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aBSTRACT -

\\“\:;This paper is concerned with the optimal control of discrete-time

linear systems that possess randomly jumping parameters described by finite

state Markov processes. For problems having quadratic costs and perfect

observations, the optimal control laws and expected costs-to-go can be ;;;;
precoemputed from a set 5f coupled Riccati-like matrix difference equations. -
Necessary and sufficient conditiong are derived for tre existence of SR
optimal constant contvol lawe which stabilize the controlled system as the

time horizon becomes infinite, with finite optimal expected cost.
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- . ner jon _and Problem Formylation Yo
o S
. Consider the discrete~time jymp linear svstem N
I\ .-. .
E
:.: = ( s a0 .
- X4l Ak(rk)xk+ Bk,rk)uk. k = ko’ sN (1)
) Pr{rk+1=Jlrk=1} = pk+1(x,3) (2) tgj
a where the initial state is Cj::
1 = .':-.:
x(ko, = Xgs Y(ko) Tq o
Here the x-process is n-dimensional, the control u € R™, and the fgrm ?.{§
process {r tk=x,. . . .,N}> is a finite-state Markov chain taking values in ;i{f
. M = 1,2, ..., M with transition probabilities pk(i.j). s
v

The cost criterion to be minimized is

I~ N-1 T

| !
N PN |
- ! N !
o Y = ‘ ) ’ (
o Jk(xugro, E: // [u kRk(rk,uk + x k61°k+1('k+1)xk+ll : (3
= | k=g !
. : + X'NK.T(YN)XN :
:k The matrices kaj), Qk+1(j), and KT(j) are positive-cemidefinite for 23ach j i;:;
:; and k. In addition, we assume that ‘ ;ifi
- T —
- . L — . o . o
:%: Rk(J) + B k(J) : > Pk+1(J,l)0k+1(l)l : Bk(J) >y 0 (4)
- boi=t |
. - I .
e o
o AR
;» The role of this condition will become clear in the sequel., Note In ?}ﬁj
T % ..
i; particular that (5) is satisfied if Rk(j) > 0 and Ok(j) 20 for all 1 EY ﬁfi
. at all times k. s
. This kind of problem formulation can be used to represent the control 2:;
- =
). Discrete Time Markovian JLQ Optimal Control Page 1 T
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of systems subject to abrupt phenomena <such as component and
interconnection failyres. We call this the jJump linear guadratic (JLOQ)
control problem, The <continuous-time version of <this oproblem was
apparently first formulated and solved by Krasovskii and Lidskii [2]. The
problem was studied later by Wonham [3]. He obtained sufficient conditions
for <*he existence and uniqueness of solutions in the JLQ case, and also
derived a separation theorem under Gaussian noise assumptions for JLQ
control problems with Markovian forms and noisy x (but perfect r)
observations. Sworder [4] obtains similar results using a stochastic
maximum principle and has published a number of extensions with his co-
workers, including (4] - [9]. Stochastic minimum principle formulations
for <continuous time problems invelving jump process have 3lso  been
considered by Rishel ([10) Kushner [14], and others. Robinson and Sworder
{11,12) have derived <the appropriate nonlinear onartial differential
eguation for continuous-time jump parameter svstems having state and
controi-denendent rates. A similar result appears i1n the work of Kushner
snd an  aporoximation method for the colution of such probiems has Leen
developed by Wushner and DiMasi [13].

Discrete-time wversions of the JLQ-contrcl problem have not been
thoroughly 1nvestiqated :n the literature. A special case of the «x-
independent JLQ discrete-time problem is considered in Birdwell [15-17],
and the finite-time horizon x-independent problem is solved in Blair and
Sworder [16]. Minor extensions are discussed in [17]. In this paper we
develop necessary and sufficient conditions for the existence of steady-
state optimal controllers for the discrete time JLQ problem. These
conditions are much more complicated than in the usval discrete-time linear

quadratic requlator problem. Specifically, these conditions must account

Discrete Time Markovian JLQ Optimal Control Page 2
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! for the difference in the stability properties of the closed loop system

P

»
h
'.
>

W
Tet,
b

for different values of et For example, it is possible for a particular
component of x to diverge when " takes on a particular value, if 'k
takes on this value rarely enough and if this component of x is
stabilized sufficiently when the system is in other structural forms. Thus

one finds that

. stable closed-loop dynamics in each or all of the structural forms
is neither necessary nor sufficient

. stabilizability of the dynamics in each form is neither necessary
nor sufficient

. controllability of the dynamics 1n each form is neither necessary
nor sufficient

for the existence of steadv-ctate optimal controllers vyielding finite
exgected <o,
In the next section we review the basic form of the solution to the

discrete-time JLOQ problem over a finite time horizon and in Section 3 we

present examples that illustrate several jualitative features of the
solution, In Section 4 we present the rather complicated necessary and
sufficient conditions for the existence of a steadv-state solution for
rime-invariant JLQ problems over infinite horizons, and in Section 5 we
present an example illustrating this condition and ceveral other e2xamples
which <cerve to show that simpler conditions such as stabilizability or
controllability are neither necessary nor sufficient, Section 6 contains
simpler sufficient conditions for the existence of solutions in the

infinite horizon case, and Section 7 contains a brief summary.

Discrete Time Markovian JLQ Optimal Control Page 3

T T e T T e e e e e e e e T T S
.

PRI WA AT P W T,




P \t
U AT

2. Pr tion

The optimal control law can be derived using dynamiC programming. Let

Vk(xk,rk) be the expected cost-to-go from state (x "k) at the time k

k
(af ter x'kO(rk)xk is charged):

I 7 z
kNLxN,rNJ = X NKT(rN)xN

- T

r 1 - 3 ’ ,
vk‘xk"k‘ min E | u kRk(rk)u + x Q

k WL WOLL e

MR TOLLIVERL IV

41

I
!
) !
|

Proposition 1: Concider the discrete-time noiseless Markovian-form jump
linear aquadratic optimal control oroblem (1) - (4), The optimal control

law is given by

Z(3) x for = ieM

Ti-1
k

=k':'q k0+1q o« . .,N

where for each possible form j the optimal gain is given by

o 4 , * T S ok o~
Leag@32 = (R 40> + 8, _,0Q (378, (3] B/ (300 DA ) (8)
where
* .
o k(i) = N\ Dk(J.i) [Ok(i) + Kk(i)] "
/
i=]

Hence the sequence of sets of positive semi-definite scummetric matrices
{Kk_l(j): J E M) satisfies the set of M coupled matrix difference equations

. , * o . s
Ke-q(3) = A7 (D0 (5) A _,(3) - B _(3) L _ 03] (3

Discrete Time Markovian JLQ Optimal Control Page 4
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with terminal conditions
KN(j) = KT(j)-
The value of the optimal expected cost (3) that is achieved with this

control law is given by
x’oKko(ro)xo. |
The proof of this result appears in [1] and is sketched in the appendix.
An sarlier and essentially identical result was established in (16},

Note that the {Kk(j)= j € M» and optimal gains (Lk(jlz j € M can be
recursively computed off-line, using the M coupled difference equations

(e)-(3), The M coupled Riccati-like matrix difference equations canno® te

written as a3 single nM-dimensional Riccati-equation.

s

1 o “ney
teoy
\\ Crgo ,
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3. Examples

In this section some gqualitative aspects of the JLQ controller given

in Proposition 1 are illustrated via a time-invariant scalar example with
M=2 forms, This example serves to point out issues that arise in the

consideration of steady-state JLQ controllers in the following sections,

xk+l = alxk + bluk if rk =z 1

X4l = azxk + bzuk if rk =1
" 7
. A 2 2 '

min E : > { x k+1°(rk’ +u kR(rk) 1 +x NKT(rN} : (N
I_ k=0 |

In thics case the cost matrix sequences {Kk(j), 3 EMY mavy or may not

converge as k decreases from N, and furthermore, x may or may not be

k
driven to zero, as shown in the following.
Example 1: Consider the following choice of parameters for (9):

K if rk =1

=2; 2 i
k41 2xk + 2u, if T 2

p. . = .5, K-(3) =0, Q(3) =1, R{y) =} for § = 1,2
i,) T

The optimal costs, control gains and closed-loop dynamics are gqiven in
Table 1, for four iterations.

As the table indicates, in this case the optimal costs and gains

converge quickly. Furthermore, note that in the "worst case" of T 2 for
all &,
lim gxyl 2 lim (.oN? Ixg! = 0.
N=-=’00 N-=>00
Thus x is driven to zero bv the optimal controller.
Discrete Time Markovian JLQ Optimal Control Page 6
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This example demonstrates the "passive hedging" behavior of the

HR
B

optimal controller, That is, possible future form changes and their

associated costs are taken into account. To see this, consider the usual

AN ]

LQ regqulator gains and cost parameters (as if 9113922’1 and p12=921=0).
which are listed in Table 2.
Comparing Tables 1 and 2, we note that for k ( N-2 the gains of the

Proposition 1 JLQ controller are modified (relative to LQ controller) to

¢ ¢ RRPINIEN

reflect future form changes and costs. The JLQ controller has higher r=l
}: q9ains to compensate for the possibility that the system might shift to the
;; more expensive form r=2, Similarly, the r=2 gains are lower in the JLQ
!% controller reflecting the likelihocod of future shifts to rk=1. ]
i Example 2: Here we choose the parameters of (9) so that the optimal
cloced-loop svstems in different forms are not all stable, although the
ii expected value of x is driven to zero. Let
Xepp = X T Y, ifr =1
;b Xpsp = 2%, + U, ifr. =2
. P11 %Py = 7 Plg =% = +*
;3 where
G5y = 0, () =1 s =1,2
'* R(1) = 1, R(2) = 1000
5; Thus there is a high penalty on control 1n form 2.
%5 This system is much more likely to be in r=1 than in r=2 at any time.
?; We might expect that the optimal control strateqy may tolerate instability
éf while in the expensive-to-control form r=2, since the system is likely to
; return soon to the form r = 1 where control costs are much less.
; Computation for four 1terations cemonstrates this, as shown in Tables 3
i% and 4,
g Discrete Time Markovian JLQ Optimal Control Page 7
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oS As our analysis in subsequent sections will confivm, these quantities

converge as (N-k)-->oo . Note that the closed-loop system is unstsble

-.'
. :

while in r=2,

e
e feete
PR R

Direct calculation of the expected value of Xy 9 given X0 and '0’ shows

e b
.

- that IE (xk)l decreases as k increases. This is shown in Table 5. In
four time steps, E{x) is reduced by over 95% if initially the syetem ic in
form 1 and 68% if it starts in form 2, Note that if the system starts in

the expensive-to-control form r=2, x is allowed to increase for cne time

. step (until contrel while in r =1 is likely to reduce it). H

N

Discrete Time Markovian JLQ Optimal Control Page 8
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R .
: g
’ Kk(1)=Lk(1) Kk(Z)st(Z) al-blLk(l) az-osz(Z)
»::' ‘KgN-l -5 -9 15 -4
5 ksN-2  .623 868 .377 263
. k=N-3 .636 .875 .364 251
2 k=N-4 637 .875 .363 .249
l’_.

Table 1: Optimal Cost and Controller Parameters, and cicsed-loop

E dynamics for Example 1.

Kk(l) = Lk(l)

(with Pyg = 1)

chz) = Lk(Z)

(with Poy = 1)

k=N-1 .5 .8
k=N-2 .6 .878
=N=3 515 .983
k=N-4 .618 .983
Table 2: Standard LO Solution for Example 1.
Kk(i) Kk('Z'! chl.l Lk<'2)
k=N 0 0 = --
kaN-1 .5 3.996 .5 1.998x10"3
kaN-2 .649 7.38% 649 3.672x107°
i“ keN-3 .699 9.269 639 4.603x107°
" k=N-4 .719 10.198 718 5.060x207°
Tsbl s+ Optimal gains and costs of Example 2.
L’ Discrete Time Markovian JLQ Optimal Control Page 9




al-biLk(l) az—szk(Z)

k=N-1 9 1.998

L k=N-2 .359 1.996
ﬁ k=N-3 .301 1.995
o k=N~-4 .281 1.995

;Ef: Table 4: Closed-loop optimal dvnamics of Example 2.

[}
—
[
-
~

"
N

if r

X 281 1.993

1
E{xz} 132 938
E{xa} .069 .491

E{x4} .043 .319

Table S: E(xk} for Example 2.

Discrete Time Markovian JLQ Optimal Control Page 10
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4. Th t -State Pr

We now consider the control problem in the time-invariant case as the
time horizon (N-ko) becomes infinite. Specifically consider the model SN
(1),(2) with ak(rk) = A(rK), Bk('k) = 8('k) and pk+1(x.3) 2z pij. We wish -

to determine the feedback control law to minimize

| N-1 | 1 )
Lim E: ) NI SATE R S CAS IS I S SN N:"o"o .’ (10)
k=X,

(N-ko)-->oo

For future reference, from Proposition 1 the optimal closed-loop
dynamics i1n each form j € M are

=D (r J)x —

ket T Tk Tk .

where ;f
D (§) = <I-B(H)HIR(H+B- (110", . ($IB(:)17 B ()", ., ()} Al5) (11) o

k k+1 k+1
where a*kfj) is defined in (7} (in the time-invariant case, of course, f;
only kazj in (7) may wary with k), ;;

Before stating the main result of tris section, we recall the
following terminology pertaining tc finite-state Markov chains:

. A state is transient if 3 return to it is not guaranteed.

. A state i is recurrent if an eventual return to i is guaranteed.

. State i is accessible from state j if it is possible to begin in
i and arrive in i in some finite number of steps. ~

. OStates | and j are said to gcommunicate if each is accessible from .;:
the other,

. A communicating class is glosed if there are no possible

transitions from inside the class to anv state outside of it, ~

. A closed communicating class containing only one member, j, o
Discrete Time Markovian JLQ Optimal Control Page 11 -
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is an absorbing state. That is, pjj= 1.

. A Markov chain state set can be divided into disjoint sets T,
cl,...,c where all of the states in T are transient, and each Cj
is a closed communicating class of recurrent states.

%
Define the gover € i of aform j €M to be the set of all forms
accessible from j in one time step. That is,

c*j =< € Miop(3,i) # 0.

The main result of thie¢ section is the following:
Propogition 2: For the time-invariant Markovian JLQ problem the conditions
described below are necessary and sufficient for the solution of the zet of
coupled matrix difference equations (6)-(8) to converge %0 a constant

steady-state set

{K(j) > 0: 35 € M>
as (N-ko)-->oo. In this case the K(j) are given by the M coupled
equaticns

*
K(3) = A°(3)Q (3:D(3) (1)
o ) e * *
where Dij? is defined as in (11} with O kaJ) replaced bv 2 (33, In

. S . L - . . . e .
turn, 0 (3j) is defined in (7) with K (3} replsced bv K(ji; that is

k

M

Q"5 = (A1) + K(i)] (13)

\
/~
i=0
Furthermore the steady gains L{j) in the steadv-state optimal control law
= =7 4
u(rk,xk) Lxrk)xk (14)

are given by

Ly = RO+ B (110581 F B (310%(5) A (1%)

Thus under the conditions described below the optimal infinite horizon cost

Discrete Time Markovian JLQ Optimal Control Page 12
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U(xo,ro) = x’o K(ro)xo .

The conditions to be satisfied are as follows. There exists a set of

constant control laws

u, = -F(j)xk 3 l,. o M (16)
so that
Condition 1:
For each glosed communicating Gl13$8. Ci' the expected cost-to-g90 from (xk =z
Xy T T i € Ci) at time k remains finite as (N-k)-=>00. This will be

true if and only if for each closed communicating class Ci‘ for all forms
i€ Ci’ there exists 3 set of finite positive semi-definite n x n
matrices { 21, 22, ""Z!Cil } satisfying the chl coupled equations

20 ¢

| {
| ¢ ¢ {
\ _“ [A. - B.F.)’ 4+ F - RFD)YA -8F.

: p P33 t j i (OJ i 3 t j j 3] :

I =0 |

! + !

2. = | !
oo _ - 1
1] - I — ! !
BRI CHEE NS R %3 1A, - 8.7 " |

i /.— 4 ; /- 4 { ' F - * l

N & l et i o

: | q # 3 e ;

i | ! }

1)

Note that in the case of an absorbing form j (ie., 8 singleton

communicating class) ZJ reverts to the quantity

2. = . (A, -B.F.1'Y Q. + F* R.F.3[A. - B.F.I"
) / ] 1] 3 J 33 b} } 3

t=0

Once we are in an absorbing form our problem reduces to a standard LQ

Discrete Time Markovian JLQ Optimal Control Page 13
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problem and Condition 1 in effect states that unstable modes in such a form
that lead to nonzero costs must be controllable.
gondition 2@

For each transient form j eI [ M, the expected cost-to-go is
finite. This is true if and only if set of finite positive semi-definite

n xn matrices ¢ GI’GZ""’ G } satisfying the |I| coupled equations

Tl

! j
(-1} ¢ . v ’
. -B.F.1'Y4Q. +F.° R.F.}A, - B.F.
: > pJJ [AJ BJ J] :(OJ FJ 1) ( J b] J] :
| =0 :
| + ;
G. = | !
b] i _ _ |
I <o t- o~ _ ! ¢ !
D, A -BF 1Y Tp. 6+ A, - BF.]
D, i3 Ay BRI : > Pig’q ; ?1a%4 :[ L :
Poe=l lq €T q M-I | |
! | q # 3 qQ % j ! !
- ( | I

(18)

Condition 1 states that it is possible to achieve finite expected cost
after the form process leaves the szet of transient states and enters one of
the clcsed communicating classes. Note that for absorbing states (i.e.
ICil =1), Condition 1 reduces to the usual LG co~dition, Condition 2 states
that the expected cost from any transient form is finite. This precludes
the possibility of an unstable mode of X growing without bound in mean
square either leading to infinite accrued cost while the form resides in

the transient state set (this occurs if the x mode is observable through

k
the coet in transient forms) or to infinite cost once the form Jumps into

3 closed communicating class (if this mode becomes chservable after the

transition), l

Discrete Time Markovian JLQ Optimal Control Page 14
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f;ﬁ

The proof of the proposition, which is given in [1], is quite ;51
straightforward, and we confine ourselves here to sketching the basic idea. ;;ﬁ
Necessity is clear, since if conditions 1 and 2 are not satisfied for any A

control law of the type (16) then the finite horizon optimal control laws

cannot converge to one with finite cost as (N-ko)-->oo « To show

sufficiency, one first shows that if one applies the control law (16),
then, under conditions 1 and 2, the expected cost is finite as (N-ko)~->oo.

In fact it is given by

x’(ko)Z(r(ko))x(ko) if r(ko) EMeor I

x’(ko) G(Y(ka))x(k ) if Y(ka) el

’ o
This establishes an upper bound on the optimal cost matrices Kko(j) for the
finite time horizon problem for the particular case when the terminal costs EL7
KN(j) = 0, Furthermore, in this case the Kko(j) are monotone increasing as ;;;
rN-ko) increases, and thus they converge. It is then immediate that the

limits

lim K _(3) = K(J)

ko e

‘Ne= Y™ '..:':\

‘N ko, Jo0 =
satisfy (16}, Straightforward adaptations of standard LQ arguments then o

allow us first to extend the conver3ence result to the case of arbitrary -
terminal cost matrices for the finite horizon problem and, secondly, to S
show that there is a unique set of positive definite solutions of (16).
Conditions 1 and 2 of Proposition 2 take into account o

. The probability of being in forms that have unstable closed lcop

dynamics -
. The relative expansion and contraction effects of tf
Discrete Time Markovian JLQ Optimal Control Page 15 -
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unstable and stable form dynamics, and how the closed-loop
ei1genvectors of accessible forms are "aligned®. That is, it is not
necessary or sufficient for all (or even gny) of closed-loop dynamics
corresponding to sufficient forms to be stable, since the interaction of
different form dynamics determines the behavior of E{x’ K k}

These various characteristics will be illustrated in the examples in
the next section. The Conditions in Proposition 2 differ from those of the
usual discrete-time linear quadratic regulator problem in that necessary
and sufficient Conditions 1, 2 replace the sufficient condition that the
(single form) system is stabilizable, Unfortunately these conditions are
not easily verified. There is no evident algebraic test for (17),(19) like
the contrallability and observability tests in the LQ problem, The use of

the conditions in Proposition 2 will be cemonstrated in the examples that

follew.
-
It iz important to note that even if the conditions of Proposition 2
are satisfied, we are not guaranteed that xk--->0 in mean square. One
cbvious reason for this is that Conditions 1 and 2 are trivially satisfied D

=
(with Foiy, 203), G(j) all zero) if Q(j) =0 i~ all forms. 0Of course, the -

same comment applies i1n the usual linear-quadratic problem. In that case, 3

set of conditions that guarantee that xk-->0 in mean <sguare are the
stabilizability condition mentioned previously and the requirement that

(A,Ql/z) be detectable.

X H T

One might conjecture, given the LQ result, that Conditions 1 and 2

1ls2

together with the requirement that (A(j),Q (j)) be detectable for each j

might be sufficient for the JLQ problem. This is not the case, however, as

one 2an certainly construct deterministically-jumping systems (i.e, time- ;;f(
varying linear systems) which are counterexamples,such as the following. f}ﬁ‘
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A1) = ¢+ 0 2 1y = :+ 1 0 H B(1) = 0
s 172 0 : s 00 H
A(2) = 1 0 1/2 2y = : 0 O H B(2) = 0
H 2 0 : : 0 2 :
- Piz Py =1 !
f; The following corollary presents one sufficient condition that guarantees
h that xk-->0 in mean square.
Coroliarv 1: Consider the time-invariant JLQ problem, and suppose :h3t the
conditions 1 and 2 of Proposition 2 are catisfied. Suppose also that :ne

closed loop transition matrix ACI)-B(33L{3) is invertible for all :. Then

E{x’kxkz--->0 if the mastrix 2033 + L3 R(IL(3Y is positive definite
for at least one form in each clesed communicating class. H

Sefore sketching the proaf of the corollary it is worth providing an
exampie that illustrates the types of situations that motivated the

inclusion of the assumption that A{jY-B(IIL{I) s invertible for all ;5.

Ixample 4:

consider a scalar system with form dynamics jlliustrated iv Figure 1 where

A1y =2 ,AR =0 , A =1 _

B(1) = B(2) = B(3) = 0 -
-— ey

Q1) = Q(2) = 0, O¢3) =1 :

In this case, assuming that the in1tial form is 29% 2, it 18 not difficult

to show that E{xkzl—-}oo, while the 20st incurred cver the infinite horizon .

is zero, even though 2(2) = 1. The reason for this ic that the form process

is likely to remain in fzrm L for 00 long a time, o2ut tmis large value of R

Discrete Time Markovian JLQ Optimal Control Page 17
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1/4

Figure 1: Form Structure in Example 4.
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. the state is not penalized because of the nulling of the state at the time

re
‘.

of the first transition to form 2. Note also that in this case, although
E[xkzl diverges, x =-=>00 with probability 1. 1

For simplicity in our proof of the corollary, let us assume that there
is a single closed communicating class. The extension to several classes

is straightforward. First let us denote by j* the form specified in the

PRRIG AT

Corollarv; i.e., j* is in the closed communicating class, and

amin [QCj%) <+ L(i*)’R(IXIL(3*)]) =X > 0 (1%

where umin (A) = smallest singular value of A,

T
“.-’."'

Note next that if we apply the oDtimal steady-state control law as

specified in Proposition 2, and if rksj, then the cost accruyed at time k 1§

oS .2 SO

x’k [9C3) + L(3)’ R(I) L(J)] X,
Suppose that {tj} is any segquence of strictly increasing stopping times so

that Tei = jk, Then under the conditions of Proposition 2, the optimal cost

* L .
J is finite, and in fact:

) -m". ;'..‘"‘r.“r"‘..' ..A ..

2N
i'_
r.
o N 02
- 00 > J = E N\ x/ [Gr Y 4+ L (r IRir JL(r ) Ix
II /_ k 3 k k k k
k=0
c-L 00
> 2 E N x L IAGR) + L GRIRGRILGR I,
e / N
: i%0
X T 3
. : £ o
= 2 K > 0 Hx 1171 (23)
- i=0
: From this we can immediately conclude that
)
- vim E 1x, 181 =0 (21)
?; 1==700
!f Discrete Time Markovian JLQ Optimal Control Page 19
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What we wish to show is that

lim £ ||xk||2; = 0, (22)
k =-=>o00

and we do this by contradiction. Specifically suppose that (22) is not

true; that is, we can find an € so that for any positive integer m, there

exists another integer K(E,m)> m so that

. 2 5
n El HXK(e,m)“ ] > € (23)

We will show that this supposition contradicts (21) by constructing a

sequence of stopping time for which (21) does not hold if (23) does. Let

b t° = The earliest time after K(€,0) that the form process
o is 1in state j*
- W The earliest time after both K(E€,k) and t(€,k-1)
. that the process is in state j*
i Cenote by 'Jm the set of form traiecteries that beqin in state m and end in

state J¥ without any intermediate visits to j*, For any U E U

. '." m, let

T f{u) denote the closed-loop state transition matrix along the trajectory

- y, Then

j , . . T R
. AR <9 &« ) i

g Elllx, 1171 =E :E DM 1171 Xy kys T =M : N

- - =

! 2 I 7

© EIELINO 0l T ke Tk T B

- ! o

= E | x’ E[ 0/(u) O(u) l r, =m]x ! R

| K(e,k) k k k K(e,k) K (24) :.@

where Yy denotes the form trajectory from K(e,k) to t Note that the ﬁi“

invertibility assumption i1mmediately implies that ~—

Discrete Time Markovian JLQ Optimal Control Page 20 R
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AP e P o P S e R A e R e ROt e e 0 S et A PR B A
¥, =08, {E] 0 (u) 0y L v, =m ) >0
. Letting
X = min X
m M
we see that (23)and (24) together imply that
2
E (Il xtk“ ] >X¥ €
. jZ'w
]
S
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S. Sxamples
The following simple =zcalar example 1llustrates the conditions of
Proposition 2,

Example S: Consider the form dynamics depicted in Figure 2,where the «x-

LSS -

process dynamics are autonomous in all forms:

X = a(rk)x " € (1,2,3,4,5,6,7)

k+l k
and Q(j) > 0, ¥ j. Here & is an absorbing form, <{3,4> 1s a closed

communicating class, and T = (1,2,5,7> 1s the set of transient forms. For
the absorbing form r = 6, condition 1 yielde

(i) a6t

B PRARTE I

and 1n this case
Zigy = U
1-3%(6)

il For the ciosed communicating class {3,4>, (17) gives the ccuplec equations
. 2
o 2(3) = UI) + a7 (NI
v Zta) = Q4 + aS(HZ(H
. Consequentiy

1

h 2

2(3) = mm=segmmssgeossoo-s-eo [C(2) + a"(4) W(d)]
1 - a (334

3

! 2
nl 2(4) = - S ;- G [QC4) + a (3) Q3]
e 1-a"(3) a"(4)
!~ Thus for Z3, Z4 to be positive (35 1a Condition 1) we must have .
o (ii) 32(3) 32(4) 11 Q??a
N (i.e, the two-step dyunamics corresponding to the form transitions 3-4-3 or QF
o 4-3-4 must be stable). For the transient forms (1,2,5,7>, (13) vields R
A B(1) = 3(1) + a%(1) G(2) g
o e
. ]
i‘ Discrete Time Markovian JLQ Optimal Control Page 22
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A TN STy, y v~
R R R I A ) R - ST e

6(2) = Q(2) + a°(2) (py,6(1)] + oy Z(D) + py 2(6)
00 -

65 = a9+ N pg "t a7t05) 1 0(SIogy + pgy Z(D ]
/— -
t=1

. £ a1 2t

67 = a2 + X 5.t a¥N7) [ ap,, 4 p,,6(2) ]

/_ f
t=1

From the equations for G(1) and G(2),

2 2
Q1) + a7 (1)Q(2) + [9232(3) + Pog 2(6) } a (1)

G(l) S ececcoccsccmmcce- - - - ——————
' 2 2.
1 -a7(1) a (2 p‘21

G(2) = ====mgemssogmeoooS et e S e
21

So for O ¢ G(1), G(2) ¢ oo we have

(i) 241 %) 5y ¢ 1.

From the expression for G(5) we see that for O < G(S) ¢ 00 we have

fiv) 32(5) <1

°s5

with the resulting

B(S) + ogy a%cs) 2¢3)

S

G(S) = 3
1 - 955 a (%

From the expression for G(7) we see that for 0 < G(7) < co we have

(v) 32(7) {1

P77
Wwith




hd

D: The conditions (i)-(v) above result from the necessary and sufficient
Fi conditions of Proposition 2, applied to this problem. For this example we —
o see that N
:; - The absorbing form (r=6) must have stable dynamics; (i) )
y - one of the forms in the closed communicating class (2,4} fl;;
. can be unstable as long as the other form’s dynamics make
= up for the instability; (:i)
b
- - transient forms r = 5,7 can have unstable dynamics as long
g as the probability of staying in them for any lengqth of
h: time is low enough: (iii), (V) -

) - some 1nstability of the dynamics of foerms r = 1,2 ic okay
- so long as the oprobability of repeating a 2-->1-->2 cycle
- is low enoughj(iv).

- In the oroof of the LQ problem, the existence of an upper bound can te -

- guaranteed by assuming the stabilizatcility of the svstem. This Zces not

suffice here (except for scalar x), as shown i1n the following example. ;;-
T Evample 6: Stabilizability nct sufficient for finite cost Ziﬁj
o Llet M = 2 where ;ft
\: ‘._.
: 172 19 : B, = :.D .: -
ﬁl = : n /2 1 HENURE
: 1/2 ] : 92 = 10 -
A2 = : 10 172 $ 0 ol
: . = = “E)in=f] : i i 3
- with p12 = 921 = 1 and p11 922 0 (a3 "flip-flop system as in Figqure 3).

Both forms have stable dvnamics (eigenvalues 172, 1/2) and hence are

-~ trivially stabilizable. “Yowever
: 100.25 S : -
Xe42 = : s .25 1 X, ifr =1 N
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Figure 3: From Structure for Examples 6,7 and 8.
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X423 = : S 100.25 : x, if T = 2 e
which is clearly unstable. Thus Xy and the expected cost-to-g0 become jf
infinite as (N - k) g0es to infinity. ] Qiﬁ

0

In fact, controllability in each form is not sufficient for finite

cost, as demonstrated below.

Example ?: Controllability net sufficient for finite cost

Let M = 2 where

<N
w

]
-

[~ I~ ]

v o
oo

" oy

L= o4
e oe

Thus in each form (r = 1,2) the system i controllable, ard the closed-loop I
systems nhave dynamics BERS

%, = D(r.) x };fj
where k+l k k ;;;;

0 2

t
: f1 f2 D(2) =

0(1) =

where '1’ fz. fa, f4 are determined by the feedback laws chosen. Now

suppose that we have a "flip-flop" svstem as in Figqure 3. Then

¢l
‘-l

.

002y De1) ¥ «

EIREI

0

<k 01y 02y 1* X if 1y 2

o

.

o P
1’

where ‘ s

-
D
P
-
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T R ITN TTR TN———" ATl ARSIt Sttt Yt A S/t S i b Tt g

- -
P h F, 2 bt f, 4 o s 5
_ pcpeyss 4 T3 24 payp(2)=: ; 3}
j__-‘:; s 0 49 H : f1 f3 + 2f2 f1 f4 : :._:-
s y y y '
::‘:5 '__-f'
A Both D(1)D(2) and D(2)D(1) have 4 as an eigenvalue. Thus x, grows without =
L{f bound for Xg # 0 as k increases. CLontrollability in each form allows us
ii; to place the geigenvalues of each form’s closed loop dynamics matrix D(i) as
:ﬁi we choose, but we cannot place the eigenvectors arbitrarily. In <this -
o example there is no choice of feedback laws that can align the '
ff@ eigenstructures of each of the closed loop systems so that the overall
dvnamics are stable. | o
;ii The following example demonstrates that (for n > 2) stabilizability of TQ
.ﬁ: even one form’s dynamics is not necessary for the costs to be bourded. éf
S for finite cost o
f’
ALY =t 1 -1 3 B(1) =10 : %
: 0 172 : 0 N
::, . . [ 'A~
- A(2) = ¢ 172 1: B(ay =: 0 .
e : 0 1: : 2o N
i}j Both forms are unstable, uncontrollable systems so neither is E
:?{ stabilizable. We again take the form dynamics as in Figure 3.
. Then -
.-:' |
e x, = 1 (AAMN® « ifr =1
o 2k | ) 0 0
oy [ (ACDARN® ifr =2
: | 0 8
XA -
l-.-l '-..
.-.'.n -~
".' .'.n
L. .
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where

Al)A(2) = A(2)A(L) = 2 0

0 172

Thus xak--->0. and hence the cost is finite. We next cshow that this
example does satisfy Condition 1 of Proposition 2. From (17) with F(1) =
F(2) = 0 we have

2(1) = Q1) + ALY Z(2AL)

Z2(2) = Q(2) + A(2Y Z(11A(2)
Suppose, for convenience, that O0(1) = Q(2) =1, Then we obtain from the

first equation above that

: 21152) 212(21 3 _ f i+ 21152) -211(2) *(1/2)2,2( ) f
: 2,02 2 : R4 /2, (2 142 -2 H
: -21(-) 222( ) : ; 11!2)+( s 21(;) i¥ 11(21 21(2) :
. . . > []
: : : (1/4)2221-) :
and plugging this into the cecond equation:
. - b . - . 47 1 .-
: -11(2) 512(2) : : S/4 +(1/4)2 11( 2)  lrz +(L /4)..12 :
. 4 e d 7 . . ] 1 rd .
: .21(‘) -22(5) : 2 /2 +(1/4)b21(2) 3 +(1/4\h.2 :

This yields four equations in four unknowns., Solving we find

Z
Z

ee %0 ee
“s ®e as
.e e se

Z,,(1) -14/3 13/3

1 22

and

211(2) 212(2) S 2/3

s 221(2) 222(2) /3 4

Discrete Time Markovian JLQ Optimal Control Page 29

e e ey S,
ettt P .
LN A AT AR N
A A . .

0 e P
AL A

A b

< "-".'.a'
O

- 7431 RN
PP BN

&
Y

[ R

4

- . ’
.f",,




which are both positive definite. Thus Z1 and 22 satisfy condition (2) of

Proposition 2. 9

.
A
PR R

A

”
.

AR A
" .
[ )
r
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s

L
LA SN
LRty
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6. ffici nditions for Finite Expected Co
In this section we examine sufficient conditions for the existence of v
S
finite expected costs-to-go that replace the necessary and sufficient ;;jﬁ
Conditions 1-3 in Proposition 2, and are somewhat easier to compute, in fzﬁ;
Lo

terms of the spectral norms of certain matrices. Recall that for any

matrix A, the spectra]l norm of A is

. LAl = max (Aaully = [max eigenvalue(a’a)il’? s
H Hull! =u’u =1 (25 -
f  Corollary 2: Sufficient conditions for the existence of the steady-state f}"f

control law (and finite expected costs-to-qgo) for the time-inwvariant JLQ

problem are that there exist a set of feedback control laws

uk(rk,xk) = 'F(Yk)xk

such that » =
(1y for each gbsorhing form i iaii = 1), the rair ;:ii
(ACi),B(i)) is stabilizable. ' ;fffﬂ
(2) for each recyrrent nonabserbing form | and for each ii{%

RN

o .

trancient form i € T that is accessible from

. * L ..
3 formj €C i in its cover (j #i):

(=]
{=]

loa-BFGnT 112 (e < (26)

Pij

- N

=1

(3) for each gtransient form i € T that is not accessible from

. I .
any form j € C j in its cover (except itcelf):

20 . <
E S o, nac-aran®t 12 ¢ oo (2?) L
/ ALY

t=} e

The proof of this Corollar, .s 1mmediate. A similar result for continuous~

time systems is obtained by Wonham f3;Thm 6.1], except that stabilizability
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and observability of each form is required, and a condition like (26) is
required for all nonabsorbing forms.

Condition (2) is motivated as follows. The cost incurred while in a
particular transient form is finite with probability one since, eventually,
the form process leaves the transient class T and enters a closed
communicating class. If a particular transient form i € T can be repeatedly
re-entered, however, the expected cost incurred while in i may be infinite;
(26) excludes such cases. Note that the sufficient conditions of Corol:ary
2 are violated in Example 8 (in both forms). This demonstrates that thev
are restrictive, in that they ignore the relative “"directions” of x grvowth
in the different forms (i.e. the eigenvector structure). We consider next
3 sufficient condition that is easier to verify than Corollary 2., but is
even more conservative,

Gorollary 3: Sufficient conditions (1)-(2) in Corollary 2 can be replaced

oy the following: There exists a set of feedback control laws

u(rk.xk) = -F(rk)xk
such that

11 (ACDY=BCIXF(iL) 1] Ce ¢ 1 (23)
The proof of this corollary is also immediate, ]

Note that if (28) holds then conditions (1)-(3) of Proposition 2 hold.
Note also that we are suvaranteed that llxkll-->0 with probability one, if
{28) Hholds only for recurrent forms. However this is not enough to have

finite expected cost, as demonstrated in the following examoles.

Example 2: Let
A(l) = : 2 0 A(l) =: 0 0 : B(l) =:0 : = B(2)
1 0 a 10 0 : 0
where a > 1, and with Q(1) = I, Q(2) = 0, Also, let
Discrete Time Markovian JLQ Optimal Control Page 32




) where a > 1, and with Q¢1Y =1, Q(2) = 0, Also, let

h _ Pyy = P Pap = !
P12 = 1-p Pag =3

In this case

| |
min HAILD-B(LFD)I = || : a 0 1l = a1
F(1) 11« 0 a i
11 . R
min |] A(2)-B(2)F(2)I| = 0
and for r0=1
) l-;gg i
3 N !
- El /__x’, O(r.0x, + u’ R(r )u? ]
: L kg K KR N
1. A
00
= 1112 T
s
K=
If 375 < 1, then the expected cost i3
i.xoi!z
------ gm======== (00
- = a D

. 2 . el .
However, . if & p 21 then the expected 2cost-to-q0 15 infinite, This

demonctrates that (28) holding only for nontransient forms is not
sufficient for finite expected cost-to-qo. Specifically, as this example

demonstrates, the cost-to-qo will be infinite if one :¢ likely to rema:n

i. sufficiently long in transient forms that are unstable enough. ]
Example 10; Let
. Xesp = HED § 1 X if " T 1.3
e : -1 -1
.': . . .::_.
X - : e
s X1 = a0 ox ifr =2 Ny
:t 0 a:

where the form transition dynamics are given in Figure 4. We also assume

Discrete Time Markovian JLQ Optimal Control
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Qi >0, i =1,2,3,

If the system is in form 1 or 3 for three successive times (rk =T

= T2 = 1), then X2 = (0 0) for any xk., In form r = 2, the expected cost

incurred until the system leaves (at time t) given that the state at time

kois (x,, 7, =2 is

t-1 ] ¢ ¢ |

N X tQ(Z)xt | P2o (A t) QA(2)A(2) " ix

/ {7/ {
]

t=k _t=0 _

| |

E | |
i l k
| |

For this cost to be finite we must have

1} 20
\
Lins t t . - :
— Pas (A7(2))" Q(2)A(2) A2) {__ Py 3 < 00

.~ N

which is true if and only if

a2p22

Thus we would expect that the optimal expected costs~to~ao in Proposition 2

¢l (29)

will be finite if and only if (29) holds. We next verify that the necessary
and sufficient conditions of Proposition 2 say this.

The matrix

A(3) = 1 1
¢ =1 -1

is nilpotent; hence tre absorbing form r = 3 is stabilizable (so condition
2 of Proposition 2 i3 met). For transient forms (1,2} we must have

0 ¢ G(1), 6(1) ¢ o0 where

2 20
\
61y = /_p, bAoAt 4/ pll“l A" p, B2A "
t=0 t=l “
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\ ¢ . ¢ \ v 2t 0(2)
6(2) = /__ P22 A(2) Q2) A2y = Q2) /_ %5, @ E cec-sesee- 3
t:o t’O 1 - 922 E]

Thus for G(2) to be positive definite we have the condition (29). Finally

since A(l)t =0 for t > 2, we have
G(1) = (1) + A’(1) [9110(1) + p126(2)] A(l)

= Q(1) + A’(1) [ p),0(1) 4 =====28-emosoee 1 A1)

which is positive-definite since Q(1), Q(2) > 0. Thus the necessary and
sufficient conditione of Proposition 2 here reduce to (29). Note that he
sufficient condition (28) of Corcllary 3 is never met for vr =1 and r = 3,
since 1AL = JIA(3I] = 2, and to meet (28) for r = 2 requires jaj ( 1.
On the other hand, the sufficient conditions for Corollary 2 are met if
(29) holds because forms (1,2> are ‘non-re-enterable’ transient forms

satisfying (27). 1
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. 7. Summary R
i AR
n In this paper we have formulated and solved the Jdiscrete-time linear o

quadratic control problem with perfect observations when the system and

-.".‘n

cost parameters jump randomly according to a finite Markov process. The

l optimal control law is linear in x, at each time k, and is Jdifferent (in
general) for each possible set of parameter values. Proposition 2 provides iffu

necessary and sufficient conditions for existence of the optimal steady-

:_ state JLO controller. These conditions are not easily tested, however, ) {
fﬁ since they require the simultaneous solution of coupled matrix equations :
Ei containing infinite sums . In Corollaries 2 and 3, sufficient czonditions ': j
i: are presented that are more easily tested. f;
Perhans the most imoortant contribution of this paper is the set of -
gxamples that explore the reasons for the complexity of the conditione of
ii Proposiction 2. For example we have shown that stabilizability of the o
; system in each form is neither necessary for sufficient for the existence ?';
= of a stable steadv-state closed-loop system. Issues such as the amount of ﬂzﬁf
il time :z=pent :n unstable formes, and the differences among the stable and f“;i
unstable subspaces in different forms have been illustrated. ) -
-]
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