges

_The number of buffer spaces on edges seem to have substantial effects on
perfgrmance [26,28]. When the number of buffer spaces was reduced to 0, senders
had to wait until the receivers were ready to receive, and a considerable amount of
time seemed to be spent in waiting. The number of buffer spaces was then increased
and the following rule was used to annihilate null messages: any message put in the
bulfer after a null message (and therefore with a higher t-component) annihilates any
null message ahead of it still in the buffer. The annihilation rule is somewhat similar
to the time-out mechanism. It was found that in the simulation of a certain class of
queueing networks the performance improved rapidly until the number of buffer
spaces on an edge approached 10, increased less rapidly until about 20, and remained
essentially unchanged thercafter. These numbers however cannot be applied directly
for other problems; we expect these numbers to depend on the type of problem and
the speeds of processors and lines.

We discuss various issues related to empirical investigations in the next chapter.
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4.4. Demand Driven Null Message Transmission

Another variation with null message transmissions is not to transmit a null
message until asked to do so. In this scheme, an lp; may receive an inquiry fron
> another Ip; where there is an edge from lp, to lpj. lpj sends an inquiry to find out
' when Ip; will send it the next message. I Ip; has a genuine message to send or a null
message, which will advance the edge clock value, it will do so in response to this
inquiry. Il it cannot send any such message, lp; must itsell be waiting for one or
more of its incoming edge clock values to advance and hence it propagates this
inquiry backward along those edges. The inquiry may be propagated along a
sequence of edges. lp; must remember to respond to the inquiry as soon as it can, i.c.,
as soon as its own clock value advances. An lp may receive several inquiries before
responding to any of them. In this case, it will propagate at most one, wait for the
reply and then reply to the others.

AT e e

.
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A particularly interesting part of this scheme is the detection of deadlock. In a
situation as in Example 3-5, an inquiry initiated by x is propagated backward and
arrives at X. Ip x can then detect deadlock. Resolution of deadlock requires finding
the Ip which has the smallest edge clock value t along some input edge, ignoring the
set of deadlocked edges. This Ip can then assert that it will receive no more input, up
to t, along the deadlocked edge. Therefore it continues simulation assuming that it
has received (t,null) along the deadlocked edge. In this example, x is the only process
having edges outside the deadlocked set. Therefore x simply stops waiting to receive
from z and advances its clock based on input from the source alone.

The claim that the inquiry propagation mechanism does indeed detect deadlock
L and that at most one inquiry by an lp is outstanding at any time, is not entirely
F trividl to prove; see [10,11] for discussions of a similar problem and its proof. A\

reasonable heuristic for an Ip to initiate an inquiry may be based on time-outs.
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4.5. Rollback and Recovery
A scheme suggested by Jefferson and Sowizral [18] allows an Ip to proceed with
its computation, with the belief that it will receive no further input along an
incoming edge if it has not received any during a certain time period. Suppose that
Ip; changes its state from s to s’ and sends out messages Ml,l‘vlz,..., as a result of this
belief. Suppose that in the future, a message is received along an edge which
P contradicts this assumption. Then the state of the lp must be rolled back to s; in
e addition, states of other Ip’s which may have received M ,M,,... must also be rolled
back. It is proposed to use a stack in which some of the recent states of an Ip may be
retained; the bottom of the stack is a guaranteed correet state at some point, and
hence there will be no further rollback beyond that state. *Antimessages® M,"\,"...
] are sent to cancel the effects of the corresponding messages and roll back the states of
the Ip’s which previously received M\ M,,...
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If processor speeds, speed of simulating a pp by an lp, line delays, cte. can be
accurately predicted, this method may turn out to be quite practical. In such cases,
one would expect to have few rollbacks. However it seems that, in general, large
amounts of memory would be required to stack the states and a large number of ‘
antimessages will have to be transmitted whenever a rollback is required. 1

4.6. Circulating Marker for Deadlock Detection and Recovery

A suggestion has been made in [9] to let the basic simulation scheme deadlock,
detect deadlock and recover from it. Deadlock is infrequent, as has been suggested
by Quinlivan [26] from a number of empirical studies on queueing networks.
Therefore one would expect this to be a viable alternative if deadlock detection can
be implemented cfficiently. Dev Kumar [20] has used a recent deadlock detection

{ scheme [22] to implement such an algorithm. We now discuss his method and several

{ of its variations. :
r Consider a marker that continuously circulates in a network. It follows a cycle ]
L; of edges such that it traverses every cdge of the network sometime during a cycle

LL— - such a cycle exists if the network is strongly connected; new edges may be added to .
the network to make it strongly connected. The marker is merely a special type of +
:_A message. It initially starts at some Ip. If an lp receives the marker, its obligation is g
to send the marker (along its designated route) within a finite time of being idle (i.c., )

not having anything more to send). We let the marker carry some information for
deadlock detection, as described below.

iZach Ip will have a one-bit flag to show whether the lp has received or sent a
message sinee the last visit of the marker. We say that an Ip is white if it has neither
receiyed nor sent a message since the last visit of the marker to that lp; the Ip is
black otherwise. Initially all Ip’s are black. The marker declares deadlock when it
finds that the last N Ip's that it has visited were all white (when the marker arrived
at the Ip), where N is the number of lp's in the network. This result holds if
messages between two 1p's, including the marker, are received in the order sent; see
J [22] for a precise description and proof of this result.

We can use this scheme to detect and recover from deadlock. The marker, in
addition to keeping the number of white Ip’s it has seen since it last saw a black Ip,

- carries the minimum of *next-event-times® for the white Ip’s it visits: each white Ip
k- . . . .

‘ can report the time of the next event, assuming it receives no further messages, to the
- marker and the marker merely keeps track of the smallest of these, and the
- corresponding lp.  When the marker detects deadlock, it knows the next event time
- and the lp at which this next event occurs. Therefore, it can restart that lp.
;Z: Alternately, a central process may broadcast (send messages to all Ip's) to advance
4 their elocks to the next event time in the system.
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The overhead messages in this case, are for marker transmissions. Il deadlocks
are infrequent, the marker may be made to move slowly (and therefore the deadlock
may be detected quite some time after its occurrence) and hence the proportion of
overhead messages io genuine messages will be low.

4.7. Circulating Marker for Deadlock Avoidance

The marker scheme of the last section can also be used for deadlock avoidance.
The idea is to let the marker carry messages. If Ip; is sending the marker to ij, it
may send a message (t,null), advancing that cdge’s clock value as much as possible.
If Ip; cannot advance the clock value of the edge to lpj, it still must send the marker,
without a message, in finite time. The marker carries no further information. Using
essentially the same arguments as in theorem 2 of this chapter, the system can be
shown to be deadlock-free.

Overhead messages are for marker transmission; however, unlike null messages
there is no proliferation of such messages. Another way to view this gcheme is to
consider the marker as a circulating packet which carries only null messages (or is
empty) and delivers the messages to their destinations. The number of null message
transfers is bounded by the marker's rate of traversal. By suitably adjusting the
speed of the marker, i.e., the length of time for which an Ip holds the marker before
sending it, we can expect to reduce the number of overhead messages and still avoid
long delays by the lp's.

Dev Kumar is currently investigating the performance of these schemes and
several variations of these, including the use of multiple markers.

-
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5. Surnmary and Conclusion

s . In this chapter we summarize the discussions about distributed simulation, its
status, problems and future research directions. We hope to have demonstrated that
distributed simulation may be applied in every situation where sequential discrete
event simulation can be applied. Our examples have been predominantly from the
area of computer systems, since a queueing network description of a computer is a

i physical system in our method. However, our physical systems encompass a large
» variety of real world applications; the only difference from sequential simulation

modelling is to think in terms of pp's and messages rather than entities and cvents.

We have presented the methods of distributed simulation, but we have not
shown how these may be implemented on existing or future machines. We first note
that simulation of a pp by an lp can be realized in any simulation language - some
particularly suitable ones are SIMULA [13], CSP [16,19], MAY [2], ADA (1],
DEMOS [5], SAMOA [21]. Al these languages provide enough abstraction
mechanisms to describe the behaviors of elementary components and message
communications among them. Hence, we contend that distributed simulation
requires nothing more than a language for creating sequential processes and
specifying their communications.

Implementation of distributed simulation therefore reduces to implementation
of a,message-communicating set of processes on some architecture. The logical
syst(:m should then be partitioned among various processors in such a manner that
the message traffic among various parts is as low as possible.  Message
communication may be accomplished either through a common memory (messages
are deposited in a common memory by the sender and removed by the receiver) or by
other interaction mechanisms among processors. The important criterion is how
loosely coupled the processors are. II two processors are tightly coupled, i.e., the
logical processes on these processors exchange a large number of messages, then the
processors must also exchange at least that many messages and therefore the message
teaffic will be heavy. If processors are loosely coupled, they can operate
| autonomously, i.e. without communicating with other processors, for longer periods of
time. It is also easier to avoid deadlock among a set of logical processes if they are
simulated on one processor.
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We have not yet explored the possibility of deadlock detection by a global
processor which continuously observes message transmissions through the common
memory. Unlike the manager of the event-list in the sequential simulation of Chapter
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2. this global processor remains completely passive, i.e., in the background, until it
deteets deadlock. The global processor can resolve deadlock in an elegant manner: it
transmits a null message ( by depositing it in the proper memory location ) which
advances the edge clock value of an appropriate edge, such as zx in Example 3-5.
This, technique seems to be a viable alternative when simulation is attempted on
multiple processors sharing a common memory.
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E 5 Static partitioning of the physical network among a fixed number of processors
- requires preprocessing prior to simulation. Preprocessing is useful for many other
reasons. In the circulating marker algorithm, preprocessing is needed to determine
S (static) cyclic path for the marker. Preprocessing could also be used to partition the
Ip's such that the amount of branching is reduced and cycles are mostly contained
within one processor. Preprocessing can determine other simulation parameters such
as when to time-out, sizes of buffers on edges, etc. This is an area that has heen
extensively studied for sequential simulations. It needs to be studied again for
distributed simulation since the problems are somewhat different in nature.

We have sketched several variations of the basic scheme for deadloch
resolution. There is little evidence yet of the supceriority of any one scheme.  Fhe
large number of heuristics suggests that some combination may be appropriate for
particular problem domains. For instance, if we use a set of uniform Processors
among which message communication is expeeted to be regular, we can expeet that
deadlock will rarely arise and therefore (a slowly) circulating marker scheme would
be preferable. The circulating marker scheme also seems to be attractive in that it
can be used (hopefully without much overhead) in more general eases. Alo the
marker can be nsed to colleet statistical information about the simulation itsell and
hence the simulation parameters, such as time-outs, can be dynamically changed.

’
.

We have not discussed specific architectures that can support simulation.
There is not enough experience with distributed simulation to know (1) where
distributed simulation spends most of its time, and (2) whether any architectural
improvement  would be unilormly useful for all problemis. At present, any

architecture that supports (static) creation of processes and communications atong
them would be appropriate.
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The circulating marker scheme seems attractive for hardware implementation.
A hardware marker, analogous to the token in a token-ring, could cyele among the
processes. Processes send genuine messages as before. Our requirement that messages,
including the marker, be delivered in sequence sent, along an edge, can be met as
follows: when the marker is sent from Ip; to Ip,, it is given the t-component of the last
message sent by Ip; to lp when the marker arrives at ij it stays there until lp has
received 2 message “nh a t-component equal to or higher than the one th: xt the
marker has. Otherwise the marker algorithm operates as before. Advantage of
Shardware marker is that the simulation will spend no lime in om'rlmu[ message
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transmissions. The simplicity of the marker traversal scheme makes it feasible to
. implement it in hardware.

We next discuss some of the glaringly open problems in distributed simulation.
The most important current problem is cmpirical investigations of various
heuristics on a wide variety of problems to establish, (1) which heuristics work well 7
for which problems and on which machine architectures, (2) how to partition the §
physical system among a fixed set of processors, and (3) how to set simulation
parameters such as time outs and buffer sizes, ete. Some of the difficulties in
empirical studies are listed below. First, it is useful to have a distributed architecture
on which measurement capabilities exist, for implementation of the distributed
simulation algorithm. The advantage of such a scheme is that processor and line
speeds are realistic and that the implementation is quite straightforward.  Another
possibility is to first use a sequential simulator to simulate a distributed architecture
and then implement the simulation algorithm on this (simulated) distributed
architecture. One advantage is that the architecture can be continuously varied and
its effect on simulation studied. This is the approach that is currently being taken at
the University of Texas at Austin. MAY [2], a sequential process simulation language
is being used to describe the distributed architecture and the distributed simulation
algorithm.  MAY is itself a simulation tool and hence its statistics-gathering
mechanisms are used to colleet and analyze the behaviors of various distributed
simulation schemes.
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A major disadvantage of this 2-tier approach is the actual CPU time required
to run experiments. Not only does each experiment take longer, but the ease with
which the parameters of the experiments can be changed has encouraged us to
attempt many more experiments. A multiprocessor architecture, perhaps with a
comshon memory, would provide an ideal simulation environment.

‘Traditional simulation issues have not been addressed in this monograph: what

data to collect, how to collect it in a distributed manner, how to repeat experiments k
for statistical validity (a new experiment may be started even before an older one is i‘
completely over), ete. We feel that it is premature to address these isstes without a :
firm understanding and resolution of the most basic issues. :
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PROCESSOR QUEUEING DISCIPLINES IN DISTRIBUTED SYSTEMS
Elizabeth Williams!

Computer Systems Group, C-8
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

Abstract — A distributed program consists of processes, many
of which can execute concurrently on different processors in a
distributed system of processors. When several processes
from the same or different distributed programs have been
assigned to a processor in a distributed system, the processor
must select the next process to run. The following two ques-
tions are investigated: What is an appropriate method for
selecting the next process to run? Under what conditions are
substantial gains in performance achieved by an appropriate
method of selection! Standard processor queueing discip-
iines, such as first-come-first-serve and round-robin-fixed-
quantum, are studied. The resuits for four classes of queue-
ing disciplines tested on three problems are presented. These
problems were run on a testbed, consisting of a compiler and
simulator used to run distributed programs on user-specified
architectures.

1. Istroduction

When » problem has large computational demands and
there is a network of processors available, a programmer can
utilize the computational power of many processors. The pro-
grammer divides a problem so that pieces of the probiem can
be computed in paraliel. It is common to see processors con-
pected by local area networks. To eflectively run a distri-
buted program ob s local area network as well as other inter
connection petworks, s good queueing discipline must take
into account that its processor and other processors have
pieces of the same program.

When several processes from the same or different distni-
buted programs have been assigned to a processor in a distni-
buted system, an important design question is how a proces-
sor selects the next process to run. This problem bas not
been considered in a distributed environment. Ao interesting
question arises: He w do the processes at other processors and
communication delays in the system impact the selection of
the next process to run? As a beginning study we bave inves-
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tigated the standard queueing disciplines - first-come-first-
serve, round-robin-fixed-quantum, preemptive priority, and
nonpreemptive priority - in a distributed eavironment. The
study shows that the response time metric can difer by 5092
with different choices of queucing disciplines for three prob-
lems.

Another important que<tion is under what conditions
are substantial gaina in performance achicved by an
appropriate method of selection. Communication delays are a
factor; thus a graph of the response time metric was plotted
as communication delays varied for each of the three prob-
lems. Trends are observed in these graphs. A rationale for
the trends is given based on several factors.

The queueing disciplines were studied with three prob-
lems that difler functionally and have diflerent behavioral
characteristics. The partial diferential equation solver is
based on an iterative grid technique that is similar to those
used in multidimensional spplications such as weather predic-
tion, structural mechanics, bydrodynamics, heat transport,
and radiation transport. The centralized mobitor has the
typical tree structure of bierarchically designed applications.
The producer-consumer pairs represent a multiprogramming
envirooment in the distributed system and each pair is
representative of s large class of problems. The different
behavioral characteristics are described in Section 5.

lo Section 2 » model of the distributed architecture and
the distnibuted language sre described. The metric for com-
paniug the performance of the different queueing disciplines
and a description of the testbed are given in Sectiop 3. In
Section 4 we give & heunstic for assigning priorities for the
priority dependeut queueing disciplines Section 5 describes
the distnbuted programs snd architectures on which each
problem executes The results are given in Section 6. S-c-
tion 7 describes the ampact of queucing disciplines In
Appendiv A » more detailed deacription of the simulator is
given.

2. Model of Distributed Computing

3.1, Distributed Architecture

The distributed architecture is characterized by the
pumber of processors, the speed of each processor, the queue-
ing discipline st each processor, and the lises that connect
the processors. The lines may have different capacities,
lengths, and error rates. The processors have no shared
memory and they communicate only by messages. \We
assume that any processor can communicate with any other
processor by routing messages through intermediate
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proccssors over fixed paths.

8.3, Distributed Language

A program in the distributed language consists of
processes that communicate and share data by using mes
sages. The language is similar to CSP, which is described in
{2]. The language uses synchrosous (blocking) communica-
tion primitives; the sending process cannot proceed until the
receiving process is ready to receive the message. The two
message passing cobstructs are the [/O statements,
SEND{1/O variable) and RECEIVE(1/O variable). For each
corresponding pair, SEND(I/O variable) and RECEIVE(l/O
variable), that is executed, there are two nonblocking mes
sages sent at the protocol level that implements the language.
In this language there is a static number of processes.
Dynamic creation of processes is simulated by a process
beginning execution only after some other process sends it a
measage.

1.3, Termlnology

We define virtual line time for a message between two
processors connected directly by a line as the product of the
actus) time to move the message over the line and a constant
derived from line reliability and the overhead of lower level
protocols. The sctual time to move the message over the line
is the usual function of message length in message wupits
(packets), number of bits per message unit, line capacity, and
line length. Virtual line time does not include the time a
message waily to use the communication subnet. Virtual line
time for a message between two processors is the sum of the
virtual line times for the lines on the route. Currently in local
area networks, lower level protocols executing in the proces.
sors usually reduce the physical line capacity by at least a
factor of 10 for any message [I]. Viiiual line time reflects this
eflective line capacity.

The message delay of a process for a synchronous com-
munication as in CSP is a function of virtual line time,
queueing at the port queues on the route in a store and for
ward network, and the processing, waiting, and queueing
time of the corresponding process at its processor. Message
delays can be very large compared to a process’s processing
time between communications.

In the testbed 1 unit of time can be thought of as
ws. For local arca networks where processors are 1 km apart,
trapsmission rates of 10 Mbit/s are common. For a packet of
256 bits it takes approximately 29 s to send a packet over
the line. With the factor of 10 or more for lower level
protocols, 300 time upits is a reasonable number for virtual
line time in this model of a local area network.

An important performance factor to consider is the tra-
deofl of processing time versus communication delay. To do
a study on this tradeoff we must vary cither processing or
communication time. Since each process of a program has a
fixed amount of processing, we bave chosen to vary the com-
munication time to study this tradeofl. Even though virtual
line time varies beyond what may scem reasonable for our
model, e stress that it is the ratio of processing time to com-
munication delay that is actually changing and the ratio is a
more meaningful factor to consider.

For cack problem in this paper, we assume all the pro-
cessors bave the same speed, all lines are identical, and a
message upit i 256 bits. \We alvo assume that on any simula-
tion run all processors bhave the same queueing discipline
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These assumptions are made to isolate the effects of the
choi-e of queueiung discipline from other system variables

3. Testbed and Metric

The metric for comparing various queueing disciplines is -

defined as follows. All the processes of a distribted program
are assumed to start at time zero. Each process ; termipates
at some time, t{i). The metric is the sum over N processes of
the termination times (i) divided by N, and is termed the
average of the process termipation times (APTT). APTT
reflects both the instruction processing requirements of
proceases and the message dclays. Total time, defined as the
maximum (i), is not always a good metric for comparing
queueing disciplines, because when message delays are very
small, total time is comparable for all queueing disciplines.

The testbed runs distributed programs coded in the dis
tributed language mentioped above, whick is similar to CSP.
In addition to the distributed program, the testbed also
requires a specification of the distributed architecture. Tke
testhed consists of a compiler, interpreter, and simulator.
The compiler produces pseudo-instructions for the bypotheti-
cal processors in the distributed systein. The interpreter exe-
cutes the pseudo-instructions. The simulator manages the
interpreter, processor queues, and port queues and executes
protocol routises. The simulator is based on the work
presented in [4] and was validated extensively using commer-
cial analytical and simulation packages [2,5). A more
detailed description of the simulator is given in Appendix A.
4. Queueing Disciplines

The queueing dixciplines tested were first-come-first-
serve (FCFS), round-robin-fixed-quantum (RRFQ),
ponpreemptive-priority (NPP’), and preemptive-prionity (PP)
{1). The two priority disciplines NPP and PP must assign
priorities to the processes. In a I'P discipline il an expected
message arrives for a blocked process of higher priority, the
blocked process preempts the currently running process. [n
the foliowing discussion we motivate and give a heuristic for
assigning priorities.

Suppose that there are three processes on a processor
ready to executc and that oaly one of these processes, process
1. must ever communicate across a line with another process
oa a different processor. Processes 2 and 3 communicate with
cach other and process 1. A good discipline will first let pro-
cess 1 execute and block for communication across the hine.
While process 1 is blocked, processes 2 and 3 are executed
Hopelully, a measage will arrive for process 1 and wake it up
so that it is ready to execute before processes 2 and 3 bluck
A poor dincipline will always execute processes 2 and 3 before
process 1 Thus, all processes are blocked until a mevsape
arrives for process 1; the processor is idle for a longer period
of time waiting on a message. The good discipline reduces
the idle periods of the processor and thus, decreases the time
when the processor finishes exccuting all processes. The good
discipline must also determine which of process 2 or process 2
to exccute first. A good selcction depends on the characteris-
tics of these processes.

Generally we have observed that acheduling a single
processor in a distributed architecture must be analyzed con.
sidering both the single processor {local component) aud the
distributed enpvironment (global componcat). Our bheuristic
for assigning priorities is given as follows:

o Processes that commupnicate across a line are assigned
high priosity (highest priority when mesvage delays are
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large since the global component is more important).

e A process on which several other processes may wait (a
bottlepeck process) is sssigned high priority (highest
priority when message delays are small since the local
component is more important).

e  Any other processes are assigned lower priorities to
approximate shortest-remaining-time-first (SRTF) [4].

Thus s good priority discipline should generaliy give highest
priority to those processes communicating scross & line in
order to minimize the processor idle periods and thus to
finish executing all processes at the processor sooner. The
discipline sbould be precmptive so that messages over the line
can be received by the corresponding process as quickly as
possible. Choosing priorities using this heuristic is demon-
strated in the problems in the next section.

A priority discipline with priorities assigned as described
above is denoted by PPg for preemptive priority and NPPg
for nonpreemptive priority. A preemptive priority discipline
with priorities sssigned in such a way a3 not to foliow the
heuristic given above is denoted by PPp; processes that com-
mupicate across lines and bottleneck processes are assigned
lowest priority, and all the other processcs are assigned
highest priority. We have found that PPg usually does better
than FCFS, RRFQ, PPp, and NPPg; PPp does the poorest.

§. Problems

The problems tested are a partial differential equation
solver (PDE), » centralized monitor (MONITOR), and a ays-
tem of five producer-consumer pairs (PC's). For each prob-
lem we present a brief description of the program and »
figure that represents the distributed program, architecture,
assignment of processes to processors, and priorities for both
PPg and NPPg. Each process is represented by a circle with
the process number in the circle; the total instruction pro-
cessing time requirement per process is given below each cir-
cle. The priority for a process is given above each circle. The
number and average size in message units of messages sent at
the program level between two communicating processes is
given above each line as the ordered pair (numbersize).
Values for communication and processing time are obtained
by running the program on the testbed with any assignment
and architecture; for these programs these quantities are
independent of the architecture and assignment. Circles
enclosed in a box mean that the enclosed processes are
assigned to one processor. For each problem the processors
are identical and the virtual line time for 3 message unit is
the same between pairs of processes that must commuunicate
over a line.

§.1. Partlal Differential Equation

We solve Laplace's partia! differential equation on a grid
with the outer edges of the grid given ss boundary condi-
tions. The iterative method used is Gauss-Seidel. The grid is
partitioned into subgrids where each subgrid is some number
of contiguous rows. Each subgrid is solved by a process in
the same way s sequential program would solve the entire
grid A grid value is computed as the average of its four adja-

cent peighbors; thus, to comruu s row of values, the two
adjacent rows are required. Hence, a process must request

the two rows contiguous to its subzrid from its two neighbor
ipg processes. An importast property of these processes is
that they must remain closely synchronized. No process can
compute very far ahead because it requires rows that canuot
be ccmputed unless the other processes execute.
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Figure | shows the atructure of the problem that runs
on two processors. The two processors are connected by &
line with virtual line time for a message unit set at 592 time
units. la previous work we found tbat the assignment indi-
cated in Figure 1 is best for this architecture [5].

All processes are comparable; there is no bottleneck pro--

cess because each process is logically equivalent and com-
putes ap equal number of rows. Since each process must exe-
cute one time per Gauss-Seidel step over the same size
subgrid, there is o need to assign priorities to approximate
SRTF. The two proceases that communicate over the line are
given bighest priority. For PPg and NPPg, processes 3 and 4
were assigned highest priority at 1.0; the others were assigned
lower priority at 2.0. For PPp, processes 3 and 4 were
assigned lowest priority at 2.0 and the others were assigned
bighest priority at 1.0. PPg performed the best of the discip-
lines tested.

6.3. Centralised Monitor

The centralized monitor consists of a resource process
and three groups; cach group consists of a requester process
and ita three user processes. Each user process executes some
given amount of time and then makes a request to use the
resource through its requester process. The requester process
passcs the user request on to the resource process. This is
repeated 20 times before a user terminates. The processing
times per iteration were chosen ao that (1) there is & small,
medium, and large processing user process at each processor
and (2) the sum of the processing time of the users at each
processor is approximately the same at each processor. An
important property of these processes is that a user process
can compute to lermination even whea no other user process
has executed. Howcver, a user process must share the
resource and a requester process with other user processes.

Figure 2 shows the structure of the centralized monitor
that runs on four processors. Processor 4 is copnected
directly to processors I, 2, and 3. Each line bas a virtual line
time of 58 time units for a message unit. In previous work we
found that the assignmeat indicated in Figure 2 is best for
this architecture [5].

The requester processes are 10, 11, and 12. A requester
process has high priority because it is a bottlencck and also
because it communicates over 8 line. The user processes - |
through @ - at each processor are not identical because of
differing processing requirements. The user processes are
assigned priority using the average processing time between
1/O statemeots to estimate CPU bursts and thus to approxi-
mate SRTF. For PPg and NPPg, requester processes 10, 11,
and 12 get priority 1.0; user procesues I, 4, and 7 get priority
2.0; uscr processes 2, 5, and R get priority 3.0, user processes
3, 6, and 9 get priority 4.0. For PPp, processes 10, 11, and
12 get priority 2.0, while all user processes 1 - 9 get priority
1.0. SRTF is an important component of the priority discip-
fine because a user process with a small burst time can finish
earlier than the others and thus decrease APTT. Resource
process 13 has priority 1 for each priority discipline. It is the
only process on its processor; thus the choice is arbitrary for
each priority discipline. PPg performed the best of the dis-
ciplines tested.

5.3. Producer-Consumer Palrs

There are five producer-consumer pairs. Figure 3 shows
the structure of the problem that runs on two processors.
The two processors are connected by a line with virtual line
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time for » message unit sct at 346 time units. Processes 1 to
§ are producers; processes 6 to 10 are consumers. Each pair -
(1,6) (2.7) snd (3,8) - bas one-third the processing require-
ment of each pair - (4,9) and (5,10). Each producer sends 40
messages to its corresponding consumer. An important pro-
perty of this problem is that each producer-consumer pair
cab execute to termination independently of the other pairs.

One pair of processes commupicates over the line and
botk are given highest priority. There are no bottieneck
processes in this example. The two pairs with the large pro-
cessing requirements should get lower priority to approximate
SRTF. Priorities for PPg are assigned ss follows: processes 3
and 8 get priority 1.0; processes 1, 6, 2, and 7 g3t priority 2.0;
processes 4, 9, 5, and 10 get priority 3.0. For PPp, processes
3 sod 8 get priority 2.0; the other processes get prionity 1.0.
Since each pair can terminate independently of the other
pairs, one process waiting on s line cannot cause all the
processes on that processor to block as can happen in the
other two problems. For this problem PPg performed the
best of the disciplines tested.

6. Results

The resuits for each program and its architecture are
gives in Table 1. Of the disciplines tested, PPg is the best
while PPp is the poorest. RRFQ always does better than
FCFS; this is probably due to its preemptive characteristic.
The nonpreemptive priority discipline, NPPg, is poorer than
RRFQ for both the PDE and MONITOR problems. The per
centage increase in APTT from PPg to PPp as computed by
(max APTT - mia APTT) / (min APTT) is 32% for PDE,
49% for MONITOR, and 57% for PC"s.

We have also experimented with varying the virtual line
time and thus the message delays. The same assignment of
processes to processors was maintained. The graph for each
problem is given in Figures 4 - 8. These graphs show some
conditions under which the choice of queueing discipline has
sn impact.

7. Impact of Processor Queuelng Disclplines

The graphs for each problem show different trends. The
graph for the PDE shows that at small virtual line times, the
choice of queueing discipline bas po impact. The graph for
the MONITOR <hows that at large virtual line times, the
choice bas no impact. The graph for the PC's shows that the
choice has an impact for all the virtual line times tested. In
order to explain some of the trends in the graphs geperated
by this experiment, a rationale was developed. It is used to
explain the trends in the graph where virtval line time and
thus message delays vary. The rationale is a partial solution.

7.1. Ratlonale

The rationale is based on two asrumptions. (1) A good
beuristic for minimizing APTT is to minimize the idle time at
each processor. (2) There are two components of a discipline,
the local snd global components, and they vary in their con-
tribution to the scheduling of a processor.

For & simplistic rationale one can say two things. (1)
When virtual line time is very small, the local component of
the discipline is more important. (2) As virtual line time
increases, the global compoaent of the discipline becomes
more important. However, this is pot enough. The process
ing time must be considered.

A more careful rationsle compares the delay a process
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cap incur when waiting on 2 message to the remaining pro-
cessing to be done at its processor unti) all proresses are
blocked. For & send or receive statement, the delay D(j) for
1/O variable j is the time that the process is in a wait state

for the 1/O variable j. It is at most the sum of the virtual .

line time to the corresponding processor, the virtual line time
from the corresponding processor, queueing time at the
appropriate port queues, and the processing, waiting, and
queueing time of the corresponding process at its processor.
When a process communicates with its corresponding process
on the same processor, the delay does not include any virtual
line time or port queueing time.

A function is described that measures the processing
that can be overlapped when a process waits for a message.
Busytime(k,s,t) is the amount of processing time remaining at
time t until all processes are blocked at processor k, which is
scheduled by discipline s. It is a function of the problem, the
burst times between communication statements in processes,
the processor’s queucing discipline, and incoming messages
from other processors. We are interested in this function
only at those times when a process enters a wait state.

Suppose a process enters s wait state at time w for 1/O
variable j on processor k. If busytime(k,sw) > D{j), then
there is no idle period for the processor for this communica-
tion. A good global discipline should always try to maintain
this inequality for each message over a line at all processors
to avoid idle periods. If busytime(ks,w) < D(j), then ap idle
period will result from this communication. Note that an idle
period can not happen when two processes on the same pro-
cessor are ready to communicate with each other; one process
or the other can execute. Idle periods for a processor can
only result from a communication across a line. Thus, for
each communication across a line, the ratio
D(j)/busytime(k,s,w) is defined when a process enters a wait
state at time w.

For the preemptive priority discipline, PPg, the average
R of these ratios at a processor can give us a measure of how
busy a processor is for a problem. R < 1 implies that on the
average 8 processor is not idle. However, processor idle
pericds cannot be avoided when communication delays are
very large compared to the largest amount of processing
available at a processor under any queueing disciplioe.

If R< <1 then for any communication the processor was
usually busy when a process was waiting on a message. If
R>>1 then for any communication the processor became
idle most of the time while a process was wuiting on a mes-
sage. We have assumed that for any discipline there is a
local and global component. It seems rcasonable that (1)
when R< <1, local scheduling is a more important com-
ponent since the processor is infrequently idle and (2) when
R>>1, global scheduling is a more important componeat
since global scheduling is responsible for minimizing the idle
periods.

R was estimated but not computed; thus the following
analysis is qualitative. At each processor, R changes as vir
tual line time is varied. There are many factors to consider
but generally we can say that when virtual line time increases
for all lines, each D(j) increases while each busytime(k,pp,w)
does not increase, where pp is the discipline PPg. D(j)
increases  because of the larger virtual line  time.
Busytime(k,pp,w) cannot increase because incoming messages
arrive later. Thus, R at each processor increases as virtual
line time increases for all lines.
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., R has been defined for s single processor. We can
extend the idea of how the size of R relates to global and
locs! components of scheduling st a single processor to the
entire set of processors since R increases for all processors as
virtual line time increases for all lines. We define a measure
R* for the entire set of processors as the average of all R.

The grapbs ip Figures 4 - 6 plot APTT versus virtual
line time. For the PDE and centralized monitor when virtual
line time varies over a reasonable range of values, we have
estimated that R* varies from much smaller to much larger
than 1. For the producer-consumer pairs program, R* could
pot be forced to vary because of the disconnected communi-
cation structure. Each producer-consumer pair assigned to
the same processor can execute until termination. Thus at a
processor k, busytime(k,pp,w) is very large when the one pro-
cess that must communicate over the line enters a wait state
at time w. There are always two producerconsumer pairs to
execute until their termination.

To analyze the trends in these graphs, we look at d,
which is defined as the difference of the maximum APTT and
the minimum APTT at a given virtual line time. The
minimum APTT should correspond to a good discipline,
APTTg, while th~ maximum APTT sbould correspond to a
poor discipline, APTTp. Thus, d should give us a bourd on
how queueing disciplines can impact APTT. If d is small, the
choice of queueing discipline bas no impact because all dis-
ciplines produce approximately the same metric value. If d is
large, the choice bas an impact on performance because the
good discipline and poor discipline produce metric values
that sre pot close.

Diflerept trends are observed in Figures 4 - 6. A
rationale to explain these trends is:

e For R*< <1, d can be large or small. The local com-
ponent of scheduling is more important. If all processes
are comparable (no bottleneck processes and each pro-
cess has the same approximate processing burst), then
all disciplines are comparable and ¢ is small. If the
processes are different then the discipline can make a
difference and d is large.

e For R*=1, both the local and globa! components are
important. The size of d depends on the how the prob-
lem responds to the components.

e For R*>>1, d can be large or small, and d ->> con-
stapt. The global component of scheduling is more
important. Each processor is mostly idle until a message
arrives. If oply ome process is ready at a CPU queue at
a time and the processes order themselves, then d is O
for large enough delays. This is the case for the central-
ized monitor. If all the processes become ready at a
CPU shortly after a message arrives for a process L, then
runping L is important becsuse it communicates across a
line. dis the time when L is ready to run but the other
processes are scheduled shead of L. This time is con-
stant for large euough delays, and thus d is a constant
and can be large. This is the case for the PDE.

7.8. Discussion of Graphs

Fach graph plots APTT as a function of virtual line
tyme, where virtual line time varies from 50 to at most 1200
time unity. L xperiments were condurted outside this domain
but were not plotted because no additional information was
provided. ‘Trends established at the endpoints costinued
bevond the interval plotied.
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For the PDE, each process is logically comparable and
each process works on the same size subgrid. For R*< <1,
the order in which processes are executed is not very impor-
tant; thus there is little difference in the queueing disciplines
and d is small. For R*>>1, all processes at a processor
block because they are closely syochronized and cannot
proceed until the process, waiting on a message across the
line, receives the necessary row. In Figure 1 for processor 2,
this is process 4. Process 4 computes the points in the middle
of its subgrid and then commuaicates with its neighbor pro-
cess 5 on the same processor. At this point (1) process 4 is
ready to begin the next iteration step and communicate with
its neighbor process 3 on the other processor again and (2)
process 5 and in turn its peighbor 8 are ready to run. d is the
difference due to executing process 4 first or last. d depends
on whether or not the disciplines overlap waits and process-
ing. For PDE, d is large.

For the MONITOR, the three requester processes and
the resource process are bottleneck processes. The user
processes have different processing bursts. For R* < <1, the
choice of discipline has an impact and d is large. For
R*>>1, the user processes are all blocked most of the time
waiting on the resource to get and process their requests.
When a message arrives for a user process U, oply U is
unblocked since all the user processes are independent. U
executes and sends a message to the requester without interr-
uption. Since only one process at a time is on the CPU queue,
the queueing discipline never has to make a choice; thus d is
smal!.

For the PC's, the choice of discipline has an impact over
the virtual line times tested. R* does oot vary over a large
range for the virtual line times tested because of the discon-
pected structure of the problem; there is always a process
ready to run. This keeps busytime large relative to the vir
tual line times tested; thus R*<<I1. Since pairs differ in
their processing bursts it is important to approximate SRTF;
d is large and thus the choice of discipline has an impact.

8. Conclusion

We have presented the results for five queueing discip-
lines tested on three problems. The disciplines tested are
first-come-first-serve, round-robin-fixed-quantum,
nonpreemptive-priority, and preemptive-priority with two sets
of priorities. A heuristic is given to assign prioritics. We
found that the preeraptive priority discipline with priorities
assigned according to our heuristic was the best discipline
tested. We also found that the choice of queucing disciphine
varied in its impact on performance. A rationale is given to
predict when the choice of discipline has the most impact.
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Appendix A

The testbed consists of a compiler and a simulator. The
simulator includes operatiug system routines, netwerk proto-
col routines, and an interpreter. The compiler produces
I’code instructions (instructions for the bypothetical proces
sor) for cach process. The simulator Las two types of events
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e laterpret Pcode instructions for processes on processor i
until time for the next event or until processor i bhas no
processes to execute. We refer to this event as run pro-
cessor i.

e  message arrival st processor i.

Initially, there are no message arrival events, and all proces-
sors i that have processes to execute are represented by the
event, run processor i. If several messages arrive at a proces-
sor at the same time, the messages are handled FCFS
depending on the simulator’s event list. If all processors are
the same speed and Pcode execution time is the same for
most instructions, then a run processor event will be the exe-
cution of exactly one Pcode instruction at that processor.

The network architecture of the testbed is based on the
conventional ISO OS] reference model. We simulated enough
layers to give a detailed model of distributed computing
without actually building a system. We simulated the
language layer (application), transport, and a simplified net-
work layer. Below the network layer, the testbed assumes
error-free full-duplex lines. This assumption is not quite as
strict as it seems. The actual line time can be increased by a
rsadom number to approximate the time for protocol execu-
tion and lower leve]l messages in the data link and physical
layers. We defined this in Section 2.3 as the virtual line time.

The language layer at s processor provides the buflers
for the messages that arrive at and whose destination is that
processor. These message arrivals are passed directly from
the network layer to the language layer, where an uninter
ruptable language layer protocol routine is executed.

The t-stbed was validated extensively using commercial
analytical and simulation packages. The commercial simula-
tion package was used to model several problems and archi-
tectures to validate detailed aspects of the simulator. The
analytical package was used to model higher level aspects of
the testbed.

The testbed provides confidence interval estimates at
the 90% level with relative widths less than 0.05 for various
performance measures. o this paper we have reported only
the midpoint of the confidence interval for the measure,
APTT [5].
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APTT for each Problem and Discipline
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THE EFFECT OF QUEUEING DISCIPLINES
ON RESPONSE TIMES IN DISTRIBUTED SYSTEMS

Elizabeth Wnlllnmn?
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712

Abstract — A distributed program consists of processes, many of 3.2. Distributed Language

which can execute concurrently on different processors in a distri- A program in the distributed language consists of proc
buted system ol.processon, When several processes from the same tbst commupicate and share data by using messages. The
or diferent distributed programs bave been assigned to a processor laoguage is similar to CSP, which is described in [2]. The
i a distributed lysl_em, t-he processor .m_usl "‘"',‘ the pext process language uses synchronous (blocking) communication prinntives,
to tua. The question investigated is: Wh:‘ s an sppropriate the sending process cannot proceed until the receiving process is
method for .sel.ecgmg the next process to run? Standard processor ready to receive the message. For each message sent at the pro-
queueing disciplines, such s first-come-first-serve and cound- gram level, there are two messages sent at the protocul level that
'°b'n'.ﬁ‘ed"§“’."}'m' are studied. The "'"‘::’ for four classes :' implements the language. In this language there is a static
queveing disciplioes tested o three pro ems  ate prmnlf | sumber of processes. Dynamic creation of processes is eimulated
These problems were rus on a testbed, consisting of a compiler by a process beginning execution only after some other process
and simulator used to run distributed programs on user-specified

. sends it 3 message.
architectures.

2.3. Terminology

We define virtual line time for s message between two pro-
cessors connected directly by a line as the product of the actual
time to move the message over the line and a constant derived
from line reliability and the overhead of lower level protocols. The
actual time to move the message over the line is the usual function
of message length in message units (packets), number of bits per
message unit, line capacity, and line tength. Virtual line time does
got include the time a message waits to use the communication
subnet. Virtual line time for 3 message between two processors is
the sum of the virtual line times for the lines on the route.
Curreotly in local area networks, lower level protocols executing 1o

1. Introduction

When several processes from the same or different distri-
Y buted programs bave been assigned to a processor in a distributed
system. an important design question is how a processor selects
the next process to run. This problem has not been considered in
s distributed environment. An interesting question arises: How do
the processes at other prucessors and communication delays in the
system impact the selection of the next process to run? As a
beginning study we bave investigated the standard queueing dis-
ciplines -  first-come-first-serve, round-robin-fixed-quantum,
preemptive priotity. and ponpreemptive priority - in a distributed
e;l,‘,,ronment.r'The s(uq,v shows th.at the tesponse llm.e metnic can the processors usually reduce the physical lie capacity by t least
difler by 5077 with different cboices of queueing disciplines for a factor of 10 for any message [1]. Virtual hoe time reflects this
three problems. efective line capacity.

The queueing disciphines were studied with eeveral problema
that represent three important classes of problems. The partial
differential equation solver is based on an iterative grid technique
that is similar to those used in multidimensional applications such
as weather prediction, structural mechanics, hydrodynamics, heat
transport, and radiation transport. The centralized monitor has
the typical tree structure of hierarchically designed appheations

The message delay of a process for a synchronous commun-
ication as in CSP is a function of virtual line time, queueing at the
port queues ob the route in a store and forward network, and the
processing. waiting, and queueing Ume of the cotresponding pro-
cess at its processor. Message delays can be very large compared
to & process’s processing time between communications

The producer-consumer pairs represent a multiprogramming la the testbed 1 unit of time can be thought of as | us
environment in the distributed system and are representative of a For local area M'Wo.rls where processors are 1 km apart, transmis-
large class of problems. sion rates of 10 Mbit/s are common. For a packet of 256 bits it

takes approximately 20 us to send a packet over the hne With
the factor of 10 or more for Jower level protocols, 300 time upits is
8 reasonable number for virtual line time in this model of a local
area network.

Io Section 2 s model of the distributed architecture snd the
distributed language sre described. The metric for comparing the
performance of the diflerent queueing disciplines and a descnption
of the testbed are given in Section 3. In Sectioa 4 we give a
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beuristic for assigning priotities for the ptiority dependent queue For each problem in this paper, we assume all the processors
ing ditcip! ses Section 5 describes the distributed programs and bave the same speed, all lines are identical, and 8 message unit 1r
architectures on which each problem executes The results are 256 bits  We aiso assume that on any simulation run all proces
given in Section 6 sors bave the same queueing diccipline  The<e ascumptions are
- a made (o isolate the eflects of the choice of queueing discapline from
- 2. Model of Distributed Computing other system variable.
- 2.1. Distributed Architecture

The distributed srchitecture is characterized by the sumbes 3. Testbed and Metrlc
of processors, the speed of each processor, the queueng discipline The metric for comy aning varieus queuriag disciplines o
o at each processor, and the lines that connect the processurs The deBoed as follows  All the Processes of a distnbuted program ae.
lines may have different capacities, lengths, and error rates. The assumed to ttart at time gere Focb process o Tiainates at aocae
processors bave po shared memory snd they communicate only by time, (1) The metnie i the sum over N procenses of the terimina
messages. We assume that sny processor can communicate with tion times (i) divided by N. and m termed the average uf the pro-

any otber processor by routing messages through intermediate :."' termination times (APTT) APTT refiects bo'as the wnstrec: {
processors over fixed paths. od processing requirements of processes and the message delavs

Total time, defined as the maximum t{i). 1 pot always a good
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delays are very small, total time is comparable for all queuciag dis-
ciplines.

The testbed runs distributed programs coded in the distri-
buted language mentioned above, which is similar to CSP. Io
addition to the distributed program, the testbed also requires a
specification of the distributed acrchitecture. The testbed consists
of s compiler. interpreter, and simulator. The compiler produces
pseudo-instructions for the hypotbetical processors in the distri-
buted system. The interpreter executes the pseudo-instructions.
The simulator manages the interpreter, processor queues, and port
queues and executes protocol routines. The simulator is based oo
the work presented in [4] and was validated extensively using com-
mercisl analytical and simulation packages [3.5].

4. Queueing Disciplines

The queueing disciplines tested were first-come-first-serve
(FCFS), round-robin-fxed-quantum (RRFQ). ponpreemptive-
priotity (NPP), sod preemptive-priority (PP} (4]. The two priotity
disciplives NPP snd PP must assign priorities to the processes. In
» PP disciplie if an expected message arrives for a blocked pro-
cess of higher priority, the blocked process preempts the currently
running process. Jo the following discussion we give s beuristic for
assigning priorities. )

Geperally we have observed that scheduling a single proces-
sor in 8 distributed architecture must be analyred considering
both the single processor (local component) and the distributed
environment (global composent). Our beuristic for assigning
priorities is given as lollows:

. Processes that communicate across s line are assigned high
priority (bigbest priority wheo message delays are large since
the global compcnent is more important).

. A ptocess on which several other processes may wait (a
bottleneck process) is assigned bigh priority (highest priority
when message delays are small since the local component is
mote important}.

. Aoy other processes are assigned lower priorities to approxi
mate shortest-remaining-time-first (SRTF) [4].

Thus a good priority discipline should generally give bighest prior-
ity to those processes communicating across a line in order to
minimize the processor idle periods and thus to finish executing all
ptocesses st the processor sooner. The discipline should be
pteemptive so that messages over the line can be received by the
corresponding process as quickly as possible. Choosing priorities
using this beuristic is demonstrated in the problems in the next
sectiod.

A priority discipline with priorities assigned as described
above is denoted by PPg for preemptive priotity and NPPg (or
poapreemptive priotity. A preemptive priority discipline with
prionties assigned in such 2 way as oot to lollow the heuristic
given above is denoted by PPp: processes that communicate across
hines and bottleneck processes are assigned lowest priority. and al!
the other processes are assigned bighest priority. We have found
that Pi’g usually does better than FCFS, RRFQ, PPp, and NPPg,
PPp does the poorest.

6. Problems

The problems tested are a partial differential equation solver
(PDE), a centralized monitor (MONITOR), and & system of five
producer-copsumer pairs {PC's). For each problem we present a
brief description of the program and s Sgure that represents the
distnibuted program, architecture, assignment of processes to pro-
cessors, and priotities for both PPg and NPPg. Each process is
tepresented by a circle with the process number in the circle; the
total instruction processing time requirement per process is given
below each circle. The priority for a process is given above each

citcle. The number and average size in message units of messages
seat at the program level between two commuunicating processes 13
given above each line as the ordered pair (oumbersize). Values
for communication and processing time ate obtained by rvoning
the program on the testbed with any assignment and architecture.
for these programs these quantities are independent of the archr
tecture and assignment. C'ircles enclosed i a box mean that the
enclosed processes are assigned to one processor. For each prob-
lem the processors are identical and the virtual line time for &
message unit is the same between pairs of procrsses that must
commubicste over a hae.

§.1. Partial Differentlal Equatlon

We olve Luplace's partial differential equation (PDE) on »
grid with the outer edges of the grid given as boundary conditions.
The iterative method used is Gauss-Seidel. The grid is partitioned
into subgrids where each subgrid is some aumber of contiguous
rows. Each subgrid is solved by » process in the same way a
sequential program would solve the entire grid. A grid value is
computed as the average of its four adjacent neighbors, thus, to
compute & tow of values, the two adjacent rows are required
Hence, a process must request the two rows contiguous Lo it»
subgrid from its two neigblioring processes.

Figure 1 shows the structure of the problem that rups on
two processors. The two processors are coonected by a line with
virtual line time for a message unit set at 592 time units. In previ
ous work we found that the assignment indicated in Figure § 18
best for this architecture [5).

All processes are comparable; there 18 po bottleneck process
because each process is logically equivalent and computes an equal
aumber of rows. Since each process must execute one time per
Gauss-Seidel step over the same size subgrid, there is no need to
assign priorities to approximate SRTF. The two processes that
communicate over the line are given bighest priority. For PPg
and NP'Pg, processes 3 and 4 were assigned bighest priority at 1.0,
the others were assigned lower priority at 20. For PPp, processes
3 and 4 were assigned lowest prionty at 20 and the others were
assigned highest priority at 1.0.

5.2. Centralized Mor.itor

The centralized monitor consists of a resource process and
three groups; eachb group conmsists of a requester process and its
three user processes. Each user process executes some given
smount of time and then makes a request to use the resource
through its requester process The requester process passes the
user request on to the resource process This is repeated 20 times
before a user terminates. The processing times per iteration were
choren 8o that (1) there is 2 small, medium, and latge processing
user process at each processor and (2) the sum of the processing
time of the users at each processor 1s approximately the same at
each processor.

Figure 2 shows the structure of the centralized monitor that
runs on four processors. Processor 4 is connected directly to pro-
cessors 1, 2. and 3. Each line bas a virtual line time of 58 time
units {or » message unit. [n previous work we found that the
assigament indicated in Figure 2 is best for this arcbitecture [5).

The requester processes are 10, 11, and 12. A requester pro-
cess bas high priority because it is a bottleneck and also because it
communicates over a line. The user processes - 1 through 9 - at
each processor are not identical because of differing processing
requitements. The user processes are assigned priority using the
average processing time between 1/0 statements to estimate CPU
bursts and thus to approximate SRTF. For PPg snd NPPg.
requester processes 10, 13, and 12 get priority 1.0; yser processes 1,
4, and 7 get priotity 2 0, user processes 2, 5, and 8 get priority 30,
weer processes 3, 6, and 9 get priority 4.0. For PPp, processes 10,
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11, snd 12 get priority 2.0, while all user processes 1 - 9 get prior-
ity 1.0. SRTF is an importaat compouent of the priority duseip-
line because a wser process with a small burst time can finish ear-
tier than the others snd thus decrease APTT,
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§.3. Producer-Consumer Palrs

There are Sive producerconsumer pairs. Figure 3 shows the
structere of the problem that russ oo two processors. The two
processors are cosnected by a line with virtual line time for » mes-
sage unit sel at 346 time wnits. Processes 1 to 5 are producens;
processes 6 to 10 are consumers. Each pair - (1,6) {2,7) and (3.8) -
has one-tbird the processing requitement of each pair - (4.9) and
{5.10). Each producer seads 40 messages Lo its correspoading con-
sumer.

One pair of processes communicates over the line and both
are given highest priority. There are no bottleneck processes in
this example. The two pairs with the large processing require-
ments should get lower priority to approximate SRTF. Priorities
for PPg are assigned as follows: processes 3 and 8 get priority 1.0;
processes 1, 8, 2, and 7 get priority 2.0; processes 4, 9, 5, and 10
get priority 3.0. For PPp, processes 3 and B get priority 2.0; the
other processes get priority 1.0. The producer-consumer pairs that
are not split across two processors are independent of each other.
These pairs can terminate independently of the other pairs; one
process waiting on a line cannot cause all the processes on that
processor to block as can happes in the other two problems.

6. Results

The results for each program and its architecture are given
in Table 1. Of the disciplines tested, PPg is the best while PPp is
. the poorest. RRFQ always does better than FCFS; this ia prob-
ably due to its preemptive cbaracteristic. The smonpreemptive
priority discipline, NPPg, is poorer thas RRFQ for both the PDE
sad MONITOR problems. The percentage increase in APTT from
PPg to PPp as computed by (max APTT - min APTT) / (min
APTT) is 327 fot PDE, 48% for MONITOR, snd 57% for PC’s.

7. Conelusion

We bave presented the results for Bve queueing disciplines
tested on three problems. Tbe disciplines tested are first-come-
Brst-serve, round-robin-Oxed-quantum, noopreemptive-priority,
and preemptive-priority with two sets of priorities. A heuristic is
given to assign priotities. We found that the preemptive priority
discipline with priorities assigned according to our beuristic was
the best discipline tested.
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The Drinking Philosophers Problem

K. M. CHANDY and J. MISRA
University of Texas at Austin

The problem of resolving conflicts between processes in distributed systems is of practical importance,
A conflict between a set of processes must be resobved in tvor of some (usually one) process and
against the others: a favored process must have some property that distinguishes it from others. To
puarantee fairness, the distinguishing property must be such that the process selected tor tinorahle
treatment is not always the same. A distributed implementation of an acyclic precedence graph, in
which the depth of a process (the longest chiain of predecessors) is a distinguishing property, s

PPN

presented. A simple conflict resolution sule coupled with the avyehe graph ensures fr resolution of
all conflicts T'o make the problem concrete, two paradigms are presented: the well-known distributed
diming philosophers problem and a generatization of it, the distributed drinking philosophers problem

Categories and Subject Descriptors: ).1.3 [Programming Technigues|: Concurrent Programming:
D 4.1 {Operating Systems]: Process Management  concurrency, mutual exclusion: svoachromzation,
D.4.7 |Operating Systems): Organization and Design - distributed systems

General Terms: Algorithms

-
S Additional Key Words and Phrases: Asvmmetry, dining philosophers problem
o

1. INTRODUCTION

We study the problem of fair conflict resolution in distributed systems. Conflicts
can be resolved only if there is some property by which one process in every set
of conflicting processes can be distinguished and selected for favorable treatment;
that is, a conflict is resolved in favor of the distinguished process. In order to
guarantee fairness, the distinguishing property must be such that the process
selected for favorable treatment is not always the same. Traditional schemes for
fair conflict resolution use priorities assigned to processes [2, 3, 7, 9, 10| or
probabilistic selection |5, 8]. We propose a new approach by using the locations
of shared resources as a distinguishing property. By introducing auxiliary re-
sources, where needed, and by judiciously transferring resources among processes,
we show that all conflicts can be resolved fairly. We propose a paradigm, the
drinking philosophers problem, which captures the essence of conflict resolution
problems in distributed systems. This problem is a generalization of the classical
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dining philosophers problem [2, 3]. We present both problems formally in the
following scctions. This section presents an informal introduction to the problem
of conflict resolution in distributed systems.

Two or more processes cannot execute certain actions simultaneously: for
instance, two processes cannot hold “write locks” on the same data item at the
same time. Conflicts arise when two or more processes attempt to carry out such
actions simultaneously. The resolution of such a conflict requires that some
processes be treated differently from others in the sense that the conflict be
resolved in favor of some processes and against other conflicting processes. If all
processes in a set of conflicting processes are indistinguishable (i.e., if every
property that holds for one process also holds for the others), then it is impossible :
to resolve conflicts between them without resorting to random selection. This is !
hecause any deterministic algorithm that selects one of the processes for favorable
treatment must carry out the selection on the basis of some property that holds
for that process and not for the others. Therefore, if we do not wish to use
probabilistic algorithms to resolve conflicts, we must ensure the following invar-
1ant:

.
)

o
3

Distinguishability. In every state of the system at least one process in every
set of contlicting processes must be distinguishable from the other processes of
the set.

P S )

An example of a distinguishing property is a process's identity number {(pro-
vided that it is different from the identity numbers of all processes that it may
conflict with).

Fairness. Usually we require not only that conflicts be resolved but also that
they be resolved fairly, that is, conflicts should not always be resolved to the
detriment of a particular process. If conflicts always occur in the same system
state, a deterministic conflict resolution scheme will always resolve conflicts in
the same way because the outcome of a deterministic scheme is a function of the
system state. In this case conflict resolution will be unfair. Fairness 1equires that
the states that obtain when conflicts occur not always be identical. An example
of state information used to ensure that conflicts arise in different system states
is time, where time may be determined by a centralized, global clock or by
distributed logical clocks [7]: every request (which may result in a conflict) is
timestamped, and a conflict between two requests is resolved in favor of the one
with the smaller timestamp. However, conflicts between processes with equal
timestamps must be resolved by using some other distinguishing property (such
i as process /Ds). The state information used to ensure fairness may reside in a
single process (the centralized solition) or it may be distributed. This paper is
about distributed schemes to ensure (1) distinguishability and (2) fairness.

We describe our problem informally by using a graph model of conflict. A
;L- distributed system is represented by an undirected graph ¢ with a one-to-one
{ correspondence between vertices in ( and processes in the system. Edge (u, v)
s exists in (7 if and only if there may be a conflict between (the processes
> corresponding to) vertices u and v. We assume that there is some mechanism :
g ¢ that, in every state of the system, ascribes a precedence ordering to every pair of

!
:
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Fig. 1. Graph @, Fig. 2. Graph H.

potentially conflicting processes so that one of the processes in the pair has
precedence over the other. It there is a conflict between a pair of processes, the
process with the lower precedence must yield to the process with greater prece-
dence in finite time. We represent precedences between pairs of potentially
contlicting processes by a precedence graph H, which is a graph identical to ¢
except that each edge in G is given a direction in H as follows: An edge in: H is
directed away from the process with greater precedence toward the process with
lesser precedence. For examy.le, Figure 1 shows graph G for a system with 3
processes p, ¢, and r with the possibility of conflict between any pair of processes.
Figure 2 shows graph H for a state of the system in which p has precedence over
g and r, and ¢ has precedence over r.

If H is acyclic, then the depth of a process in H is a distinguishing property by
which a process can be distinguished from all processes that it may conflict with;
depth of a process p in H is the maximum number of edges on any (directed)
path to p from a process without any predecessors. Note that a process with no
predecessor has depth 0. It follows that neighbors cannot have the same depth.
For example, in Figure 2, the depth of p, ¢, and r are 0, 1, and 2, respectively.

If H is a cycle, the topology of H does not allow us to distinguish one process
from another. We propose an algorithm that ensures that H is acyclic in every
state of the system.

The acvclicity of H in every state of the system guarantees distinguishability
but does not guarantee fairness. We wish to ensure that every process with
conflicts has all its conflicts resolved in its favor in finite time; this requirement
can be ensured by a guarantee that every process with conflicts rises to the top
{1.e., to zero depth), in H in finite time. By the phrase, a “process p will rise to
the top in H,” we mean that the state of the system will change, and hence H
will change too, so that p will have no predecessor in the precedence graph H at
some later state. If p is at depth 0, then any conflict that p has will be resolved
in p's favor in finite time because p takes precedence over all of its neighbors.

How should H change? The only way to change # is by changing the directions
of the edges. We propose to implement H, and changes to H, by a distributed
scheme, where each change in H is made locally at one process. Therefore our
requirements ere (1) H remains acyclic at all times, (2) /{ changes in such a
manner that every conflicting process eventually rises to the top in H, and (3)
each change to H be done locally at a process.

ACM Transactions on Programinng Languages and Syatems, Vol 6, Na. 4, October 1941,
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Fig. 3. Fxample tllustrating rule for chavging £

To ensure acyclicity, we employ the tollowing rule for chunging H:
- R . tal t

Acyclicity Rule. All edges incident on a process p may be simultaneously (i.e.,
in one atomic action) redirected toward p.

This transformation preserves acvelicity of H because no cyele containing p
can be created by the transformation since there is no edge directed away from
p after the transformation.

"T'o ensure that every process in a conflict will rise to the top in H eventually
we employ the following rule:

Fairness Rule. Within tinite time after a conflict is resolved in favor of a
process p at depth 0, p must yield precedence to all its neighbors.

This ensures that in the event that process at depth 0 is in contlict it will
redirect all incident edges toward itself in finite time. This redirection of edges
follows the acychcity rule.

Example. Consider the precedence graph H shown in Figure 3a, where p, ¢,
and r have depth 0, 1, and 2, respectively. If there are confliets, then in finite
time the directions of all edges incident on p will be reversed to give the precedence
graph shown in Figure 3b, in which p, 4, and r have depth 2, 0, and 1, respectively.
If conflicts persist, in finite time the directions of all edges incident on g will be
reversed to give the precedence graph in Figure 3¢, in which p, ¢, and r have
depth 1, 2, and 0, respectively.

The kev issue is to devise a distributed implementation of H, as well as the
acyclicity and fairness rules. ‘The distributed aspect of the problem makes it
nontrivial. The difficulty is that a process has to decide whether to yield or not
to vield in a conflict, and the decision has to be made solely on the basis of the
process’s local state. It may not be possible to determine the direction of edges
incident on a process only on the basis of the process’s local state. Therelore we
devise a distributed implementation of H and a scheme by which processes
resolve conflicts by making local decisions based on partial information of H.

Our goal in this section was to discuss the concepts underlying distributed
conflict resolution and the treatment has been informal. The following sections
offer a more formal treatment of conflict resolution by defining and solving a
specific problem: The drinking philosopher problem, which serves as o paradigm
of conflict resolution problems.

ACM Transacoions on Progeamming 1 sngages nnd Systems, Vol 8 No 4 October 1984
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2. THE DRINKING PHILOSOPHERS PROBLEM (DRINKERS PROBLEM)

The following problem is a generalization of the dining philosophers problem
{2, 3], which has achieved the status of legend, since it captures the essence of
many synchronization problems. Processes, called phitlosophers, are placed at the
vertices of a finite undirected graph (7 with one philosopher at cach vertex. A
philosopher is in one of 3 states: (1) tranqui, (2) thirsty, or (3) drinking.
Associated with each edge in (7 is a bottle.! A philosopher can drink only from
hottles associated with his incident edges. A tranquil philosopher may become
thirsty. A thirsty philosopher needs a nonempty set of bottles that he wishes to
drink from. He may need different sets of bottles for different drinking sessions.
On holding all needed hottles, a thirsty philosopher starts drinking; a thirsty
philosopher remains thirsty until he gets all bottles he needs to drink. On entering
the drinking state a philosopher remains in that state for a finite period, after
which he becomes tranquil. A philosopher may be in the tranquil state for an
arbitrary period of time.

Two philosophers are neighbors if and only if there is an edge between them
in G. Neighbors may send messages to one another. Messages are delivered in
arbitrary but finite time. Resources, such as bottles, are also encoded and
transmitted as messages,

The problem is to devise a nonprobabilistic solution that satisfies the following
constraints.

v
i,

TR

e

LI D san aae o

) 'VYY"'—W

.

Fairness. No philosopher remains thirsty forever.

Symmetry. All philosophers obey precisely the same rules for acquiring and
releasing bottles. There is no priority or any other form of externally specitied
static partial ordering among philosophers or bottles,

Economy. A philosopher sends and receives a finite number of messages
between state transitions. In particular, permanently tranquil philosophers do
not send or receive an infinite number of messages.

Concurrency. The solution does not deny the possibility of simultaneous drink-
ing from different bottles by different philosophers.

Boundedness. The number of messages in transit, at any time, between any
pair of philosophers is bounded. Furthermore, the size of each message is bounded.

RS g &
1t

The drinkers problem is a general paradigim for modeling conflicts between

3 processes. Neighboring philosophers will be prevented from drinking simultane-
ously if they wish to drink from the same bottle—this situation models conflicts
*_’f for exclusive access to a common file. Neighboring philosophers may drink
v" simultaneously from different bottles—this situation models processes writing
3 into different files.

4 We must prevent the system from entering states in which neighboring
philosophers are indistinguishable. For example, consider philosuphers arranged
in a ring and a state in which each philosopher is drinking from his “left” hottle—
philosophers cannot be distinguished in this state. If all philosophers are drinking
from their left bottles and then require both bottles for their next drinking

g

el sl o

- .. .

' The solution given in this paper also applies to multiple bottles on every edge. The assumption of
nne hottle per edge is made for hrevity in exposition.
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The Drinking Philosophers Problem 637

session, then the philusophers must remain thirsty forever because a determin

istic algorithm cannot choose between indistinguishable philosophers, However,
a svstem state is certainly possible in which all philosophers hold their left
bottles, If we were to disallow this state, we would be disallowing a feasible state
in which progress is being made, merely to solve our problem; disallowing feasible
states violates our constraint of concurrency., We appear to be in a quandary
because the consiraints of synunetric processes, nonprobabilistic solutions, and
concurrency are incompatible for this problem. The solution is to tmpleinent
precedence graph H by using special “auxiliary™ resources. The solution to the
dining philosophers problem shows us how to implement /1. Thercfore we study
the dining philosophers problem next. We then study the drinkers problem using
the diners problem solution to implementing H.

3. THE DINING PHILOSOPHERS PROBLEM (DINERS PROBLEM)

The diners problem [2] is a special case of the drinkers problem in which every
thirsty philosopher needs bottles associated with all its incident edges for all
drinking sessions. We present a solution for this problem with the properties of
fairness, symmetry, economy. concurrency, and boundedness. To distinguish
hetween these two problems. we use the following terms for the diners problem,
with the corresponding term for the drinkers problem in parentheses: thinking
(tranquil), hungry (thirsty), eating (drinking), fork (bottle). ‘The diners problem
disallows neighbors from eating simultaneously. The drinkers problem allows
neighbors to drink simultancously provided that they are drinking from dillferent
Lottles.

We first present an informal outline of the solution; the next section has a
detailed formal description. A fork is either clean or dirty. A fork being used to
eat with is dirty and remains dirty until it is cleaned. A clean fork remains clean
until it is used for eating. A philosopher cleans a fork when mailing it (he is
hygienic). A fork is cleaned only when it is mailed. An cating philosopher does
not satisfy requests for forks until he has finished eating. The key issue is: which
requests should a noneating philosopher defer? In our algorithm, a noneating
philosopher defers requests for forks that are clean and satisfies requests for
forks that are dirty.

This solution to the diners problem suggests an implementation of precedence
graph H. The direction of an edge hetween two neighbors u and v is from u to v
(i.e., u has precedence over v) if and only if (1) « holds the fork shared by 1 and
v, and the fork is clean, or (2) v holds the fork, and the fork is dirty, or (3) the
fork is in transit from v to u. Observe that the direction (from u to v} of the edge
can change only when u starts eating. Furthermore, all edges incident on an
eating philosopher are directed toward it. Hence we have an implementation of
the acyclicity rule: The direction of edges incident on a process may be changed
only in the following way—all edges incident on a process may be simultaneously
directed toward it.

Initially all forks are dirty and are located at philosophers in such a way that
H is acyclic. Hence the following is an invariant: H is acyclic.

Immediately upon completion of an eating session, a philosopher yields prec-
edence to his neighbors. A hungry philosopher at depth 0 in H will commence
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cating in finite time (because he has precedence over all his neighbors). By
induction on depth, a hungry philosopher at depth &, k = 0, will eat in finite time
because he has precedence over all philosophers at greater depth, and ali phalos-
ophers at smaller depth will vicld precedence to it in finite time.

A formal treatment of these arguments is found in the next section.

4. A HYGIENIC SOLUTION TO THE DINERS PROBLEM
4.1 Algorithm

We now give a precise description of the solution outlined in the last section. T'o
simplify our description, we introduce a request token for cach fork. Only the
holder of the request token for fork f can request fork f. A request for a fork is
made by sending the corresponding request token to the holder of the fork. It
follows then that only one process- -the holder of the request teken for f—may
request fork f and the requested process, after receiving the token, has the next
chance to request the fork. Also, it a process holds a fork and the reguest token
tor the fork then his neighbor (with whom he shares the fork) has an outstanding
request for the tork. We introduce the following Boolean variables:

fork (f): philosopher « holds fork f,
regf. (f): philosopher u holds the request token for fork f,
dirtv, (f): fork fis at u and is dirty,

thinking./hungry./eating,: philosopher u is thinking/hungrv/eating.

We drop the subscripts tfrom the Boolean variables when the context is clear.

Each philosopher follows the rules given below for requesting and sending
forks. In each case a rule is written as g — 4, where g is a condition and A is a
sequence of actions. These rules constitute our solution to the diners prablem.
The set of rules forms a single guarded command [4).

(R1) Requesting a fork f:
hungry, reqf (), ~ fork(f) —
send request token for fork f (to the philosopher with whom f is shared);
reqf (f) ;= false
(R2) Releasing a fork f:
~eating, reqf (f), dirty(f) —
send fork f (to the philosopher with whom fork f is shared);
dirtv(f) = false;
fork(f} .= false
(R3) Receiving a request token for f:
upon receiving a request for fork f—
regf (f) := true

{R4) Receiving a fork f:
upon receiving fork f -+
fork(f) := true
| ~dirtv(f)}

We note that the statement of the diners problem defines transitions among
states (thinking, hungry, cating) for a philosopher, and we furthermore have for
any philosopher,

eating, fork(f) =s dirty(f).

ACM Transactions on Programming Lamguages nnd Syatems, Vol 6, No 4. October 1984,
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Initital Conditions

1. All forks are dirty. |V [, dirtv () or dirty, (f) where u, v are the philosophers
who can use fork f}.

2. Every fork f and request token for f are held by different philosophers. JIf fork
J is shared bi~tween philosophers («, v), then « holds the fork and ¢ the token
tre., fork (f), reqf (f), ~fork (f), ~reqf.(f)), or v holds the fork and « the
token.}

3. His acyelic. {The forks are initially placed in such a manner that H is acyclic.}

4.2 Proof of the Hygienic Solution for the Diners Problem

We show in this section that every hungry philosopher will eat. In addition 4
this fairness condition, we show that our solution has the properties of symmetry,
cconomy, concurrency, and beundedness.

Fairness
1.LeMMA 1. H is alicays acyvelic,

ProoF. Initially H is acyclic. The directions of edges in H may be affected
only when a fork changes its status (dirty or clean) or its location. We will show
that every change to H preserves acyclicity. Every transmission of a fork is
accompanied by a change in its status from dirty to clean; this does not change
the direction of any edge. A fork is dirtied when the philosopher « holding it,
eats. In this case u must be holding all other forks associated with edges incident
upon it, and they must all be dirty. u cannot then create a cycle in /1 because all
edges upon u are directed toward it. [

THEOREM 2. Every hungry philosopher eats.

The tollowing proof is based on the fact that a hungry philosopher requesting
a fork that is currently dirty will receive it (from rule R2), and since the fork is
clean upon receipt the philosopher will hold it until he eats. A philosopher
requesting a fork that is clean must make the request to u philosopher at a
smaller depth and, by induction on depth, this philosopher will cat and then
dirty the fork, in which case the first argument applies.

ProoF. Recall that the depth of a philosopher in / is the maxinium number
of edges along a path to that philosopher from une without predecessors. We
prove the theorem by induction on depth of a hungry philosopher; the induction
amounts to showing that hungry philosophers at depth k in every / eat, provided
all hungry philosophers at depths smaller than k in every H eat, for all k = 0.

We will not do a special analysis for hungry philosophers at depth 0, hecause
tkat case is subsumed by Case 1, helow.

et u, v be neighbors and u be hungry. We show that u holds or will hold the
fork f corresponding to the edge (u, v) and will thercafter continue to hold it
untii u eats. If u holds the fork currently and holds it continuously until he eats,
the result is trivial. Therefore assume that v holds the fork f sometime hefore u
eats next. We do a case analysis on the status of f at the time that v holds the
fork. At this time we have: hungrv,,, ~fork, (f), fork.(f).

ACM Transactions on Programming Languages and Systews, Vol 6, Noo £, October 1934,
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Case 1: f is dirty (dirty, (/) = true). 1 regf (f) holds then u will request f
(because precondition of rule Rl will hold) and subsequently regf,.(f) will hold,
otherwise regf, ( f) airesdy holds. If cating, holds then at some later point (since
eating is finite), ~ eating, holds, and all other predicates for rule R2 still hold.
Therefore rule K2 will be applied by ¢, and u will eventually hold a clean fork. u
will not release a clean tfork until u« eats.

Cuse 2: fis clean (durty, (f) = fulse). Every lork held by a nonhungry philos-
opher is dirty because

{a) all forks are dirty initially,
th) only bungry philosophers receive clean forks, and
(c) all forks held by eating philosophers are dirty.

Since [ s clean, the philosopher ¢ holding it must be hungry. Furthermore,
because fis clean, (v, 1) ts an edge in H and hence depth(v) < depth{(u). According
to the induction hypothesis, ¢ eats and hence dirties f. Case 1 then applies. O

Svmmetry. It follows from the desceription of the algorithm that all philoso
phers follow the same rules.

Economy. The number of message sends and receives before a state transition
1s bounded as follows: if d is the number of neighbors of a philosopher, then no
more than d requests or forks will be sent or received. More precisely, suppose a
philosopher has e dirty forks when he transits to hungry state. Then he must
send d — ¢ requests and receive a fork corresponding to each request. In addition,
in the worst case, he may lose all ¢ forks he had held initially and therefore have
to request and receive them. Assume that a philosopher implements the latter
situation by sending a fork and the request for it in one message. Then no more
than 2d messages are needed before transiting to the eating state. The only
messages received in the eating or thinking state are the requests for forks held
by the philosopher and hence these do not exceed d. In the best case, a philosopher
with permanently thinking philosophers as neighbors will receive no requests for
forks and therefore may live a life (think and eat) free of interaction with others.

Concurrency. Qur solution does not deny any feasible system state; that is,
uny state of the system in which neighboring philosophers are not eating is
allowable in our solution. This is because the solution does not prevent a
philosopher from entering the thinking or hungry state; the only restriction is in
entering the eating state, and that is allowable when a hungry philosopher holds
all forks, as required by the problem.

Boundedness. There are at most two messages - a fork and a request for a
tork—in transit, between any two philosophers,

5. A SOLUTION TO THE DRINKERS PROBLEM
5.1 The Precedence Graph

Our solution to the drinkers problem uses precedence graphs discussed in Section
1. 'The solution to the diners problem demonstrates a distributed implementation
of the precedence graph H. Fairness and the acyclicity of # are ensured by
implementation of the fairness and acyclicity rules. It may appear that H provides

ACM Transactions on Progrumming Languages and Systems. Vol 6, No 1, October 1984,
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a simple resolution mechanisim for any type of conflict, including conflict for
botties in the drinkers problem, since any contlict can be resolved in favor of the
process with greatest precedence. However, there is a ditficulty due to the
distributed implementation of . Given only the state of process u we can
deteriine which of neighbors u or v has precedence if « holds the fork: I the
fork is clean w has precedence, i it is dirty ¢ has precedence. However, of 1 does
not hold the fork we cannot determine which of « or ¢ has precedence from the
state of w alone. In this case ¢ must make local decisions about holding on to or
releasing bottles without using precedence graph M. 'This issue is discassed next
in the context of the drinkers problem.

We use forks to implement H. Forks are auxiliary resources in the sense that
their sole purpose 1s to implement precedence graph H. Forks are not part of the
drinkers problem specification; they are part of the solution. The real resources 1
in the drinkers problem are bottles. Our philosophers can eat and drink simul-
taneously, and we emphasize that eating ts an artifact of our solution, used only
to guarantee fair drinking. In our solution, the state of a philosopher is a pair
(diner’s state, drinker's state), where a diner’s state is one of thinking, hungry,
or eating and a drinker's state 18 one of tranquil, thirsty, or drinking. Our next
step is to define the dining characteristics of our philosophers; the drinking
characteristics are specified Ly the problem. We give rules that ensure that all
thirsty philosophers drink in finite time.

Consider the state transitions of a dining philosopher. The only transitions
that are decided by the philesopher are thinking-to-hungry and eusting-to-think-
ing: the only transition completely specified by the diners problem is hungry-to-
eating (which occurs when a philosopher holds all forks he needs). We now give
rules for the dining philosopher to decide the point of the first two transitions.

(D1) Thinking-to-Hungry Transition: ’ l
A thinking, thirsty philosopher becomes hungrv. !

tD2) Fating-to-Thinking Transition:
An eating, nonthirsty philosopher starts thinkng.

In the diners problem, a philosopher can think for arbitrary time though he
must eat for finite time. Therefore our obligation, arising out of rules (D1) and
(D2), is 1o ensure that each eating period is finite. This is accomplished by the
rule (D3) given below.

{D3) The Conflict Resolution Rule:
Philosopher u sends a bottle to philosopher v, in response to a request
from v, if and only if v does not need the bottle or |1 is not drinking
and does not hold the fork for the edge (u, v)].

Note that u’s decision to send or hold onto a bottle requested by v depends on 1
whether u holds the fork associated with edge (u, v), and does not depend on i
whether u or v has precedence in H. In particular, ¥ must send the bottle to v if
u has precedence over v, but u does not hold the fork associated with edge (u. v).
We must show that despite this fact, the algorithm is fair. |

'rrr! s

[

T,v
7

——

’ The basic idea is this: Suppose u has precedence over v (i.e., (u. v) is an edge
in ), but v holds the fork (i.e., the fork is dirty), and suppose « requests a bottle
ACM Transactions on Programnmung Languages sad Svstems, Vol 6, Noo 4 October T984
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held by v. We require that u not only request the bottte held by ¢, but that u also
request the fork. We show (from the solution to the diners problem) that in finite
time ¢ will yield the fork to w after which it must also vield the bottle to «. Thus,
the algorithm ensures that it u has precedence over v in I then cventually the
conflict resolution rule causes conflicts for hottles hetween u and v to be resolved
in u's favor.

5.2 Algorithm for the Drinkers Problem

Now, we state the algorithm formally. As before, we introduce a request token,
ivqb, for every bottle b. The following Boolean variables are used:

bot,.(b): philosopher u holds bottle b

regb,(b): philosopher 1 holds request woken for bottie b
need, (b): philosopher u needs bottle b

tranquil,/thirsty /drinking,:  philosopher w is tranqui/thirsty/drinking

As hefore, we drop the subscript when the context is understood. From the
problem statement we have,

tranquil == Y b~ need(h))|
State transitions for diuing philosopher determined by drinking states are

L
". (D1) thinking, thirsty — hungry 1= true
{’" (D2) cating, ~ thirsty — thinking :== true

Other actions of the dining philosopher remain unchanged.

Rules for bottle and request transmissions {Let f be the fork corresponding to
hottle b, i.e., fork f and bottle b are shared by the same two processes):

tK1) Request a Bottle:
thirsty, need (b), reghth), ~batih) -
send request token for bottle b;
regb(b) := fulse

(R2) Send a Bottle: i
regh(b), bot(h), ~[need(b) and (drinking or furk(f))| -
send bottle b;
bottb) := false

(R Receive Request for a Bottle:

upon receiving request fore bottle b - b

regbtb) (= true

(R4) Receive a Bottle:
- upon receiving bottle b —
N ) bot(d) := true

Initial Conditions

- For Dining Philosophers: As before,

- For Drinking Philosophers: A bottle and the request token for it are held by
. different philosophers; that is, if u, v share bottle b, then u holds the bottle and

l v the token (bot.(b), regb, (h), ~bot, (b}, ~regb,(b)), or v holds the bottle and u

- the token.

ACM Transactions on Programpnng Eanguages and Systems, Vol 6, No f, October NS
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\

5.3 Proof of Correctness of the Solution to Drinkers Problem

We show that the solution has the desired properties of fairness, syinmetry,
economy, concurrency and boundedness.

! Fairness

LLEMMA 3. Every eating period is finite,

Proor. If an eating philosopher is nonthirsty, he completes eating (D2). If
philosopher u is eating, he is holding all forks. If he holds a bottle that he needs,
he will not release it until he conipletes drinking, from the precondition of (R2).
If he needs and does not hold a bottle that he shares with ¢, then he holds or will
hold the request token for the hottle (same proof as in Case 1 of Theorem 2). He
will request the bottle, from (R1), and v will have to send the bottle in finite time
{R2) since v does not hold the fork and v can be in drinking state only for finite
duration. Therefore u will hold all bottles he needs in finite time. Since u drinks
tor finite time, u will become tranquil in finite time and, from (1)2), « will stap
eating in finite time. [

PR A Pl

Since every eating period is finite, Theorem 2 applies and we have
COROLLARY 4. Every hungry philosopher starts cating in finite time.

THEOREM 5. Every thirsty philosopher drinks in finite time.

ProOOF. When a philosopher -becomes thirsty he is either thinking, hungry, or
eating. A (thirsty, thinking) philosopher becomes hungry in finite time (rom
D1); a hungry philosopher starts eating in finite time (from Corollary 4). There-
fore every philosopher who remains thirsty will eat in finite time. The theorem
follows from Lemma 3 and the fact (D2) that eating can be terminated only by
drinking. O

- Svmmetry. Follows from the description of the algorithm.

Economy. We first show that a bottle b can travel at most twice between

) neighbors, u, v, before one of them drinks from b. A bottle is sent in response to
- a request from a thirsty philosopher. Let (1, v} be a directed edge in H; the bottle
will travel at most once from u to v and will then be held by v until v drinks.
This is because (1) either v holds a clean fork, which will not be released until
after eating (and hence drinking), and therefore the bottle b, which is needed by
v will not be released, or (2) 1 holds a dirty fork, which must have been requested
by v (when v became thirsty and hence hungry) and will be mailed, after being
cleaned, along with the hottle to v, and then case (1) applies. Hence a bottle ¢can
travel at most twice between neighbors before one of them drinks.

- LLEMMA 6. There are at most 4gd message transmissions for g drinking sesstons
- among all philosophers, where d is the maximum degree (i.¢., the maximum number
¥ of neighbors) of any philosopher.

. PROOF. There is at most one request (for fork and/or bottle), one transmission
L of a fork, and two transmissions of a hottle between neighbors before one of them

ACM Transactions on Programming Languages and Systeins, Vol 6, No 4, Octobcr 1954
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drinks. Therefore, when a philosopher drinks, there must have been no more
than 4 messages per each of its neighbors and hence the result. 11

Concurrency. 'The argument for concurreney is similar to that for the diners
problem. We note that no feasible state of the drinkers problem is being
eliminated in our solution.

Boundedness, 'There are at most three messages  request for a bottle and/or
fork, a bottle, or a fork - i transit from one philosopher to another at any point.

6. SUMMARY

We have described a distributed implementition of o precedence graph. The
changes to the graph are such that the graph is always acyclic. The depth of a
process in the graph is the process’s distinguishing characteristic, 'The graph is
implemented by the “forks” of the diners problen. T'wo processes share a fork if
they may conflict with one ancther. The conflict-resolution rule is: A process u
vields in a contlict with a process v if and only if 1 does not hold the fork shared
with v. The algorithm ensurcs that if processes u and v are in conflict, and u has
precedence over v in the precedence graph, then the conflict resolution rule will,
eventually, cause conflicts to be resolved in u's favor.

Many types of conflict can be resolved by using the conflict-resolution rule
coupled with our distributed implementation of the precedence graph, For in-
stance, consider the multiple concurrent mutual exclusion problem described
next. A critical section in a process hus an arbitrary number of colors aszociated
with 1t {where a color is some attribute of the eritical sectiony. The problem is {o
devise a scheme by which, for each color ¢, there is ut most one process executing
s entieal section with associated color ¢, For example, a eolor may correspond 1o
the privilege of exclusive access to a specifie file, and associated with each crivical
section is the set of files accessed within that zection. If all critical sections have
the same set of colors, the problem redaces to the classical mutual exclusjon
problem.

We use our solution to the drinkers problem (o solve the concurrent mutual
exclusion problem. We use a variant of the drinkers problem in which a pair of
philosophers may share an arbitrary number of hotties. The bottles are cofored,
each bottle having precisely one color. A pair ot philusophers share at most one
bottle of a given color. A bottle is specified by the edige it is un (e, by the pair
of philusophers who shuare it) and by its color. The set of bottles a thirsty
philosopher needs to drink is arbitrary 1t may inelude any bottle he shares. For
istance, when philosopher ¢ becomes thirsty, he imay need w hold the red bottle
shared with j and the red bottle shared with & and the blue bottle shared with k.
If there is precisely one bottle on each edge the problem reduces to the one
discussed earlier. We leave it to the reader to show that the algorithn given
earlier also applies to the extension to colored bottles.

(iiven a concurrent mutual exclusion problem, we construct a drinkers problem
as tollows. Philosophers (processes) { and j share a bottle with color ¢ it and only
it botn philoscphers have critical sections with color ¢. A process [ may cater a
critical section with a set of colors ¢ if and only if, for ali colors ¢ in ¢, and for ali
edges ¢ incident on process £, the bottle of color ¢ on edge ¢ is held by philosopher

AUN Uransactions on Programming Lacouages and Syatems, Vol 6, Noo 4 October TOR4
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. In this case it is obvious that no neighboring philosopher can enter o eritical
section with a color ¢ in ¢.

7. PREVIOUS WORK

o The distributed dining philosophers problem (philosophers at the vertices of a
S graph) and the dining philosophers problem (five philosophers arranged in a
ring) appear in |2, 3]. Dikstra’s solutions to the former problem are based on
instantaneous atomic transmissions of messages to all neighbors or static fork
b orderings. Lynch |9] has carried out an extensive analysis of static resource

ordering algorithms.

The problem of mutual exclusion among a group of processes in executing
their eritical sections Is a special case of the diners problem: Every process is a
neighbor of every vther process and execution of a critical section corresponds to
. eating. Distributed solutions to mutual exclusion using timestamps and process
b 1Dx to break ties, appear in Lamport {7] and in Ricart and Agrawala [10]. Shared
p
p

counter variables have been used in [1], for solving the dining philusophers
problem.

A symmetric distributed solution to the diners problem appears in Francez and
Rodeh [5]. They use an extended form of CSP |6}, in which both input and
output commands are used in guards.

l.ehmann and Rabin [8] give a perfectly symmetric probabilistic algorithm and
L. show that there is no perfectly symmetric nonprobabilistic solution to the diners
. problem.

v
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5 1. Introduction R

This paper presents algorithms by which a process in a distributed system can determine a j
global state of the system during a computation. Processes in a distributed system comtunicate “
by sending and receiving messages. A process can record its own state and the messages it sends .
and reeeives; it can record nothing else. To determine a global system state, a process pomust

enlist the cooperation of other processes who must record their own loeal states and send the

recorded local states to p.  All processes cannot record their local states at precisely the same
instant unless they have access to a common clock. We assume that processes do not share clocks
or memory. The problem is to devise algorithms by which processes record their own states and
the states of communication channels so that the set of process and channel states recorded form

a global system state. The global state detection algorithm is to be superimposed on the

underlying computation: it must run concurrently with, but not alter, this underlying

computation.

The state-detection algorithm plays the role of a group of photographiers observing a -
panoramic, dynamic scene, such as a sky [illed with niigrating birds - a scene so vast that it %
cannot be captured by a single photograph. The photographers must take several snapshots and
piece the snapshots together to form a picture of the overall scene. The snapshots cannot all be '
taken at precisely the same instant because of synchronization problems. Furthermore, the X

photographers should not disturh the process that is being photographed; for instance they cannot
get all the birds in the heavens to remain motionless while the photographs are taken. Yet, the

composite picture should be meaningful. The probiem before us to to define “meaningful™ and >

i

then to determine how the photographs should be taken.

TS .

We now deseribe an important class of problems that can be solved with the global state

detection algorithm.  Let v be a predicate function defined on the global states of a distributed

systems Do el y(S) is true or [alse for a global state S of D. The predicate y is said to be a stable _j

property of DAl y(8) implies y(S') for all global states §* of D reachable from global state S of l

D In other words, if v is a stable property and ¥ is true at a point in a computation of 1), then y

is true at all later points in that computation. Fxamples of stable properties are *computation

;?' has terminated,* *the system is deadlocked® and *all tokens in a token ring have disappeared.® M
. ’

: Several distributed system problems can be formulated as the general problem of devising .
:'.' an algorithm by which a process in a distributed system can determine whether a stable property ::
:‘-. y of the system holds. Deadlock detection {1-5] and termination detection [6-8] are special cases :f
;' of the stable property detection problem. Details of the algorithm are presented later. The basic l
. idea of the algorithm is that a global state S of the system is determined and y(S) is computed to Z;
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see if the stable property y holds.

Several algorithims for solving deadlock and termination problems by determining the global
states of distributed systems have becn published. Gligor and Shattuck [1] state that many of the
published algorithms are incorrect and impractical. A reason for the incorrect or impractical
algorithms may be that the relationships between local process states, global system states and
points in a distributed computation are not well understood. One of the contributions of this

paper is to define these relationships.

1
Many distributed algorithms are structured as a sequence of phases, where eacli phase ]
. . . . . . . <
consists of a transient part in which useful work is done, followed by a stable part in which the
system cycles endlessly and uselessly.  The presence of stable behavior indicates the end of a
phase. A phase is similar to a series of iterations in a sequential program, which are repeated ]
3 . . . . . Ty . . . - 1
until successive iterations produce no change, i.c. stability is attained. Stability must be detected :
2 « e . . . ]
so that one phase can be terminated and the next phase initiated [7]. The termination of a
{ computational phase is not identical to the termination of a computation. When a computation
3 terminates, all activities cease - messages are not sent aud process states do not change. There |
- may be activity during the stable behavior which indicates the end of a computational phase - 4
;:‘ messages may be sent and reccived, and processes may change state, hut this activity serves no <
purpose other than to signal the end of a phase. In this paper, we are concerned with the |

detection of stable system properties; the cessation of activity is only one example of a stable

X

property.

Strictly speaking properties such as *the system is deadlocked® are not stable if the

deadlock is “broken" and computation is reinitiated. However, to keep exposition simple, we

b

- shall partition the overall problem into the problems of (1) detection of the termination of one
':'_ phase (and informing all processes that a phase has ended) and (2} initiating a new phase. The
- following is a stable property: *the k-th computational phase has terminated®, k1,2, Henee,
r.‘! the methods presented in this paper are applicable to detecting the termination of the k-th phase
g for a given k.

:.‘- In this paper we restrict attention to the problem of detecting stable properties.  The
J problem of initiating the next phase of comiputation is not cousidered liere because the solution to
t;_ the problem varies significantly depending on the application, being different for database

.

deadlock detection than for detecting the termination of a diffusing computation,

i el St il

We have to present our algorithms in terms of a model of a system. The model chosen is

v

not important in itsell, we could have couched our discussion in terms of other models. We shall
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2. Model Of A Distributed System

A distributed system consists of a finite set of processes and a finite set of channels. 1t

o -

described by a labeled, dirccted graph in which the vertices represent processes and the edges

represent channels. Figure 2.1 is an example.

am

i e L

b

1

1

Figure 2-1: A Distributed System With Processes p,q,r and k
Channels ¢l,¢2,¢3 and c4 1

Channels are assumed to have infinite buffers, to be crror-free and to deliver messages in

the order sent. (The infinite buffer assumption is made for ease of exposition: bounded buffers

e VERFIReT

may be assumed provided there exists a prool that no process attempts to add a message to a full

buffer.) The delay expericnced by a message in a channel is arbitrary, but finite. The sequence

. of messages received along a channel is an initial subsequence of the sequence of messages sent
"'; along the channel. The state of a channel is the sequence of messages sent along the channel #
F‘_’? excluding the messages received along the channel.
g :
o A process is defined by a set of states, an initial state (from this set), and a set of events. 1
L An event ¢ in a process p is an atomic action which may change the state of p itsell and the state
¢ of at most one channel ¢ incident on p: the state of ¢ may be changed by the sending of a

message along ¢ (if ¢ is directed away from p) or the receipt of a message along ¢ (if ¢ is directed
towards p). An event e is defined by (1) the process p in which the event oceurs, (2) the state s of

p immediately before the event, (3) the state s’ of p immediately after the event, (4) the channel ¢

(if any) whose state is altered by the event, and (5) the message M, if any, sent along ¢ (if ¢ is a
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channel directed away from p), or received along ¢ (if ¢ is directed towards p). We define e by
the 5-tuple < p,5,8",M,e> where M and ¢ are a special symbol, null, if the occurrence of ¢ does

not change the state of any channel.

A global state of a distributed system is a set of component process and channel states: the
snstial global state is one in which the state of each process is its initial state and the state of
each channel is the empty sequence. The occurrence of an event may change the global state.
Let e == < p,s,s’ M,c > we say e can occur in global state S0 and only if (1) the state of proeess
p in global state S is s and (2) if ¢ is a channel directed towards p, then the state of ¢ in glog.al
state S is a sequence of messages with M at its head. We define a function nert, where noret(S,e)
is the global state immediately after the occurrence of event ¢ in global state S0 The value of
nert(S,e) is defined only if event ¢ can oceur in global state S, in which case nert{S ) is the
global state identical to S except that: (1) the state of p in nert(S,e) is s, (2) if e is a channel
directed towards p then the state of ¢ in nerlf{S,e) is ¢'s state i 8 with message M deleted from
its head, and (3) if ¢ is a channel directed away from p then the state of ¢ in next(S,¢) is the same

as ¢'s state in S with message M added to the tail.

Let seq = (e; 0<i<n) be a sequence of events in component processes of a distributed
system. We say that seq is a computation of the systcmn if and only if event €, can oceur in

global state Si‘ 0<i<n, where So ts the initial global state and

S\ = nf.rt(Si,el), for 0<1i<n

An alternate model, based on Lamport (9], which views computations as partially ordered

sets of events is given in [10].

Example 2.1

To illustrate the definition of a distributed system consider a simple system consisting of 2

processes p and q, and 2 channels ¢ and ¢’ as shown in figure 2.2

-

The system contains one token which is passed from one process to another, and hence we
call this system the "single-token conscrvation® system. Iach process has 2 states: s, and S
where s; is the state in which the process does not possess the token and s, is the state in which it

does. The initial state of p is 5, and of q is s;. lach process has 2 events: (1) a transition from

s, to s, with the sending of the token and (2) a transition from s, to s, with the receipt of the

1
token. The state transition diagram for a process is shown in figure 2.}

The global states and transitions are shown in figure 2.4.




L i m e otk A A el adh SShe  asent odadF ofahh  inde- o - o

R L T R T T TR T

¢ pilhe gl Vi Va8 L & A A o b SN mt i a8 el SN Sl gl ol SN CafhY A S - N

Figure 2-2: The Simple Distributed System of Example 2.1 and 2.2

Figure 2-3: State-Transition Diagram of a Process in Example 2.1
}

A system computation correspouds to a path in the global state transition diagram (figure
2.4) starting at the initial global state. Examples of system computations are: (1) the empty
sequence and (2) <p sends token, q receives token, q sends token . The following sequence is
not a computation of the system: < p sends token, ¢ sends token -, because the event "q sends

token* cannot occur while q is in the state s

For brevity, the four global states, in order of teansition (see ligure 2.4}, will be called: (1)
in-p, (2) in-c, (3) in-q and (4) in-¢’ to denote the location of the token. This example will be used

later to motivate the algorithm.

Example 2.2

This example illustrates non-deterministic computations. Non-determinism plays an

interesting role in the snapshot algorithm.

In example 2.1 there is exactly one event possible in each global state. Consider a system

with the same topology as example 2.1 (sce figure 2.2) but where the processes p and q are

:

)
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Figure 2-4: Global States and Transitions of the Single-Token
Conservation System

Figure 2-5: State-Transition Diagram for Process p in Example 2.2

defined by the state transition diagrams of figures 2.5 and 2.6.
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Figure 2-8: State Transition Diagram for Process  in Example 2.2

An example of a computation is shown in figure 2.7. The reader should observe that there
may be more than one transition allowable from a global state: for instance events *p sends M*
and "q sends M’ * may occur in the initial global state, and the next states after these events are

different.

3. The Algorithm

3.1. Motivation for the Steps of the Algorithm

The global-state recording algorithm works as follows: cach process records its own state,
wnd the 2 processes that a channel is incident on cooperate in recording the channel state. We
cannot ensure that the states of all processes and channels will be recorded at the same instant
because there is no global clock; however, we require that the recorded process and channel states

form a “meaningful* global system state.
g y

The global-state recording algorithm is to be superimposed on the underlying computation,
i.e. it must run concurrently with, but not alter, the underlying computation. The algorithm
may send messages and require processes to carry out computations; however, the messages and

computation required to record the global state must not interfere with the underlying

computation.

We now consider an example to motivate the steps of the algorithm. In the example we
shall assume that we can record the state of a channel instantaneously; we postpone discussion of
how the channel state is recorded. Let ¢ be a channel from p to q. The purpose of the example is

to gain an intuitive understanding of the relationship between the instant at which the state of
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A Computation for Example 2.2
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channel ¢ is to be recorded and the instants at which the states of processes p and q are to be .4

- recorded. j

t Example 3.1 ‘

- Consider the single-token conservation system. Assume that the state of process p is }

- recorded in global state in-p. Then the state recorded lor p shows the token in p. Now assume ;

: that the global state transits to in-c (because p sends the token). Suppose the states of channels ¢

E and ¢’, and process q were recorded in global state in-¢, so the state recorded for channel ¢ shows

~ it with the token and the states recorded for channel ¢’ and process g show them not in possession

.j of the token. The composite global state recorded in this fashion would show 2 tokens in the

.
e
b
-
!

system, one in p and the other in ¢. But a global state with 2 tokens s anreachable from the

initial global state in a single-token conservation system! The inconsistency arises because the

state of p is recorded before p sent a message along ¢ and the state of ¢ is recorded after p sent
the message. Let n be the number of messages sent along ¢ before p’s state is recorded, and let o’
be the number of messages sent along ¢ before ¢’s state is recorded.  Our example suggests that

the recorded global state may be inconsistent il n<n’. i

Now consider an alternate scenario. Suppose the state of ¢ is recorded in global state in-p,

the system then transits to global state in-c, and the states of ¢’, p and q are recorded in global

state in-c. The recorded global state shows no tokens in the system. This example suggests that é
the recorded global state may be inconsistent if the state of ¢ is recorded be fore p sends a message *

along ¢ and the state of p is recorded after p sends a message along ¢, i.e. if n>n’,

We learn from these examples that (in general) a consistent global state requires

n=n’ (1)

e NERE e e e T D e

Let m be the number of messages received along ¢ before 's state is recorded. Let m’ be

the number of messages received along ¢ before ¢'s state is recorded. We leave it up to the reader

to extend the example to show that consistency requires :

m-—m (2) -
t.: In every state, the number of messages received aloug a channel cannot exceed the number
' . of messages sent along that channel, i.c. '.
f' n’ 2 m’ ()

From the above equations:

; n=m (1)
L.
A The state of channel ¢ that is recorded must be the sequence of messages sent along the .
3 :
.
;. .
o .
h‘ -
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channel before the sender’s state is recorded excluding the sequence of messages received along the
channel before the receiver’s state is recorded, i.e. if n* - m’, the recorded state of ¢ must be the
empty sequence and if n’>m’, the recorded state of ¢ must be the (m’+1)st,..,n’-th messages sent
by p along c¢. This [nct and eqns | - 1 suggest a simple algorithin by which ¢ can record the state
of channel ¢. Process p sends a special message, called a marker, after the n-th message it sends
along c¢ (and before sending further messages along ¢). The marker has no effect on the
underlying computation. The state of ¢ is the sequence of tmessages received by  after g records
q’s state and before q receives the marker along c¢. To ensure eqn(4), ¢ must record its state, if it
hasn’t done so already, after receiving a marker along ¢ and before ¢ receives further messages

along c.

Our example suggests the following outline for a global state detection algorithm.

3.2. Global State Detection Algorithm Outline

Marker Sending Rule for a Process p

For each channel ¢, incident on, and directed away from p:
p sends one marker along c¢ after p records its state

and before p sends further messages along c.

Marker Receiving Rule For a Process q

On receiving a marker along a channel ¢:
if q has not recorded its state then
begin q records its state;

q records the state c¢ as the empty sequence

end

else q records the state of c as the sequence of messages
received along ¢ after q's state was recorded and
before q received the marker along c.

3.3. Termination of the Algorithm

The marker receiving and sending rules guarantce that if a marker is received along every
channel then each process will record its state and the states of all incoming channels. 'To ensure
that the global-state recording algorithm terminates in finite time, each process must ensure that

(L1) no marker remains forever in an incident input channel and (1.2) it records its state within
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finite time of initiation of the algorithm.

The algorithm can be initiated by one or more processes, each of which records its state
spontaneously, without receiving markers from other processes; we postpone discussion of what
may cause a process to record its state spontancously. If process p records it: state and there is a
channel from p to a process q, then q will record its state in finite time because p will seud a
n:arker along the channel and q will receive the marker in finite time (L1). Henee il p records its
state and there is a path (in the graph representing the system) from p to a process , then q will
record its state in finite time because, by induction, every process along the path will record its
state in finite time. Termination in finite time is ensured i for every process ;¢ spontaneously

records its state or there is a path from a process p, which spontancously records its state, to q.

In particular, if the graph is strongly connected and at least one process spontaneously

records its state, then all processes will record their states in finite time (provided L1 is ensured).

The algorithm described so far allows cach process to record its state and the states of
incoming; channels. The recorded process and channel states must be collected and assembled to
form the recorded global state. We shall not describe algorithms for collecting the recorded
information because such algorithms have been described elsewhere [6,7]. A simple algorithm for
collecting information in a system whose topology is strongly-connected is for each process to send
the information it records along all outgoing channels, and for each process receiving information
for the first time to copy it and propagate it along all of its outgoing channels. All the recorded
information will then get to all the processes in finite time, allowing all processes to determine the

recorded global state.

4. Properties of the Recorded Global State

To gain an intuitive understanding of the properties of the global state recorded by the
algorithm, we shall study example 2.2, Assume that the state of p is recorded in global state S,
{Figure 2.7) so the state recorded for pis A, After vecording its state, p sends a warker along
channel ¢. Now assume that the system goes to global state Sl, then 52 and then Sa while the
marker is still in transit, and the marker is received by g when the system is in global state Sa'
On receiving the marker, q records its state, which is D, and records the state of ¢ to be the
empty sequence. After recording its state, q sends a marker along channel ¢’. On receiving the
The

The recording algorithm was initiated in global

marker, p records the state of ¢’ as the sequence consisting of the single message M.
recorded global state $* is shown in figure 4.1.

state S and terminated in global state S,.

.
i
-




Figure 4-1: A Recorded Global State for Example 2.2

Observe that the global state S* recorded by the algorithm is not identical Lo any of the
global states S, Sy S S, that occurred in the computation. Of what use is the algorithm if the
[' recorded global state never occurred? We shall now answer this question.
{
:i Let seq = (e.l, 0<i) be a distributed computation and let S, be the global state of the system
[ immediately before event e, 0<1i, in seq. Let the algorithm be initiated in global state Sl and let
g it terminate in global state S¢, 0<i<e; in other words, the algorithm is initiated after e, i >0
- and before e, and it terminates alter €4l if >0, and before €y We observed in example 2.2 that

the recorded global state S* may be different from all global states Sk' <k<s.

We shall show that:

1. S* is reachable from S‘ and

2. S¢ is reachable from S*.

-
! Specifically, we shall show that there exists a computation scq’ where
L
q 1. seq’ 15 a permutation of seq, such that S, S* and S¢ occur as global states in seq’, and
t. 2.8 - S* or S, occurs earlier than §%, and
<
t 3. So = 8* or S8* occurs earlier than Sc) in scq’.
b
t » Theorem 1: There exists a computation scg’ = (c’i, 0<i) where
. \ . . . ,
) - 1. For all i, wherei-Lori>e: e, -e, and
q
,
! 2. The subsequence (¢”, +<i<(4) is a permutation of the subsequence (e, 1 <i<79),
t and
!
[ 3. For all i where i<i or i24: s S, and
. 8 ete @ - hE Bl 1
p 4. There exists some k, 1<k <¢, such that § S )
. d
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Proof: Event ¢, in seq is called a pre-recording event if and only if e is on a
process p and p records its state after ¢ in scq. Lvent ¢ in seq ts called a
post-recording event if and only if it is not a pre-recording event -- i.e. if ¢ is on a
process p and p records its state be fore ¢ in acq. All events ¢, 1<y, are pre-recording
events and all events e, i>¢, are post-recording events in seq. There may be a post-
recording event €, before a pre-recording event e for some j, v<Zj<<¢; this can occur

only if € and ¢; are in different processes (because if ¢ and e, are on the same

|
process and € is a post-recording event then so is cj).

We shall derive a computation seq’ by permuting scq, where all pre-recording
events occur before all post-recording events in seq’. We shall show that S* is the
global state in seg’ after all pre-recording events and before all post-recording events.

Assume that there is a post-recording event e before a pre-recording event ¢ in
seq. We shall show that the sequence obtained by interchanging €. and e, must also
be a computation. Events € and e; must be on different processes. Let p be the

process in which e, oceurs and let q be the process in which ¢; occurs. There cannot

be a message sent at e, | which is received at e because (1) if a message is sent along a

channel ¢ when event e, oceurs, then a marker must have been sent along ¢ be fore
¢y since &1 is a post-recording event and (2) if the message is received along channel
¢ when e; occurs, then the marker must have been received along c be fore e; occurs
(since channels are first-in-first-out), in which case (by the marker-recciving rule) ¢
would be a post-recording event too.

The state of process q is not altered by the occurrence of event e because € is

on a different process p. If ¢ is an event in which q reccives a message M along a
channel ¢ then M must have been the message at the head of ¢ before event e since

a message sent at e; | cannot be received at ¢ Hence event ¢; can occur in global state
S .
i1

The state of process p is not altered by the occurrence of ¢ Hence e, . can occur

Iz}

after e. Hence the scquence of events e,,...e. ,.c.e. | is a computation. From the

IR
arguments in the last paragraph it follows that the global state after computation

el,..,ej is the same as the global state after computation ¢ ,...e. ,.¢. e

2

Let aeq* be a permutation of scqg which is identical to seq except that e, and €

are interchanged. Then seq* must also be a computation. Let S, be the global state

immediately before the i-th event in seq*. From the arguments of the previous
paragraph

S; = §, for all i where i /= j

By repeatedly swapping post-recording events which immediately following pre-
recording events, we see that there exists a permutation seq’ of seq in which

1. all pre-recording events precede all post-recording events, and
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2. seq’ is a computation, and

w

. for all i where i<<vor i2¢: e’ == ¢, and

4. for all i where 1< or 12¢: S - Si'

Now we shall show that the global state after all pre-recording events and before all post-

recording events in seq’ is S*. To do this we need to show that:

1. the state of each process p in S* is the same as its state after the process computation
consisting of the sequence of pre-recorded events on p and

2. the state of each channel ¢ in S$* is: (sequence of messages corresponding to pre-
recorded sends on ¢) - (sequence of messages corresponding to pre-recorded receives on

c).

The proof of the first part is trivial. Now we prove part {2). Let ¢ be a channel from
process p to process . The state of channel ¢ recorded in S* is the sequence of messages received

on ¢ by q after q records its state and be fore q receives a marker on ¢. The sequence of messages

sent by p along ¢ before p sends a marker along ¢ is the sequence corresponding to pre-recorded

sends on ¢. Part (2) now follows. ]
1

Example 4.1: The purpose of this example is to show how the computation scq' is derived

from the computation seq. Consider example 2.2. The sequence of events shown in the
computation of Figure 2.7 is: .
e p sends M and changes state to B :
(a post-recording event) g
e q sends M’ and changes state to D ]
(a pre-recording event) .

e, p receives M and changes state to A

(a post-recording event)

Since e, a post-recording cvent immediately precedes ¢,, a pre-recording cvent, we
0 1 )

interchange them, to get the permuted sequence seq’:

)

€y q sends M’ and changes state to D
(a pre-recording event)

e p sends M and changes state to B
(a post-recording event)

€'y p receives M’ and changes state to A

(a post-recording cvent)

o
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- In seq’, all pre-recording events precede all post-recording events. We leave it up to the reader to

show that the global state after ¢’ is the recorded global state.

0

¢ R e e Tt

5. Stability Detection
We now solve the stability detection problem described in section 1. We study the stability
detection problem because it is a paradigm for many practical problems such as distributed

deadlock detection.

A stability-detection algorithm is defined as follows:

Input: A stable property y -

Output: A Boolean value definite with the property:
) (¥(S,) — definite) and

N (de finite — y(S¢) -
b where S and S¢ are the global states of the system when the algorithm is %
S initiated and when it terminates, respectively. (The symbol — denotes logical N
implication.) %
1

The input to the algorithin is (the definition of) function y. During the exceution of the

algorithm the value y(S) for some global state S may be determined by a process in the system by

applying the externally de fincd function y to global state 8. By the output of the algorithin being
a Boolean value definite we mean that (1) some specially designated process (say p) enters and
thercalter remains in some special state to symbolize an output of definite - true, and (2) p

enters and remains in some other special state to symbolize an output of de finite == false.

Definite = true implies that the stable property holds when the algorithin terminates.

However, definite:=false implics that the stable property does not hold when the algorithm is

initiated. We emphasize that de finite=truc gives us information about the state of the system
at the (crmination of the algorithm whereas definite - fulsc gives us information about the
system state at the initiation of the algorithm. In particular, we cannot deduce from

definite= false that the stable property does not hold at termination of the algorithm.

[
N
R
N

Solution to the stability detection problem:

begin

record a global state S*;
definite = y(S»)

7 an an g e . B on e e

{ R

end.

The correctness of the stability detection algorithm follows from the following facts:

P T,

S* 18 reachable from S‘ and

Y .
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S¢, 18 reachable from S* (Theorem 1) and

y(8) — y(S®) for all S’ reachable from S
(definition of a stable property)
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