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Abstract

A computational model is presented for the visual recognition of three-dimensional

objects based upon their spatial correspondence with two-dimensional features in an
image. A number of components of this model are developed in further detail and
implemented as computer algorithms. At the highest level, a verification process
has been developed which can determine exact values of viewpoint and object pa-
rameters from hypothesized matches between three-diinensional object features and
two-dimensional image features. This provides a reliable quantitative procedure for
evaluating the correctness of an interpretation, even in the presence of noise or occlu-
sion. Given a reliable method for final evaluation of correspondence, the remaining
components of the system are aimed at reducing the sizc of the search space which
must be covered. Unlike many previous approaches, this recognition process does
not assume that it is possible to directly derive depth information from the image.
Instead, the primary descriptive component is a process of perceptual organiza-
tion, in which spatial relations are detected directly aniong two-dimensional image
features. A basic requirement of the recognition process is that perceptual organi-
zation should accurately distinguish mcaningful groupings from thosc which arise
by accident of viewpoint or position., This requirement is uscd to derive a number
of further constraints which must b \é;}tis[icd by algorithms for perceptual group-
ing. A specific algorithm is presented ‘for the problem of segmenting curves into
natural descriptions. Mcthods arc also presented for using the viewpoint-invariance
properties of the perceptual groupings to infer three-dimensional relations directly
fromn the image. The search process itself is described, both for covering the range
of possible viewpoints and the range of possible objects. A method is presented
for using cvidential reasoning to combine information from multiple sources to de-
termine the most cfficient ordering for the scarch. This use of evidential reasoning
allows a system to automatically inprove its perforinance as it gains visual experi-
ence. In summary, spatial organization and recognition are shown to be a practical
basis for current systems and to provide a promising path for further development

of improved visual capabilities.
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Chapter 1

INTRODUCTION

A §

The field of computer vision covers a wide range of topics that are often only
loosely related to the capabilities and function of human vision. Computer vi-

sion systems may use exotic sensors such as laser rangefinders or make restrictive

e e s G
"-'-"'1I‘.‘ -

assumptions regarding the scene that have no counterpart in human vision. How-

ever, this thesis will deal mostly with the interpretation of single black-and-white

>

u,'_ym- Cant SRR
i e £

images—in particular with edge descriptions extracted from them—and will not
generally make usc of restrictive assumptions regarding the scene. This portion
of the computer vision problem scems to be onc of the most central to the func-

tioning of the human visual system, and much of the content of this thesis will

Ty

) ].TV' ot

be motivated by what is known of human vision.
Our major goal will be to achieve visual recognition. Recognition implies

that a correspondence has been found between clements of the image and a prior

.‘-

representation of objects in the world. The importance of this prior world knowl-

t edge for solving the problem of vision can hardly be overstated. The objects and

[: ) scenes that we sce in our daily lives, although large in number and variation,

E‘ constitute only a tiny fraction of the set of theoretically possible visual images. 1
E Without the constraining influence of these prior expectations, many visual prob- ‘
¢ Jems would be underconstrained to the extent that they could never be solved. :
} Recognition enables us to go beyond the data that is in the image, since we can
5 1 :
_g '
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2 CHAPTER 1: INTRODUCTION

achieve reliable identification from a small subset of the predicted correspon-
dences and then use our knowledge to infer many properties of the scene that
may not be directly supported by visual data. This emphasis on world knowl-
edge parallels developments in most other areas of artificial intelligence, in which
large amounts of problem-specific knowledge are increasingly being used both to
constrain solutions and to specd the process of reaching them. However, this
view is not universally accepted within the computer vision community, so we
will return to this topic many times in the following pages with demonstrations
of the value and necessity of achieving correspondence with world knowledge at
the earliest possible level of processing.

Recognition can be achieved through correspondences between many kinds
of predicted and measured properties, including shape, color, texture, connectiv-
ity, context, motion, or shading. However, most of the content of this thesis will
be focused upon only a single one of these dimensions—the problem of achieving
spatial correspondence. By spatial correspondence we mean that the measured
locations of features in the image are in accurate agreement with the predicted
locat:~ns of features for a particular projection of some known object. The fea-
tures that we will be emphasizing are ones that can be accurately located in
the image, such as edge or point discontinuities in intensity. This thesis will
present mcthods that operate in this spatial domain all the way from purely
bottom-up descriptive processes to final verification of correspondence with a
particular object. Why will there be such an emphasis on this single aspect of
correspondence? A major reason is that this locational information usually seems
to be the strongest source of data in terms of the number of measurcments that
can be made in a typical image and the accuracy of cach measurement in the
prescnce of noise. Furthermore, solving the problem of spatial correspondence
is often prerequisite to examining correspondence along the other dimensions.
Region-based properties such as color, texture or shading arc most casily applied

only after spatial correspondences have determined the appropriate regions to
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1.0 Introduction 3

consider. However, we will not ignore these other dimensions entirely, and in
Chapter 6 methods will be presented for using all dimensions of correspondence

at an early stage of processing.

1.0.1: The effect of viewpoint on spatial correspondence

There is a major problem in achieving spatial correspondence between a two-
dimensional image and prior knowledge of three-dimensional objects: the spatial
expectations for the image arc highly dependent upon viewpoint. Each viewpoint
of a three-dimensional object generally leads to a different spatial projection of
features in the image. This has caused many vision researchers to emphaéize the
need for depth information or else to discard the spatial information by using
region-based properties or patterns of connectivity rather than predicted metric
locations. A major topic of this thesis will be to develop quantitative mecthods for
making use of spatial information in the two-dimensional iriage. An important
component of this is a method to determine whether a set of correspondences
are spatially consistent with the projection of an object from a single viewpoint.
Chapter 7 presents a method that determines exact viewpoint and values of
variable model paramecters from a few hypothesized correspondences between
model and image. This forms the basis for judging spatial consistency with the
model and for enlarging the set of correspondences by making cxact locational
predictions for further features. The determination of spatial correspondence
also makes it easy to determine correspondence between region-based properties.
Since the final sct of correspondences will typically be greatly overdetermined for
most objects, it is possible to make reliable judgements regarding the corrcctness
of an intcrpretation even in the presence of missing features or occlusion.

Given that we have a method for reliably determining the correctness of an
interpretation, the remaining aspects of recognition essentially reduce to a prob-

lem of scarch. Chapter 6 presents micthods for actually enumerating this search
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4 CHAPTER 1: INTRODUCTION

space and for combining sources of initial evidence to achieve an efficient ordering
for the search. However, as in many problems within artificial intelligence, the
sise of the search space can quickly become too large for practical enumeration.
It is here that the various bottom-up methods for image description can play a
vital role. In general, the extent to which a certain type of image description will
reduce the size of the search will depend upon the degree to which it is invariant
across changes in imaging conditions, such as lighting, viewpoint, or the addition
of noise. However, we will argue that one of the most extensively researched
aspects of invariant image description—the derivation of depth information—is
not the most promising candidate for reducing the sise of this search space, both
because it is often not available and because it is of only limited effectiveness in
reducing the amount of search. Instead of relying upon depth information, we
will propose a central role for the process of perceptual organisation, in which

groupings are formed directly from the spatial structure of the image.

1.0.2: Perceptual organization

Perceptual organization refers to a basic capability of the human visual system to
derive relevant groupings and structures from an image without prior knowledge
of its contents. Other names which have been given to this and related topics
include figure-ground phenomena, image scgmentation, Gestalt perception, and
texturc description. The human visual system has a highly developed capability
for detecting many classes of patterns and statistically significant arrangements

of image clements. For example, people can immcdiately detect symmetry, clus-

tering, collinearity, parallclism, connectivity, and repetitive textures when shown

an othcrwise randomly distributed set of image elements. Almost all current
compulter vision systems lack these perceptual capabilities. A major rcason why
perccptual organisation has not been a focus of computer vision research is prob-

ably because these groupings often do not lead immediately to a single physical

‘‘‘‘‘‘‘‘
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1.0 Introduction N -

interpretation. However, as a component of a search-based approach towards
recognition, this is not a problem in making effective use of the organization—
the structures can lead to a dramatic decrease in the search space in spite of

some remaining discrete instances of ambiguity. The first few chapters of this

thesis will be mostly devoted to the problem of providing an underlying theory
for the function and goals of perceptual organization. These results will then be

used to derive a number of constraints which all perceptual grouping operations

must satisfy in order to be functionally adequate.

Although not historically a focus of the computer vision community, per-
ceptual organization has played a much more central role in the psychological
study of human vision. The Gestalt psychologists devised many experiments in
the 1920’s and 30’s that tested the way human subjects subjectively grouped g

simple line and dot patterns, and there has also been more recent work in mea-

suring many related aspects of human vision. Unfortunately, the psychological
explanations given for these phenomena have been primarily descriptive rather
than functional, and therefore do not give an adequate theory for the role which

perceptual organization plays in the overall functioning of the visual system.

By examining perceptual organization within a recognition-based comnputational

framework, we hope not only to improve the capabilities of computer vision sys- ’

tems but also to provide uscful.expla.nations for the presence and function of

many of these psychological phenomena. .
'L. 1.0.3: Relationship to psychology ;
oot .
E;' Since there is sometimes an uneasy relationship between research in computer .
; vision and the study of human vision, it is important to be clear about the form ]
F. that the discussion of psychological results will take in the following chapters.

Some rescarchers within the computer vision community consider the develop-

ment of machine vision to be quite separate from research into the functioning
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6 CHAPTER 1: INTRODUCTION

of human vision. After all, why should we be constrained by the biological so-

lution to a problem? However, this view ignores the fact that biological vision
is currently the only indication we have that the general vision problem is even
open to solution. Without this proof of feasibility, it is hard to imagine that
anyone would even think of attempting to interpret the array of light intensities
projected from a scene onto a two-dimensional screen. Biological vision is cur-
rently our major source of evidence as to which sources of information can or
must be used to solve the various components of.‘the vision problem and how
these sources can be combined. It is at this level that most of the psychological
evidence will be used in the following pages.

The skepticism can also flow in the reverse direction. Psychologists may
wonder how computer scientisfs with largely pragmatic aims can have anything
useful to say about specific biological systems. This is probably best coun-
tered by repeating David Marr’s description of the different levels of compu-
tational explanition in vision [Marr, 1977; Marr, 1982]. At the lowest level of
explanation is a description of the hardware implementation, and at this level
it would indeed be inappropriate to claim results without specific physiologi-
cal evidence. At an intermediate level is a description of the representations
and algorithms which arc used, and at this level psychophysical evidence can
often be used. At the highest level of explanation we will have a computa-
tional theory which provides a specification of what is computed rather than
how it is computed. Psychophysical evidence can also be useful at this level
by indicating which sources of information are being used to reach a conclu-
sion. Just as there can be many possible hardware implementations for a single
algorithm, there can be many algorithms for a single computational specifica-
tion of a problem. However, thesc higher levels of explanation provide strong
constraints and theorctical building-blocks for examining specific implementa-
tions at the lower levels. We will be assuming in the following discussions that

both computer and biological vision systems will share solutions at the higher
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1.1 Two viewpoints on the computer vision problem 7

levels of computational specification due to the fact that they face a common
problem, and we will focus on functional specification rather than similarities of

implementation.

1.1: Two viewpoints on the computer vision problem

The approach that we will be taking differs in some important ways from the
dominant tradition of research in computer vision. The analysis of any problem
must be carried out within some framework or paradigm that selects the back-
ground assumptions and problem definitions on which the work will be built.
The following sections will describe two somewhat different conceptions of the
problems to be solved in computer vision. The first viewpoint assumes that
the primary function of different components of the visual system is to produce
disambiguated intermediate levels of representation that represent physical prop-
erties of the scene, and that these are in turn further disambiguated by processes
leading to higher level representations. This conception differs in some funda-
mental respects from the recognition-based approach taken in this thesis, which
uses intermediate descriptions to assist general search procedures in achieving
spatial correspondence with prior expectations. While there is clearly a role
for both types of process, thcre. is much room for debate regarding the relative

importance of these processes in typical visual situations.

1.1.1: Production of disambiguated representations

It is common for rescarchers in computer vision to point out that any local mea-
surement in the image is the convolution of many different properties of _the
scene, such as lighting, reflectance, viewpoint, and surface shape. A major focus
of computer vision research has been to develop processes that can recover some
of these intrinsic physical properties of the scene dircctly from its images. One

of the most successful and intensively studied aspccts of this project has been
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8 CHAPTER 1: INTRODUCTION

the development of methods for recovering depth information. The diagram in
Figure 1-1 illustrates a popular model for the visual system, in which multiple

processes operate on the image to produce depth information. The results from

the different processes are combined into a common representation known as the
2 1/2-D sketch [Marr, 1982]. This model can be elaborated by the addition of
surface-interpolation processes and transformtions from the depth representa-

tion to object-centered coordinates. Since this intermediate representation has

.y L g

» L.

-"'T'V“""'
s 2 lata T T

removed many forms of ambiguity from the original image, it is presumed that
the recognition process operating on this representation would be much simpler

than one which had only the original image data available. Since the initial pro-

TT"' b
-l

cesses are bottom-up and lead to a useful, well-defined intermediate result, work

-

has proceeded on them independently from any need to solve the recognition
problem. There is also some psychological evidence to support this separation
of components: experiments with random-dot stereograms or motion correspon-

dence show that human vision can recover depth in the absence of any outside

——— L
e, R )

sources of evidence, albeit with some loss of speed and accuracy.
There can be no question that the processes for depth-recovery are a part

of the human visual system and that they can be vital for certain tasks. llow-

" rr—r—m;' " w—
e : B
P W

ever, it docs not follow that these are a necessary component of recognition or

that they play a central role in the common visual tasks of daily life. We will

Ml

argue in particular that depth information is not necessary for recognition, that
it is quite often unavailable, and that it is of only limited use for recognition
when it is available. The fact that depth informmation is unnccessary for recogni-
? tion will be illustrated in the following chapters by some simple psychophysical
experiments and by devcloping methods for ackieving recognition directly from
two-dimensional image data. It would also follow from the conclusion that depth

- information is often unavailable to the human visual system. There are in fact

st

strict limitations on the applicability of the various proposed processcs for recov-

ering depth information. Stereo is useful only when the object is close enough to
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1.1 Two viewpoints on the computer vision problem 0
, image

'2' Features

Shape from texture
Shape from X

§
HEE
§

2172-D Sketch
intringic images
Recognition
Object modeis
-
. q
- Figure 1-1: A commonly-adopted model for visual recognition assumes that multiple i
(] processes operate to derive depth information and other intrinsic physical characteristics .
F' from features of the immage. These resuits are combined in intermediate representations -
, such as the 2 1/2-D sketch or intrinsic images. The recognition process then operates .
f:: upon these disambiguated intcrmediate representations. .
! ) cause sufficient disparity and is within the restricted boundaries defined by the ;
9 fusional area of the visual field. Motion requires an elapscd time interval depend- !
L_" ing upon the relative velocity of the motion, which means that only in the fastest |
. cases of mnotion will it be of usc for immediate recognition. For stationary objects, :
:, we must rely on motion by the observer, which at typical rates of human motion
3
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10 CHAPTER 1: INTRODUCTION

is again only of use for nearby objects. The processes for recovering depth from
shading and texture gradients make even more specialized assumptions. They
seem to apply only to regions that have approximately uniformn reflectance or
texture, and even then return what can best be described as qualitative con-
straints on shape rather than quantitative depth information. The function of
the 2 1/2-D sketch is to combine these various sources of information so that one
source can make up for missing information from the others. However, there are
many common situations in which even the combination of these sources would
seem unable to provide much quantitative depth information. These situations
include objects that are distant, objects that are quickly identified in periph-
eral vision, two-dimensional pictures of objects, and line drawings. Significantly,
there seems to be little degradation in the speed or accuracy of recognition in
these situations by human vision.

But in those situations in which depth information is available, isn’t it ex-

tremely useful? This is clearly true in some situations, such as when encoun-

tering a completely unfamiliar object or when performing motor or navigation

tasks that require precise three-dimensional information. However, the value
is much less obvious for the common visual task of recognition (from which
we can also derive approximate location in depth). Given that we are basing
recognition upon spatial correspondence, it would seem reasonablc to consider
correspondence in three dimensions rather than just basing it on the locations
of two-dimensional image features. However, even when depth measurements
are available from stereo or motion correspondence, their accuracy and density
are usually lower than those for the locations of features in the image. There-
fore, from an information-theoretic point of view, the depth information usually
provides fewer bits of information than the measurcments in the other two di-
mensions. So, for the task of verifying correspondence with prior knowledge, the
addition of depth information can not be expected to provide a major increment

to our reliability of verification (of course, as with any source of new information
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regarding the image, there will be some problems for which it is needed to make
a crucial discrimination). There may be ways to use depth information to greatly
speed the search for correspondence with prior knowledge, but there is currently
no strong evidence for this conclusion. Even complete, accurate depth informa-
tion, such as that produced by a laser rangefinder, has not been shown to greatly
ease recognition. The successful use of two-dimensional perceptual organisation

may be capable of exploiting most of the useful information.

1.1.2: Searching for spatial correspondence

Figure 1-2 presents a model for visual recognition which contains pathways other
than those leading through depth and surface representations. Perceptual group-
ings can be formed directly from the two dimensional image features and can be
used as input to a search-based recognition process. The verification of interpre-
tations can also bypass the need for a depth representation by directly checking
the consistency of spatial correspondence between three-dimensional knowledge
and the two-dimensional locations of image features. Of course, the capability
for forming depth representations is retained when available, but it is no longer
the only pathway to recognition. Perceptual groupings can also be formed in
three-dimensions from the depth rcpresentation, and there is a process of 3-D
inference which can infer constraints on depth directly from the two-dimensional
perceptual groupings. |

In this thesis we will undertake the ambitious task of developing all of these
additional capabilities, including perceptual organization, scarch-based recogni-
tion, spatial verification, and 3-D inference from perccptual groupings. Fortu-
pately, there has alrcady been important previous work in some of these areas,
particularly scarch-based recognition. While these problems have certainly not
been completely solved, enough progress has been made on each of the topics to
convincingly demonstrate their performance and the practicality of the overall

system.
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CHAPTER 1: INTRODUCTION

Image
Features
Perceptual
organization
Perceptual
L Groupings
. .
21/2-0 Sketch 3-D Inference
3-D Groupings
Recognition

Verification

Figure 1-2: When depth information is unavailable, recognition must be achieved
through alternate pathways. In this model, a process of perccptual organisation results
in the formation of perceptual groupings, which in turn can be used directly for recog-
nition. The verification procedure can also operate directly between three-dimensional
knowledge and the two-dimensional image. In addition, there is a process of 3-D infer-
ence which can infer constraints on depth dircctly from the two-dimensional perceptual
groupings. This thesis will cover all four of the processes named in this figure.

There are more differences between this search-based viewpoint and the one
outlined in the previous section than just the addition of some new processes
and the capability for bypassing depth rcpresentations. There is a very dif-

ferent conception of the role of intecrmediate reprcsentations. The contrast is

P
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raised until the age of 19 months with very few opportunities to see any types of pictures
and without ever having the contents of a picture named in his presence. Yet, the child
had no difficulty in naming the contents of the first line drawings he saw, which are
shown above. This experiment seems to clearly demonstrate that the recognition of
line drawings does not require any special form of learning and that it follows naturally
from the ability to recognizc three-dimensional objects.

Figure 1-3: [Hochberg & Brooks, 1962] describe an experiment in which a child was 3
P
<

clear if we compare it, for cxample, with Marr’s principle of lcast commitment
[Marr, 1982, p. 106). This principle explicitly states that a hypothesize-and-
test strategy should be avoided and that a conclusion should be added to a

representation only after it has reached a high level of certainty. While this
principle could simplify the construction of completely disambiguated interme- !
diate representations, it ignores any cvidence which is inherently probabilistic i
or ambiguous. As mentioned earlicr, perceptual groupings often have several :
possible physical. interpretations and are probabilistic in nature. Thercfore,
they only fit comfortably into a model which allows for search among a num-
ber of possible interpretations and has some rcliable method for final verifica-

tion.
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14 CHAPTER 1: INTRODUCTION

There is a common unfounded belief which can lead people to prefer the idea
of complete depth and surface representations over the use of sparser spatial in-
formation. The examples we will be using will be very similar to the problem ' .
of interpreting line-drawings since they place primary emphasis on the position
of line or point discontinuities in intensity. However, many people consider the -
problem of interpreting line-drawings to be artificial, and they may have heard
anecdotal stories suggesting that people from primitive cultures are unable to rec-
ognize such drawings. However, this belief is just not supported by the evidence.
A seemingly definitive experiment on this question is described in [Hochberg &
Brooks, 1962]. In this experiment, a human baby was raised until the age of
19 months under the constant supervision of his parents who avoided exposing
the child to line-drawings or two-dimensional pictures of any kind. Although the
baby accidentally had opportunities to glance at some pictures on a few occa-
sions, at no point was the content of a picture ever named to him or was other
attention drawn to it. All of the baby’s playthings were chosen so that they had
solid coloring and no two-dimensional patterning of any kind. Finally, at the age
of 19 months the child was shown some line-drawings for the first time, including
thosc illustrated in Figure 1-3. The child was immediately able to recognize the
objects in these drawings with no reported difficulty, and performed cqually well
when identifying the contents of black-and-white photographs. This experiment

would seem to provide a very strong result which applies to all cultures.

1.2: A demonstration of the role of perceptual organization

The reader may still be unconvinced of the importance of perceptual organiza-

tion for typical instances of rccognition. However, we can demonstrate that the
*. formation of perceptual groupings is prerequisite to recognition by performing
the obvious psychophysical experiment of creating an image in which the infor-

mation necessary for perccptual organization is missing. In Figure 1-4(a) we
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1.2 A demonstration of the role of perceptual organization 15

have created a drawing of a bicycle which is more than 50% complete, but which 3

has been constructed so that most opportunities for bottom-up grouping having

been eliminated (e.g., we have climinated most instances of significant collinear-
ity, endpoint proximity, parallelism, and symmetry). In informal experiments,
this drawing proved to be remarkably difficult to recognize when the subject had
. no knowledge regarding the identity of the object. In one group of 10 subjects,
‘ nine of the people were unable to identify the object within a 60 second time
limit, and the tenth person took about 45 seconds. Note that this is in spite
of the fact that the object level segmentation has already been performed—the
task would be even more difficult if the bicycle were embedded in a normal scene
containing many surrounding features. Just in itself, this part of the experi-
ment illustrates the limited capability of human vision for achieving recognition
without perceptual organization.

The experiment can be taken one step further by gradually introducing the

ey

capability for performing perceptual groupings and seeing whether this decreases
the average recognition times. In Figure 1-4(b) we have added just a single
scgment to the drawing in 1-4(a). The added segment was placed at a strategic
location which allows it to be combined with other segments in a curvilinear
grouping. The recognition times for this sccond figurc were dramatically lower

than for the first, with 3 out of 10 subjects recognizing it within 5 seconds and 7

. SR, R

N R et ot

out of 10 within the 60 second limit. Presumably, if the added segment had been
placed at some location which did not lend itself to perceptual groupings, the
change in rccognition times would have been negligible. The final recognition of

L this figure is clearly based upon achicving spatial correspondence with a single

-
.

l 1- - .

‘gl O T

viewpoint of some known object—for example, there is no potential for forming

a bottom-up representation at the level of a 2 1/2-D sketch. The ability to

influence recognition times by controlling the formation of perceptual grouvpings
illustrates the search-based nature of this process. One can imagine performing

a series of thesc experiments, in which different groupings are introduced, which
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/

Figure 1-4: When opportunities for bottom-up grouping of image features have been
removed, as in the linc drawing of a bicycle in (a), the drawing is reinarkably difficult to
recognize. The average rccognition time for (a) was over one minute when snbjects had
no prior knowledge of the object’s identity. However, when a single line scgment was
addcd in (b), which provided local cvidence for a curvilinear grouping, the recognition

times were greatly reduced.
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Figure 1-5: Thesc degraded drawings were used by [Leeper, 1935] to test the influence
of non-visual contextual inforination on recognition. When subjects were told that the
objects were “a means of transportation” (drawing b), “something used by alinost
everyone everyday” (g), “an animal and a person” (h), or “a musical instrument”® (j),
the recognition times were significantly reduced. The drawings are meant to represent
(a) a clock, (b) airplane, (c) tynewriter, (d) bus, (e) elephant, (f) saw, (g) shoe, (h) boy
and dog, (i) 1930’s model car, and (j) violin.
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; would allow the experimenter to determine the relative importance of various r!
E groupings in accessing a particular object model. .
' The search-based nature of the matching process can also be demonstrated

E by introducing non-visual forms of contextual information which reduce recogni- .
b tion times by limiting the sct of candidate objects. This was a component of an -
i experiment described in [Leeper, 1935], in which subjccts were asked to identify
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18 CHAPTER 1: INTRODUCTION

the objects illustrated in Figure 1-5. One group of subjects was told nothing
about the identity of the objects, but a second group was givea vague non-visual
verbal descriptions of the object class, as described in the figure caption. These
verbal descriptions led to a significant decrease in the amount of time required
for recognition. Since these descriptions could have applied to a wide range of
visnally dissimilar objects, it secms that the best explanation for their influence
must be in narrowing the search at the level of object recognition rather than
influencing bottom-up descriptive processes or leading directly to the one corrart
answer.

A number of other psychological studies in the area of perceptnal organiza-

tion will be reviewed in the following chapter.

1.3: Specific functions of perceptnnl organization

Current knowledge-based vision systems [Roberts, 1966; Shirai, 1978; Brooks,
1981; Goad, 1983] are limited in practice to the consideration of only a few well-
specificd objects by the shecr size of the search space that must be explored. The
model of recognition that we have presented assigns a central role to perceptual
organization as a way of reducing the sizc of this search. Ilere we will examine
some of the mechanisms through which this reduction in search can be accom-
plished. By understanding these mechanisims, we will be specifying some of the
particular functions which perceptual organization will perform in a complete
vision system, and we will usc these results in later chapters to determine partic-
ular attributes of algo;‘il.hins which carry ont the grouping processcs. Following

are three of the most important functions of perceptual organization:

1. Segmentation: ‘A major reduction in the search space can be achieved hy
segmentation—the division of the image into sets of rclated features. With-

out scgmentation, a modcl would have to be matched against all poscible

combinations of features in the image, so good segmentation is crucial for
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1.3 Specific functions of perceptual organization 19

reducing the combinatorics of this search. Segmentation has long been rec-
ognized as a central problem in image interpretation, but previous methods
have usually been based on region analysis or scene-specific measures rather

than on general methods of perceptual organisation.

2. Three-space inference: Perceptual organization results in the formation
of two-dimensional relations between image features, and these relations lead
to specific three-dimensional interpretations as described in Chapter 5. For
example, collinear lines in the image can be expected to be collinear in 3-
space unless there has been an unusual accident in viewpoint. In this way,
perceptual organization can lead to constraints on depth, whiéh can provide
segmentation in three dimensions as well as two. In addition, these depth
constraints can contribute to the 2 1/2-D sketch in the same way as stereo,

motion, or shading information.

3. Indexing world knowledge: Given a large database of world knowledge,
the most significant factor determining the size of the search space is likely
to be the sclection of the appropriate object out of the extensive set of possi-
bilities. To the extent that the relations formed by perceptual organization
arc stable under different viewpoints and imaging conditions, they can be
used as rcliable index terms to access the body of world knowledge. Each
relation will typically have several paramecters of variation whose relative
values in the image can 'be used for indexing. For example, collinear line
segments can be characterized in a viewpoint-independent manner by the
relative sizes of the scgments and gaps. Chapter 7 will examine the use of
evidential rcasoning for combining multiple sources of evidence, including

perceptual groupings, to arrive at the optimal ordering for search.

It is important to note that cach of these mechanisms for reducing search is based
upon the assumption that the rclations produced by perceptual organization

are the result of regularities in the objects being viewed. This means that any
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20 CHAPTER 1: INTRODUCTION

relations which arise through some accident of viewpoint or position are of no
use for recognition and will only confuse the interpretation process. This fact ]
will provide the basic method for evaluating the usefulness of specific image -

relations—relations are useful only to the extent that they are unlikely to have

RPN ] T

arisen by accident. One of the major goals of our algorithms for perceptual .
organization will be to statistically distinguish accidental from non-accidental
instances of a relation. This goal will form a basis for the further development

of methods for perceptual organization in Chapter 3, following a review of some

i AL

of the previous research on perceptual organization in Chapter 2.
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Chapter 2

PREVIOUS RESEARCH
ON PERCEPTUAL
ORGANIZATION

The history of research on perceptual organization consists, in its broad outlines,
of a search for some underlying principle which would unify the various group-
ing phenomena of human perception. The Gestalt psychologists thought that
this underlying principle was some basic ability of the human mind to proceed
from the whole to the part. Later research summarized many of the Gestaltists’
results with the observation that people secm to perceive the simplest possible
interpretation for any given data--although simplicity proved to be very diflicult
to define or quantify. This dissertation is based on the still more recent principle
that it is the degree of non-accidentalness which determines the significance of
a grouping. In other words, it is not simplicity itself that determines signifi-
cance but the extent of surprising simplicity given expectations regarding the
distribution of fcatures.

In addition to this grand search for a single principle, there have been a
number of basic psychophysical studies on grouping processes as well as mnany
attempts to implement specific grouping operations in computer vision systems.
While it would be impossible to cover all of this work in a single chapter, we will

attempt to cover some of the major highlights.

21
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22 CHAPTER 2: PREVIOUS RESEARCH

2.1: Gestalt psychology and perceptual organization

In many ways, the heyday for the study of perceptual organization was during .
the 1920’s and 30’s. During this period, Gestalt theory dominated the study
of perception, and the study of perceptual grouping phenomena was a major
component of the Gestalt program. The word Gestalt itself means “whole” or
“configuration,” and the major goal of the Gestaltists was to show that percep- ’
tion was something that happened as a whole rather than as a combination of :
individual primitive features.

The major contribution of Gestalt psychology to our current understanding
of perceptual organization was to develop a large number of demonstrations of i
grouping phenomena and to roughly categorize them into several groups. Fig-
ure 2-1 illustrates some of these categorizations as developed by Max Wertheimer
[Wertheinier, 1923], who is recognized as the founder of the Gestalt school. These
categories can be summarized as follows: (1) Prozimity—elements which are
closer together tend to be grouped together; (2) Similarity—elements which are
similar in physical attributes, such as color, orientation or size, are grouped to-
gether; (3) Continuation—clements which lie along a common line or smooth
curve are grouped togcther; (4) Closure—there is a tendency for curves to be
completed so that they forin enclosed regions; (5) Symmetry—any elements
which are bilaterally symmetric about some axis are grouped together; and (6)
Familiarsty—elements are grouped together if we arc used to sceing them to- ,
gether. Naturally enough, given such extremely general terms as similarity or

familiarity, it was very diflicult to derive any type of quantitative theory. There

were many attempts to put these various grouping tendencies in opposition to 1

one another and sce which was stronger, but there were too many variables to !

come up with a quantitative theory. !
Unfortunately, the Gestaltists extrapolated from simple experiments, such as

the ones described above, to highly speculative assumptions regarding the overall

.................
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Figure 2-1: These are examples from some of the categories of grouping phenomena
developed by the Gestaltists: (a) dots are paired on the basis of proximity; (b) dots X
arc paired bascd on similarity in size; (c) shapes are groupcd as squares due to closure =
(or continuation); (d) lines arc scen as crossing due to good continuation; (e) bilater- ]
ally symmetric pairs of lines arc grouped; and (f) this cxample, from [Kanissa, 1979), 1
‘ illustrates that continuation can override the influence of symmetry.

o
AT N
Lo b AP F .

EICI T Y J P S I T W e
.L" \.'. - - e . % .’-‘.'- RS .'-' e %% ".:.‘-.. *s D _'--‘.'--‘_ ..-".-".-f"-' St e, - T - .1—..‘ A
P P W N N P LY T VRS ST AT O P T AR . N Y Nt L NI R T T O DAY Y T I R




SOCEMN DOEINOKME. S

frr..-f..

24 CHAPTER 2: PREVIOUS RESEARCH

structure of the brain and mind. They rejected the idea of independent receptors
with specific nerve energies and considered the study of sensory psychophysics to
be artificial and irrelevant. Instead they built theories based upon “field theory”
and the resulting “attractive forces” between components of a perception. In the
same way that every minor event in an electromagnetic field is related to every
other event in the field, it was assumed that the response of each individual
receptor was determined by the overall structure of the perception. This did not
stop with the study of perception, but was considered to apply to the entire area
of the self and to relationships between the self and the environment. Gestalt
psychology also claimed success in “refuting the machine theory of the organism”
[Katz, 1950, p. 50], in particular the idea that ordered perceptions arise from the
ordered structures and pathways of the nervous system. Eventually, after two
decades of prominence, there was the inevitable backlash against Gestalt theory,
with the unfortunate side effect that the study of perceptual organization became

associated with some of the less scientific aspects of the Gestalt revolution.

2.2: The principle of simplicity

The most important lasting impact of the Gestalt study of perception was that it
stimulated many individuals to try to come up with some underlying principle of
organization. The original Gestaltists themselves were not very successful at this.
They summarized their laws of organization with the single “law” of Prdgnanz,
which just means “goodncss of form”—a circularly-defined termm with no quan-
titative formulation. Many psychologists realized that this was unsatisfactory,
and by the 1950’s there was sonic agreement on a general principle of simplicity,
also known as the “minimum principle” [Hochberg, 1957]. This was stated as the
principle that “other things equal, that perceptual response to a stimulus will be
obtained which requires the least amount of information to specify” [Hochberg,

1957, p. 83].
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2.3 Grouping as the formation of causal relations 25

Unfortunatcly, the idea of simplicity is also not well-defined, since the de-
gree of simplicity with which a figure can be described depends entirely upon
. the description language that is used. However, it seemed that for some rea-
sonable choices of such a language, the simplicity criteria provided an accurate,
computable determination of which perception would be perceived. The idea
merged nicely with a surge of interest in information theory during the 1950’s,
since information theory dealt with minimum-length encodings for transmission
of information. [Attneave, 1954] took this idea literally, and looked at various
particular minimum length descriptions for inages or curves and showed that
they scemed to correspond to some simple aspects of perception. There have
been some recent attempts to define particular languages for describing certain
restricted classes of patterns [Leeuwenberg & Buffart, 1983], and to use these
to make quantitative predictions for which structures are most likely to be per-
ceived based upon the minimum-parameter specification of the pattern within
thesc languages. Unfortunately, information theory itself provides no specific

guidance for selecting the appropriate language of description.

A major limitation of these simplicity arguments is that they assume that

the description language will perfectly encode the image. In realistic scenes, any

!
:

visual pattern is likely to only approximate whatever ideal description is being

considered. Presumably there is some trade-ofl in degree of approximation to

Yy LW

the ideal and the strength of the percept, but the simplicity criteria say nothing
about exactly what this trade-off will be and how the degree of approximation

is measured. This is an example of a problem which is of crucial importance for

TEmr o LTt

« . computer vision and for most real images, but which can be convenicntly ignored
when setting up idealized, forced-choice experiments in the perception labora-
tory. Methods for approaching this problem of measuring degrees of approxi-

L mation, through thc use of statistical evidence and prior expectations regarding

. MR .. .t L

distributions of features, will be a major topic of this thesis.
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26 CHAPTER 2: PREVIOUS RESEARCH

2.3: Grouping as the formation of causal relations

In a recent paper, [Witkin & Tenenbaum, 1983] examine the role that grouping
phenomena can play in both biological and computer vision systems. They point
out that many current areas of active research in computer vision—such as struc-
ture from motion or stereo—are essentially grouping problems in which elements
in the image are grouped into sets of related features. Of even greater poténtial
importance is the human capability to derive structure and organization directly
from collections of two-dimensional image features. These groupings can be
formed without any high-level knowledge of the content of the scene, and it is re-
markable that even after the scene has been recognized and understood, the same
groupings are nearly always present in the final description. This then provides
the clue for the role that these groupings play in vision: the groupings establish
causal rclationships between elements of the image which are likely to survive
intact through later stages of iﬂterprctation. In fact, Witkin and Tenenbaum
claim that much of the later interpretation process merely consists of attaching
labels to these primitive groupings, so that the computationally-intensive work
of deriving structure from the image will have been already accomplished by the
grouping process.

Given that the goal of the grouping process is to uncover causal relation-
ships between image features, what does this tell us about how to go about the
grouping process itsclf? Witkin and Tenenbaum review a number of criteria that
have been used previously in computer vision, such as a desire for economy of
representation or a priori cxpectations that smooth descriptions are more likely
than complex ones. Their conclusion is that the strength of the most success-
ful mcthods comes not from the strength of their a priors expectations for the
grouping but rather from a non-accidentalness argument. In other words, it is

the degree to which some relation is unlikely to have arisen by accident which
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2.3 Grouping as the formation of causal relations 27

is the most important contributor to its significance. For example, if two paral-
lel curves are considered to be highly significant, it is not due to the fact that
structures which project to parallel curves in the image are a more common oc-
currence than structures which do not, but rather to the very small probability
that two curves would happen to be parallel by accident. Of course, it is also
true that any other exactly specified relation between two curves would be very

unlikely to happen by accident, so the non-accidentalness argument is still rely-

ing on a priori expectations. However, the most important consideration is not

the expectation for parallels versus non-parallels, but rather the expectation for

parallels arising by accident from some expected distribution of the constituent o

features. Given sufficiently tight constraints for an expectation, we can have very : T
Y

high expectations for identifying it even if our prior expectations for it are low.

In other words, we can shift our attention from finding properties with high prior ~
expectations to those which are sufficiently constrained for a realistic distribution -
of accidentals.
Of course, the non-accidentalness argument—based essentially on condi-
tional probabilitics—does not originate with Witkin and Tenenbaum. As they
point out, previous rescarch in computer vision has used it for a number of indi-
vidual problems (Lowe & Binford, 1981; Stevens, 1981; Ullman, 1979]. However,
Witkin and Tencnbaum argue that this is more than a technique that can be
applied to a number of individual problems, but is in fact the general goal of
image organization. Even when we do not know the ultimate interpretation for
some grouping and thereforc its particular a priors expectation, we can judge it
to be significant based on the non-accidentalness criteria.
While this de-cimphasizes the role of prior probabilities, it certainly does not
eliminate them. There is still the important issue of sclecting the set of well-
constrained image rclations against which the likelihood of non-accidentalness

will be judged. Witkin and Tencnbaum suggest the use of spatiotemporal reg-

ularity and “fuzzy” identity over space and time. In other words, the class of
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28 CHAPTER 2: PREVIOUS RESEARCH !

relations we should be looking for are those which result when one shape is

transformed into another using simple image transformations (e.g., translation,

rotation, scaling). This is similar to the suggestion by [Palmer, 1983] that or- _ . j
F ganization is performed over the group of Euclidean similarity transformations. !
-_~ However, this set seems to be much too inclusive to account for normal human . i
_ performance (e.g., people are not very good at grouping rotated instances of a f
j shape or grouping elements which are widely spaced in an image), and it says i

little about how to judge approximate instances of a relation. One of the aims

of this thesis will be to provide more detailed criteria for selecting this set of

- a4

significant image relations.

2.4: The role of grouping in computer vision systems

Although many computer vision programs have incorporated aspects of percep-
tual organization—such as the detection of straightness or collinearity—the use
of each relation has typically been approached in isolation and has not been
based on general goals or expectations which could apply to all types of im-
ages. Onc of the most general proposals for the use of perceptual organization
in computer vision systems was Marr’s initial work on the primal sketch. In his
paper on early visual processing [Marr, 1976], he developed the idea that the
primal sketch should contain not only representations of the discontinuities in
intensity, but also various groupings of curves and tokens into larger structures.

These groupings would be based on a representation for individual features, called

place tokens, that would represent the perceptually salient aspects of each image

[ 3
AWk ety u Ty e

feature. Marr suggested groupings on the basis of curvilincarity and a process
he named theta-aggregation, which groups lines on the basis of parallelism and

collinear displacements. Ilc also suggested performing texture description on the

basis of peaks in histograms of five different properties of the place tokens: inten-

sity, size, density, oricntation, and separations. These texture mcasures would
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2.4 The role of grouping in computer vision systems - 29

have to be calculated within each region of the image for various region sizes.
Unfortunately, the grouping aspect of the primal sketch was never developed in
detail, and received less emphasis in Marr’s later work [Marr, 1982].

The particular grouping process that has received the most attention in C(.)m-
puter vision is that of clustering collinear points or lines. One popular candidate
for carrying out this process has been the Hough transform [Duda & Hart, 1972],
which reparameterizes Cartesian space so that points which lie along the same
line will have the same coordinates. By transforming all points in this way and
looking for clusters which lic at the same location in transformed space, it is
possible to search efficiently for all sets of collinear points. Unfortunately, this
method is too successful in the sense that it entirely ignores proximity in the

image. It will group points from widely separated regions of an image which

happen to lie close to a common line, while at the same time failing to ascribe
significance to points which are close in proximity but not as close a fit to a line.
This is in strong disagreement with human performance in collinearity grouping,
which places a strong emphasis on proximity. A more psychologically valid ap-

proach is described by [Zucker, 1983], who has carried out some psychophysical ‘ .

experiments on the grouping of dots into curvilinear and oriented structures, and
proposes a computational model based npon cooperative processing that agrees
with these experimental results.

Another grouping process that has réceived a significant degrec of interest
is the detection of bilateral symmetry. A number of psychophysical experiments
have been carricd out to mecasure the hminan capability to detect symmcvtry in :
random dot paticrns [Bruce & Morgan; Barlow & Receves, 1979]. These have o q
found that human vision is able to detect symmetry in brief exposures to pat- ;
terns cven after they have been degraded with missing or perturbed elements
to a surprising degree. [Brady, 1983] describes work on a system for detecting
the symmetries of a closed contour using a representation he calls smooth local

symmetries.
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30 CHAPTER 2: PREVIOUS RESEARCH

Of course, there have been a large number of other computer vision systems |
which carry out some grouping operations as a part of their larger goals. We i
will review some of them in later chapters when dealing with individual grouping
problems. But, in summary, it can safely be stated that the development of
perceptual grouping processes within computer vision is at a very early stage of

development.
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Chapter 3

MEASURING
THE SIGNIFICANCE
OF IMAGE RELATIONS

oL
e aans .

Perceptual organization can be viewed as a process which assigns a degree of

significance to each potential grouping of image features. Our goal in this chapter

XA, J
KRR .

will be to take a unified view of the many grouping phenomena by examining 3

the underlying principles for measuring the significance of each grouping. As was

Y, 35

described in Chapler 1, perceptual groupings are uscful to the extent that they

arc unlikely to have arisen by accident of viewpoint or position, and therefore

are likcly to reflect meaningful structure of the scene. Qur basic argument will
be that certain image relations are carriers of statistical information indicating

that they are non-accidental in origin, and that this degree of non-accidentalness

f forms the basis for assigning degrees of significance. Note that there are an -
o ‘. . . ®

! infinite number of different types of relations that could be considered (e.g., “all N
-

f pairs of straight linc segments at N degrees relative oricntation,” for any given ;:}
3
{ N), and a combinatorial number of sets of elements to consider in any given j
i1 image. Only a small subsct of these possible relations arc of any significance q
- . , : . . ;
g or are worth the cffort required for detection. This chapter will examine the i
- o
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32 CHAPTER 3: THE SIGNIFICANCE OF IMAGE RELATIONS

Derivation of methods for image organization

1: Calculating the probability that a relation is non-accidental
1.1: Viewpoint invariance conditions
1.2: Null hypothesis of position independence
1.3: Prior knowledge of probability of occurrence
1.4: Ratio of background density to proximity
1.5: Recursive application of structuring

2: Limiting computational complexity
2.1: Local neighborhood calculations
2.2: Texture characteri ations

P
L M RN .
.

Figure 8-1: This chapter, as outlined above, attempts to derive the classes of image
relations which are most useful for recognition. The value of a relation for the process
of recognition depends upon the probability that it is non-accidental in origin and upon
the ability to detect it without unduc computational complexity.

many factors which limit this large class of potential relations to the small set of
perceptually significant groupings.

Figure 3-1 lists the various factors which must be combined to produce an
overall derivation of the set of significant relations. There are basically three
problems to be tackled. The first is to derive the classes of relations (e.g., “par-
allclism” or “collinearity”) which should be tested for significance. The second
problem is to include probabilistic measures to take into account limitations in
accuracy and deviations from the ideal relation (e.g., how significant is the rela-
tion between two lines which are within 3 degrees of being parallel). The third
problem is to limit computational complexity, since some relations arc not worth
detecting even if they are statistically significant.

From the psychological viewpoint, this chapter can be thought of as a theory
for the visual phenomena explored by the Gestalt psychologists. In other words,
it attempts to provide a derivation for the classes of spontancous groupings that

would be forined by any visual system that had been optimally designed for
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3.1 Probability of accidental occurrence 33

recognition. This will not be a theory at the level of mechanism—it docs not pre-
dict specific physiological structures—but rather a functional theory that makes
predictions based upon the assumption that evolutionary design would lead to
the optimal functional implementation. It is likely that many different types of
mechanisms will be used to implement the various forms of grouping operations, 7y
but they should all satisfy the various computational constraints given in this

chapter.

AL L I
crsil s

3.1: Probability of accidental occurrence

We have divided image relations into two classes: those that arise through an

accident of viewpoint or position and those that arise from some meaningful

LA o A e A e e

(i.e., predictable) structure in the scene. As described in Section 1.3, the acci-

{ dental relations will only interfere with our attc:npts to match image relations
to prior knowledge of objects. This is similar to the point made by Witkin
and Tencnbaum’s use of image rclations to uncover the causal structure of a
scene, as described in the previous chapter (Scction 2.3). This point will also be
supporicd by the results presented in Chapter 6, which show that it is the non-
accidentalness of some relation which allows it to reduce the amount of scarch
required for model matching.

l Therefore, a key to determining which relations are worth detecting and to

evaluating their significance is to calculate the probability that they are non-

accidental in origin. Many factors enter into this calculation, and they are in-

Te 'y 7 LTt T
. e e :
- .. el e e
4 a_a st e

i dividually examined in five subsections: (1) knowledge of the image projection
i . process leads us to the conclusion that only certain classes of image relations will
: occur more often. than by chance and will thercfore be statistically detectable; _";:]
(2) statistical estimates of non-accidentalness can also make use of prior knowl- .4
edge of the probability of occurrence of each relation; (3) the formation of the H
o

accidental instances can be modeled by assuming independence of position and ':"T
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34 CHAPTER 3: THE SIGNIFICANCE OF IMAGE RELATIONS

orientation; (4) the background density of similar features determines the signif-
icance of a given degree of proximity for any relation; and (5) initial relations
can recursively be combined into new relations that can influence the original .

estimates of significance.

3.1.1: Viewpoint invariance conditions

One of the most powerful and general sources of information constraining the
image arises from properties of the image projcction process which maps a three-

dimensional scene into a two-dimensional image. If we make the reasonable

assumption that the viewpoint of the camera (or eye) is independent of the objects
in the scene, then we can show that only certain classes of image relations are
likely to occur more often than by chance. These classes of relations are those that
! remain stable over a range of viewpoints (e.g., collinearity in the scene projects

to collinearity in the image over a wide range of viewpoints). Any mappings that

;’.i."_ do not remain stable over a substantial fraction of all possible viewpoints will not
? produce relations in the image that are separable from those arising by chance .
(e-g-, lines at right-angles in the scene can project to lines at all possible angles

o in the image, so a right angle in the image is not likcly to occur more often than
= any other angle).

:-9 Figure 3-2 contrasts examples of rclations that are significant against those
that are not. It is worth pointing out a common misunderstanding that oc-

curs when interpreting figures such as these that illustrate image relations. It

.‘. is important to remember that the figures themselves are three-dimensional ob-
jects, and are merely representations of the two dimensional projection onto
a retina. So a person will often remark that they immediately perceive the
three points in Figure 3-2 (b) as forming an equilateral triangle, forgetting that
these points do not project to an cquilateral triangle on the retina unless the

page is carefully held normal to the line of sight. Thercfore, the formation of

--------------------------------
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a) o b) B
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Figure 3-2: Only certain classes of image relations are present over a significant '_'--:f_ "

range of viewpoints and therefore will occur more often than by chance. In (a), the -

three dots form two different types of significant relations, since both collinearity and

equal spacings of collinear objects remain invariant over a wide range of viewpointa.
However, in (b), the equilatcral triangle formed by the three dots can project to any
type of triangular relationship in the image depending upon viewpoint, and therefore
fails to lead to a significant or detectable image relation for this property.

the perception of an equilateral triangle can come only after determining the
three-dimensional locations of the points—for example, by using the knowledge
that tlie page is planar and using the locations of the figure boundaries. Al-
though we will briefly discuss these three-dimensional groupings in later chap-
ters, they occur at a much later stage of visual processing and are qualita-
tively different in ﬁmny ways from the initial image groupings that are the
topic of this chapter. It is difficult or impossible to introspectively distinguish
betwcen the image level of organization and many other forms of visual infer-
ence.

The application of the viewpoint-invariance constraint greatly limits the

types of rclations which can serve as a basis for perceptual organisation in the

image. There are only a few relations, such as collinearity and connectivity, which
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36 CHAPTER 3: THE SIGNIFICANCE OF IMAGE RELATIONS

are preserved over all possible viewpoints. There are also a number of other types
of relations which are preserved over a wide range of viewpoints and therefore can
be expected to arise with substantial frequency. For example, parallelism and
the presence of equal spacings between a series of collinear features are proper-
ties which are preserved over all viewpoints except where perspective effects are
significant. Since many objects occupy only small visual angles or do not extend
over a large depth of field in comparison to their distance from the camera, we
can still expect these relations to arise frequently in the image. There are yet
other relations which require a more careful analysis. For example, constancy
of curvature is not strictly preserved under projection (e.g., a circle projects to
an ellipse), yet constancy of curvature is largely preserved over local regions of
the projected curve. In spite of these complications, the viewpoint-invariance
constraint serves to powerfully limit the infinite set of candidate relations to the
small number of spatial properties which are at least partially invariant under
projection.

There is another important consequence of the requircment that relations
be invariant with respect to viewpoint. The detection of an image rclation
on the basis that it is unlikely to have arisen through an accident of view-
point implies that it is likely to be the projection of a specific three-dimensional
structure. Thercfore, it is possible to infer three-dimensional properties of the
scene from the perceptual groupings which are detected in the image. For ex-
ample, if we decide that an instance of several collincar features in the im-
age is unlikely to be accidental in origin, then we can infer that thosc fea-
tures are likely to be collinear in three-space. Chapter 5 will describe a pro-
gram for inferring constraints on the three-dimensionai structure of a scene
from perceptual groupings of features in the image. These constraints can be
strengthened even further by requiring consistency from the multiple sources

of evidence.

............................
---------------

....................................

.....
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3.1.2: Prior knowledge of probability of occurrence

The viewpoint-invariance conditions of the previous section are one of the major
factors determining our expectations for the relations that are likely to appear
in an image. However, it is also necessary to take into account other sources of
prior expectations regarding the contents of an image. We can formalize the role
of prior expectations in judging non-accidentalness by making use of conditional
probabilities and Bayesian inference. Let P(r&a) be the probability that both r
and a are true, and P(a|r) be the probability that a is true when r is true. Then
it follows that: '
P(r&a) = P(r)P(a|r) = P(a)P(r|a)

Therefore, |
P(a)P(r|a)

P{r)

This is the basic law of Bayesian statistics. If we let r be the detection of a

P(alr) =

given image relation to within a certain degree of accuracy, then we can let a

be an instance of that relation which arose accidentally and ¢ be an instance

which arosc for a causal reason. Then P(r) = P(a) + P(c) (since a and c are the

two mutually exclusive cases of r) and P(r|a) = P(r|c) = 1 (since a and c are :

instances of r). Thercfore, fromn the Bayesian form above we get:
P(a) 4

P(a) + P(c) .

P(alr) =

P(a L
P(c|r)=1- P(aj|r) =1 - .P-(;)_(;T)Pﬂ ,i
These expressions allow us to calculate the probability that a given image ]
relation is non-accidental from the prior probabilities of accidental and non- :
accidental instances. The following sections will describe ways to estimate the
likelihood for the accidental occurrences, P(a). The viewpoint-invariance condi-

tions of the previous scction were aimed at selecting those relations which had a
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significantly high value for P(c), but these are only one component of determining
a quantitative estimate for the causal probabilities.

So, how can we determine the prior probability for the causal occurrence
of each relation? One reasonable way would be to simply keep statistics of the
occurrence of each relation over a suitable sample of images. This empirical
approach is a type of learning that might be used in a biological visual system.
A more theoretical zipproach would be to create some general model of the visual
world and derive the expected frequencies of the relations from this model.

It is important to rcalize that these prior probabilities for non-accidental
instances of a relation, P(c), need only be order-of-magnitude estimates and that
not much hinges on their specific values. By making more accurate measurements
o in the image (thereby obtaining smaller values for P(a)) and combining relations
- as described in later sectionms, it is possible to assign causal interpretations to
even rarely occuring relations. It is also important to remember that we will
: only know P(c) for general classes of images, and we don't want our inferences

to fail when we are faced with a particular image that has a very different rate

B ] «

- of occurrence for that relation. So in practice, prior estimates of P(c) may
be more important for sclecting which relations to search for than for making
inferences during vision. On the other hand, Chapter 6 will show how to make

more extensive use of prior probability estimates during later stages of vision.

. ‘1’1

3.1.3: The null hypothesis: Independence of 3D position

° As described above, we need to determine the probability that each relation
in the image could have arisen by accident, P(a). Naturally, the smaller that
this value is, the more likely the relation is to have a causal interpretation. If
we had completely accurate image measurements, the probability of accidental
occurrence could become vanishingly small. For example, the probability of two

image lines being exactly parallel by accident of viewpoint and position is sero.
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3.1 Probability of accidental occurrence 39

However, in real images there are many factors contributing to limit the accuracy
of measurements. Even more important is the fact that we do not want to limit
ourselves to perfect instances of each relation in the scene—we want to use the
information available from even approximate instances of a relation.

Given an image relation that holds to within some degree of accuracy, we

wish to calculate the probability that it could have arisen by accident to within

that level of accuracy. This can only be done in the context of some assump-
tion regarding the surrounding distribution of objects, which serves as the null
hypothesis against which we judge significance. One of the most general and
obvious assumptions we can make is to assume a background of independently
positioned objects in three-space, which in turn implies independently positioned

projections of the objects in the image. This null hypothesis has much to recom-

mend it; in fact, if we are attempting only to find causal links as suggested by

L}
e

[Witkin & Tenenbaum, 1983] then almeost by definition we are looking for any

sign of non-independence. There are a number of other properties of vision which

]

lead to modifications of this general assumption, but in practice it forms a strong

[
L
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basis for image segmentation. Most images contain many indcpendent objects

J SR

which projcct to nearby locations in the image and a major task of segmentation

s .~ oad

is to separate them.

|

Given the assumption of independence in three-space position and orienta-

!
; tion, it is easy to calculate the probability that a relation would arise to within a »q
f‘ given degree of accuracy by accident. For example, if two straight lines are par-
1 allel to within 5 degrecs, we can calculate that the chance is only 5/180 = 1/36 o
i . that the relation would have arisen by accident from two independent objects. It ‘
E should also be noted that the assumption of independence in three-space implies N:
E, not only position and orientation independence in the image, but also scale inde- :
pendence duc to varying distances of objects from the camera. This assumption ..4
-

of scale independence will form a basis for judging significance of similarities in

scale. ","1
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d
!
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Figure 3-3: The two almost-parallel lines in (a) form a significant relation when they
are close together with respect to the background density of similar features. However,
as this ratio of proximity to density decreases, the relation becomes less significant, as
shown in (b). '
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3.1.4: Ratio of background density to proximity of features 5
Our calculations in the previous section were based on the probability that a ‘
single, given relation could have arisen accidentully from the independent posi- i
tioning of its parts. This fails to take into consideration the number of possible .

rclations that are being examined in a given image. These numbers grow accord- )
ing to the square of the number of features being considered—e.g., given only ) !
: 10 line segments, there are 10 X (10 — 1)/2 = 45 pairs of line seginents to be :
: considered. Therefore, given 10 segments, it would hardly be surprising to find
;ﬁ' two which are parallel within 2 degrees (something which will occur one time 1
:. in 45 between independently positioned line segments). Figure 3-3 contains an '
3 example which illustrates this point. ;
g ‘-
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The result of taking background density into account is that the proximity of
the features making up a relation becomes a major factor in judging the relation’s
significance. As two features come closer together, the expected number of other
features within the same proximity decreases sharply for a given surrounding
density. Note that proximity is not only a component in judging the significance
of all other types of image relations, but is also in itself an important type of
image relation which can be used to detect non-accidental groupings. Proximity
passes the image invariance test, since features which are close together in three-
space will project to features which are close together in the image from all
viewpoints (of course, features which are separated in three-space can also project
close together in the image due to an accident of viewpoint, which is why the
inference depends on the surrounding density of features).

We can specify the results of the interaction of proximity with feature density
in more detail. Let d be the density of features in a region and r be the separation
of two features from each other. Then the expected number of features Q(r) that
would be within r units of a given feature is the density times the area of a circle

with radius r:

Q(r) = dnr?

If there are n points in the entire region, then the expected number of occurrences
in which two points are within r units of each other is ndxr2/2. For low values of
Q(r), this is approximately equal to the probability of an accidental occurrence.

Therefore, proximity can be used in isolation or as a factor to take into
account when calculating the probability of accidental occurrence for other re-
lations. The significance of a proximity rclation is inversely proportional to the
square of the separation, and therefore grows rapidly as features become close
together. When looking at the problem of computational complexity we will see
that feature separation as a function of the density also determines which detec-

tion operations are computationally feasible. Therefore a basic requirement for
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" 42 CHAPTER 3: THE SIGNIFICANCE OF IMAGE RELATIONS

the successful detection of a relation is the proximity of its features in the image

BLELEAENE -
- am—

. relative to the background density.

We have not specified the size of the surrounding region which is examined

L]

to determine the background density of features in a given region. The larger

this region is, the more data we have on which to base our statistics; on the other

v

hand, images are not uniform, so the larger the region becomes, the more likely
we are to stray into a qualitatively different type of region. There is no easy
answer to this question. It seems likely that human vision makes an estimate of
feature density only after perceiving inhomogeneities in the feature distribution
during texture perccption, making this a fairly complicated problem. However,
for most images it would produce an adequate answer to merely examine a region

out to two or three diameters of the feature separation.
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3.1.5: Recursive application of structuring

Due to limits in the accuracy of image measurcinents (and possibly also the
lack of precise relations in the natural world) the simple relations which have
been described often fail to generate the very low probabilities of accidental
occurrence which would make themn strong sources of evidence for recognition.
However, these useful unambiguouys results can often arise as a result of combining
9 tentatively-formed relations to create new compound relations which have much
: lower probabilities of accidental occurrence. For example, we may group a few
collinear points into a line which then is found to be part of some larger structure

P of parallcl lines. These later structures provide confirmation for the significance of

the earlier groupings. Carrying this process all the way to object recognition, we
sce how the recognition of the bicycle in Figure 1.4 provided strong confirmation
for very tentative groupings formed in the earlier stages of recognition.

. The most comprchensive method for combining already-detected relations .

into new structures is to treat cach of the initial relations in the same way as
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we would a primitive feature. Based on the probability that the relations could
have arisen by accident we can calculate the density of occurrence of acciden-
tal instances of these relations (making use of the same measurement of the
surrounding density of their components as was used for calculating their own
significance). We can also take a more empirical approach and examine the sur-
rounding area for other instances of these relations to arrive at a measure of their
density, as was done for the initial features. This second approach is preferable
where there are other instances of the relations, since it makes fewer assumptions

about the prior distribution; however, when there are no other instances, it fails

to assign the very low estimates of density that the first approach can assign.

Given these density estimates, we can calculate the significance for a compound

relation in the same way as for a primitive relation. Since we may be able to
assign very low estimates of density to its components, it is possible to assign
compound relations much more significance than is possible for those composed 7

only of primitive features.

3.2: Limiting computational complexity L

We have outlined a number of factors which determine whether a given image

relation could have arisen accidentally. However, therc are other cases in which

L
L
human vision fails to detect groupings which would seem to be highly signifi- %
cant by any rcasonable statistical critcria. Some examples are given in Figure

3-4, where the collinear, equally-spaced rows of dots or lines are obviously very

» R

unlikely to have arisen by accident, yet human vision fails to detect them spon-

tancously in a surrounding ficld of similar features. This failure to detect highly

significant structures seems to clearly be a limitation of human vision rather than

a functional feature. For example, many animal camouflages hide regularities in

C : S Y D

the animal’s structure by surrounding them with ncarby spots—a more perfect

vision system would not be fooled so easily.

---------




44 CHAPTER 3: THE SIGNIFICANCE OF IMAGE RELATIONS

a) b)
\ T ~

Figure 3-4: The patterns of five equally-spaced collinear dots or three collinear line
segments in (a) are not detected spontaneously by human vision if they are surrounded
by enough competing linc scgments, as in (b). This occurs even though the relations
remain highly significant in the statistical sense and thercfore would likely be of use for
segmentation and recognition.

These limitations of human vision are presumably the result of the inhcrent
coniputationa.l complexity of the grouping processes. It would be computation-

ally intractable to find all possible significant relations in an image, since this

would involve examining cvery possible subsct of the image features. One method

for limiting this complexity is to only examine groupings which consist of features
which are close together in the image, as described in the next section. Another
method is to take all the features in a given region and to histogram them ac-
cording to various properties and look for statistically significant peaks. This is
the basis for most texture analysis. Many of the limitations of human perfor-

mance in segmenting textures [Juless, 1981; Marr, 1976] can also be ascribed to
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3.2 Limiting computational complexity 45

the computational intractability of looking for peaks in all possible properties in
all possible subsets of the image.

It is interesting to note that the problem of computational complexity is an
area in which computer vision may substantially outperform biological vision,
since computer architectures may be much more flexible in their methods for
handling combinatorial problems. For example, it would require very little com-

putation for a computer to notice the significant relations in Figure 3-4 if the

appropriate algorithms were used.

3.2.1: Consider only local neighborhoods _%
Section 3.1.4 described the relationship between the proximity of features and 1

background density when calculating the probability of accidental occurrence.

As the ratio of proximity to background density increases, the probability of ac-

p cidental occurrence decreases by the square of the reclative proximity. Therefore, "‘
if we arc attempting to limit computational complexity we have the most to gain |
Ef by comparing a featurc to its closest neighbors. As fcatures get farther away, it Z:'.;
g : becomes more difficult to distinguish them from accidental occurrences. In addi- ;
F tion, features which make up a causal relation are not independently positioned »1
; in space, but arc often closc together. Therefore, the region of the image adjacent
L J

to a feature is far more likely to contain another feature which combines with it

. to form a causal relation than any other region of the same size.

Note that the above arguments are not without exceptions, and it could

A S AN vt

well be that features which are far apart with respect to the background density

could form a significant rclation. However, in the interests of limiting complexity,

proximity is a very uscful basis for limiting the number of comparisons with any

v Ty

feature. As shown by IMigurc 3-4, this heuristic is apparently adopted strongly A
by human vision. .j

It is casy to say that we should only attempt to form relations between a

i AR g

feature and its few closest similar ncighbors, but there are many complications in
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suggesting an actual biological mechanism. At this low level of visual processing,
it is likely that all computations are done in parallel by neurons which receive
input from only fixed portions of the image. Since our definition of proximity is
relative to background density, an implementation must contain many neurons
looking for relations at different scales, and only those which contain a limited
number of features within their receptive fields would be activated. An example
of this type of processing for the detection of collinear dots is presented in [Lowe
& Binford, 1982]. Many other authors have also suggested that each feature is
only compared to its closest neighbors while searching for relations [Marr, 1982;
Stevens, 1978]. A close study of the possible biological implementations for these
algorithms would probably go far towards explaining the various strengths and

weaknesses of the human capability for detecting image relations.

3.2.2: Texture characterizations

By “texturc description,” most réscarchcrs mean statistical methods for char-
acterizing sets of features. Whereas the image relations which have been con-
sidered so far deal with only a few features at a time and are highly sensitive
to a feature’s spatial Jocation, most texturc measures treat an arbitrary number
of features within a given region without concern for their precise location. On
the other hand, there is no precise dividing line between some types of image
rclations and some texturc description operations—for example, noticing that a
number of cdges are parallel to one another in an image can merge smoothly with
the operation of noticing a significant peak in the distribution of line-segment
orientations in that same region.

Although texture description has become a major topic of research in its own
right, we are placing it under the section on limiting computational complexity
because that is its essential role in coniparison with the detection of individual

image relations. Given unlimited amounts of computational power, it would be

DA e i S S i i

.

.
p-
-



CaliiP A

3.2 Limiting computational complexity 47

most accurate to examine all sets of iinage features of all possible sizes for those
relations which are most significant with respect to the surround. However, as
the number of elements to be considered in each set grows, the computational
costs increase rapidly. Texture methods bring this computational cost under
control by ignoring certain parameters of each feature (such as specific location
within the region being examined) and looking only for peaks in histograms of
the remaining properties.

Many different techniques have been tried in experimental attempts to char-
acterize textures, ranging from Fourier analysis methods to specialized techniques
for highly regular textures. The research that is most closely related to the meth-
ods which have been given above is that described in [Marr, 1976; Marr, 1982].
Marr describes texture operations based upon orientation, length, width, den-
sity, and color. An interesting aspect of these texture operations are the severe
computational limitations of human texture vision. Marr shows one example
in which humans fail to distinguish a rcgion consisting only of line segments at

two specific orientations from a region of completely random oricntations. Once

again, this is a case of human vision failing to detect a property that is extremely

¥

unlikely to have arisen by chance and would therefore likely be of use for recog-

2

Fi

nition, and in addition would not be unduly diflicult for a computer program to

detect. j

Texture description serves an important preliminary function for the detec- !“

) tion of individual image relations by scgmenting out subscts of features‘ with \j
similar propertics from a denser background. Whenever a peak is detected in :-.::

a texture characterization, all those clements which fall under the peak can be _!

treated as an isolated set. Figure 3-5 illustrates how the texture operation can

even segment smaller elements from a field of larger ones, and how the segmen- :

tation operation can be disrupted by changing the shape of the distribution. .

'
i

»

When we referred in previous sections to the “surrounding distribution of sim-

ilar elements,” the definition of which clements are “similar” probably depends
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Figure 3-5: The four collinear dots in (a) are not easily detected for the reasons
mentioned in Figure 3-4. However, when they can be segmented on the basis of size in
a texture opcration, as in (b), the collinearity becomes much easier to detect (it would
be useful to run psychophysical experiments with this example to determine whether
these effects are perceptually immediate or require scrutiny). Texture segmentation
is based on the size of histogram peaks, so if we spread the histogram of sizse out by
increasing the size of some of the larger dots, as in (c), mnuch of the effectiveness of the
texture segmentation seems to be lost.

on which clements arc grouped together by texture opcrations. In other words,
clements are first scgmented according to peaks in histograms of the properties
considered by texture description operations, and are then considered in terms
of the measured propertics of these sets. Therefore, texture description should
rightfully be considered an essgntial. aspect of perceptual grouping operations

rather than something for merely characterizing scts of clements.

3.3: Conclusions

This chapter has examined many diffcrent factors that must be combined to
derive the final set of rclations that can be detected perceptually in an image.

However, we obviously still have a great deal of work ahead to translate these
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constraints into specific computer algorithms for performing the various grouping

e .
2 AA“.ll'l.lJ

operations. Onme part of this task will be taken up in Chapter 4, where an
algorithm will be developed for describing image curves in terms of their most

significant structures. Later chapters will develop some other aspects of the

I T

perceptual operations.
There have been a number of unspecified parameters in this chapter (such

as the size of the surrounding region that is considered when measuring feature

: ‘L;'."‘.

density) as well as some uncertainty in combining the different factors. There
are two approaches for resolving these problems: theoretical and experimental.
Almost all of the discussion so far has been theoretical in that it is derived from
basic properties of image formation and from relatively simple models of possible

scenes. However, some of the parameters, such as the expected prior distribution

.'.A_LI-;;_;m I

of various scene relations, are more easily seen as empirical properties of our world

than as theoretical topics for vision researchers. For example, it might be the

sl K

case that certain aspects of human vision function to overcome specific types of

biological camouflage. In cases such as thesc, any attempts to derive parameters -

from detailed scene models could lead the research far afield from the basic topics

of computer vision.
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Chapter 4

THE SEGMENTATION
OF IMAGE CURVES

In this chapter we will apply the methods of perceptual organization which were
developed in earlier chapters to the difficult but important problem of segment-
ing image curves. Smoothed, segmented image curves are important perceptual
structures in themselves, as well as being nceded for the subsequent detection
of collinearity, parallelism, connectivity, and other perceptual groupings. Most
currcnt edge detectors only detect edge points (image locations through which
an cdge is judged Lo pass) and possibly link these together into lists of points on
the basis of proximity. The gap between the output of edge-detection techniques
and the smoothed, segmented curve descriptions needed for model matching
and many perceptual grouping operations is a significant missing link in current
image-description methodology. One reason for the difficulty of curve segmenta-
tion is that it is actually a combination of scveral different problems: choosing
the best scale of description for a curve, deciding where to place tangent discon-
tinuities (corners), and assigning levels of significance to the final segmentations.
This chapter will outline the various requirements that an ideal solution to this
problem should satisfy, and will demonstrate a computer program which satis-
fics most of them. The methods we develop for this problem can potentially be

applicd to many other perceptual problems (such as speech processing) in which
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52 CHAPTER 4: THE SEGMENTATION OF IMAGE CURVES

significant structures of unknown scale and location must be detected in Jow-level
data.

Most previous approaches in computer vision to producing smooth curves
from lists of points have had the goal of smoothing over small deviations in the
curve caused by noise and inaccuracies in the imaging process and thereby re-
covering the projection of the presumably perfectly smooth curve in the scene.

However, this objective is inadequate for the purposes of later grouping opera-

tions and greatly understates the capabilities of human vision. A complete curve
segmentation method must not rely on any prior estimate of how “noisy” the
curves will be, but must find significant curvilinear structure whenever it occurs
at any resolution.* This is necessary because objects in the world do not nec-
[“ ' essarily have perfectly smooth edges, and we cannot know in advance the degree

of roughness they will exhibit. In addition, it is often impossible to have prior

estimates of the degree of imaging-induced noise, and these noise properties can
vary with local properties of the scene such as the amount of surrounding texture.
It is quite possible for a curve to simultancously exhibit significant curvilinear

structures at more than one resolution, as is shown in Figure 4-1. It is necessary

to detect structures at all possible resolutions for the purpose of forming fur-
ther groupings or inference. For example, the segmentation in 4-1(b) is adequate
to recognize onc instance of colliﬁearity, but other groupings are only apparent
when lower resolution structures are recognised as in Figure 4-1(c).

Curve segmentation is an example of a problem for which the Gestalt “sim-
plicity” critcria for scgmentation are clearly inadequate. We are not attempt-
[ ] ing to choosc among alternative exact descriptions for some data, but rather
are choosing among an infinite set of possible approximations to the initial in-
put. The “simplest” approximation for any curve would be, say, a straight line.

The simplicity criteria provide no way to resolve the trade-off between increased

*We use “resolution” in the context of curve scgmentation to refer to the range of
transverse deviations of the original points from the smoothed curve description.
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Figure 4-1: The linked lists of edge points in (a) can be segmented at at least two
diffcrent resolutions of description, as shown in (b) and (c). Although one instance of
collinearity can only be detected in (b), the parallelism between the two major segments
and the other instance of collinearity can only be detected after recognising the larger
scale structures shown in (c).

simplicity of description and decreased accuracy of approximation to the original
data. The non-accidentalness criteria for measuring significance—in conjunc-
tion with the distribution and prior probability estimates described in Chapter
3—does provide a method for resolving this trade-off.

As with all the other forins of perceptual organization presented in this

thesis, we will be basing our judgment of the significance of a grouping on the
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degrce to which it is unlikely to have arisen by accident. In the particular case s
of curve segmentation, we want to find those curvilinear descriptions whicﬁ are
most unlikely to have arisen by accident from noise or random variation in the =
initial lists of points. Not only do the signiicance measures help us to decide

which resolutions of description to select for a given curve, but they also help v
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54 CHAPTER 4: THE SEGMENTATION OF IMAGE CURVES

us to determine which curves are signiﬁ;:ant at all. Just as a list of points
may exhibit significant structure at more than one resolution, so it may not
exhibit significant structure at any resolution. This is important because the
edge detection methods currently in use detect many spurious edge points in
addition to those which correspond to some significant edge in the image. The
degree to which these initial points group into significant longitudinal structures
is a strong indicator of whether they have arisen from meaningful structures in the
scene. In addition, the edge points themselves can be detected at different scales
of filtering of the image, and [Witkin, 1983] provides a complementary method
for deciding which points are significant according to their stability across these

scales of detection.

4.1: Previous research on curve segmentation

There has been relatively little research into the problem of producing segmented
image curves from lists of edge points as compared with the large literature
on the detection of the edge points fhemselves. As already mentioned, most
of this work has been based on the goal of simply removing imaging-induced
noise, and these mcthods thercfore perform smoothing at only a single, pre-
determined resolution. [Shirai, 1978; Pavlidis, -1977; Rutkowski & Rosenfeld,
1978] all describe methods for smoothing a curve at a single resolution and then
assigning points of tangent discontinuity to those places in which curvature is
high. [Rutkowski & Roscnfcld, 1978] apply a number of different smoothing and'
corner-detection methods to the same data, and recommend the use of a sinple
smoothing technique which mecasures curvature by looking at the angle between
adjacent tangents, where the tangents span some constant number of points on
the curve. As the tangents span larger numbers of points, their local variation

decrecases and they reflect the lower-resolution structure of the curve. Corners

are assigned to those points on the curve corresponding to peaks in curvature.
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Figure 4-2: The linked edge points on the left were produced by the Marimont edge
dctector from an image of a bin of connecting rods. The sinoothed cubic splines on the
right were the result of the author’s early attempts at a curve scgmentation algorithm. e
Although the results look pleasing to the eye, they consists only of local approximations =
to the original data. Therefore, they fail to detect more global aspects of the structure

e e e v — -

or to distinguish between significant and non-significant structure. '_Ei
[Shirai, 1978] uses a similar technique, and follows it by Btting straight lincs and _!

conic scctions to the segimented intervals between corners.
Figure 4-2 illustrates the application of single-resolution smoothing and cor-

ner detection to some actual curve data. This was one of my first attempts to

, .
| produce a curve segmentation algorithm. The linked lists of edge points were
produced by the Marimont cdge detector [Marimont, 1982]. These were then o
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smoothed by the method of taking tangents over extended intervals, and cor-
ners were assigned to those locations which showed cither high curvature or high
change in curvature. Points and tangents were then sampled at regular inter-
vals along these curves, and cubic splines were used to draw the final smoothed
representation. The final result looks pleasing to the naive eye, and seems to
have removed much of the noise. However, it has failed to actually detect the
significant aspects of the curvilinear structure, and these results are hardly any
better for further perceptual operations than was the original data. They look
good to the eye because the human visual system can still perform all the lower
levels of grouping and segmentation—but these groupings have not been made
explicit in the output. For example, if we wanted to do grouping on the basis of
collinearity, there are many cases in which the tangents at the endpoints do not
reflect the predominant direction of the rest of the curve. More significantly, we
have generated no information as to the extent to which a given tangent direction
at an endpoint is supported by the rest of the points in that curve. For the pur-
poses of model matching, there are no higher-level descriptions and measures of
significance for structures which would be directly useful for the matching task.
It was the shortcomings of this early attempt at curve seginentation which led
to the approach described in the rest of this chapter.

[Hoffman, 1983] reports some recent work on smoothing at multiple reso-
lutions and selecting the “natural scales” of description. His method examines
chords of varying lengths (as in the methods described above) centered at each
point on the curve, and looks at the variance in the direction of these “sinoothed
tangents” with changes in their length. A natural scale is one for which the
lengths of the tangents can be changed over a substantial range with compara-
tively small deviations in direction. This method is qualitatively superior to the
single-resolution techniques described above, and IToffiman has demonstrated its
capability for finding more than one resolution of description for various synthetic

curves. On the other hand, the mcthod makes no attempts to find corners in
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a) b)

Figure 4-3: The drawing in (a) is from [Attneave, 1954] and was created by connecting
the points of maximum curvature in a picture of a cat with straight lines. The human
ability to easily interpret this drawing has been widely cited as evidence for the fact that
points of maximum curvature are perceptually significant to human vision. However,
if we instead connect points which are shifted half way between the original points of
maximum curvature (while leaving curve terminations in place), the drawing in (b)
remains highly recognisable and perceptually very similar to the original. Therefore,
the locations of the points of maximum curvature do not seem to be of great perceptual
significance.

curves, and it does not have any reasoncd criteria for determining the degree to
which the resulting descriptions are perceptually significant. In this chapter we
will tackle these problems by using the criterion of non-accidentalness to measure
the significance of particular segmentations and scales of smoothing.

One goal which has been emphasized by Hoflinan and by others working on
curve description has been to find the maxima, scros, or minima of curvature
for the purposes of partitioning the curve into parts. The most frequently cited
evidence for the salience of these fcatures have been some psychological exp‘eri-
ments described in [Attneave, 1954]. Attneave produced a drawing of a cat by
linking points of maximum curvature with straight lines, as shown in Figure 4-3,

and noted that the resulting drawing retained a strong fidelity to the original
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58 CHAPTER 4: THE SEGMENTATION OF IMAGE CURVES

picture. This drawing has been widely reproduced in textbooks on perception
and in papers relating to curve segmentation, and has been said to show that
maxima of curvature are the most perceptually significant features of curves.
However, as shown in Figure 4-3(b), if we choose the points which are as far re-
moved as possible from the original points of discontinuity chosen by Attneave,
this drawing remains about as recognizable as before the transformation. A con-
trary hypothesis derived from the requirements of model-based vision is that it
is the perpendicular proximity of image curves to the projections of object curves
which is most significant. The ability to introduce tangent discontinuities into a
smooth curve—at maxima of curvature or elsewhere—without seriously affect-
ing recognition is actually an indication that local values of curvature need not

match the predicted curvatures. A second experiment performed by Attneave

was to ask subjects to approximate an undulating curved shape with a pattern

of 10 dots which would resemble the shape as closely as possible. He discovered
that subjects usually placed these dots at points of maximum curvature. How-
ever, it is a simple geometric fact that connecting points of maximum curvature
with straight lines will cause the resulting lines to lic closer to the original curve
than connccting intermediate points, so tﬁis hardly constitutes cvidence for the
perceptual significance of maxima of curvature. A more convincing and theoreti-
cally satisfying approach to determining perceptual significance of curve features
would be to examine the stability of features of three-dimensional curves under
projection onto the ima.gc‘ from different viewpoints. Curve maxima do not have
this property of stability, but discontinuities in tangent and curve terminations
do remain stable. [Marimont, 1984] analyzes other properties of curves, such
as zeros and sign of curvature, for stability under projection and in the pres-

ence of noise, and this approach promises to provide far more solid grounds for

dctermining perceptual salience.
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4.2: Measuring the significance of a curve segmentation

The theory that the major function of perceptual organization is the detection

of non-accidental structure allows us to reanalyze the problem of curve segmen-
tation in terms of a specific goal which can be related to recognition. Under this
theory, a natural description for a curve is one which is unlikely to have arisen S
by accident. Since the measure of non-accidentalness is in terms of ordinary #
probabilities, it allows us to determine the trade-offs between differing forms of
description, such as different scales of smoothing versus the insertion of corners
in the curve description. The major requirement for applying this theory is some d
way to measure the probability that a sequence of linked points arising from }

random variation or noise would accidentally happen to match a given type of

curve description with the given degree of accuracy. This measure can then be
used to select betwcen alternative segmentations or to determine whether a given
description is statistically significant rather than accidental.

Since the edge points have already been linked on the basis of proximity,
we must be careful not to confuse non-accidentalness in proximity with the mea-
surement of non-accidentalness in curvilinearity. Many of the usual statistical
methods for measuring the fit of a set of points to a curve are not uscful for

this problem because they fail to make this distinction. For example, Figures

4-4(a) and 4-4(b) illustrate the difliculties which arise if we use the common

-

method of comparing the standard deviation of the perpendicular distance of

.
PR By

the points from the curve with the standard deviation in the direction parallel

to the curve. As the figure demonstrates, low probabilities of accidental occur-

.

R .
1 T

a6

. rence for this measure may be entircly due to proximity groupings rather than

curvilinear ones. Figures 4-4(c) and 4-4(d) illustrate the same point for the sim-

Y plified case of just three points. Therefore, in this case it is not the perpendicular
distance of the central point from the line determined by the other two points )
which is significant in itsclf, but rather the probability that this distance is as 5
q
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Figure 4-4: The two sets of points in (a) and (b) have the same standard deviations

from lines of the same length, yet (b) is much more significant as a linear feature than L
(a). The points in (a) may be related only by proximity relations, with no necessary
significance in terms of linearity. The same situation is illustrated for just three points
in (c) and (d), where the third point in (c) may be close to the line joining the other
points due only to its proximity to one of the endpoints. Therefore, it is the angle
formed by the third point with the line joining the others, as shown in (e), rather than h
its distance from the line which is measured to determine significance.

small as it is given the proximity to the closest dclining point of the curve. This
measurement cffectively factors out the influence of proximity between points in
reducing the distance to the curve. In. practical terms, the quantity that needs
to be mcasured is the angle between the curve and the vector from the central
point to the closcst endpoint, as shown in Figure 4-4(c). Since the null hypoth-
esis is that the third point is related to the endpoint only by proximity and not
direction, the probability that the magnitude of this angle is less than 0 is 20/x.

This method can be extended to cases with more than three points by ap-

plying it rccursively to the three points with greatest scparation and then to each

sub-segment between these points. The two points with greatest scparation are
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used to define the straight line, and the point with the greatest minimum distance

) PP T
O | R
o ala .

to these points is chosen as the central point. However, it is not the deviation
of this center point from the line which is significant, since there may be other
nearby points which are farther from the line but which happened not to be 'as
close to the center of the line. Therefore, the measure of deviation is taken to be
the maximum of the deviations of all the points in the linked list. The position
of the central point along the curve is still significant, since it determines the
degree to which proximity can be discounted as a cause of the perpendicular fit
to the line. The measurement is then repeated for each of the two segments be-

tween the center point and the endpoints, using the same maximum deviation as

R RARRION YRR Yo

was measured for the original segment. Since the linearity of the internal struc-
ture of these segments is independent of the original measurement of linearity,

these probability values are all multiplied together. The recursion continues un-

L}
F e

P .
i P -
. P ]

til the smaller segments have negligible significance (due to the large transverse [
deviations with respect to their lengths) or have no more internal points. 5
The method has also been extended to examine fits to circular arcs in addi- -

tion to straight lines. This is done by simply fitting a circular arc to the three

; points in the initial set which are farthest apart, and by looking at the fit of the
( remaining points relative to their minimum distance to these defining points as
E was done for the straight line casc. Although it would be possible to extend this
: scarch for structure to still higher order curves (e.g., spirals), it is far from clear
r that there is much to be gained by looking for significance with respect to these ;1
; structures or that human vision performs these operations. As more parameters :
1 arc introduced into the underlying representation, the set of points being tested ®
k ’ must become larger or have a substantially better degree of fit in order to have _1
the same statistical significance as for the simpler case. This stage of processing
) is for the purpose of detecting natural scale and description; after the simpler 1
; structures have been detected, other methods can be used to splinc them into !3
'; smooth curves. 1
: ®
| E
b o
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Admittedly, the methods described above are not symmetric since they
choose certain distinguished points to define the initial curve for fitting. Al-
though this does not produce the optimal curve for testing, it should again be
noted that we are only attempting to measure probabilistic significance of struc-
tures rather than produce the final curve descriptions. More important than the

precise measurement of probability are the many qualitative criteria which the

methods satisfy, such as the separation of linearity measures from proximity ef-
fects. They also take appropriate account of the number of points which support
a curve description—as the number of points rises, the value returned by the
recursive calculation increases until the points are closer than their transverse P
deviations from the curve, in which case further points provide no further sup- E
port. In the future, it should be possible to devise symmetric, smooth methods g

which satisfy the same criteria. The Gaussian smoothing and splines described

in [Marimont, 1984] are an interesting candidate.

L

I

4.3: Selecting the most significant structures

Given a mcthod for determining the significance of a curve segmcﬁt, we would
like to divide the initial linked list of points into segments which have the highest
significance values. In the absence of any more immediate technique for achieving
this goal, we have taken the exhaustive approach of testing groupings over all
possible scales and positions. It would be too costly to test every possible segment
of the curve for significance. However, if we allow a reasonable margin of error,
it is possible to cover all scales and locations with a relatively small number of
groupings. We examine groupings at all scales differing by factors of two, from
groupings of only three adjacent points up to groupings the size of the full length

of the curve (amounting to 6 scales for a curve of 100 points). At each scale,

- we cxamine groupings at all locations along the curve, with adjacent groupings

' overlapping by 50%. This means that any given scgment of the curve of any
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Figure 4-5: This figure illustrates the set of segments at a range of scales and locations
which are tested for the single curve shown at the bottom. By testing at scales differing
by a factor of 2 and locations overlapping by 50%, any given interval of the original
curve will contain one of these segments covering at least half of its length.

length will have at least one grouping attempted which covers 50% of its length
but does not extend outside its borders. Figure 4-5 illustrates the set of all
groupings which are attempted for a single curve.

The great value of this exhaustive approach is that the decision of where
to segment the curve with tangent or curvature discontinuities can be carried
out after the detection of significant curvilincarity rather than before. Previous
methods of curve segmentation have attempted to directly search for locations
of tangent discontinuities Yased upon local measures of smoothed curvature [Shi-
rai, 1978, Rutkowski & Rosenfcld, 1978). Our approach is the dual—we look for
segments of the curve which cxhibit significant curvilinearity, and then tangent

and curvature discontinuities are assigned to the junctions between ncighboring
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(S W w

segments. When it is possible to connect neighboring segments without intro-
ducing such discontinuities, a spline representation can be used to connect them
if natural-looking output is desired.

After measuring the significance of all groupings over the range of scales 1

and locations, a selection procedure is executed to find those groupings which 5

x "y

best reflect the significant structure of the curve. First, any segments which

{
&

have probabilities of accidental occurrence above a 0.05 threshold are discarded.

If all segments of the curve fall above this level, then the curve is considered

Y\"

| EER

to exhibit no significant structure (this often occurs when edge points do not

result from any underlying physical structure and therefore form curves which

Y]

wander randomly in the image). Secondly, a procedure is run which examines
the segments at all scales for each point along the curve, and selects only those

segments which are locally maximum in significance with respect to scale. It is

L -'IA""V".V'
AR .

possible for significance to rise and fall more than once as the range of scales is-
traversed, in which case more than one scale of seginentation will be chosen. This
operation removes the great majority of segments and leaves an average of only
onc or two segments at each location along the curve; however, due to the greatly
differing lengths of the segments, there still remain some scgment descriptions
which are simply shorter subscts of longer curves which arc of similar significance.

Therefore, a final comparison is carried out to detect these cases in the remaining

segments, so that the shorter subsets can be removed. One segment is considered
E:l: to be a subset of a longer segment description if its extension to the endpoints
. of the longer segment remains within the transverse deviation bounds of that |
. segment and its significance squared is less than that of the longer segment.

The operation of deciding whether one segment description can be consid-
ered to be a subset of a longer segment description can also be used as a simple

method for detecting significant curvilinearity between segments. Two segments

¢
7 can be considered curvilincar and combined to create a new segment if this new
. scgment passes the test for significance and if at least one of the original scgments
N
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is a subset of the new segment according to the above definition. This satisfies
the intuitive criteria that would result if a curved segment were cut by a gap
into smaller pieces. Although this fails to detect all instances of what could be
considered curvilinear groupings (there are some cases of perceptually signifi-
cant curvilinearity in which only the tangents at the endpoints of curves align),
it does capture the most globally significant instances of curvilinear structure.
Of course, the above test cannot reasonably be applied to all possible pairs of
segments in the image, so our implementation first indexes all segments into a
multi-dimensional array according to location and endpoint tangent directions.
Only those pairs which satisfy a simple first level filter for matching of location

and tangent direction are subject to the detailed test for curvilinearity.

4.4: Demonstration of the algorithm

The algorithm described in the preceding sections has been implemented in
MACLISP on a DEC KL-10 computer. It has been tested on a number of syn-
thetic curves, as well as some edge-point lists detected in natural images. Figure
4-6(a) illustrates the application of the algorithm to some hand-drawn lists of
edge points which exhibit multiple levels of structure. For example, the lower
curve can be viewed as a sjngle circular arc or as a scries of straight line seg-
ments. When these data are given as input to the curve segmentation program,
it returns the segments shown in Figure 4-6(b) which explicitly capture these
multiple levels of structure.

A more rcalistic example is given in Figure 4-7, which demonstrates the

application of the algorithm to some edge lists derived fromn real image data.

Figure 4-7(a) shows a small 30 by 45 pixel region from an aerial photograph of

t

an oil tank facility. Figure 4-7(b) shows some linked cdge data generated from

o

Pd ]

this image by an edge detection program written by David Marimont [Mariniont,
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1982]. This program convolves the image with a filter of fixed size and detects
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Figure 4-6: The hand-input lists of edge points in (a) have been deliberately drawn
so as to have more than one scale of structure. When these are given as data to the
curve segmentation algorithm, it returns the segments shown in (b), which make these
multiple levels of structure explicit. For example, the top curve can be described as a
series of short straight lines or a single roughly linear structure.

RN i g
L et

zero crossings in the second derivative of intensity to subpixel accuracy. These
edge points are then linked into lists according to proximity constraints. Fig-
ure 4-7(c) shows all the groupings which are tested for significance at all scales

and locations, although the widely differing significance values are not apparent.

A e
.

Figure 4-7(d) shows the segments which remain after selecting those which are

mi

Al

locally maximum in significance with respect to scale and after applying the other
selection opcrations described in the previous section. These segments are in-
tended to correspond to the most statistically significant structures embedded in

the original individual curve descriptions. Given these segments, the curvilinear-

adred
Rl ]
RO

ity detection methods described in the previous section are used to connect the

endpoints of curvilinear scgments with dashed lines, as shown in Figure 4-7(e).

When two segments are judged to be curvilincar, a ncw segment is crcated from 3

L their combination and the original segments are removed unless their significance J
? is grcater than this new onc. Figure 4-7(f) shows the end result of this process 3
after removing all scgments with a significance less than a stricter threshold of R
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4.4 Demonstration of the algorithm - 87

Figure 4-7(a,b): The small 30 by 45 pixel region of an acrial photograph shown in (a)
was run through the Marimont edge detector to produce the linked edge points shown
in (b). The transverse positions of these edges arc interpolated to subpixel accuracy.
The goal of the curve segmentation algorithm is to find significant curvilinear structures
among these lists of points.
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Figure 4-7(c,d): All the scgments at differcnt scales and locations that were tested
for significance are shown in (c) above. A significance threshold was applied and only
those segments that were locally maximum in significance with respect to scale were
retained, with the results shown in (d). Each scgment is either a straight line or a
circular are.
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b Figure 4-7(e,f): The initial stage of curvilincarity detection scarches for segmnents ‘.
g which could be part of the same curvilincar structure. These are shown in (c) connected -
by a dashed line. These pairs arc then recursively combined into new segments, which
: often have greater significance than the originals. The final results are shown in (f) with "

a higher threshold on significance, so that only the most significant image structures

are displayed. Comparc thesc rcsults with your perception of (b). L
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0.01. One of the strengths of this algorithm is that each segment has an explicit
significance value which can be used during later computations. The final de-
scription represents only those segments which are judged to be of exceptionally

strong perceptual significance.

4.5: Evaluation and future research

The algorithm which was demonstrated above has a number of important ad-
vantages over other techniques currently being used for curve description. Its
major strength is its capability for detecting and evaluating curvilinear structure
over a wide range of scales. These structures are assigned significance in invefse
proportion to the likelihood that they could have arisen accidentally. In addition
to sclecting the most natural scales of description, they can be used to differ-
entiate edge points which arose due to structure in the scene from those which
are artifacts of the imnaging or edge detection process. Unlike most previous ap-
proaches, the methods can opcrate in the presence of imaging-induced noise or
random perturbations in the scene without any prior knowledge of their scale of
occurrence.

On the other hand, the algorithm would probably require a number of ex-
tensions and improvements for practical use in a vision system. The current im-
plementation is not very cfficient, and requires about 20 seconds of computation
time on a KL-10 for even the small region which was demonstrated. However,
since cach list is segmented independently, the algorithm could be implcmented.
in parallel hardware to reduce exccution time. Further work needs to be done

on recognizing pairs of segments which are qualitatively similar, so that some of

the duplications in the final results of the current algorithm can be avoided. The

use of splines to connect adjacent segments into smooth curves would do much
to enhance the display of the final results and possibly assist later stages of a

visual system. Alternatively, smoothed curve descriptions could be used from the

..........
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4.5 Evaluation and future research 71

outset as in [Marimont, 1984), and non-accidentalness could be judged according
to the degree of constancy of curvature relative to the scale of smoothing.
Possibly the most difficult problem which remains to be solved is the inter-
action between multiple scales of curve description and multiple scales of edge
detection. In the demonstration above, only one high-resolution edge opera-
tor was used to detect edge points, so that any slowly changing variations in
intensity would have remained undetected. It seems unlikely that the low reso-
lutions of curve segmentation could be run only on the output of low-resolution
edge operators, since this would be expecting two largely independent physical
processes—those which gave rise to the intensity cross-section of the edge and
those which gave rise to its longitudinal structure—to always operate at the
same scales. It would require about 5 times the current amount of computation
to examine every curve segmentation at every scale of edge detection—which
would hardly be a prohibitive factor—but this still leaves the problem of choos-
ing among the larger number of resulting descriptions. A preliminary selection
process operating on the edge descriptions, as in [Witkin, 1983], could also be
used to simplify and improve the process of choosing from among the descrip-
tions. Before selecting onc of these approaches, it would be very uscful to have
results from psychophysical experiments which test the capability of the human
visual system to detect Jow-resolution curve segmentations among edge points
that can be detcected only with high resolution edge opcrators. In fact, there is

a strong need in general for psychophysical data on curve segmentation.

.............

..............................
..................

e

bt




g - SR I A A RN T AR ¥ A e SRS A A I St R 4 DA N A A TR S S L AT I e I R Y

Chapter 5

THE USE OF VIEWPOINT
INVARIANCE CONDITIONS

Chapter 3 described properties of the image formation process that determnine

which image features will occur significantly more often than by chance, and
thercfore will be statistically detectable in an image. In particular, only those
image features that remain invariant over a substantial range of viewpoints of the
scene can be reliably separated on statistical grounds from accidental occurrences
of the samc image features. In addition to determining which image features are
detectable, these invariance conditions lead to specific inferences regarding three-

space relations from the two-dimensional image groupings. Figure 5-1 illustrates

this forin of inference, which can provide some of the same three-dimensional
: information as processes such as sterco or shape-from-motion. In this chapter
- we will also consider other forms of imaging invariance, such as the invariance -
F of certain shadow features with respect to positions of the light sources which
- illuminate the scene.

- This use of viewpoint independence assumptions to derive interpretations
from various classes of image alignments was first described in [Binford, 1981].
- While we have described these inferences in probabilistic terms, Binford pointed
- out that they are generally reliable enough to be used in a simpler qualitative rea-
f soning scheme which only considers accidental alternatives when faced with coa-

tradictory interpretations. Section 5.3 will describe a computer program which
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Figure 5-1: The two sets of three-dimensional curves, (a) and (b), project to the
identical two-dimensional curves in the image plane. However, reasoning from the
image to the scene under the asswunption of a camera position which is independent of
the objects, we find that the curves at (a) are a tnuch more likely explanation for the
image than those at (b). In particular, it is unlikely in this example that separated
curve terminations would project to a common point in the image, that a curved line
would appear straight, or that non-parallel lines would appear parallel. Therefore,
we can infer that the three-space conliguration almost certainly satisfies these various
constraints, as is the case for the curves shown in (a).

uses these inferences in a qualitative way to derive three-space relations from
hand-generated image curves. However, a full probabilistic thcory and reasoning
method would have supcrior performance in cases where ilnage measurements
were less reliable and had a substantial likelihood of being confused with acci-
dental alignments. [Barrow & Tencnbauin, 1981 used another version of the

viewpoint independence assumption to infer the three-dimensional shape of in-
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dividual smooth image curves, a process that would complement the inferences
described above. They demonstrated that independence of viewpoint implies
that certain interpretations of an image curve are much more likely than others, B

and that the most likely interpretations correspond to the subjective interpreta- ."‘_;j"

tions of human subjects.

5.1: Three-space inferences from image features iy

In this section we will enumerate and examine in greater detail the inferences
which follow from the assumption of independence of camera position. There
are two basic steps involved in the application of each of thesc inferences: (1) .
given that an image relation is invariant with respect to a substantial range »
of viewpoints of a three-space relation, we can expect the image relation to
occur often enough to be statistically separable from accidental occurrences and
therefore to be a worthwhile objective for a search of the image, and (2) given that
we have detected an instance of the relation in an image with sufficient accuracy
that it is unlikely to be accidental, we can make the inverse inference that this is o
an instancc of the three-space configuration. A full probabilistic analysis of each ‘
inference would require all the steps described in the previous chapter, such as the
use of assumptions regarding background distributions and prior probabilities of
occurrence for the three-spaée relations. However, in this chapter we will content
ourselves with a qualitative analysis of the invariances and will simply list the -
conditions under which the image relation could arise through an accident of
viewpoint or light-source position. Fortunately, the inferences are strong cnough
that they can be used successfully in this type of qualitative reasoning scheme. |
In addition to inferring three-dimensional structure, the inferences can be
used to classifly image curves into three distinct classes: those caused by dis-
continuities in the geometry of an object (edges), in the reflectance of a surface
(markings), and in the illumination (shadows). The curves created by discon- S

tinuitics in object geometry can be further subclassified into those which arise
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from discontinuities in surface tangent (creases), from surfaces which curve away
from the line of sight (limbs), and from structures which are so thin that both
opposing edges can only be distinguished as a single image curve (wires). In
curves detected from digitized images, there is often local photometric evidence
to distinguish among these classes (particularly in the case of wires and shadows .
[Witkin, 1982]). However, for the sake of generality our discussion will assume
that no preliminary classifications have been made, as is the case when interpret-
ing true line drawings. See Figure 5-2 for a table containing pictorial examples

of the image relations which give rise to each of the following inferences.

1) Collinearity. When any set of three or more distinguishable points are
collinear in the image, we can infer that they are also collinear in three-space.
The unlikely alternative is that thé points are all coplanar with the position of

the camera. This can be extended to the case of inferring that a straight line

in the image is also a straight line in three-space: the accidental interpretation
is that the line is a planar curve and the camera position happens to lie in the
planc containing the curve. When two straight lines are collincar in the image
ﬁ they must be collinear in three-space, unless they arc coplanar and the camera

is accidentally in the plane containing the lines. This inference can be used, for

1
i' - cxample, to bridge gaps in a line caused by occluding objects or to connect a
& dashed line.
* -
2) Curvilinearity. The preceding inferences extend to arcs of constant curva-
-
[:" ture. In particular, when two curves or four or morc points lie on a circular arc )
:. we can assume that they lie on a common arc in three-space. Iowever, since
- constant curvature in three-space does not necessarily project to constant cur- )
'_..': vature in the image over extended intervals (e.g., circles project to cllipses), this
[ inference will often only be useful over a limited local extent.
o

3) Terminations at a common point. When two or more curves terminate

at a common point in the image—as in the casc of L, Y, K, or higher-order
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2-D relation $-D inference Examples
1. Collinearity of points or line Collinearity in three-space o P
segments * b
L
. e
2. Curvilinearity of points or arcs Curvilinearity in three-space ¢ * \
. [
. /
3. Two or more terminations at a Curves terminate at a common
common point point in three-space
4. Termination at a continuous Terminating curve is no closer to
curve the camera than the continuous
curve
§. Croesing of continuous curves Both curves cannot be occluding
geometric edges
6. Parallel curves Curves are parallel in three-space //
7. Three or more lines converge to Lines are parallel (seen in per-
a common point spective) or converge to a com-
mon point in three-space
. . /
8. Equal spacing of collinear points  Equal spacing in three-spacs and
or parallel lines parallel lines are coplanar . / /
. ’
9. Relations hold between termina- Same relation holds between o
tions or virtual lines virtual features in three-space  ° * . / I / I \ / I
[ ] * : )
10. Virtual lines between tangent

discontinuities in curves converge
to an illumination convergence
point

Curves correspond to geomet-
ric edges and their cast shadow
boundaries

Figure 5-2: This table summarizes the inferences described in the text. The first
column gives a two-dimensional relation bctween image features from which the three-
space relation in the second column can be inferred.
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junctions—we can infer that they terminate at a common point in three-space.

o

The alternative is that there has been an accident in viewpoint in which the

camera happens to lie along a single ray in space connecting the terminations. s
In other words, this inference allows us to infer connectedness in three-space |
from connectedness in the image across these junction types, with no special i *
assumptions regarding the scene. This performs one of the most important tasks ‘

of early vision, which is the segmentation of the image into sets of features which I

B MR CEREE - it

are related in three-space. Accurate segmentation greatly reduces the search

space that must be covered when matching world knowledge to the image.

!

4) Termination at a continuous curve. When an image curve terminates

Dist A S g
EEERE f e - e - _ e -

at a continuous curve (a T junction), the terminating curve cannot be closer

to the camera than the continuous curve; otherwise, it would be an accident

LA

[N VR VP Y

of camera position that the termination happened to occur on the other line.
If we have other knowledge regarding the categories of either curve, we can
carry information across the juhction. The T junction could be the result of )
three differcnt occurrences: the occlusion of any type of curve by a geometric
boundary; the termination of a surface marking, shadow or wire at a geometric
boundary; or a combination of surface markings. Therelore, if we know that the

terminating curve is a geometric boundary, then we can infer that the continuous

AMEES X A K SN X

curve is also a geometric boundary and we know its direction of occlusion. If

we know that the continuous curve is a geometric boundary occluding on the
side of the terminating curve, then we can infer that t’ . terminating curve must
P be a surface marking or shadow. If we know that the terminating curve is a l

shadow, then we can infer that the continuous curve is a geometric boundary.

This last inference is bascd on the assumption of independence of light-source
; position, sincc it would then be an accident if the light source were aligned to cast
a shadow which happened to terminate at a surfacc marking, wire, or shadow

cast by another light source.
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5.1 Three-space inferences from image features 79

5) Crossing of continuous curves. When two continuous curves cross one
another (an X junction), they cannot both be occluding geometric boundaries. 1
If we know that one curve is an occluding geometric boundary, then the other )
curve must be closer to the viewer and must be either a wire or the edge of a i
partially transparent objcct. If we know that one curve is a shadow, then the
other curve must be a surface marking on the same surface, another shadow (cast
by a different light source) or a wire which is closer to the viewer than the shadow.

Since these cases can often be distinguished on the basis of local evidence during

P ‘:?.‘L.' e gt

Y

edge detection, shadows provide a powerful source of information regarding the

nature of curves across which they fall.

68) Parallelism. We can infer that curves which are parallel in the image are

also parallel in three-space. Otherwise, given two non-parallel straight lines the

el I

camera must be restrictively placed to create parallelism in the image, and the

probability of accidental parallelism greatly decreases as the curves become more

complex. The inverse is not always true: parallel lines in three-space may not be
parallel in the image due to perspective convergence. Iowever, many instances of
F parallelism involve separations covering only small visual angles where perspec-

tive effects arc insignificant—the remaining cases arc covered by the following

class of inferences. : 79

7) Lines converging to a common point. When three or more lines converge
to a common point we can infer that they cither converge to a common point in -
three-space or arc parallel in three-space (with the convergence to a vanishing

point being an effect of perspective projection). Often there will be a consider-

D sl st (D MR

able number of parallel lines in a scenc (for example, aligned with gravity) which
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provide a strong basis for making this inlerence. As a corollary, once a vanishing

point is determined, then any line in the image pointing to that vanishing point

can be assumed to have a particular orientation in three-space, barring an ac-

o S i

cident in camera position. [Barnard, 1983] has exploited similar constraints for

the interpretation of perspective images.
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8) Equal spacing. A series of collinear points or line segments which are

\
|
equally spaced in three-space will project to collinear points or segments in the |
image which also have equal spacings—barring perspective effects which lead to a
smoothly changing spacing. Therefore, once we have detected collinear elements

in the image as described above, we can look for constant or slowly changing
spacings in the image which imply constant or near-constant spacings in three-
space. For example, this provides information from dotted or dashed lines. It is
even more valuable to detect parallel lines with constant spacings in the image,
since this implies not only that the lines are parallel in three-space as described
above, but also that the lines are coplanar (and equally spaced). Otherwise,

it would be an accident that the camera was placed to produce equal spacings

between non-coplanar parallel lines.

9) Virtual lines and points. Many of the inferences described above cre-
ate new distinguished points or lines in the image fromn combinations of other
features. These “virtual” points or lines can be used recursively to generate
three-space relations in the same way as the initial fcatures in the image. For
example, if we detect a collinearity relation_ship between a number of points, then
these points form a virtual line. If this linc is parallel to another linc in the image
we can infer that the virtual line connecting the points in three-space is parallel
L‘;‘ to the three-space position of the other line. Virtual features also include the
- virtual points at the terminations of a curve. For example, when a number of

curve terminations are collinear we infer that the terminations are collinear in

three-space.

10) Shadows create parallel virtual lines. By combining several of the
inferences given above it is possible to create new inferences which apply to the
particular case of interpreting illumination discontinuities. When the geometric

boundary of some object casts a shadow onto a surface, any tangent disconti-

nuities (corners) in the geometric edges casting the shadow will lead to tangent

.......
.......
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5.1 Three-space inferences from image features 81

discontinuities in the cast shadow (unless the light source is accidentally located
in the plane of the object tangents). This means that there will be a pairing in
the image between tangent breaks in geometric edges and in illumination edges,
with the virtual lines formed by these pairs being parallel or converging to a
common point.

In perspective imagery there is an sllumination convergence point in the
image through which the images of all illumination rays from a point source pass
(this is true even for nearby point sources). If the point source is in front of the
camera lens plane, then the convergence point is, of course, the location of the
point source in the image. If the light source is behind the camera lens plane,
then the illumination convergence point is located at the point of projection of
the light source onto the. film plane on a ray which passes through the projective
center of the camera, and the illumination streams towards this point rather than
away from it. If the point source is exactly in the lens plane of the camera, then
the perspective effect compensates for divergence from the light source to make
the illumination rays parallel in the image.

There are a number of ways to make use of thesc constraints on illumination.
If the illumination convergence point in the image is known for some light source,
then any of the virtual lines which are aligned with this convergence point can
be inferred to be an instance of a geometric edge casting a shadow. Otherwise it
would be an accident of camera position in which unrelated discontinuities hap-
pened to align by chance. The matching of gcometric edges to shadows not only
identifies the class of each image curve, but also provides important information
about the three-space scparation of the object and surface (proportional to the
length of shadow cast for distant sources of illumination). A second application
would be to detect illumination convergence points in the image by searching
for significant numbers of the virtual lines which are parallel or converge to a
common point. Note that all of these inferences remain valid in the presence of

multiple sources of illumination.
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82 CHAPTER 5: THE USE OF VIEWPOINT INVARIANCE CONDITIONS

dnstendins il tcs.

5.2: Recovery of 3D properties from line drawings

The inferences given above can be applied directly to perceptual groupings de- : !
tected in the image to recover three-space properties of the original scene. In

contrast to previous approaches to line-drawing interpretation, this method re-

quires no restrictive assumptions regarding the scene. The best-known previous

approach has been to assume a restricted model of the world and enumerate

the possible junction types and other image features which are consistent with
the model. This work, as developed by [Huffman, 1971], [Clowes, 1971}, [Walts,
1975), [Mackworth, 1973], [Kanade, 1981], [Sugihara, 1978}, and [Draper, 1981],

while operating successfully within the specified domain, has proven to be very

M AP R
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difficult to extend to general classes of scenes. These models assume that all
cdges in the image are straight and that the scene consists only of polyhedral ob-
jects or polygonal surfaces. Attempts to extend the methodology to scenes with
curved lines have had little success. Of even greater practical significance, these
mecthods assume perfect drawings of the scenc and do not degrade gracefully in
situations with missing and imperfect data.

The application of the inferences given in the previous section to actual im-
ages requires methods for combining information from the differcnt constraints
and for resolving conflicting interprctations. The inferences then result in the
categorization of image curves and the specification of three-space relations be-
tween features of the image. Many of the inferences are built on the results of
previous inferences which must be combined and propagated to adjacent struc-
tures as they occur. For our program, we have chosen to use a straightforward
form of constraint propagation, in which the results of previous inferences are
systematically explored. For cxample, when an image curve is categorized as
a shadow or geometric boundary, this leads to a systematic examination of all

junctions between that curve and adjacent curves to see whether inferences can
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3
|

' be propagated across the junctions. An important issue is the resolution of in- ’

consistencies in the constraint network—for example, inferences which assign two :

different categorizations to the same curve. Although the possibility of incorrect

inferences would be vanishingly small given perfectly accurate image measure- o

ments, in practice there will be some probability of errors given the limitations of

accuracy in image measurements. A reasonable strategy, which we have adopted

. . e . . -
in our system, is to ignore both alternatives of a conflicting interpretation unless j
one has more sources of evidence behind it than the other, in which case it is )

chosen as the correct interpretation. 1

[ Although it is common for many interpretations to be overconstrained—
s with multiple inferences leading to the same conclusion—it is also common for
some aspects of the final result to be unspecified. The purpose of these inferences

2 should not be viewed as the construction of a complete depth map or “intrinsic

image.” What they provide is a partial segmentation of the image into sets of

related features as well as constraints on three-space relations between compo-
nents of the scene. This information can still greatly reduce the scarch space
which must be explored in comparing the image to specific models, as described

in Chapter 7. It can also be uscd in combination with information from whatever

i
]
.
s;

other sources of information are available, such as shading or sterco.

The sequential style of constraint propagation is used in the computer pro-

RS . B R

gram described in the next section. However, a parallel model for the application
of the inferences would be more in keeping with our knowledge of the human vi- Ny

sual system. This parallel model would be based on perceptual opcrations of

the type described in the previous chapter, which would be applied uniformly to

the entire image and would detect all instances of significant collincarity, paral-
lelism, convergence, endpoint proximity (junctions), etc., with inferences being

propagated in parallel between neighboring features. The most complete use of

. L S U A I )
LA

these inferences would be obtained by making explicit estimates of the proba-

bility that each [cature could be accidental. These estimates would be based
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84 CHAPTER 5: THE USE OF VIEWPOINT INVARIANCE CONDITIONS

upon the accuracy with which each relation can be measured in the image and
on the probability that an accidental camera position or other accident might
have occured to the mecasured degree of precision. These probability estimates
could be used to resolve inconsistencies in a more accurate way and to focus
attention of later stages of the visual process on the more certain pieces of in-
formation. In addition, they would allow the inferences described here to be
integrated with other types of inference based on probabilistic properties of the
world. An example is the perceptual detection of skewed symmetry explored
by (Kanade, 1981], which is based on the assumption that bilateral symmetry is
common in the world rather than on the assumption of independence of view-
point. However, valuable as the probabilistic reasoning might be, it should also
be emphasized that in typical scenes there are many inferences which can be
made with great certainty, and many scenes are sufficiently overconstrained to
make the problem of incorrect inferences one of secondary importance. The
following section describes a computer program based upon these simpler as-

sumptions.

5.3: A demonstration of three-space inference

We have implemented a computer program that applies many of the inferences de-
scribed above to hand-input image curves. The program is written in MACLISP
and runs on a DEC KL-10 computer. This program uses a simple form of con-
straint propagation, in which all the infercnces resulting from any catcgorization
or rclation are systemalically propagated until there are no further changes (in
practice, this process seldom proceeds through more than one or two levels of
inference). The image. rclations are detected by testing image features against
preset thresholds (c.g., lines are considered parallel if they are within 10 degrees
in oricntation and are closcr in proximily than the length of the shortest line).

The success of these simple criteria for detecting image relations depend upon
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5.3 A demonstration of three-space inference 85

the high quality of the hand-traced image curves. This is particularly true for
detecting curve terminations and junctions, which are often missed or poorly
located by current edge detection methods. However, there is reason to believe
that substantially improved techniques for locating terminations and forming
junctions can be developed in the future [Binford, 1981].

The curves input to the program are represented as cubic splines. Junc-
tions are formed after input based on proximity of terminations to curves or
other terminations, using a preset threshold for judging proximity. Figure 5-3(a)
shows a digitized aerial photograph taken over San Francisco airport, and Fig-
ure 5-3(b) shows the splined curves which were traced by hand from this image,
using the output of an edge detection program as a guide. The program was
also given the direction and angle of illumination, although as described in the
previous discussion this information could probably be derived directly from the
image.

Figure 5-3(c) shows dotted lines parallel to the projected direction of illumi-
nation that conncct pairs of tangent discontinuities (these shadow features were
described in part 10 of the list of infercnces above). From these, the proéra.m
categorizes the curves in the pairings as gecometric edges or shadow boundaries,
dcpending upon which end they occupy of cach pair. Figure 5-3(d) shows a circle
over each termination of a curve at another continuous curve, through which con-
straints on curve categories can be propagated to categorize neighboring curves
(using the inferences described in part 4). The programn then attempts to form
a closed geometric boundary around individual regions, using the previous cat-
cgorizations of certain curves as geometric boundarics. Each curve is followed
through all unambiguous continuations (collincar segments or curves which ter-
minate at the same location), in an attempt to form closed regions. A region
is accepted if a curve and its unambiguous continuations form at lcast 75% of
the perimeter of the region. Another source of evidence used to form region seg-

mentations is parallelism between geometric boundaries, which is accepted when
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Figure 5-8: These figures show stages in the inference of three-space relations from
- band-traced image curves. The curves shown in (b) were traced by hand from the
\ acrial photograph of an airplane at San Francisco airport shown in (a). The subsequent
steps of interpretation were carried out without human intervention from this initial
curve data. These steps include detection of pairs of tangent discontinuities parallel to
the direction of illumination (c), propagation of constraints through T-junctions (d),
geometric surface segmentation (c), matching of shadow curves to geometric edges (f),
and the formation of a three-dimensional description which can be vicwed from diffierent
positious (g,h).

two geometric boundaries arc parallel within 10 degrees and also form 75% of

]
g
R
)
\
p

the boundary of some region. The result of these gecometric surface segnientation
processes is shown in Figure 5-3(e).

Figure 5-3(f) shows shadow boundaries represcnted as dotted lines, and

pairings are given between geometric boundaries and the shadows which they

cast. From this information, it is possible to calculate the rclative scpara-

tions of surfaces based upon the lengths of the shadows which they cast onto
other surfaces. Given a distant point source with parallel illumination rays,
the length of a cast shadow is proportional to the scparation of the geomet-

ric boundary and shadow curve. If the oricntation of the shadowed surface is

SRS T

known, then the orientation of the gecometric edge casting the shadow can be

determined. The program initially assumes that arfaces are parallel to the
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AL

camera plane and then looks for evidence to the contrary, based upon rela-
tive separations at different locations along a geometric boundary and its cast

shadow. For example, the tail surface of the airplane is found to be approx- -

B 3 DRI

imately vertical with respect to the ground. See [Shafer, 1982] for a much
more detailed analysis of the use of shadow matches for constraining orienta-
tion.

From this set of surface segmentations, orientations and separations, it is

possible to construct a partial three-dimensional geometric description of the
scene as shown in Figure 5-3(g). This representation assumes that surfaces are

horizontal in the absence of other evidence, and shows each surface as a solid

O .

box extending down to a uniform ground plane. Since this is a three-dimensional
representation it can be rotated and viewed from other angles as shown in Figure
5-3(h).

As mentioned earlier, it is not possible in general to construct a full depth o
map of the image and this should not be considered the major purpose of the
inferences. Aerial photography has lighting conditions which arc particularly

suited to generating fairly complete depth descriptions. The assumptions re-

SNy

garding horizontal surfaces would not be as reasonable for many other types of |

P

images. However, even in the absence of any information f[rom shadows and with-

out being able to determine surface orientations, the mnany other inferences allow

S P M
.

segicntation of the image and the inference of many types of threc-space rela-

tions. In fact, for the purposes of recognition, it can be argued that scgientation .

T e,
PSR

and symbolic relations do more to reduce the scarch space for matching than does

! a simple depth map of the scene. The purposc of this program is to illustrate .

v

T
Tl

the strength and generality of these inferences derived from viewpoint invariance.

Clearly, much more work would be required to develop a program that did not

g

have the arbitrary detection thresholds and that could operate successfully with ‘ '

rcal image data.
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5.4: Conclusions and future development

In this chapter, we have described and demonstrated a number of inferences for
the interpretation of image curves that do not require restrictive assumptions

about the nature of the scene. The infercnces are based on the simple assump-

T T

tions that the camera viewpoint and light-source positions are independent of the
objects in the scenc—assumptions that are valid for most classes of images. In
cases where these assumptions are violated—as in some engineering drawings—
human vision has difficulty in providing three-dimensional interpretations. These
inferences can be applicd on their own to segment and provide three-space infer-

ences from the image, as was demonstrated in the compuler program. However,

p—

an important remaining challenge is to integrate this form of inference with the

full set of perceptual opcerations described in the other sections of this thesis.
This would require a detailed statistical analysis of each type of inference, and
would require inference methods that could combine and use these statistical re-
sults. Aspects of this problem will be described in Chapter 6, but much research
remains to be done before final answers can be ziven.

There are also ways in which the simple, qualitative application of these

inferences could be improved. One obvious nced is for better methods for de-

RILAA R~ Kt ap M be e~ gy

tecting and locating curve terminations and junctions in digitized images, since

T

these provide a basic and reliable source of information. It is also important
to accurately localize the curves themselves, as well as tangent discontinuities.
3 Another significant goal would be to combine the information from these infer-
: cnces with other sources of three-dimensional information, such as that produced

by the interpretation of sterco, motion, or shading. The simple depth-map rep-

resentation is inadequate for representing many of the constraints produced by
the three-space inferences described in this chapter, so more complex forms for

representing three-space constraints would need to be developed.
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Chapter 6

MODEL-BASED SEARCH
AND INFERENCE

Onc of the central topics of artificial intelligence research has been the problem
of efficient search. For many problems in Al, there are straightforward methods
for solving a problem by enumerating over a large set of possible interpretations
and looking for those that are consistent with the given data. Unfortunately, in
many cases the set of possible interpretations is combinatorially large and cannot
be enumerated in a reasonable amount of time. Therefore, a substantial amount
of Al rescarch has been devoted to finding methods for speeding up the scarch
process. These methods fall into two classes: the so-called weak methods that
look for general purpose algorithms that could be applied to any scarch problem,
and the strong methods that attempt to apply specific knowledge of the problem
at hand. Recent Al research haS tended to concentrate on the strong methods—
in particular, making use of large amounts of world knowledge that can often
be applied to find a quick path through what would otherwise be an intractable
search space.

The problem of model-based computer vision falls neatly into this category
of search problems. As will be demonstrated in the next chapter, it is usually
possible to determine reliably the correctness of some modcl-based interpreta-
tion of an image once a match has been suggested. It is also straightforward to

enumcrate all possible interpretations for an image. The significant remaining
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02 CHAPTER 6: MODEL-BASED SEARCH AND INFERENCE

problem is reducing the size of this search Qpace. As in other areas of Al, there is
no single, magical method for solving this problem—it is necessary to incorporate
many types of world knowledge and many intermediate problem representations
to achieve substantial success. Even then, the performance of any system, in-
cluding human vision, will be inadequate for some subset of the possible tasks.
The previous chapters of this thesis have been concerned with the use of per-
ceptual organization to provide information which reduces the range of possible
interpretations that must be considered for a collection of image features. This
chapter will examine methods for the actual enumeration of this search space and
describe the ways in which perceptual organization can have a major impact.
There are two major components of the search space that must be covered
during image interpretation. The first component deals with the space of possi-

ble viewpoints on each object. Since spatial information in the image is highly

dependent upon viewpoint, any strong predictions for spatial appearance of an
object are likely to apply to only a relatively small subrange of the possible view-
points. Therefore, a complete se-.ch must enumecrate over the various discrete
ranges of viewpoints that need to be considered. The seemingly large size of
this search space has been a major factor leading researchers to avoid searching
over the range of viewpoints and instead direct their efforts into the derivation
of three-dimensional structure from the image. While it is true that direct three-
dimensional information would reduce the complexity of this component, it is
also the case that general purpose vision requires recognition even in the absence
of bottom-up depth information. Fortunately, as will be described in the follow-
ing section, the size and complexity of this scarch space turns out to be quite
manageable, particularly if we make use of perceptual groupings.

The second major component of the search space is the problem of selecting
an object description for matching from among the potentially vast number of
objects that could appear in a given scenc. In the absence of well-established

methods for recognizing even single, known objects, this problem has not been a
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6.1 Searching the space of possible viewpoints 93

major focus of research. However, this component of the search problem is poten-
tially much larger than the space of possible viewpoints, and we can expect it to
increase in importance with each improvement in the performance of computer
vision systems. Perceptual organization can again play a major role in reduc-
ing the size of this search. We will describe an inference procedure—borrowed
from recent work on expert systems—for using the various groupings that are
detected in an image to update our expectations regarding the presence of par-
ticular objects. These changed expectations can result in very large reductions in
the amount of search required for recognition. Additionally, these methods allow
us to combine information from many different sources into a single estimate of
whether some object is present. For example, we can make use of contextual in-
formation in which the recognition of one object in a scene leads us to increased
expectations for certain other objects. This can also be combined with color,
texture, motion, and information from other sensory modalities. These methods
are of interest from the psychological viewpoint as well as for their application

to computer vision.

6.1: Searching the space of possible viewpoints

The space of possible viewpoints may at first seem to be too large for carrying
out an exhaustive, quantitative search over all the possible projections of an
object into an image. There are a total of six viewpoint parameters for a camera
of known focal length, which specify an object’s location in the image, distance
from the camera, and oricntation in three-space. llowever, if we only predict the
relative locations of features in the image, these predictions will be invariant with
respect to location in the image and rotation in the image plane—Ileaving only a
three-parameter space determining distance from the camera and rotation out of
the image plane. Of greater significance is the fact that relations between object

features usually vary slowly and smoothly with respect to changes in viewpoint.
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04 CHAPTER 6: MODEL-BASED SEARCH AND INFERENCE

Although there are discontinuities in some relations from certain viewpoints,
there is no need to include every possible prediction, so these discontinuous cases
can be ignored. This means that it is unnecessary to sample the parameter ranges
very densely. For a fairly wide range in each parameter, it is possible to make
quantitative predictions regarding relative locations of features in the image that
are adequately bounded for avoiding a profusion of false matches.

A straightforward—but highly-optimized—application of this search over
the space of viewpoint parameters is described by [Goad, 1983]. His model-
based vision system searches for sets of edges in an image which could be the
consistent projection of three-dimensional edges of a known object. The method
consists of a depth-first search procedure that considers discrete sets of ranges
of viewpoint parameters at each node in the search tree. This search cycles
repeatedly through three steps as it descends through each level of the search.
These steps can be referred to as predict, match, and back-project. The first
step predicts the orientation, location, length, and curvature of some edge in the
image, with the orientation and location being relative to any already-matched

features. If no fcatures have becn matched yet, then the prediction may not be

restricted to any particular location or orientation, and will therefore match any
edge in the image of the correct length or curvature. The second step consists of
searching the image for all features which match the given prediction. For each
9 of these matches, a new child node is created in the search tree for further search.
- The third step of back-projection operates at each new node of the tree to use
the measured location of a matched image feature to narrow the ranges under
.' consideration for the viewpoint parameters. It is this back-projection step which
gives the sequential scarch procedure its strong advantage over methods which
attempt to predict the appearance of a complete image which is then matched as

a whole. For well specified models, only about threc image features need to be

matched before the viewpoint is constrained to approximately a single position.

Thercalter, further levels of the search are unlikely to find false matches in the

...........



P R R T T T TR e T T e o ™ ol b - Bk JCSM ST
!

6.1 Searching the space of possible viewpoints 05

image and so there is no further expansion of the search tree. Since image features
may be missing due to the unreliability of feature detectors and the presence
of occlusion, it is necessary to expand the search space somewhat to allow for
missing features. Therefore, each node of the search tree may sometimes also
be skipped and matching will proceed to the next level without a match and
without further restriction on the viewpoint range.

The back-projection step is the most diflicult from a mathematical view-
point, since there are no simple, closed-form solutions for determining the range
of viewpoint parameters consistent with a given set of image matches. Goad clev-

erly handles this problem and also achieves large gains in speed by making use of

an extensive precomputation system. During the precomputation phase; values
which will be needed at funtime for various stages of the search are precomputed
and stored in tables at an appropriate level of resolution. The result is that
typical objects can be robustly recognized in a viewpoint-independent manner q
! in times on the order of one second while the system is running on a MC68000

microprocessor. This is a powerful demonstration of the fact that scarches over

the range of possible viewpoints can be accomplished with modest amounts of
* computation.

In addition to scarching through the space of paramecters determining view-
F point, it is possible to also include paraineters of variation in a model arising from

generic object descriptions. This problem was a major focus of the ACRONYM

system [Brooks, 1981], which was also one of the first modcl-based vision sys-
tems to implement the predict, match, back-project cycle. ACRONYM had more :

gencral goals than Goad's system, in that it included this problem of scarch- !
: ’ ing over a space of model parameters and then solving for the resulting bounds j:I;
. on image measurements using a general symbolic algebra system. ACRONYM
' was able to integrate knowledge from many different sources with this symbolic ;

constraint system, including prior restrictions on viewpoint and depth informa-

tion from stereo correspondence or other sources. Unfortunately, the symbolic
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B

equation solver was unable to solve for precise bounds from the trigonometric
equations describing projection from arbitrary viewpoints, so the capability of
the system for quantitatively searching the space of possible viewpoints in two-
dimensional image data was quite limited. However, it is the most comprehensive
vision system to date which has been based on a systematic search for spatial
correspondence.

A similar search process has recently been used by [Grimson & Lozano-Péres,
1983] to recognise objects from sparse range data or the output of tactile sensors.
They examine and analyze a number of local position-independent constraints
on pairs of features that can be used to prune the search space. However, their
methods assume the use of range and surface orientation data and do not extend
to the use of two-dimensional features that are being considered here.

One open problem in applying the above methods for searching the space of
viewpoints is how to choose the optimal subdivision of the viewpoint parameters
into discrete ranges. There is a tradcofl betwecn choosing small ranges of pa-
rameters, which would require more discrete cases to be considered, and choosing
larger ranges, in which case there may be poorer discrimination in image mea-
surements leading to more false matches. In practice it appears that choosing
fixed, modecrately-large ranges works well, but this will certainly not always be

the optimal choice.

6.1.1: The role of perceptual organization -

Perceptual groupings can play two important roles in reducing the size of this
search space over viewpoints and object parameters. First, they can greatly
reduce the number of false matches which must be considered at a given stage
of the search. For example, if we are searching for sets of parallel edges, it is

likely that there will be far fewer candidates to consider than the number of

all edges in the image. As the perceptual groupings becoine more complex, the
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probability of finding false matches decreases even further. In quantitative terms,
if the average density of features being matched decreases from D to D', then

the branching factor at each level of the search tree will be reduced by a factor

of D'/D (assuming uniform distribution of features).
Secondly, perceptual groupings can lead to much stronger results during the
back-projection step than isolated features. For example, matching a single edge

to a model puts far fewer constraints upon viewpoint than would a match to

a grouping of several edges. Since it is the unconstrained viewpoint during the

first few Jevels of the search tree which accounts for most of the size of the search

space, the ability to strongly constrain viewpoint from the initial match can
result in a dramatic reduction in search. A similar point was noted in [Brooks,
1982] for the solution of .back-constraints in the ACRONYM system.

Balanced against the advantages of using perceptual groupings are the costs

of performing perceptual organization. However, although these costs may be

substantial, the grouping only needs to be performed once for all objects and
therefore its cost for each attempted match will not be significant if enough
objects are being considered. Another requirement for making use of perceptual
groupings is that the object’s projection must contain perceptually significant

groupings often enough to make them worth searching for. This requirement

seems to be met for almost all objects. However, as was shown by the example of
Figure 1-4 (in the case in which a person is told that the image contains a bicycle)
human vision seems to be fully capable of searching the set of possible viewpoints
for a known objcct even when there are no significant groupings beyond the level
of edges.

The ACRONYM vision system performed its matching against a particular
form of image groupings known as ribbons. Although these were not detected
strictly bottom-up—some parameters of the ribbons were specified top-down
from knowledge of a particular object—the ribbons themselves were a combina-

tion of several of the types of perceptual groupings which we have discussed in

...........
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previous chapters. A ribbon was defined as an elongated shape in the image which
was the projection of a generalized cylinder {Binford, 1971]. The detection of the
ribbons was performed by a search procedure among straight edge segments,
which looked for a combination of endpoint proximity, collinearity, parallelism
of opposing sides and a certain overall degree of closure for the region. Given
the poor quality of the initial edge data, this algorithm did a reasonable job of
selecting perceptually significant structures for use by the matching algorithm.

6.2: Searching the space of possible objects

In comparison with the space of ﬁossible viewpoints, which is of fairly constant
size for each object, the space of all possible objects is much larger and more open-
ended. The search over viewpoints consists of a small number of discrete cases—
within which continuous quantitative search techniques are used —whereas the
space of all possible objects seems to contain very large numbers of discrete
cascs. While there is some overlap between the two problems, we will be making
usc of a different method to handle the problem of searching anmong the set of
possible objects. The most important aspect of this search problem seems to be
the capability to combine information from many different sources to determine
our expectations for the presence of a particular object. For example, we will
want to make use of the simultaneous presence of a number of different perceptual
groupings, texture measures, color, size, contextual information and any available
prior knowledge. None of this information is likely to be absolute in the sense
that it always indicates the presence of a certain object or is always present
when the object is present. Therefore, in order to make maximum use of this
information we will use a probabilistic method which can represent the relative
importance of the various factors.

Fortunately, there has been a considerable amount of recent work in the

development of methods for combining probabilistic expectations, much of it
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motivated by the need to solve this problem for use in diagnostic expert systems.

We will first outline a general model of search which can make use of probabilistic
information to choose the optimal search path, and will then apply some of

the recent work on the combination of probabilistic evidence to the problem of

oy - Y. -

-‘.-4_1'_;.1"4

visual recognition. Finally, we will examine the integration of this approach with

hierarchical object descriptions and other components of a vision system.

R
- -

6.2.1: A model of probabilistic search among discrete objects

: If we had an infinitely large parallel computer, it would be possible to search
a simultaneously for every known object, so the length of time required for recog-
P ]

nition would be independent of the number of alternatives under consideration.

However, even for such a highly parallel system as the human brain, recognition

L
PO {

is much easier if there are prior expectations for the presence of a particular ob-

ject (as is shown by the examples in Figures 1-4 and 1-5). The methods we will -‘
be using assume serial search through a scquence of objects, but would extend
in the obvious way if a limited amount of parallelism were available to search for
some fixed number of possibilities simultancously. The objective will be to order :%

the search in such a way as to reduce the total amount of computation required

for recognition, and to update this ordering as new evidence is brought to bear.

Let P, be the probability that object k is present in the image. Let W,

be the amount of work (i.e., computation timne) required to verify the presence

. oo .. e
PR ") S LY

of object k by performing the subsequent scarch over the range of viewpoints

and modecl parameters. Then we can define a measure R which will be used to :
, determine the object ranking: s
Wi -
Ry = —
£ = P,
Given this measure, the optimal ranking of objects during search will be in terms
of increasing values of Ry: L |

(RI)R23R3)"'Rn)’ Rl' .<_ RH—I
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In other words, our effort will have the highest payoff if we are searching for
the object that requires the least amount of work on average for a successful
detection. The inclusion of the W, terms avoids some semantic difficulties in
what is defined to be an object, since if two separate objects of the same ranking
are combined and named to be a single object, both their P, and W) terms will
add together and there will be no change in the resulting ranking.

In order to calculate the average scarch time, we can sum up the amount of
work expended in trying to recognize each object times the probability that that

particular position in the ranking will be reached:

. n—1

A=W, +W2(1 -Pl) +W3(l —Pl)(l —Pg)+"'+wq. H(l —Pj)
=1 ]
n i-1 .
=ZW-'H(1-PJ')° :
=1 =1 .
|
It is always possible that no object can be recognized in some images, but this 1
just means that the probabilitics will not sum to 1 and does not affect the above 1

formulas. We can also calculate the mcdian search time, which is equal to the
sum of all the W terms up to the point at which the P, terms add up to 0.5.
Of course, an image is likely to contain many objects, and we have only been
calculating the time required to recognize the first object. However, as soon as
one object is recognized it provides contextual information which updates the
rankings and aids in the search process, so it would be improper to incorporate
multiple object recognition in a single ranking as given above.

Our objective will be to use all available evidence to update the rankings

of objects so as to minimize the average recognition times. Assuming that the

W, terms are fixed, our objective will be to increase the Py probability terms by
making usc of evidence regarding the particular image under consideration. As

shown in the formula above for average recognition times, any increase in a Py

-

~ has an effect on the product term for all objects which occur lower in the ranking.
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There is a further positive effect due to any changes in the ranking caused by

z Y

the updated value.

6.2.2: Evidential reasoning for reducing search

WOV} WA

Methods for combining information from different sources of evidence to up-

date probabilistic expectations have received a considerable amount of attention

(PR

recently for use in medical expert systems. In many respects, the problem of

diagnosing a disease from a number of symptoms is very similar to the problem

of trying to identify an object from a number of different sources of evidence

in the image. However, the image recognition problem as we have framed it is

actually simpler, since we will be using evidential reasoning only to speed up the
search process across different objects rather than to make the final judgment of
correctness for a match. The final decision regarding the correctness of a match
can rely on much more reliable quantitative matching as described in the next

chapter. Therefore, some of thec more complex aspects of recent work on evi-

dential reasoning in medicine are unlikely to be nceded or useful. For example,
there has been a considerable amnount of interest recently in the Dempstcr-Shafer
model of evidential reasoning which allows the user to represent degrees of igno-
rance as well as expected probabilities [Shafer, 1976; Lowrance & Garvey, 1982)].

However, there seeins to be no need for an estimate of ignorance when calculating

ENOWSERENS {

rankings for a search process, so the many complications in applying this type
of method necd not concern us.

The problem of decision-making under uncertainty has been a longstanding
topic of research in mathematics, based on the use of conditional probabilities
and Bayesian statistics. However, the use of Bayesian statistics was rejected
by the initial researchers in medical expert systems, since they assumed that it
would either require unrealistic independence assumptions or an impossibly large
number of known statistical parameters. Instead, they developed various heuris-

tic methods for combining evidence which sccmingly cased these requirements

------
------
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L‘ [Shortliffe & Buchanan, 1975; Szolovitz & Pauker, 1978]. However, Charniak

E has shown in an interesting recent paper, [Charniak, 1983], that these heuristic

: methods actually correspond to Bayesian reasoning under certain reasonable as-

! sumptions and that they can be formalized within the framework of conditional .
E probabilities. These methods can be readily applied to many situations requiring

evidential reasoning. The rest of this section presents an overview of Charniak’s

techniques and describes how they can be applied to the problem of model-based

g
h vision.

Let us assume that we have detected a number of features or properties of

the image, f;,...,fn, and wish to estimate the probability of the presence of a

particular object model, m,. In terms of conditional probabilities, this means i

that we want to calculate P(m;|f),..., fa). It would obviously be iinpossible to

PR BN L e o o me o o o

store the value of this quantity for all possible combinations of features, which

e

is why we need methods for combining evidence. Charniak bases his method on

the following form of Bayes’s theorem: ‘

Plmif ) = T e femd |

In order to express this formula as a combination of probabilities for the individ- 1

Can

Chan 28
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ual features, we must make two independence assumptions:
P(fi&ef;) = P(fi) « P(f;)
P(f:&f;lm) = P({fi|m) * P({;|m)
There will be many cases in which each of these independence assumptions are 4

violated, but these cases can be handled by methods which will be described

below. The independence assumptions allow us to break the joint probabilities

. into combinations of individual terms: *

8 , _ P(mi) + P(filmi) «-- -+ P(falmi) "
: P(m,lfl,...,fn)— P(fl)"“*P(fn) :
o = P(m.) = P(f;]m.-)] s [I’(Inlmu')] |
3 P« [ 7575 P(/2) |
|
b - 1
‘.
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This last formula gives the updating term for each new f;. We start with some
initial probability estimate P(m;) for an object, and for each new feature which
is detected we multiply this estimate by p—gﬁ:—"fl

This still leaves the problem of what to do when the independence as-
sumptions we made above are violated. The first assumption, P(f;&f;) =
P(f:) » P(f;), is very restrictive. In fact, it is in contradiction to the whole en-
terprise in which we are engaged, since it will be violated whenever two features
tend to arise together from the presence of a single object. However, Charniak
points out that this assumption is used only to dctermine the denominator- of
the above condifional expression, and is independent of any particular object.
Therefore, any violations of this assumption will affect all object probability es-
timates by the same factor, and will have no effect upon probability rankings.
This explains why it is possible to keep multiplying a probability by new factors
which may cause its value to become greater than 1. The final result should
therefore not be interpreted as an absolute probability estimate, but should be
used only for establishing rclative rankings. Happily, this is all that is needed for
our application.

The sccond independence assumption, P(f;&f;|lm) = P(f:|m) = P(f;|m),
states that two features are independent given the presence of a particular object.
This assumption will be violated if what we are calling a single object actually
has different subcases, one of which tends to contain the features while the other
one doesn’t. Charniak’s solution in this case would be to introduce states which
represcnt the differcnt subcases and to express the conditional probabilities with
respect to thesc subcases. There may be other situations in which the indepen-
dence of features given an object does not hold, but it is always possible to just ex-
plicitly remember the joint probability of P(f;&f;|m) in these cases, and to plug
this value into our updating formula whenever the two features are both present.
Therefore, we are assuming independence as our default assumption, but are also

retaining the option to include any information regarding non-independence.

........
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6.2.3: Design of a vision system using evidential reasoning

The attractive feature of using evidential reasoning for computer vision is that it
allows us to combine information of varying reliability from many sources, even
£hough no particular item of evidence is necessary or sufficient for recognising
a particular object. For example, if we have just walked into an office (or have
already recognized one object in an image which suggests that we are looking
at an office environment), we would like to increase our expectations of seeing
certain other objects, such as desks, chairs, filing cabinets, telephones, etc., but
we don’t want to completely rule out the surprising presence of any other objects. ;
Given that a desk is only one of thousands of common objects with which we
interact, our initial P(desk) in any scene might be only 0.001. However, since
we often expect to be in an office when we see a desk, say P(office|desk) =

0.5, and since our initial estimate for the presence of a desk was based on a low
probability for being in an office, P(office) = 0.01, we can now update our P(desk)
by a factor of 0.5/0.01 = 50. As Charniak points out, we could just remember
this updating factor rather than the separate probabilities. Thercfore, P(desk)
now equals 0.05 (for any given part of the scene), which will move it much closer

towards the front in our rankings of objects to consider. If we now consider some

perceptual grouping of a number. of equally spaced horizontal lines which could |
be caused by the drawers of a desk, ﬁe can increase our expectation for a desk
3 at that location by another substantial factor. If the region betwcen these lines
is of a color that is statistically associated with desks, or if it has a wood-grain
- texture, we can multiply these factors into our expectations. In this way, we can

® quickly move this object to the head of the ranked list, even though none of the

items of evidence is in itself very conclusive.
One obvious concern is that we nced to avoid spending so much time on this
updating and ranking task that we undo the savings we are trying to make in the

search process. It would clearly be impractical to update our expectations for
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every known object for every item of evidence that we encounter. The solution
is to adopt some threshold on the significance of object probabilities and impli-
cations which limits the number of objects which will be updated. We should
only consider those objects for which we have either a high current expectation
or for which the evidence under consideration carries a strong implication. This
ﬁﬂl fail to uncover those objects which could achieve a strong significance after
combining many individual items of evidence, none of which are even moderately
strong. However, it is not clear that even human vision would perform well in
these situations.

Another problem is that the Bayesian scheme assumes that all evidence is
being collected for a single conclusion. In medical diagnosis, this is known as
the multiple disease problem, since a set of symptoms may be the result of more
than one disease. Fortunately, the consequences of violating this assumption are
not very severe. In the medical situation, it is common to just assume that all
evidence is referring to a single disease, and then to use some other method of
looking at the top few highcst-ranked conclusions to see which combinations of
them best cxplain the evidence. Since in computer vision we will already be
relying on other methods to verify our final interpretations, this problem should
be of limited consequence. On the other hand, a typical image will contain a

substantial number of different objects, so it would be useful to make some effort

to see that the evidence we are combining refers to a single object. Contextual.

information will typically update our expectations for an entire scene, but per-
ceptual groupings, color, or texture refer only to a particular region. Therefore,
we should only combine these itcms 61' evidence if they are related by enclosure,
conncctedness, adjacency, or other indication that they are related in the im;ge.
Even better, we could weight their combination by the degree to which these
critcria are met.

Many readers may be wondering at this point exactly what the dividing

line is between an object and a feature. After all, an object can be built up
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from a hierarchy of component parts, each of which can be recognized in its own
right. For example, we can recognize the shape of the human body as a whole,
or recognition can proceed by first recognising an eye or a hand and proceeding
from that to recognizing other components. So, should our ranked list of objects
consist of overall object descriptions or merely the simplest level of components
out of which complex objects can be assembled? The answer is clearly that both
should be included, and that each fype of description will be useful in different
types of images. A desk is part of an office in much the same way that a handle
is part of a desk. We can proceed from the whole to the part or from the part
to the whole depending upon which is easier to recognize first. We can make use
of either evidential reasoning or of explicit model parameters as described in the
previous section to propagate information in either direction. The obvious result
is that our list of possible objects is going to be large, which makes the use of
evidential reasoning all the more important. '

We have been assuming that the various probability values are somehow
known in advance. One important extension would be to have these acquired by
a learning system and continuously updated as the system gains visual experi-
ence. Since the purpose of these values is to speed up system performance, the
system would still function given rough initial values for new objects, but would
gradually gain in speed as the values became more and more accurate. It would
be straightforward to update the values of P(f;) and P(f;|m;) for the features
after each successful recognition has occurred. The more difficult problem would
be to recognize instances in which the independence assumptions do not hold, and
to introduce intermediate states or the P(/f;&f;|m) values for combinations of
features. This is related to the problem of inferring optimal object categorizations
from a sample of data and is clearly a topic needing further research. However, -

even without recognizing violations of indcpendence, the automatic updating of

the conditional probabilitics would greatly simplifly the input of information.
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6.3: Summary

Methods for searching over the range of possible viewpoints and parameterized

-
instances of an object are now fairly well understood, at least for well-structured q
objects. They have been successfully implemented in working systems, and con-
- stitute an existence proof for the fact that bottom-up extraction of depth in- 'j
b formation is not necessary for recognizing three-dimensional objects. As new ’d
capabilities are introduced for performing perceptual organization, they can be
expected to result in dramatic improvements in speed over the exhaustive con-
sideration of every edge or other primitive feature in an image. ol

The topic of the sccond section of this chapter, the use of evidential rea-

A AR e R gt
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soning, is more speculative in nature, but it could eventually prove to be even =

more important since it deals with an inherently larger search space. Although
there arc many aspects that could benefit from further research, enough has been
developed so that it should be of practical use in, say, an industrial vision system
recognizing a large number of known objects. These methods are interesting from

the psychological viewpoint hecause they allow a systemn to incorporate many dif-

E ferent sources of evidence thal are probabilistic in nature, including contextual
E: expectations. Human vision seems Lo make extensive use of contextual informa-
t. tion from both cognitive and strictly visual sources (sce [Bicderman, 1981] for
F many relevant experimnents). Another potential impact of evidential rcasoning
_'. is that the ability to combine information from different sources could help to
Y reduce some of the isolation among various sub-ficlds of computer vision. For
. example, it could encourage the usc of color, which is not sufficient in itself for
5 solving most visual problems but can be very useful in conjunction with other

information. Finally, the potential for building a system which learns to improve

its perforinance as it gains visual expericnce is of ohvious long-term interest.
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Chapter 7

THE VERIFICATION
OF IMAGE 1
INTERPRETATIONS

One of the central arguments given in previous chapters for the importance of N
perceptual organization is that it reduces the otherwise enormous task of search- 2
ing for spatial correspondence betwecen image features and prior knowledge of q
objects in the scene. However, this argument is based on the assumption that

the final verification of the correctness of a set of correspondences can be carried

out quickly and reliably as part of the search process. In this chapter, some
practical methods will be described for performing this verification process, in
particular for determining the viewpoint and unknown paramecters of a three-
dimensional object as accurately as possible and mcasuring the degree to which
the spatial information in the image agrees with the predictions of the model.
It may scem that this use of spatial information for verification places too
much emphasis on a single aspect of correspondence while ignoring shading,
color, texture, context, and other dimensions along which comparisons could be
made between image and model. However, there is good reason to believe that
spatial information is the dominant source of inforination for verification in most
recognition tasks, as well as being a prerequisite to the application of the other

measures. If we comnpare the number and accuracy of spatial predictions which



110 CHAPTER 7: THE VERIFICATION OF IMAGE INTERPRETATIONS _

[

can be made for a typical object with the number and accuracy of predictions -

for the other classes of features, the sheer quantity of spatial information seems \

to be much greater for most object classes. This can be intuitively demonstrated ‘

by comparing a line drawing, in which much of the spatial information is present .

and the other dimensions are missing, with an image containing only patches . j

of shading, color or texture with loosely deﬁ_g:ed boundaries. The certainty we J

would ascribe to an interpretation is likely t:o be far stronger in the first case -

than in the second. There are some classes of objects (for example, some types '.'-"

s of natural vegetation) which may be defined more by color and texture than by
t‘_‘ shape, but these cases seemn to be in a distinct minority. Even in these cases, i
: ~

it is usually necessary to first establish a shape correspondence between image

L

and object before the other dimensions can be accurately compared for specific

regions of the object.

. The most difficult aspect of using spatial information is that it is highly
. dcpendent upon viewpoint and shape variations of the object. The search meth-

ods ontlined in the previous chapter establish tentative correspondences for given

ranges of viewpoints and object parameters. These search mcthods discretize the
ranges of variation, and invariably discard some degree of spatial accuracy for the
sake of clficicncy of the representation. In order to verily Lthese interpretations, it
is necessary to apply a second level of analysis to thesc initial correspondences to

determine values for the viewpoint and shape parametcrs which are accurate to

AU P CuinAt et VR

the limits of the data. By looking for consistency among these correspondences

and by using the calculated parameters to predict further matches at specific lo-
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cations, it is possible to carry out the verificalion with great reliability for most
N types of objects. Currently, almost no vision systeins have mechanisms which
make use of image locations in this way to their full accuracy. This is no doubt
duc to the difliculty of the mathematical problem of determining exact viewpoint
2 from initial matches. This chapter will be principally devoted to developing a

practical and cfficicnt solution to this problem.
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7.1 Viewpoint determination in human vision 111

7.1: Viewpoint determination in human vision

The extent to which human vision makes use of spatial information during recog-
nition has not been the object of much study within the field of psychology. How-
ever, it is clear that accurate determination of object location, orientation, and
internal parameters is necessary for many visual and motor tasks, such as the
task of judging a three-dimensional length from a two-dimensional image. It also
seems clear that human vision makes full use of accurate viewpoint estimates to
judge the consistency and plausibility of an interpretation. Any amateur artist
knows that it is essential to get the “proportions” correct in order to produce a
realistic drawing of an object. Many computer vision systems which look only
at connectivity patterns or qualitative shape descriptions throw out much of this
important spatial information. While viewpoint-invariant properties are impor-
tant for reducing the search space leading to recognition, the process of verifying
an interpretation has much to gain from being based upon as accurate a deter-
mination of viewpoint as possible.

One intcresting and relevant picce of psychological data on viewpoint de-
termination is the work on mental rotation [Shepard & Metzler, 1971]. In this
experiment, subjects were asked to compare two perspective line drawings of
simple objects and make a judgment regarding thcir similarity as quickly as pos-
sible. It was found that the time required to make this judgment varied linearly
according to the three-dimensional angle separating the orientations of two views
of an identical object (sce Figure 7-1). Not only was the degree of lincarity strik-
ing, but rotation in three-dimensions occurred at the same rate as rotation in
the plane (this rate of rotation was roughly 60° per second). During the cou-
ple of seconds that it often took to complete the task, the subjects reported a
strong subjectivc impression that they were mentally rotating one object until it

matched the second.
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Figure 7-1: On the left arc examples of the pairs of line drawings presented to zubjects
as described in [Shepard & Mectzler, 1971]. The graphs on the right show the amount of
time required to determine whether a pair of figures are rotationally equivalent. Graph
o A is for objects which were only rotated in the picture plane, and Graph B is for objects
) which were rotated in depth. Both graphs are linear to a surprisingly high degree of
{‘ : accuracy and are also very similar in their values.
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This data seems to lend significant support to the hypothesis that view-
point determination in human vision can be accomplished through a process of
rotating a three-dimensional mental model of an object to bring its projection
into correspondence with an image. The appearance of common objects is likely
E':i to be overlearned in the sense that their projected appearance is known from

a number of typical viewpoints. However, for exact viewpoint determination,

there would still need to be a small mental rotation of the model from an initial
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y
.

estimated viewpoint, and from unfamiliar viewpoints the required rotation may
be substantial. This mental rotation process is conceptually similar to the itera-
tive process presented in this chapter, although the method we will present has
quadratic rather than linear convergence. [Funt, 1983; Morgan, 1983] have ex-
amined restrictions on computational architecture which could lead to the slower

linear rate of rotation in human vision.

Note that viewpoint determination involves scaling and translation as well

as rotation. {Bundesen & Larsen, 1975] have described an experiment in which
subjects were asked to compare objects of differing size, and they found the same
type of linear relationship between difference of scale and reaction time as was a
found for angle of rotation. It would be interesting to see whether there are ﬂ
similar experimental results for translation or variable model parameters.
N
7.2: Definition of the problem !
X In the simplest formulation, the problem will be to determine the orientation
: and position of a camera which would result in the projection of a given set i
E of three-dimensional points into a given set of image points. Since there are 1
f- six parameters determining orientation and location of the camera and since ;
L each match between an object point and an image point constrains two degrees ]
i of frecdom, only three of these point-to-point matches are necded to achieve a .
' complete solution (but there may still be a few discrete solutions). Although this
E’. aspect of the problem is not mathematically easy, a considerable amount of work
F' has alrcady been done on it as described in the next section. i
:f ‘ However, the problem of matching object models to image fcatures is usually :
substantially mnore complicated than is implied by this simple formulation. Our :
knowledge of thrce-dimensional objects is often not in terms of specific three- .
{; dimensional coordinates, but may involve many parameters of variation in object -
':', size, shape, or articulation. Since the spatial consequences of these parameters
4 :
: g
! .
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are confounded in the image with the effects of viewpoint, it is often necessary to
solve simultaneously for viewpoint and model-specific parameters. In addition,
the matches specified by the correspondences may not be in terms of points, but
may instead be in terms of transverse distance from a model line to an image
line or in terms of matches between more complex curves. This is particularly
important for making use of current low-level edge detection methods which are
much better at localizing the transverse position of a curve than in detecting the
endpoints of a curve. A further important function of the verification process
in developing practical vision systems is to remove positional errors from the
initial set of matches by looking for consistent subsets with the most accurately
determined parameters. A process which removes occasional incorrect matches
can also greatly reduce the number of sets of correspondences which must be
examined. These various extensions to the basic problem will all be addressed
by the methods to be described in this chapter.

Let us consider for a moment the role of these mechanisms in a fairly dif-
ficult example of the verification problem. Imagine that we are trying to solve
for viewpoint and model parameters in the case of recognizing a human figure.
Although we know a great deal about the shape and structure of the human
body, none of the dimensions are fixed in magnitude. Not only do people vary
in every dimension of size and shape, but there are also numerous joints which
can be articulated over a wide range of positions. However, many of the dimen-
sions of variation are constrained to fairly narrow absolute or relative limits, and
we have strong cxpectations for the bilatcral symmetry of certain parameters.
Given some tentative correspondences for say, the head, eyes and nose, we could
use the expcctation of bilateral syinmetry and the mostly tightly constrained
dimensions of our model to solve for approximate viewpoint. This would then
suggest quite tightly constrained regions in which to search for other features,
such as ears, neck, eycbrows, etc., cach of which could be used to derive better

estimates of viewpoint and the other parameters. An accurate determination for
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7.3 Previous research on viewpoint determination 115

viewpoint and position of the head would then constrain the possible locations
of the shoulders and arms, which could be predicted using mechanisms such as
those in ACRONYM [Brooks, 1981). In this chapter we will confine our atten-
tion to methods for solving for viewpoint and model parameters, making use of

symmetry conditions, and extending the class of features which can be matched.

7.3: Previous research on viewpoint determination

The problem of solving for the six parameters of camera location and orientation
given image locations for known three-dimensional points has received a consid-
erable amount of attention in the field of photogrammetry. In photogrammetry
this problem must be solved in order to use the positions of known landinarks in
an aerial photograph to infer the ground coordinates of other parts of the image.
One analytic solution to this problem-—knows as the Church method—solves
first for camera location and then orientation in a two-stage process. However,
the first step of this process involves nonlinear equations which must be solved
by an iterative numerical method. The current preferred method for solving this
problem in the ficld of photogrammetry [Woll, 1983] is an iterative method which
solves for changes in all parameters simultancously on each iteration, in a similar
manner to the mcthods which will be presented in this chapter.

[Fischler & Bolles, 1981] present another closed-form solution for this prob-
lem and describe important results on the conditions under which multiple so-
lutions exist for various numbers of correspondences between image and model.
They establish that there are up to four solutions in the case of matching three
points, and that multiple solutions may exist even for four or five matches in
general position. This surprising result means that at least six matches of points
in general position (a total of twelve constraints) is required to assure a unique

solution to the six-parameter problem. The closed-form solution they present

is quite complex and contains a quartic polynomial that presumably must be
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solved by iterative methods. However, these analytic results are useful on theo-
retical grounds. They may someday be extended to include model parameters,
overdetermined systems, and forms of correspondence other than point-to-point
matches, in which case they could replace the iterative methods used in this
chapter. On the other hand, since the iterative methods are fast and typically
require only two or three iterations, it is still not clear which would be most
efficient.

[Ganapathy, 1984] describes a method for decomposing an already-given
transformation matrix into the underlying camera parameters. Since this chapter
is devoted to the problem of deriving the transformation matrix, Ganapathy’s
method could then be used to calculate camera parameters, including scaling
and translation in the image plane, if these are desired. This is more likely of use

as a camera calibration step than as an internal part of the recognition process.

7.4: Formulation of perspective projection

Before the techniques for calculating the projection parameters can be presented,
it is first necessary to define the methods and notation used for projection in the
forward direction. The projection method prescnted here is similar to those
which are commonly used for computer graphics. In essence, the technique is
to specify a model of the camera being used and its location and oricntation
with respect to the three-dimensional model. These parameters are used in a
coordinate transform to compute two-dimensional coordinates for points in the
image from three-dimensional model coordinates.

The following transform models a standard camera with the lens pointing
along a vector normal to the center of the iinage plane. The variable f specifies
the distance of the image plane from the projection point, and usually does not

necd to be determined from the image when we are using a known camera (for

convenicnce, we can let f represent the ratio of image distance to the width of
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7.4 Formulation of perspective projection 117

the image plane, which means that image coordinates vary from 0 to 1 across
the image). We must also specify a vector T giving the location of the camera
lens in terms of world coordinates, and a rotation matrix R which depends on
the camera orientation and maps points in world coordinates into points in a
coordinate system with z and y axes parallel to the z and y axes of the camera

film plane. Then the transform

(z.v,2) = R(p—T)

z
(z',y') = (“fz_, !;1)
first transforms the point p in world coordinates into the point (z,y, z) in camera-
based coordinates, and then creates the perspective projection of this point onto
the image plane, with image coordinates (z',y’).

The most difficult aspect of the transformation is representing and work-
ing with the rotation R. Most work in computer graphics chooses to represent
rotations with three-by-three matrices, but this representation is not very good
for our purposecs since it uses nine variables to represent something which has

only threc underlying parameters. Another possibility is to represent the ro-

tation by giving its axis of rotation plus the angle of rotation about this axis.

In fact, we can let the magnitude of the axis vector represent the magnitude

of the rotation, and we have thus reduced the rotation to the minimal three
parameters. However, the axis-angle representation requires a good deal of com-
putation when we actually wish to rotate a point, and also makes it diflicult
to compose rotations. Quaternions [Salamin, 1979] are a representation which
combine the advantages of these other methods and have proved to be the most
uscful for our work. They use four variables to represent a rotation in such a
way that composition, normalization, rotation, and crcation of a rotation about

an arbitrary axis are all computationally efficient. Although the implementation
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which will be described uses quaternions, the solution we will give to the view-
point determination problem is independent of any particular representation for

rotations.

7.5: Parameter determination using Newton-Raphson convergence }

There are seven underlying parameters in the camera transform prescnted above:

[
+ PR

three parameters give the camera position T', three more are sufficient to spec-
ify the rotation R, and f specifies a property of the camera itself. In ad-

dition, there can be any number of parameters specifying variations in the

el

model. Our problem is to calculate the values for these parameters which
produce the best fit between an image and the projection of a model. Al-
: though we have mentioned work on developing an analytic solution, it seems
-~ that an iterative solution is currently the best alternative in terms of generality -
and efficiency. The method we have chosen is Newton-Raphson convergence,
which has a fast quadratic convergence and can be cleanly applied to this prob-
lem. This technique works best when the derivatives are all fairly independent
of onc another and are smooth enough over the error range for good conver-
gence.

~ - Unfortunately, the specification of the camera transform given in the pre-
' vious section does not have simple derivatives of z’ and y’ with respect to the
- camera transform parameters. Once again, this is a result of the fact that it
O is difficult to represent a rotation in terms of its threc underlying parameters.
° This difliculty can be-clininated by reparameterising the camera transform to
express it in terms of parameters that are related to the camera coordinate sys-
tem rather than world coordinates. This new transform must be chosen carefully
from among the various possibilities in order to keep the parameters as indepen-
dent as possible from each other and to keep the derivatives simple. As before,

our new transform specifies how a three-dimensional point p is to be mapped
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onto a point in the image (z',y’):

(z,9,2) = R(p)

(z',y') = (sz. + Dx, Hf_—yD‘ +D,)

= (fzc + Dx, fyc + Dy) where ¢ =

1
z+ Dx
Here the variables R and f remain the same as in the previous transform, but

the vector T has been replaced by (Dx,Dy,D;), where the two transforms are

equivalent when

T = R-1 (_ De(z+Ds) Dy(Z"l'Dc)’ —D.)

f7 f

The new parameterization is much better for our purposes, since Dx and
Dy simply specify the location of the object on the image plane and D, specifies
the distance of the object from the camera. Compare this with the very indirect
specification of these same camera-rclated variables given by T. However, we
have still solved only half the problem, since the three parameters underlying
the rotation matrix are still difficult to express in a forn closely related to the
image. Our solution to this second problem was not to try to somechow express

R in terms of image-centered parameters, but to take the initial specification of

R as given and add to it incremental rotations ¢x, ¢y and ¢, about the z, y and

z axes of the camera coordinate system. It is easy to compose rotations (and

particularly cfficient when the quaternion representation of rotations is used as

PR

mentioned above), and the incremental rotations are fairly independent of one e
another if they are small. The Newton-Raphson method is now carried out by Mi
correcting errors in z’ and y’ by calculating the optimum correction rotations ¢x,
dy and ¢; to be made about the image axes. Instead of adding these corrections .:

4
i

to undcrlying parameters of R we create rotations of the given magnitudes about

their respective coordinate axes and compose these new rotations with R.

0 .
PSR Y R ]

L "I't" i.l
e e

................................................
.........................................




120 CHAPTER 7: THE VERIFICATION OF IMAGE INTERPRETATIONS
z Y H
Px 0 | -z ] vy
oy z 0 -z
é | -y z 0

Figure 7-2: Partial derivatives of x, y and 2 with respect to counterclockwise rotations
¢’s (in radians) about the coordinate axes.

One major advantage of using the ¢’s as our convergence parameters is that
the derivatives of z, y, and z (and therefore of z’ and y') with respect to them
can be expressed in a strikingly simple form. For example, the derivative of z at a
point (z,y) with respect to a counter-clockwise rotation of ¢z about the z axis is
simply —y, since (z,y) = (dcos ¢z, dsin ¢;) and therefore 3z/0¢s = —dsin ¢s =
—y. The table in Figure 7-2 gives these derivatives for all combinations of values.

Given these derivatives it is straightforward to accomplish our original ob-
jective of calculating the partial derivatives of ' and y’ with respect to each of

the original camera parameters. For example, our transform tells us that:

v _J=
z _z+D.+D"
0
o' _
aDx
and
oz’ _  f Oz - JE 0z
0dy  z+ Dy B¢y  (z+ Du)? 3y
=f¢:z-{,-fc2z2 = fc(z+czz)
and
' _ f oz
3 i+ Didgs . IV

All the other derivatives can be calculated in a similar way, and the table in
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7.5 Parameter determination using Newton-Raphson convergence

zl yl
Dx 1 0
Dy 0 1
Dy ~fc3z —fc3y
éx —felzy —fe(z+ cy?)
dy | fe(z+ cz?) felzy
$2 ~fecy fez
f cz cy

Figure 7-3: Partial derivatives of z’ and y’ with respect to each of the camera trans-
form parameters.

Figure 7-3 gives the derivatives of z’ and y’ with respect to each of the seven

parameters of our camera model.

Given these partial derivatives of z' and y’, it is easy to perform the conver-
gence. For each point in the model which should match against some correspond- % |
ing point in the image, we first calculate the camera transform of the model point

=4
and measure the error in its z component when compared to the given image ‘ L

TRY T

point. We then create an equation which expresses this error E as the sum of

the products of its partial derivatives times the error correction values: 8

az’ oz’ oz’ az'
‘-9—ADx aDyADy+ —ADy + Erw
az' az'

+'a—¢—y'A¢y+

o S ARLEAANENAN

a5 O¢x

7 Ads =

3ds

Using the same point we create a similar equation for its y component, so for each

point correspondence we derive two equations. From threc point correspondences

e g

we can derive six equations and produce a complete lincar system which can be

o

solved for all six camera modecl correclions (we are assuming in this example

;
'i
.

i

that the camera paramecter f is cither given, or can be approximated by a large

T,

k
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122 CHAPTER 7: THE VERIFICATION OF IMAGE INTERPRETATIONS
value). After each iteration the A terms should shrink by about one order of !
magnitude, and no more than a few iterations should be needed even for high ‘
accuracy.

In most applications of this method we will be given morc correspondences i
between modecl and image than are strictly necessary, and we will want to perform
some kind of best fit. In this case the Gauss least-squares method can easily be
applied. The matrix equation given above can be expressed as i

4

[4][A] = [E]

where [A] is the derivative matrix, [A] is the vector of unknown corrections, and

[E] is the vector of error terms. When this system is overdctermined, we can

Pl AR S A a s N dutd

perform a least-squares fit of the errors simply by solving

[A]T[A][4] = [A]T(E)

where [A]T[A] is square and has the correct dimensions for the vector [A].

The convergence properties of this solution are such that there should be
few problems in picking the initial parameter values from which to converge. As
long as the rotation errors ¢x, ¢y and ¢g érc not greater than aboul 45 degrees,

almmost any values can be choscn for the other parameters. Usually, the source

of the hypothesized matches carries a rough implication of the orientation of the

object—for example, the search methods described in the previous chapter break

,,_.. et

the range of orientations down into smaller sets, so that approximate viewpoint

is known for any final match.

7.6: Solving for model parameters

We have been describing the process of solving for the parameters which de-
termine an object’s position and orientation with respect to the external world.

An important cxtension to this method is the ability to usc models which are
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7.6 Solving for model parameters 123

parameterized internally, and have variable parts or articulations between parts.
We can determine the values of these model parameters in the same way that we
determine the correct projection parameters. The only requirement is that we be
able to calculate the directional derivatives of points in the model with respect
to the new parameters. For the common types of model parameterization, such
as variable lengths or variable rotations about some axis, these derivatives are
easily determined in closed form. For other forms of parameterization, a sim-
ple numerical technique which slightly perturbs the parameter and measures the
resulting change in the image can be used to determine the derivative. These
derivatives can then be used in the same way for convergence as were those for
the other parameters. We will now require more given correspondences between
image and model in order to have a fully-determined system, but since each ad-
ditional correspondence between an image point and a model point allows us to
solve for two more unknown variables there should be littlc difficulty in meeting
this requirement.

The power of this method can be best illustrated by giving an example.
Assumec that we want to recognize images of different types of airpl;mes,. and
we do not know in advance which type of airplane will be in a certain image.
In this case our airplane model will have to be quite gencral and will not be
able to give precise mcasurements for various lengths or such things as the angle
between the wings and the fuselage. However, certain important constraints are
known, such as the fact that the airplane will be symmetrical about the fuselage.
This symmetry will be represented to the convergence algorithm by the fact
that the model parameters referring to the right wing will be the same as those
referring to the left wing, and any changes in these parameters refer to both
wings. The convergence algorithm will then determine a camera transform and
wing-fuselage angle which together produce the closest fit of model to image, as in
the example in Figurc 7-5. Note that there may well be insufficient information to

determine cither the camera transform or the wing-fuselage angle indcpendently,
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so the ability to solve for both simultaneously using knowledge of the airplane’s
symmetry is crucial to determining a solution.

Another form of constraint arises when we have some prior knowledge about
the location of an object. For example, we may know the position of the ground
plane relative to the camera and we can constrain the airplane to be positioned
on the ground. In this case the airplane has only three degrees of freedom in
its position (its x and y location on the ground and its orientation about the
vertical axis). In this situation we do not need to solve for the full camera
model, since this has already beecn determined relative to the ground plane.
Instead, we can just solve for the parameters giving the position of the airplane
relative to the ground using the techniques given above. This suggests that a
more uniform description of the viewpoint-determination algorithm would be to

treat the parameters which we have been calling “projection parameters” as just

other kinds of model parameters which give the position of the entire object

relative to camera space.

7.7: Matching lines instead of points

Another important extension to the basic algorithm is to allow it to use line-
to-line correspondences in addition to point-to-point ones. This is important in
practice because low-level vision routines are relatively good at finding the trans-

verse locations of lines but are much less certain about exactly where the lines

terminate. What we need to do is express our errors in terms of the distance

of onc line from another, rather than in terms of the error in the locations of
points. The solution we have adopted is to measure as our errors the perpendic-
ular distance of each endpoint of the model line from the corresponding line in
the image, and to then take the derivatives in terms of this distance rather than
in terms of z’ or y'. This the appropriate constraint mathematically—that the

modecl line should lie on top of the image line but that the endpoints need not
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z correspond. In order to express the perpendicular distance of a point from a line
it is useful to first express the line as an equation of the following form, in which
- m is the slope:

m
: T+

1
; m2 41 vm? +1

In this equation d is the perpendicular distance of the line from the origin. If

y=d

we substitute some point (z’,y’) into the left side of the equation and calculate
the new value of d for this point (call it d’), then the perpendicular dista.nce' of
this point from the line is simply d — d’. What is more, it is easy to calculate
the derivatives of d’ for use in the convergence, since the derivatives of d' are
just a linear combination of the derivatives of z’ and y' as given in the above
equation, and we alrcady know how to calculate the z’ and y' derivatives from the

solution given for using point correspondcnces. The result is that each line-to-line

correspondence we are given between model and image gives us two equations "
S N
for our lincar system—the same amount of information that is conveyed by a -
. . . K
- point-to-point correspondence. 1
p . i
ﬁ o
s

- X
: 7.8: Implementation and future rescarch R
The full viewpoint determination method and extensions described above have 4

been implemented in MACLISP on a DEC KL-10 computer. The algorithm has
performed reliably and usually converges to the correct transform and parameter
values to within about 1 part in 104 in less than 4 itcrations. When solving

simultancously for six or scven parameters and making use of 10 to 15 matches

PR ) SO

in the image, cach iteration exccutes in about 20 milliseconds.
The example shown in Figure 7-4 makes use of modcls fromm the ACRONYM
vision system [Brooks, 1981]. Although ACRONYM allows its models to be exten- p

sively parameterized, in this case all paramcters of the model are fixed in value

TN WY, VW

to represent an L10f1 passenger plane. Correspondences are specificd between
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3 4

Figure 7-4: The threc-dimensional model of the airplane is from the ACRONYM
vision system. The initial estimate of position and oricntation is shown in the box
at the upper left, and the program is also given correspondences between edges in the
model and the displayed two-dimensional lines. The first three iterations of convergence
towards a least-squares solution of viewpoint are shown in the other boxes. Note that
endpoints of image lines are not forced to correspond with endpoints in the model.
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Figure 7-5: The simplc airplane model in this example is parmnetcrised so that the
wings can sweep back and forth while waintaining the bilateral symmetry of the model.
The algorithm can solve for the wing sweep simultancously with solving for viewpoiat, )

as shown in the three iterations of the convergence. F qf

some two-dimensional lines in the image plane and thrce-dimensional cdges of
the modecl, and rough initial estimates of the camera paramcters are given. As
shown, the algorithm then converges to the best least-squares estimate of view-
point within about three iterations. Note that the endpoints of the image lines
are not forced to match the endpoints of the model lines, since the algorithm
only attempts to minimize the perpendicular distance between the edges. The

standard deviation of the errors remaining after the least-squares process is an
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indication of the consistency and therefore the correctness of the original match.
More significantly, the model now makes many predictions for further edges at
specific locations in the image, which can be searched for in order to perform
further verification or increase the accuracy of the viewpoint determination.

Figure 7-5 is an example of solving for model parameters simultaneously
with viewpoint. The airplane model is parameterized so that the wings can be
swept back and forth, and the same parameter is used for both wings so that
the model is constrained to be symmetric. There is not enough information in
the given correspondences to solve for either viewpoint or the wing sweep in-
dependently, so it is only the capability for simultaneous solution that enables
the problem to be solved. This is a common example of the way in which view-
point and mode] parameters can be confounded in the spatial information of an
image.

This algorithm Bas also recently been applied in a successful commercial
vision system [Goad, 1983]. After some initial edge matches have been found by
a fast search process, the viewpoint-determination is used for final verification
and dctermination of precise position.

There are a number of other potentially useful extensions to this algorithm.
After producing the least-squarcs fit for overdetermined data, it would be use-
ful if the algorithm could then use the extra information to throw out those
points which are least consistent with the others. The easicst method would
be to discard points or lines with the highest residual errors and to reconverge
on the remaining ones. This procedure can fail when there arc gross errors,
in which case the RANSAC mecthod [Fischler & Bolles, 1981] may be the most
appropriate. However, for the matching techniques described in the previous
chapter, the errors in correspondence may be small enough to make this unnec-
essary.

There is also further work to be done at the level of integrating this incthod

with other components of a vision system. Given a model, the various unknown
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ol L

parameters, and a set of correspondences between model and image features,

there could be a supervisory procedure which selects which parameters to solve

- for first. Also, given a least-squares solution, it would be useful to carry the 4
h resulting error estimates back to the matching components for use in further i
predictions. There is much further work to be done on the remaining aspects :1
o of verification, such as using the region correspondences resulting from spatial

. matching to verify color, texture or shading properties. However, the methods a
F which have been presented in this chapter are more than sufficient for a wide A

class of common vision problems.
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Chapter 8

CONCLUSIONS

We are now in a position to look back over the range of material in this disser- 1
tation and evaluate its contributions to computer vision research. The direction :
which has been taken is substantially different from the mainstream of current é
computer vision research. Qur goal at the outset was to develop methods for
visual recognition based upon the use of spatial information in the image. The
direct formation of depth information from the image has been de-emphasised, -
and a process of perceptual organization has taken its place as a primary bottom-
up descriptive process. The problem of visual recognition has been cast as essen-
tially a problem of search, in which the major research effort needs to be devoted ‘
to reducing the size of the scarch space at each level of the visual hicrarchy. '»%
A consequence of this search-based mecthodology is that intermediate levels of 5
description are not required to be highly reliable; rather, it is their average sta- ]
tistical performance in distinguishing useful alternatives which is of importance ~!{
for reducing the search space. This naturally leads to methods for evaluating

rclations which are probabilistic in naturc rather than being based upon binary

decisions. .
* Some parts of this thesis have been developed to a much greater extent S
than others. Fortunately, the most crucial component upon which the search- w

based methodology relies—the ability to make a reliable final judgment regarding

the correctness of an interpretation—is one of the most completely developed =

components. The mcthod presented in Chapter 7 for using a few initial matches
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132 CHAPTER 8: CONCLUSIONS

to determine spatial correspondence is fast, reliable, and operates to the limits
of accuracy in the data. It also provides a basis for examining correspondence of
region-based measures, such as color, texture or shading. Although the method
works for parameterized models of an object, further work would be required to
apply the method to objects with poorly defined structure.

The actual enumeration of the full search space can be decomposed into
two components: searching over the set of possible viewpoints for an object and
searching over the set of possible objects. The problem of searching over the range
of viewpoints has already been solved and implemented in a working system as
described in [Goad, 1983]. A preliminary solution is proposed in Chapter 6
for the problem of searching over the set of known objects. This method has
the important capability of (;ombining probabilistic information from multiple
sources to speed the search process. However, until it is more fully developed
and tested, the method must be considered somewhat speculative.

The remainder of this thesis has been devoted to the use of perceptual or-
ganization as a bottom-up process for structuring the spatial information in an
image, with the cnd goal of using these structures to reduce the sizc of the search
space during recognition. This objective led to the requirement that algorithms
for perceptual organization be designed to distinguish significant structural re-
lations as reliably as possible from those which arise by accident. Chapter 3
presented a number of important crifcria derived from this requirement which
must be taken into account in the design of any algorithms for perceptual or-
ganization. Thesc criteria provide a unificd basis for the problem of perceptual
organization, cven though there may be a large collection of separate algorithms
for carrying out the component processes. The component of perceptual orga-
nization which was chosen for the most extensive investigation was the problem
of segmenting two-dimensional image curves. This is an important problem for
many other aspects of organization, and the algorithm which was developed has

the capability of detecting significant structure wherever it occurs at multiple
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scales of resolution. Another component which was investigated in some detail
was the process of inferring curve categorizations and three-dimensional relations
from perceptual groupings. However, the topic of perceptual organization covers
a very large number of capabilities, and these components must be considered as
only first steps on a long pathway.

| A major overall goal of this dissertation has been to provide support for
a computational model of visual recognition based upon spatial correspondence
and perceptual organization. The full development of this model would require
the simultaneous solution of a number of diflicult problems from different areas
of research. However, enough has been presented to provide a strong degree of
support for this direction of research and to demonstrate the current practicality

of systems based on these methods.

8.1: Directions for future development

The search-based methodology for recognition provides an attractive route for
the incremental development of computer vision systems with improved capa-
bilities. It is possible right now to build model-based vision systems which can
operate well in domains with small numbers of well-specified objects. We can
expect improved performance from further development of any of the underlying

components of this methodology.

As new methods of perceptual organization are developed, we can expect.

significant decreases in the size of this search space. The extent of this decrease
provides a well-specified criterion for evaluating the success of proposed improve-
ments in algorithms for perceptual 6rg:mization. We can hope that the many
components of perceptual organization will yield to common techniques and that
it is unnecessary to explore separate algorithms for each form of grouping or de-
scription. The goal of identifying non-accidentalness provides a unifying objective
for these many processes. However, current neurophysiological evidence regard-

ing the human visual system scems to indicate that there are many different
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modules for carrying out the different descriptive processes, so there may be a
large number of separate problems which must be solved. Fortunately, the highly
redundant and overconstrained nature of visual information means that useful
performance can be achieved long before all these problems are solved.
Another topic for further research is the integration of depth information

with the two-dimensional perceptual grouping operations. We have paid little

y'a‘-' 2

attention to this topic, possibly in an overreaction to the previous emphasis
X on the direct derivation of depth information as a prerequisite to recognition.
Clearly, motion and stereo correspondence provide a useful source of quantita-
tive constraints which can be used to limit the search required for recognition.
They are particularly important when the recognition process breaks down, as
when encountering a completely unfamiliar object for the first time. Perceptual
organization can operate as well in three dimensions as it can in two, and this can
be an important aspect of learning the most natural description for a new object.
In the reverse direction, perceptual groupings and recognition can be important

components for establishing correspondence for motion and stereo. To the extent

that perceptual groupings are non-accidental in origin and invariant with respect

to viewpoint, we can expect them to be present in a sequence of different views

of a scene. These groupings provide far less ambiguous descriptions for matching
than do lower-level image features.

' The methods for model-based véﬁﬁcation described in Chapter 7 could be
extended in a nunber of directions. Once the determination of spatial corre-
spondence has been performed, it is possible to examince correspondence between.

. region-bascd propertics such as color, shading, or texturc. Mcthods nced to

be developed for measuring and comparing each of these properties. Another

direction for the development of verification is to allow greater variation in ob-
ject models. The simple forms of continuous parametcrization that have been
described are only a start in this direction. It is necessary to model not only in-

dividual objects but also the typical relations between objects that are expected
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in a coherent scene. New forms of object modeling must be developed as well
as ways to carry out the search and verification processes with these types of

models.

P

l One of the most exciting areas for further research is the development of
evidential reasoning and related methods for automatically learning associations

between evidence and interpretations. These methods show promise for carrying

out the longstanding objective of combining many sources of information in a é
flexible way to achieve recognition. Just as important is the potential for build-

ing learning systems which improve their performance as they accumulate visual

experience. The use of evidential reasoning would greatly [acilitate the incremen-
tal incorporation of new research results in image description, object modeling,
and verification.

Finally, there is much room for development in the areas of improved com-
putational hardware and methods for handling large quantities of information.
It is often remarked that vision requires a large amount of computational power.
It is much less common to note that vision also places extreme demands on the

amount of knowledge that a system needs to retain and access. Human men-

) ory continues to accumulate new information regarding the visual appearance of
) objccts and their arrangement in scenes throughout deciules of visual exposure
* during almost every waking moment. Experiments with visual memory indicate
3 that the human brain probably contains more knowledge about visual appearance %
than about any other single topic. Onc of the greatest challenges of computer 2
vision rescarch may be to develop ways to accumulate and make cfficient use of *
1
. this vast quantity of knowledge. e
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