BONDING INFORMATION FROM AUGER SPECTROSCOPY

By

David E. Ramaker

Prepared for Publication
in the
Applications of Surface Science

George Washington University
Department of Chemistry
Washington, D.C. 20052

November 1984

This document has been approved for public release and sale; its distribution is unlimited.

The use of Auger Spectroscopy to obtain bonding and electronic structure information is reviewed. The methods for extracting the Auger lineshape from the experimental spectrum are described; in particular the background subtraction and loss deconvolution techniques are presented. A prescription is given for quantitatively interpreting the lineshape utilizing an empirically determined one-electron DOS and atomic Auger matrix elements. Final state hole-hole correlation or localization effects on the lineshape are emphasized. The carbon KVV, Auger lineshapes of graphite, diamond, and the carbides are examined. Localization...
BONDING INFORMATION FROM AUGER SPECTROSCOPY

David E. Ramaker
Chemistry Department
George Washington University
Washington, D.C. 20052

The use of Auger Spectroscopy to obtain bonding and
electronic structure information is reviewed. The methods for
extracting the Auger lineshape from the experimental spectrum are
described; in particular the background substraction and loss
deconvolution techniques are presented. A prescription is given
for quantitatively interpreting the lineshape utilizing an
empirically determined one-electron DOS and atomic Auger matrix
elements. Final state hole-hole correlation or localization
effects on the lineshape are emphasized. The carbon EVV
lineshapes of graphite, diamond, and the carbides are examined.
Localization effects in the lineshapes are correlated with ionic
bonding character.

I. INTRODUCTION

For more than a decade now, Auger Electron Spectroscopy
(AES) has been utilized as a technique for elemental
identification and trace analysis at the surface of solids (1). Indeed
over these years AES has become a widely available and
almost indispensable technique for determining surface
cleanliness, surface coverage and depth profiling. More
recently, the Auger lineshape has been recognized as a source of
chemical and electronic structure information. Extraction of
this information from the Auger lineshape requires a thorough
understanding of the factors contributing to the Auger process.
This work will examine several of these factors.

To obtain chemical or electronic structure information from
Auger spectroscopy requires two major efforts, first one must
extract a quantitative Auger lineshape from the Auger spectrum,
and second one must derive a theoretical framework for
semiquantitative interpretation of that lineshape. Sec. II of
this work examines current methods for extracting the lineshape.
Sec. III summarizes a theoretical framework for the lineshape
interpretation. Finally, Section IV reviews recent applications
to extended covalent solids, in particular those involving the
carbon atom in its varied allotropic and chemical forms.

The nature of this article is not to review the extensive
literature on Auger spectroscopy, nor to examine in general the
broad field of Auger spectroscopy. A large number of review
articles on Auger spectroscopy (1 - 28) has appeared in recent
years, making this unnecessary. Rather this article is directed
toward explaining the semiepipirical and semiquantitative methods
which have been utilized to interpret the Auger lineshapes of
extended covalent systems. In particular the dramatic effects of
final state hole - hole localization or correlation on the Auger
lineshapes will be emphasized along with how these effects can be
used to learn something about the chemical and electronic
properties of the solid under study.

II. Extracting the Auger Lineshape.

The difficulty with obtaining a quantitative Auger lineshape is well known (21). It arises because the relatively small Auger
signal sits on top of a large background, consisting of the back-
scattered (redistributed primaries) and secondary electrons
arriving from the electron or photon beam which initiated the
Auger decay. In addition, the Auger signal itself is distorted
due to the inelastic losses which the Auger electrons suffer on
their way out of the solid.

Although many slight variations have appeared, two basic
techniques are currently in use for extracting the undistorted
or "true" lineshapes. These are summarized in Figs. 1 and 2
which illustrate the extraction of the Si L\textsubscript{2,3}VV lineshape from a
powdered sample of Li\textsubscript{2}SO\textsubscript{4} pressed onto an In substrate (22).
This case truly tests our capability to extract the lineshape
because the Auger electrons around 100 - 150 eV lie in the region
where the redistributed primary and secondary electrons
contribute about equally to the background. Most other
lineshapes with a higher Auger electron energy (e.g. the C KVV
around 260 eV) are considerably easier to extract (23).

Fig. 2a shows the d N(E)/dE = N'(E) spectrum as measured
using a double pass cylindrical mirror analyser (CMA) in the
normal derivative mode. Fig. 1a shows the N(E) spectrum obtained
by simple point to point integration of the measured spectrum
choosing the constant zero point (N'(E=0) to lie around E = 100
eV. Fig. 1b illustrates the background removal from the N(E)
spectrum and Fig. 2a illustrates its removal from the derivative
spectrum.

The removal of the background is best accomplished by
fitting an analytical expression for the spectral distribution to
the high and low energy wings of the Auger signal. Expressions
for the secondary and redistributed primary contributions have
been derived previously from theoretical analysis of the
secondary cascade process in metals and the Bethe expression for
electron scattering (22).

\[B(E) = A \frac{E}{(E+E_\text{c})(E+E_\text{c})^\alpha} + B \frac{E}{[(E+E_\text{c})/E_\text{c}]^\tau} + C. \]

The terms primary and secondary refer to the source of the
electron (i.e. primaries originate from the initial excitation
beam, secondaries originate from the solid). Of course the
indistinguishability of the electrons precludes this
distinction; nevertheless, this terminology is often used in the
literature and it will be used here to distinguish the two
different spectral distribution functions utilized to describe
the total backscattered or loss spectrum.

The first term in eq. 1, the secondary contribution, is
essentially the Sickafus (24) expression (E + \phi)^m multiplied by
an escape factor E/(E + E_\text{c}), where \phi and E_\text{c} are the work
function and the escape probability parameter respectively (here $E_e = 0.5$). In the second term, the redistributed primary function, E_p and E_y are the primary electron beam energy and the binding energy of the primary loss feature just above the Auger energy. The exponents m and n are nonlinear parameters found to range experimentally from 1.3 - 3.0 and 0 - 1.5 respectively (their theoretical values are 1.3 - 2 and 2 respectively [22]).

The linear coefficients A, B, and C are obtained from a least squares fit of eq. (1) to the high energy wing of the $N(E)$ spectrum and some estimate of the low energy wing as pictured in Fig. 1a. The actual low energy wing can not be used since as Fig. 1b shows, the distorted (experimental) Auger lineshape tails off slowly to lower energy. In the case of the $d(N(E))/dE$ spectrum, the analytical derivative of $N(E)$ can be used, however in the literature, most often some polynomial expression or even graphical background subtraction procedure has been used (21, 22). At higher energies, when the background function is slowly varying, a simple straight-line extrapolation of the high energy wing has been utilised and found to be quite adequate (e.g. for the C KVV lineshape reported in Fig. 9 [23]).

Removal of the distortion effects due to electron energy loss of the Auger electrons as they escape from the solid is accomplished by deconvolution with a back scattered spectrum, $L(E)$, with primary energy at or near the principal Auger energy as shown in Fig. 1b (22). Mathematically this can be written

$$A(E) = \int A_{\infty}(E) \times L(E-E) \, dE$$

where A and A_{∞} are the "experimental" and "true" Auger lineshapes. In practice $A_{\infty}(E)$ is obtained by an iterative deconvolution procedure due to Van Cittert (25). The deconvolution also removes experimental resolution effects of the analyzer since the elastic peak of $L(E)$ has been broadened by this same amount. The loss and elastic contribution to $L(E)$ must be weighted by a parameter to account for the different geometrical relationships of the Auger and backscattered loss processes; i.e., the internally created Auger electrons transverse the solid escape region once, the backscattered electrons twice. In practice this is accomplished by introducing a parameter $(1 - E)$ which weights the loss contribution such that $A_{\infty}(E)$ has zero intensity at energies sufficiently below all of the features (26).

The parameter $(1 - E)$ also compensates for uncertainties in the background removal procedure (22). Figs. 1 and 2 illustrate this and some of the uncertainties which arise in $A_{\infty}(E)$. Removal of the background from $N(E)$, as in Fig. 1, leaves in question just where the low energy wing lies. Two estimates of $A(E)$ are illustrated in Fig. 1b. Deconvolution with the optimum values of $(1 - E)$ gives two different $A_{\infty}(E)$ curves. The optimum value of $(1 - E)$ partially compensates for the different $A(E)$ estimates, yet some uncertainty in $A_{\infty}(E)$ still remains. Notice that the uncertainty in $A_{\infty}(E)$ increases to lower energy; this must always be recognized when qualitatively interpreting the Auger lineshape. Fig. 2a illustrates even greater problems when removing the background from the derivative node. Because error is accumulated in the integration process, very small
knowledge of the one-electron DOS. As the theory of Auger lineshapes further develops, it is hoped that in the future, the one-electron DOS may also be obtained from the lineshape.

III. 2 Atomic Matrix Elements

The atomic Auger matrix elements have been calculated for much of the periodic table within a one-electron Hartree-Fock-Slater approximation by McGuire (36, 39) and Walters and Rhod (36, 37). Their results for KLL transitions at low atomic number are compared with experimental data in Fig. 3 (6). The matrix element per filled shell, \(A_{cR} \), (i.e. per \(s^2 \), \(p^6 \), \(d^{10} \), etc.) is plotted. \(A_{cR} \) is defined by the expression (38)

\[
A_{cR} = \frac{(4R+2)(4R+0)}{(4R+2-n)(4S+1-n)} \times (A_{cR})_{act.}.
\]

\[
A_{cR'} = \frac{(4R+2)}{(4R+2-n)} \times (A_{cR})_{act.}
\]

where \(n \) is the number of holes in the initial \(R \) shell and \((A_{cR})_{act.} \) is the actual Auger matrix element or experimental intensity (it is assumed the \(L^\prime \) shell in eq. (6) is filled). Since generally one is only interested in the relative \(A_{cR} \) intensities, they have been normalized such that \(A_{cR} \) is 100 for all \(R \). The matrix element per electron \(P_{cR} \), as required in eq. (3), can be obtained from \(A_{cR} \) by the simple relationship

\[
P_{cR} = \frac{1}{(4R+2)(4R'+2)} A_{cR}.
\]

Similar results for the \(L_{23}MM \) transition with \(R = 18 - 36 \),
and for the K\textsubscript{L}V and K\textsubscript{L}\textsubscript{2}V transitions with Z = 10 - 88 have been plotted elsewhere (6, 30). In both the K\textsubscript{V} and L\textsubscript{2,3}V data, the theoretical results of McGuire, and Walters and Nihal have been scaled to the experimental results of the inert gases. Scale factors (ranging from 0.59 to 2.86) significantly different from 1 were required. These scale factors reflect the magnitude of the errors in the one-electron results. Electron correlation effects at the atomic level are clearly very important in the two valence hole final states (i.e. V\textsubscript{V}). The configuration interaction (CI) results of Chen and Cramer (39) in Fig. 3 include electron correlation and their unscaled results agree closely with experiment. As one would expect, the K\textsubscript{L}2V and K\textsubscript{L}V one-electron results agree nicely with experiment, indicating the insignificance of correlation effects in these core-valence final states (i.e. CV) (39).

The atomic matrix element data reveal three very important points. 1) The variation of the relative Auger matrix elements with atomic number is rather small. 2) The variation that does exist is predicted remarkably well by the scaled one-electron results, indicating that the large correlation error is rather constant with Z. 3) No systematic differences between atomic gas phase, molecular phase, and solid phase experimental data exist. This is true even for the d\textsubscript{d}, p\textsubscript{d}, and pp matrix elements of the transition metals, where electron screening in the solid is expected to cause significant changes. These three points indicate that gas phase atomic data or the scaled one-electron results can be utilized for the determination of P\textsubscript{C},A2 in the interpretation of Auger lineshapes in the solid.

III. 3 Core Hole Screening

The core hole screening factor in eq. (3), R\textsubscript{CA} k, accounts for the effects of core hole screening in the initial state (39, 41). Core hole screening consists of atomic radial contraction and charge transfer in response to the core hole. These effects can best be summarized by the final state (FS) rule which states that 1) the spectral distribution of each kA2 contribution in a CVV Auger lineshape is determined by the final DOS (i.e. in the absence of a core hole or essentially by the ground state DOS), but that 2) the relative intensity of each kA2 contribution is determined by the initial DOS (i.e. the DOS local to the core hole) (41). Thus the factor R\textsubscript{CA} k can be defined as the ratio of the integrated area of kHm kHm(E) in the presence of a core hole to that in the ground state. The FS rule also dictates that the kHm kHm(E) used in eq. (3) be that given by the final or ground state DOS. Consistent with the FS rule (42), XPS and PES also reflect the ground state DOS, so that the kHm(E) obtained empirically from these data as discussed above, are consistent with what is needed in eq. (3).

In recent work we have found that the FS rule is not always valid (39, 43). The FS rule assumes that the screening response to creation or annihilation of a core hole occurs in such a fashion that shakeoff or shakeup does not occur. Shakeoff or shakeup can be defined as the ionisation or excitation of a valence electron nearly simultaneously with creation or annihilation of the core hole (i.e. shake is one aspect of the relaxation process). We have observed large amounts of shake-off in response to annihilation of the core hole by the Auger process (final state
shake-off) in the Si L\textsubscript{2,3}VV lineshape of elemental Si (38) and the S L\textsubscript{2,3}VV lineshape of Ag\textsubscript{2}SO\textsubscript{4} (43). This shakeoff is exhibited by large changes in the relative L\textsubscript{2,3}VV factors. We believe that these large effects are more the exception than rule however, and we will not discuss these effects further in this work.

III. 4 Localisation

The effects of final state hole-hole localisation or correlation on CVV lineshapes are clearly more dramatic than the screening effects described above. In general, CVV lineshapes may range anywhere from an atomiclike lineshape (i.e., when the lineshape consists of a series of narrow lines resulting from multiplet structure) to a bandlike lineshape which reflects essentially a fold-of-the-vaence band DOS, \(N_{\text{F}}(E) \propto N_{\text{A}}(E) \). The effective Coulomb repulsion parameter, \(U \), is small in the bandlike case so that the the function \(f \) in eq. (3) has no effect (i.e., \(f[N_{\text{A}} \times N_{\text{F}}(E), U \rightarrow 0] \approx N_{\text{F}} \times N_{\text{A}}(E) \)). In the atomiclike case, \(f[N_{\text{A}} \times N_{\text{F}}(E), U] \) reduces to the atomic multiplet structure so that the function \(f \) dramatically distorts the lineshape.

Cini and Sawatzky have explicitly defined the function \(f \) for CVV Auger processes in elemental solids by the expression (44),

\[
f[N_{\text{A}} \times N_{\text{F}}(E)] = \frac{(N_{\text{A}} \times N_{\text{F}}(E))}{\left[1 - U \langle \mathcal{F}(E) \rangle \right]^{2} + \pi \alpha^{2} U^{2} \langle N_{\text{A}} \times N_{\text{F}}(E) \rangle}
\]

where \(\mathcal{F}(E) \) is the Hilbert transform,

\[
\mathcal{F}(E) = i \int N_{\text{A}} \times N_{\text{F}}(E) / (E - E) \ dE.
\]

Two parameters essentially determine the degree of localisation of the final state holes, namely the hole-hole repulsion parameter \(U \) and the valence bandwidth \(V \) (i.e., the width of \(N_{\text{A}} \) in eq. (8)). If \(U \) is large compared to the bandwidth, the lineshape will be atomiclike; if \(V \gg U \) the lineshape will be bandlike and \(f[N_{\text{A}} \times N_{\text{F}}(E)] \). If \(U \ll V \), both atomic and bandlike contributions are evident in the lineshape (44).

The results of Cini and Sawatzky were obtained by utilizing the Anderson and Hubbard many-body models (44). The equations which enter can be solved only for the initially filled band or two-hole final state. However, some work has been reported for the initially unfilled band (45), but the initial conclusions of Cini and Sawatzky do not appear to be substantially altered.

The Cini-Sawatzky results can be easily understood by considering a cluster LCAO-HO-CI approach (46). Consider a simple two-orbital system which has two holes present after the Auger process in an initially filled state (47). The holes can be described by the one-electron atomic orbitals \(f_{a}^{\alpha} \) and \(f_{b}^{\beta} \) with binding energy \(E \) giving the following Hamiltonian matrix:

\[
\begin{pmatrix}
 f_{a}^{\alpha} & f_{a}^{\gamma} \\ f_{b}^{\beta} & f_{b}^{\gamma}
\end{pmatrix} =
\begin{pmatrix}
 2E + U_{eq} & 0 & H_{ab} \\ 0 & 2E + U_{eq} & H_{ab} \\ H_{ab} & H_{ab} & 2E + U_{ab}
\end{pmatrix}
\]

where \(U_{eq} = \langle f_{a}^{\alpha} | f_{a}^{\gamma} | f_{a}^{\alpha} \rangle \) and \(U_{ab} = \langle f_{a}^{\alpha} | f_{b}^{\beta} | f_{b}^{\gamma} \rangle \) and \(H_{ab} = \langle f_{a}^{\alpha} | H | f_{b}^{\beta} \rangle \). Here \(U_{eq} \) and \(U_{ab} \) equals the effective one and two center hole-hole repulsions and \(H_{ab} \) equals the effective covalent interaction. Clearly if \(H_{ab} < U_{eq} - U_{ab} \).
very little mixing occurs and the hole states \(f_a \) and \(f_b \) properly describe the localization of the two holes. In this instance the Auger lineshape is atomic-like and probes only the two-electron eigenstate \(f_A^2 \) (core hole site). If \(U_{ab} \gg U_{aa} \) and the mixing of the configurations is complete and the linear combinations \(f_a \pm f_b \) properly describe the localization of the holes. As such, the lineshape is molecularlike (bandlike for the solid) sampling the eigenstates \(1/2 \mp (f_a \pm f_b)^2 \), \(W_A \)
\((f_a + f_b)(f_a - f_b) \) and \(1/2 (f_a - f_b)^2 \), and giving relative Auger intensities 1/4, 1/2, and 1/4 respectively. If \(U_{ab} \approx U_{aa} \), intermediate mixing occurs giving both contributions.

As an illustration, Fig. 4 compares the bandwidth \(\Gamma_{tot} \) with \(U_{tot}^2 \) for the metals with electron configurations \(d^6 \) to \(d^{10} \). For all three rows of this series the \(\Gamma \) and \(U \) plots cross in the region \(d^2 \) to \(d^{10} \). The Auger lineshapes of these "transitional" metals are given in Fig. 5 and are compared with a fold of the DOS \(N(E) \) and in some instances the calculated atomic-like Auger lineshape (6). The lineshapes for Cu and Ag are clearly atomic-like. The lineshape for Au appears to be bandlike although shifted down in energy by 5 eV. The Hf and Pd lineshapes show atomic-like and bandlike contributions separated by 3 to 4 eV, but no multiplet structure is evident. These lineshapes illustrate the rather smooth transition from atomic to bandlike character.

In previous work, Dunlap et al. (47) generalized these concepts to multielement covalent systems by providing criteria for assessing the nature of localization onto atomic, band, group, or extended band orbitals (AO, BO, GO, EBO) such as those illustrated for LiNO\(_3\) in Fig. 6. These criteria for localization can be summarized as follows:

AO: \(V \leq \Delta U_{ab} \)

BO: \(V > \Delta U_{ab} \), \(V < \Delta U_{bb} \)

GO: \(\delta > \Delta U_{bb} \), \(\Gamma < \Delta U_{ab} \)

EBO: \(\Gamma > \Delta U_{ab} \)

Here \(V \) is the covalent interaction between nearest neighbor carbon AO’s and can be estimated from the bonding-antibonding orbital energy separation. \(\delta \) is the covalent interaction between nearest neighbor BO’s and can be estimated from the s and p atomic orbital energy separation. \(\Gamma \) is the covalent interaction between neighboring GO’s; for example, the GO’s are the planar arrangement of three N-O BO’s about a single N atom. \(U_{aa} \), \(U_{bb} \), and \(U_{ab} \) are the effective Coulomb interactions between holes-localized on a single AO, BO, or GO, respectively and are defined in Fig. 6.

Figure 7, utilizing a schematic one-electron DOS, illustrates the covalent parameters \(V, \delta \), and \(\Gamma \) and the application of eq. (8) with increasingly larger values of \(U \) (48). \(N(E) \) in Fig. 7(b) is representative of the Auger lineshape provided the s, s*, p, and p* bands are all filled and all localization effects are negligible, i.e., \(U = \Delta U_{ab} \approx 0 \). Figures (7c) - (7f) show clearly that distortion effects on each subband are reasonably independent of the other regions of the spectrum until \(U \) is sufficiently large to encompass these other regions. For \(U = 0.0 - 1.5 \) eV, no significant distortion effects occurs indicating the EBO’s best describe the final state.
holes. For $U = 1.5 - 2.5$ eV, the various $\epsilon^* \theta$ (i.e., $\epsilon^* \theta = \text{ss, sp, etc.}$) subbands are distorted into narrower resonance-like features indicative of localization onto single CO's. $U = 2.5 - 4$ eV causes mixing of bands with bonding-antibonding character and demonstrates localization onto hybrid spn atomic orbitals (AO's). If the antibonding bands are empty, as in most covalent systems, localization onto the atomic orbitals will not occur because the mixing in of empty orbitals means the final state holes are being screened by other electrons and hence the effective U is decreased.

IV. Application to the C KVV Lineshapes.

The carbon atom is basic to much of chemistry, so it is not surprising that the C KVV lineshape has been reported for a wide selection of gaseous molecules and solids. The utility of AES in the gas phase, with a reduced background and narrower Auger peaks compared to the solid phase, has been clearly demonstrated (49-51). Figure 8 illustrates the C KVV Auger lineshape for some gas phase molecules (6). The sensitivity of AES to local hybridization (sp3, sp2, sp) is clearly demonstrated by the CH$_4$, C$_2$H$_4$, and C$_2$H$_2$ lineshapes (49). The insensitivity to substituent effects is demonstrated by the CH$_4$, CH$_3$OH, and (CH$_3$)$_2$O (all sp3) lineshapes. The normal alkanes (50) show a broadened sp3 lineshape. The cyclic alkanes (51) show an apparent progression from the sp2 to the sp3 lineshape as the bond angle strain decreases. The principal peak energy in the alkanes is unchanged, in spite of the increasing size of the molecule. This suggests the final-state holes are not completely delocalized about the molecule in these systems (i.e., the final state holes are primarily localized in some group or bond orbital). Strong localization effects have also been observed in the infinitely long alkane, polyethylene (52).

The Auger lineshapes of some of the above molecules and even smaller gas phase molecules involving C have been quantitatively interpreted using semi-empirical or ab-initio theoretical techniques. These include CO (16, 53-56), CO$_2$ (16, 55), C$_3$O$_2$ (57), CH$_3$OH (58), Ni(CO)$_4$ (59), CH$_4$ (59-61), C$_2$H$_6$ (51, 62), C$_3$H$_8$ (51), C$_2$H$_4$ (63), and (C$_2$H$_5$)$_2$ (64). The ab-initio techniques may include correlation effects in the configuration interaction or Green's function approaches, and reveal that even in some of these small molecules, correlation effects are clearly significant.

The Auger spectra of the various forms of C in the solid phase are also well known as shown in Fig. 9 (18, 65, 66). These spectra in the $N^*(E)$ mode are often used as "finger prints" to identify the chemical nature of impurity C atoms which are present in nearly all UHV systems (18). Many surface chemists can recognize the $N^*(E)$ "graphitic" or "carbidic" Auger lineshapes as given in Fig. 9 on right. In spite of this familiarity, the actual Auger lineshapes, A-$\phi(E)$, for the C systems have not been well characterized, and even fewer attempts at quantitative interpretation have been reported. It has only been within the last few years that a few research groups have set out to really understand these C lineshapes at a fundamental level, and this work is still in progress (23).

The most thoroughly studied C Auger lineshape is that for
graphite. The first attempt at obtaining a quantitative $A_E(E)$ lineshape was reported by Smith and Levenson who used the procedure summarized by Fig. 2 (67). They concluded that the Auger spectrum was well characterized by a simple fold of the total DOS. An attempt at quantitatively interpreting the $A_E(E)$ lineshape was reported recently by Murday et al. (31). They deduced the s, p_{π}, and p_{σ} DOS from XES and XPS data as described in Sec. III, assuming the electronic configuration sp^3 for C atom. They determined the Auger lineshape from eq. (3), but assumed no hole localization effects and ignored the R_{π} factors. They also obtained good agreement with the $A_E(E)$ lineshape of Smith and Levenson, however an error in the self-fold of the p DOS makes this study inconclusive.

More recently Rye et al. (23) reported that the $A_E(E)$ lineshape of Smith and Levenson is incorrect for the very reasons discussed in Sec. III, namely the low energy wing of the Smith and Levenson lineshape has a large negative slope which has the effect of removing two much intensity from the actual Auger lineshape. The lineshape obtained by correctly forcing the low energy wing to be flat and zero is shown in Fig. 18a and is compared with the theoretical lineshape obtained from eq. (3) and $U = 0$. Now not even all the features are correctly reproduced by the theory.

Fig. 18b shows the much better agreement Rye et al. (23) obtained by introducing values of $U_{\pi\sigma} = 5$ eV, $U_{\sigma\pi} = 1.5$ eV and $U_{\pi\pi} = 8$ eV. These U values were found to give the best fit to the experimental lineshape and reflect the magnitude of the hole-hole repulsion in the group orbitals (i.e. the GO's consisting of 3σ or π C-C 8O's in a plane). The negligible result for $U_{\pi\pi}$ reflects the zero band gap of graphite, a semimetal, although the DOS is zero at the Fermi level. The zero band gap allows for effective screening of the Auger holes by the other π band electrons so that the holes can delocalize. What is perhaps more surprising is that the $U_{\pi\pi}$ was not reduced to zero by similar π band screening. Apparently π electrons are relatively ineffective screeners of the π holes (23, 48).

The above results suggest that detailed lineshape interpretations of benzene and diamond would be interesting. This work is in progress so only preliminary results can be mentioned here (29). The effects of electron screening on the U values should be considerably smaller for benzene and preliminary results suggest this is the case. In diamond all valence electrons exist in the sp^3 band; i.e. no π electrons exist. The sp^3 vs sp^2 local hybridization is clearly revealed in the lineshape of gas phase molecules as discussed above in regard to Fig. 8 (49-51). However, the much broader valence bands in the solid tend to smooth out this structure so that a comparison of the fold of the total DOS for graphite and diamond is remarkably similar (29). This suggests that the well known differences in $N'(E)$ for graphite and diamond as shown in Fig. 9 arise primarily from different correlation effects in the σ vs the π bands, and not from differences in the one-electron DOS.

Although the difference between $N'(E)$ for Mo_2C and SiC most certainly arises from differences in the one-electron DOS (68, 69), the more subtle differences in the transition metal carbides
(70) may arise primarily from correlation effects. Fig. 11 contains data of Smith and Levenson (71) comparing the C KVV spectra (dN/dE) for TiC, VC and Cr$_3$C$_2$. The most significant change in these spectra is the growth of a peak around 275 eV as one proceeds up the transition metal series (i.e. carbides with decreasing ionic character). The change in N'(E) in turn produces an increasing shoulder in the A$_{\infty}$(E) lineshape. A comparison of the one-electron DOS for the carbides as calculated by Heckel et al. (69) shows a slight increase in the C 2p DOS near the Fermi level and a large increase in the metal 3d DOS. The slight increase in the C 2p DOS could possibly be directly contributing to the growth of the 275 eV peak in N'(E). However, the increasing number of 3d electrons could also allow for more screening of the two valence holes in the C GO's reducing the effective U, and hence creating a larger delocalized component in the Auger lineshape. Further quantitative study on these lineshapes is required to clarify these effects; this work is in progress (72).

In the oxides, the O CVV lineshape is highly localized, with just a small delocalized component appearing near the top of the lineshape (46, 6) as illustrated in Fig. 12 for Mo$_2$O$_5$ (73). In MoC and MoN this shoulder is even larger. The increase in the high energy shoulder correlates with decreasing ionicity in the Mo-anion bond. The increase in ionicity polarizes the bond-orbitals toward the anion and this increases the hole hole repulsion, U$_{22}$, and decreases the covalent interaction, U (see Fig. 6). Within the Cini-Savatsky criterion, this causes increased localization and hence a decreased high energy shoulder (delocalized component). Thus change in the high energy shoulder can be seen either by changing anion or changing cation, and in both cases the shoulder decreases with increasing ionicity in the bond.

A correlation can also be made between ionic bonding character and the nature of the localization. As the bond orbitals polarize both U$_{ab}$ and U$_{jj}$ increase, Y and U decrease. The increase of U$_{ab}$ relative to Y raises the extent of BO localization (see Eq. 11). Thus increasing ionicity also changes the character or extent of localization from GO to BO. This is best summarized in Table 1, which surveys the oxygen and carbon compounds in which the Auger lineshapes have been studied and characterized. Lineshapes to the left of the Table can best be described as having BO localized character, those to the right have GO localized character.

V. Conclusions

The above discussions are generally qualitative in nature, because very few Auger lineshapes for the extended covalently bonded compounds have been quantitatively interpreted in the context of localization. As mentioned above, a quantitative study of Auger lineshapes for benzene, diamond, the carbides, and other carbon compounds are currently in progress by several research groups (23, 28, 72). These studies should greatly assist current ongoing studies of more complex and applied carbon systems. Recent reports on such systems include studies of the C KVV lineshapes in K and Ca intercalated graphite (31, 74), activated carbon on metal surfaces (75-78), "diamond like" carbon (DLC)
films (79), metal ion implants in carbon polymeric substances (80), sputtered stainless steel-carbon composite layers (81), SiC single crystals and at metal interfaces fabricated for electronics use (82-84), C implanted in metals for hardening purposes (85), petroleum shales (86), organic impurities in Ar/Pd relays (10), and nitroaromatic explosives (87), to name just some of them. The uniqueness and convenience of AES to study these complex systems has been pointed out in Sec. I. A need for a clearer and more straight-forward understanding of the Auger lineshape still exists, however much progress in this regard has been made to date, and much progress is expected in the near future.

REFERENCES

20. J. C. Riviere, to be published.

29. F. J. Hutson and D. E. Ramaker, to be published.

103. P. Pehrsson and D. S. Ramaker, to be published.
113. R. Kaplan, to be published.
115. W. V. Sellars, N. Saik, W. Stanchina, I. Chaudry, and J. Bellina, these proceedings.
117. J. A. King and S. C. Subba Rao, these proceedings.
TABLE I. Correlation Of Observed Character With Ionicity.

<table>
<thead>
<tr>
<th>Increasing Ionicity</th>
<th>Bond Orbital Localisation</th>
<th>Group Orbital Localisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>s^2</td>
<td>s^2 p</td>
<td>s^2 p^2</td>
</tr>
<tr>
<td>s^2 p</td>
<td>s^2 p^3</td>
<td>s^2 p^4</td>
</tr>
<tr>
<td>s^2 p^2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s^2 p^3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s^2 p^4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkanes</td>
<td>MO_3<sup>c</sup></td>
<td></td>
</tr>
<tr>
<td>Aromatics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graphites</td>
<td>SiO_2<sup>b</sup></td>
<td>PO_4^2⁻<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SO_4^2⁻</td>
</tr>
<tr>
<td></td>
<td>SiI_4</td>
<td></td>
</tr>
</tbody>
</table>

^a Ref. 26
^b Refs. 27 & 29
^c Refs. 50, 51
^d Ref. 48
^e Ref. 47
^f Ref. 46
^g Ref. 48
^h Ref. 47

FIGURE CAPTIONS

Figure 1. a) The S L_{2,3}VV Auger spectrum from Li_2SO_4 powder pressed onto an In substrate (22). The integrated signal N(E) is shown where the zero of the derivative signal shown in Fig. 2a was taken at 108 eV. The background contribution to the observed signal is indicated by the dotted line. b) The Auger lineshape A(E) obtained from N(E) - ES (E), and the elastic peak and loss features L(E) observed from a 140 eV primary beam incident on a sample of Li_2SO_4. The latter data were taken with a CHA in the normal mode and are not corrected for the analyzer transmission distortions. c) The "true" Auger signal A_ε(E) obtained after deconvoluting out electron-loss contributions and correcting for sample and spectrometer transmission. The solid line indicates results obtained when (1-ε) was set equal to 1.0; the dotted line when (1-ε) was set equal to 0.6 for both b) and c).

Figure 2. a) The L_{2,3}VV Auger derivative spectrum of S from a Li_2SO_4 powder imbedded in In as measured by a double-pass CHA operating in a normal mode with a 3 eV modulation voltage (22). Two baseline estimates, determined from a non-linear least-squares fitting procedure, are indicated. b) The integrated signal A_E and A_B obtained after removal of the baselines B_E and B_B, respectively. c) The Auger lineshape A_ε(E) as deduced from the data when the electron-loss features are deconvolved from A_E and A_B. The failure to achieve a flat, zero low-energy wing is caused by the way in which the background was removed.

Figure 3. Comparison of the EEL theoretical and experimental atomic Auger matrix elements A_{ε,ff} for atoms in the first two
rows of the periodic table. (16). N is the nuclear charge, A_\text{C_{\text{PP}}} is the matrix element per filled shell as indicated by eq. (3). A_\text{C_{\text{PP}}} has been normalized for each atom such that A_\text{C_{\text{PP}}} is 100. The theoretical data of McGuire (35) have been scaled by factors f_\text{SS} = 0.65 and f_\text{SP} = 0.81, and that of Walters and Shalla (36) by factors f_\text{SS} = 0.59 and f_\text{SP} = 0.78 to correspond to the experimental data for He (N = 1). The data from Chen and Cramman (39) are unsealed. Results of a one-electron hole calculation for He are indicated by the solid squares (40). The brackets indicate estimated uncertainties, and the arrows indefinite estimated uncertainties in experimental data.

Figure 4. Comparison of \(\Gamma_{\text{SS}} \) with \(\Gamma_{\text{SS}}^{\text{metal}} \) for the metals with electron configuration \(d^6 \) to \(d^{10} \) and \(\text{p}^6 \) (6). The solid line is the theoretical trend for Cu and Ag that indicates results from an atomic calculation. \(\Gamma_{\text{SS}} \) is the core binding energy, \(\Gamma_{\text{SS}} \) is the Auger electron energy.

Figure 5. Illustration of the group, bond, and atomic orbitals (GO, BO, and AO) for LiNO_3. The 'effective' hole-hole repulsions, \(U_{\text{SS}} \), \(U_{\text{SP}} \), and \(U_{\text{PP}} \), and the corresponding interaction parameters \(V \), \(\gamma \), or \(\delta \) for NO_3^- are illustrated.

Figure 6. a) Schematic one electron DOS, \(\text{W}(E) \), and an illustration of \(\Gamma \), \(\gamma \), and \(V \) as defined in the text (48). Here \(\Gamma = 2 \) eV, \(\gamma = 5 \) eV, and \(V = 10 \) eV. b) Self-fold of the one-electron DOS, \(\text{W}(E)^* \text{W}(E) \) (dashed line), and the Hilbert transform \(I(E) \) (solid line). c) Comparison of \(\text{W}(E)^* \text{W}(E) \) (dashed line) with \(\text{W}(E) \) (solid line) obtained from Eq. (8) with \(U = 1 \) eV. d) \(\text{W}(E) \) with \(U = 2, 3, \) and 10 eV, respectively.

Figure 7. The C KVV Auger lineshapes taken in the gas phase for various carbon molecules illustrating the sensitivity to sp^3 hybridization (49-51).

Figure 8. The C KVV Auger spectrum, \(\text{dW}(E)/\text{dE} \), for various carbon substances in the solid phase (65, 66).

Figure 9. a) Comparison of the experimental C KVV Auger lineshape \(\Gamma_{\text{SS}} \) for graphite with the theoretical lineshape computed from Eq. (3) and \(U = 0 \) and \(R_{\text{ss}} = 1 \). b) Same as above but with \(U_{\text{xx}} = 5 \) eV, \(U_{\text{xy}} = 1.5 \) eV, and \(U_{\text{yy}} = 0 \) (23). The individual \(\text{X}_{\text{SS}} \) (i.e. the \(\text{ss}, \text{sp}_{\uparrow}, \text{ps}_{\uparrow}, \text{ps}_{\downarrow}, \text{ps}_{\downarrow}, \text{ps}_{\downarrow}, \) and \(\text{ps}_{\downarrow} \) components are indicated by the long-short dashed lines.

Figure 10. Comparison of the Auger spectra, \(\text{dW}(E)/\text{dE} \), for TiC, VC, and Cr_2C_2 observed by Smith and Levenson (71).

Figure 11. a) Comparison of the Nb KVV Auger spectra, \(\text{dW}(E)/\text{dE} \), for NbC, NbN, and Nb_3O_5 as obtained by Singer and Murray (73). b) Comparison of the anion KVV Auger spectra, \(\text{dW}(E)/\text{dE} \), for the same solids. Both the Nb and anion lineshapes reveal significant changes with ionicity.
TECHNICAL REPORT DISTRIBUTION LIST, GEN

<table>
<thead>
<tr>
<th>No.</th>
<th>Copies</th>
<th>No.</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Office of Naval Research
Attn: Code 413
800 N. Quincy Street
Arlington, Virginia 22217

Dr. Bernard Davda
Naval Weapons Support Center
Code 5042
Crawf, Indiana 47522

Commander, Naval Air Systems
Command
Attn: Code 310C (H. Rosenmesser)
Washington, D.C. 20360

Naval Civil Engineering Laboratory
Attn: Dr. R. M. Drisko
Port Hueneme, California 93041

Defense Technical Information Center
Building 6, Cameron Station
Alexandria, Virginia 22314

DTS/BD/C
Attn: Dr. G. Rosmajian
Applied Chemistry Division
Annapolis, Maryland 21401

Dr. William Tolles
Superintendent
Chemistry Division, Code 6100
Naval Research Laboratory
Washington, D.C. 20375

Dr. David Young
Code 334
NORDA
NSTL, Mississippi 39529

Naval Weapons Center
Attn: Dr. A. B. Amster
Chemistry Division
China Lake, California 93555

Scientific Advisor
Commandant of the Marine Corps
Code MB-1
Washington, D.C. 20380

U.S. Army Research Office
Attn: CNO-IA-1P
P.O. Box 12211
Research Triangle Park, NC 27709

Mr. John Boyle
Materials Branch
Naval Ship Engineering Center
Philadelphia, Pennsylvania 19112

Naval Ocean Systems Center
Attn: Dr. S. Yamamoto
Marine Sciences Division
San Diego, California 92122

Dr. G. A. Somorjai
Department of Chemistry
University of California
Berkeley, California 94720

Dr. J. Hurley
Naval Research Laboratory
Surface Chemistry Division (6170)
455 Overlook Avenue, S.W.
Washington, D.C. 20375

Dr. J. R. Hudson
Materials Division
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Theodore E. Meduy
Surface Chemistry Section
Department of Commerce
National Bureau of Standards
Washington, D.C. 20234

Dr. J. E. Demuth
IBM Corporation
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. M. G. Legally
Department of Metallurgical and Mining Engineering
University of Wisconsin
Madison, Wisconsin 53706

Dr. R. P. Van Duyne
Chemistry Department
Northwestern University
Evanston, Illinois 60201

Dr. J. M. White
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. R. E. Harrison
Department of Physics
Naval Postgraduate School
Monterey, California 93940

Dr. W. Kohn
Department of Physics
University of California, San Diego
La Jolla, California 92037

Dr. R. L. Park
Director, Center of Materials Research
University of Maryland
College Park, Maryland 20742

Dr. W. T. Peria
Electrical Engineering Department
University of Minnesota
Minneapolis, Minnesota 55455

Dr. Keith K. Johnson
Department of Metallurgy and Materials Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. S. Stibner
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Arno Green
Quantum Surface Dynamics Branch
Code 3107
Naval Weapons Center
China Lake, California 93555

Dr. A. Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02912

Dr. S. L. Bernasek
Department of Chemistry
Princeton University
Princeton, New Jersey 08544

Dr. P. Lund
Department of Chemistry
Howard University
Washington, D.C. 20059