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ABSI'RACr

Radiologists miss about 25-30% of all pulmonary nodules smaller than 1.0 on. in tiass scteeniitig.s
A system for the automated detection of the pulmonary nodule has been designed, tuned, and
tested on a 43 chest radiographs. The goal of this system is to aid the radiologist in locating a
pulmonary nodule by indicating a few sites in the radiograph that are most likely to be nodules.

Procedurally driven image experts that respond to specific types uf anatomic fIcatuies have been
devised and are incorporated in a pattern recognizer, which uses linear discriminant analysis. t)
classify the candidate nodule sites. Candidate nodule sites that are not classified as nodules are
eliminated from the list of sites that are presented to the radiologist for inspection.

This work has demonstrated that pattern recognition techniquLs and procedurally driven inage
experts are capable of reducing the number of candidate nodule sites that a radiologist must inspect
from at most 17 to at most 3 in order to be 99% confident of having inspettCd any nodule detected
by the system that is trained with 37 films. The radiologist must he willing to accept a film true
positive rate of 88% (as opposed to a film true positive rate of 92%) for the convenience (if having
fewer points to inspect.
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1 Statement of Problem

The fundamental goal of this work is to improve the detecuon of the pulmouaiy nodule in dit..

radiographs. Despite improvements in radiographic imaging technology, radiologists are unable to

detect approximately 30% of all pulmonary nodules smaller than 1.0 cm in mass screenings. lhe

most dangerous type of pulmonary nodule, the malignant lesion, is most difficult to detect II iLs"

earliest stages. If the radiologist were able to detect such lesions in their early stages the paucut

would often have a better prognosis for survival and the consequent treatment would be less radital.

Besides easing the radiologists' workload, automated nodule detection would provide I means of'

recording sites of possible nodules that should be monitored in subsequent films and a means fir

evaluating the performance of radiographic imaging processes.

It is known that the human viewer has difficulty detecting small lesions In cLheS lilms Ilat is.

given a film that contains a smaU (0.5 cm. or less) lesion the human viewr will oltern lall to detctu

it. However, if the lesion were pointed-out it would be recognized. It is believed that this inability

is due to limitiations of the human visual system in detecting objects against a backgiound of

(structured) noise. The computer is immune to influences from SUuurcd noise. IL canmi timelessly

7 search an entire radiograph and report the presence of all small round things. , lh ANDS

(Automated Nodule Detection System) processes a chest radiograph and provides a dip)ly of

sixteen or fewer sites in the chest radiograph that are most likely to be a notdulC.

The possible benefit of ANDS is evident when one considers that about 30% of all visible suliaiy

pulmonary nodules go undetected in routine viewing of chest radiogmaplis lGailand,

1959](Yerushalmy, 19511. This limitation is presumably not due to radiographic technology but iS

inherent in the human observer. The human observer can reliably diagnose pulmonary nodule's 1.0

r cm. or larger in diameter but exhibits decreasing proficiency as the nodule diameter gets smalleI.

The radiograph is capable of representing a nodule as small as 0.3 cm. which mils ofien go-

undetected for nine or more months until it reaches sufficient size to be seen IGoldrneier. 19651.

Since roentgen findings are usually present in presymptomatic stages, their recognition at early

stages is presumably of incalculable benefit to the patient. 'Automated diagnosis of the pidliniimy

nodule offers the hope of ea.ing the rathulog,,ists workload by helping to linmt ihe scidi aica.

N% %% * *
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11- 120

The specific goal of this work is to improve an automated nodule detecuoti systen) that pidc.i , a

human viewer to sites on a chest film that are most likely to be pulmonary nodules and to tedite t

the number of false positives that are reported by that s)yste. The followinr pr(JCCssc' tc(iprsC

the current ANDS: 1) photographic copynig and digitization of radiogtaph. 2) ,mage proccsing to

enhance the appearance of the nodules; 3) caw:l.,mate nodule dcttuon and acLuinltlation of votCs,

and 4) elimination of false positives. The main fcatulrs of the AN! S are: spline filtemig to

subtract out background variatt,; candidate nodule. tib, and vaULSiuty ULlctUioli usijg I'tlghk like

techniques; and discrirrunant analysis to i.dtlu the rate f filsu pou6es. Thuse are runtlict

discussed in Chapter 2.5. Note that Jatse posvi as it is ubed witli respect Lu the ANDS ha.s th:.

following meaning: any non-nodule that it, consideed irrare nodzid like than a ndule u, a lse

positive. This concept will be clarified in the stdion on tule L ewalon and aCurMudatuta of

votes. The body of the experimental work was to dtsiti a:.d tune (he ANDS. Pas wrk was d 'c

in four phases: optimization of photographic/dgital reprodtMu(tIL Of te radfaph; 0,. :aub t(f

four nodule detection proctsses; parameter tuni:,32 of the OioJS) pi .,; and 1D1aKnc d Lc''

positives. lhese a:e discussed in the Experimental secuoin. I he iul, wLng seLtn is an igitutsdtti "

of the problem of nodule detecuon. It is a survey of imagc prc jnig of chett zadopaph, and an

overview of the work done in the computer aiialysis of !s. t il ini. It serves as bth a justilicathi.

and as a motivation for this work.

27



1.1 Occurrence of the Solitary Pulmonary Nodule

The prevalence of the solitary pulmonary nodule (SPN) has been reported between I pen 1O"O
.v

(films studied) {llolin, 19591 and 2 per 1000 [Good, 19581.1he study by Holn, a community wide

survey in Cincinnati (1949), consisted of 673,281 films with 687 diagnosed as containing nodlles.

Over the last four decades the incidence of bronchogenic caiunoma has quadrupled in

industrialized countries (WhlO, 1965]. Deaths due to bronchogenuc carcinoma weic: in Japan, 1.3

per 1,000,000 in 1950 and 6.5 per 100,000 in 1960; in Great Britain, 50 per 100,000; and in the I IS.

20 per 100,000 in 1960 IWHO, 1965]. The likelihood that a nodule is malignant increases with tle

age of the patient. Walske reports malignancy in 53% of all cases aged 50 or more years and 12%

malignancy in patients under age 50 lWalske, 19661. Steele found malignancy in 56% of all cases

aged 50 or more years ISteele, 1963]. In a review of 25 case studies which involved a total of 1203

patients, malignant lesions were found on the average to comprise 36.7% of , l ionms; the

percentage of malignant nodules varied in the case studies between 7% (Jones & Cleave, 1954) and

78% [Axtmayer & lrlich, 1955] IDavis, 19561. Seybold repuiLs an average malignancy of 37.8% inl

his survey of 22 case studies which involved a total of 2258 cacs; the data ranged bcwvfn 7% (1

of 14 cases - Jones & Cleave, 1954) and 55% (37 of 67 cases - Ilusfeldt & Carlson, 1950) IScybhrld,

19641. It should be noted that the criteria for inclusion in each of these 25 studies varied as (lid the

sex and average age of the patients included. Some studies took place in velcian, lisptals which

were predominated by older males while others took place in armed services hospitals which are

mostly comprised of younger males. Lung cancer has been shown to be about four (lines more

prevalent in males (21% of all males cancers) than in females (5% of all female cancers) IAMN.

1973].

The prevalence of the solitary pulmonary nodule (SPN) has been reported betweem I pet 100

(films studied) (Holin, 1959] and 2 per 1000 IGood, 19581.The study by 1lolm, a comnitmty-wide

survey in Cincinnati (1949), consisted of 673.281 films with 687 diagnosed as containing nodules.

Over the last four decades the incidence of bronchogenic carcinoma has quadrupled in

industrialized countries (WIIO, 1965]. Deaths due to bronchogenic cacinoma weic: in Japan, 1.3

per 1,000,000 in 1950 and 6.5 per 100,000 in 1960; in Great Britain, 50 per 100,000; anid in the U.S.

20 per 100,000 in 1960 (WIl0. 19651. The likelihood that a nodulle is ialignat iltcrase% with the

• "o%.'
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age of the patient. Walske reports malignancy in 53% of all cases aged 50 or more )Uais and 12%

malignancy in patients under age 50 IWalske, 19661. Steele found malignancy in 56% of all Lases

aged 50 or more years ISteele, 19631. In a review of 25 case studies which invovcd a total of 12(03

patients, malignant lesions were found on the average to comprise 36.7% of a!l 1,L)ins; the

percentage of malignant nodules varied in the case studies between 7% iJones & Cleave. 1954) anod

78% lAxtmayer & Ehrlich, 19551 [Davis, 19561. Sebuld reports an average malignancy of .W 't

his survey of 22 case studies which involved a tow of Z25S cases; the data iwai cd bt'iLeu 7i (.

of 14 cases - Jones & Cleave, 1954) and 55% (37 of 67 cases - Ilusfeldt & Carlsen, 1950) ISe '|,l.

19641. It should be noted that the criteria for inclion in each of these 25 studies varied z thid the,

sex and average age of the patients included. SOrMe SiUdies took place in veictians hospitah ,hi0.i

were predominated by older males while others took place in ;rmnid services hospitals whimt .ie.

mostly comprised of younger males. Lung cance: has been shown to bc about four times noll

prevalent in males (21% of all males cancers) than in females (5% of all female cancers) IA\N. "

19731.
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1.2 - Appearance of the Pulmonary Nodule

A solitary nodule is a circumscribed mass situated in the substance of the lung. cunstituting the unlY

sign ificant pathologic process in the lungs of the patient being examined. and swosving no significant

signs of cavitation Ihollownessi or obstruction of the airway IGood. 1%31.

The SPN is also called a "coin lesion" because of its circumscribed circular shape. I his is, howvei,

a misnomer because the shape of the nodule in fact spherical or ovoid and il flat and joulid.

The SPN manifests itself in essentially two forms, as benign and malignaiu lesions. I licie aie only

two conditions under which a nodule may be considered benign: the presence of dense CahlLoitith

or signs of stability lasting two or more years 1 )od, 1%31.

Density, shape, size. location, and margination (border characterisucs) ale cOnsideied as pt(sil)c.

measures to aid the discrimination of nodules from other objects within the lungs. It is ililTortalnt

to note that many of the following stausucs refer to nodules which were most likely diagnosed

because they were seen in chest radiographs and/or because they were resected (surgically removed).

The following statistics which regard the SPN may not necesarily apply to the general populauon of

radiographic images of all SPNs, especially small barely perceptable ones. Many of the following

statistics describe that population of visible nodules which are 1.0 cii or largui and whose

benign/malignant nature is known.

density

Perhaps the most powerful discriminating feature of the SPN is optical density. I )enso iliages of

nodules often indicate the presence of calcification - the primary feature of the benign nt)dlc. 'Ilie

density of the nodule in the film may be used to distinguish the benign 1 rn the iMaliganti no(hlle.

However, the presence of some calcium does not indicate that a nodule is benign. 'Ien cases of 280.

3.7 percent, of primary carcinoma were read as containing some alcium ISIele, 19631. lIense,

nodules are less likely to be considered malignant [Vivas, 19531 [Steele, 19631 l),avis, 19561. Small

...........................- 1
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lesions of heavy density are less likely to be malignant JVivas. 1953]. Leions smaller thath 2.b k.ti

and dense are usually granulomas (benign); lesions larger than 2.0 cm in diainctl ,;d not dense ate .

probably carcinomas JDavis, 1956]. Maignancy is unlikely in a den:, or cOntcntrlally calcified

nodule [Steele, 1963). Siegelman uses density a a means of discrnmunaung between calcified-beign.

and malignant nodules in CT images. lie found that no malignant lsion in his study had a C"

number greater than 147 Ilounsfield uniL [Sicgelman. 1%01. lli Cl system was car.filly

calibrated to produce quantitauve results.

shape

A majority of carcinomas are characterized by an irregular shape ,U.d, 19)31. IS!,Jlc. 196I,.

Thirty-seven percent of the carcinomas studied were megular or ulonbtw and only 11% had staip

margins [Steele. 1%3]. Shape offers little discrimination between benign and naignat nildles.

size

Although nodules approximately 3 mm in diameter are visible, thL lowt ii 16 dia gio.i is

believed to be 1.0 cm [Goldmeier, 1965]. In a study of 1267 nodules. 714 could be meastired eithcr

radiographically or pathologically; 66% were 5 cm or greater, and 1.26% were les thin 1.0 cin in

diameter (Theros, 19771. A greater proportion of nodules was found to be malignant as the iiodik.

diameter increased [Holin, 1959]. Davis reports in his case study that the smaller nodul's are |liut '
likely to be considered benign [Davis, 19561. One might infer from the following that small

malignant nodules are often not found. In a review of 22 case studies, SeybUld concludCs that few
lesions greater than 5 cm were benign and few less than 2 cm were nialignant IScybold, .19641.

Holin reports that the average size of malignant nodules in his case study as 5.2 Lim, and 2.5 k;m a "

the average size for tuberculosis nodules [liodin, 19591. As the size of die bronchognic trLawiiIil r

shadow increases: operating becomes more difficult; post-operauve mortality is highei; and the

overall prognosis is worse IBateson, 19641.

Goldmeier hypothesizes that small nodules may have a lower visibility bccause nodulcs liv: a 25

% *°*

-. %* .* % .,.* . . .,.. . r .

. . . .. . . . . . . . . . . .. ..*.*.•% .



1.2 - Appearance of the Pulmonary Nodule

mm outer shell of low density. In order to be visible the nodules must be considerably larger than

5.0 mm, (Goldmeier, 19651.

location

Tuberculous granulomas were found predominantly in upper lobes Illatesun. 1901.: Mid tliiee LiiS

more frequently in the upper lobe than in the lower [Steele, 19631; solitary metastasi:s were found

predominantly in the lower lobes, otherwise no other lesions showed particular distribution Illatesun.

1965). Davis found, in his study of 215 cases, that the distribution of nodiles in tile lobes was fairly r
even with no great distribution differences between benign and malignant nodules tl)avis, 19651.
Holin in his community-wide study reports that 61% of the lesions found were in tie right lung and

39% were in the left lung: more nodules were found in the lateral (68%) than in the niedial portions

of the lung (32%) lJohin. 1959). The above results may either represent reality or serve as an

indictment of the proficiency of the human disgniostician.

margination

Most radiologists argue that it is impossible to differentiate benign froin inaiignuwt nwdu&, on ilit

basis of size or margination... I1)avis, 19561. Of the 100 solitary circumscribed careIno01mrS inchide113 111

Bateson's study, the shadows of 71% had an ill-defined margin, lie reports a tenduency for a higherC
* proportion of shadows of small carcinomas to be ill-defined and the shadows of largeC uarCirimn1iaS tO

be well-defined. He also reports that the prognosis is better for patients with nodules with well-
defined shadows jIlateson, 1964). A ragged, fuzzy edge and an !rregulir Outline ate ini oftenl

present in primary cancer Iprimary as opposed to a metastatic, or sec-ondary nianifestation of'
cancer][Seybold, 19641. In general, carcinomas tend to be less well-defined, the sharpness of the

border could not be used to distinguish between benign and malignant (xdl. 19631.

In conclusion, the most harmless nodule is perhaps the easiest to dere-t in its early stages: aud the

nodule which presents the greatest danger to the patient is seemingly the most difflililt to deteLL III

its early stages. For example, a pusbible interpretation of [Davis, finiiiig. that Smiall nodules aIl

.4
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most likely to be considered benign, is that malignant nodules are simply nut hkly to bc h(dISLOL.L I

until they are big. A similar interpretation may also te applied to Seybold's finding that few

nodules less than 2 cm were found to be malignant ISeybold. 19561 - perhaps few small nialiglialt

nodules could be seen. Malignant nodules wrthh are claimrve to have irregular shapes and ill-

defined margins [Seybold. 19641 IGood, 19631 arc: presumably more difficult u dcct because diese

features are presumably more difficult to detect. he 'sratisucs which p(unt u, a high illt. ')f

malignancy among large nodules should serve as an indtcauurL of the liccessity to fiind ia Inltils ()I

detecting malignant nodules when they are sma~i.

Since the goal of the nodle detector is to fLiLd a' IL o l()dK . no USLU1LU0Il (Ulldi I. bXSCd t.

% brightness) is made between benign and malhra.i * n-, is. Tbt "nitc.b of cartiJdate niouues (sit'Ls

in the chest film that are most likely to be noduL. ) arc aLter-wd by a Iiough lhke UILIC itaiSi1i,,-.

The Hough ciacle transform has been generalized to pernut deiceto;. 1 a vaNCtt) of bright closCd

shapes. Thus the circle transform is able to cW'I avi at oe do.sd ipL> IN, :thi app',rauc

characteristics that are important to human detCLU1of of the Fr,2riuIary nodulc have becr"

incorporated in ANDS. Knowledge about the relive br..' T.'Lss and migular slape of i1,

- pulmonary nodule is embedded in the CN i..xpeti prr .xan that ,,, priAtr i! knowledge to

" locate the center of a CN). Appearance chatactesutii offli tioal e bor,., c.,tral. aiti arnuth:vl

uniformity are ustd to discrirnate nodules fruin i€t non-,..akes wioux ,c CNs dat are ,epiat"d

by ANDS. Global knowledg.., knuwledge ab.,ut the xu irfi re ,n to ws eavvinnct, is al. J%-

used to discriminate nodule, from non-nodules.

% %
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1.3 -Detection of the Pulmonary Nodule by the Human Viewer

In addition to the intrinsic features mentioned in section 1.2, dhe surrounding OaaLal cUntiast

greatly effects dhe visibility of a nodule. Nodules of decreasing contrast art: incieasiligly dilficult to

detect JKundel, 1979]. Nodules with sharper edges are identified faster and with greater freqiuncy

than those with less sharp edges ICarmody, 19801. Nodules of decreasing size are increasingly

difficult to detect. Detection accuracy rates of 44% for 1.0 to 1.5 cm. and 8% for 0.5 ciiil not L alt:

reported [Kelsey, 1977]. The effect of die surround complexity, i.e. anatomicwal bu.syiw i, is

suggested in the finding, that when the same nodule was superimposed in various lung regions Milt

of upper-left and 29% of lower-left lesions were seen [Kelsey, 19771. Note the Coincidence of this

finding with that of Steele - that tuberculous granulomas are jound three times more frequently in

the upper than in the lower lobes. Kruger et al., who automated the classification of coail workers'

pneumnoconiosis, report that their device correctly classified 77% of the disease in the lowei left and

81.5% in the upper left lung. This disparity between human and autotiated detction in these llg

regions suggests that a perceptual rather than a pathological basis miay be iesponsible for tlic~e

findings and that automated methods may exhibit less error.__

Viewing distance and brightness level have been shown to effect nodule detection. Sheca rI ul. have
found that the peak of the VSTF (Visual System Transfer Function) decreases in ilitrideLI annd

frequency as brightness decreases. They propose that every abnormiality has a uiiique (opuuiial)

viewing distance [Shea, 19771. llermingsson et al. superimposed 2.0 cm diameter lesions in Chest

films and found that a density difference of 0.025 to 0.060 between the nodule and surround was%

necessary for detection. They also found that the density difference at which a nodule is frsi

dliscernable is a function of viewing distance and the characteristics of the objct's boider and

adjacent structures. They suggest that the optimum viewing distance varies for different lesions%

IHemrningsson, 1975).

The parameters of die conspicuity metric, K2. which was determined by lRevo t l. a. ic those

features which distinguish seen and unseen nodules. The features of an undeh'cted-but. visible iiotlile

were compared with those from the same nodule which was only detected in a lat fliln. 'I his

metric was found to best distinguish between populations oftidet ted *ind mioutecoed iiodto. I hi%
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metric has as its parameters: edge gradient and contour (steepness and -riotiics. JCslpttivuly)

which are represented in the parameter El. Edge Index; and surround cuniplcxity. L . .,

parameters provided better discrimination between the two populations of nodules thai aoy of the

following parameters tested: size, density difference between nodule and surround, and the late of

change of density around the nodule border as determined by the Laplacian IRevesz. 19771. -dge

gradient and edge uniformity are used by ANDS to discriminate among CNs. Ihc.ec ale-

incorporated in ANDS as Edge Strength and Edge Visibility, respectively. lhe standard deviations

of these measures are in fact used in conjunction with other measures by whe pattern re0ogi/er to

classify CNs.

Erre:. in detection of nodules may occur in four level f the search process: orienli11O. sWaiLi.

re.Jration, and decision making IKundel, 19781. Orienuation errors occur when the obsurver is

unfamiliar with chest films and cannot differentiate abi-,nmal object, from background leatuies. A

search error occurs when an area containing a nodule is overlooked. When a noduk :.i scanned-

over but not recognized, a recognition error occurs. Decision making erroLs occurL whe all

z.nbiguous figurc is recognized but either falsely accepted or reICJted. Kuodel ct wl. clatir that _____

scanning errors account for 30% of all detection errors; recogniuon errors 25%, a td dccjjsoi-ni t-kint.

errors 45% among skilled observers IKundel, 1978].

Studies of film reader error over the past twenty years indicate error rates (filis muissed) of 25 0%

Dcspite advances in radiograph technology, readers have not been able to find more nodtl.s.

Reading errors may be attribuit'd to faulty processing of visual information which falls into two

domains: perceptual (unconscious process), and cognitive (conscious process).

Spatial vision research perhaps offers some explainations for human limitations in nodule delcI.o"n.

The importance of foveal vision in nodule detection suggests that high spatial frequlcilnucs tIfluenc.

detection. Where, "...small objects like pulmonary nodules can only be pcrcciwcd i/ they a'/te , 2.i"

the center of the visual field. The more complex the visual infornation, the c/loer to the t 'nir of Uwt'-

visual field (e.g. the fovea) a small object must be imaged to be perceived IK undel, 19781. In order

for a square wave to be distinguished from its fundamental sinuboid, at least its thiud harnoniL iist

exceed visibility threshold ICampbell, 19681. Similarly, an edgt' will go udetected if its h"1i

10
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1.3 - Detection of the Pulmonary Nodule by the Human Viewer E

frequency components are below contrast threshold.

The effects of structured noise on the surround have a significant effect in how liumanls delc-

nodular abnormalities IKundel, 19751. Structured noise decreases (he possibility of ddmc~uoia and

increases the time for a reader to make a response I1(undel, 19751. The effect% oif siound may Oe

generalized to fall into two categories: overlapping and noni-overlappine, I1undel. 19781. the non-

overlapping surround contributes to (he overall complexity of (he image. acting as a uiunoufllage.

exerting its effect on visual search rather than on visibility lKLtmdel, 1978. An overlapping

surround leads to edge obliteration and causes difficulties in both detection as well as tn physiLal

measurements (Kundel, 19781. An occluding rib is an example of such a surtround effect. loveal

* performance is inhibited by (he presence of extra stimuli in (he periphery as well -is in the rbvea

itself JMackworth, 1%5). Dimiunuation in the abii~ly to perceive a given spatial frequiency. e.g. dlie

thrd or higher harmonics which would characterize the edge, may be due to lalemal inhibition fioni

the surround. Adaptation of Lats to a given spatial flrequemicy has beeni shown to raise the coiitamt

required to produce a given response by a facOr of about four IMovshun. 19791. 1ihe effect of'

structured noise is evident in the failure of image processing. "TV ptoces-sing" acuordisng u) Kondel,

to make nodules any more visible I1(undel, 1%81, Extensive processing makes nodules tianre

conspicuous if (heir locations are known in advance, while detection is more difficult if their

locations are unknown I1(undel, 19751. Thius may represent a structured noise effect sinLce PtOCM1ill

% ~may increase the structured noise more than it enhances the target abnoinmality 11(tindel, 19751.
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1.4 - Previous Work: Digital Processing and Analysis of Chest Radiographs

There are two main aspects to automated diagnosis of radiographs, the diae'nusis uf i)attei I, and the

acquisition and analysis of large amounts of data 11enschke, 19791. ',he acquisio, and analysis of

data preceded the analysis of image patterns , with the former occurring in the early io-mid 60's and

the latter in the early 70's. Diagnosis of patterns in the chest encompasses ineasilrenenL fror the

diagnosis of rheumatic heart disease [H-all et. at., 19711; classification of coal workers'

pneumoconiosis [HaU et. at., 19761 Iiagoe et. al., 19751. analysis of pulmonary inliltration [Ttilly.

19781; and detection of the solitary pulmonary nodule IHallard, 19731. [he acquisilion and analysis r

of large amounts of radiographic data, symptoms, and test results to arive at a diagnosis has as its

main stumbling block the inconsistent interpretation of the data froma the radiograph by a human

observer into a form amenable to processing by a computer Illenschku. 19791.

Coding radiographs is perhaps the first recorded instance of automated diagnosis. Ills Involves

quantifying aspects of the visual image into numerical sequences which aic amenable to colmput.

analysis. In this method the radiologist codes observations for computer analysisll.odwick. )%31. It

was found that the problem inherent in handling such data is the LUonversion or the vismal data into

the exact qualitative and quantitative forms required by the computer Ilodwick. 19631. Yamiaiania

et al. point out similar difficulties in coding radiographic findings as inconvenient in r'jort'du'ibilay

and different readings from different viewers lYamamura, 19651. '1 hey conclude that ... tw hl:v.-

complicated findings of the pulmonary lesion are beyond the ability of pattern recognition of an

electronic computer. They are Ibest] left to the management of human brains IYamamura, 19651.

Meyers et al. digitized a radiograph using a flying spot scanner and displayed the image on an

oscilloscope; they also displayed the derivauve function of the image. They report that the

radiographic image retrieved from their computer is "...the most informative imagt of a portion of

the lung and ribs that Itheyl have ever seen." Furthermore, to the Cncoulagument ol Lomptrt

visionaries, they predicted that digital analysis of mechanically scanned iadiographs would be

possible [Meyers, 1%31.

Kundel et. al. suggest that digital image processing of the chest radiogiapli is necessary to reduce

the near 30% false negative of the hluman vicwer: they outline image pro;csing tchuelC. 1 iidt'l."

.. ".% -
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1969). Moore claims that image processing would probably make a useful conuibuuon to ladiolry-"-

by clarifying pictures of low quality IMoore, 1969]. Moore predicted that image ofrsing cf

radiographs would permit:

-removal of image noise

-correction for geometnc distortion

-elimination of non-uniform brightness, .,

and automated analysis techniques. would:

-search for tuberculosis and heart enlargement in mass hcreCnIngs-

-determine physiological age from xrays of the hands

-detect lesions in mammograms

-predict time of tooth eruption

-analyze anglograms

-calculate bone densities.

Fourier filtering techniques to erdiance the appearance of the pulmonary nodule wf e cvauawd by

Ziskin. He found these techniques incapable of separaung the nodule from it surround IZ14ii..

19721. Similarly, Kundel found that processing the radiographic inage did not lead to al iu vw.

in nodule detection |Kundel, 19751.

The analysis of pulmonary infiltrates and classification of pneumoconiobis is esseiiually a piobk:li. A

texture analysis. Quantitative texture measures are used to distinguish between nimmil oioq.

alveolar infiltrates, and interstiual infiltrates with 95% accuracy in the training pha.se, and 90%

accuracy in the testing phase I'ully, 19781. The image texture is analyzed using Autsherran'.-

SGLDM (spatial grey level dependence method). This method is essentially sUitistical. its ieaumre"

are based on the probability of going from a specific pixel value to another specific value at a i,

point in a textured image. Differences in image quality due to exposure time and devek lupz llt

conditions are eliminated by hnearly redistribuung the image so that contiast is iiotinalizd and 'C

number of grey levels is reduced - less grey levels lead to greater accuracy when using the SGI M

[Tu~ly, 19781.

14
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1.4 - Previous Work: Digital Processing and Analysis of Chest Radiographs

Two systems for the detection and classificauon of coal workers' piiicutsioosis have bee"

described, one in the U.S. by Kruger et at. and one in Great Britain by Jagoc and Patoin. Icdcral

laws enacted in 1969 require that coal workers be reguiaily examined for pncumocnios.is. ('riteta,

for classifying the severity of the disease have been standardized. I he U.S. system employs opt--

digital analysis while the U.K. system operates enurely on digital images. Ihe opto digital iitthd

involves imaging the Fourier spectrum of the iadiograph witi a laser and then aiaily/.ing the

spectrum with annular wedges to extract a fIequcy Signature whih is then subjected to staUstial

classification using linear discriminant funtuions IKruger, 19771. Jaioi and Patun's method foi

classifying pneumoconiosis involves measuring the inevennt-s of the density distribttion| within
square grids 3.6mm on a side. The diagnoses by their process have denonstrated a 0.88 coriclatio""

with those by radiologists [Jague, 1975].

The earliest known work on the automated detection of the solitary nodule niay be ailtillitLcd to

D.H. Balard and J. Sklansky IBallard, 1973]. This %% )rk involves inmage proc ,.ing to CeiilhIace"

detection of a tumor edge in digital representLions of chest radiographs and radioiotopc hi.Vi

scans. The detection of this edge was deemed difficult for two reasons: cNhnges in the im1)agc

density about the perimeter fo the nodule which are caused by background density giadicilvs. and

the presence of ribs which may occlude the nodule [lallard, 19731. The work done by Ballard is

the foundation of the ANDS and this thesis.
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2 - Introduction to ANDS

A chest radiograph is the input of ANDS which processes and analyics the iniiltic lil CNs--

(Candidate Nodules). The output of ANDS is a list of CN sites which are displaycd for ieview by

a human viewer. Fig. 2.0.1 presents the essence of ANDS. Table 2.0.1 illustrates the steps inI

ANDS, their inputs, outputs, and effects. The purpose of the first step, photographic reduction and

digitization of the chest radiograph is to render the 14"x17" chest film into a fomli lamenable to

digital processing. The photographic reduction step is necessary because the available Image

digitizer is not capable of digitizing any image that is larger than 10xl0". The goal of this stage is

to achieve a linear mapping between optical densities (in the lung parenchyna, that is, in tile hillg

tissue) and pixel values and to maintain the required spatial resoluion. In a pre-pocessing step the

background variation is removed using a spline filter and the cuntiast is enhanced with histOgiani

equalization. CNs are located using a Ilough-like technique, which votes for CNs in ail

accumulator array whose dimensions correspond to the image diniensions. 'the peaks In tele

accumulator array correspond to the locations of centers of closed circulai shapes. Following the

application of the Hough technique the accumulator array is smoothed by convolution with a

Gaussian operator. This improves the estimate of the center of a CN, which is represented as a

local peak. The smoothed accumulator array is searched for a specified number of the hl,he.i

valued peaks. The locations of these peaks correspond to the locations of centers of CNs. The

locations of the nodules in the films that were tested are known. A metric has been devised lo

measure the performance the nodule detection process. This metric uses the list of CN locatilns

that is produced by ANDS and the locations of the known nodules. Since some of the repolted

CNs are obvious errors, for example, lung borders and ribs are common false posituves two

procedurally driven recognition experts and a technique for linear discriminant analysis have been

incorporated in ANDS to reduce the false positive rate. Each of the stages in ANDS is described Ill

greater detail in the following sections.

S.,
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SANDS M4v
Photographically reduce xray image J

* Digitize image

ISearch for peaks in accumulator

I Extract features

figure 243.1 - The Automated Nodule Deiecuion System ANDS. A chest ridiuiapti ib prevented to
ANDS which analyzes it for the presence of Pulmonary nodules and %hich prudiuces a dtsptj of candiditt
nodulites. ANDS incorporates three vision experts: a kib Expert and a Va.-cularity prov.ide oifnrnion
to a pati'n clasiifia which clasifies a CN: and a Nodule F~qiert Oakch Aung 3 set of ntle%,dtvosfc
nodules from false pusiuvet, ausing the obvious false posmsib to be omitted Fromu the CN site, thjt arte
presented to the radiologist,



2 - Introduction to ANDS

INPUT PROCESS OUTPUT'

14"x17" chest film Photographic reduction 4"xS' negtive on Kodak Comtiriiual
film; size of radiograph is reduced to 0.26
tinmesoriginal

4"xS" negative Digilization digital image; 11-bits/Oxlisd:wnipled ai
lO0,pni; optical densities are converted to
purl values

digital image of chest radiograph Spline filtering and histogram arans enhanc ed dgtliand. bckound~
equa'n vraini eoe n otati

spline filtered histogram equalized Candidate nodule detection image tiat Luiitails vote-, fr locatiiis or
image CN centers

aCCUMUlator image Smooth accumulator iaesmoothed image whw peaki. 1ctesc.lt

image the loctions of CN centers. the gruuping
or votes cast in the previous step are
concentrated about dicir ceniter or ina!,

smoothed-accumulator image Search smoothed accumulator image list of CN center courdiuiaies ordered by
aCCUMuLat3or Value.

accumulator Hast, spline filtered image Elimination of false positives modifled ordered list of CNtenhter
coordinates: false positives reJucLd 7

file oftknown nodule locations, List of Performance evaluation a report or die number of false- posiu'.es,
locations of CN centers the true positive rate, Wie CdI M, and the

DM

Table 2.0.1 -The Inputs and outputs of ANDS.
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2.1 - Photographic Reduction and Digitization: Creation of a Test )atabase

Anterior-posterior chest radiographs which are representative of the general population of such chet

films were obtained from Dr. John Wandtke of the School of Medicine of the University (if

Rochester. The performance of ANDS was evaluated using these films. i Hence. these filins are

referred to as the ANDS database.

Fifty 14"x17" chest radiographs, 44 containing at least one nodular abnormality and 6 noinials.

were photographically reduced and digitized The dimensions of the digitized images aie abot.

900x900 pixels. Fig. 2.1.1 illustrates the reproduction process. A Sinar "C" camiera widt a 240m.i.

Xenar lens was used to image each radiograph onto Kodak Commercial film. The non-lung area of

each radiograph was masked prior to copying using exposed xay film. Only the lung areas wtei

imaged when copying the radiograph, i.e. no light was allowed to pass inough ithe non hiig aica of

the radiograph. This was done to reduce camera/lens flare in order to obtain a mre linear tianislur

from optical density to pixel value, see Chapter 3.1. A 10" Kodak #2 step wedge and a tn-ba

target were included when copying each radiograph. These provided means for qua(ititatively

assessing the transfer of densities (tone reproduction), and assuring that a nominal (as given by the

Nyquist sampling relation) spatial resolution was maintained. Since the radiograph was (igilized on

an Optronics C4100 rotating drum scanner at a contiguous sampling interval of 100 riic ns .tli

circular apertures of 100 microns (illumination and collection), a spaual resolution in exccs. of the

nominal 1.25 lp/mm was maintained. The film was developed in Kodak II--110 developel,

dilution D, for 5 minutes at 68 ±1/20 F with R.I.T. tray-rock agitation. Ihe ()ptionits wa.s

calibrated, using a 5" Kodak #2 step wedge, to provide maximal useful iange and optiizal

discrimination between densities around 2.65, the upper limit of the lung region deiisiucs in tlic

photographic reduction. See Appendix 9.1 for details on the calibration 01' tie Optronlcs scainer.

A statistical analysis was performed to determine the optimal exposurc anid flare condition. The

exposure/flare condition that resulted in a statistically insignificant scond-orde term in a giesi.sin

of pixel value as function of radiograph density was chosen from the 9 exposure/flare conditions on

3 representative films tested. This exposure/flare condition was used when the 50 films that

constitute the database were copied. The nodule size/age, and patiLnt-sex/dise;ise/iuibc/ )L-rf-

nodules-per-film distributions of the films in the database are illustrated in Figs. 2.1.2 and 2.1.3.

respectively.

00.
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3. Digitiziaton
Image is scanned on
Optronics, C-4100
sampling interval = 300 lrn
Sampling aperture = 100 urn

2. D velomentNumber of grey levels = 82. D velo mentScanner calibrated for
HC:11OB @ 68 F deuties in range .20270

For 5'; RIT tray rock agitation

Image recorded on

Kodak Commercial Film

Cametra: Sinar-C

Lens: Xenar 240mm. f/5.6
1. Photographic Reduction Exposure 1Ostc. f/2')

Magnification =0.26

Tni-bar target

Kodak #2 Step Tablet

Ilurrination =16,000 rc
Non-lung Area is Masked

17"

Figure 2.1.1 - Thet photographic reduction and djiukzaion proces tdi was used when cup~ingl the 50 chest
radiographs that constitute the ANDS dataase. Thse W&W1 radiograph is photogaphically i;eduted onto
4"xS" Kodak Commercial filmn by the camtera/lens system. 'The txpo~td sheet film is developed. 'Pre'
developed film is digitized on an Opuronics toung drum scanner to an 90MO90 pixecl inwst.

* Figure 2.1.1 - The Photographic reduction and dligilizain process that was used wle,,n cup)l,,E 11,t , t ~"..
- ~~~~~~~~radiographs that constiutewlh NSdaac li 4z7 aAi~;p sllOu~tli~I)ld... il

4%5S" Kodak Cormiercitil Ni by the cara/lens sviscm. Thet exposed sheet Win is dcvcdupcd. 'lli
developed im is digitizcd on an QOironics roiatin drUM Kcanner to ant 9OUA'UU pixel ii~

* - 22



2.1 - Photographic Reduction and Digitization: Creation of a Test Database
I - ' - .

number of films Metastatic

12

8

34
." 4 18 .?.

17 132_27 2 15 3 33 80;: o J.0 . o J0 .9 1.1o0 -
radius (cm.)

number of films Granuloma

12

8 28
23

4 10 .. "
6

21 22 5 4 43
0 .30 .50 .70 .90 1.10 1.2U

radius (cm.)

number of films Carcinoma

2" 36
'" 31 19 30 35, US. .

0 .30 :50 i0 .90 1.10 1.30
radius (cm.)

number of fims Other
4

44a1
2 421p 41p

9n 16n 40p 25n 39p ,1n 14H 13n 12h

o .30 " 0 .70 .90 1.10
radius (cm.)

1gwe 2.1.2 - Distribution of nodule radius by dist.. The numbes are the ideiiiitia.,ii-ai ii|t,. tt lhN of i.m
films that contain the nodule($). The radius value is the aveage pixel boundary di'.inl%.: oIfl .ll rih1.1"
arms (see Fi. 2.5.5). The values we average nodule radius for films dia co namn trc I...in i: ,,,ide,
Other includes the following types of nodular abnormalities: nipple (n). hamaja (h). IllroikI' ai."lc
(H). and pbeudo-nodule 1p).
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number of films M C

4 5

2 Mal1s 1 fmales

01 22! I I t 1 37

25 35 45 55 65 75
agclyrsl/scx

number of films Granuloma

0 l 1 11+ 1 1 1
i5 35 45 -55 65 75

agC(yrs)/sex

number of fikms Carciaoma

2 1 1 1 l _,

ol i I! 1 111 11
m f 25 35 45 55 65 75

agv(yrs)/scx

number of films Other
6 C

4

2p 2p N In N

0 N N H Nlblh .lp 111 1 21 2n  2n

f 25 35 45 55 65 75
a8c(yrs)/scx

figue 2.13 - Distibution of age. sex, and number of nodules per fiLm by dibeab. d q%; lInjj4L I,
two fields which represent the sexes: male is the leftmosi field and feniale is the righmliOt riid. I lic
numbers that awe pltted are the numbes of nodules per fdm. The letters hat prec de the i hnlcr fr.
Pathology Other tepresett: N=nornial, b=button. h=hamrtoni. II =]!.,2kr pmr'cidn nodiie. and
n nipple.



2.2 - Preprocessing: Spline Filtering and Histogram rqualization

Spline filtering and histogram equalization serve to make the small details of' the iniage inoic visible

by subtracting background variation. Spline filtering is similar to field flattening Il'earsoni tt. aIlt

Essentially, the low frequency components of tie image are removed whien splinc- filtering. A low

frequency approximation of the image is made by interpolating with l-spls. T his interpiolated

image is subtracted from the original image. TIhe spline filter has three steps: ititempolatimig tire

original image to produce a two-dunenswonal approximauon; subuacung the interpolated Iicjai

from the original image; and expanding the contrast of the splmnt filtered image tusiig histogianr

* equalization. The Parameter Of the spline filter is die interval at which the interpolatnt points are

taken - the knot spacing. This interval corresponds to the numberh~ Of points that are ierpcilatedl

between knots. Figure 2.2.3 illustrates the effect of histogram equalization oil an iniage that was

filtered at two different knot spacings. As the distance between the sampled knots decreases the

interpolated image more closely approximateS the original image. More frelliently sampled imagvs

contain more high frequency content, this is evident in FIjgure 2.2.3.

The spline filter is faster than the two-dimension VV"I. It requires 0(N) adchitiots and (-)(N/kj

* .multiplications while the FF1-' requires O(NlogN) additions arnd muluiplications. where N is the

number of pixels in the image and k is the knot spacing. [he number of real aldditionis andl

multiplications that are required for the base-2 Yll are Ilirighaml:-

Real Muluplicauons: (21 - 4)N -4

Real Addiins: (3 -y - 2)N I-2

where:

N =number of pixels in image

= o2 of N (where N is a power of 2)

The number of real additions and multiplications that are required by the %pliie filter were

determined to be:

Real Mltiplications: 132 -(N / -l)(86 + 46/k) + (N~' - )N32/k)

Real Additions: 144 + (N 1)2 (20/k + 16/k2 + 4) - (N'/' - 1)( 86 + INk -i 46i/k)

where:

k =knot spacing; I ( k < N/4.

p~~ %~.* %. %. %~%*. .. %.S
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Note that for a two-dimensional FF'r. twice as many multiplications and additions are Itjiiircd (I Ii

forward and reverse transforms) as well as at most N multiplications for the filtering opcratbr.

B-splines are used to interpolate the spline image. The interpolated image is composed of l)ICiewIw-

continuous polynomials that are essentially linear combinations of the B-spline basis fuctiuons. Knot

- points define the guiding polygon, a convex hull under whirp the intrp( j'Lsd fiictiuon is foiicd.

" The variant dmunishing property of the splint functions assures that tie liit:!jYlatUed func !01 ,il K>

..". always le beneath the convex hull that is defined by the guiding polygon. h.plrhntd: k:,;.s

have the property of local support, which permuts the positioing of the knots to have huLal Lontiol.

,-e Fig. 2.2.1. That is, if the position of a krot were perturbed the shape of ite inteipolatud '- .

.;ncuon wou.1d change only in tI. vicinity of that knot. I ',pLnv filter in spatially variauit, milik.

the FF[ whci is spatially invariait, due to the local Sup; ,rt ptupcrt) of tie spline biLsis Ililt tions.

The general equation for a B-sphne curve is IWu ri. al.:

Nu) = Ix(u). Y( l 01% lu) , "
i=OI i~tP

Where Bi.M(u) is the i-th basis function, a compound polynomial of ord, 'A. tMON I,jlyiidlal Is

continuous up to and including the (M-2)-th derivaue. The degree of the polyuiuilial i% M l. 1 1ic

following equation is a simplificauon of the above for cubic, M=4, 1-sphies; ditc lypc ()sll ii' this

work.

P,(S) IS3: S2 S I1lCV*1 V1  + V-lT %

-l 3 -3 1

3 -6 3 0
IC= 1/6 -3 0 3 0

1 4 1 0

where:

C = a matrix of coefficients of the periodic uniform B-spline basis f 1110 s.•"

i - 0. m} where m+ ] is the number of spans associated with the oidiu pI1)',)-m

26
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2.2 - Preprocessing: Spline Filtering and Histogram EIialization

which has m+ 1 sides and m+ 1 vertices (V,... Vm)

S=(u-ui)/(u1 +1 -ui): SE 10.11.

Generally, B-spline functions are used to interpolate continuous surfaces. as in coniil giapliiis. e

These shapes are usually closed Curves. Ilowever, the spline filter requires splining of ;iI openi

curve. For an open B-spline curve two end vertices, V., and VM+l, ale extrapolated. See lig.

2.2.] for an illustration of splining on an open curve.

V1 = 2V0 V1

VM1-2VM - VM-l

The equations of the new ends are:

P0(0) =(1/6)(V., + 4VO + VI)

P.( = (l/6)(VNI-i + 4VM + VMi+ I)

While testing the spline filter I noticed that the edges of the lungs ha~d a splotchy appeaianti: aii(I

the lung area lacked detail, Fig. 2.2.2. Ti'hs splotchy appearance was atuihuited to bothi the elicit (if

the discontinuity at the lung border and U) the effect of the significantly darker non-liig aleil on

the interpolated image. Plesurnably this appearance is due to the iiitcrpohaied liniage tindel

approximating the original at the border. The amount of under- approximation is depundevi ol (thc

closeness of a knot to the edge of the lung. '[he pixels values iii tie non-iung aica ale set to) the

mean pixel value of the lung regions prior to splining; this ivduILes the noUUeIJC effecLt, Fit 2.2.2.

A splined image with knot spacing k is generated in two Steps. lujst. cveiy kilh row oJf the uiiaic is

splined and then each column is splined. The values used in spluiniqu the ,olurnnis ale those valuecs

that were interpolated when splining the rows. The endpoinLs of the rows and colufliiis ale

obtained be a weighted extrapoliition of the neighboring knot values; for example. for the left side:

V =y V 10A /2 + V 1-I /3 + V(.l6and for the bottom left coiner: V[i. 1 (, 111 I V11.11 +

V11.0 / 3. The region outside the lung parenchyma, the non-lung region, is set to the mnean value

of the lung region prior to splining.

'7
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P

V0

VM-V

Extrapolated endipoints

Fiue -.. Splining on an open curve. The endlwJ o i giigplpo ffrde c iw r

extrapolated from neighboring points. Perturbation of puint P on uw guiding polygof 'n dei o i i or
the curve near P. The interpolated spLne curfe, ilc s Lim~ %stdn the conei Lull defined by t;ie goidi'
polygon. This is a conseq~uence of the varia.nt diminishing property of She inialioIlion Wcie,1iL.

Flguwe 212.2 - The effect of setting the non-lung regivn to the nean value of the June reion ilito to11 ime

Melteing. The image on the Icfl was spline filiered ae the non-lung tegion %as~ set In the 11t..11 11ihel

value of the lung area. No changes were made to the vaIuen in the nun-lung are.i wheni spline filhiemig the
ui3EL~ On the right.

%*28



2.2 - Preprocessing: Spline Filtering and Histogram Iqualization

* Histogram equalization is a method of expanding the contrast of an image. A cuintlative frequency

histogram of pixel values. T(r), intensity is determined from the frequency listrihiiioii of pixel

values. p,(r), in the following way:

T(r) X p(w)
W=O

where, r E {0, .. maximum pixel valuel.

The histogram equalization, E(T), of pixel value r is given by.

R 0 r)(r -Pnd (if.x P~m) T(r) / '(Pm..) P.

where, Pni = the mr~inimum pixel value represented in the pixel value hisiograii.

Pmna = the maximum pixel value represented in the pixel value histogriffi.
- P =the maximum pixel value in the histogram equalized inmagc.

In order to facilitate discussions of operations on the image, the lollowing notdUoij will he useud

throughout:

rfx'2x>, y(: Y>J

r represents an image array composed of n-bit pixels. X pixels per scaime. and 'iscaI1liiiCS. F t-
A . Z };the field (*> is optional; the domains of the indiLeS WrC:

0 < x < X, x = (0, .,(X-lfl

0 < y<NYy 0(-

and the range of the image array is:

0o<rI.xy]< 2",,Ix, y] 0,.( 2fl 1 )1.

RGjx,yj, piP.
f is a function defined in the domain of the image, Gjlx.yJ,

P1 .  Pn are the parameters of I.

The Spline filtered histogram equalized im~age, F. is produced from the ipt iiihij, 1, by the: %plui
file function, f, whose parameter is knot spacing, k.

F8 X: X, Y: Y I t(18j1x: X. y: Y , k)

Knot spacing, the only parianeter of' tie hitr was tuned to Provide optUiijal dcein it) lic1 kiiov,.



noduls inthe filrnm in the databtase.
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Figw9 2.2.3 Elfecui or knot spoung and hittoptarn C e auton on a Spinw Itrc L i,~Uwklwat splinc rtiterca at two diflgellt lg pacine arid a o huia 1l~ul~ dL iu Ithe fight Cotrespond to those. on 
L ~ ontht~ehsormculc h~to n 1 c s~:4. %.IIIWby 470 pixels p, scajniic) wec~Lnc IAte but ey kngot £wng quanizd I'lit IOP fwc 41-1~r lij ,c,&~at a knot SPacing Of DO,.
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2.3 - Candidate Nodule Detection

Candidate nodule detection has three steps: locating the CN center with ie CN L-xpuit. iiage

smoothing to accumulate the votes for CN centers, and searching for a spcified nmbe! of CN

centers. The CN detector reports the locations and values of the closed shapes in the image. I'li

value associated with the reported CN center is a function of its edge gradient magnitude and its

size. This value is computed by a Hlough-like technique [llallard, 1973). "lhe essencc of the ('N

Expert is a circle detector which uses exhbedded knowledge about the appearauIe of a nodule like

shape. The knowledge used by the CN Expert is: that the CN is a closed cciivcx shape that is

lighter than its surround. This knowledge is used by the circle detector to determilne the location (f

the center. A simple Hough circle-center locator is used in conjunction with image sionthing by

convolution with a Gaussian function to provide a robust CN detector: it is sensitive to a variety (if

closed shapes, not just circles.

Since the CN Expert is both compute bound and operates on a large (approximately I Mhiyc)

image, it has been designed to minimize the size of its resident set. When many useis ai oil the

system, large programs such as this one are swapped. This causes the CN Ixpeit to ion| slower.

The CN Expert, the Gaussian smoother, and the image search operations all operate oi hoiizorital

scanlines in a window that moves from die top of the image to die bottoni. Only a few sLanlincs

are resident in primary memory at a tunie. iEsentially, the user specfies d numbet of scanines

that are to be resident in primary memory; these hes are rcad-ili; the next group (a specified

number) of scanlines are read-in when a scanhne that is above die topmost scanlinc in die rusidei.

window is accessed; access of pixels in scanlines that are below the botommosit scatiline in the

window (in primary memory) is not possible. This technique has been proven useful in speeding

computation time.

The spline-filtered, histogram equalized image, F[, is processed by die CN center louioun, CO, Lo

produce an image array, C[], that contains the centers of proportcd CNs.

CSIx:X/resolion, y:Y/resolio, = c(FIx:X, y:YI, ra mJu,, ri',hal"n)

where cO is S represented by the following algorithm:

.. '% 
% "
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for( all image points: y. x in FOl; if edge magnitude ) T)

BEGIN

cx = x -- cos( Edge Angle ) radius;

cy = y + sin( Edge Angle) * radius;

Cicx, cy] - C[cx, cy] + 1; /* uincroentacutnuaor array: CN cen er

END

where,

Edge Angle - the angular orientation of the edge at Ix, y] as determined by a Sobel ltJai. ;.

radius - the radius of the sought-after CN; specified by the user.

T - a threshola lue.

radius- the radius (in pixels) of the sought-after nodule.

resolution - an integer that specifies the reduction between the dimensions arid thL Itilfic iiimaL'. lli

the accumulator.

The CN Expert maps the edges of the lighter clksed shapes in the image I l)eaks ij CtX,Y. That

is, the edges of a light convex shape will cast votes via co in the vicinity of the cerer of di siap.

Convolution with a Gaussia. function is used to Cluster the votes futher about the cutc the- ..

CN. An integer array of weights is iniualzed using the following Gaussian Itietion. iWO

implementational features of the circle detector are that it operates on only a few scanlincs at a

time and that it is performed using integer weights to minitnize floaung point ovcihcadl. A sptrsu.,

non-linear, convolution is performed to restrict the processing to points of probable intecst. Ihat

is, the pixel value at the center of the convolution template must be greater dian a SpeCOlicd

threshold if the convolution is to be performed at that pixel.

This array of weights is used to compute S,61x:X, y:Y].
S16x:X, y:Y] = s(C~lx:X, y:Y], radius, resolunon)

L - where so is given by:

S16fX, y] = 77 C8f, fPt glxa, y-/?ldadfl
X Y

32
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2.3 - Candidate Nodule Detection

radius - the radius of the sought-after nodule in the original image.

resolution - rescales radius', the input image is already rescaled. -

glx- 0: 2*r, y-y0: 2rj
ep-lxx 0)2 + (y-y0)2j/area2), f- 0  adIy( '

0, otherwise.

Following accumulator smoothing the highest, nvotes, values and theii LuxidiiiIie II iii '.uiim~ohcd

accumulator are located and output in a single pass through the smnoothed image. AN te illiage is

sequentially searched for peaks a circular list is maintained. At the head of this list are the vale

and coordinates of the largest peak in the image; these was determined by the convoliuti progiani

during image smoothing. Any image value that is greater than the value of the last itemn in the list

is inserted in the ordered list and the last item is deleted. No insertions are made if the coordiiiates

are within 2r and if the new peak value is les than the valueC of the aite already in tie list. If the

coordinates for a peak whose value, which is about to be inserted in the list, aie Within 21 or alk

item already in the list and if the new peak value is greater than the one already in the list, that list

item is deleted and reinserted in a position appropriate to tie new peak value. A 4r x 4r ac

around each local maximum is set to zero as the peak value and coordinate.% are imm~rivil in the lut.

If any local maximum (in the region being set to zero) is encountered that maximumi and ms

coordinates are entered in the list instead. An accumulator list, X, that contains a specified numllber,

nPts, of CNs is the result of searching Sli with the search algorithm, 1).

Ali] =p(Slx'yl, 'Pts, radius)

where Ali] < a,. a2, a3>

0 < al <X and 0 < a2 < Y: where X and Y are the bounds of S 1 X:X, Y:YI.

a3 E S161X, A],
i= (0, ..., nPts-1), where nPts is the number of CNs in A,

a -q a( 11+ I,), V i.
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2.4 - Performance Evaluation

Whether or not nodules are present in the chest film the CN detector will ,epurt a specilied numiiber

of CNs. Ideally, the detector should report any nodules that are present in the film in die highest

positions of the list of accumulator peaks. That is, if there are nodules in the film, they should

occupy the topmost slots (i.e. have the largest accumulator values) in the ordered list of accumulato

votes. Quite often this is not the case. Votes tlt represent false positives arc olten inleispeised

among those that represent actual nodules In the list of CNs. The efficacy of the detector is-

dependent on the position of the actual nodules in the list of CNs. 'I he cumhultive histogiam.

metric (CHM) embodies the following rule: the closer the votes for die actual noules are t tlthe

top of the list and the closer their clustering, the better the performance of the deteclor. The true

positive and false positive rates are used to characterize the performance of the detector. [he true

positive rate, as it is used in this work, is defined as: the percentage of knowni nodult-s that is

detected. The notion of faLse positive, which is somewhat different from the common concept, IN:

the number of non-nodules that he between the first accumulator point and the position of the last

detected nodule in the list. See lig. 2.4.1 for an illustration of the calculations of trtue and lalse

positive rates, and the detection metrics.

A CN is considered a detected nodule if its coordinates are close (a deflintuin ol Lihse fullows) t(,

those of a known nodule. Forty-four of the digitized films contain at least one nodule (32 wntaii

only one nodule, 12 contain more than one nodule). All of the films in the ANI)S database wel:

obtained from Dr. John Wandtke at Strong Memorial liospital. lie specified the htmauons (il the

nodules in these films by circling them on aii acetate overlay which was placed in legister with the

radiograph. Later in the computer vision lab, I specified the locauon of each |odule itcinaIuv0) . .

specified by positioning a cursor over the the nodule in a display of the digital Image, an overlay

placed in register with Its corresponding chest film was used to ginde this spccuficdIoi,. 'I lie

locations of the nodules are stored in the header portion of RV (Roche.ster Vision) images thai are 4

or 5 times reductions (per side) of the original image. The critelon iail is used by the dteLt il"

metric to determine if a CN is close to the location of a known nodule is:
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ifR Oist(accxscale. accyscale. knownX, knowiY) <AllowablkE r.iot

return NODUI.L IJE'tECTED;

where:

Dist() =Euclidean distance between two points in 2-space.

scale =scaling between accumulator image and image that which contains uWIod~iiiatS (1 tile

known nodules.

jaccX, ace&VI and lknownX, knownYl coordinatusof CN and known nodides. reSpeCLuvely.

AllowahleError = (radius'scale) + Zooml-oclrror1.

radius =radius value that was used by the CN center locator.

ZoomtocError =2; [the amou of error (in piAels) allowed when intt'ractivi-'l'leUing thecti "h

the nodule in the reduced ima ge].

-- The CHM (Cumulative Hlistogram Metric) and the true postive rate aie used Lu V,% OIL'

performance of ANDS. The value of the CIIM reflects the placement of nodules ii, A It Is

defined on 10, 11. The CI-M is the area of the difference between an ical cumnulative Ircocn.1cy

histogram, c*, ana Ce experimentally obtained cumulative frequency histograin, c, (derived Ail-A

of accumulator votes. The abcissa of this histogram, It. from which the currmulauve f1iee:%

histogram is derived is the location (actual position) of the detected riomules Anid the Orwaat is t-

10. nNods*1 1. That is, the presence of a nodule in A is marked by a delta futicuon with rreimuic

(roughly similar to area) nNodsm1 , where nNods is the number of nodules that are kiiuwn Ili Ix ini

the film.

h~jij = nNods1̂ , lif i < nNods; i f= {0 nNods-11
= 0. otherwise.

cii 7 hj

hiij = nNods1. if Ali] represents a nodule center: i = 0 {0 nNods-11
= 0. otherwise.

clil = X hjj]

36
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2.4 - Performance Evaluation .

cli] _ c'li]. Vi

h'lil, cjlij. hii], & cli] E 10, II.

l"stNod

CIIM X (~i Cjijl)/LastNod
i~l

Fig. 2.4.1a illustrates A, the list of accumulator votes (the statistics above dhe list ul iBautlitlt

values were produced by the performance evaluation program). Fig. 2.4.1b illustrates the hstograiii

of accumulator votes and the ideal histogram for an image with 2 nodules. ig. 2.4kl illustrates the

cumulative histograms derived from the histograms in Fig. 2.4.1b which are used to compute the

CHM. A further indication of performance is obtained when tle CIIM and TI' rate atc plotted

with the CIIM as the ordinate and the TI' rate as the abcissa, Fig. 2.4.1d. [his mcui1c )M, distanKC

metric, is the distance between the TP rate and the CHM and the point of ideal perfinance. II, 01.

It is a simple Euclidean distance:

DM sqrt((l-CI[M)2 + TIP 2)

17
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0.5370 ; )))) DISTANCE Metric fo, 1'1ibI I ihesIslam*trlclpreAl/191rSk30 <((( .''.,
0.5370 ; ))))) Cum Htest metric <C<((

. 25.0000 ; Number of false positives - I of points which are not
nodules, that lie between the first accumulator point and
the last detecte nodule.

1.0000 ; Percentage of the 2 keowa modules which were detected.
50 Number of points in accomwlaoir.

0.5000 Percentage of posl90, In 1-tA group of 10 accumulator points.
0.0000 ; Percentage of positives to 2-tb group of t0 accumulator points.
0.5000 ; Percentage of positties Is 3-tN group of 18 accumulator points.
0.0000 ; Percentage of positives Is 4-th group of 10 accumulator points.
0.0000 ; Percentage of positives In -th group of 10 accumulator points.

0. Acc[141. 142] a 9792
I. Acc[132. 200] a 9504
2. Acc[277. 278] a 9120
3. Acc[120. 222] a 689"
4. Acc(353. 117] a 8544
5. Acc[145. 292] a S04"
6. Acc(273. 2001 a 7640
7. Acc[283, 250 *a 7648
6. Acc[305. 236J a 7648
9. Acc[148. 190] a 7648

10. Acc[291. 285] - 7616
11. Acc[105. 120] a 7321
12. Acc(256. 283] - 7264
13. Acc[155, 288] a 7264
14. Acc[132. 215] - 7232
15. Acc[164. 163] * 7008
16. Acc[369, 221] s 6944
17. Acc[278. 215] • 6680
18. Acc(368, 209] = 6848
19. ACC[129. 164) - 6848
20. Acc[367, 126) a 6816
21. Acc[130. 111] - 6816
22. Acc[147. 165] - 6784
23. Acc(153. 127] a 66s6
24. Acc[299, 137] - 6624
25. Acc[188, 331 a 6592

-"26. Acc[ 69, 111, a 6592
27. Acc[284. 320] a 6560
28. Acc(124, 241] 6560
29. Acc[163. 224] a 6528
30. Acc[183. 352] - 6400
31. ACC[253. 245] - 6400
32. Acc[173o 246) w 6368 

-.

33. Ace[ 58. 176] a 6304
34. ACC[321, 254] - 6240
35. Acc[297. 261] = 6240
36. Acc[ 56. 217] s 5206
37. Acc[304. 177] s 6208
38. Acc[256. 216] - 6176
39. Acc(301, 202] = 6176
40. Acc(317, 187] a 6176
41. ACC(258, 261] w 6144
42. Acc[367. 189) 6144
43. Acc(292, 151] - 6144
44. Acc[186. 306] a 6080
45. Acc(175, 265] • 6080
46. Ace[ 99, 187] a 6080
47. Acc[371. 61] a 6016
48. Acc[ 56, 157] a 5952
49. Acc[106, 355] a 5920

Figue 2.4.1a - The ist of accunuia'or peaks that is produced after scarclung thy sMuothc.d JI.t inel',ltl-I
The nodules that were detected are indicated by an asterisk: 2 nodules are kauwn to exisi ii te rl1 firijil
which this list was daived;

..



2.4 - Performance Evaluation
1.01h

3 0.51

5 10 15 20 25

i r h* position in accumulator list

0.51
05 10 15 20 25

Position in accumulator list

11gwe X4.11; - 'The hisaogam. It. daived from the accumulator lisa in Fig. 2.4.1a and the idCal h~libWi,
V. for a film with 2 nodules.

tc

0.5

5 10 15 20 25
1. poion in accumulator list

0 10 15 20 25
position in accurnolator list

Figure 2.4.1c - 7Te cumulative histograms of the histograms in Fig. 2.4.1b and the ClIIM which is winputcsl
as the area under the diffence of these histogram

CHM

.75
11.0,0.54]

.50

JDM=0.54

0 .25 *5'0 .7,5 1.0
True Positive Rate

Figure 2.4.1d A plot of CliNtIw trt: v.,itIcive fron which t1ic d~isndv nicii ii . ,
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2.5 - Incorporation of Al to Reduce the Number of False PosiliseCs

Artificial intelligence techniques have been incorporated into the AND)S with die goal Ofi tedrIiig

the false positive rate. Fig. 2.5.1 shows a display of 64x64 windows of tie top 16 CNs in A.

Several of the CN imnages are clearly not nodules. These CNs are false positives. A pattemn

classifier was taught to recognize the following eleven classes of CNs: Djistinct Rib (1)1(). Sinall

Nodule on Rib (SR), Small Vascularity (SV), Large Vascularity (L.V), Small Nodule (SN), Mudjiiii

Nodule (MN), Large Nodule (LN), Lateral Border (LBI), Medial Border (MB), Small Nodule oil

Border (SB), Nipple (NI), and Undetermined (UD). The incidences of ca22h of these clZL'isus ate

given in Table 2.5.1; these were derived from the classi ficat ions of all trained (lthat is, die

classifications were explicitly taught) films.

CLASS % 01H AILL
CNS V

Rib* 7.

Small nodule on rib 0.5

Small vascularitY* 17.8

Large vasculaily* 8.2

Small nodule 1.1

Medium nodule 1.9

Large nodule 0.4

Lateral border* 9.0

Medial border* 21.9

Small nodule on border 0.4

Nipple 0.5

Undetermnined* 30.5 .

Table 2.5.1 -The incidence rates of CN classes. Ciasses that are considered f.sc posim t .e iniid
With an asterisk. IThese percentages were derived from aii taught CNS; the CNs in al 5oi insi. e,ith

processed at two radii 15 and 10 pixels), which were taught. thati s. individualiy clamified by a trained
human. Not aUl CNs were explicitly classified because 64064 windows centered around the CN could not he
miade (because the CN is too near the image border). or because the nodule stitisics tolild 11111 be
computed (because the CN has a strange appcarance). These data come from 2.750i CN-s. Thc (Ns that do
not fit well into anly class are taught as Undetermined. Note: the pattern classifier ducN not tiawriy

* nodules as Undetermined: this ciassification %3S instituted so that ambhiguous (Ns would not be us~ed to
train the pattern classifier.
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* Flure 2.51 MwTh top 16 Cs &ft an acumularor lisL Several of the displayed CMs ar nut noduis.
Image 00 is a nodule, *I a rib. #2 a inedial border. Ss 4 & S vascularity. and # 12 a lateali butda. The
classification of each false positive is given In the bottoin of the inrdow. These are the classifications that
were presented to B,%IDP7M% (a commercial statistical package for lineat disarunnant analysii) when Ruamag
the Pollan recognzez.

Artificial inteiLgence techniques have been incorpcrated in AINDS in die Nodule JLAjpe. 1liw
Nodule Expert is essentially a Pattern classifier f~uda, Hlart, 19721 with a set or c~asiIf1,auuninks
These rules deterrmine if a CN is to be omitted from ithe list of C.Ns Od( arepet: in1 hL

* adol git. This nle causes onlissionl Of eveyth"in that is not classified as a nlipple or some kiind of
nodule. The pattern classifier Ust:s features which describe the appeararITIe of a CNi. die oml t of
two vision experts, the Rib Expert and the Vascularity Expert. anci the posiolij of the (IN III thy,
radiograph to classify the CN.

The Rib Expert is based on the I lough technique for line detec4.ion. Its iniput Is% an iuiiagc t I" a
I-. ~windowed region around the center of a CN. This image is histogram cqualiied and muld

(high frequency components and noise are removed). The rib expert Uses embedded knlowledge* about the appearance of the rib for guidance as it attempts to reject or accept the Image as thai of a
rib. Salient features of the sought-after object are incorporated into this vision proceduire, 1Hec
following features that characterize ribbiness are embedded in the Rib Ixptert algxur'.-:

*a rib is a light object bounded by tv~o parallel edges:
-by convention of the Sobel edge operator, the angular ofienwuonCII Of the r1i) VdieU alLe

Separated by 180 degrees,

%.

*" ° 

.-.

*- * ' . .. . *- 
.

p -.* ? .. '?*- 

, 

.



2.5 - Incorporation of Al to Reduce the Number of False Positives

the width of the rib is approximately the diameter of tie sought altei lohdle;-.

the rib edges are approximately centered around the center of dhe CN;

" the parallel rib edges are the strongest (gradient magnitude) of all edges nuea the ('N.

these edges are also the most extensive edges in the (windowed) image.

The Rib Expert is procedural in that, given the embedded description of tie rib, it ihciatts havingq

the goal of accepting the window image as a rib (segment), rejecung it as a rib, or failing to accept

it as a rib. Knowledge about the salient rib features is embedded in both the control structuie alld

the body of the executing statement of the rib expert. An increasing ntimber of image edgs ar:

considered as possible rib edges in the control loop. The executing statement tests thcsL edges at

two levels. First, a test is performed that attempts to reject the CN as a rib. If that test does not

reject the image, the second test attempts to accept the CN as a rib. If neither test is passed then-

the rib expert iterates further, considering more edges as possible rib edges. The procedural iteralion

fails to accept an image as a rib only after the top 20% of all edges ii the Image have been

considered as possible rib edges and no rib was yet detected in the image; this is the stopping

condition. This stopping condition is based on the nouon that the rib edges are the strongest and

most extensive in the image.

A Hough transfomi for a line is computed separately at each iteration foi edges Ihat may ctonstitut

the top and bottom edges of a rib. Since a rib is essentially horizontal, the top and botiori edgoes

are easy to compute. Each edge, with angular orientation 4), whose gradient magnitude is greater

than the specified threshold is considered in the Ilough transform, h, whose otput, 1110:30,

p:4*radius], represents lines that are described by the parametric equation:

p = (x- xo)cos(O) + (y - y0)sin(U)
where,

1xo, 01 is the computed center of the CN,
0 =900 + 4,

IL
13 ""
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Figure 2.5.1 The pulametric line that is represented by the Hough line uxaisfurin.

This paramnetric line is ilustrated in Fig. 2.5.2. For each edge, pararnictrc distances, j., ari LIIIIItckt

L ~over a small range of 0 (±50), and H10, p] is incremented at the a;,propriate coofIifiLLts. 1h,
the most predominant line(s) in the image will be represented by the highest valued0 WOR1udil ,It', i
H. After all edges have incremented the parameter space. two histograms, h, i !til li e dtrI1%cLd
from the parameter space these are frequICIIy histogiarns of thie i:JukL.,j urlihttil Of c. .! 0.

4*r
htj0] 1 1110, 1.) frc 0 < ) < 180

P=1

4rtphbIoI 1: 1-110, 1.] for 180 < 0 < 360
p=1

These frequency histograms are normalized. These normalired frequency hjsi Iati. ia:c siibjicI
* to peak deet..ron to determiune whether or not the image is that vf a rib. ileimage Is rejet Led its a
* jib if there is more than one peak in either hIstogramn that is greater than 55%. An Iniia'i Ik
* accepted as a rib only if' there is one peak in each histogramn greater thanr 5501 aid if these: jxA.s iL

within 180 ±150. A similar procedure is done over p. If both tests, 0 and p., arc passed thu., Ux
image is accepted as that of a nib.
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In summary, the Rib Expert uses knowledge of the appearance of the rib to detect a rib. 1l1C

embedded knowledge determines the process through which Owe data are reduccd. Figs. 2.5.3 111d

2.5.4 ilustrate the results of runnig the Rib Eapev. an a rib, which is rtxogniied as such, and in a

nodule, which is rejected as a rib. Angular cx-entar on and brightness constrain the rib edge 10

which an edge element might belong. The rib niodtI. wtuch roqurts paiallel and extensive fib
edges. constrains the allowed angular orientatiou and ixquues that thc preponderant edges inl tie

image fit the model of rib edges. These appcaziaxe constrawts are used in conjunction with a hilt

detection technique and some piocedurally emnbeddedi rzesk to redukx rib dtu;CUon to peak-finig

5 in 1-dimensional arrays. The effecuiveness of the -tipert drpetds on tx hre shold levels used in) the

peak-finding operations as well as the the so.pkibzmalui-. of the vrrbedded kriu;wkdgte. Ill

preliminary tests. 85% of all rib images (19 wert lstd) %ae"tcorrul1) identified: no false pr:!.mvLs

were reported.

I.

Iigure 23.4 -The Vasculalit) EXPeyL A back-prajecid &wiju trasforni is uted Ilk 111%cJ1111l u' iiu4.r
k'..clustering of vascular structures. The feclalaaui Iqtiins am the flxd~uflum in hxi. iin6. diniu dic

areas that would contain CNs that are conhidefed b-, '-he VaMu11 Lapen 'flit CNi ihai arc Lioihiikfed
as candidate vascular structures ale miarked by led &iu'. LMn~ uAhuu Oneniuis Corrcopoiad to iiiusl of
hypothesized anatomic structures are drawn betw~een candidate *av~u sies Dic iInits- wiu of ex 1i
of these lines corresp~onds to the number of vascuir% .poins th lit an the line zind ihe nunther of lmc
thai pass through the candidate vabcularty sic.

The Vascularity Expert provides a measure of colinearity of M~ in a region near te rneduasuiai

of both lungs. The assumptions here are that bTan.'hing vascular stnic!tirts necar the fiediasirnkin
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2.5 - Incorporation of Al to Reduce the Number of False Positives

will present circular shadows where the branches are imaged end-on and IdiaL the bliuiching

structures are somewhat linear. Rectanglular regions near the mediastinuiu enclose tie CNS that ale

considered in this test, see Fig. 2.5.5. A H-ough transform for a line is computed for eachI CN InI

these regions; each region has a separate tiansform space. 'The I lough transfotrm is comrputed over

a range of angles. This range is constrained by the possible angular orientations of vasaulai

structure in each lung. Thus, a line (in transform space) will receive as many votes as tlicxe die

CNs lying on it. 'The results of this transform) are then back-pioJected to deteinine a valuec of

colinearity for each CN. Each CN, as a result of the back trnsform, is assigned a weight diat

corresponds to the total number of points on all lines (colinear CNs) that pass through.1 it.

Linear discriminant analysis is incorporated in the pattern recogniier to claSSIfy CN%. llMblVM (a

commnercial statistics package for doing linear discriniinantl analysis, which is available on the

Medical Center Compung Facility's DEC-10) was chIosen to performi the dIisrinant anialysis.

There are two aspects of the pattern recognition process: systern training arid reeognIu~Or. III die

training phase the pattern classifier is presented with feature vctors that typify the laSSeS II C'Ns.

In this phase the pattern classifier develops a muluvariate statisucal mDodel (if the classes auth]

computes a linear function for classifying CN feature Vectors. 'I hie pattern Llassifici was first tauight

using 295, 24-element, vectors (23 feature values and a classification value) from 9 films (it was later

taught with 2750 feature vectors from 37 filmns): IIMI)7M comlputeS a Set Of Weights. "", and

constants, ci, which are applied to a CN feature vector, X, to determine the d1SIsnrimiant weighlts.

d1(x), for the i-th class. T'able 2.5.2 describes the CN features that were input to lfD )l7M.

djWx -XIW, + c1

The class with the largest computed discriminant value is thie class to which the CN behnoigs. VIC

set of weights, W1, and constants, ci, that are provided by BMD117M are Instantiated In tie patii

classifier which is part of the Nodule Expert.
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FEATURE L. I I"'ION

Accumnulator Value8 " 37 represents the number of votes that were ca.t for a CN

Relative Medial shortest distance between CN and medial border: nomalited by the sum uf the
Disrance. 37 medial and lateral distace

Relative Lateral shortest distance between the CN and the lateral border; iournilzied by doe sm uf

SD stance " 37 hie medial and lateral distances

Relative Central distance between CN and medial border midpoint nloriInhlied by the dc.t;mc
Disance8 . 37 between the medial border midpoint and the tup or bottom apex. if the iuduk i

closer to the top or bottom. respectiveh

Vascularity Weight a measure of colinearity of CNs that ie new the niedia mumin; du vauet%
proportional to the number of nodules that be on the line(s) that pa- ttno., a
given nodule

Average 37/SL Dev. azimuthal A-verage are computed for a ociants; these statitics deive ftran t,:

Pixel Value azimuthal aerages (average pixel value of an arc in each uctwt) per tAtzi

Average8 . 37 /S. DeY. Radius statistics on pixel-value boundary points. ra(Lal distance inanm

Hough Radius37  radius (in pixels) used by ANDS when searchung for CNs

Average/St. Dev. distance between the gradient magnitude peak (m ciii.) and 50% of that peak v.iluc :
dR at Gradient Boundary in a histogram of azimuthally averaged gradient nmiagitudc. per utast: rcl.at to-

edge contrast

Average/Sr. Dev.3 7  chanee in r- ri" m3_%ltude between pe-k gradient magiitude i.uJ 50t% L.f J.dI

dG at Gradient Boundary Pe.: edge contras

Average/St. Dev.8. 37 rauo bc,,,c. ao and dR (above) over all octanti: relati to eJge cwitit, -

Edge SuengLh

Average 37/SL Dev.8. 37 ratio between the maximum gradient magnitude for cich ottant and the trta.imuill
gradient magnitude over aU octants; describes die uniformity of the edge , t, .iciEdge Visibility around the CN

Avg.37/SL Dev. Change ch a-, we-, "-.reior and exterior brighuess a( pixel value biumdaty, over ah
in InL/Ext. Brightness Or"

Avg./SL Dev.37  Ratio rati. -,AcW average interior and exterior pixel value across the pjRd Value
between Ext/~t. bourc.)y, over all octants
brightness

Rib Expert value37  value returned by the rib expert: esmentially a ,liuan value

Table 2.5.2 - Descriptions of the 23 CN features that were input to 1MDP7M in die traininug phae "llw

super-scripts, 8 and 37. indicate which features were used when training 1he pattern daAifier I- ad )7-

trainings. respectively.

S-**2..-.:
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2.5 - Incorporation of AI to Reduce the Number of [alse Positives

The nodule appearance features characterize essentially two aspects of tie CN:. hihtinss and

rmargination. The CN appearance features are computed using knowledge about thu hucatiuiis oi twot

types of CN boundary: the pixel value an~d the gradient magnitude boundaries. Yhe pixel valli

boundary is determined as a side effect of having computed the nodule center. The CN I-Apert

gives a roughi estimate of the center of the CN. A center finder refines the estimate ol the center

that is located by the CN Expert.

The CN center finder locates 8 points on the CN border. These points are 45 degreus aIr wItII

respect to the CN center. If one of these points cannot be computed then the feattunes of the (N

are not determined. Each pixel value boundary point represents the region between Oie inside andu

the outside of the CN. Each point is determined separately. The boundary point is essentially tle

point of inflection of the change in pixel value of adjacent pixels on a radial alin. This point is

determ-:inedl as the peak in a cumulative histogram of die differences between adjacent pixeL\ (Oil the

radial arm) whiich are indexed by radial distance, see 1i4. 2.5.7. The radial arms arc (lt; radii which

divide the CN into equal-sizcd octants; one of die arms has an angular orientation of 00' will) the

horizontal, see Fig. 2.5.6. The average radius, changes betweeni tie inside and Outside btiimctnss (if

the nodules, and average pixel value are featureCs that are determined us-ng this buundaiy. Ttese

essentially describe the light/dark properties of the CN and the distinction of the ('N fiuathde

surround.

Computed CN Center

S6 7 Location of accumulator peak

Radial Arm

Figure 2.5.6 - The paritioning of the candidaie nodule. The CN is divided intu qui.al micd tsti.Ii, t-) tht
radial arms. The pixel value boundary point is defied on each radial win. It dciinut h is iiiei ftisi tihe
outside of the nodule based on brightneb considerations. llie gradient magnitudc hoiindar. is delined as~ a
radial distance of an arc in each ociani. 'Ibis boundary delimits the inside froim the ouuid (if ilic (CN
based on sharpnes considerauions (per ucian)
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Pixel value
Radia prfile along x-axis

radial arm 4 0 d arm 0--,-
Radial distance

Slope

radial arm 4 0 radial arm 0
Radial distance

Relative cumulative slope (computed radialy)

min threshold

radial arm 4 0 rAdialarr 0

Radial distar ,e

computed pixel value

boundary point Les on
radial arm

Radial Arm

Figure 2.5.7 -Computation of the pixel value boundr). The pi el value buundr ) is a st l ii,, ,h ,

radial arms. Each boundary point is computed with a peak finding procedure, which is iliauatcd ah,,c.

First, radial slope is determined along' a radial arni. This jpe is defined as: slope = IjI-dx. .-d)l
Ilx+dx. y+dy]. It is deicd in a smoot.hv. ,at. Next, we ieliuve cumul.auic tidial %4.1e (tw

normalized cumulative area under the plut of rattial slope) is computed. Ilie locaion of die pixd vali.c

boundary is deiived from lua plot. The buundia) plant i. defl ed ;s die first p,, grci.i th -l" d

minimum threshold, or the first radial point that is just treater Ihan a maximuni threshuld.

5SO



2.5 - Incorporation of Al to Reduce the Number of False Positives

reL grad. .ag.

I- Octant I

rcr

rel grad. mag.
r r7  OctantO4i
IS r6

radial distance

13 F3-

r2 t2

r rd 1a I

b b
7 .,17

16 '6Is s,:::

r4 T4

Figure 2.5.8 Computation of the gradient magnitude boundary. The gradieru mmi,dc mIidhI) I.

composed of arcs, one per occant, that are derived horn peaks in a histogran -f amtiilhil av,ge, utf
gradient maguitude. These arcs are illusuated at the top left. Two ociants, 0 and I. contain to amt. 'hC
radial locations of these arcs correspond to the locations of the (at most two) Irgest relat ,e gia10.ll',
magnitude peaks for the respective octants. These peaks are pictured in the upper right All thc Whtiel

octants have only one significant peak in their gradient magnitude histograms (which are not ilhist,itcd).

"ince they contain only one arc. A recursive procedure is used to dcternne the noMl cu'usis, 1;; giadici.
magnitude boundary. A consistent boundary is one in which the iota) radtil dit&uuu. lwcweL'n adjacni-
candidate boundary arcs is minimized. The candidate boundary is repres.eited b) tie gralph in 1hC twoltoil'
left. Nodes represent candidate boundary arcs. Edges represent the radial distance between adjatmt
boundary arcs. The recursive procedure prnues arcs that do not lead io a nininal ci, pIath; Ihi, pi)duic, "
a Consistent gradient magnitude boundary.
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The gradient magnitude boundary is determined in a similar fashion to the Pixel vadlie lidaiy.

However, the gradient magitude boundary (for each octant) is determned froiri a IiiStoginf that Is

obtained from the azimnuthally averaged gradient magnitude in each Octant. ils bounldary is

determined as the minimal cost path through t~he (at most two) peaks in the arnriuthal averagecd

gradient magnitude histograms for each octant, see Fig. 2.5.8. That is. the Mininmal LOSE Path resultiS

in a boundary in which the radial bounhdar) distanc per octant is conlsistenlt with those of its two

adjacent neigh~bors. The gradient magnitude boundary lies on or beyond the pixel value burndar .

For sharp edges it lies on the pixel value buuniary and for fuzzy edges it lies radmily ocyonid it.

Edge strength, edge visblly, and cha:;,_-: in edge suadient are fe.turi- that arc determined usnng

the gradient value boundary. III-. ;ie the definiuon of dtir CN marinii or ns

separateness from the surround.

In addition to the nodule appearance features, several relative distanC features wee devised 10i u1Se

in the pattern recognizer . They 4-Omplerrient the knowledge about local fevatures by adding global

knowledge about the relative Position of the nodule in the image. I jse relative clistan-cs ate:

central distance (from the middle of the media, border, see Fig. 2.5.11, to the iodirlc): irdiril

distance (from the medial border to the noduile); and lateral distance (fromi the lateral border to tie

nodule). The central distance is normalized by the distance between the niedial center and le ti l)

of the lung, Or the distance between the medial center and the bottomi of the l, dependintg onl

whether the nodule is in the uipper (Ir kOWer portion of the lunF, respectively (see 1:1g. 2 5.11).

Specific locations in the lungs Must be known so that the relative distance rncasuicS canl be

determined. These loca-.ons are the medial and lateral borders, the top and bottomn apiLcS. aid the

medial midpoint of each lung, Fig. 2.5.10. First, the lungs must be located in the image. I ouiiirr

the lungs is aided by the facts that the non-lung area of the image was rmked-out when OPYing..

and that the lung image has the correct orientauon. The non-lung region is known to contain pixel

values that are lower than any in the lung region. A litre midway betweenr die medial borders of the

two lungs is located using a pro JeCLLorr-of the iina~w onto die horitoital axis. I his line is usevd % hll



2.5 - Incorporation of Al to Reduce the Number of False Positives

computing the lung borders and relative distance features to distinguish dhe tight from the Ilt hii"g.

Successive horizontal lines that lie in the lung parenchyma of each lung are comideled when

computing the lung borders, Fig. 2.5.9. The endpoints of at longest horizontal line ill Caci l"ng

are taken as the lung borders. Two lung borders arrays, lateral and medial, ale Copnl)uted by Lhe

lung border detector for each lung. For example, to determine the lateral border at a given vertical

height, the lateral border array is indexed to obtain the horizontal coordinate of that bordei. I lie

lung border arrays are strictly positive for all vertical coordinates that are in the lung parenichynma.

53

7. .



TR -120

y-axis

LLL

xMid

Figure 2.5.9 -Computation of lung borders. The location of each lung in Whe unige is tuipuicd .aj iiL
line, xMid, which is midway between them is derived. 'Iwo artra) (one for the lateral border and thse offhcr
for the medial border) are computed for each long. Thle indes, of edali artay is vertical height and Ilit
value contained in the array is the horizontal coordinaice of that lung border: the valuui 1 if the
horizontal height is not within the lung. The endpoinu. of the longest l111t segmnl jin each lung a*fe ijken
as the i;Mpecve lung boweri. %~hen compoiung the lonS borders 'Two sqegnis ire slhj~tr.,led in ie left
lung. above. These are likely to aribe at the lung border because of anoneal uussuctutcs. Hecre, ii, is
longer thanui bl.L su 'is eedpImir d"termined lo be 't'e hutuonial bioundw&ics uf Uie tightl lung m I
the lung border locator.
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Lateral Border
Lung Height

Right LungLetun

Bottom
Point

Lung Width

Figure 2.5.10 - Computed lung locations. The lateral and medial borders of cath imig~*r isi iilmicl Iq ilic
lung border locator: from thuee the heights and widths. and tops and botiors otl each hsing are delvinsued
by the border locator as well 3s the medial midpoints of echd lung
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Norrnalizing Distance
For Cen ual Distance

of CNs in Top of Lung/ ~Left Lung .-
Right Lung

Lateral Distance

CnrlDistance--.-

/,,CN _

Medial Distance "-

Normalizing Distance

For Central Distance
of CNs in Bottom of Lung

Figure 2.5.11 - Relaive lung distance features that are used by the pattern claswfiler. ihe lelilun. l.ml

and medial distance are those distancesi from the respccuve lung boiders to the CN Oiat are itornialhted by

tbe width of the lung at the heitlal of the CN. The felailne cenu'al distance ib that disiam beiieie the

nodule and the medial border midpoint norniaiihcJ b) the disunce between the nidial limidpoint and the

top/bottom of the lung. depatiditq on whicter diw nodule is in th tup ot bittuni h-alf of the Iai,.

relpecwely.



3-Experimental

The final ANDS consists of the following steps: splint: filter, biiiuutliiiig of the sphule

filtered image, detection of CN centers, smoothing, and search for the must prorninant CN centLIS.

Four processing configurations were tested on 5 films to determine which configuiration would

provide optimal detection. The parameters (knot, image/accumulatoi rescahung, image resoIluIon0,

and radius) were tested over 5 films to determine which provides optimal detection This prOUCeSI[g

configuration and its parameters constitute the basic AND)S.

Artificial Intelligence in the form of a Nodule Expert that uses a patICrli classilici and two

procedurally driven nodule experts (which detect two classes of false positives) wec inc(Jrjoraledl in

L the basic ANDS in order to reduce the number of false positives. Forty-three films were piocessed

by ANDS with and without Al. The results of the two runs are compared.

The overall goal of the experimental work is to determine a noduile detection liiethod

that best detects nodules, to tune that process, and then to reduce the nuinbcr orf *Iise positives that

are reported by it. The experimental work has four parts: optimitation of the linea r tr nfer of

optical densities to pixel values during photographic copying and digitization; choosing a noduile.

detection process; tuning the parameters of the nodule detection PrOCess: evaluation of the ability of"

Al techniquICS to reduce the nurnber of false poswuves. A method for photographifalfly reduciup al11d

then digitizing the chest radiograph image that is both linear and repeatable was fist devised. Flie

careful definition of the photographic reduction and digitization methods permits additiunail chest

films to be added to the current ANDS database without the introduction of' batch-to batch

variation. The linear transfer of optical densities to pixel values assures that nodular abnormnalities of

various densities will be represented Without degradation in the digital iimage.
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3.1 - Optimal Reproduction of ANDS Database

Fig. 3.1.1 illustrates the generalized photographic /di giutza Uon process. I hrce ruiuisfei

functions: camera flare, film charactenistic, and digiuzer characterisuic deterinie how Jpuical

densities from the chest radiograph are transformed into pixel values. Ideally, the sysicii liransfe

function should represent a linear mapping between optical density and pixel value. I lie shape of

the flare curve is determined by the amount Of light that is rellected within the canicia systuim; II

linearity of this transfer decreases with increasing amounts of internally reflected 118ght. I i hic

of the film characteristic is determinecd by die filmn type (emolsion) and its developmienit. I het

placement of the input densities on the linear portion of the film characteristic is deicitincd by

the exposure. The shape of the digitizer chaiacterisuc is determined by the adjIISMnICit Of the gatil

of the A/D converter in the film digitizer.
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Digitizer System Pixel Value System Transfer Vunction

Rclaiive

Relative IILoXE
Density

Relative LogE

Film/Development System Camera/Lens System

Figure 3.1.1 The optical density to pixel value tran~sfer functmo in tiuadraint 1IS OIL 10,1 (01i ti lut

cascaded systems: caraAens. film/development, and 4igizr calba. Thec dulle~d lt Iqn a

ideal system transfer tuncuans. A linear system-ransfe funciun is dcsireile. An optimail sy~tion took:

reproduction cbasacteristic was expeuim~entally determined. 'Mc di~itmus and fitn/dcocIpriwnt C~ftt~~

were preset at optimal levels and the opdnvAl exposure and flare onditun wer e chpimmetatl dceitod



3.1 - Optimal Reproduction of ANI)S Database

A film, Kodak Commercial, that provides a useful linear range of appiuxmiutcly 3.0 JlgL

and a gamma near 1.0 was chosen for photographic reducuon. The development process was lixed

as HC-110-D, at 68 :0/201F for 5' using R.I.T. tray rock agitation. The digitizer was calibiated with

a 5-inch Kodak #2 step wedge to provide the greatest possible linear range with opimun-

discrimination at high (-2.70) densities.

Given that the Optronics was calibrated to produce a nvaj linear tsan~sfer ofl opl~tal
densities to pixel values and that the film development was fixed to produce a gamma near 1.0, the

conditions that were varied were exposure and flare condition. Three exposures and three fltic

conditions were evaluated. These nine exposure/flare combinations were evaluated using three

radiographs whose density ranges (in the lung area) typify the popul,,tion of radiogiaphs that was

digitized.

In-camera sensitometry was used to determine the approximate exposure to he uid whoii

copying the chest films. The camera system was set up identically when determining this exp)smue

and when copying the 50 radiographs. 'The approximate exposure was experimentally de(erric(d

by photographing a 10" Kodak #2 step wedge centered on the light table with the luminoius area

surrounding the step wedge masked with exposed x-ray film (density )> 5). An exp(sure that

provided a near 1:1 mapping of step wedge densities to developed film densiIes wats Choseii. As

each chest radiograph was copied the 10" step wedge and a tri-bar target were included alo,,,d'--

the radiograph so that reproduction might be quantitatively assessed.

A discrepency was noted, however, between the reproduction characteristics deiivcd huiil

the masked step wedge alone and those derived from the same step wedge imaged alongside a chest

radiograph. The system transfer characteristics that were derived from film samples whih wCie

given identical development and digitized consecutively (no adjustment was made in scatin-r

calibration between runs) are plotted in Fig. 3.1.2. The discrepency between the tlaracteis,tics was

attributed to camera/lens flare and/or ambient light reflecting from the stufae of the radiogut.h

when copying. A tent of black velvet was construicted around the camera systeii to eliminate

ambient light (both room light and light from the light table that was relected ifrom the tceilng).

6!7



Construction of this tent resulted in oialy a slight decrease in the noted dizmi.IepuaL'). I I,,,%-

camera/lens flare was determined to be the ptrmy cause.

'[he source of the camera/lens flare was piesmed to be light pabbting throLJEh tile aUnI

lung area of the chest radiograph, which is noticeably lighter than the imaged lung parnidyna.

Since flare was shown to durminish the repioductiow Of ihe highcf. densities, die nun Iujigl Wit~ Ws

masked with exposed x-ray film. Thus, masking would duminish die amount of light which w! uld

reflect within the camera system and lead to degradation of tune rendition Of higher deilsiucs.

Whether masking the non-lung region producd a significani :ediucuon in camera flare is tile suI;1,Ccl1

of the following statistical analysis.

Pixel Value - 3
200-3

3

160- 3
3

120 n2

n

40 nl mfli&

.6 0 1.20 1.80 2.40 3.00
Transmission Density

Figure 3.1.2 System transfer curv.es of the ster wedEe for the same stpcdge chput.d at thitv Niit
conditions: n = no flare. f = flare, and mn = mA~~ed. ADl sampltm were dcveciapcd and digioied uiidtcr
identical conditions. The differences in the toe porucrn of the curves is preburnibl) duc to camu,,/Ico,
flare.

Three chest radiographs whose density ranges (in the lung parIVDjiyuue) weteC LkIUSCII U)

represent the population of radiographs that was *.. be digitized. EachI Of theSe thiree iadiujuili

was copied at two flare conditions (masked and not miasked) auid three exposuics (lO~ix. at f/l6.

f/22. and f/32). The thrd flare condition that was evaluated represented the ideail ciise. 11o flalt;

02
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3.1 - Optimal Reproduction of ANDS Database

only the step wedge was copied. Images that were produced at the three flare conditfons are

illustrated in Fig. 3.1.3. Weighted averages (weights correspond to thC reJAve prcenCt Uf tl.-

population represented by each film) for each of the 21 steps (in a 5x5 pixel arca) were derivcd-

from digitized images of the three films at each flare/exposure condition. A seod-order

regression was computed from these 21 averaged steps for cach exposure/flare corlhination,

regressing on pixel value as a function of transmission density.

.t % .)%=

.....

Figure 3.1.3 Three flare conditions (no flare, top. masked. left; and flare. right) %tc cv'1dis.11cd to
determine which (masked or not masked) would result in the most linear uanskr from optii~l density mIi
the chest radiograph to pixel value in its digital representation. Measurements of the step wedge densilles
brm each of die above images are plotted in I-ig. 3.1.2. The objective of this part of lte cipricilient is 1t)
determnine if masking die non-lung area would provide better density to pixel value transfer tw-amufo the
Presumed reduction un the amount or camera/lens flare.
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The goal of the regression was to deterrrune which fl.,-. condiuon, masked or ut, masked.

provided the most linear tone reproduction. Here, Linar reproduction is defined is a lack of

statistical significanc;e in the second-order term of the following regresion cquauoi:

P ~ + b2 W

where: P = pixel vaLh.,

D = transmnissive *X..

=ob coefficients of the regression on D.

The regression analysis was performed using Minutab IRyan, 19761. Table 3.1.1 stimilarrics (tic

regression analysis. T1., regression was performed over optical densities in the ISuLWl ranget (i .2t0

to 2.72; the densities in the lune 51fims were~ within th iangc. 111h; ouly

expc .:c/ilarc (coniUor thjat .: .nificani stxufd-iduf icgressixinti n %

masked at f122. No trend %s .,. *caduals from the regression equatitn, tlts

suggests that the proposed model suficitly repiescaim the data. Masks Were LuI for Cach Of the 50

films; each was copied at 10 second-, at f/22, given identical development: and digitized on [tic

calibrated scanner. The calibration of the digitier was periodically checked by digiig [fie #2

step wedge. Calibration was maintained throughout cdigitization, no recalibration was itqurcd.

Suide;Xs I-stauslic
Flare C~,nd:'jon

r-stoap No Flare Niasicd tFle
16 -1.61 -3.47 4.27
22 0.58 1.28* 6.83
32 0.36 5.62 9.34
d. 18 13 1

TAke 3.1.1 -Students t-siauistics on the second-orde.r term of mgm.-.on analyses of piked iJ11t:is .as

llaii~a flt optical density, quadrant I tf F:L. 3.1- iur t' ret eaposaics wd thiee flac condmlib As i
resuilt of thiS ana)iss masktJ and f122 sere .-- Li,qiui tht So MIImS in the ANDS database 'J*I 15
"PoIsme flare condition was the only pracu~ai ..,wnei in whik. alit seonduda termn of' the ircgrcs~ion r,

statisically insignificant.
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3.2 - Choosing an Image Processing Configuration

Four image processing configurations were tested with their paramleters set at fixed levels

Co determine which resulted in optimum detection of the pulmonary nodules present in 5 Mlrins.
The tested configurations are:

#1 Spline filter with histogram equalization
Spline smoothing
Candidate nodule detection
Spline smoothing
Vote accumulation

#2 Spline filter with histogram equalization
Spline smoothing
Candidate nodule detection
Sparse convolution smoothing
Vote accumulation

# 3 Spline filter with histogramn equalizaton
Candidate nodule detection
Spline smoothing
Vote accumulation

#4 Spline filter with histogram equalization
Candidate nodule detection
Sparse convolution smnoothing-
Vote accumulation

The differences between these methods are spline smoothing following splin iic ieii and spiline (ji

convolution smoothing following candidate nodule detection. AUl five films (6, 18. 32. 26'. 41) were
processed at the same parameters (resolution: no rescaling between the filtered iniage aind the

accumulator array of candidate nodule centers; radius = 12 pixes; knot spaciq! = 60, anl nio
rescaling of the original image (size --1000x]000 pixels). A weighted sum of three ifleastilics: triue
positive percentage, false positive fraction (the ratio of the number of non-noules betweenl tie first
accumulator point and the last detected nodule and the number of points in the accumulator list),

and the DCHM is used in a two-way ANOVA in which the processing configuirations are treatnienis

and the films are blocks. Where the l)CIM is similar to Ole OE M but is coarser:

DCHM = (I 0.lq)h(q)

* where:

Q =number of quantiles. Here, there are 10 quantiles, each containinig It0 atciiuillaii

points.

h(Q) =the percentage of all detected nodules per (luanui c. Q.
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A summary of this ANOVA is given in table 3.2.]. The data and ANOVA cakciiatiuois ate
presented in Appendix 9.2.

Source Sum of JV Meani
Squares %q~uart

Treatments 0.0415 3 1.383.10- 2.01
Blocks 0.%90 4 0.2423 35.i9*
Residuals 0.0826 12 6.W.,1O-1
Total I1.93 39

Table 3.2.1 -ANOVA resuib for processing cofifigUraUUMI "s MIcaUMIa, MCn I1upI .i tIsx0A. l.I.
and cakuhuion of ANOVA are given in Appendix 9.2. The dxmi of QiM are Wgilnjfili .i alphii-IiliS
(N(.001). The Vari~jun dlue to blocks, which is a result of the Wnb-Unf.mIUCVY Ur the film". nuIJ Ii.j~e
obscured any differeices due to treatments.

The contribution of the treatments (processing 'conligufawins) u) the total va~r~ince IS i(t

staistcaly sgniicant at the a =0.05 level, while the contributiou of the bl'cLks (flims) is StjausuL-ally
significant at a =0.05 (11-0.001). The amount of variation amnong blocks obscures any diffcrenLtcs
due to treatm~ents because of the non-homogencity of the Iilrm. Here, non- Iu'rmncd~cv implies:
structures represented in the films, their relauvc SiaeS. ShapeS, aIIJ Iitenities, vohich vary amnyi
films. One may not draw a conclusion founded on those sL- scc:al analysis that the diflurentcs
among the processing configurations are significant.

Processing configuration #4 was chosen for incorporation in ANDS. (able oi data
from which the ANOVA was computed (see Appenrdix 9.2) indit-ates that ruthut> A( I arid # 3 have
the lowest levels of performance (with means of 0.71 aria 0.68, respecuvely) ovci ill 5 tilne,.
Configurations #2 and #4 have the highest levels of pviForxarJL (mY!inTS (Jr 0.79 alid 0.76,.
tespectively). The choice is between methods #2 and #4. Although method #4 dot% riot hovt
the highest performance, it Was chosen as the basis of ANDS bUmdube it was close to 42 (titihmn
4%) and because it requircs one less step (spline smoothing frilluwing splmnt: iltemi., NMs
configuration #4 is faster, requiring one less step than coiifiguiatiuim #2. T final proucssing
configuration of ANDS based on this analysis is:

#4 Spline filter with histogramn equalization
Candidate nodule detection
Sparse convolution smoothing
Vote accumulation.
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3.3 - Tuning the Parameters of ANDS

The optimal processing configuration, #4, was evaluated at 4 tadjus vahus (h. 10, 12, aJnd

20; which correspond to nodules from .75 to 2.0 centimeters in diameter, 4 knot spacing values (20,

40. 60, and 120). and 3 resolutions (rescaling by a factor of 2 between sphne filtered image and CN

centers image, original image rescaled by a factor of 2; and no rescaling) on six films (6. 18, 32, 36,

41, and 44) to determine which configuration of parameters produces optimal detection of the

nodules present in the films. The three resolution conditions are illustrated in Fig. 3.3.1. The two

resolutions which involve rescaling the image were evaluated because I believed that ANI)S would

take less time to compute with these smaller images and that the results might be acceptable. The .7

distance metric was used to evaluate the performance of these three parameters. 'he optimal image

resolution was first chosen and then an ANOVA was performed on the remaining parameters at this

resolution to determine which parameter contributes a statisUcally significant amount of valiatioi, -

given the following model:

Yijk = 1- + Rj + Kk + FixR + f'ixKk + tyJk

where:

Yijk = observed mean

1= effects due to overall mean

Fi =effects due to films

Kk = effects due to knot spacing value

R = effects due to radius value
FJR = effects due to interactions between film and radis

FixK k = effects due to interactions between film and knot

=ij =  residual effects.

If a parameter makes a statistically significant contributon to the total valillc tilen (file

might infer that the value of that parameter has an effect on detection. Furtlirnitorv. otte of the

values of the significant parameter might result in a more opumal detection than the other valtcs.
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The values of the parameters of ANDS are set at the optimal values of the statistically SlUli~iLafII

parameters, which were determined by this ANOVA.

Resolution 1: No rescaling. : -

121X:M, y:N
,nput image

Resolution 2: Accumulator rescaling. Computed image center coordinates are rvSLalcd bvure etltry

into rescaled accumulator image.
Sjfx: M. y: N] c(SSrx:M, y:N], tad. res) Cslx: M/res, y: N/r.~j

Filtered image
Accumnulator

N

MM

Resolution 3: Original image is rescaled by a factor of 2.
18[x:M, y:Nj Z(I81x:., f] actor) r8(x: M/factor, y: N /Iacuw

Input image
Input iowoe

Figure 3.3.1 -The Ilitte inie iCfLJIiuumhij ~tha fe evaliuated dunqij paraic~I' til~,
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3.3 - Tuning the Parameters of ANDS

Due to limitations imposed on the amount of available computing timc and die desire to

finish this work in a reasonable amount of time, the scope of the parameter testig had to be

limited to 6 films, 4 radius values, 4 knot spacing values, and 3 resolutions (a total of 288 ils).

Thus, the optimal parameter values that are reported here art: coarse global estimates. Each ruin

averaged about 1.25 hours of real time (15' for file transfer from RIG, checking file Ibr errors,

reorienting image, and rescaling image; 20' for spline filtering; 15' for detection of cenitems of CNs;.

20' for sparse convolution smoothing; and 5' for compilation of the list of accumulator valties. Thie

* entire parameter test required about .360 hours or 15 days of real time to compute. T[he attual

rundme was significantly longer because of failures or rebootings of the machiffeS in the distilbuted

network.

The resolution that is used in ANDS was chosen by inSpeCuon 01' the 9)' LOnlhdtiii~e

intervals of the DM means computed over all films, radius values, and knot spacing values. I hiese

confidence intervals are illustrated in Fig. 3.3.2. licre, the resoluut~on with the lowest averaLge IN,

* original image rescaled by a factor of 2, IS stausuLl1y distinguishable fruon die ofthel (%%'L

resolutions.

zoom2

res2

resl

0 .20 .40 .60 .80
Mean Distance Metric

* I'iguee 3.3.2 - 95% confidence intervals on the mean Distance Mewtcs computed over ;,ii iiii. iiJIII w.Ito

and knot spacings for uthree image resolutions: resi. no rescaling of image; zoom2. te ,iing of inpol iit
by a factor of 2; and. res2. rescaling between spline riacd image and CN cente jinagc by a facinr or ?

An ANOVA was computed over all films, knot spacing valueCs, a141nd U radiusvlUes frl d11a

derived at the chosen resolution. The results of this ANOVA are presented in I able 3.3.1. llecct
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due to radius and the radius/film interaction are statistically significant at the a=0.0 5 level. l.icLS

due to films, knot spacing values, and the filn/knot interaction are nut statistically signil ihct at te

- a=0.05 level. The effects due to knot spacing would be significant at an a-level slightly treater

than 0.05.

Sum or Mean,.
Source ' o"-ratio

Squares Square

Film 3.6120 5 0.03hO 0.96
Radius 3.4504 3 1.1501 29.01.
Knot 0.8602 3 0.2867 7.23
FilmRadius 2.1724 15 0.1448 3.65*
ilmxKnot 1.2522 15 0.0835 2.11

Error 2.1408 54 0.0396
TOTAL 13.4881 95 0.1420

Table 3.3.1 - Results of ANOVA thait Was performed over all filrne, whi cwe ics-i..cd by a litio.! t
all knots and radii. Effects due to radius and rni/radius interacuon aw statistically sigililtiaii at
alpha=0.05 (P < 0.01).

Since these analysis faiicd to show a statistically significant contribuuon due to klti

spacing and the film/knot interacuon, a single knot spacing parameter value is incorpoiatd in

ANDS. This is the value that results in the lowest )M over all films and adii. The confidct:c

intervals from which this choice was made are given in Fig. 3.3.3. This decision is ad hoc Icause

there is no statistically significant diffeic ce evident in the confidence intervals. A knot pat::

value of 60 was chosen as the parameter of ANDS because this value has the lowest wean, sWe Fig.

3.3.3.

The significance of radius .....,. :.c film/radius interaction suggests that no single radis

value would suffice in producing opumnai detection over all films. Thus, two radius valus, 10 andi

20, were chosen as the parameters of ANDS. Note: because the chosen resolution is rL'scahtig Iy a"

factor of 2, the knot spacing and radius values are reduced by a factor of 2; so. a knot spact'n valt-

and radii of 5 and 10 were incorporated into ANDS. Fig. 3.3.4 illustrates the 95% confidritc-

intervals on the DM means these were computed over all radius values and knot spacings. A tadiu,, '.-

value of 10 pixels (_0.5 cm.) was chosen for the final ANDS because it has the lowest nea, DIM.
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3.3 -Tuning the Paramieters of ANDS

althoughi no statistically significant difference is apparent. Although the radius value of 20 pixivi

(0l.0 cm.) shows a poorer performance (higher DM mean) it was also chosen for incorporation irnto

ANDS because it corresponds to larger nodules.

Knot Spacing

90-

60

30

0 .20 .40 .60 .80
Mean Distance Metric

Figure 3.3.3 95% confidence intervals on the meaib of the Distance Meiic fr 4 ktr~r sp..,n vdhIiq.2:

40, 60, and 120) computed over all fii3 And radius values.

Knot Spacin

90

60I

30

T --------I II
0 .20 .40 .60 .80

Mean Distance Metric

Figure 3.3.4 -95% confidence intervals on the means of the Distance Metirics for 4 ridim vilise, JK. Ili I
and 20) computed over all fis, and knot spacing values.
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4 - RESULTS - Evaluation of the Performance of Al in Reducing the I alse Positive
Rate

Given an automated nodule detection system that has been designed to piovide oplinial

detection (over the films and system parameters that were tested) of any pulmonary nodules that aic

present in a chest radiograph, the final phase of this work is to reduce the number of false positives

that are reported by that system. Conconutant with this goal is the mandate of not greatly reducing

the number of true positives.

Seven films were omitted from the final test because of errors in digitization (see Fig. 4.1)

that prevented computation of the lung borders which are required by the pattern iecognizer for

determination of the relative location measures. T'he films that were omitted are numbers 1, 22, 28.
31, and 33. Film 38 was omitted because the nodule was always detected. The nodule is in the

lower medial corner of the nght lung. see Fig. 4.2. The lung border in the corner of this image act

as edges on the border of the nodule. Film 41 was omitted because its image file was accidentally
smashed following parameter tuning; time did not pernit redigiuzation. Appendix 9.3 provides the

statistics about each film in the ANDS database and summarizes the results of these tests.

Forty-three films were processed at two radii (5 and 10, which correspond to .5 and 1.0

cm, respectively) by ANDS with Al under two condiuons and without Al. In the two conditions

with Al, the pattern classifier was trained with different numbers of films and tested on the entire

database. In the first case, it was trained with 9 fibrs and in the second with 37 filmiis (filni tiat

contained nodules whose nodule statistics could be computed).

The nodule appearance statistics from which the features that are used to uamn the aitltelli

classifier are derived from a smoothed, histogram equalized, windowed region around the CN from

the spline filtered image. The top 50 points in the accumulator lists obtained when testing ANI)S
on the database at two radii were classified (some could not be classified because a 64x64 pixel

window around the CN could not be made or because the appearance statistics could not be

computed). These classifications were used to train the pattern recognizer. Ihe feature vectlns

wtw .-2:twere input to BMD)P7M, which runs on the DEC-10. ,..:

4
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Figure 4.1 -Inage uith inconic vranhint. peesuW4 aiutl to dliiize. I Iii: liqi l' Lould

not be computedI n im swth incemplcte scanimes Unit images have beer .. tied fromic fi1w t

ervaluated by ANDS with At because without the treative diaince ficawui Eouiij out beunilaw

Figure 4.2 -Lung 938 was omited from the emaiuation or ANDS because its nlodulei. , iomId
regardless Of parameters and processig cnfigurai ions. Trhe nodule is in the lower inedii comm if itc

right lung. Thc Mine borders coinaide with (he margin or the nodule and .cuc for thc itodide
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4 - RESULTS - Evaluation of the Performance of Al in Reducing the False Positive
Rate

This statistics package computed the weights and constants that aic used by UhC dilsLiilliinitt

function. These values were instantiated in the pattern classifier. The input to the Nodule Exlelt

is the feature vector of a CN. The output of the Nodule Expert is a decision - whether ()l not a

nodule was detected. If a CN is recognized as a false posiuve, it is umitted hom the list of CNS

that is reported by ANDS. Only CNs that are classified as a nipple or any kind of nodule ale kept

in the screened list of CNs. The performance of the Nodule Expert is evaltiated by sullbibeuig this

list of CNs to the performance evaluation procedurts that are described in Chapter 2.4. lig. 4.5

illustrates the result of applying 37-trained ANDS on lung #9 at a radjus of 5 pixel.%

ris
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0.5370 ; ))> DISTANCE Metric for /u/bIll/thesis/metrlc/preAl/lg9rbk3Ui2p4. ((
0.5370 ; )>)> Cum Histo Metric <((<<

25.0000 ; Number of false positives - 0 of points whic' are not
nodules, that lie between the first accumulator point and
the last detected nodule.

1.0000 ; Percentage of the 2 known nodules which were detected.
50 ; Number of points in accumulator.
0.5000 ; Percentage of positives in 1-tb group of 10 accumulator points.
0.0000 ; Percentage of positives In 2-tb group of 10 accumulator points.
0.5000 ; Percentage of positives In 3-th group of 10 accumulator points.
0.0000 ; Percentage of positives in 4-th group of 10 accumulator polits.
0.0000 ; Percentage of positives in 5-th group of 10 accumulator points.

0. Acc[141, 142) - 9792
1. Acc[132, 200) - 9504
2. Acc[277, 278) - 9120
3. Acc[120, 222) 8896
4. Acc[353, 117) 8544
5. Acc(145, 292) • 8064
6. Acc(273. 200] * 7840
7. Acc(283, 250] a 7648
8. Acc(305. 236] a 7648
I. Acc[148. 190] - 7648 Acc[183, 352] • 6400

10. ACC(291, 285] x 7616 Acc[253. 245] * 6400
It. Acc[105. 120] • 7328 .. Acc(173. 

24 6
j • 6368

12. Acc(25S, 283] 7264 33. Acc[ 56. 176) - 6304
13. Acc(155. 288) - 7264 34. Acc[321. 254] - 6240
14. Acc[132, 215] - 7232 35. Acc(Z97. 261] & 6240
15. Acc[164, 163) - 7008 36. Acc( 56. 217] s 6208
16. Acc[369, 221) - 6944 37. Acc(304. 177] - 6208
17. AccE278. 215) - 6880 36. Acc[256, 216] - 6176
18. Acc[368. 209) - 6848 39. Acc(301. 202] - 6176
19. Acc[129, 164] - 6848 40. Acc[317, 1871 - 6176
20. Acc(367. 126] - 6816 41. Acct258, 261) - 6144
21. Acc[130, 111] - 6816 42. Acc[367, 169) - 6144
22. Acc[147. 165] a 6784 43. Acc[292, 15] - 6144 a

23. Atc[153. 121] - 6688 44. Acc[186, 306) - 6080
24. Acc[299. 137] - 6624 45. Acc(175. 265] x 6080
25. Acc[188, 332) - 6592 46. Acc[ 99. 187] a 6080

* 26. Accl 69, 113) - 6592 47. Acc[371. 61] x 6016
27. Acc(284, 320) - 6560 46. Acc[ 56. 157] a 5952
28. Acc(124, 241) - 6560 49. Acc[108. 355] - 5920
29. Acc[163. 224] a 6528

0.1667 ))>) DISTANCE Metric for /u/bi)l/thesis/metrtc/postA2I21ilrSk3U~p. 4((.
0.1667 ; ))>)) Cum Histo Metric <<<<<

1.0000 ; Number of false pIsltives - # of points which are not
nooules, that lie bitoeen the first accumulator point and
the last detected bL J '

2.0000 ; Percentage of the 2 k'.own nodules which were detected.
5 ; Number of points in accumulator.

. 0. Acc[353. 117] a 8544
1. Acc[105, 120) a 7328

0 2. AcC[ 69, 113] - 6592
3. Acc[124, 241] a 6560
4. Acc[321, 254] • 6240

Figure 4.5 - The result, bottom, of applying Al teclnijucs (37-trined) io redute lv w'icibci , .

.-pOsljvc n the Ulis of accunwlatot pows produced by thle ullUNiebgen ANW)S sy"Icil. It,,) )hI t11f,11,1,t,1i

at the top of each list is a summatry of rh pefOrrtt Utc¢ of ANthe D)ati Sul as t1e ;0hn c ure ucnpngd
to aess the effects of the A] tecJiques on ANDS

7



4 -RESULTS - Evaluation of the Performance of Al in Reducing the False Positive
Rate

The performance of the pattern classifier may be visualized in a LIssIlitu,, IM,,tIx.

where the rows represent classes that were taught and the columns represent the classification resuLts

of the pattern classifier. Some of the CNs that do not neatly fit into any of the eleven classes were

classified as Undetermined (UN) when training the pattern classifier. CNs that are classified as

Undetermined were not used when determining the discriminant function. The classification marix

obtained from running ANDS on only the training films when 9-trained is presented in 'Table 4.1.

The classification matrix obtained when running 37-trained ANDS on the uainlg lilms is preseted

in Table 4.2. Taoles 4.3 and 4.4 present the classification matrices obtained when testing [he 9- and

37-trained AND systems on the entire database.

Classified As: ,.
Known pct ri SR sv IV SN MN LN lb mb S11 NI ua tu.it . •-

class
RIB 0.53 10 4 1 2 0 1 1 0 0 0 0 0 19-
SR 0.43 1 3 0 0 1 1 0 0 0 0 1 0 7
SV 0.73 5 0 62 11 5 1 1 0 0 0 0 0 85
LV 0.67 1 0 7 26 0 0 4 0 1 0 0 0 39
SN 0.50 0 2 2 0 5 1 0 0 0 0 0 0 10
MN 0.56 1 2 0 0 0 5 0 0 0 0 I 0 9
LN 0.80 1 0 0 0 0 0 4 0 0 0 0 0 5
LB 10 0 0 0 0 0 0 0 11 0 0 0 0 I.
MB 0.88 0 1 2 5 0 0 1 0 63 0 0 0 72 -
SB 0.33 0 0 0 3 0 1 0 0 0 2 0 06
NI 0.50 1 0 1 0 0 0 0 0 0 0 2 0 4
UND 0.00 45 7 25 12 15 3 11 3 2 1 11 0 13)

Table 4.1 - Classification matrix for training films for 9-trained ANI)S(#s 5, 6. . I). 16, IN, III 4- I)
when tested on training films. The abbreviations for the classifications are defincd in 2.5.0. 40) CThs were
evaluated.

The performances of the Rib and Vascularity Experts are presented in Table 4.5. Hlit..

the row represents all CNs that were detected by these experts and the columns are ihe lclas to)

which the CNs belong (specified when training the pattern classifier). These resilts WeL obtaintd

when 9- and 37-trained ANDS were nin on the entire database. The performance of the Nodde
Expert at both trainings on both the training films and the entire database are presented in table

4.6. Since several films contain more than one nodule, it is more nieaningfil ([irn the laulints'
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viewpoint) to talk about nodule detection in terms of films which contin nudules hat aic inissud

(that is, the nodules that are present are not teognized by the Nodule Expert) ralhcr than ahsoltlt.

percentages of nodules that are missed in a gven film. Fig. 4.6 LUnpares die 95% coiifidalice-

intervals on the average percent correct classificauon for 9- and 37-trained ANDS when tested on

training films and on the entire database.

Classiied As:
Known po ri SR a, Iv SN MN LN Ib a* S8 NI un Cuunl

dass
RIB 0.54 90 10 12 7 3 13 3 0 4 20 0 168
SR 0.54 1 7 1 0 2 2 0 0 0 0 0 0 13
SV 0.65 14 5 275 72 11 18 1 0 9 15 1 0 421
LV 0.73 1 0 25 136 0 5 4 0 13 2 0 0 186
SN 0.53 1 2 5 0 16 0 U 0 0 1 5 0 30
MN 0-27 3 4 3 8 ? 14 4 0 3 3 7 0 5
LN 0.75 0 0 0 2 0 1 9 0 0 0 0 0 12
LB 0.96 1 0 0 0 0 0 0 193 1 0 5 0 2uU
MB 0.82 2 0 18 31 2 1 0 0 419 36 1 0 520
SB 0.58 0 0 1 1 1 0 0 0 2 7 0 (1 12
NJ 0.64 0 0 2 0 2 0 0 0 0 0 7 0 11
UND 0.00 158 39 183 30 76 95 22 0 7 29 6, 0 705

Table 4.2 - Classification matrix fur laini:' film; for 37-uaned ANDS (uaincd on ,l lihnb thW LUJIL,jl-

any nodule(s)) what tsted on un."nig flims. 2329 CN wore evaluated.

Classified As:
Known pCI ri SR si l SN MN LN lb mb SB NI un (.ounl

dasw
RIB 0.50 106 34 18 9 14 1 8 1 I 0 21 0 213
SR 029 3 4 0 1 2 1 0 0 0 0 3 0 14
SV 0.68 30 0 332 98 9 2 6 0 13 0 I 0 491
LV 0.67 5 0 37 151 0 0 16 0 17 0 0 0 226
SN 0.57 0 3 6 0 17 3 0 0 0 0 0 30
MN 0.18 12 7 5 8 1 9 1 0 2 1 5 0 51
LN 0.33 4 1 0 1 0 2 4 0 0 0 0 0 12
LB 0.97 1 2 0 0 1 0 0 241 0 1 2 0 248
MBH 0.79 0 1 42 51 1 0 6 7 475 18 0 0 601
SB 0.25 0 0 3 2 0 1 0 0 2 3 0 0 12
NI 0.23 2 5 1 0 2 0 0 0 0 0 3 0 13
UND 0.00 246 62 187 60 133 10 30 7 12 4 hS 0 839

Table 4.3 -Classification matrix for 9-trained ANUS (5. 6. 8. 12. 16. 18. 32, 36, 44) %henu iceicd on om
ANDS database. 2750 CNs were evaluated.
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4 - RESULTS- Evaluation of the Performance of Al in Reducing the False Positive
Rate

Classified As:
Known pet ri SR av Iv SN MN LN lb nib S NI Mil Could

class
RIB 0.54 116 11 20 7 5 17 8 0 2 4 23 0 213
SR 0.50 1 7 1 0 3 2 0 0 0 0 0 0 14

Sv 0.64 14 5 316 96 II 19 1 0 11 17 1 0 491

LV 0.74 1 0 30 168 0 6 4 0 16 3 0 0 227
SN 0.53 1 2 5 0 16 0 0 0 0 1 5 0 30
MN 0.27 3 4 3 8 2 14 4 0 3 3 7 0 51
LN 0.82 0 0 0 1 0 1 9 0 0 0 0 0 I1

LB 0.96 2 0 0 0 0 0 0 239 1 0 6 0 248

MB 0.82 3 0 22 34 4 1 0 0 493 42 2 0 601
SB 0.58 0 0 1 1 1 0 0 0 2 70 0 0 12
NI 0.54 0 1 2 0 2 0 1 0 0 0 7 0 13
UND 0.00 187 48 225 34 92 104 23 0 10 35 81 0 839

Table 4.4 - Classification matrix for 37-crained ANDS (trained on all filns that com.,g ay iudulk(:(,,IJ ti.,,

tested on entire ANDS database. 2750 CNs were evaluated.

Performance of Rib Expert on Entire Database
Taught As:

Rib pct ri SR xv Iv SN MN LN lb nb SO NI un Count
Expert corlt:. .
RIB 0.15 47 1 27 15 4 3 3 33 87 3 I 87 311

213 ribs were taught
311 CNs were classified as rib by the Rib Expert

Performance of Vascularity Expert on Entire I)atabase
Ttught As:

Vasc pct ri SR s Iv SN MN LN lb mb S11 I u i Coutl
Expert cor1
VASC 0.46 16 0 73 32 0 0 1 0 71 O 0 35 228

717 vascular structures were taught
228 CNs were classified as mascularityby the Vascularity Expert

Performance of Vision Experts when Tested on Enure )atabase

Expert Sensitivity True Positive Rate
Vascularity 0.15 0.47
Ri1 0.22 0.15

Table 4.5 - Performance of vision experts when tested on entire database. 'lie inajtntt; illhtlC",.

dassificatons to which the CNs detected by die experts belong. Sensitivity is the f(arUunt otNs that"

belong to the class that was detected by the expert that in fact belong to the corrett class.
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Performance of Nodule Expert on Entirc asc~

Training Sensitivity T[rue iPusiie Rate
9-trained 0.58L,1
37-trained 0.76 0.15

Tale 4.6 -Performance of Nodule Expert when toted on eriae ±itbabe at Lodih Uiiii. HI i l it:
performance of the pattern dlassifier and the clitaiaon rule, Thew results icprescm thde dutti
performance of AND)S on all nodules ini the films that comprise tie database. TI.,:s ii Lheme kltis reilett
the ability of ANDS to detect aDl the nodules in .he dat~base.

Testd on37-trained
All Films

9-mrined
A

Tested on
Training Fims 37-trained

9-trained
A

0 .20 .40 .60 .80 1.0
Aver, e PercentCorrect Classification

igure 4.6- The 95% confidence inicsr, .. U. i,c averjge percent correct cia icaiimi tof ANDIS 110101 SI
and 37-trained both when tested on ttwing dni3 ;aid un the entire dawihaw

Table 4.7 compares the changes in !)M. false positIVU and trde po.. btIween buth

Erainings (9 and 37) and the naive (no Al) ANU~S. 't'he true posiuve tate ieported Is die averagv tof

t~he true positive rates for each film, where the tLrue posiuve rate is the fracuon of known noduLcvs
that is detected. False positive represents the number of non-nodules that lit: between lie first

accumulator point and the last detected nodule. T'he value reported is the aveia~e over all filins.

The average DM over all films is also reported. Only processing configutations (filins and radimi)

at which any nodule was detected in both the pretLraining and the trained systemns are inclutded in

these analyses, Student's t-statistic is computed for the three meutrics as ae Il-vli.
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4 - RESULTS - Evaluation of the Performance of Al in Reducing the False Positive
Rate

Comparasion of the Performance of 9-Trained and naive ANI)S

METRIC
ANDS DM # of False Positive 'rue Positive Hate
9-trained 0.353 0.588 0.755
naive 0.550 12.235 0.827
Difference -0.197 -11.647 -0.072 .'"-

t-statistic -3.96" -5.20" -3.00"
P-Value P <0.0005 V << 0.0005 0,0005 < P< 0<.05

Comparasion of the Performance of 37-Trained and naive A NIS

Ml"RIC
ANDS DM # of False Positive True Positive Rate
37-trained 0.462 1.809 0.787
nai ve 0.594 11.915 0.875
Difference -0.132 -10.106 -0.088
t-statistic -2.87*. -5.67" -2.980
I-Value .05 < P <.01 P << 0.0005 0.o05 < !' 0.005

Table 4.7 - Comparasions of the performancc of 9- and 37-trained ANI)S itlh the naive ANI)S I LIi.

conarasions are made over ANDS configuratium (film and radiu) w ltid %etc deicued in liott naive and
trained systems. That is, the differently trained ANDS thai are ev.'lualed here were tested oil all 37 fih, In
the database. However. it oly makes sense to compare fMins that contain nodules that were ditn'tii by taiL.

naive system if one is to assess inproveimnt/changes uI the detettion metrics. Since e3i filt wa;
processed at two radii (there are 37 filns in which a nodule was detected) there are 74 possdule fliticlitts.
combinations that could be compared in the above analyses. Only film/radius ctihiiatiomn. in whith a

nodule was detected by the trained system are included in the comparasions Thirly-four filn/radinu% -"

combinations (26 different fihns) were evaluated by the 9-trained ANDS and 47 (32 diflerenit fiin) by the

37-trained ANDS; the reported metrics are means over thee numbers of fdii/radius ombinations.

Since it is clinically more important not to missa radiograph that ctintails it nodue Ihati

to recognize every nodule in a film, Table 4.8 summarizes the false negative rates (in terms of filtis.

that were missed) of ANDS at the three trainings.
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False Negative Rates For Films

ANDS Training Single Nodules Multiple Nodules All I ilisi
Naive2  0.12 0.00 0.0X
9-trained 0.35 0.18 0.30
37-trained 0.19 0.00 0.14

I -The average number of nodules per Min is 7.5, s = 11.4.
2 -The top 50 points in the accumulator list are considered.

Table 4.8 - False negative r,,tes at three urainingb. 1he false negative rle ate, b1111h1iui Wcd at ah tltr "-.

tainings over all films with owi nodule, all films with mnre than une nodule, and j!! filfi ,:L .%z tducit-.
Twenty-six films contain a sinigle nodule; 11 films contain multiple nodules. The false iegatlvc rates ar"
summarized over all films with one nodule, all films %ith more than one nodule, and all filns with anv
nodule.

Table 4.9 summarizes the films that were missed by the naive ANDS and MUttL h wttC

consequently missed by the trained systems. Table 4.10 summarizes the misLla.sificaions of the

CNs in films that were misdiagnosed (that is, no nodule was detected) by ANDS at both tranurigs.

Summary of Films That Were Misdiagnosed by Nave ANI)S

FILM # )escriptin of Nodule
24 faint shadow of a button

on lateral bu: dei of rtght lung .-

42 pseudo-nodule; near boLtm
apex of right lung; elongated
vertically; well defined margins
but non-uniform interior density

43 F:anuloma; nodule is fuzzy;
is on bottom medial border of
left lung: poorly defined margin;
non-uniform interior density

Table 4.9 The solitary abnormalities in these three Films were not deteted by the ,,,,trmied AN S it :'i:
of 5 or 10 (pixels). Since the nodules in these filmin were i~issed by the untraincd systemn, they oto. l s
missed by the trained systems because the trained systems use the accumulator list that is output lty thc
naive system as their input. If a nodule is not anywhere in the list or accumulator po,nts that is puodued
by the naive system it cannot be detected by a trained system.

•" ,



4 - RESULTS - Evaluation of the Performance of Al in Reducing the False Positive
Rate

Summary of Films That Were Misdiagnosed by 9-trained ANDS

Film #; Radius Comment on Classification
2; 5 taught as medium nodule, classified as

rib; nodule is fibrous and on rib

6; 5 taught as nodule on medial border,
classified as large vascularity; nodule
is well defined; interior mass is
relatively uniform and noticeably
brighter than exterior

7;,10 taught as medium nodule, classified as
large vascularity; nodule margin is well
defined and interior brightness is
uniform' nodule is near medial border
above the medial midpoint; diameter is
greater than 2.0 cm.

20; 5 taught as medium nodule, classified as
rib; >2 cm diameter nodule is occluded
by clavicle

35; 5 taught as rmedium nodule, classified as
rib; nodule is occluded by rib; margin is
fuzzy, interior is uniform

39; 5 two nodules are present in film;
1157, 24 11 taught as medium nodule.
classified as small vascularity; well
defined margin; near medial and botom
borders of right lung;
1371, 2961 taught as medium nodule,
classified as rib; fuzzy, darker somewhat
horizontally elongated in left lung

39; 10 two nodules are present in film;
1155, 2461 taught as medium nodule,
classified as small vascularity; (see above)
[372, 2891 taught as medium nodule,
not classified because of error in
computing nodule feature statistics

40; 5 two nodules are present in film;
1132,2311 taught as small nodule on
border, classified as small vasculanmy;
1367, 2771 not taught - unable to compute
nodule statisucs

40; 10 1132, 23)1 taught as small nodule on
border. classified as small vascularity;.
1367, 2771 not taught- unable to compute
nodule statstics
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Summary of Films That Were Misdiagnosed by 9-trained AND)S (continued)

Film #;Radius Comment on Classification
44 5 taught as nipple, classified as sial

vascularity; ntipple is near mediasunuii

44; 10 taught as nipple, classified as rib;, no
overlapping rib

Table 4.10 tie nunary of the flims t:. '~ -trained ANDS. Thlc .Ahris [ Mlittut1

to those in '1 .bIC 4.9 were mi-e.d by 9-tr~t'hi Iie abiuve film/radikis cumbiinaiis we-re dctied

by the untrained ANDS. I! f. ight CLet.1unib N. die nodule(s) in ihcsec rilnu w.,/'ere iiiis',cd.

Eleven filins were missed by 9-tianed ANDS (ul 37 fdiis thati conti, nudiule.

Summ-ary of Films That Were Misdiagn;)sed by 37-trained AND)S

Fim #; Radius Comment on Classification

7; 10 taught as miedIum11 nod1ule,
classified as laige vascularity

44*;5, 10 taught as nipple, classified as
small vascuilarity

Table 4.11 -Sumumary of the fuis dhat were nus~ed by Lilt: 37-triiined AND)S. Ih li i,4c jilili, tiI .idimimi

to those in Table 4.9 were missed by 37-tratned ANDS. fIlie above fiiin/tAis Loniillatiou were dCwICoi~
by the untrained ANDS. The right columin expiaitmN whly thle nu0dule(s) ill these fillit" %;As nlissd. I ke

filmis were rnissed by 37-trained ANDS (of 37 hints that contain nikde .

Table 4.12 illustrates that number of CNs from the top of the list of repit ed candidaic.

-nodules that a radiologist must inspect befo-e being 95% or 99% confident of having read at nodule

that was detected by ANDS, if one is pre".i in the fin;. These values are the tipper lintits of the

* espective confidence bmriits on the means that are presented in Table 4.7. A he LOnfidentCe leVels' 1itC

presented for naive, 9-trained, and 37-trained ANDS. The values for die naive systemn aite bascd onl

the results for 47 films in which nodules were detected by 37-trainecd AND)S.

X4



4 - ESU TS -Evauado ofthePerformance of Al in Reducing the False Positive

Conrfidence Level True l'wmitive Ifile
ANDS Training 95% 99% All FilinsI.Naive 11 12 .92

9-trained 2 2 .70
37-trained 3 4 .86

Table 4.12 -The number of CN sites from the top of the list of CNs which a radiulo~ist nrumt in.jIwct iii "

order to be 95% or 99% confidence of having rejid a nodule. 'The 9-trained Ijinatb are based a meanir that is
- obtained fronm 34 film/radius combination and the 37-traincd Lunits derive from a mtean that is obtaiucd

from 47 filmi/radius combinations. Thie true positive rate is the percentage of all lima with at least onie
nodule that was correctly diagnosed by ANDS.

%
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5- DISCUSSION

Panoramic View

As a result of this work, an Automated Nodule Detection System. based on a systcm piesented by

Ballard fBallard, 1974], was designed, tuned, and tested on a database of 43 chest radiographs. 'I he
reproduction of the original radiographs to digital images- was carefully determined and contiolled
so that a linear transfer was obtained. The final ANDS design was chosen from four candidate

system configurations. An ANOVA failed to find any significant difference in nodule detection
ability between the tested configurations, when evaluated with six films, this failure was primarily
due to a large film-to-film variation which masked any difference due to prcessing configuration.
The configuration that was implemented was chosen primarily because it requires one less step (and
is consequently faster) than the top-performing configurauon and because its perfornmaice measure
is within 4% of that configuration. The parameters of ANI)S (knot spacing, radius, and image
resolution) that result in optimal detection of nodules in five films were determined when tuning
ANDS. The knot spacing value, the parameter of the spline filter, was foind to have no staiitically
significant effect on the detection of the nodules of various sizes in the five films that wete
evaluated. A knot spacing of 60 pixels was chosen because this results in the highest beca.-

detection performance over all five films tested; this value is not statistically sigrficant at (a=0.05).
The amount of variation contributed by the radius value that is used by the CN Fxpeut was shown
to be statistically significant (a=0.05) and to have a statistically significant interaction with filrii
(that is, nodule size). Two radius values were chosen and are implemented in ANI)S. These radius
values are 5 and 10 pixels. A radius value of 5 pixels was chosen because the detectoi performanc-
on all five films was the highest at this value, although the performance at this value is not
statistically different from those of the other tested values. t radius value of 10 pixels was chosel
because it corresponds to a 2 centimeter (diameter) nodule. The image resolution that was chosen.
for incorporation in ANDS is: rescaling of the original image by a factor of 2. That is, each
dimension of the original digital image is reduced by half. A reduction in high frCquency image
noise may be the cause of the improved detection of nodules in half-size images. This noise could
also have been reduced by averaging multiple scannings of the image. Presumably, the noise is
random and is a result of digitization.

Performance of the Experts
The performance of this ANDS was assesseu on the entire database. A Nodule Expeit (a pattem

classifier with a set of classification rules) was trained twice, first with 9 filns and then with 37 filiis
(all of these films contained at least one nodule). The Nodul Elxpert detected 76% of all known

.. . ..... i
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nodules in the entire database when 37-trained and detected only 58% when 9 trainied. I Iris

difference is presumably due to the more extensive training. The contribution o!: ;!e Rib LXpelt
may be judged significant because its output value (whether or not a rib was detected) is used by
the pattern recognizer. The output of the Vascularity Eixpert. however, is not used by Lhe pattern

recognizer. Presumably. this may be attributed to the strerlgth of' thc features tat art: used by tilt

pattern classifier, rather than to a weakness of the Expert. That is, the features may proVide a more
concise measure/description of vascularity than does the Eixpert. Ihec Vascularity Lxpeit essenitally

adds knowledge about linear clustering of CNs; this may not be necessary to rccoynize vastmlarily.
Knowledge about the CN's appearance and relative location in die lung is perhaps more peutncit.

Conpuaasion (if vafifous traininsi~

Initially, I had planned to compare only ilhe Inai'. *'NDS and 9-trained AND)S. SinLCeI 1111ili1 (u

37 films that contain at least one nodule) were missed by the 9-trained system, the 37-trained systeml
was developed and tested. T: ve films were missed by the 37-trained ANIDS. Jihai is, three films in
addition to the two films A were missed b%, the naive system were missed by :17-trained AND)S.
Both trained systems proved capable of i. imber of falsu positives (Table 4.7) at a
statistically significant level (P << U.WOS). As ~.'.neof rcduLIDE the fase po)sitive rate, the
average DM for all films tested by both trained systems was also significantly iedueed;l this is
desirable. However, a statis illy sienificant (1P < 0.005) decrease in the true po.SItivC MWt (the-
fraction of all known nodule: !hat ai 1) also accompanied the reduction in false p siives:

this may be tolerable, alhou~gh not enL:,. .'. he true positive rate (in terms of nodules) for

the naive system, 0.875, is reduced to 0.787 for 37-trained ANDS, tLk Is all 11% iedtItion1. 'fie
true positive rate for films decreased only 6.5% from 92% (for the naive systemn) to 90~% (for

* . trained ANDS). This suggests that more nodules i M flscont~aininlg muultiple nodiles aie boing

missed by the 37-trained system. That is, it seems that thte discrepency in thc true positive rites is
not due to missed nodules in films that contain only single nodules.

Trhe trade-off between true and false positives -

One is faced with a trade-off when one desires to reduce the number of falseL pusulivCe (0I thIL
number of CN sites that the radiologist must insperct): this trade-off is between die number of fidst
positives and the true positive rate. When one desties fewer false positives one must cooItien~uitly
accept the possibility of detecting fewer nodules. Of course the detection rates of the s) Icn, may
be improved by furthier training, but how much improvement can be gained and hiow riuchi timuing
would be required is not known. A system with lower false positive and highier tiue positive mai-S

4 may be possible.



6 - Conclusion

Pattern recognition techniques and procedurally driven image experts are capable ol iedricI1i6 the

number of CN sites that a radiologist must inspect from at most 12 to at most 4 in oflder to be 99%

confident of having inspected any nodule(s) detected by 37-trained AND)S. The radiologist mutst be

willing to accept a film true positive rate of 88% (as opposed to a film true positive rate of 92%) for -

the convenience of having fewer points to inspect. These film true posiuive rates arc dertived floril

37 films which contain nodules that were evaluated by ANDS.
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7 - Future Work

Train ANDS with more films and evaluate results

Table 4.9 illustrates the effect of training ANDS with 9 and with 37 films. The fil 11i JUIM IijifliVu

rate decreases from 30% to 14% when ANDS is trained with more films. I believe that ANDS van

be made more effective if it is trained with mote (about 100) films.

Implement parts of ANDS in VISI hardware

The spline filter, histogram equalization, circle detector, convolution, image sca.hI, Ivt.,uiIU

computation, and pattern recognition phases of ANDS may be implemented in hardwale fir addld

speed of execution.

Compare ANDS with radiologists

Time has not allowed the completion of a comparasion between radioogsL.s, who miC InstiHLk.etd to

find all nodules in a subset of ANDS films. The radiologists ate also i,,structed to taic their

confidence that each is a nodule. These results will be reported at a later time.
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Appendix 9.1 - Calibration of Optronics Scanner

The Optronics C-4100 scanner was calibrated according to the wallJtllalie illaIlial

[Optronics. date unknown) using Kodak neutral density filters and the # 2 step tablet. D )espite tils

_galibration. few steps above 2.00 on the step tablet were evident in the digitized image. A piece uf

film (Kodak Commercial) with a density of 2.0 and the 2.0 neutral density filter were suacid while

the current from the photomuluplier was measured. The measured currents for both films were not

the same. This difference is attributed to the transmision characteristics of the objects that weic

measured. The density of the film is due to silver filaments that arc suspended in tUc gelau..

matrix, while the density of the ND filter is due to carbon pInicles in a gelatin aiatrix. "IIs

discrepency is due to a higher Callier coefficient for the film Ianics, pp. 488-4891. 'lh'.

illumination/collection geometry of the scanner is that of a microdensitorneter. The light it is

scattered by the larger grains in the film is iever collected by the microdensitonietei. No light is

lost due to scattering by the ND filter; its Callier factor is very near 1.0.

Thus, the scanner was calibrated using the step tablet, whose density chaiaL l tO .liure

closely approximate those of the reduced radiograph images that are digitized. The scatim wa.--

calibrated to provide the optimum discriminauon between two steps (densities abu)t 2.6-2.75).

These two steps were digitized and their digital values were compared (in the final image) and

potentiometer R52 was adjusted to obtain a maximum difference between these steps.

9.-
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Appendix 9.2 - Computation of ANOVA: Processing Methods

This ANOVA compares four image processing configuratins ijiat were usel it) detect

nodules in five chest radiographs. The model is: -

=11 + F, + Pi + i

where:

° .°

Y obse°.ohmean

".~ ~ ~ ~ ~ ~P effetsdue to2 promptto fA O Arcessing Metodsh-ods-

Four measures (true positive rate, TP* false positive ratel, FP; and a lInsthiaii ileiete,

QHM) were combined in a weighted average for each film/processing combination to detaiec th1C

values that are used in the ANOVA. The weighted average is:

metric .5TP + .3(1 -FPI)-+ .2QiIM

1The false positive rate that was used when computing this ANOVA is diffki-ent fiui1i0 thn

described earlier in this thesis. It is defined as the ratio of dhe ritimbet oif non-nodules thiat 1ie

between the first accumulator point and the last detected nodule and the total nuiber of nodules in

the accumulator list.

QHM is a histogram metric that is only used in this ANOVA. It is defined as:

QIIM = l - (]/Q)q)hloJ

hOHM a histogram with Q entries; each entry repestng die pcbiuntiie on t Cttu-

nodules that were located in a given Q-ile in the list of Ns
Q f p the number of quane hs. cqouasin divisions of ticlut li of ('N:.

99)
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The data from which the ANOVA is computed:

Processng Mthod
film P1 P2 113 P4 F.

6 1.00 1.00 0.99 1.00 3.985

32 0.47 0.52 0.39 0-53 1.912

36 0.99 0.98 0.94 0.99 3.890

18 0.34 0.56 0-50 0.64 2.035

41 0.74 0.91 0.57 0.65 2.&6M

Pj 3.540 3.958 3.375 3.813 14.686

The results of this ANOVA are sumnmarized in Table 3.2.1.

S:.
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Description of the ANDS Database
Summary of Nodule D~etection Tests

St)CCIKSSI-111.1 RAIlI
LUNG PATHOLOGY RADIUS(cm.) AGE SEX #NOI)ULES preAl IKsIAI postAl2

113 met(colon) NC 51 F I
212 met(colon) 0.61 51 F 1 10 - 5
311 met(colon) 0.88 51 F 1 I 10 i
4 granuloma 0.83 21 M I B 10 II
5 granuloma 0.56 50 M 1 i It I
6 granuloma 0.82 69 M 1 11 10
7 hamartoma NC 50 M 1 10 "
8 met(?) 1.02 53 M I It 10 I"
9 nipples 0.36 73 M 2 B 5.

10 granuloma 0.83 49 M I B 10 I.
11 nipples 0.72 65 F 2 13 II -

12 hamartoma 0.97 44 F 1 10 10 10
13 nipples 0.93 56 M 1 10 10 10
14 Hodgkins 0.82 36 M I II 10 II
15 granuloma 0.70 29 M 1 II 10 5
16 nipples 0.44 55 F 2 B II i
1712 met(colon) 0.40 54 M 1 5 5 5
1811 met(colon) 0.62 56 M 4 B it I
19 carcinoma 0.65 71 M 1 10 10 10
20 carcinoma NC 51 M I It I_.
21 granuloma 0.44 53 F 1 + B 5 10
22 granuloma 0.49 56 M I NC
23 granuloma 0.83 63 F 1 I It it
24 button NC 44 M I -
25 nipples 0.56 76 M 2 I II I-
26 met(kidney) 0.68 50 M 1 5 5 5
27 met(melanoma) 0.58 21 F 22 it l! I-
28 granuloma 0.83 50 F I NC
29 carcimoma NC 69 F I 13 10 II
30 carcinoma 0.88 55 F 1 10 10 10
31 carcinoma 0.61 52 F I i N('
32 met(salivary) 0.53 64 F 37 II it I
33 met(breast) 0.94 39 , I NC.
34 met(breast) 0.61 54 F 5 II 5 it
35 carcinoma 0.99 64 M I It It-
36 carcinoma 0.69 63 M I B1 5 5
37 hamartoma NC 64 M 1 Bt 5 5
38 carcinoma 1.35 57 F I NC
3911 pseudo-nodule 0.61 51 M 2 B 5""
4012 pseudo-nodule 0.48 53 M 2 Ii 5
4113 pseudo-nodule 0.48 55 M 2 I Nc
42 pseudo-nodule 0.42 48 M I
43 granuloma 1.27 45 F I .- '
44 nipple 0.49 67 F 1 I
45 none 29 F
46 none 35 F
47 none 64 M
48 none 77 M
49 none 30 M
50 none 56 M

No results were obtainable from entries in buIdface bcttuse of digjtilzutn errurs (diulpit .dt , .i ) iit .w I i ,1.1 V

-':b;.........................
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files. Films #38 was omitted because nodule is always found because it is in lower medial tum:., ,,f ight hintS.

Successful radii = radii at which at least one of the nodules present in the films %as detcd: lII=i i.dius 5 iid.
10 (pixels); 5=5 pixels (.5 cm); 10=10 pixels (1.0 cm.). All films wre processed by ANDS at two radii 5 -iu'd I1 piacs,

NC = Not Computed: the data were not computed because of error in compuung nodule stvaths (radius djta) c'tbecause of scanline error (could not compute lung boundaries). ""

.4 In = Adjacent flin numbers that are followed by a I are part of a series. The number, n, after t,, I audi-.tis the
chronoligical position of that film in the series
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