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1. Introduction and Problem Formulation

Consider the discrete-time jump linear system

xk+1 - Ak (rk)xk+ 8 Crk)Ukg k, N (1)'

Pr{rk lzilrkui} a Pk+(i1j) (2)

where the initial state is

ax(k0 x0  r(k0) = 0

Here the x-process is n-dimensional, the control u C Rm , and the formn

process {r :k K .. ,N) is a finite-state Markoy chain taking values in
k 0

M = <I, 2, M > , HY, with transition probabilities pk(i,j).-

The cost criterion to be minimized is

I N-1

Jk(X0,r0) = El / Eu' R (r )u + X', (r xk+ (3)
kk k k k k";--'k+1rk+l xI (

I k=k
0 + X" K (r ))F.

N T N 11

The matrices Rk(j), Qk+ (j), and KT (j) are positive-semidefinite for each "

and k. In addition, we assume that

I MI ________

Rk(j) + B I \ Pk+l(0,i)0k+l(i) 1 k ) > 0 (4)
I /___ /

I i=1 i,

The role of this condition will become clear in the sequel. Note in

particular that (5) is satisfied if Rk 0) > 0 and 0k'j) > 0 for all j 6

at all times k.

This kind of problem formulation can be used to represent the control
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of systems subject to abrupt phenomena such as component and

interconnection failures. We call this the jump linear guadratic (JLO)

control oroblem. The continuous-time version of this oroblem was

apparently first formulated and solved by Krasovskii and Lidskii [2]. The

problem was studied later by Wonham [3]. He obtained sufficient conditions

for the existence and uniqueness of solutions in the JLQ case, and also

derived a separation theorem under Gaussian noise assumptions for JLQ

control problems with Markovian forms and noisy x (but perfect r)

observations. Sworder [4] obtains similar results using a stochastic

maximum principle and has published a number of extensions with his co-

workers, including 14] - [9]. Stochastic minimum principle formulations

for continuous time problems involving jump process have also been

considered by Rishel (10] Kushner [14)] and others. Robinson and Sworder

[11,12) have derived the appropriate nonlinear partial differential

equation for continuous-time jump parameter systems having state and

con.roi-,2eoendent rates. A similar result appears in the work of Kushner

and an aporoximation method for the solution of such problems has been

developed by 1ushner and DiMasi [13).

Discrete-time versions of the JLQ-contrc, problem have not been

thoroughly investiqated :n the literature. A special case of the x-

independent JLQ discrete-time problem is considered in Birdwell [15-17],

and the finite-time hori:on x-independent problem is solved in Blair and

Sworder [16]. Minor extensions are discussed in [17]. In this paper we

develop necessary and sufficient conditions for the existence of steady-

state optimal controllers for the discrete time JLQ problem. These

4 conditions are much more complicated than in the usual discrete-time linear

ouadratic regulator problem. Specifically, these conditions must account
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for the difference in the stability properties of the closed loop system

for different values of rk.  For example, it is possible for a particular

component of x to diverqe when r takes on a particular value, if rk

takes on this value rarely enough and if this component of x is

stabilized sufficiently when the system is in other structural forms. Thus

one finds that

* stable closed-loop dynamics in each or all of the structural forms
is neither necessary nor sufficient

, stabilizability of the dynamics in each form is neither necessary
nor sufficient

, controllability of the dynamics in each form is neither necessary
nor sufficx.ent

for the existence of steady-state optimal controllers vieldinq finite

ex~ev'ed ccost. .-

In the next section we review the basic form of the solution to the

discrete-time JLQ problem over a finite time horizon and in Section 3 we

present examples that illustrate several :ualitative features of the

solution. In Section 4 we presmnt the rather complicated necessary and

sufficient conditions for the existence of a steady-state solution for

time-invariant JLQ problems over infinite horizons, and in Section 5 we

present an example illustrating this condition and several other examples

which serve to show that simpler conditions such as stabilizabilitv or

controllability are neither necessary nor sufficient. Section 6 contains

simpler sufficient conditions for the existence of solutions in the

infinite horizon case, and Section 7 contains a brief summary.

Discrete Time Markovian JLQ Optimal Control Page 3
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. 2. Problem Solution

The optimal control law can be derived using dynamic orogramnang. Let

Vk(XktrkJ be the expected cost-to-go from state (xk,rk) at the time k

(after X'kQ(rk)Xk is charged):

V~ ~ [xr ax K (r )x
VN[XNrN N T N N

U kXk,Vk] min E I u' R (r )u + x (r (C)k k k k+1 k+Irk+1)Xk+1
I + V (rk ) IK+1 k+l xk+1

Proposition 1: Consider the discrete-time noiseless Markovian-form jump

linear quadratic optimal control oroblem (1) - (4). The optimal control

law is given by

Uk = -Lk for rk_ ! = e M

k = k, k +1q .,N

,^,here for each possible form j the optimal qa:n :s given by
=*,

Lkli) R + a k -1Qk(MBk-1l0)) Bk-' 1  k f 0;)Ak- lj) (6)

where

, M
0 k(j) = pk(i) [Qk(i) + Kk)1 (7)

HeMnce the sequence of sets of positive semi-definite symmetric onatrices

(Kk-l(): j C t} satisfies the set of M coupled matrix difference equations

Kkl(j) * A'k (Gj (j) rAkj(.) - Bkl(j) Lk~)] ()

Discrete Time Markovian JLQ Optimal Control Page 4
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with terminal conditions

KN(i) z KT(i).

The value of the optimnal expected cost (3) that is achieved with th~is

control law is given by

x' K (r)0 ko 0 0'

The proof of this result appears in [1] and is sketched in the appendix.

K An earlier and essentially identical result was established in (16].

Note that the {K (i): i rz M> and optimal gains (L (j): i 6 t} can be

recursively computed off-line, using the M coupled difference equations

aL~)(3). The M coupled Riccati-like matrix difference equations cannot te

IL written as a sinqie nM-aimensional Riccati-e~wation.

Discrete Time Markovian JLQ Optimal Control Page 5



3. Exmpe

In this section some qualitative aspects of the JLQ controller given

* in Proposition 1 art illustrated via a time-invariant scalar example with

M=2 forms. This example serves to point out issues that arise in the

consideration of steady-state JLO controllers in the following sections.

X ~ =a x + bu if r =k1 1 k 1 k k

x k+1 a 2x k+b 2u kif r k 1

p(i,3) Z

I N-i 2 2 21
mm EI\ CXk+1 ~k' + u k R(r k) NKT(TN)

I- k=O

In this case the cost matrix sequences <Kk(j), i E M) may or may not

converge as k decreases from N, and furthermore, x k may or may not be

* driven to zero, as shown in the following.

Example 1: Consider the following choice of Parameters for (9):

X =2x+ 2uif r 2
kl k k k

=il K5 T ( = 0, QWj Z 1. Rt)) a I for j 1,2

The optimal coots, control gains and closed-loop dynamics are given in

Table 1, for four iterations.

As the table indicates, in this case the optimal costs and gains

converge quickly. Furthermore, note that in the "worst casem of r 2 for

all k,

N-- oo NN--)oo 0

Thus x is driven to zero by the optimal controller.

Discrete Time Markovian JLQ Optimal Control Page 6



This example demonstrates the "passive hedging' behavior of the

optimal controller. That is, possible future form changes and their

associated costs are taken into account. To see this, consider the usual

LQ regulator gains and cost parameters (as if p 11up 22 s andp 2 0)

which are listed in Table 2.

Comparing Tables 1 and 2, we note that for k jN-2 the gains of the

Proposition 1 JLQ controller are modified (relative to LO controller) to

reflect future form changes and costs. The JLQ controller has higher r=1

gains to compensate for the possibility that the system might shift to the

more expensive form r=2. Similarly, the Y=2 gains are lower in the JLQ

controller reflecting the likelihood of future shifts to r 1I
ku.

Example 2: Here we choose the parameters of (9) so that the optimal

closed-loop systems in different forms are not all stable, although the

* expected value of x is driven to zero. Let

k+1 =xk Ukk

x 2x k+ uk if r k=2
kl k 'k k

where

=_j 0, 00j) =1 1,

RMl = 1, R(2) =1000

Thus there is a high penalty on control in form 2.

This system is much more likely to be in r1l than in r=2 at any time.

We might expect that the optimal control strategy may tolerate, instability

while in the expensive-to-control form r=2, since the system is likely to

return soon to the form r =Iwhere control costs art much less.

Computation for four iterations demonstrates this, as shown in Tables 3

and 4.

Discrete Time Itarkovian JLQ Optimal Control Page 7



As our analysis in subsequent sections will confirm. these Quantities

converge as (N-k)-->oo . Note that the closed-loop system is unstable

while in Y=2.

Direct calculation of the expected value of Xk given x0 and ro, shows

that 1E (x k)I decreases as k increases. This is shown in Table 5. In

four time steps. EWx is reduced by over 95% if initially the system is in

form 1 and W1% if it starts in form 2. Note that if the system starts in

- the expensive-to-control form r=2, x is allowed to increase for one time

- steo (until control while in r =1 is likely to reduce it).

Discrete Time Markovian JLQ Optimal Control Page a



Kk(l)uLk(1) Kk(2 )zLk( 2) al-blLk(1) a2- 2L (2)

k--N-1 .5 .8 .5 .4

kN2 .623 .868 .377 .263

k=N-3 .636 .975 .364 .251

k--N-4 .637 .875 .363 .249

Table 1: Optimal Cost and Controller Parameters, and ciosed-loop

dynamics for Example 1.

K (1) = L (1) Kk( 2 ) = Lk(2)
k kk k

(with P = I) (with P22 =)

k--N-1 .5 .

k-2 .6 .878

k=N=3 ,615 .983

k=N-4 .618 .983

Table 2: Standard LO Solution for Example 1,

Kk(1) K (2)  L A L (2)k"kk k::i:

k.N 0 0 .. --

k=N-1 .5 3.996 .5 1.98x -10 3

kuN-2 .649 7.385 .649 3.67"x1-"

k=N-3 .699 9.269 .699 4.603xlC0
3

k=N-4 .719 10.198 .718 5.060x40- 3

..le 3: Optimal gains and costs of Example 2.

Discrete Time Markovian JLQ Optimal Control Page 9
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a1 -b L (1) a2 b L ( 2 )

k=N-1 .5 1.998

k=N-2 .359 1.996

k=N-3 .301 1.95

k=N-4 .281 1.95

Table 4: Closed-loop optimal dynamics of Example 2.

if 1 if =o 2

x 1.0 1.0'0

E~x > .132 .938

E~x > .069 .491

E..x 4: .045 .319

Table 5: E~x k for Example 2.

Discrete Time Markovian JLQ Optimal Control Pago 10



4. The Steady-State Problem

We now consider the control problem in the time-invariant case as the

time horizon (N-k) becomes infinite. Specifically consider the model

(1),(2) with A~ k r k A(r K, k (r k 8 (r k) and p U 0j pij. We wish --

to determine the feedback control law to minimize

I N-1 I
EJ [u' kR(r k)U k + X, + Q(r k1)x kJ + X N KT (r N xNo~r 0 (10)

limk+ k+ k+
k 2k

(N-k )-->oo 0

For future reference, from Proposition 1 the optimal closed-loop

dynamics in each form j e M are

xk+ D (r )x-k1 k k k

where

D (j) (1{-8(j)[R(j)+9'fj)O* (jis("fl B')Q 0)) A(j) (1kk+1 k+1

where Q k ) is defined in (7) (in the time-invariant case, of course.

k

Sefore stating the main result of tnis section, we recall the

following terminology pertaining to finite-state Markov chains:

*A state is transient if a return to it is not guaranteed.

*A state i is recurrent if an eventual return to i is guaranteed.

*State i is accessible from state j if it is possible to begin in
j and arrive in i in some finite number of steps.

*States i and j are said to communicate if each is accessible from
the other.

*A communicating class is clse if there are no possible
transitions from inside the class to any state outside of it,

*A closed communicating class containing only one member, j,

Discrete Tim* Markovian JLQ Optimal Control Page 11
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is an absorbing state. That is, p.j= 1.

A Markov chain state set can be divided into disjoint sets T,
where all of the states in T are transient, and each C.

is a closed communicating class of recurrent states.

Define the cover C of a form i 6 M to be the set of all forms

accessible from j in one time step. That is,

C = i S _: p(j,i) ; 0>.

The main result of this section is the followinq:

Proposition 2: For the time-invariant Markovian JLO problem the conditions

described below are necessary and sufficient for the solution of the set of

coupled matrix difference equations (6)-(8) to converqe to a constant

steady-state set

<K(j) 0 0: j 6 M)

as (N-k )-->oo. In this case the K(j) are given by the M coupled

equations

K(j) = A'(j)Q*(1D(j) (12)

O* * . _

where D(j) is defined as in (l1) with 0 (j) replaced by 0 (i). In

*k

turn, 0 (j) is defined in (7) with K 0) reDo3ced bv K(j); that is

Q0) p p Q(i) + K-1"
i

Furthermore the steady gains L(i) in the steady-state oDtimal control law

U(r=kX =-Lfr )x k (14)

are given by

f 2 [R(j) + 9'(.) (j)B(j) - Bf.,)*(j) A(j) l5).

Thus under the conditions described below the optimal infinite horizon cost

Discrete Time Markovian JLQ Optimal Control Page 12
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*~ is

V x 0, 0o x .0  r ".0)X0

The conditions to be satisfied are as follows. There exists a set of

constant control lw.-

uk -F(3)xk M , (16)

so that

Condition 1:

For each closed communicating class, C1 , the expected cost-to-go from (x k

X, r x, C.) at time k remains finite as (N-k)---oo. This will be
k1

true if and only if for each closed communicating class C.for all forms

e C , there exists a set of finite positivew semi-definite n x n

matrices < Z1 Z, ...q,ZC1  satisfying the I coupled equations

I\ p [A - .F' <0. + Fi R F }EA. S Fj

Uk/ , F x 3 • 3, 3 .,' (')

th

I~ 30

p..ies{ 1  t-, .,Z il)stisfi teIzlculdeutis:.:::

(17)

Note that in the case of an absorbing form j(i:e., a singleton

communicating class) Z rverts to the quantity

I \ F [A 3 -B ,t (0 + F' R F [A .- B

t;0

Once we art in an absorbing form our problem reduces to a standard LQ

Discrete Tim* Markovian JLQ Optimal Control Page 13
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problem and Condition 1 in effect states that unstable modes in such a form

that lead to nonzero costs must be controllable.

Condition 2:

* - For each transient form je ~ ,the expected cost-to-go is

finite. This is true if and only if set of finite positive semi-definite

* . n x n matrices G 162.. Gfi satisfying the III coupled equations

I,,.

I t;0

I +

pA 8 F]' p.G +\ Z IC I
-3 q q jq q 3 3

I q 6 TI e-

Condition n states that it is possible to achieve finite expected cost

after the form process leaves the set of transient states and enters one of

the closed conunicating classes. Note that for absorbing states (i.e.

IC.I =1), Condition 1 reduces to the usual LQ a.dition. Condition 2 states

that the expected cost from any transient form is finite. This precludes

the possibility of an unstable mode of xk growing without bound in mean

square either leading to infinite accrued cost while the form resides in

the transient state set (this occurs if the xkI mode is observable through

the cost in transient forms) or to infinite cost once the form jumps into

a closed communicating class (if this mode becomes observable after the

tran i t ion.

Discrete Time Marko,'ian JLQ Optimal Control Page 14
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The proof of the proposition, which is given in E11, is quite

straightforward, and we confine ourselves here to sketching the basic idea.

Necessity is clear, since if conditions 1 and 2 are not satisfied for any

control law of the type (16) then the finite horizon optimal control laws

cannot converge to one with finite cost as (N-k0 )--)oo . To show

sufficiency, one first shows that if one applies the control law (16),

then, under conditions 1 and 2, the expected cost is finite as (N-k0 )-->oo.

In fact it is given by

x'(ko)Z(r(ko))x(k O) if r(kO) e M or T

x'(k ) G(r(k ))x(k if r(k T.
0 0 x~ 0  r~ 0)

This establishes an upper bound on the optimal cost matrices Kko(j) for the

finite time horizon problem for the particular case when the terminal costs

K N(j) 0 0. Furthermore. in this case the K ko(j) are monotone increasing as

(N-kO) increases, and thus they converge. It is then immediate that the

limits

lim Kko () K(j)

'N-k "-- oo
0'

satisfy (16). Straightforward adaptations of standard LQ arguments then

allow us first to extend the convergence result to the case of arbitrary

terminal cost matrices for the finite horizon problem and, secondly, to

show that there is a unique set of positive definite solutions of (16).

Conditions 1 and 2 of Proposition 2 take into account

The probability of being in forms that have unstable closed loop

dynamics

The relative expansion and contraction effects of

Discrete Time Markovian JLQ Optimal Control Page 15
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unstable and stable form dynamics, and how the closed-loop

eigenvectors of accessible forms are "aligned'. That is, it is not

necessary or sufficient for all (or even an,) of closed-loop dynamics

corresponding to sufficient forms to be stable, since the interaction of

different form dynamics determines the behavior of E kx kXk}.

These various characteristics will be illustrated in the examples in

the next section. The Conditions in Proposition 2 differ from those of the

usual discrete-time linear quadratic regulator problem in that necessary

and sufficient Conditions 1, 2 replace the sufficient condition that the

(single form) system is stabilizable. Unfortunately these conditions are

not easily verified. There is no evident algebraic test for (17),(19) like

the controllability and observability tests in the LQ problem. The use of

the conditions in Proposition 2 will be demonstrated in the examples that

follow.

It is important to note that even if the conditions of Proposition 2

are satisfied, we are not guaranteed that x --- 0 in mean souare. One
k

obvious reason for this is that Conditions 1 and 2 are triviallv satisfied

(with F(j), Z(j), G(j) all zero) if Q(j) = 0 in all forms. Of course, the

same comment applies in the usual linear-quadratic problem. In that case, a

set of conditions that guarantee that x -- O in mean siuare are the
k--

stabilizability condition mentioned previously and the requirement that
1l/2) ""

(A, be detectable.

(am- 3'

One might conjecture, given the LO result, that Conditions 1 and 2

1/2
together with the requirement that (A(j),Q (j)) be detectable for each j

might be sufficient for the JLQ problem. This is not the case, however, as

one can certainly construct deterministicallv-jumping systems (i.e. time-

varying linear systems) which are counterexamples,such as the following.

Discrete Time Markovian JLQ Optimal Control Page 16



AM ) 0 2 : Q() :l : 0 (1) 0
:1/2 0 0 0

* 
.

that X-k-)O in mean square.

Coroilary 1: Consider the timne-invariant JLQ problem, and suppose ti-at Vhe

Conditions 1. and 2 of Propositionl 2 are satisfied. Suppose also that tn'e

closed loop transition matrix Aj-()( is invertible for all ;.Then

Alx)' x if the matrix ( ) + L(J" R(J)L(j) is positive definite

for at least one form in each closed communicatinc3 :1ass.

Before sketching the proof of the corolIlary it is worth providing an

* example that illustrates the types of situations that motivated the

inclusion of the assumption that Af)9,jLJ is invertible for all ~

xarnle 4:,

C onsider a scalar system with form dynamics illustrated in Figure 1 where

A(') 2 A(2) 0 A( ) 1

S(1) -a 9(2) z 9(3) 2 0

Q(1) Q(2) 0, 003) 2 1

In this case, assuming that tne initial form is no* 2, it is not difficult

to show that Efrx 21-' o while the cost incurred over the infinite horizon

is zero, even though Q(3) 1. The reason for this is that the form process

is likely to remain in fprm for too long a time, dut tis largo value of

Discrete Time Markovian JLQ Optimal Control Page 17 .
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Figure 1: Form Structure in Examp.le 4.
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the state is not penalized because of the nulling of the state at the time

of the first transition to form 2. Note also that in this case, although

2
E[Xk I diverges, xk--)oo with probability 1. I

For simplicity in our proof of the corollary, let us assume that there

is a single closed communicating class. The extension to several classes

is straightforward. First let us denote by j* the form specified in the

Corollary; i.e., j* is in the closed communicating class, and

a [Q(j*) + L(j*)'R(j*)L(j*)] = 9 > 0 19)
min

where 0min (A) = smallest singular value of A.

Note next that if we apply the optimal steady-state control law as

specified in Proposition 2, and if rk J, then the cost accrued at time k is

x'k [Q(j) + L(j)' R()) L(j)] xk

Suppose that {t.> is any seauence of strictly increasing stopping times so

that r = *. Then under the conditions of Proposition 2, the ootimal cost

J is finite, and in fact,

* 00

OO E , kQ(r + L'(rk)R(rk)L(rk) Xk

k=O

00

> E \ x' [Q(j*) + L'(j*JR(j*)L(j*)3x.

i;0

I >OE Ilx .112] (2))
ti

i =0

From this we can immediately conclude that

I2
lim E JIxtil12 ] = 0 (21)
1-->oo t 

'

Discrete Time Markovian JLQ Optimal Control Page 19
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What we wish to show is that

limr E o1x1  0, (22)
k -- >oo

and we do this by contradiction. Specifically suppose that (22) is not

true; that is, we can find an e so that for any positive integer m, there

exists another integer K(6,m)_ m so that

EC tIxK(e,m)l1 2  > 6 (23)

We will show that this supposition contradicts (21) by constructinq a

sequence of stopping time for which (21) does not hold if (23) does. Let

t = The earliest time after K(e,O) that the form process
is in state j*

k = The earliest time after both K(e,k) and t(e,k-1)
that the process is in state j*

Denote by U the set of form trajectories that beqin in state m and end in
m

state j* without any intermediate visits to j*. For any U 6 Urn let

0(u) denote the closed-loop state transition matrix along the tva3ectory

u, Then

E[ i, E) = I I w I 1.k tk K(ek)' rk = rn.

',:;'i. I [ I I~u) K(e~k) I 2 I ×K(e,k)' r k = m] liiI' 2 _I-"-

E IXK(e,k) E C $'(uk) *(uk) I rk = m I XK(e,k) I
K~e-1 (24)

where uk denotes the form trajectory from K(ek) to tk. Note that the

invertibility assumption immediately implies that

Discrete Time Markovian JLQ Optimal Control Page 20

* .. . . . . . . . ...-. .. ". ."; ". -. '.."."." ".".,"'" " "'""", ,..:'._"..".,.,-'-. '."



Letting

mi

we set that (23)and (24) together imply that
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5. Examples

The following simple scalar example illustrates the conditions of

Proposition 2.

Examole 5: Consider the form dynamics depicted in Figure 2,where the x-

process dynamics are autonomous in all forms:

Xk 1 )x {1,2,3,4,5,6,?}

and Q(j) ) 0, V j. Here 6 is an absorbing form, {3,4} is a closed

communicating class, and T= (1,2,5,7> is the set of transient forms. For

the absorbing form r = 6, condition 1 yields

(i) I'--

and in this case

Zf = 0(6) "

l-a 16)

For the closed communicating class {3,4, (17) gives the coupled equations

Z(3) = Q(3) + a-(3)Z(4)

Z(4) = 0(4) + a (4)Z(3)

Conseauent.':

Z(3) =----------------------------- [Q(3) + a-(4) 0(4)]
A. a(3)a (4)

2
Z(4) - - - - - [Q(4) + a (3) 0(3))

Thus for Z73, Z4 to be positive (as in Condition 1) we must have

00) a4(3) a 2( 4)

(i.e. the two-step dynamic-s corresponding to the form transitions 3-4-3 or

4-3-4 must be stable). For the transient forms (1,2,5.7>, (.9) yields

2

G(4) = Q(4) + a (() G(2)

Discrete Time Markovian JLQ Optimal Control Page 22
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6(2) = Q(2) + a2 (2) [p21G(1)] + P Z(3) + p Z(6)

G(5) z Q(5)+ t-1 a2t (5) r 0(5)O5 + P5 3 Z(3)\ P55t=2.:.-

o0 P7t-1 a2t

G(7) = Q(7) + \ p7 a (7) C O(7)P7 7 + P72G(2)

tZ1

From the equations for G(1) and G(2),

2 2
Q(1) + a (1)Q(2) + [p2 3Z(3) + P26 Z(6) ] a (1)

G(1) =---------------
1 - 2(1) a2(2) p21

22

Q(2) + a (2)Q(1), +pZ(3) +p 6 Z6

Gc2 2
I -a 2(1) a (2) P21

So for 0 GM(1, G(2) <oo we nave

(iii) a2(1) a2 (2) p2 1  < 1.

From the expression for G(5) we see that for 0 < G(5) < O0 we have

~ 2;'."IV :"'0v a2(5) [ <- °.

with the resultin9

0(5) + P53 a2(5) Z(3)
6(5) -

I D a 2 (5)

From the expression for G(7) we see that for 0 < G(7) < oo we have

(V) p a (7 < 1

with

M 0(7) + p72 32(7) G(2) I
a6(7) = 1' .--"':.--:'" 1 - P77 2 7

"""
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The conditions (i)-(v) above result from the necessary and sufficient

conditions of Proposition 2, applied to this oroblem. For this example we

see that

- The absorbing form (r=6) must have stable dynamics; (i)

- one of the forms in the closed communicating class (3,4)
can be unstable as long as the other form's dynamics make
up for the instability; (4i)

- transient forms r = 5,7 can have unstable dynamics as long
as the probability of staving in them for any length of
time is low enough: (iii),(v)

- some instability of the dynamics of forms r = 1,2 is okay
so long as the probability of repeating a 2-->l-->2 cycle
is low enough;(iv).

In the oroof of the LQ problem, the existence of an upper bound can be

guaranteed by assuming the stabiliz3bilitv of the sysem. This :ces not

suffice here (except for scalar x), as shown in the followinq examie.

Example 6: $tabili:ability not sufficient for finite cost

Let M =2 where

1/2 10 : B = :0 :
Al= : 0 1/2 : :0

1/2 0 : E = :0
A = : 10 1/2 : :0
2

with P12 = P2 1 0 1 and P = P2 2  0 (a "flip-flop system as in Figure 3).

Both forms have stable dynamics (eigenvalues 1/2, 1/2) and hence are

trivially stabilizable. However

100.25 5
"k+2 5 .25 :Xk if r, =
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-25 5
Xk+2 5 0.25 Xk if T k =2

which is clearly unstable. Thus xk and the expected cost-to-go become

infinite as (N - k0 goes to infinity.

In fact, controllability in each form is not sufficient for finite

cost, as demonstrated below.

Example 7: Controllability not sufficient for finite cost

Let M 2where

:0 2 0

A = 0 01

2

Thus in each form (r =1,2) the system is controllable, and the closed-loop

s-ystems nave dynamics

where kl=Dr)X

:0 2 ::f 3  f4
3 4

D(1) f f D(2): 2 0
1 2

wh'ere f 1 ' f2 ' f3' f4 are determined by the feedback laws chosen. Now

suoooso that we have a Mflio-flopl system as in Figure 3. Then

kj [D(2) D(l) 11 if r0 .

I (() D(2) I x0  if r 2

where
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" f 4  2f3 + f2 f : 4 0me D(2)D(1)-:: D(1)D(2)=:

'" 4 : : f f + 2f f f
13 2 14

Both D(1)D(2) and D(2)D(1) have 4 as an eigenvalue. Thus xk grows without

bound for x0 ; 0 as k increases. Controllability in each form allows us

to place the eigenvalues of each form's closed loop dynamics matrix Di) as

we choose, but we cannot place the eigenvectors arbitrarily. In this

example there is no choice of feedback laws that can align the

" eigenstructures of each of the closed loop systems so that the overal.

dynamics are stable. I

The following example demonstrates that (for n > 2) stabilizability of

even one form's dynamics is not necessary for the costs to be bounded.

Examole 8: Stabilizabilitv not necessary for finite cost

Let M 2 with

A(1) = : 1 -1 ' B(1 : 0 
:0 1/2: :0

A(2) = : 1/2 1 : B(2) = : 0
-: 0 1: : 0

Both forms are unstable, uncontrollable systems so neither is

stabilizable. We again take the form dynamics as in Figure 3.

Then

X2k - I (A(2)A(1)) if r0 0
k

I (A(1)A(2)) x0  if r0  2
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where

A(1)A(2) : A(2)A(.) = : 1/2 0 :
0 1/2

Thus x 2k--->0, and hence the cost is finite. We next show that this

example does satisfy Condition 1 of Proposition 2. From (17) with F(1)

F(2) * 0 we have

Z(1) = Q(1) + A(1)'Z(2)A(1)

Z(2) = Q(2) + A(2)'Z(1)A(2)

" Su~oose, for convenience, that 0(1) = 0(2) = 1. Then we obtain from the

first eQuation above that

2) . i + Z 1p2) -Z 1 (2) +(1/2)Z 2 (2) :1 2 1  11 +.2
.: -2 (2) Z 2) . -ZI,1(2)+(1/2',"? (2) 14+Z (2)-Z--(2) :

" * S * S

( :1/4)Z 2 2 (2)

and plugging this into the second eauation:

(Z1 (2) A12(2) : = : 5/4 +(1/4lZI (2) 1/2 +('/4)Z,2(2)
11 12 2

Z2 1 (2) z22(2) : 1/2 +(1/4)Z 2 1 (2) 3 +(1/4)Z 2" 2)

This yields four equations in four unknowns. Solving we find

Z 1 (1) Z21 (1) : = : 6 -14/3

: (1) Z2 (1) : : -14/3 13/3 :21 22

and

Zii(2) Z12(2) • 5 2/3

" 221(2) Z22(2) : = : 2/3 4
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which are both Positive definite. Thus Zand Z2 satisfy condition (2) of

Proposition 2.
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6. Sufficient Conditions for Finite Expected Cost

In this section we examine sufficient conditions for the existence of

f:nite exoected costs-to-go that replace the necessary and sufficient

Conditions 1-3 in Proposition 2, and are somewhat easier to compute, in

terms of the spectral norms of certain matrices. Recall that for any

matrix A, the spectral norm of A is

11AII max {IIAulII = [max eigenvalue(A'A)3
1/2

Hull a u'u = 1 (25)

Corollary 2: Sufficient conditions for the existence of the steady-state

control law (and finite expected costs-to-go) for the time-invariant JL_

problem are that there exist a set of feedback control laws

uk(rk,xk) = -F(r )xk k 1xkk k

such that

(1) for each absorting form i (Dii = 1), the *air

(A(i),B(i)) is stabilizable.

(2) for each recurrent nonabsorbing form i and for each

transient form i e T that is accessible from

a form j e C in its cover (j 0i):

00 1 t 2
E p JtA(i)-Si)F(i) 1 ( c < 1. (26)

/__

t 1

(3) for each transient form i e T that is not accessible from

any form j e c . in its cover (except itself):

E D ii HAWi-B(i)F(i)) 11 < ( 0 (27)

t --

The proof of this Coroll.-,; As immediate. A similar result for continuous- -"

time systems is obtained by Wonham 1,3Thm 6.13, except that stabiliza2ility
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and observability of each form is required, and a condition like (26) is

required for all nonabsorbing forms.

Condition (2) is motivated as follows. The cost incurred while in a

particular transient form is finite with orobabilitv one since, eventually,

the form process leaves the transient class " and enters a closed

communicating class. If a particular transient form i 6 - can be repeatedly

re-entered, however, the expected cost incurred while in i may be infinite;

(26) excludes such cases. Note that the sufficient conditions of Corol;arv

2 are violated in Examole S (in both forms). This demonstrates that t•ev

are restrictive, in that they iqnore the relative 'directions" of x growth

in the different forms (i.e. the eigenvector structure). We consider next

a sufficient condition that is easier to verify than Corollary 2. but is

even more conservative.

Corollary 3: Sufficient conditions (1)-(2) in Corollary 2 can be replaced

oy the following: There exists a set of feedback control laws

U(rkXk) = -F(r )x
kk k k

such that

II (A(i)-B(i)F(i) II c <1 * (28)

The proof of this corollary is also immediate.

Note that if (29) holds then conditions (W)-(3) of Proposition 2 hold.

Note also that we are guaranteed that IXk 1-->O with Drobability one, if

(28) holds only for recurrent forms. However this is not enough to have

finite expected cost, as demonstrated in the following examoles.

.Example 9: Let

A(M) a . a 0 A (1) * : 0 0 8 9(1) = : 0 : B(2)
:0 a :0 0 : •0:

where a > 1, and with Q(1) I, Q(2) * 0, Also, let
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where a > 1, and with 0(1) = I, 0(2) = 0, Also, let
Pl " p22  1

P1 2 =1-p P21 =0

In this case
H-I II

min HA(1)-8(l)F(l)II I II : a 0 :11 = a > 1
F(1) : 0 a :H1

It .°It

min I A(2)-8(2)F(2)ll z 0

and for r =1
0

El /00 kQr)X ' ~k)k -.

El / x'k Q(r )xk + U'k R(rk)uk I
I k o k kk-

2 2 k
- : 1 \ (a D-)

k :0

If a 22 1, then the expected cost is

2
iix × i i

22

However, if a 2p 1 then the expected -ost-to-go is infinite. This

demonstrates that (28) holding only for nontransient forms is not

suf'icien, for finite expected cost-to-go. Soecifically, as this example

demonstrates, the cost-to-go will be infinite if one is likely to remain

• . sufficiently long in transient forms that are unstable enough. "

•xml 1 Let

Xk+ 1 = : 1 1: xk  if rk 1,3

k -k -k

x * a 0: x if r 2
K+1 k

a0 as

where the form transition dynamics are given in Figure 4. We also assume,
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g.ure 4: Form Transition for Example 10.
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0, i * 1,2,3.

If the system is in form 1 or 3 for three successive times (rk r Tk+1

= Tk+2 = 1), then Xk+2 = (0 0) for any xk. In form r z 2, the expected cost

incurred until the system leaves (at time t) given that the state at time

k is (xk, rk z 2) is

t-1 I 1
E _ I k* 0()x I X /('__)A 2 I x

_ t _1 k _ P22 _1 k-

I-tI

For this cost to be finite we must have

S (A'(2)) Q(2)A(2)t Q(2) / P22 a ' 00
t"= t=0""-"

which is true if and only if

a2p22 .(29)

"thus we would expect that the optimal expected costs-to-go in Proposition 2

will be finite if and only if (29) holds. We next verify that the necessary

and sufficient conditions of Proposit.on 2 say this.

The matrix

A(3) : 1 1

is nilpotent; hence the absorbing form r = 3 is stabilizable (so condition

2 of Proposition 2 is met). For transient forms (1.2> we must have

0 < G(l), G(1) (00 where

t t
0(1) * / t A'(1)t 0(1) A(1)t + / A'(1) pf2G(2)A(1)t

t-O
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~ 2t 0(2)
6(2) P22_ A'(2)~ 0(2) A(2) Q (2)/ D 2 2  a 2t -------2

Thus for G(2) to be positive definite we have the condition (29). Finally

since A(l) *0 lfor t > 2, we have

GM1 QM(1 + A'(1) (p 1 ~)+p 2 (2)J AM1
0(1 + '(1 tP11 (1) + P12G (2

p Q(2

-22a

which is positive-dfnt ic () ())0 Thus the necessary and

sufficient conditions of Proposition 2 here reduce to (29). Note that he
L

sufficient condition (28) of Corollary 3 is never met for r 1 2 and r =3,

since IIA(1fI IIA(3)tI 2, and to meet (28) for r =2 requires jai 1.

On the other hand, the sufficient conditions for Corollary 2 are met if

(29) holds because forms (1,2) are 'non-re-mnterable' transient forms

satisfying (27).1
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7. Summary

, In this paper we have formulated and solved the discrete-time linear

quadratic control Problem with perfect observations when the system and

cost parameters jump randomly according to a finite Markov process. The

optimal control law is linear in xk at each time k, and is different (in

general) for each possible set of parameter values. Proposition 2 provides

necessary and sufficient conditions for existence of the optimal steady-

state JLQ controller. These conditions are not easily tested, however,

since they require the simultaneous solution of coupled matrix equations

containing infinite sums . In Corollaries 2 and 3, sufficient conditions

are presented that are more easily tested.

Perhaos the most imoortant contribution of this paper is the set of

examples that explore the reasons for the complexity of the conditions of

Proposition 2. For example we have shown that stabilizability of the

system in each form is neither necessary rnor sufficient for the existence

of a stable steady-state closed-booD system. Issues such as the amount of

time spent in unstable forms, and the differences among the stable and

unstable subspaces in different forms have been illustrated.
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