SPATIAL CONCENTRATIONS OF SILICON ATOMS IN RF
DISCHARGES OF SILANE(U) NORTHWESTERN UNIV EVANSTON IL
R M ROTH ET AL. 18 FEB 85 TR-7 N00014-79-C-0622
Spatial Concentrations of Silicon Atoms in RF Discharges of Silane

R. M. Roth, K. G. Spears, and G. Wong

Northwestern University, Departments of Chemistry, and Physics and Astronomy

Office of Naval Research
Chemistry Program Code 472
Arlington, VA 22217

ONR, Chicago
536 South Clark Street
Chicago, IL 60605

Distribution of this document has been approved for public release and sale; its distribution is unlimited.

A capacitive coupled, RF glow discharge of silane in argon was studied to determine the spatial concentration of silicon atoms. Laser-induced fluorescence was used to determine the ground state concentration profiles. The fluorescence profiles clearly show the sharp boundaries of the sheath regions. These profiles were much more sensitive to plasma chemistry changes than profiles obtained from plasma emission. Experiments with nitrogen addi-
To be published in
Proceedings of a Symposium on Plasma Synthesis and Etching of
Electronic Materials, Materials Research Society, Boston, Nov. 1984

Spatial Concentrations of Silicon Atoms in RF Discharges of Silane

R. M. Roth*, K. G. Spears**, and G. Wong***

*Currently at Standard Oil Company (Indiana), Amoco Research Center, P. O.
 Box 400, Naperville, IL 60566
**Northwestern University, Department of Chemistry, Evanston, IL 60201
***Northwestern University, Department of Physics and Astronomy, Evanston,
 IL 60201

Abstract

A capacitively coupled rf glow discharge of silane in argon was
studied to determine the spatial concentration of silicon atoms. Laser-
induced fluorescence was used to determine the ground state concentration
profiles. The fluorescence profiles clearly show the sharp boundaries
of the sheath regions. The dc bias voltage, silane mole fractions, flow
rates, and chamber pressure were all varied to establish the sensitivity
of the silane profiles. The existing theory of sheath formation is used to
qualitatively understand the existence of sharp spatial boundaries and the
sensitivity of the anode sheath region to plasma chemistry.

Introduction

The decomposition of silane in electrical discharges has been shown to
form thin films of hydrogenated amorphous silicon on the electrodes. These
films have promise for making inexpensive solid state devices, e.g., photo-
voltaics. If the properties of the amorphous films are to be opti-
mized, the chemical processes in the gas phase and at the gas-surface
interface must be understood. Laser probes are well suited to the study of
these gas phase chemical species because of their high spatial resolution,
sensitivity, and the variety of different laser spectroscopic techniques
available.

A frequently used discharge environment is a capacitively coupled rf
glow discharge. In previous publications we have presented spatially
resolved results from laser excited silicon atom fluorescence [2] and from
particle light scattering [3] in a capacitively coupled rf glow discharge
of silane and argon. In this article, we present results from recent
experiments on the nature of our silicon atom fluorescence data. In the
accompanying article [4], we discuss the nature of particle light scat-
ttering and its relation to the silicon atom fluorescence.

Experimental

Our apparatus is designed to use laser probes with a discharge that has
features and parameters typical of discharges used by other investigators to
prepare amorphous silicon films [1]. Our laser system consists of a dye
laser pumped by a pulsed Nd:YAG laser. The dye beam can be frequency
doubled to produce a tunable UV beam. The laser system is operated at 10 Hz
and produces light pulses 10 ns in duration with energies as high as a few
millijoules in the visible, and a few tens of millijoules in the UV.

The discharge chamber is pictured schematically in figure 1. The
laser beam enters and exits the chamber through Brewster windows that are
canted 7° relative to the plane of the paper in figure 1. The laser beam
was mounted perpendicular to the plane of the paper in figure 1. The laser
beam was realized by using a CTAB solution for the laser.
focusing is done with a telescope lens pair mounted 0.5 m from the image spot size of 0.1-0.15 mm as determined from film burn patterns. The electrodes are 38 mm in diameter and separated by 22 mm. The rf electrode is shielded from the chamber, while the ground electrode is in mutual ground with the chamber. Thus, the effective area of the ground electrode is larger than the rf electrode. The signal is detected through a collection window mounted perpendicular to the laser ports. In order to prevent the formation of amorphous silicon films on the collection window and laser windows, a plasma constraining screen at ground potential is placed around the discharge area. A chamber extension tube, through which the silane mixture enters, is used to separate the collection window from the discharge region by both flow and distance.

The laser signal is detected by imaging the slit of a 0.75 m monochromator, through a lens pair of aperture f7.4, onto the laser beam. The signal from the exit slit of the monochromator is detected on a photomultiplier tube. A fast, gated integration of ≈100 ns provides digital signals to a microcomputer. The microcomputer controls the entire experiment, which allows efficient data collection and excellent signal averaging. The monochromator, the 10 ns pulse length, and gated detection all serve to discriminate against plasma emission. The apparatus is calibrated
by filling the chamber with 0.1 Torr of benzene vapor and detecting the
High resolution spatial profiles along the axis of the electrodes are
obtained by translating the vacuum chamber with respect to the fixed optics
assembly (see figure 1). This alleviates the problems involved with
retaining alignment while translating a laser beam. A flexible connection
to the vacuum pump allows chamber motion, and the vacuum pump and chamber
system holds a constant pressure to an accuracy of ± 0.1 Torr by servo control
of an argon leak between a particle trap and the pump.

Silicon atom fluorescence is detected by weakly focusing the UV laser
beam into the discharge region. The laser wavelength of 251.43 nm excites
the 3p2 3P0 - 3s2 1S0 transition at 252.85 nm is detected through the monochromator. The
monochromator resolution of -0.5 nm cleanly separates the 252.85 nm emission
from the excitation line and the other member of the triplet emission.
This separation nearly reaches the base line and light scattering at the
resonance excitation does not overlap the 252.85 nm peak. The conventional
meaning of fluorescence, emission excited by optical absorption, is used in
the following text. The more general excitation of emission, including by
electrons, should not be called fluorescence. The recent common use of
LIF, for laser induced fluorescence, is often misused because the laser
induced is only needed when ambiguity might exist as to the type of optical
excitation.

RESULTS AND DISCUSSION

When an rf discharge is created, ion sheaths form near both electrodes.
Sharp boundaries suggestive of ion sheaths are clearly evident in the axial
profiles of silicon atom fluorescence presented in figure 2. These curves
show no electrode wall effects, as determined from the benzene experiments.
In order to understand these spatial profiles, the discharge parameters
were varied to probe both chemistry and electrical sheath behavior. As the
total gas pressure was increased at constant silane mole fraction and
discharge power, the intensity of the fluorescence signal increased, and the
peaks moved relative to the electrode. The increase of fluorescence intensity with pressure implies that the total atom concentration has a creation mechanism that depends on pressure. The location of the fluorescence peaks closer to the electrode surface with increasing pressure is compatible with the theoretical concepts of ion sheath formation [6]. This model suggests that the product of pressure and sheath distance to the electrode should remain constant, and this is exactly what is observed for the location of silicon atom fluorescence peaks. The reason for the silicon atoms having boundaries at the sheaths is a key object of the current research report, although it is obvious that it is related to the atom creation mechanism. In our earlier report [2] we
implied that the most probable cause was the onset of high electron energy
ionization processes from silane and silane fragments.

The mole fraction of silane in argon is shown in figure 2 to weakly
affect both the shape and intensity of the silicon atom spatial profiles.
The mole fractions of 22, 6%, and 9% show an increasing atomic signal with
decreasing mole fraction of silane. At these large mole fractions, one has
difficulty separating the effects of atom creation mechanisms from changes
in the discharge characteristics. It is clear, however, that at some point
there should be a reduction in atom intensity as one reduces the silane
mole fraction. Furthermore, when one reaches the mole fraction where the
electron distributions are controlled by the dominant argon concentration,
the spatial profiles of atom concentration should reflect the electron
distributions in the plasma and sheath regions by a convolution of electron
Impact and other creation mechanisms with silicon diffusion and loss processes. The normal model of a plasma suggests that a bulk plasma of fairly constant electron impact chemistry should be bordered by the ion sheaths, at which the transition in electron distributions and electron impact chemistry may show differences from the bulk plasma. Consequently, one might expect curves much like those shown in figure 2, but with smaller silicon atom signals for smaller mole fractions of silane. The silane is an important component in controlling the electron impact processes and changes from 2-9% are probably greatly affecting the electron processes and therefore the atom concentration. At smaller mole fractions we might expect to reach a perturbation limit, where the electron impact processes are largely controlled by argon. Figure 3 shows results from experiments performed at silane mole fractions between 0.05% and 0.45%. While it is not shown in figure 3, the change from 2.0% to 0.45% reduced the sharp cusp like behavior to a simple sharp boundary at 0.45%. This type of change from a cusp to a sharp edge might be expected on the basis of discharge changes involved in reaching a perturbation limit. The changes shown in figure 3 at lower mole fractions are not compatible with our expectation for the discharge electron impacts creating silicon atoms. In particular, at 0.22% one can observe a peak in silicon atom concentration at 1.3 μm, the original location of the sharp cusps that appear to correlate with the ion sheaths. In addition, the very low mole fractions of silane show changes with concentration that are not compatible with the concept of a reasonably...
uniform plasma between sheaths that is only weakly perturbed by silane. However, the atom signals do reflect the discharge electrical characteristics by their spatial correlation with ion sheaths, especially at larger mole fractions of silane.

In order to further understand the origin of the silicon atom signals we have done a number of other experiments. From laser-induced fluorescence one can, in principle, obtain a quantitative measure of concentration. In our initial calibration experiments with benzene, we were able to conclude that the laser power which was necessary to see the fluorescence signal above the noise was far above that necessary to saturate the atomic transition. The resultant concentration of silicon atoms, in the case of saturation, is \(1 \times 10^9/\text{cc}\), based on the absolute yield of the benzene emission and measurements of focus volume, line widths, and an unproven assumption of a simple saturation mechanism. However, the experimental test of saturation was contradicted by a linear dependence of fluorescence signal on laser power. The linear dependence had a non-zero intercept indicating some sort of power threshold, an observation that was difficult to understand. In our next effort to understand the laser power dependence of silicon atom fluorescence, an experiment was performed in which the focus diameter of the beam was expanded by about a factor of three to \(-0.35\) mm. Additional focusing control and detection calibration must yet
Figure 4: A plot of laser power versus fluorescence intensity. Line A represents non-saturation limit behavior. Line B represents a second high power mechanism.

be done to use the focusing volume changes in a quantitative manner and obtain an improved estimate of atom concentration. Nevertheless, the expanded area of the laser beam allows a more sensitive measurement of fluorescence signal versus laser power density. The resultant data are plotted in Figure 4. Although the laser power for all the points in Figure 4 are above the calculated saturation power, we can observe the onset of a linear power dependence. At low powers, the curvature of the plot is due to typical saturation rollover as seen by the deviation from a linear behavior (line A). As the power is increased, a second mechanism takes over which has a linear dependence on power with some threshold (line B). The new mechanism is compatible with laser excited creation of atoms from some species in the discharge. In order to study intrinsic silicon atom concentrations, much lower power densities will be needed than were used in this work. The necessity for a discharge, the spatial variation of silicon atom signal, and the intensity and spatial changes with mole fraction all suggest that particles are the species that are responsible for laser absorption and atom creation during the laser pulse. A new experiment is being planned that uses two laser beams of variable colors to probe the process of particle absorption and atom creation. Other data showing correlations with particle signals are shown in an accompanying paper [4].
In conclusion, we have shown that the observed spatial profiles of silicon atoms (2) are not derived from plasma chemistry in a direct manner. At sufficiently large laser powers, the atom concentrations are probably created by absorption of radiation by particles that exist in spatial zones controlled by the discharge properties and the discharge chemistry.

ACKNOWLEDGMENT

We would like to thank the Office of Naval Research for support of this work. In addition we benefited from advice from G. D. Stein and D. M. Bertels at early stages of this work.

REFERENCES

END

FILMED

3-85

DTIC