CHARACTERIZATION OF POLY(ETHYLENE OXIDE) DRAWN BY SOLID STATE EXTRUSION. (U) MASSACHUSETTS UNIV AMHERST DEPT OF POLYMER SCIENCE AND ENGINE. D J MITCHELL ET AL.

UNCLASSIFIED 10 JAN 85 TR-21 N00014-83-K-0228 F/G 11/9
Characterization of Poly(Ethylene Oxide) Drawn by Solid State Extrusion

Donald J. Mitchell and Roger S. Porter

Polymer Science and Engineering
University of Massachusetts
Amherst, Massachusetts 01003

Office of Naval Research
800 North Quincy Street
Arlington, Virginia 22217

January 10, 1985

Approved for public release; distribution unlimited

Samples of coextruded poly(ethylene oxide) (PEO), drawn to ratios of up to 31, were prepared and studied using techniques of x-ray diffraction, birefringence, differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). The amorphous component was found to orient first on draw, this occurring up to a draw ratio of 3 to 4. The crystalline component oriented as the draw ratio was increased from 3 to 12, as seen by the crystalline orientation function f, which increased in that interval from 0.28 to 0.943. A value of .975 was obtained for f_c at a draw ratio of 28.
OFFICE OF NAVAL RESEARCH
Contract N00014-77-C-1234
Task No. NR 056-123
TECHNICAL REPORT NO. 21

Characterization of Poly(Ethylene Oxide)
Drawn by Solid State Extrusion
by
Donald J. Mitchell and Roger S. Porter
Accepted for Publication
in
Macromolecules

Materials Research Laboratory
Polymer Science and Engineering Department
University of Massachusetts
Amherst, Massachusetts 01003

December 14, 1984

Reproduction in whole or in part is permitted for
any purpose of the United States Government

* This document has been approved for public release
and sale; its distribution is unlimited

* This statement should also appear in Item 10 of Document Control Data
- DD Form 1473. Copies of form available from cognizant contract
administrator.
INTRODUCTION

Solid state extrusion of high molecular weight polymers has been shown to impart unusual properties. Among properties that change in this drawing process are melting points, tensile modulus, birefringence and crystallite orientations. To investigate further this process, samples of poly(ethylene oxide) (PEO) have been coextruded and the results reported here and in part 1 of this work. Poly(ethylene oxide) was chosen because of its simple linear structure and its crystalline nature. Moreover, prior PEO drawing studies are few compared to the exhaustive reports on PE deformation. PEO is also of interest because of its differences in chain packing compared to polyethylene (PE). Replacing every third methylene group in a PE chain with an oxygen increases the molecular weight of the repeat unit by ~ 5%, however, the density of the polymer is considerably higher (by some 23% in the crystalline state).

The samples have been studied using x-ray analysis, dynamical mechanical analysis (DMA) and differential scanning calorimetry (DSC). The x-ray analysis consisted of determining the Herman-Stein orientation function at different draw ratio and the determination of crystallite size, also as a function of draw ratio, from line breadths for both annealed and unannealed samples. It was intended that the x-ray analysis would elucidate what happens to the crystalline portion of the polymer during the drawing process. By comparison of these results with measured birefringence which measures total orientation, insight could also be gained as to changes occurring in the amorphous regions.
Dynamic mechanical testing was also used as a means to examine the changes taking place in the amorphous and crystalline regions. Differential scanning calorimetry was used as a method of examining the effect of annealing on the extrusion drawn PEO.
EXPERIMENTAL

The PEO was obtained from Polyscience Corp. and was cited as having a molecular weight of 300,000. This PEO was used directly as received. Samples were prepared by melting the PEO in a hot press at 110°C for ten minutes followed by pressing at 15,000 psi for five min. Some samples were cooled slowly while under pressure, others were cooled more quickly, both under pressure and at atmospheric pressure. These differences in cooling conditions had no noticeable influence on the drawing behavior nor on the subsequent PEO properties. Strips of PEO pressed film about 6 centimeters in length, 3 millimeters wide and 2 millimeters thick were cut and used in the initial extrusion draw tests. Multiple coextrusions were used to obtain the higher draw ratios. The coextrusion process has been detailed elsewhere. It should be noted that in drawing these relatively thick samples, the most effective draw was obtained by cutting the surrounding polyethylene billet longitudinally, but off axis, giving a thicker and a thinner section. A channel was machined along the length of the thicker section so that when the sample was inserted it was roughly coaxial with the assembled billet.

X-Ray Analysis

Photographs of the diffraction pattern were recorded on flat film cassettes in a Statton type (Warhus) camera with Ni filtered Cu radiation. Azimuthal scans for orientation function calculations and two theta scan profiles were obtained using a Siemens model D500 wide angle automated diffractometer. All
diffractometer work was done in transmission mode using Ni filtered Cu radiation. Beam divergence was minimized in line broadening measurements by using incident and receiving beam slits of 0.10° and 0.018° respectively. Under these conditions a standard sample of carefully dried hexamethylene tetramine had an integral breadth of 0.098° at 2θ = 17.84°.

The PEO peaks were recorded at every 0.05° and peak heights of between 600 and 900 counts sec⁻¹ for the 120 reflection and 13 to 25 counts sec⁻¹ for the much weaker 009 reflection were recorded. Background in the area of these peaks were 3-5 counts sec⁻¹ for the 120 reflection and 2-3 counts sec⁻¹ for the 009 reflection. Counting times of 15 secs per point for the 012 reflection and a minute per point for the 009 reflection were used.

The Rachinger correction⁷ was applied, but at these angles was not significant for line breadth. Integral line breadths were calculated by

$$\Delta \beta_{\text{obs}} = \frac{1}{I_{\text{max}}} \int I(2\theta)d2\theta$$

where I_{max} is the maximum peak intensity. Since it was assumed that both crystallite size and distortions were contributing to the breadth of the peak profiles, instrument broadening effects were calculated assuming both Cauchy and Gaussian profiles. The corrections are, for Cauchy $\Delta \beta_{\text{corr}} = \Delta \beta_{\text{obs}} - \Delta \beta_{\text{instr}}$ and for Gaussian $\Delta \beta_{\text{corr}} = (\Delta \beta_{\text{obs}}^2 - \Delta \beta_{\text{inst}}^2)^{1/2}$.

The mean crystallite sizes were calculated for both cases using Scherrer's equation (8)

$$D_{\text{hk}l} = \frac{K\lambda}{\Delta \beta_{\text{corr}} \cos \theta_{hk}l}$$
where \(K \) is taken as 1.0 and \(\lambda \) is the wavelength of the radiation used.

Crystallite orientation was determined using the Herman-Stein orientation function\(^9,10\)

\[
f_{c,z} = \frac{1}{2}(3[\cos^2 \phi_{c,z}] - 1)
\]

where \([\cos^2 \phi_{c,z}]\) is the mean square cosine, averaged over all the crystallites, of the angle between the c crystallographic axis and z, the draw direction.

Using the Wilchinsky method\(^11,12\) \([\cos^2 \phi_{c,z}]\) can be calculated from the relationship

\[
[\cos^2 \phi_{c,z}] = 1 + \frac{(2e_{110} - 1)[\cos_{120},z^2] - (2e_{120} - 1)[\cos_{110},z^2]}{e_{120} - e_{110}}
\]

where \([\cos^2 \phi_{120},z]\) and \([\cos^2 \phi_{110},z]\) are determined experimentally by the relationship

\[
[\cos^2 \phi_{hk1},z] = \frac{\int_0^{\pi/2} I(\phi) \sin \phi \cos^2 \phi d\phi}{\int_0^{\pi/2} I(\phi) \sin \phi d\phi}
\]

and \(e_{110} \) and \(e_{120} \) are direction cosigns between the plane normals of the 110 and 120 reflections respectively and a reference coordinate system. Details of the Wilchinsky method can also be found in an excellent treatment by Alexander\(^13\).

Mechanical Testing

The dynamic mechanical testing was performed on a Rheovibron Model DDV-II at a frequency of 11 Hz. The heating rate was approximately 1°K min\(^{-1}\). The tensile testing was carried out on an Instron universal testing machine using
crosshead speeds of 0.10 cm min\(^{-1}\) and a 1 or 2 Kg full scale range. Moduli were calculated at 0.1% elongation.

Differential Scanning Calorimetry

DSC scans were developed using a Perkin-Elmer Model DSC-2 with thermal analysis data station. Temperature calibration was carried out using benzophenone, M.P. 321.3\(^{\circ}\)K and 2 ml naphthalene, M.P. 353.3\(^{\circ}\)K. The melting points of the PEO samples were in the range 330 to 345\(^{\circ}\)K. A scan rate of 5\(^{\circ}\)K min\(^{-1}\) was used.
RESULTS AND DISCUSSION

X-Ray

The diffraction pattern as recorded on a wide angle photograph was similar to that reported by Takaheshi and Tadokoro14. However, no traces of the planar zigzag modification reported by Takahashi, Sumita and Tadokoro15 were observed in either the photographs or the diffractometer scans.

The values of crystalline orientation function and birefringence as a function of draw are shown in Fig. 1. The figure shows that birefringence rises more rapidly at lower draw ratios than does crystal orientation. Between draw ratios 4 and 10 the crystalline phase undergoes most of its orientation and by a draw ratio of 12 appears to have levelled off. The birefringence, in contrast, continues to increase, albeit more slowly even at the highest draw. The initial more rapid increase in the birefringence, which measures both crystalline and amorphous anisotropy, indicates that the first orientation is the amorphous intercrystalline regions. This is followed by orientation of the crystallites at intermediate draw. The non-crystalline portions continue to orient even at higher draw. Fig. 2 depicts this process.

X-Ray-Crystallite Size

Table 1a and b give values of the crystallite sizes as determined by line broadening for both the 012 and 009 reflections and for both annealed and unannealed samples. The line broadening of the 012 reflection gives an indication of the crystallite size in the transverse direction, while the 009 reflection
gives an indication of crystallite size in the longitudinal, ie. draw direction. Recall that paracrystallinity in addition to crystalline size contributes to line broadening. Thus, the values for crystallite size are considered to be a lower bound.

In columns (F) and (G) of Table 1, we have listed the crystallite sizes obtained by averaging the values obtained assuming Cauchy and Gaussian line profiles. Several trends are obvious. First, the size of the crystallites are seen to initially become smaller as the draw ratio is increased, reaching a minimum at a ratio of 11.1 to 20.5, then increasing only slightly with further draw. The only anomaly to this trend is the 009 reflection at a draw ratio of 11.1 in the unannealed state. Annealing of the drawn samples does not change this trend or anomaly. For both reflections and at all tested draw ratios, there is an increase in crystallite size with annealing, see Column h, Table 1. For the 012 reflection a steady decrease is observed in the effect of annealing at a constant temperature. The same general trend is seen for the 009 reflection except that the annealing effect is not as large at low draw and appears to approach a constant draw ratio of 11.

The general behavior exhibited by these crystallite size measurements is not inconsistent with observations of Kanomato and coworkers\(^5\) for coextruded polyethylene. They observed the 200, 020 and 002 reflections show a decrease in crystallite size reaching a minimum at draw ratio of \(~7\). At higher draw they observed a marked increase in crystallite size from the 002 direction. As in the present case of PEO, at the highest draw they obtained a larger crystallite size in the direction of draw than initially present.
An interesting difference from Kanamoto's results is our observation for PEO of an increase in the crystallite size, as measured in the 012 direction at higher draw. This indicates that larger chain extensions are being developed in the transverse direction. To our knowledge, this effect has not been previously reported. It may well be that this feature is produced here because coextrusion is a process carried out under compression.

Our findings on crystallite size as a function of draw are consistent with the chain extended model of Peterlin16,17. The initial decrease in crystallite size with draw is viewed as a pulling out of chains and other disruptions of the original crystallites. As extended chains are formed in greater degree at higher draws, the average crystalline dimension in the draw direction increases. The decrease in the effect of annealing at higher draw is also reasonable in that as more of the polymer is found in extended chains, the amount of unconstrained polymer is reduced.

Dynamic Mechanical Analysis

Fig. 3 shows the loss tangent, tan δ, as a function of temperature for PEO samples at several draw ratios, as measured on a Rheovibron. The undrawn sample shows two clear loss peaks, the first beginning at 203°K with a maximum at 230°K, and the second peak with a maximum at ~283°K. The temperature of the first peak is similar to that reported as the T_g of PEO. Enns and Simha18 and Lang, Noel and LeGraud19 (the latter citing the Boyer's upper and lower glass transition theory20) attribute this transition to amorphous chains restrained by crystallites. As the curves in Fig. 3 show, as draw increases, the temperature at which T_g begins increases from ~203°K to ~220°K. Also noticeable is the decrease in the height of the transition in its persistence to higher
temperatures. This is consistent with a model of amorphous chains attached or under restraint by crystallites becoming increasingly ordered and restrained on draw. It is noted that this transition is not observed for single crystals of PEO, further evidence that the origins of this peak lie in the amorphous regions of the polymer chain. It is likely that the second peak reported here also corresponds to a crystalline transition. Various authors who have reported transitions between -16 and +24°C and invariably have assigned them to crystalline transitions.

The tensile modulus of the samples prepared in this study are shown as a function of draw in Fig. 4. For comparison, consistent results obtained on a higher molecular weight PEO are also shown. The results with these thicker samples are similar with the thinner samples used in part I of this study. A linear relationship is obtained for the tensile modulus as a function of draw.

Thermal Analysis

Figure 5 shows DSC data on PEO at several draw ratios and also after annealing at 332°C for 70 hrs, expressed as dashed and solid lines respectively. We find reorganization qualitatively similar to reports on high modulus PE, i.e. the splitting of the thermogram into two peaks at a higher and lower temperature than the original peak. The effect recorded for PEO differs in that it is persistent to a higher draw. Also, our annealing temperature is approximately 13°C below the peak melting temperature which puts it at the extreme edge of the endotherm recorded for the unannealed sample. The annealing temperature used for PE was approximately 5°C below the peak melting temperature and well within the melting peak envelope.
It has been postulated23 that the important parameters for this effect are the breadth of the melting endotherm and the temperature difference $\Delta T = T_{\text{Peak}} - T_{\text{Ann}}$. However, for PEO we found the unannealed sample of draw ratio 21 to melt 0.5\,\degree \text{K} above the sample of draw ratio 28 and while the draw ratio 21 PEO showed the splitting effect and draw ratio 28 sample did not. We concur that the breadth of the melting endotherm is important, especially the breadth prior to the peak temperature. That is, as the melting peak narrows this signifies more of the polymer is either incorporated into the extended crystal region or is at least constrained by the extended chain region. At the highest draw, this constraint is sufficient to prevent significant reorganization on annealing. Reorganization on annealing at a temperature on the very edge of the melting endotherm raises the possibility that the reorganization involves more than just melting and recrystallization.
CONCLUSIONS

The results on uniaxial draw of PEO are consistent with the formation of chain extended crystals at higher draw. This conclusion is supported by the increase in crystallite size in the draw direction at high draw ratios, by the shift to higher temperature and smaller loss peak for the amorphous T_g transitions (recorded by dynamical mechanical analysis) by the increase in melting temperature for the drawn sample, and by the lack of formation of a double peaked thermogram with annealing for the highest draw ratio.

The amorphous regions have been found to orient more quickly at draw ratios up to 4 with the crystalline regions completing the majority of their orientation by a draw ratio of 12. Results are consistent with a model of fibers that have been formed by the drawing out of lamellae at lower draw being brought into registry to form thicker crystals at the highest draw ratios. The formation of the double peak in the thermogram up to draw ratios of 21 on annealing at a temperature well below the peak melting temperature indicates that a critical parameter in the origin of this effect is the breadth of the thermogram for the unannealed state.

ACKNOWLEDGEMENT

This work was supported in part by the Office of Naval Research.
REFERENCES

6. B.S. Kim and R.S. Porter, Part 1 for this paper.
TABLE 1a - Crystallite Sizes Determined from the 012 Reflection

<table>
<thead>
<tr>
<th>EDR</th>
<th>Drawn Unannealed</th>
<th>Drawn Annealed</th>
<th>Average of Cauchy and Gaussian cases</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cauchy Profile</td>
<td>Gaussian Profile</td>
<td>Cauchy Profile</td>
</tr>
<tr>
<td>3.8</td>
<td>328 A</td>
<td>540 A</td>
<td>366 A</td>
</tr>
<tr>
<td>6.7</td>
<td>254</td>
<td>403</td>
<td>294</td>
</tr>
<tr>
<td>11.1</td>
<td>229</td>
<td>311</td>
<td>240</td>
</tr>
<tr>
<td>20.5</td>
<td>230</td>
<td>274</td>
<td>216</td>
</tr>
<tr>
<td>23</td>
<td>257</td>
<td>285</td>
<td>224</td>
</tr>
<tr>
<td>28</td>
<td>276</td>
<td>298</td>
<td>232</td>
</tr>
</tbody>
</table>

TABLE 1b - Crystallite Sizes Determined from the 009 Reflection

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8</td>
<td>305</td>
<td>237</td>
<td>436</td>
<td>314</td>
<td>271</td>
<td>375</td>
<td>104</td>
</tr>
<tr>
<td>6.7</td>
<td>278</td>
<td>221</td>
<td>418</td>
<td>305</td>
<td>250</td>
<td>362</td>
<td>112</td>
</tr>
<tr>
<td>11.1</td>
<td>317</td>
<td>298</td>
<td>354</td>
<td>267</td>
<td>280</td>
<td>310</td>
<td>30</td>
</tr>
<tr>
<td>20.5</td>
<td>276</td>
<td>342</td>
<td>331</td>
<td>253</td>
<td>248</td>
<td>293</td>
<td>45</td>
</tr>
<tr>
<td>23</td>
<td>306</td>
<td>237</td>
<td>345</td>
<td>262</td>
<td>272</td>
<td>304</td>
<td>32</td>
</tr>
<tr>
<td>28</td>
<td>330</td>
<td>253</td>
<td>357</td>
<td>270</td>
<td>291</td>
<td>313</td>
<td>22</td>
</tr>
</tbody>
</table>
FIGURE CAPTIONS

FIGURE 1: Chain orientation on uniaxial draw by birefringence, Δ, and crystal orientation, f_c.

FIGURE 2: Chain models for crystalline and amorphous regions as a function of extrusion draw ratio, EDR.

FIGURE 3: The tensile loss tangent, $\tan \delta$, as a function of temperature for a sequence of draw ratios.

FIGURE 4: The tensile Young's modulus increase with extrusion draw ratio for PEO.

FIGURE 5: DSC data for PEO drawn to a series of extrusion draw ratios, dashed lines; followed by annealing at 332°K, solid lines. A comparison is made with a high density polyethylene deformed to an extrusion draw ratio of 12.
END

FILMED

4-85

DTIC