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Abstract

A computational model is presented for the visual recognition of three-dimensional

objects based upon their spatial correspondence with two-dimensional features in an

image. A number of components of this model are developed in further detail and

implemented as computer algorithms. At the highest level, a verification process

has been developed which can determine exact values of viewpoint and object pa-

rameters from hypothesized matches between three-dimensional object features and

two-dimensional image features. This provides a reliable quantitative procedure for

evaluating the correctness of an interpretation, even in the presence of noise or occlu-

sion. Given a reliable method for final evaluation of correspondence, the remaining

components of the system are aimed at reducing the size of the search space which

must be covered. Unlike many previous approaches, this recognition process does

not assume that it is possible to directly derive depth information from the image.

Instead, the primary descriptive component is a process of perceptual organiza-

tion, in which spatial relations are detected directly amtong two-dimensional image

features. A basic requirement of the recognition process is that perceptual organi-

zation should accurately distinguish meaningful groupings from those which arise

by accident of viewpoint or position. This requirement is used to derive a numnber

of further constraints which mst bL'isfied by algorithms for perceptual group-

ing-. A specific algorithmn is presented for the problem of segmenting curves into

natural descriptions. Methods arc also presented for using the viewpoint-invariance

properties of the perceptual groupings to infer three-dimensional relations directly

from the image. The search process itself is described, both for covering the range

of possible viewpoints and the range of possible objects. A method is presented

for using evidential reasoning to combine information fromt miultiple sources to de-

tcrmiine the miost efficient ordering for the search. This use of evidential reasoning

allows a system to automatically improve its performan.ce as it gains visual experi-

ence. In summary, spatial organization and recognition are shown to be a practical

basis for current systems and to provide a promising path for further development

of improved visual capabilities.
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Chapter 1

INTRODUCTION

The field of computer vision covers a wide range of topics that arc often only

loosely related to the capabilities and function of human vision. Computer vi-

sion systems may use exotic sensors such as laser rangefinders or make restrictive

assumptions regarding the scene that have no counterpart in human vision. How-

ever, this thesis will deal mostly with the interpretation of single black-and-white

inags-in particular with edge descriptions extracted from them-and will not

generally make use of restrictive assumptions regarding the scene. This portion

of the computer vision problem seems to be one of the iuost central to the func-

tioning of the human visual system, and much of the content of this thesis will

be motivated by what is known of human vision.

Our major goal will be to achieve visual recognition. Recognition implies

that a correspondence has been found between elements of the image and a prior

representation of objects in the world. The importance of this prior world knowl-

edge for solving the problem of vision can hardly be overstated. The objects and

. scenes that we see in our daily lives, although large in number and variation,

constitute only a tiny fraction of the set of theoretically possible visual images.

Without the constraining influence of these prior expectations, many visual prob-

lems would be underconstrained to the extent that they could never be solved.

Recognition enables us to go beyond the data that is in the image, since we can

1"
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2 CHAPTER 1: INTRODUCTION

achieve reliable identification from a small subset of the predicted correspon-

dences and then use our knowledge to infer many properties of the scene that

may not be directly supported by visual data. This emphasis on world knowl-

edge parallels developments in most other areas of artificial intelligence, in which

* large amounts of problem-specific knowledge are increasingly being used both to

constrain solutions and to speed the process of reaching them. However, this

view is not universally accepted within the computer vision community, so we

will return to this topic many times in the following pages with demonstrations

of the value and necessity of achieving correspondence with world knowledge at

the earliest possible level of processing.

* Recognition can be achieved through correspondences between many kinds

of predicted and measured properties, including shape, color, texture, connectiv-

ity, context, motion, or shading. However, most of the content of this thesis will

be focused upon only a single one of these dimensions-the problem of achieving

spatial correspondence. By spatial correspondence we mean that the measured

locations of features in the image are in accurate agreement with the predicted

loca-t#'ns of features for a particular projection of sonic known object. The fea-

tures that we will bc emphasizing aire ones that can be accurately located in

the image, such as edge or point discontintiities in intensity. This thesis will

present methods that operate in this spatial domain all the way from purely

*bottom-up descriptive processes to final verification of correspondence with a

particular object. Why will there be such an emphasis on this single aspect of

correspondence? A mnajor reason is that this locational information usuially seenms

to be the strongest source of data iii terms or the number of mieasuremecnts that

can be made in a typical image and the accuracy of each measurement in the

presence of noise. Furthermore, solving the problem of spatial correspondenceKis often prerequisite to examining correspondence along the other dimensions.

Region-based properties such as color, texture or shading arc most easily appliedKonly after spatial correspondences have determined the appropriate regions to
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consider. However, we will not ignore these other dimensions entirely, and in

Chapter 6 methods will be presented for using all dimensions of correspondence

at an early stage of processing.

1.0.1: The effect of viewpoint on spatial correspondence

There is a major problem in achieving spatial correspondence between a two-

dimensional image and prior knowledge of three-dimensional objects: the spatial

expectations for the image arc highly dependent upon viewpoint. Each viewpoint

of a three-dimensional object generally leads to a different spatial projection of

features in the image. This has caused many vision researchers to emphasize the

need for depth information or else to discard the spatial information by using

region-based properties or patterns of connectivity rather than predicted metric

locations. A major topic of this thesis will be to develop quantitative methods for

making use of spatial information in the two-dimensional imaage. An important

component of this is a method to determine whether a set of correspondences

are spatially consistent with the projection of an object from a single viewpoint.

Chapter 7 presents a method that determines exact viewpoint and values of

variable model parameters from a few hypothesized correspondences between

model and image. This forms the basis for judging spatial consistency with the

model and for enlarging the set of correspondences by making exact locational

predictions for further features. The determination of spatial correspondence

also makes it easy to determine correspondence between region-based properties.

Since the final set of correspondences will typically be greatly overdetermined for

most objects, it is possible to make reliable judgements regarding the correctness

of an interpretation even in the presence of missing features or occlusion.

Given that we have a method for reliably determining the correctness of an

interpretation, the remaining aspects of recognition essentially reduce to a prob-

lem of search. Chapter 6 presents methods for actually enumerating this search

S ..

• .' - • . .. . , ' • o . .. ... ..



4 CHAPTER 1: INTRODUCTION

space and for combining sources of initial evidence to achieve an efficient ordering

for the search. However, as in many problems within artificial intelligence, the

size of the search space can quickly become too large for practical enumeration.

It is here that the various bottom-up methods for image description can play a

vital role. In general, the extent to which a certain type of image description will

reduce the size of the search will depend upon the degree to which it is invariant

across changes in imaging conditions, such as lighting, viewpoint, or the addition

of noise. However, we will argue that one of the most extensively researched

aspects of invariant image description-the derivation or depth information-is

not the most promising candidate for reducing the size of this search space, both

because it is often not available and because it is of only limited effectiveness in

reducing the amount of search. Instead of relying upon depth information, we

will propose a central role for the process of perceptual organization, in which

groupings are formed directly from the spatial structure of the image.

* 1.0.2: Perceptual organization

* Perceptual organization refers to a basic capability of the humian visual system to

derive relevant groupings and structures fromn an imtage without prior knowledge

of its contents. Other names which have been given to this and related topics

* include figure-ground phenomena, image segmentation, Gestalt perception, and

texture description. The human visual-system has a highly developed capability

for detecting many classes of patterns and statistically significant arrangements

* of image elements. For example, people can immecdiately detect symmetry, clus-

tering, collinearity, parallelism, connectivity, and repetitive textures when shown

an otherwise randomly distributed set of image elements. Almost all current

computer vision systems lack these perceptuA capabilities. A major reason why

perceptuial organization has not been a focus of computer vision research is prob-

ably because these groupings often do not lead immediately to a single physical
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interpretation. However, as a component of a search-based approach towards

* recognition, this is not a problem in making effective use of the organization-

the structures can lead to a dramatic decrease in the search space in spite of

some remaining discrete instances of ambiguity. The first few chapters of this

thesis will be mostly devoted to the problem of providing an underlying theory

for the function and goals of perceptual organization. These results will then be

used to derive a number of constraints which all perceptual grouping operations

must satisfy in order to be functionally adequate.

Although not historically a focus of the computer vision community, per-

ceptual organization has played a much more central role in the psychological

study of human vision. The Gestalt psychologists devised many experiments in

the 1920's and 30's that tested the way human subjects subjectively grouped

simple line and dot patterns, and there has also been more recent work in mea-

suring many related aspects of human Vision. Unfortunately, the psychological

explanations given for these phenomiena have been primarily descriptive rather

thatn functional, and therefore do not give an adequate theory for the role which

perceptual organization plays in the overall functioning or the visual system.

By examining perccIptudl organization within a recognition-based computational

framnework, we hope iiot only to improve the capabilities of computer vision Sys-

tems but also to provide useful explanations for the presence and function ofr many of these psychological phenomena.

1.0.3: Relationship to psychology

Since there is sometimes an uneasy relationship between research in computer2

vision and the study of human vision, it is important to be clear about the form '

that the discussion of psychological results will take in the following chapters. .

Some researchers within the computer vision community consider the develop-

ment of machine vision to be quite separate from research into the functioning
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of human vision. After all, why should we be constrained by the biological so-

lution to a problem? However, this view ignores the fact that biological vision

is currently the only indication we have that the general vision problem is even

open to solution. Without this proof of feasibility, it is hard to imagine that

anyone would even think of attempting to interpret the array of light intensities

projected from a scene onto a two-dimensional screen. Biological vision is cur-

rently our major source of evidence as to which sources of information can or

must be used to solve the various components of the vision problem and how

these sources can be combined. It is at this level that most of the psychological

evidence will be used in the following pages.

The skepticism can also flow in the reverse direction. Psychologists may

wonder how computer scientists with largely pragmatic aims can have anything

useful to say about specific biological systems. This is probably best coun-

tered by repeating David Marr's description of the different levels of compu-
tational explan-ition in vision [Marr, 1977; Marr, 1982]. At the lowest level of

explanation is a description of the hardware implementation, and at this level

it would indeed be inappropriate to claim results without specific physiologi-

cal evidence. At an intermediate level is a description of the representations

and algorithms which ae used, and at this level psychophysical evidence can

often be used. At the highest level of explanation we will have a computa-

tional theory which provides a specification of what is computed rather than

how it is computed. Psychophysical evidence can also be useful at this level

by indicating which sources of information are being used to reach a conclu-

sion. Just as there can be many possible hardware implementations for a single

algorithm, there can be many algorithms for a single computational specifica-

tion of a problem. However, these higher levels of explanation provide strong

constraints and theoretical building-blocks for exmunining specific implementa-
tions at the lower levels. We will be assuming in the following discussions that

both computer and biological vision systems will share solutions at the highey
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levels of computational specification due to the fact that they face a common

problem, and we will focus on functional specification rather than similarities of

implementation.

1.1: Two viewpoints on the computer vision problem

The approach that we will be taking differs in some important ways from the

dominant tradition of research in computer vision. The analysis of any problem

must be carried out within some framework or paradigm that selects the back-

ground assumptions and problem definitions on which the work will be built.

The following sections will describe two somewhat different conceptions of the

problems to be solved in computer vision. The first viewpoint assumes that

the primary function of different components of the visual system is to produce

disambiguated intermediate levels of representation that represent physical prop-

erties of the scene, and that these are in turn further disambiguated by processes

leading to higher level representations. This conception differs in some funda-

mental respects from the recognition-based approach taken in this thesis, which

uses intermediate descriptions to assist general search procedures in achieving

spatial corresp~ondencc with prior expectations. While there is clearly a role

* for both types of process, there is much room for debate regarding the relative

* importance of these processes in typical visual situations.

1.1.1: Production of disambiguated representations

It is common for researchers in computer vision to point out that any local iue&-

inurement in the image is the convolution of many different properties of the

scene, such as lighting, reflectance, viewpoint, and surface shape. A major focus

ofcomputer vision research has been to develop processes that can recover some

of these intrinsic physical properties of the scene dircctly fromu its images. One

of the most successful and intensively studied aspects of this project has been
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the development of methods for recovering depth information. The diagram in

Figure 1-1 illustrates a popular model for the visual system, in which multiple

processes operate on the image to produce depth information. The results from

the different processes are combined into a common representation known as the

2 1/2-D sketch [Mart, 1982]. This model can be elaborated by the addition of

surface-interpolation processes and transformtions from the depth representa-

tion to object-centered coordinates. Since this intermediate representation has

removed many forms of ambiguity from the original image, it is presumed that

the recognition process operating on this representation would be much simpler

than one which had only the original image data available. Since the initial pro-
cesses are bottom-up and lead to a useful, well-defined intermediate result, work

has proceeded on them independently from any need to solve the recognition

problem. There is also some psychological evidence to support this separation

of components: experiments with random-dot stereogra-ns or motion correspon-

dence show that human vision can recover depth in the absence of any outside

sources of evidence, albeit with some loss of speed and accuracy.

There can be no question that the processes for depth-recovery are a part

of the human visual system and that they can be vital for certain tasks. How-

ever, it does not follow that these are a necessary component of recognition or

that they play a central role in the common visual tasks of daily life. We will

argue in particular that depth information is not necessary for recognition, that

it is quite often unavailable, and that it is of only limited use for recognition

when it is available. The fact that depth information is unnecessary for recogni-

tion will be illustrated in the following chapters by some simple psychophysical

experiments and by developing methods for achieving recognition directly from

two-dimensional image data. It would also follow from the conclusion that depth

information is often unavailable to the human visual system. There are in fact
strict limitations on the applicability of the various proposed processes for recov-

ering depth inform;Ltion. Stereo is useful only when the object is close enough to

If
-..
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I mageL Features

E

212DSketch]

Intrinsic iae

Recognition

Figure 1-1: A commonly-adopted model for visual recognition Assumes that multiple
processes operate to derive depth information and other intrinsic physical characteristics
from features of the image. These results are combined in intermcdiate representations
such as the 2 1/2-D sketch or intrinsic images. The recognition process then operates
upon these disambiguated intermediate representations.

4-
cause suflcient disparity and is within the restricted boundaries defined by the

fusional area of the visual field. Motion requires an elapsed time interval depend-

ing upon the relative velocity of the motion, which means that only in the fastest

cases of motion will it be of use for immediate recognition. For stationary objects,

we must rely on motion by the observer, which at typical rates of human motion
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is again only of use for nearby objects. The processes for recovering depth from

shading and texture gradients make even more specialized assumptions. They

seem to apply only to regions that have approximately uniform reflectance or

texture, and even then return what can best be described as qualitative con-

straints on shape rather than quantitative depth information. The function of

the 2 1/2-D sketch is to combine these various sources of information so that one

source can make up for missing information from the others. However, there are

many common situations in which even the combination of these sources would

seem unable to provide much quantitative depth information. These situations

include objects that are distant, objects that are quickly identified in periph-

eral vision, two-dimensional pictures of objects, and line drawings. Significantly,

there seems to be little degradation in the speed or accuracy of recognition in

these situations by human vision.

But in those situations in which depth information is available, isn't it ex-

tremely useful? This is clearly true in some situations, such as when encoun-

tering a completely unfamiliar object or when performing motor or navigation

tasks that require precise three-dimensional information. However, the value

is much less obvious for the common visual task of recognition (from which

we can also derive approximate location in depth). Given that we are basing

recognition upon spatial correspondence, it would seem reasonable to consider

correspondence in three dimensions rather than just basing it on the locations

of two-dimensional image features. However, even when depth measurements

are available from stereo or motion correspondence, their accuracy and density

are usually lower than those for the locations of features in the image. There-

fore, from an information-theoretic point of view, the depth information usually

provides fewer bits of information than the measurements in the other two di-

mensions. So, for the task of verifying correspondence with prior knowledge, the

addition of depth information can not be expccted to provide a major increment

to our reliability of verification (of course, as with any source of new information



1.1 Two viewpoints on the computer vision problem 11

regarding the image, there will be some problems for which it is needed to make

a crucial discrimination). There may be ways to usC depth information to greatly

speed the search for correspondence with prior knowledge, but there is currently

no strong evidence for this conclusion. Even complete, accurate depth informa-

tion, such as that produced by a laser rangefinder, has not been shown to greatly

ease recognition. The successful use of two-dimensional perceptual organization

may be capable of exploiting most of the useful information.

1.1.2: Searching for spatial correspondence

4 Figure 1-2 presents a model for visual recognition which contains pathways other

than those leading through depth and surface representations. Perceptual group-

ings can be formed directly from the two dimensional image features and can be

used as input to a search-based recognition process. The verification of interpre-

tations can also bypass the need for a depth representation by directly checking

the consistency of spatial correspondence between three-dimensional knowledge

and the two-dimensional locations of image features. Of course, the capability

for forming depth representations is retained when available, but it is no longer

the only pathway to recognition. Perceptual groupings can also be formed in

three-dimensions from the depth representation, and there is a process of 3-D

inference which can infer constraints on depth directly from the two-dimensional

perceptual groupings.F In this thesis we will undertake the ambitious task of developing all of these

additional capabilities, including perceptual organization, search-based recogni-

tiou, spatial verification, and 3-D inference from perceptual groupings. Fortu-

nately, there has already been important previous work in some of these areas,

particularly search-based recognition. While these problems have certainly not

been completely solved, enough progress has been made on each of the topics to

convincingly demuonstrate their performiance and the practicality of the overall

system.
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('F Features 
PretaII

* 2 1/2-D Sketch 3-0

D Groupings

Vwrfcaon

Oclt model

Figure 1-2: When depth information is unavailable, recognition must be achieved
through alternate pathways. In this model, a process of perceptual organisation results
in the formation of perceptual groupings, which in turn can be used directly for recog-
nition. The verilfcation procedure can also operate directly between three-dimensional
knowledge and the two-dimensional image. In addition, there is a process of 3-D infer-
eliCe which can infer constraints on depth directly from the two-dimensional perceptual
groupings. This thesis will cover all four of the processes named in this figure.

There are more differences between this search-based viewpoint and the one

outlined in the previous section than just the addition of some new processes
4

and the capability for bypassing depth representations. There is a very dif-

ferent conception of the role of intermediate representations. The contrast is

I
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Figure 1-3: [Hochberg & Brooks, 19021 describe an experiment in which a child was
raised until the age of 19 months with very few opportunities to see any types of pictures
and without ever having the contents of a picture named in his presence. Yet, the child
had no difficulty in naming the contents of the first line drawings he saw, which are
shown above. This experiment seems to clearly demonstrate that the recognition of
line drawings does not require any special form of learning and that it follows naturally
from the ability to recognize three-dimensional objects.

clear if we compare it, for example, with Marr's principle of least coilimitnment

[Marr, 1982, p. 106]. This principle explicitly states that a hypothesize-and-

test strategy should be avoided and that a conclusion should be added to a

representation only after it has reached a high level of certainty. While this

principle could simplify the construction of completely disambiguated interme-

diate representations, it ignores any evidence which is inhcrently probabilistic

or ambiguous. As mentioned earlier, perceptual groupings often have several

possible physical. interpretations and are probabilistic in nature. Therefore,

they only fit comfortably into a model which allows for search among a num-

ber of possible interpretations and has some reliable einthod for final verifica-

tion.

4
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* There is a common unfounded belief which can lead people to prefer the idea

* of complete depth and surface representations over the use of sparser spatial in-

formation. The examples we will be using will be very similar to the problem

of interpreting line-drawings since they place primary emphasis on the position

of line or point discontinuities in intensity. However, many people consider the

* problem of interpreting line-drawings to be artificial, and they may have heard

anecdotal stories suggesting that people from primitive cultures are unable to rec-

ognize such drawings. However, this belief is just not supported by the evidence.

A seemingly definitive experiment on this question is described in [Hochberg&

Brooks, 1962]. In this experiment, a human baby was raised until the age of

19 months under the constant supervision of his parents who avoided exposing

the child to line-drawings or two-dimensional pictures of any kind. Although the

baby accidentally had opportunities to glance at some pictures on a few occa-

sions, at no point was the content of a picture ever namied to him or was other

attention drawn to it. All of the baby's playthings were chosen so that they had

solid coloring and no two-dimensional patterning of any kind. Finally, at the age

of 19 months the child was shown some line-drawings for the first timte, including
those illustrated in Figure 1-3. The child was innediatyal to eonz h

- objects in these drawings with no reported difficulty, and performed equally well

when identifying the contents of black-and-white photographs. This experiment

would seem to provide a very strong result which applies to all cultures.

1.2: A demonstration of the role of perceptual organization

F The reader may still be unconvinced of the importance of perceptual organiza-K tion for typical instances of recognition. However, we can demonstrate that the

formation of perceptual groupings is prerequisite to recognition by performing

the obvious psychophysical experimtent of creating an image in which the infor-

mation necessary for perceptual organization is missing. In Figure 1-4(a) we
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have created a drawing of a bicycle which is more than 50% complete, but which

has been constructed so that most opportunities for bottom-up grouping having

been eliminated (e.g., we have eliminated. most instances of significant collinear-

ity, endpoint proximity, parallelism, and symmetry). In informal experiments,

this drawing proved to be remarkably difficult to recognize when the subject had

no knowledge regarding the identity of the object. In one group of 10 subjects,

nine of the people were unable to identify the object within a 60 second time

limit, and the tenth person took about 45 seconds. Note that this is in spite

of the fact that the object level segmentation has already been performed-the

task would be even more difficult if the bicycle were embedded in a normal scene

containing many surrounding features. Just in itself, this part of the experi-

ment illustrates the limited capability of human vision for achieving recognition

without perceptual organization.

The experiment can be taken one step further by gradually introducing the

capability for performing perceptual groupings and seeing whether this decreases

the average recognition times. In Figure 1-4(b) we have added just a single

segment to the drawing in 1-4(a). The added segment was placed at a strategic

location which allows it to be combined with other segments in a curvilinear

grouping. The recognition times for this second figure were dramlatically lower

than for the first, with 3 out of 10 subjects recognizing it within 5 seconds and 7

out of 10 within the 60 second limit. Presumably, if the added segment had been

placed at some location which did not lend ;tself to perceptual groupings, the

change in recognition times would have been negligible. The final recognition of

this figure is clearly based upon achieving spatial correspondence with a single

viewpoint of some known object-for example, there is no potential for forming

a bottom-up representation at the level of a 2 1/2-D sketch. The ability to

influence recognition times by controlling the formation of perceptual groupings

illustrates the search-based nature of this process. One can imagine performing

a series of these experiments, in which different groupings are introduced, which

4
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- -

Figtire 1-4: When opportunitips for bottom-up grouping of imaige features have been
removed, ms in the line drawing of a bicycle in (a), the drawing is remarknbly dimcult to
recognize. The average recognition time for (a) was over one minute when subjects had

0 no prior knowledge of the object's identity. ]owever, when a single line segment w
added in (b), which provided local evidence for a curvilinear grouping, the recognition
times were greatly reduced.

0
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Figure 1-5: These degraded drawings were used by [Leeper, 10351 to test the influence

of non-visual contextual information on recognition. When subjects were told that the
objects were "a means of transportation" (drawing b), "something used by almost
everyone everyday" (g), "an animal and a person" (h), or a musical instrument" Uj),
the recognition times were significantly reduced. The drawings are meant to represent
(a) a clock, (b) airplane, (c) typewriter, (d) bus, (e) elephant, (f) saw, (g) shoe, (h) boy
and dog, (i) 1930's model car, and U) violn.

would allow the experimenter to determine the relative importace of various

groupings in accessing a particular object model.

The search-based nature of the matching process can also be denmonstrated

by introducing non-visulal forms of contextual information which reduce recogni-

tion tines by limiting the set of candidate objects. This was a component of an
experiment described in [Leeper, 1935J, in which subjects were asked to identify

oon

, .objects wee"maso transportaton".(drawin b), "smthn used by a.. ,. ,,,.n.,oe.t ,
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the objects illustrated in Figure 1-5. One group of subject-; was told nothing

about the identity of the objects, but a second group was given vag-e non-visual

verbal descriptions of the object class, as described in the figure caption. These

verbal descriptions led to a significant decrease in the amount of time required

for recognition. Since these descriptions could have applied to a wide range of

visually dissimilar obiects, it seems that the best explanation for their influence

must be in narrowing the search at the level of object recognition rather than

influencing bottom-up descriptive processes or leading directly to the one corrp.t

answer.

A number of other psychological studies in the area of perceptual organiza-

tion will be reviewed in the following chapter.

1.3: Speific functions of percept-inl organi.tlnn

Current knowledge-based vision systems [Roberts, 1966; Shirai, 1978; Brooks,

1981; Goad, 1983] are limited in practice to the consideration of only a few well-

specified objects by the sheer size of the search space that imust be explored. The

model of recognition that we have presented assigns a central role to perceptual

organization as a way of redtacing the size of this search. lere we will examine

some of the mechanisms through which this reduction in search can he accor-

plished. By understanding these mechanisms, we will be specifying sonie of the

particular functions which perceptual organization will perform in a complete

vision system, and we will use these results in later chapters to determine partic-

ular attributes or algorithms which carry ot the groupilig processes. Folinwing

are three of the most important functions of perceptual organization:

1. Segmentation: *A major reduction in the search space can be achieved by

segmentation--the division of the image into sets of related features. With-

out segmentation, a model would have to be matched against all poq-ible

combinations of features in the image, so good segmentation is crucial for

• ' .' , ,, . .. - -'- ,.., . - .- .- .- ,..- ... .. .,.. - .. .- - .. . . - . . . . .• , , , . .. . . . . .. .
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reducing the combinatorics of this search. Segmentation has long been rec-

ognized as a central problem in image interpretation, but previous methods

have usually been based on region analysis or scene-specific measures rather

than on general methods of perceptual organization.

2. Three-space inference: Perceptual organization results in the formation

of two-dimensional relations between image features, and these relations lead

to specific three-dimensional interpretations as described in Chapter 5. For

example, collinear lines in the image can be expected to be collinear in 3-

space unless there has been an unusual accident in viewpoint. In this way,

perceptual organization can lead to constraints on depth, which can provide

Segmentation in three dimensions as well as two. In addition, these depth

constraints can contribute to the 2 1/2-D sketch in the same way as stereo,

motion, or shading information.

3. Indexing world knowledge: Given a large database of world knowledge,

the most significant factor determining the size of the search space is likely

to be the selection of the appropriate objcct out of the extensive set of possi-

bilities. To the extent that the relations formed by perceptual organization

are stable under differentt viewpoints and imaging conditions, they can be

used as reliable index terms to access thc body of world knowledge. Each

relation will typically have several paranmcters of variation whose relative

values in the image can be used for indexing. For example, collinear line

segments can be characterized in a viewpoint- independent manner by theI
relative sizes of the segments and gaps. Chapter 7 will examiine the use of
evidential reasoning for combining multiple sources of evidence, including

perceptual groupings, to arrive at the optimal ordering for search.

It is important to note that each of these nicchanisms for reducing search is based

upon the assumption that the relations produced by p~erceptual organization

are the result of regularities in the objects being viewed. This mneans that any
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relations which arise through some accident of viewpoint or position are of no

use for recognition and will only confuse the interpretation process. This fact

will provide the basic method for evaluating the usefulness of specific image

relations-relations are useful only to the extent that they are unlikely to have

arisen by accident. One of the major goals of our algorithms for perceptual -

organization will be to statistically distinguish accidental from non-accidental

instances of a relation. This goal will form a basis for the further development

of methods for perceptual organization in Chapter 3, following a review of some

of the previous research on perceptual organization in Chapter 2.



Chapter 2

PREVIOUS RESEARCH

ON PERCEPTUAL
ORGANIZATION

The history of research on perceptual organization consists, in its broad outlines,

of a search for some underlying principle which would unify the various group-

ing phenomena of human perception. The Gestalt psychologists thought that

this underlying principle was some basic ability of the human mind to proceed

from the whole to the part. Later research summarized many of the Gestaltists'

results with the observation that people seeni to perceive the simplest possible

interpretation for any given data----although simplicity proved to be very difficult

to define or quantify. This dissertation is based on the still wore recent principle

that it is the degree of non-accidentalness which determines the significance of

a grouping. In other words, it is not simplicity itself that determines signifi-

cance but the extent of surprising simplicity given expectations regarding the

distribution of features.

In addition to this grand search for a single principle, there have been a

number of basic psychophysical studies on grouping processes as well as many

attempts to implement specific grouping operations in computer vision systems.

While it would be impossible to cover all of this work in a single chapter, we will

attempt to cover some of the major highlights.

21
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2.1: Gestalt psychology and perceptual organization

In many ways, the heyday for the study of perceptual organization was during

the 1920's and 30's. During this period, Gestalt theory dominated the study

of perception, and the study of perceptual grouping phenomena was a major

component of the Gestalt program. The word Gestalt itself means "whole" or

"configuration," and the major goal of the Gestaltists was to show that percep-

tion was something that happened as a whole rather than as a combination of

individual primitive features.

The major contribution of Gestalt psychology to our current understanding

of perceptual organization was to develop a large number of demonstrations of

grouping phenomena and to roughly categorize them into several groups. Fig-

ure 2-1 illustrates some of these categorizations as developed by Max Wertheimer

(Wertheimer, 19231, who is recognized as the founder of the Gestalt school. These

categories can be summarized as follows: (1) Prozimity--eleinents which are

closer together tend to be grouped together; (2) Similarity--elements which are

similar in physical attributes, such as color, orientation or size, are grouped to-

gether; (3) Continuation-clnicnts which lie along a conunon line or smooth

curve are grouped together; (4) Closure--there is a tendency for curves to be

completed so that they form enclosed regions; (5) Symmetry-any elements

which are bilaterally symmetric about some axis are grouped together; and (6)

Familiarity-elemcnts are grouped together if we are used to seeing them to-

gether. Naturally enough, given such extremely general terms as similarity or

* familiarity, it was very difficult to derive any type of quantitative theory. There

were many attempts to put these various grouping tendencies in opposition to

one another and see which was stronger, but there were too many variables to

come up with a quantitative theory.

Unfortunately, the Gestaltists extrapolated from simple experiments, such as

the ones described above, to highly speculative assumptions regarding the overall

6I
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a) 0 *Proximity

b) • 0 0 • •• Similarity

C) asure

0) Continuation

e) Symmetry

Figure 2-1: These are examples from some of the categories of grouping phenomena
developed by the Gestaltists: (a) dots are paired on the basis of proximity; (b) dots
are paired based on similarity in size; (c) shapes are grouped as squares due to closure
(or continuation); (d) lines arc seen as crossing due to good continuation; (e) bilater-
ally symmetric pairs of lines are grouped; and (f) this cxample, from [Kanissa, 19791,
illustrates that continuation can override the influence of symmetry.

.]
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structure of the brain and mind. They rejected the idea of independent receptors

with specific nerve energies and considered the study of sensory psychophysics to

be artificial and irrelevant. Instead they built theories based upon "field theory"

and the resulting "attractive forces" between components of a perception. In the

same way that every minor event in an electromagnetic field is related to every

other event in the field, it was assumed that the response of each individual

receptor was determined by the overall structure of the perception. This did not

stop with the study of perception, but was considered to apply to the entire area

of the self and to relationships between the self and the environment. Gestalt

psychology also claimed success in "refuting the machine theory of the organism"

[Katz, 1950, p. 50], in particular the idea that ordered perceptions arise from the

ordered structures and pathways of the nervous system. Eventually, after two

decades of prominence, there was the inevitable backlash against Gestalt theory,

with the unfortunate side effect that the study of perceptual organization became

associated with some of the less scientific aspects of the Gestalt revolution.

2.2: The principle of simplicity

The most important lasting impact of the Gestalt study of perception was that it

stimulated many individuals to try to come up with some underlying principle of

organization. The original Gestaltists themselves were not very successful at this.

They summarized their laws of organization with the single "law" of Prignanz,

which just neans "goodness of f6rin"-a circularly-defined term with no quan-

titative formulation. Many psychologists realized that this was unsatisfactory,

and by the 1950's there was sonie agreement on a general principle of simplicity,

also known as the "minimum principle" [Hochberg, 1957]. This was stated as the

principle that "other things equal, that perceptual response to a stimulus will be

obtained which requires the least amount of information to specify" Jllochberg,

1957, p. 83].

.1.
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Unfortunately, the idea of simplicity is also not well-defined, since the de-

gree of simplicity with which a figure can be described depends entirely upon

the description language that is used. However, it seemed that for some rea-

sonable choices of such a language, the simplicity criteria provided an accurate,

computable determination of which perception would be perceived. The idea

merged nicely with a surge of interest in information theory during the 1950's,

since information theory dealt with minimum-length encodings for transmission

of information. [Attneave, 1954] took this idea literally, and looked at various

particular nininumn length descriptions for images or curves and showed that

they seemed to correspond to some simple aspects of perception. There have

been some recent attempts to define particular languages for describing certain

restricted classes of patterns [Leeuwenberg & Buffart, 1983], and to use these

to make quantitative predictions for which structures are most likely to be per-

ceived based upon the mininum-parameter specification of the pattern within

these languages. Unfortunately, information theory itself provides no specific

guidance for selecting the appropriate language of description.

A major limitation of these simplicity arguments is that they assume that

the description language will perfectly encode the image. In realistic scenes, any

visual pattern is likely to only approximate whatever ideal description is being

considered. Presumably there is some trade-off in degree of approximation to

the ideal and the strength of the percept, but the simplicity criteria say nothing

about exactly what this trade-oft will be and how the degree of approximation

is measured. This is an example of a problem which is of crucial importance for

computer vision and for most real inages, but which can be conveniently ignored

when setting up idealized, forced-choice experiments in the perception labora-

tory. Methods for approaching this problem of measuring degrees of approxi-

mation, through the use of statistical evidence and prior expectations regarding

distributions of features, will be a major topic of this thesis.

4- .,
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2.3: Grouping as the formation of causal relations

In a recent paper, [Witkin & Tenenbaum, 1983] examine the role that grouping

phenomena can play in both biological and computer vision systems. They point

out that many current areas of active research in computer vision-such as struc-

ture from motion or stereo-are essentially grouping problems in which elements

in the image are grouped into sets of related features. Of even greater potential

importance is the human capability to derive structure and organization directly U
from collections of two-dimensional image features. These groupings can be j
formed without any high-level knowledge of the content of the scene, and it is re-

markable that even after the scene has been recognized and understood, the same

groupings are nearly always present in the final description. This then provides

the clue for the role that these groupings play in vision: the groupings establish

causal relationships between elements of the image which are likely to survive

intact through later stages of interpretation. In fact, Witkin and Tenenbaum

claim that much of the later interpretation process merely consists of attaching

labels to these primitive groupings, so that the computationally-intensive work

of deriving structure from the image will have been already accomplished by the

grouping process.

Given that the goal of the grouping process is to uncover causal relation-

ships between image features, what does this tell us about how to go about the

grouping process itself? Witkin and Tenenbaumn review a number of criteria that
have been used previously in compu ter vision, such as a desire for economy of

representation or a priori expectations that smooth descriptions are more likely

than complex ones. Their conclusion is that the strength of the most success-

ful methods comes not from the strength of their a priori expectations for the

grouping but rather from a non-accidentalness argument. In other words, it is

the degree to which sonic relation is unlikely to have arisen by accident which
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is the most important contributor to its significance. For example, if two paral-

lel curves are considered to be highly significant, it is not due to the fact that

structures which project to parallel curves in the image are a more common oc-

currence than structures which do not, but rather to the very small probability

that two curves would happen to be parallel by accident. Of course, it is also

true that any other exactly specified relation between two curves would be very

unlikely to happen by accident, so the non-accidentalness argument is still rely-

ing on a priori expectations. However, the most important consideration is not

the expectation for parallels versus non-parallels, but rather the expectation for

parallels arising by accident from some expected distribution of the constituent

features. Given sufficiently tight constraints for an expectation, we can have very

high expectations for identifying it even if our prior expectations for it are low.

In other words, we can shift our attention from finding properties with high prior

expectations to those which are sufficiently constrained for a realistic distribution

of accidentals.

Of course, the non-accidentalness argument-based essentially on condi-

tional probabilities-does not originate with Witkin and Tenenbaun. As they

point out, previous research in computer vision has used it for a number of indi-

vidual problenis (Lowe & Binford, 1981; Stevens, 1981; Ullman, 19791. However,

Witkin and Tenenbaum argue that this is more than a technique that can be

applied to a number of individual problems, but is in fact the general goal of

image organization. Even when we do not know the ultimate interpretation for

some grouping and therefore its particular a priori expectation, we can judge it

to be significant based on the non-accidentalness criteria.

While this de-emphasizes the role of prior probabilities, it certainly does not

eliminate them. There is still the important issue of selecting the set of well- I
constrained image relations against which the likelihood of non-accidentalness

will be judged. Witkin and Tenenbaum suggest the use of spatiotemporal reg-

ularity and "fuzzy" identity over space and time. In other words, the class of

[,, '-" -';:..I".-'.i . ." ."-.'- .-.- ".".. .-...-.-...-"'...-'-"-. . ..-.'." :.-....-'.. ." . ." - . . ..." . . ... . .. . ..'," " ,. .
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relations we should be looking for are those which result when one shape is

transformed into another using simple inage transformations (e.g., translation,

rotation, scaling). This is similar to the suggestion by [Palmer, 1983] that or-

ganization is performed over the group of Euclidean similarity transformations.

However, this set seems to be much too inclusive to account for normal human

performance (e.g., people are not very good at grouping rotated instances of a

shape or grouping elements which are widely spaced in an image), and it says

little about how to judge approximate instances of a relation. One of the aims

of this thesis will be to provide more detailed criteria for selecting this set of

significant image relations.

2.4: The role of grouping in computer vision systems

Although many computer vision programs have incorporated aspects of percep-

tual organization-such as the detection of straightness or collinearity-the use

of each relation has typically been approached in isolation and has not been

based on general goals or expectations which could apply to all types of im-

ages. One of the most general proposals for the use of perceptual organization

in computer vision systems was Marr's initial work on the primal sketch. In his I
paper on early visual processing [Marr, 1976], he developed the idea that the

primal sketch should contain not only representations of the discontinuities in

intensity, but also various groupings of curves and tokens into larger structures.

These groupings would be based on a representatioii for individual features, called

place tokens, that would represent the perceptually salient aspects of cacti image

feature. Marr suggested groupings on the basis of curvilinearity and a process

he named theta-aggregation, which groups lines on the basis of parallelism and

collinear displacements. lie also suggested performing texture description on the
basis of peaks in histograms of five different properties of the place tokens: inten-

sity, size, density, orieatation, and separations. These texture measures would

*!
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have to be calculated within each region of the image for various region sizes.

Unfortunately, the grouping aspect of the primal sketch was never developed in

detail, and received less emphasis in Marx's later work [Marr, 19821.

The particular grouping process that has received the most attention in com-

puter vision is that of clustering collinear points or lines. One popular candidate

for carrying out this process has been the Hough transform [Duda & Hart, 1972],

which reparameterizes Cartesian space so that points which lie along the same

line will have the same coordinates. By transforming all points in this way and

looking for clusters which lie at the same location in transformed space, it is

possible to search efficiently for all sets of collinear points. Unfortunately, this

method is too successful in the sense that it entirely ignores proximity in the

image. It will group points from widely separated regions of an image which

happen to lie close to a common line, while at the same time failing to ascribe

significance to points which are close in proximity but not as close a fit to a line.

This is in strong disagreement with human performance in collinearity grouping,

which places a strong emphasis on proximity. A more psychologically valid ap-

proach is described by [Zucker, 1983], who has carried out some psychophysical

experiments on the grouping of dots into curvilinear and oriented structures, and

proposes a computational model based upon cooperative processing that agrees

with these experimental results.

Another grouping process that has rdceived a significant degree of interest

is the detection of bilateral symmetry. A number of psychophysical experiments

have been carried out to measure the human capability to detect symmetry in

randoim dot patterns [Bruce & Morgan; Barlow & Reeves, 1979]. These have 4

found that human vision is able to detect symmetry in brief exposures to pat-

terns even after they have been degraded with missing or perturbed elements

to a surprising degree. (Brady, 1983] describes work on a system for detecting

the symmetries of a closed contour using a representation he calls smooth local

symmetries.

4
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Of course, there have been a large number of other computer vision systems

which carry out some grouping operations as a part of their larger goals. We

will review some of them in later chapters when dealing with individual grouping

problems. But, in summary, it can safely be stated that the development of

perceptual grouping processes within computer vision is at a very early stage of

development.
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Chapter 3

MEASURING

THE SIGNIFICANCE

OF IMAGE RELATIONS

Perceptual organization can be viewed as a process which assigns a degree of

significance to each potential grouping of image features. Our goal in this chapter

will be to take a unified view of the many grouping phenomena by exuininig

the underlying principles for measuring the significance or each grouping. As was

described in Chapter 1, perceptual groupings are useful to the extent that they

are unlikely to have arisen by accident of viewpoint or position, and therefore

are likely to reflect meaningful structure of the scene. Our basic argument will

be that certain image relations re carriers of statistical information indicating

that they are non-accidental in origin, and that this degree of non-accidentalness

forms the basis for assigning degrees of significance. Note that there are an

infinite number of different types of relations that could be considered (e.g., "all

pairs of straight line segments at N degrees relative orientation," for any given

N), and a combinatorial number of sets of elements to consider in any given

image. Only a small subset of these possible relations are of any significance

or are worth the effort required for detection. This chapter will examine the

31
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Derivation of methods for image organization

1: Calculating the probability that a relation Is non-accidental
1.1: Viewpoint invariance conditions
1.2: Null hypothesis of position independence
1.3: Prior knowledge of probability of occurrence
1.4: Ratio of background density to proximity
1.5: Recursive application of structuring

2: Limiting computational complexity
2.1: Local neighborhood calculations
2.2: Texture charactci ations

Figure 3-1: This chapter, as outlined above, attempts to derive the classes of image
relations which are most useful for recognition. The value of a relation for the process
of recognition depends upon the probability that it is non-accidental in origin and upon
the ability to detect it without undue computational complexity.

many factors which limit this large class of potential relations to the small set of

perceptually significant groupings.

Figure 3-1 lists the various factors which must be combined to produce an

overall derivation of the set of significant relations. There are basically three

problcms to be tackled. The first is to derive the classes of relations (e.g., "par-

allelism" or "collincarity") which should be tested for significance. The second

problem is to include probabilistic measures to take into account limitations in

accuracy and deviations from the ideal relation (e.g., how significant is the rela-

tion between two lines which are within 3 degrees of being parallel). The third

problem is to limit computational complexity, since some relations are not worth

detecting even if they are statistically significant.

From the psychological viewpoint, this chapter can be thought of as a theory

for the visual phenomena explored by the Gestalt psychologists. In other words,

it attempts to provide a derivation for the classes of spontaneous groupings that

would be formed by any visual system that had been optimally designed for

I
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recognition. This will not be a theory at the level of mechanism-it does not pre-

dict specific physiological structures-but rather a functional theory that makes

predictions based upon the assumption that evolutionary design would lead to

the optimal functional implenmentation. It is likely that many different types of

mechanisms will be used to implement the various forms of grouping operations,

but they should all satisfy the various computational constraints given in this

chapter.

3.1: Probability of accidental occurrence

We have divided image relations into two classes: those that arise through an

accident of viewpoint or position and those that arise from some meaningful

(i.e., predictable) structure in the scene. As described in Section 1.3, the acci-

dental relations will only interfere with our attecvipts to match image relations

to prior knowledge of objects. This is similar to the point made by Witkin

and Tenenbaum's use of image relations to uncover the causal structure of a

scene, as described in the previous chapter (Section 2.3). This point will also be

suppjorted by the results presented in Chapter 6, which show that it is thle non-

accidentalness of somec relation which allows it to reduce the amount of search

required for model matching.

Therefore, a key to determining which relations are worth detecting and to

evaluating their significance is to calculate the probability that they are non-

accidental iii origin. Many factors enter into this calculation, and they are in-

dividlually examined in five subsections: (1) knowledge or the image projection

process leads us to the conclusion that only certain classes of image relations will

occur more often. than by chance and will therefore be statistically detectable;

(2) statistical estimates of non-accidentalness can also make use of prior knowl- .

edge of the probability of occurrence of each relation; (3) the foramation of the

accidental instances can be modeled by assumning independlence of position and
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orientation; (4) the background density of similar features determines the signif-

icance of a given degree of proximity for any relation; and (5) initial relations

can recursively be combined into new relations that can influence the original

estimates of significance.

3.1.1: Viewpoint invariance conditions

One of the most powerful and general sources of information constraining the

image arises from properties of the image projection process which maps a three-

dimensionalM scene into a two-dimensional image. If we make the reasonable

assumption that the viewpoint of the camera (or eye) is independent of the objects

in the scene, then we can show that only certain classes of image relations are

likely to occur more often than by chance. These classes of relations are those that

remain stable over a range of viewpoints (e.g., collinearity in the scene projects

to collinearity in the image over a wide range of viewpoints). Any mappings that

do not remain stable over a substantial fraction of all possible viewpoints will not

produce relations in the image that are separable from those arising by chance

(e.g., lines a-t righit-angles in the scene can project to lines at all1 possible angles

in the image, so a right angle iii the image is not likely to occur more often than

any other angle).

Figure 3-2 contrasts examples of relations that are significant against those

that are not. It is worth pointing out a common misunderstan ding that oc-

curs when interpreting figures such as these that illustrate image relations. it

0 is important to remnemuber that the figures themselves are three- dimensional ob-

jects, and are merely representations of the two dimensional projection onto

a retina. So a person will often remark that they inmnediately perceive the

three points in Figure 3-2 (b) as forming an equilateral triangle, forgetting that

Ktlhese points do not project to an equzilateral triangle on the retina unless the

page is carefully held normal to the line of sight. Thcrefore, the formation of
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a) *b)

Figure 3-2: Only certain classes of image relations ame present over a significant
range of viewpoints and therefore will occur more often than by chance. In (a), the
three dots form two different types of significant relations, since both collivearity and
equal spacings of collinear objects remain invariant over a wide range of viewpoints.
However, in (b), the equilateral triangle formed by the three dots can project to any
type of triangular relationship in the image depending upon viewpoint, and therefore
fais to lead to a significant or detectable image relation for this property.

the perception of an equilateral triangle can come only after determining the

three-dimensional locations of thc points-for example, by using the knowledge

that the page is planar and using the locations of the figure boundaries. Al-

though we will briefly discuss these three-dimensional groupings in later chap- -

ters, they occur at a much later stage of visual processing and are qualita-

tively different in many ways from the initial image groupings that are the

topic of this chapter. It is difficult or impossible to introspectively distinguish

between the image level of organization and many other forms of visual infer-

ence.

The application of the viewpoint- invariance constraint greatly limits the

types of relations which can serve as a basis for perceptual organization in the

image. There are only a few relations, such as collinearity and connectivity, which

%6
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are preserved over all possible viewpoints. There are also a number of other types

of relations which are preserved over a wide range of viewpoints and therefore can

be expected to arise with substantial frequency. For example, parallelism and

the presence of equal spacings between a series of collinear features are proper-

ties which are preserved over all viewpoints except where perspective effects are

significant. Since many objects occupy only small visual angles or do not extend

over a large depth of field in comparison to their distance from the camera, we

can still expect these relations to arise frequently in the image. There are yet

other relations which require a more careful analysis. For example, constancy

of curvature is not strictly preserved under projection (e.g., a circle projects to

an ellipse), yet constancy of curvature is largely preserved over local regions of

the projected curve. In spite of these complications, the viewpoint-invariance

constraint serves to powerfully limit the infinite set of candidate relations to the

small number of spatial properties which are at least partially invariant under

projection.

There is another important consequence of the requirement that relations

be invariant with respect to viewpoint. The detection of an image relation

on the basis that it is unlikely to have arisen through an accident of view-

point implies that it is likely to be the projection of a specific three-dimensional

* structure. Therefore, it is possible to infer three-dimensional properties of the

scene from the perceptual groupings which are detected in the image. For ex-

ample, if we decide that an instance of several collinear features in the im-

* age is unlikely to be accidental in origin, then we can infer that those fea-

tures are likely to be collinear in three-space. Chapter 5 will describe a pro-

gram for inferring constraints on the three-dimensional structure of a scene

from perceptual groupings of features in the image. These constraints can be

strengthened even further by requiring consistency from the multiple sources

of evidence.
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3.1.2: Prior knowledge of probability of occurrence

The viewpoint-invariance conditions of the previous section are one of the major

factors determining our expectations for the relations that are likely to appear

in an image. However, it is also necessary to take into account other sources of

prior expectations regarding the contents of an image. We can formalize the role

of prior expectations in judging non-accidentalness by making use of conditional

probabilities and Bayesian inference. Let P(r&a) be the probability that both r

and a are true, and P(alr) be the probability that a is true when r is true. Then

it follows that:

P(r&a) = P(r)P(alr)- P(a)P(rla)

Therefore,
P(alr) P(a)P(rla)

P(a)

This is the basic law of Bayesian statistics. If we let r be the detection of a

given inage relation to within a certain degree of accuracy, then we can let a

be an instance of that relation which arose accidentally and c be an instance "

which arose for a causal reason. Then P(r) = P(a) + P(c) (since a and c are the

two imutually exclusive cases of r) and P(rla) = P(rlc) I (since a and c are

instances of r). Therefore, from the Bayesian form above we get:

P(a)
P(ajr)= P(a)+P(c)

P(clr) = I - P(alr) 1 P(a)
P(a) + P(c)

These expressions allow us to calculate the probability that a given image

relation is non-accidental from the prior probabilities of accidental and non-

accidental instances. The following sections will describe ways to estimate the

likelihood for the accidental occurrences, P(a). The viewpoint-invariance condi-

tions of the previous section were aimed at selecting those relations which had a

.. .,.. ... .. . . .. ,....-.- ,-.. ....... . '
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* significantly high value for P(c), but these are only one component of determining

a quantitative estimate for the causal probabilities.

- So, how can we determine the prior probability for the causal occurrence

* . of each relation? One reasonable way would be to simply keep statistics of the

occurrence of each relation over a suitable sample of images. This empirical

* approach is a type of learning that might be used in a biological visual system.

A more theoretical approach would be to create some general model of the visual

world and derive the expected frequencies of the relations from this model.

* It is important to realize that these prior probabilities for non-accidental

instances of a relation, P(c), need only be order-of-magnitude estimates and that

not much hinges on their specific values. By making more accurate measurements

* . in the image (thereby obtaining smaller values for P(a)) and combining relations

as described in later sections, it is possible to assign causal interpretations to

even rarely occuring relations. It is also important to rememiber that we will

only know P(c) for general classes of images, and we don't want our inferences

to fail when we are faced with a particular image that has a very different rate

of occurrence for that relation. So in practice, prior estimates of P(c) may

- be more important for selecting which relations to search for than for making

- inferences during vision. On the other hand, Chapter 6 will show how to make

more extensive use of prior probability estimates during later stages of vision.

3.1.3: The null hypothesis: Independence of 3D position

* As described above, we need to determine the probability that each relation

in the image could have arisen by accident, P(a). Naturally, the smaller that

* * this value is, the more likely the relation is to have a causal interpretation. If

we had completely accurate image measurem~ents, the probability of accidental

* . occurrence could become vanishingly small. For example, the probability of two

image lines being exactly parallel by accident of viewpoint and position is zero.
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However, in real images there are many factors contributing to limit the accuracy

of measurements. Even more important is the fact that we do not want to limit

ourselves to perfect instances of each relation in the scene-we want to use the

information available from even approximate instances of a relation.

Given an image relation that holds to within some degree of accuracy, we

wish to calculate the probability that it could have arisen by accident to within

that level of accuracy. This can only be done in the context of some assump-

tion regarding the surrounding distribution of objects, which serves as the nunl

hypothesis against which we judge significance. One of the most general and

obvious assumptions we can make is to assume a background of independently

positioned objects in three-space, which in turn implies independently positioned

projections of the objects in the image. This null hypothesis has much to recomf-

mend it; in fact, if we are attempting only to find causal links as suggested by

[Witkin & Tenenbaum, 19831 then almost by definition we are looking for any

sign of non-independence. There are a number of other properties of vision which

lead to modifications of this general assumption, but in practice it forms a strong

basis for image segmentation. Most images contain many independent objects

which project to nearby locations in the image and a major task of segmentation

is to separate them.

Given the assumption of independence in three-space position and orienta-

tion, it is easy to calculate the probability that a relation would arise to within a

given degree of accuracy by accident. For example, if two straight lines are par-

allel to within 5 degrees, we can calculate that the chance is only 5/180 = 1/36

that thc relation would have arisen by accident from two independent objects. It

should also be noted that the assumption of independence in three-space implies

not only position and orientation independence in the image, but also scale inde-

pendence due to varying distances of objects from the camera. This assumption

of scale independence will form a basis for judging significance of similarities in

scale.
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a) b).

Figure 3-3: The two almost-parallel lines in (a) form a significant relation when they
are close together with respect to the background density of similar features. However,
as this ratio of proximity to density decreases, the relation becomes less significant, as
shown in (b).

3.1.4: Ratio of background density to proximity of features

Our calculations in the previous section were based on the probability that a

*single, given relation could have arisen accidentally from the independent posi- 4

tioning of its parts. This fails to take into consideration the number of possible

relations that are being ex~umine& in a given image. These numbers grow accord-

ing to the square of the number of features being considered-e.g., given only

10 line segments, there are 10 x (10 - 1)/2 = 45 pairs of line segments to be

considered. Therefore, given 10 segments, it would hardly be surprising to find

two which are parallel within 2 degrees (something which will occur one time

E in 45 between independently positioned line segments). Figure 3-3 contains an

example which illustrates this point.
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The result of taking background density into account is that the proximity of

the features making up a relation becomes a major factor in judging the relation's

significance. As two features come closer together, the expected number of other

features within the same proximity decreases sharply for a given surrounding

density. Note that proximity is not only a component in judging the significance

of all other types of image relations, but is also in itself an important type of

image relation which can be used to detect non-accidental groupings. Proximity

passes the image invariance test, since features which are close together in three-

space will project to features which are close together in the image from 'all

viewpoints (of course, features which are separated in three-space can also project

close together in the image due to an accident of viewpoint, which is why the

inference depends on the surrounding density of features).

We can specify the results of the interaction of proximity with feature density

in more detail. Let d be the density of features in a region and r be the separation

of two features from each other. Then the expected number of features Q(r) that

would be within r units of a given feature is the density times the area of a circle

with radius r:

Q(r) -dxr
2

If there are n points in the entire region, then the expected number of occurrences

in which two points are within r units of each other is nd~rr2 /2. For low values of

Q(r), this is approximately equal to the probability of an accidental occurrence.

Therefore, proximity can be used in isolation or as a factor to take into

account when calculating the probability of accidental occurrence for other re-

lations. Thc significance of a proximity relation is inversely proportional to the

square of the separation, and therefore grows rapidly as features become close

together. When looking at the problem of computational complexity we will ieq

that feature separation as a function of the density also determines which detec-

tion operations are computationally feasible. Therefore a basic requirement for
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the successful detection of a relation is the proximity of its features in the image

relative to the background density.

We have not specified the size of the surrounding region which is examined

to determine the background density of features in a given region. The larger

this region is, the more data we have on which to base our statistics; on the other

hand, images are not uniform, so the larger the region becomes, the more likely

we are to stray into a qualitatively different type of region. There is no easy

answer to this question. It seems likely that human vision makes an estimate of

feature density only after perceiving inhomogeneities in the feature distribution

during texture perception, making this a fairly complicated problem. However,

for most images it would produce an adequate answer to merely examine a region

out to two or three diameters of the feature separation.

3.1.5: Recursive application of structuring

Due to limits in the accuracy of image measurements (and possibly also the

lack of precise relations in the natural world) the simple relations which have

been described often fail to generate the very low probabilities of accidental

occurrence which would make them strong sources of evidence for recognition.

However, these useful unanibiguotls results can often arise as a result of combining

tentatively-formed relations to create new compound relations which have much

lower probabilities of accidental occurrence. For example, we may group a few

collinear points into a line which then is found to be part of some larger structure

of parallel lines. These later structures provide confirmation for the significance of

the earlier groupings. Carrying this process all the way to object recognition, we

see how the recognition of the bicycle in Figure 1.4 provided strong confirmation

for very tentative groupings formed in the earlier stages of recognition.

The most compreliensive method for combining already-detected relations

into new structures is to treat each of the initial relations in the same way as
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we would a primitive feature. Based on the probability that the relations could

have arisen by accident we can calculate the density of occurrence of acciden-

tal instances of these relations (making use of the same measurement of the

surrounding density of their components as was used for calculating their own

significance). We can also take a more empirical approach and examine the sur-.

rounding area for other instances of these relations to arrive at a measure of their

density, as was done for the initial features. This second approach is preferable

where there are other instances of the relations, since it makes fewer assumptions

about the prior distribution; however, when there are no other instances, it fails

to assign the very low estimates of density that the first approach can assign.

Given these density estimates, we can calculate the significance for a compound

relation in the same way as for a primitive relation. Since we may be able to

assign very low estimates of density to its components, it is possible to assign

compound relations much more significance than is possible for those composed

only of primitive features.

3.2: Limiting computational complexity

We have outlined a number of factors which determine whether a given image

relation could have arisen accidentally. However, there are other cases in which

human vision fails to detect groupings which would seem to be highly signifi-

cant by any reasonable statistical criteria. Some examples are given in Figure

3-4, where the collinear, equially-spaced rows of dots or lines are obviously very

unlikely to have %risen by accident, yet human vision fails to dctcct them spon-

taneously in a surrounding field of similar features. This failure to detect highly

significant structures seems to clearly be a limitation of human vision rather thanI

a functional feature. For example, many animal camouflages hide regularities in

the animal's structure by surrounding them, with nearby spots-a more perfect

vision system would not be fooled so easily.
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a) b)
000

Figure 3-4: The patterns of five equally-spaced collinear dots or three collinear line
segments in () are not detected spont~rteously by human vision if they are surrounded
by enough competing linle segments, as in (b). This occurs even though the relations
remain highly significant in the statistical sense and therefore would likely be of use for
segmentattion and recognition.

These limitations of" human vision are presumably the result of the inherent

computational complexity of the grouping processes. It would be computa tion-

ally intractable to find all possible significant relations in an image, since this "

would involve examining every possible subset of the image features. One method

for limiting this complexity is to only examine groupings which consist of features

which are close together in the image, as described in the next section. Another

method is to take all the features in a given region and to histogram them ac-

cording to various properties and look for statistically significant peaks. This is

the basis for most texture analysis. Many of the limitations of human perfor-

mance in segmenting textures [Juless, 1981; Marr, 1976] can also be ascribed to
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the computational intractability of looking for peaks in a possible properties in

all possible subsets of the image.

It is interesting to note that the problem of computational complexity is an

area in which computer vision may substantially outperform biological vision,

since conmputer architectures may be much more flexible in their methods for

handling comibinatorial problems. For example, it would require very little corn-

putation for a computer to notice the significant relations in Figure 3-4 if the

appropriate algorithms were used.

3.2.1: Consider only local neighborhoods

Section 3.1.4 described the relationship between the proximity of features and

background density when calculating the probability of accidental occurrence.

As the ratio of proximity to background density increases, the probability of ac-

cidental occurrence decreases by the square of the relative proximity. Therefore,

if we are attempting to limit computational complexity we have the most to gain

lby comparing a feature to its closest neighbors. As features get farther away, it

becomes minore difficult to distinguish titeiti fronti accidental occurrences. In addi-

tion, features which Minke upi a causal relation are not indelpenldently positioned

in space, but are often c-lose together. Therefore, thme region of the image adjacent

to a feature is far more likely to contain another feature which combines with it

to form a causal relation thanm any other region of the same size.

Note that the above arguments are not without exceptions, and it could

well be that features which are far apart with respcct to the background density

could forum a significant relation. However, in the interests of limiting complexity,

proximity is a very useful basis for limiting the numiber of comparisons with any

feature. As shown by Figure 3-4, this heuristic is apparently adopted strongly

by human vision.

It is easy to say that we should onily attemp~t to formu relations between a

feature and its few closest similar neighbors, but there are many complications in
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suggesting an actual biological mechanism. At this low level of visual processing,

it is likely that all computations are done in parallel by neurons which receive

input from only fixed portions of the image. Since our definition of proximity is

relative to background density, an implementation must contain many neurons q
looking for relations at different scales, and only those which contain a limited

number of features within their receptive fields would be activated. An example

of this type of processing for the detection of collinear dots is presented in [Lowe

& Binford, 1982]. Many other authors have also suggested that each feature is

only compared to its closest neighbors while searching for relations [Marr, 1982;

Stevens, 1978]. A close study of the possible biological implementations for these

algorithms would probably go far towards explaining the various strengths and

weaknesses of the human capability for detecting image relations.

3.2.2: Texture characterizations

By "texture description," most researchers mean statistical methods for char-

acterizing sets of features. Whereas the image relations which have been con-

sidered so far deal with only a few features at a time and are highly sensitive

to a feature's spatial location, most texture measures treat an arbitrary number

of features within a given region without concern for their precise location. On

the other hand, there is no precise dividing line between some types of image

relations and some texture description operations-for example, noticing that a

number of edges are parallel to one another in an image can merge smoothly with

the operation of noticing a significant peak in the distribution of line-segment

orientations in that same region.

Although texture description has become a major topic of research in its own

right, we are placing it under the section on limiting computational complexity

because that is its essential role in comparison with the detection of individual

image relations. Given unlimited amounts of computational power, it would be
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r.. most accurate to examine a sets of uinage features of all possible sizes for those

relations which are most significant with respect to the surround. However, as

the number of elements to be considered in each set grows, the computational

costs increase rapidly. Texture methods bring this computational cost under

control by ignoring certain parameters of each feature (such as specific location

within the region being examined) and looking only for peaks in histograms of

the remaining properties.

Many different techniques have been tried in experimental attempts to char-

acterize textures, ranging from Fourier analysis methods to specialized techniques

for highly regular textures. The research that is most closely related to the meth-

ods which have been given above is that described in [Marr, 1976; Marr, 1982J.

Manr describes texture operations based upon orientation, length, width, den-

sity, and color. An interesting aspect of these texture operations are the severe

computational limitations of human texture vision. Marr shows one example

in which humans fail to distinguish a region consisting only of line segments at

two specific orientations from a region of completely random orientations. Once

again, this is a case of humni vision failing to detect a property that is extremiely

unlikely to have arisen by chance and would therefore likely be of use for recog-

nition, and in addition would not be unduly difficult for a computer program to

detect.

Texture description serves an important preliminary function for the detec-

tion of individual image relations by segmenting out subsets of features with

similar properties from a denser background. Whcnever a peak is detected in

a texture characterization, all those elements which fall under the peak can be

treated as an isolated set. Figure 3-5 illustrates how the texture operation can

even segment smaller elements from a field of larger ones, and how the segmen-

tation operation can be disrupted by changing the shape of the distribution.

When we referred in previous sections to the "surrounding distribution of sim-

ilar elements," the definition of which elemeints are "similar" probably depends

A. C%
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constraints into specific computer algorithms for performing the various grouping

operations. One part of this task will be taken up in Chapter 4, where an

algorithm will be developed for describing image curves in terms of their most

significant structures. Later chapters will develop some other aspects of the

perceptual operations.

There have been a number of unspecified parameters in this chapter (slch

as the size of the surrounding region that is considered when measuring feature

density) as well as some uncertainty in combining the different factors. There

are two approaches for resolving these problems: theoretical and experimental.

Almost all of the discussion so far has been theoretical in that it is derived from

basic properties of image formation and from relatively simple models of possible

scenes. However, some of the parameters, such as the expected prior distribution

of various scene relations, are more easily seen as empirical properties of our world

than as theoretical topics for vision researchers. For example, it might be the

case that certain aspects of human vision function to overcome specific types of

biological camoullage. In cases such as these, any attempts to derive parameters

from detailed scene models could lead the research far afield from the baic topics

of computer vision.

4,
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Chapter 4

THE SEGMENTATION

OF IMAGE CURVES

In this chapter we will apply the methods of perceptual organization which were

developed in earlier chapters to the difficult but important problem of segment-

ing image curves. Smoothed, segmented image curves are important perceptual

structures in themselves, as well as being needed for the subsequent detection

of collinearity, parallelism, connectivity, and other perceptual groupings. Most

current edge detectors only detect edge points (image locations through which

an edge is judged to pass) and possibly link these together into lists of points on

the basis of proximity. The gap between the output of edge-detection techniques

and the smoothed, segmented curve descriptions needed for model matching

and many perceptual grouping operations is a significant missing link in current

image-description methodology. One reason for the difficulty of curve segmenta-

tion is that it is actually a combination of scveral different problems: choosing

the best scale of description for a curve, deciding where to place tangent discon-

tinuities (corners), and assigning levels of significance to the final segmentations.

This chapter will outline the various requirements that an ideal solution to this

probleim should satisfy, and will demonstrate a computer program which satis-

fies most of them. The methods we develop for this problem can potentially be

applied to many other perceptual problems (such as speech processing) in which

51
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significant structures of unknown scale and location must be detected in low-level

data.

Most previous approaches in computer vision to producing smooth curves

from lists of points have had the goal of smoothing over small deviations in the

curve caused by noise and inaccuracies in the imaging process and thereby re-

covering the projection of the presumably perfectly smooth curve in the scene.

However, this objective is inadequate for the purposes of later grouping opera-

tions and greatly understates the capabilities of human vision. A complete curve

segmentation method must not rely on any prior estimate of how "noisy" the

curves will be, but must find significant curvilinear structure whenever it occurs

at any resolution.* This is necessary because objects in the world do not nec-

essarily have perfectly smooth edges, and we cannot know in advance the degree

of roughness they will exhibit. In addition, it is often impossible to have prior

estimates of the degree of imaging-induced noise, and these noise properties can

vary with local properties of the scene such as the amount of surrounding texture.

It is quite possible for a curve to simultaneously exhibit significant curvilinear

structures at more than one resolution, as is shown in Figure 4-1. It is necessary

to detect structures at all possible resolutions for the purpose of forming fur-

ther groupings or inference. For ex.ample, the segmentation in 4-1 (b) is adequate

to recognize one instance of collinearity, but other groupings are only apparent

when lower resolution structures are recognized as in Figure 4-1(c).

Curve segmentation is an example of a problem for which the Gestalt ".im-

plicity" criteria for segmentation are clearly inadequate. We are not attempt-

ing to choose among alternative exact descriptions for some data, but rather

are choosing among an infinite set of possible approximations to the initial in-

put. The "simplest" approximation for any curve would be, say, a straight line.

The simplicity criteria provide no way to resolve the trade-off between increased

*We use "resolution" in the context of curve segmentation to refer to the range of

transverse deviations of the original points from the smoothed curve description.
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. b. c.

Figure 4-1: The linked lists of edge points in (a) can be segmented at at least two
different resolutions of description, as shown in (b) and (c). Although one instance of
collinearity can only be detected in (b), the prallelism between the two major segments
and the other instance of collinearity can only be detected after recognizing Lhe larger
scale structures shown in (c).

simplicity of description and decreased accuracy of approximation to the original

data. The non-accidentalness criteria for measuring significance-in conjunc-

tion with the distribution and prior probability estimates described in Chapter.

3--dos provide a method for resolving this trade-off.

As with all the other forns of perceptual organization presented in this

thesis, we will be basing our judgincnt of the significance of a grouping on the

degree to which it is unlikely to have arisen by accident. In the particular case

of curve segmentation, we want to find those curvilinear descriptions which are

most unlikely to have arisen by accident from noise or random variation in the

initial lists of points. Not only do the significance meaures help us to decide 7

which resolutions of description to select for a given curve, but they also help

I
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us to determine which curves are significant at all. Just as a list of points

may exhibit significant structure at more than one resolution, so it may not

exhibit significant structure at any resolution. This is important because the

edge detection methods currently in use detect many spurious edge points in

addition to those which correspond to some significant edge in the image. The

degree to which these initial points group into significant longitudinal structures

is a strong indicator of whether they have arisen from meaningful structures in the

scene. In addition, the edge points themselves can be detected at different scales

of filtering of the image, and [Witkin, 1983] provides a complementary method

for deciding which points are significant according to their stability across these

scales of detection.

4.1: Previous research on curve segmentation

There has been relatively little research into the problem of producing segmented

image curves from lists of edge points as compared with the large literature

on the detection of the edge points themselves. As already mentioned, most

of this work has been based on the goal of simply removing imaging-induced

noise, and these methods thercfore perform smoothing at only a single, pre-

determined resolution. [Shirai, 1978; Pavlidis, .1977; Rutkowski & Rosenfeld,

1978] all describe methods for smoothing a curve at a single resolution and then

assigning points of tangent discontinuity to those places in which curvature is

high. [Rutkowski & Rosenfeld, 1978] apply a number of different smoothing and

corner-detection mnethods to the same data, and recommend the use of a simple

smoothing technique which measures curvature by looking at the angle between

adjacent tangents, where the tangents span some constant number of points on

the curve. As the tangents span larger numbers of points, their local variation

decreases and they reflect the lower-resolution structure of the curve. Corners

are assigned to those points on the curve corresponding to peaks in curvature.

Ii
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Figure 4-2: The linked edge points on the left were produced by the Marimont edge
dctector from an image of a bin of connecting rods. The smoothed cubic splines on the
right were the result of the author's early attempts at a curve scgnientation algorithm.
Although the results look pleasing to the eye, they consists only of local approximations
to the original data. Therefore, they fail to detect more global aspects of the structure
or to distinguish between significant and non-significant structure.

[Shirai, 1978] uses a similar technique, and follows it by fitting straight lines and

conic sections to the segmented intervals between corners.

Figure 4-2 illustrates the application of single-resolution smoothing and cor-

ner detection to some actual curve data. This was one of my first attempts to

produce a curve segmentation algorithm. The linked lists of edge points were

produced by the Marimont edge detector [Marimont, 1982]. These were then

i.- -.:- ... -. -..- .., ... ..-" .-'- --. .'-. .., .'-, ." ... ..- .." .'.". .',.' ." ." '.- " ". " --'- " ". .. . -.- ; ". . '" .I

,. '. . ,. -.- . -" - - .' " .' -. . . ,. -. -. . % . , . '. ". 'r - ,.,.l, . __ ,'., . .. . . . . -- .



+rj .7 7 , .7

56 CHAPTER 4: THE SEGMENTATION OF IMAGE CURVES

smoothed by the method of taking tangents over extended intervals, and cor-

ners were assigned to those locations which showed either high curvature or high

change in curvature. Points and tangents were then sampled at regular inter-

vals along these curves, and cubic splines were used to draw the final smoothed

representation. The final result looks pleasing to the naive eye, and seems to

have removed much of the noise. However, it has failed to actually detect the

significant aspects of the curvilinear structure, and these results are hardly any

better for further perceptual operations than was the original data. They look

good to the eye because the human visual system can still perform all the lower

levels of grouping and segmentation-but these groupings have not been made

explicit in the output. For example, if we wanted to do grouping on the basis of

collinearity, there are many cases in which the tangents at the endpoints do not

reflect the predominant direction of the rest of the curve. More significantly, we

have generated no information as to the extent to which a given tangent direction

at an endpoint is supported by the rest of the points in that curve. For the pur-

poses of model matching, there are no higher-level descriptions and measures of

significance for structures which would be directly useful for the matching task.

It was the shortcomings of this early attempt at curve segmentation which led

to the approach described in the rest of this chapter.

[Hoffman, 1983] reports some recent work on smoothing at multiple reso-

lutions and selecting the "natural scales" of description. His method examines

chords of varying lengths (as in the methods described above) centered at each

point on the curve, and looks at the variance in the direction of these "smoothed

tangents" with changes in their length. A natural scale is one for which the

lengths of the tangents can be changed over a substantial range with compara-

tively small deviations in direction. This method is qualitatively superior to the

single-resolution techniques described above, and Iloffman has demonstrated its

capability for finding more than one resolution of description for various synthetic

curves. On the other hand, the method makes no attempts to find corners in

0
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a) b)

Figure 4-3: The drawing in (a) is from [Attneave, 19541 and was created by connecting
the points of maximum curvature in a picture of a cat with straight lines. The human
ability to easily interpret this drawing has been widely cited as evidence for the fact that
points of maximum curvature are perceptually significant to human vision. However,
if we instead connect points which are shifted half way between the original points of
maximum curvature (while leaving curve terminations in place), the drawing in (b)
remains highly recognisable and perceptually very similar to the original. Therefore,
the locations of the points of maximum curvature do not seem to be of great perceptual
significance

curves, and it does not have any reasoned criteria for determining the degree to

which the resulting descriptions are perceptually significant. In this chapter we

will tackle these problems by using the criterion of non-accidentalness to measure

the significance of particular segmentations and scales of smoothing.

One goal which has been emphasized by Hoffinan and by others working on

curve description has been to find the maxima, zeros, or niinia of curvature

for the purposes of partitioning the curve into parts. The most frequently cited

evidence for the salience of these features have been some psychological experi-

ments described in [Attneave, 19541. Attneave produced a drawing of a cat by

linking points of maximum curvature with straight lines, as shown in Figure 4-3,

and noted that the resulting drawing retained a strong fidelity to the original
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picture. This drawing has been widely reproduced in textbooks on perception

and in papers relating to curve segmentation, and has been said to show that

maxima of curvature are the most perceptually significant features of curves.

However, as shown in Figure 4-3(b), if we choose the points which are as far re-

moved as possible from the original points of discontinuity chosen by Attneave,

this drawing remains about as recognizable as before the transformation. A con-

trary hypothesis derived from the requirements of model-based vision is that it

is the perpendicular proximity of image curves to the projections of object curves

which is most significant. The ability to introduce tangent discontinuities into a

smooth curve-at maxima of curvature or elsewhere-without seriously affect-

ing recognition is actually an indication that local values of curvature need not

match the predicted curvatures. A second experiment performed by Attneave

was to ask subjects to approximate an undulating curved shape with a pattern

of 10 dots which would resemble the shape as closely as possible. He discovered

that subjects usually placed these dots at points of maximum curvature. How-

ever, it is a simple geometric fact that connecting points of maximum curvature

with straight lines will cause the resulting lines to lie closer to the original curve

than connecting intcrmiediate points, so this hardly constitutes evidence for the

perceptual significance of maxima of curvature. A more convincing and theoreti-

cally satisfying approach to determining perceptual significance of curve features

would be to examine the stability of features of three-dimensional curves under

projection onto the image from different viewpoints. Curve maxima do not have

this property of stability, but discontinuities in tangent and curve terminations

do remain stable. [Marimnont, 1984] analyzes other properties of curves, such

as zeros and sign of curvature, for stability under projection and in the pres-

ence of noise, and this approach promises to provide far more solid grounds for

determining perceptual salience.
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4.2: Measuring the significance of a curve segmentation

The theory that the major function of perceptual organization is the detection

of non-accidental structure allows us to reanalyze the problem of curve segmen-

tation in terms of a specific goal which can be related to recognition. Under this

theory, a natural description for i curve is one which is unlikely to have arisen

by accident. Since the measure of non-accidentalness is in terms of ordinary

probabilities, it allows us to determine the trade-offs between differing forms of

description, such as different scales of smoothing versus the insertion of corners

in the curve description. The major requirement for applying this theory is some

way to measure the probability that a sequence of linked points arising from

random variation or noise would accidentally happen to match a given type of

curve description with the given degree of accuracy. This measure can then be

used to select between alternative segmentations or to determine whether a given

description is statistically significant rather than accidental.

Since the edge points have already been linked on the basis of proximity,

we must be careful not to confuse non-accidentalness in proximity with the mea-

surement of non-accidentalness in curvilinearity. Many of the usual statistical

methods for measuring the fit of a set of points to a curve are not useful for
this problem because they fail to make this distinction. For example, Figures

4-4(a) and 4-4(b) illustrate the difliculties which arise if we use the common

method of comparing the standard deviation of the perpendicular distance of

the points from the curve with the standard deviation in the direction parallel

to the curve. As the figure demonstrates, low probabilities of accidental occur- Q

rence for this measure may be entirely due to proximity groupings rather than

curvilinear ones. Figures 4-4(c) and 4-4(d) illustrate the same point for the sim-

plified case of just three points. Therefore, in this case it is not the perpendicular

distance of the central point from the line determined by the other two points

which is significant in itself, but rather the probability that this distance is as

~~~~~~~~~~~~~~~~~~~.-........... . . . .... .- .-. _ ? ............... . .,..,.. ,_,_ .',, ,_.
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Figure 4-4: The two sets of points in (a) and (b) have the same standard deviations
from lines of the same length, yet (b) is much more significant as a linear feature than
(a). The points in (a) may be related only by proximity relations, with no necessary
significance in terms of linearity. The same situation is illustrated for just three points
in (c) and (d), where the third point in (c) may be close to the fine joining the other
points due only to its proximity to one of the endpoints. Therefore, it is the angle
formed by the third point with the line joiuing the others, as shown in (e), rather than
its distance from the line which is measured to deternfine significance.

small as it is given the proximity to the closest defining point of the curve. This

measurement effectively factors out the influence of proximity between points in

reducing the distance to the curve. In. practical terms, the quantity that needs

to be measured is the angle betWeen the curve and the vector from the central

point to the closest endpoint, as shown in Figure 4-4(e). Since Lihe null hypoth-
esis is that the third point is related to the endpoint only by proximity and not

direction, the probability that the magnitude of this angle is less than 9 is 20/w.

This method can be extended to cases with more than three points by ap-

plying it recursively to the three points with greatest separation and then to each

sub-segment between these points. The two points with greatest separation are

- ip- -..- .. ....- • - . . . - .. . ; . ]. .
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used to define the straight line, and the point with the greatest minimum distance

to these points is chosen as the central point. However, it is not the deviation

of this center point from the line which is significant, since there may be other

nearby points which are farther from the line but which happened not to be as

close to the center of the line. Therefore, the measure of deviation is taken to be

* the maximum of the deviations of all the points in the linked list. The position

of the central point along the curve is still significant, since it determines the

degree to which proximity can be discounted as a cause of the perpendicular fit

to the line. The measurement is then repeated for each of the two segments be-

tween the center point and the endpoints, using the same maximum deviation as

was measured for the original segment. Since the linearity of the internal struc-

ture of these segments is independent of the original measurement of linearity,

these probability values are all multiplied together. The recursion continue's un-

til the smaller segments have negligible significance (due to the large transverse

deviations with respect to their lengths) or have no more internal points.

The method has also been extended to examine fits to circular arcs in addi-

tion to straight lines. This is done by simply fitting a circular arc to the three

points in the initial set which are farthest apart, anid by looking at thle fit of the

remaining points relative to their minintum distance to thesc defining points as

was done for the straight line case. Although it would be possible to extend this

search for structure to still higher order curves (e.g., spirals), it is far from clear

that there is much to be gained by looking for significance with respect to these

structures or that human vision performs these operations. As more parameters

are introduced into the underlying representation, the set of points being tested

must become larger or have a substantially better degree of fit in order to have

the same statistical significance as for the simpler case. This stage of processing
is for the purpose of detecting natural scale and description; after the simpler

structures have been detected, other methods can be used to spline themi into
smooth curves.
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Admittedly, the methods described above are not symmetric since they

choose certain distinguished points to define the initial curve for fitting. Al-

though this does not produce the optimal curve for testing, it should again be

noted that we are only attempting to measure probabilistic significance of struc-

tures rather than produce the final curve descriptions. More important than the

precise measurement of probability are the many qualitative criteria which the

methods satisfy, such as the separation of linearity measures from proximity ef-

fects. They also take appropriate account of the number of points which support

a curve description-as the number of points rises, the value returned by the

recursive calculation increases until the points are closer than their transverse

deviations from the curve, in which case further points provide no further sup-

port. In the future, it should be possible to devise symmetric, smooth methods

which satisfy the same criteria. The Gaussian smoothing and splines described

in [Marimont, 19841 are an interesting candidate.

4.3: Selecting the most significant structures

Given a mctliod for determining the significance of a curve segment, we would

like to divide the initial linked list of points into segments which have the highest

significance values. In the absence of any more immediate technique for achieving

o this goal, we have taken the exhaustive approach of testing groupings over all

possible scales and positions. It would be too costly to test every possible segment

of the curve for significance. However, if we allow a reasonable margin of error,

it is possible to cover all scales and locations with a relatively smnall number of

groupings. We examine groupings at all scales differing by factors of two, from

groupings of only three adjacent points up to groupings the size of the full length

of the curve (amnounting to 6 scales for a curve of 100 points). At each -scale,

we examine groupings at all locations along thc curve, with adjacent groupings

overlapping by 50%. This means that any given scgment of the curve of any
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Figure 4-5: This figure illustrates the set of segments at a range of scales and locations
which are tested for the single curve shown at the bottom. By testing at scales differing
by a factor of 2 and locations overlapping by 50%, any given interval of the origiua
curve will contain one of these segments covering at least half of its length.

length will have at least one grouping attempted which covers 50% of its length

but does not extend outside its borders. Figure 4-5 illustrates the set of all

groupings which are attempted for a single curve.

The great value of this exhaustive approach is that the decision of where

to segment the curve with tangent or curvature discontinuities can be carried

out after the detection of significant curvilinearity rather than before. Previous

methods of curve segmentation have attempted to directly search for locations

of tangent discontinuities based upon local measures of smoothed curvature (Shi-

rai, 1978, Rutkowski & Rosenfeld, 1078). Our approach is the dual-we look for

segments of the curve which exhibit significant curvilinearity, and then tangent

and curvature discontinuities are assigned to the junctions between neighboring
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segments. When it is possible to connect neighboring segments without intro-

ducing such discontinuities, a spline representation can be used to connect them

if natural-looking output is desired.

After measuring the significance of all groupings over the range of scalesj

and locations, a selection procedure is executed to find those groupings which

best reflect thc significant structure of the curve. First, any segments which

have probabilities of accidental occurrence above a 0.05 threshold are discarded.

If all segments of the curve fall above this level, then the curve is considered

to exhibit no significant structure (this often occurs when edge points do not

result from any underlying physical structure and therefore form curves which

wander randomly in the image). Secondly, a procedure is run which examines

the segments at all scales for each point along the curve, and selects only those

segments which are locally maximum in significance with respect to scale. It is

possible for significance to rise and fall more than once as the range of scales is

traversed, in which case more than one scale of segmentation will be chosen. This

operation removes the great majority of segments an lee an aveagofnl

one or two segments at each location along the curve; however, due to the greatly

differing lengths of the segments, there still remain some segment descriptions

which are simply shorter subsets of longer curves which are of similar significance.

Therefore, a final comparison is carried out to detect these cases in thle remaining

-e segments, so that the shorter subsets can be removed. One segment is considered

to be a subset of a longer segment description if its extension to the endpoints

of the longer segment remains within the transverse deviation bounds of that

4 segment and its significance squared is less than that of the longer segment.

The operation of deciding whether one segment description can be consid-

ered to be a subset of a longer segment description can also be used as a simple

method for detecting significant curvilinearity between segments. Two segments

can be considered curvilinear and combined to create a new segment if th~is new

segment passes the. test for significance and if at least one of the original segments
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is a subset of the new segment according to the above definition. This satisfies

the intuitive criteria that would result if a curved segment were cut by a gap

into smaller pieces. Although this fails to detect all instances of what could be

considered curvilinear groupings (there are some cases of perceptually signifi-

cant curvilinearity in which only the tangents at the endpoints of curves align),

it does capture the most globally significant instances of curvilinear structure.

Of course, the above test cannot reasonably be applied to all possible pairs of

segments in the image, so our implementation first indexes all segments into a

multi-dimensional array according to location and endpoint tangent directions.

Only those pairs which satisfy a simple first level filter for matching of location

and tangent direction are subject to the detailed test for curvilinearity.

4.4: Demonstration of the algorithm

The algorithm described in the preceding sections has been implemented in

MACLISP on a DEC KL-10 computer. It has been tested on a number of syn-

thetic curves, as well as some edge-point lists detected in natural images. Figure

4-6(a) illustrates the application of the algorithm to some hand-drawn lists of

edge points which exhibit multiple levels of structure. For exanple, the lower

curve can be viewed as a sjngle circular arc or as a series of straight line seg-

ments. When these data are given as input to the curve segmentation program,

it returns the segments shown in Figure 4-6(b) which explicitly capture these

multiple levels of structure.

A more realistic example is given in Figure 4-7, which demonstrates the

application of the algorithm to some edge lists derived from real image data.

Figure 4-7(a) shows a small 30 by 45 pixel region from an aerial photograph of

an oil tank facility. Figure 4-7(b) shows some linked edge data generated from

this image by an edge detection program written by David Mariniont [Marimont,

1982]. This program convolves the image with a filter of fixed size and detects
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4 Figure 4-6: The hand-input lists of edge points in (a) have been deliberately drawn
so as to have more than one scale of structure. When these are given as data to the
curve segmentation algorithm, it returns the segments shown in (b), which make these
multiple levels of structure explicit. For example, the top curve can be described as a
series of short straight lines or a single roughly linear structure.

zero crossings in the second derivative of intensity to subpixel accuracy. These

edge points are thcn linked into lists according to proximity constraints. Fig-

ure 4-7(c) shows all the groupings which are tested for significance at all scales

and locations, although the widely differing significance values are not apparent.

Figure 4-7(d) shows the segments which remain after selecting those which are

locally maximum in significance with respect to scale and after applying the other

selection operations described in the previous section. These segments are in-

tended to correspond to the miost statistically significant structures embedded in

the original individual curve descriptions. Given these segments, the curvilinear-

ity dletection methods described in the previous section are used to connect the

endpoints of curvilinear segments with dashed lines, as shown in Figure 4-7(e).

When two segments are judged to be curvilinear, a new segment is created from

their combination and the original segmients are removed unless their significance

is greater than this new one. Figure 4-7(f) shows the end result of this process

after removing all segments with a significance less than a stricter threshold of
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C)

Figure 4-7(c,d): All the segments at different scales and locations that wore tested
for significance are shown in (c) above. A significance threshold was applied and only
those segments that were locally maximum in significance with respect to scale were
retained, with the results shown in (d). Each segment is either a straight line or a
circular ac.
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e)

" \ .
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Figure 4-7(e,f): The initial stage of curvilinearity detection searches for segments ,
which could be part of the maine curvilinear structure. These are shown in (e) connected
by a dashed line. These pairs are then recursively combined into new segments, which
often have greater significance than the originals. The final results are shown in (f) with
a higher threshold on significance, so that only the most significant image structures
are displayed. Compare these results with your perception of (b).
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0.01. One of the strengths of this algorithm is that each segment has an explicit

significance value which can be used during later computations. The final de-

scription represents only those segments which are judged to be of exceptionally

strong perceptual significance.

* . 4.5: Evaluation and future research

The algorithm which was demonstrated above has a number of important ad-

vantages over other techniques currently being used for curve description. Its

major strength is its capability for detecting and evaluating curvilinear structure

* over a wide range of scales. These structures are assigned significance in inverse

proportion to the likelihood that they could have arisen accidentally. In addition

to selecting the most natural scales of description, they can be used to differ-

entiate edge points which arose due to structure in the scene from those which

are artifacts of the inaging or edge detection process. Unlike most previous ap-

proaclies, the mnethods can operate in the presence of imiaging-induced noise or

-. random perturbations in the scene without any prior knowledge of their scale of

occurrence.

On the other hand, the algorithm would probably rcquire a number of ex-

- tensions and improvements for practical use in a vision system. The current im-

* plementation is not very efficient, and requires about 20 seconds of computation

time on a KL-10 for even the small region which was demonstrated. However,

since each list is segmented independently, the algorithmn could be implemetnted

in parallel hardware to reduce execution timec. Further work needs to be done

on recognizing pairs of segments which are qualitatively similar, so tha t some of

the duplications in the final results of the current algorithm can be avoided. The

use of splines to connect adjacent segments into smooth curves would do much

to enhance the display of the final results and possibly assist later stages of a

visual system. Alternatively, smoothed curve descriptions could be used from the
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outset as in [Marimont, 1984], and non-accidentalness could be judged according

to the degree of constancy of curvature relative to the scale of smoothing.

Possibly the most difficult problem which remains to be solved is the inter-

action between multiple scales of curve description and multiple scales of edge

detection. In the demonstration above, only one high-resolution edge opera-
tor was used to detect edge points, so that any slowly changing variations in

intensity would have remained undetected. It seems unlikely that the low reso-

lutions of curve segmentation could be run only on the output of low-resolution

edge operators, since this would be expecting two largely independent physical

processes-those which gave rise to the intensity cross-section of the edge and

those which gave rise to its longitudinal structure-to always operate at the

same scales. It would require about 5 times the current amount of computation

to examine every curve segmentation at every scale of edge detection-which

would hardly be a prohibitive factor-but this still leaves the problem of choos-

ing among the larger number of resulting descriptions. A preliminary selection

process operating on the edge descriptions, as in [Witkin, 19831, could also be

used to simplify and improve the process of choosing from among the descrip-

tions. Before selecting one of these approaclhcs, it would he very useful to have

results from psychophysical experiments which test the capability of the human

visual systcm to detect low-resolution curve segmentations among edge points

that can be detected only with high resolution edge operators. In fact, there is

a strong need in general for psychophysical data on curve segmentation.
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Chapter 5

THE USE OF VIEWPOINT

INVARIANCE CONDITIONS

Chapter 3 described properties of the image formation process that determine

which image features will occur significantly more often than by chance, and

therefore will be statistically detectable in an image. In particular, only those

image features that remain invariant over a substantial range of viewpoints of the

scene can be reliably separated on statistical grounds from accidental occurrences

of the same image features. In addition to determining which image features are

detectable, these invariance conditions lead to specific inferences regarding three-

space relations from the two-dimensional image groupings. Figure 5-1 illustrates

this form of inference, which can provide some of the same three-dimensional

information as processes such as stereo or shape-from-motion. In this chapter

we will also consider other forms of imaging invariance, such as the invariance

of certain shadow features with respect to positions of the light sources which

illuminate the scene.

This use of viewpoint independence assumptions to derive interpretations

from various classes of image alignments was first described in IBinford, 1981].

While we have described these inferences in probabilistic terms, Binford pointed

out that they are generally reliable enough to be used in a simpler qualitative rea-

soning scheme which only considers accidental alternatives when faced with con-

tradictory interpretations. Section 5.3 will describe a computer program which

73
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b)

Projection

Figure 5-1: The two sets of three-dimensional curves, (a) and (b), project to the
identical two-dimensional curves in the image plane. However, reasoning from the
image to the scene under the assumption of a camera position which is independent of
the objects, we find that the curves at (a) are a much more likely explanation for the
image than those at (b). In particular, it is unlikely in this example that separated
curve terminations would project to a common point in the image, that a curved line
would appear straight, or that non-parallel lines would appear parallel. Therefore,
we can infer that the three-space configuration almost certainly satisfies these various
constraints, as is the case for the curves shown in (a).

uses these inferences in a qualitative way to derive three-space relations front

hand-generated image curves. However, a full probabilistic theory and reasoning

method would have superior performance in cases where image measurements

were less reliable and had a substantial likelihood of being confused with acci-

dental alignments. [Barrow & Tenenbaum, 19811 used another version of the

viewpoint independence assumption to infer the three-dimensional shape of in-
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dividual smooth image curves, a process that would complement the inferences

described above. They demonstrated that independence of viewpoint implies

that certain interpretations of an image curve are much more likely than others,

and that the most likely interpretations correspond to the subjective interpreta-

tions of human subjects.

5.1: Three-space inferences from image features

In this section we will enumerate and examine in greater detail the inferences

which follow from the assumption of independence of camera position. There

are two basic steps involved in the application of each of these inferences: (1)

given that an image relation is invariant with respect to a substantial range

of viewpoints of a three-space relation, we can expect the image relation to

occur often enough to be statistically separable from accidental occurrences and

therefore to be a worthwhile objective for a search of the image, and (2) given that

we have detected an instance of the relation in an image with sufficient accuracy

that it is unlikely to be accidental, we can make the inverse inference that this is

an instance of the three-space configuration. A full probabilistic analysis of each

inference would require all the steps described in the previous chapter, such as the

use of assumptions regarding background distributions and prior probabilities of

occurrence for the three-space relations. However, in this chapter we will content

ourselves with a qualitative analysis of the invariances and will simply list the

conditions under which the image relation could arise through an accident of

viewpoint or light-source position. Fortunately, the inferences are strong enough

that they can be used successfully in this type of qualitative reasoning scheme.

In addition to inferring three-dimensional structure, the inferences can be

used to classify image curves into three distinct classes: those caused by dis-

continuities in the geometry of an object (edges), in the reflectance of a surface

(markings), and in the illuinnation (shadows). The curves created by discon-

tinuities in object geometry can be further subclassified into those which arise
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from discontinuities in surface tangent (creases), from surfaces which curve away

from the line of sight (limbs), and from structures which are so thin that both

opposing edges can only be distinguished as a single image curve (wires). In

curves detected from digitized images, there is often local photometric evidence

to distinguish among these classes (particularly in the case of wires and shadows

[Witkin, 1982]). However, for the sake of generality our discussion will assume

that no preliminary classifications have been made, as is the case when interpret-

ing true line drawings. See Figure 5-2 for a table containing pictorial examples

of the unage relations which give rise to each of the following inferences.

1) Collinearity. When any set of three or more distinguishable points are

collinear in the image, we can infer that they are also collinear in three-space.

The unlikely alternative is that the points are all coplanar with the position of

the camera. This can be extended to the case of inferring that a straight line

in the image is also a straight line in three-space: the accidental interpretation

is that the line is a planar curve and the camera position happens to lie in the

plane containing the curve. When two straight lines are collinear in the image

they must be collinear in three-space, unless they are coplanar and the camera

is accidentally in the plane containing the iiies. This inference can be used, for

cxaniple, to bridge gaps in a line caused by occluding objects or to connect a

dashed line.

2) Curvilinearity. The preceding inferences extend to arcs of constant curva-

ture. In particular, when two curves or four or more points lie on a circular arc

wc can assume that they lie on a common arc ii three-space. However, since

constant curvature in three-space does not necessarily project to constant cur-

vature in the image over extended intervals (e.g., circles project to ellipses), this

inference will often only be useful over a limited local extent.

3) Terminations at a common point. When two or more curves terminate

at a common point in the image-as in the case of L, Y, K, or higher-order

0
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2-D relation 3-D Inference Examples

I. Collinearity of points or line Collinearity In three-space /
segments /

2. Curvilinearity of points or arcs Curvilinearity in three-space

3. Two or more terminations at a Curves terminate at a common

common point point in three-space

4. Termination at a continuous Terminating curve is no closer to
curve the camera than the continuous

curve

5. Crossing of ctmtinuous curves Both curves cannot be occluding
geometric edges

G. Parallel curve Curves are parallel in three-spaceS

7. Three or more lines converge to Lines are parallel (seen in per-/
a common point spective) or converge to a com-

mon point in three-space

8. Equal spacing of collinear points Equal spacing in three-space and "
or parallel lines parallel lines are coplanar

6 /

9. Relations hold between termina- Same relation holds between
tions or virtual lines virtual features in three-space * •

10. Virtual lines between tangent Curves correspond to geomet-
discontinuities in curves converge ric edges and their cast shadow
to an illumination convergence boundaries
point

Figure 5-2: This table summarizes the inferences described in the text. The first
column gives a two-dimensional relation bctween image features fron which the three-
space relation iWi the second column can be inferred.
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junctions-we can infer that they terminate at a common point in three-space.

The alternative is that there has been an accident in viewpoint in which the

camera happens to lie along a single ray in space connecting the terminations.

In other words, this inference allows us to infer connectedness in three-space

from connectedness in the image across these junction types, with no special

assumptions regarding thc scene. This performs one of the most important tasks

of early vision, which is the segmentation of the image into sets of features Which

are related in three-space. Accurate segmentation greatly reduces the search

space that must be covered when matching world knowledge to the image.

4) Termination at a continuous curve. When an image curve terminates

at a continuous curve (a T junction), the terminating curve cannot be closer

to the camera than the continuous curve; otherwise, it would be an accident

of camera position that the termination happened to occur on the other line.

If we have other knowledge regarding the categories of either curve, we can

carry information across the junction. The T junction could be the result of

three different occurrences: the occlusion of any typ~e of curve by a geometric

boundary; the termination of a surface marking, shadow or wire at a geometric

boundary; or a combination of surface inarkings. Therefore, if we know that the

terminating curve is a geometric boundatry, then we can infer that the continuous

curve is also a geometric boundary and we know its direction of occlusion. If

we know that the continuous curve is a geometric boundary occluding on the

side of the terminating curve, theni we can infer that t7 terminating curve must

* be a surface marking or shadow. If we know that the terminating curve is a

shadow, then we can infer that the continuous curve is a geometric boundary.

This last inference is based on the assumption of independence of light-source

position, since it would then be an accident if the light source were aligned to cast
a shadow which happened to terminate at a surface marking, wire, or shadow

cast by anoth~er light source.
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5) Crossing of continuous curves. When two continuous curves cross one

another (an X junction), thcy cannot both be occluding geometric boundaries.

If we know that one curve is an occluding geometric boundary, then the other

curve must be closer to the viewer and must be either a wire or the edge of a

partially transparent object. If we know that one curve is a shadow, then the

other curve must be a surface marking on the same surface, another shadow (cast

by a different light source) or a wire which is closer to the viewer than the shadow.

Since these cases can often be distinguished on the basis of local evidence during

edge detection, shadows provide a powerful sourcc of information regarding the

nature of curves across which they fall.

6) Parallelism. We can infer that curves which are parallel in the image are

also parallel in three-space. Otherwise, given two non-parallel straight lines the

camera must be restrictively placed to create parallelism in the image, and the

probability of accidental parallelism greatly decreases as the curves become more

complex. The inverse is not always true: parallel lines in three-space may not be

parallel in the image due to perspective convergence. However, many instances of

parallelism involve separations covering only small visual angles where perspec-

tive effects are in sign ifican t-the remaining cases are covered by the following

class of inferences.

7) Lines converging to a common point. When three or more lines converge

to a common point we can infer that they either converge to a common point in

three-space or are parallel in three-space (with the convergence to a vanishing

point being an effect of pecrsp~ective Projection). Often there will be a consider-

able number of parallel lines in a scene (for example, aligned with gravity) which

provide a strong basis for making this inference. As a corollary, once a vanishing

point is determined, then any line in the image pointing to that vanishing point

can be assumed to have a particular orientation in three-space, barring an ac-

cident in camera position. [Barnard, 1983] has exploited similar constraints for

the interpretation of perspective images.

;.*~~.*~*'!*-j ;~.*~**.* .- _7*
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8) Equal spacing. A series of collinear points or line segments whiich are

equally spaced in three-space will project to collinear points or segments in the

image which also have equal spacings-barring perspective effects which lead to a

smoothly changing spacing. Therefore, once we have detected collinear elements

in the image as described above, we can look for constant or slowly changing

spacings in the image which imply constant or near-constant spacings in three-

space. For example, this provides information from dotted or dashed lines. It is

even more valuable to detect parallel lines with constant spacings in the image,

since this implies not only that the lines are parallel in three-space as described

above, but also that the lines are coplanar (and equally spaced). Otherwise,

it would be an accident that the camera was placed to produce equal spacings

between non-coplanar parallel lines.

9) Virtual lines and points. Many of the inferences described above cre-

ate new distinguished points or lines in the image from combinations of other

features. These "virtual" points or lines can be used recursively to generate

three-space relations in the saone way as the initial features in the image. For

example, if we detect a collinearity relationship between a number of points, then

these points form a virtual line. If this line is parallel to another line in the image

we can infer that the virtual line connecting the points in three-space is parallel

to the three-space position of the other line. Virtual features also include the

virtual points at the terminations of a curve. For example, when a number of

curve terminations are collinear we infer that the terminations are collinear in

three-space.

10) Shadows create parallel virtual lines. By combining several of the

inferences given above it is possible to create new inferences which apply to the

particular case of interpreting illumination discontinuities. When the geometric

boundary of some object casts a shadow onto a surface, any tangent disconti-

nuities (corners) in the geometric edges casting the shadow will lead to tangent

... .. .- . . .- . ... . . -... - . . *-.. .-.: .. . ,. . .. . -.. i.
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discontinuities in the cast shadow (unless the light source is accidentally located

in the plane of the object tangents). This mncans that there will be a pairing in

the image between tangent breaks in geometric edges and in illumination edges,

with the virtual lines formed by these pairs being parallel or converging to a

common point.

In perspective imagery there is an illumination convergence point in the

image through which the images of all illumination rays from a point source pass

(this is true even for nearby point sources). If the point source is in front of the

camera lens plane, then the convergence point is, of course, the location of the

point source in the image. If the light source is behind the camera lens plane,

then the illumination convergence point is located at the point of projection of

the light source onto the film plane on a ray which passes through the projective

center of the camera, and the illumination streamns towards this point rather than

away from it. If the point source is exactly in the lens plane of the camera, then

the perspective effect compensates for divergence from the light source to make

the illumination rays parallel in the imiage.

There arc a number of ways to make use of these constraints on illumination.

If the illumination convergence point in the image is known for somic light source,

then any of the virtual lines which are aligned with this convergence point can

be inferred to be an instance of a geometric edge casting a shadow. Otherwise it

would be an accident of camera position in which unrelated discontinuities hap-

pened to align by chance. The matching of geometric edges to shadows not only

identifies the class of each image curve, but also provides important information

about the three-space separation of Lte object and surface (proportional to the

length of shadow cast for distant sources of illumination). A second application

would be to detect illumination convergence points in the image by searching

for significant numbers of the virtual lines which are parallel or converge to a

common point. Note that all of these inferences remain valid in thc presence of

niultiple sources of illumination.
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5.2: Recovery of 3D properties from line drawings

The inferences given above can be applied directly to perceptual groupings de-

tected in the image to recover three-space properties of the original scene. In

contrast to previous approaches to line-drawing interpretation, this method re-

quires no restrictive assumptions regarding the scene. The best-known previous

approach has been to assume a restricted model of the world and enumerate

the possible junction types and other image features which are consistent with

the model. This work, as developed by [Iluffman, 1971], [Clowes, 1971], [Waltz,

1975], [Mackworth, 1973], [Kanade, 19811, [Sugihara, 19781, and [Draper, 1981],

while operating successfully within the specified domain, has proven to be very

difficult to extend to general classes of scenes. These models assume that all

edges in the image are straight and that the scene consists only of polyhedral ob-

jects or polygonal surfaces. Attempts to extend the methodology to scenes with

curved lines have had little success. Of even greater practical significance, these

methods assume perfect drawings of the scene and do not degrade gracefully in

situations with missing and imperfect data.

The application of the inferences given in the previous section to actual im-

ages requires methods for combining information from the different constraints

and for resolving conflicting interpretations. The inferences then result in the

categorization of image curves and the specification of three-space relations be-

tween features of the image. Mahy of the inferences are built on the results of

previous inferences which must be combined and propagated to adjacent struc-

tures as they occur. For our program, we have chosen to use a straightforward

form of constraint propagation, in which the results of previous inferences are

systematically explored. For example, when an image curve is categorized as

a shadow or geometric boundary, this leads to a systematic examination of all

junctions between that curve and adjacent curves to see whether inferences can
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be propagated across the junctions. An inportant issue is the resolution of in-

consistencies in the constraint network-for example, inferences which assign two

different categorizations to the same curve. Although the possibility of incorrect

inferences would be vanishingly small given perfectly accurate image measure-

ments, in practice there will be some probability of errors given the limitations of

accuracy in image measurements. A reasonable strategy, which we have adopted

in our system, is to ignore both alternatives of a conflicting interpretation unless

one has more sources of evidence behind it than the other, in which case it is

chosen as the correct interpretation.

Although it is common for many interpretations to be overconstrained-

with multiple inferences leading to the same conclusion-it is also common for

some aspects of the final result to be unspecified. The purpose of these inferences

should not be viewed as the construction of a complete depth map or "intrinsic

image." What they provide is a partial segmeutation of the image into sets of

related features as well as constraints on three-space relations between compo-

nents of the scene. This information can still greatly reduce the search space

which nmst be explored in comparing the inage to specific models, as described

in Chapter 7. It can also be used in combination with information from whatever

other sources of information are available, such as shading or stereo.

The sequential style of constraint propagation is used in the computer pro-

gram described in the next section. However, a parallel model for the application

of the inferences would be more in keeping with our knowledge of the human vi-

sual system. This parallel model would be based on perceptual operations of
the type described in the previous chapter, which would be applied uniformly to I

the entire image and would detect all instances of significant collinearity, paral-

lelism, convergence, endpoint proximity (junctions), etc., with inferences being

propagated in parallel between neighboring features. The most complete use of

these inferences would be obtained by milking explicit estimates of the proba-

bility that each feature could be accidental. These estimates would be based

Ey (
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upon the accuracy with which each relation can be measured in the image and

on the probability that an accidental camera position or other accident might

have occured to the measured degree of precision. These probability estimates

could be used to resolve inconsistencies in a more accurate way and to focus

attention of later stages of the visual process on the more certain pieces of in-

formation. In addition, they would allow the inferences described here to be

integrated with other types of inference based on probabilistic properties of the

world. An example is the perceptual detection of skewed symmetry explored

by [Kanade, 19811, which is based on the assumption that bilateral symmetry is

common in the world rather than on the assumption of independence of view-

point. However, valuable as the probabilistic reasoning might be, it should also

be emphasized that in typical scenes there are many inferences which can be

made with great certainty, and many scenes are sufficiently overconstrained to

make the problem of incorrect inferences one of secondary importance. The

following section describes a computer program based upon these simpler as-

sumptions.

5.3: A demonstration of three-space inference

We have implemented a computer'program that applies many of the inferences de-

scribed above to hand-input image curves. The program is written in MACLISP

and runs on a DEC KL-10 computer. This program uses a simple form of con-

straint propagation, in which all the inferences resulting from any categorization

or relation are systematically propagated until there are no further changes (in

practice, this process seldom proceeds through more than one or two levels of

inference). The image relations are detected by testing image features against

preset thresholds (e.g., lines are considered parallel if they are within 10 degrees

in orientation and are closer in proximity titan the length of the shortest line).

The success of these simple criteria for detecting image relations depend upon
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the high quality of the hand-traced image curves. This is particularly true for

detecting curve terminations and junctions, which are often missed or poorly

located by current edge detection methods. However, there is reason to believe

5 that substantially improved techniques for locating terminations and forming

F. junctions can be developed in the future [Binford, 1981].

The curves input to the program are represented as cubic splines. Junc-

tions are formed after input based on proximity of terminations to curves or

other terminations, using a preset threshold for judging proximity. Figure 5-3(a)

shows a digitized aerial photograph taken over San Francisco airport, and Fig-

ure 5-3(b) shows the splined curves which were traced by hand from this image,

using the output of an edge detection program as a guide. The program was

also given the direction and angle of illumination, although as described in the

previous discussion this information could probably be derived directly from the

image.

Figure 5-3(c) shows dotted lines parallel to the projected direction of illumi-

nation that connect pairs of tangent discontinuities (these shadow features were

described in part 10 of the list of inferences above). From these, the program

categorizes the curves in the pairings as geometric edges or shadow boundaries,

depending upon which end Clicy occupy of each pair. Figure 5-3(d) shows a circle

over each termination of a curve at another continuous curve, through which con-

straints on curve categories can be propagated to categorize neighboring curves

(using the inferences described in part 4). The program then attempts to form

a closed geometric boundary around individual regions, using the previous cat-

egorizations of certain curves as geometric boundaries. Each curve is followed

through all unambiguous continuations (collinear segments or curves which ter-

minate at the same location), in an attempt to form closed regions. A region

is accepted if a curve and its unambiguous continuations form at least 75% of

the perimeter of the region. Another source of evidence used to form region seg-

mentations is parallelism between geometric boundaries, which is accepted when
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I.(9)

Figure 5-3: These figures show stages in the inference of three-space relations from
hand-traced image curves. The curves shown in (b) were traced by hand from the
aerial photograph of an airplane at San Francisco airport shown in (a). The subsequent
steps of interpretation were carried out without human intervention from this initial
curve data. These steps include detection of pairs of tangent discontinuities parallel to
the direction of illumination (c), propagation of constraints through T-junctions (d),
geometric surface segmentation (c), matching of shadow curves to geometric edges (f),
and the formation of a three-dimensional description which can be viewed from different
positions (g,h).

two geometric boundaries are parallel within 10 degrees and also form 75% of

the boundary of some region. The result of these geometric surface segmentation

processes is shown in Figure 5-3(e).
Figure 5-3(f) shows shadow boundaries represented as dotted lines, and

pairings are given between geometric boundaries and the shadows which they

cast. From this information, it is possible to calculate the relative separa-

tions of surfaces based upon the lengths of the shadows which they cast onto

other surfaces. Given a distant point source with parallel illumination rays,

the length of a cast shadow is proportional to the separation of the geomet-

ric boundary and shadow curve. If the orientation of the shadowed surface is

known, then the orientation of the geomnetric edge casting the shadow can be

determined. The progrmu initially assumes that arfaces are parallel to the

'.'..- - " .
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camera plane and then looks for evidence to the contrary, based upon rela-

tive separations at different locations along a geometric boundary and its cast

shadow. For example, the tail surface of the airplane is found to be approx-

imately vertical with respect to the ground. See [Shafer, 1982] for a much

more detailed analysis of the use of shadow matches for constraining orienta-

tion.

From this set of surface segmentations, orientations and separations, it is

possible to construct a partial three-dimensional geometric description of the

scene as shown in Figure 5-3(g). This representation assumes that surfaces are

horizontal in the absence of other evidence, and shows each surface as a solid

box extending down to a uniform ground plane. Since this is a three-dimensional

representation it can be rotated and viewed from other angles as shown in Figure

5-3(h).

As mentioned' earlier, it is not possible in general to construct a full depth

map of the image and this should not be considered the major purpose of the

inferences. Aerial photography has lighting conditions which are particularly

suited to generating fairly complete depth descriptions. The assumptions re-

garding horizontal surfaces would iiot bc as reasonable for many other types of

images. However, even in the absence of any information from shadows and with-

out being able to determine surface orientations, the many other inferences allow

segmentation of the image and the- inference of many types of three-space rela-

tions. In fact, for the purposes of recognition, it can be argued that segmentation

and symbolic relations do more to reduce the search space for imiatching than does

a simple depth imap of the scene. The purpose of this program is to illustrate

the strength and generality of these inferences derived from viewpoint invariance.

Clearly, much more work would be required to develop a program that did not

have the arbitrary detection thresholds and that could operate succcssfully with
real image data.
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5.4: Conclusions and future development

In this chapter, we have described and demonstrated a number of inferences for

the interpretation of image curves that do not require restrictive assumptions

about the nature of the scene. The inferences are based on the simple assump-

tions that the camera viewpoint and light-source positions are independent of the

objects in the scene-assumptions that are valid for most classes of images. In

cases where these assumptions are violated-as in some engineering drawings-

human vision has difficulty in providing three-dimensional interpretations. These

inferences can be applied on their own to segment and provide three-space infer-

ences from the image, as was demonstrated in the computer program. However,

an important remaining challenge is to integrate this form of inference with the

full set of perceptual operations described in the other sections of this thesis.

This would require a detailed statistical analysis of each type of inference, and

would require inference methods that could combine and use these statistical re-

suits. Aspects of this prol)em, will be described in Chapter 6, but much research

reenains to be dorl before final answers can be given.

There are also ways in which the simple, qualitative application of these

inferences could be improved. One obvious need is for better methods for de-

tecting and locating curve terminations and junctions ilk digitized images, since

these provide a basic and reliable source of information. It is also important

to accurately localize the curves themselves, as well as tangent discontinuities.

Another sigiiilicant goal would be to coiiiln e the ilformation from these infer-

ences with other sources of three-diiiieiisional information, such as that produced

by the interpretation of stereo, motion, or shading. The simiple depth-map rep-

resentation is inadequate for representing many of the constraints produced by

the three-space inferences described in this chapter, so more coniplex forms for

represeting three-space constraints would need to be developed.
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Chapter 6

MODEL-BASED SEARCH

AND INFERENCE

One of the central topics of artificial intelligence research has been the problem

of efficient search. For many problems in Al, there are straightforward methods

for solving a problem by enumerating over a large set of possible interpretations

and looking for those that are consistent with the given data. Unfortunately, in

many cases the set of possible interpretations is combinatorially large and cannot

be enumerated in a reasonable amount of time. Therefore, a substantial amount

of Al research has been devoted to finding methods for speeding up the search

process. These methods fall into two classes: the so-called weak methods that

look for general purpose algorithms that could be applied to any search problem,

and the strong methods that attempt to apply specific knowledge of the problem

at hand. Recent Al research has tended to concentrate on the strong methods-

in particular, making use of large amounts of world knowledge that can often

be applied to find a quick path through what would otherwise be an intractable

search space.

The problem of model-based computer vision falls neatly into this category

of search problems. As will be demonstrated in the next chapter, it is usually

possible to determine reliably the correctness of some model-based interpreta-

tion of an image once a match has been suggested. It is also straightforward to

enumerate all possible interpretations for an image. The significant remaining

91
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problem is reducing the size of this search apace. As in other areas of Al, there is

no single, magical method for solving this problem-it is necessary to incorporate

many types of world knowledge and many intermediate problem representations

to achieve substantial success. Even then, the performance of any system, in-

cluding human vision, will be inadequate for some subset of the possible tasks.

- The previous chapters of this thesis have been concerned with the use of per-

ceptual organization to provide information which reduces the range of possible

interpretations that must be considered for a collection of image features. This

chapter will examine mcthods for the actual enumeration of this search space and

describe the ways in which perceptual organization can have a major impact.

There are two major components of the search space that must be covered

during image interpretation. The first component deals with the space of possi-

ble viewpoints on each object. Since spatial information in the image is highly

dependent upon viewpoint, any strong predictions for spatial appearance of an

* - object are likely to apply to only a relatively small subrange of the possible view-

- points. Therefore, a complete se-..ch must enumerate over the va rious discrete

ranges of viewpoints that need to be considered. The seemingly large size of

this search space has been a nmajor faictor leading researchers to avoid searching

- over the range of viewpoints and instead direct their efforts into the derivation

of three-dimensional structure fronm the image. While it is true that direct three-

0 dimension-al information would reduce the complexity of this component, it is

also the case that general purpose vision requires recognition even in the absence

of bottoin-up depth inforination. Fortunately, as will be dcscribed in the follow-

* ing section, the sizc and complexity of this search space turns out to be quite

manageable, particularly if we make use of perceptual groupings.

The second major component of the search space is the problem of selecting

an object description for matching from among the potentially vast number of

objects that could appear in a given scene. In the absence of well-cstablished

methods for recognizing even single, known objects, this problem has not been a
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major focus of research. However, this component of the search problem is poten-

tially much larger than the space of possible viewpoints, and we can expect it to

increase in importance with each improvement in the performance of computer

vision systems. Perceptual organization can again play a major role in reduc-

ing the size of this search. We will describe an inference procedure-borrowed

from recent work on expert systems-for using the various groupings that are

detected in an image to update our expectations regarding the presence of par-

ticular objects. These changed expectations can result in very large reductions in

the amount of search required for recognition. Additionally, these methods allow

us to combine information from many different sources into a single estimate of

whether some object is present. For example, we can make use of contextual in-

formation in which the recognition of one object in a scene leads us to increased

expectations for certain other objects. This can also be combined with color,

texture, motion, and information from other sensory modalities. These methods

are of interest from the psychological viewpoint as well as for their application

to computer vision.

6.1: Searching the space of possible viewpoints

The space of possible viewpoints may at first seem to be too large for carrying

out an exhaustive, quantitative search over all the possible projections of an

object into an image. There are a total of six viewpoint parameters for a camera

of known focal length, which specify an object's location in the image, distance

from the camera, and orientation in three-space. However, if we only predict the

relative locations of features in the image, these predictions will be invariant with

respect to location in the image and rotation in the image plane-leaving only a

three-parameter space determining distance from the camera and rotation out of

the image plane. Of greater significance is the fact that relations between object

features usually vary slowly and smoothly with respect to changes in viewpoint.

. 7
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Although there are discontinuities in some relations from certain viewpoints,

there is no need to include every possible prediction, so these discontinuous cases

can be ignored. This means that it is unnecessary to sample the parameter ranges

very densely. For a fairly wide range in each parameter, it is possible to make

quantitative predictions regarding relative locations of features in the image that

are adequately bounded for avoiding a profusion of false matches.

A straightforward-but highly-optimized-application of this search over

the space of viewpoint parameters is described by [Goad, 1983]. His model-

based vision system searches for sets of edges in an image which could be the

consistent projection of three-dimensional edges of a known object. The method

consists of a depth-first search procedure that considers discrete sets of ranges

of viewpoint parameters at each node in the search tree. This search cycles

repeatedly through three steps as it descends through each level of the search.

These steps can be referred to as predict, match, and back-project. The first

step predicts the orientation, location, length, and curvature of some edge in the

image, with the orientation and location being relative to any already-matched

features. If no features have been matched yet, then the prediction may not be

restricted to any particular location or orientation, and will therefore miatch any

edge in the image of the correct length or curvature. The second step consists of

searching the inage for all features which match the given prediction. For each

of these matches, a new child node is created in the search tree for further search.

The third step of back-projection operates at each new node of the tree to use

the measured location of a matched image feature to narrow the ranges under

consideration for the viewpoint parameters. It is this back-projection step which

gives the sequential search procedure its strong advantage over methods which

attempt to predict the appearance of a complete image which is then matched as

a whole. For well specified models, only about three image features need to be
matched before the viewpoint is constrained to approximately a single position.

Thereafter, further levels of the search are unlikely to find false matches in the

0'-
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image and so there is no further expansion of the search tree. Since image features

may be missing due to the unreliability of feature detectors and the presence

of occlusion, it is necessary to expand the search space somewhat to allow for

missing features. Therefore, each node of the search tree may sometimes also

be skipped and matching will proceed to the next level without a match and

without further restriction on the viewpoint range.

The back-projection step is the most difficult from a mathematical view-

point, since there are no simple, closed-form solutions for determining the range

of viewpoint parameters consistent with a given set of image matches. Goad clev-

erly handles this problem and also achieves large gains in speed by making use of

an extensive precomputation system. During the precomputation phase values

which will be needed at runtime for various stages of the search are precomputed

and stored in tables at an appropriate level of resolution. The result is that

typical objects can be robustly recognized in a viewpoint-independent manner

in times on the order of one second while the system is running on a MC68000

microprocessor. This is a powerful demonstration of the fact that searches over

the range of possible viewpoints can be accomplished with modest amounts of

computation.

In addition to searching through the space of paramieters determining view-

point, it is possible to also include parameters of variation in a model arising from

generic object descriptions. This problem was a major focus of the ACRONYM

system [Brooks, 1981], which was also one of the first model-based vision sys-

tens to implement the predict, match, back-project cycle. ACRONYM had more

general goals than Goad's system, in that it included this problem of search-

ing over a space of model parameters and then solving for the resulting bounds

on image measurements using a general symbolic algebra system. ACRONYM

was able to integrate knowledge from many different sources with this symbolic

constraint system, including prior restrictions on viewpoint and depth informa-

tion from stereo correspondence or other sources. Unfortunately, the symbolic

.7.%
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equation solver was unable to solve for precise bounds from the trigonometric

equations describing projection from arbitrary viewpoints, so the capability of

the system for quantitatively searching the space of possible viewpoints in two-

dimensional image data was quite limited, However, it is the most comprehensive

vision system to date which has been based on a systematic search for spatial

correspondence.

A similar search process has recently been used by (Grimson & Lozano-Pires,

1983] to recognize objects from sparse range data or the output of tactile sensors.

They examine and analyze a number of local position-independent constraints

on pairs of features that can be used to prune the search space. However, their

methods assume the use of range and surface orientation data and do not extend

to the use of two-dimensional features that are being considered here.

One open problem in applying the above methods for searching the space of

viewpoints is how to choose the optinmal subdivision of the viewpoint parameters

into discrete ranges. There is a tradeoff between choosing small ranges of pa-

rameters, which would require more discrete cases to be considered, and choosing

larger ranges, in which case there may be poorer discrimination in image mea-

surements lealing to more false matches. In practice it appears that choosing

fixed, moderately-large ranges works well, but this will certainly not always be

the optimal choice.

6.1.1: The role of perceptual organization

Perceptual groupings can play two important roles in reducing the size of this

search space over viewpoints and object parameters. First, they can greatly

reduce the number of false matches which must be considered at a given stage

of the search. For example, if we are searching for sets of parallel edges, it is

likely that there will be far fewer candidates to consider than the number of

all edges in the image. As the perceptual groupings become more complex, the

•°* . . .°"
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probability of finding false matches decreases even further. In quantitative terms,

if the average density of features being matched decreases from D to D', then

the branching factor at each level of the search tree will be reduced by a factor

of D'/D (assuming uniform distribution of features).

Secondly, perceptual groupings can lead to much stronger results during the

back-projection step than isolated features. For example, matching a single edge

to a model puts far fewer constraints upon viewpoint than would a match to

a grouping of several edges. Since it is the unconstrained viewpoint during the

first few levels of the search tree which accounts for most of the size of the search

space, the ability to strongly constrain viewpoint from the initial match can

result in a dramatic reduction in search. A similar point was noted in [Brooks,

1982] for the solution of back-constraints in the ACRONYM system.

Balanced against the advantages of using perceptual groupings are the costs

of performing perceptual organization. However, although these costs may be

substantial, the grouping only needs to be performed once for all objects and

therefore its cost for each attempted match will not be significant if enough

objects are being considered. Another requirement for making use of perceptual

groupings is that the object's projection must contain perceptually significant

groupings often enough to make them worth searching for. This requirement

seems to be met for almost A objects. However, as was shown by the example of

* Figure 1-4 (in the case in which a person is told that the image contains a bicycle)

huan vision seemis to be fully capable of searching the set of possible viewpoints

for a known objcct even when there are no significant groupings beyond the level

of edges.

The ACRONYM vision system performed its matching against a particular

form of image groupings known as ribbons. Although these were not detected

strictly bottomn-up--some parameters or the ribbons were specified top-down

from knowledge of a particuilar object-the ribbons themselves were a combina-

tion of several of the types of perceptual groupings which we have discussed in
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previous chapters. A ribbon was defined as an elongated shape in the image which

was the projection of a generalized cylinder EBinford, 19711. The detection of the

ribbons was performed by a search procedure among straight edge segments,

which looked for a combination of endpoint proximity, colinearity, parallelism

of opposing sides and a certain overall degree of closure for the region. Given

the poor quality of the initial edge data, this algorithm did a reasonable job of

selecting perceptually significant structures for use by the matching algorithm.

6.2: Searching the space of possible objects

* In comparison with the space of possible viewpoints, which is of fairly constant

size for each object, the space of all possible objects is much larger and more open-

ended. The search over viewpoints consists of a small number of discrete caes-

within which continuous quantitative search techniques are used-whereas the

spaice of all possible objects seems to contain very large numbers of discrete

cascs. While there is sonic overlap between the two problems, we will be making

usc of a different method to handle the problem of searching among the set of

possible objects. The most important aspect of this search problem seems to be

the capability to combine information from many different sources to determine

our expectations for the presence of a particular object. For example, we will

want to make use of the sinultaneous presence of a number of different perceptual

groupings, texture measures, color, size, contextual information and any availableF. prior knowledge. None of this in'formation is likely to be absolute in the sense
0 that it always indicates the presence of a certain object or is always present

when the object is present. Therefore, in order to make maximum use of this

information we will use a probabilistic method which can represent the relative

importance of the various factors.

eF Fortunately, there has been a considerable amount of recent work in the

development of methods for combining probabilistic expcctations, much of it
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motivated by the need to solve this problem for use in diagnostic expert systems.

We will first outline a general model of search which can make use of probabilistic

information to choose the optimal search path, and will then apply some of

the recent work on the combination of probabilistic evidence to the problem of

visual recognition. Finally, we will examine the integration of this approach with

hierarchical object descriptions and other components of a vision system.

6.2.1: A model of probabilistic search among discrete objects

If we had an infinitely large parallel computer, it would be possible to search

simultaneously for every known object, so the length of time required for recog-

nition would be independent of the number of alternatives under consideration.

However, even for such a highly parallel system as the human brain, recognition

is much easier if there are prior expectations for the presence of a particular ob-

ject (as is shown by the examples in Figures 1-4 and 1-5). The methods we will

be using assume serial search through a sequence of objects, but would extend

in the obvious way if a limited amount of parallelism were available to search for

some fixed number of possibilities simultaneously. The objective will be to order

the search in such a way as to reduce the total amount of computation required

for recognition, and to update this ordering as new evidence is brought to bear.

Let PA; be the probability that object k is present in the image. Let Wk

be the amount of work (i.e., computation time) required to verify the presence

of object k by performing the subsequent search over the range of viewpointsF: anid model parameters. Then we can define a mecasure Rk which will be used to
determine the object ranking:-S

KW.
Rk -

Given this measure, the optimial ranking of objects during search will be in terms

of increasing values of Rk:

.. . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . .
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In other words, our effort will have the highest payoff if we are searching for

the object that requires the least amount of work on average for a successful

detection. The inclusion of the Wk terms avoids some semantic difficulties in

what is defined to be an object, since if two separate objects of the same ranking

are combined and named to be a single object, both their P', and Wk terms will

add together and there will be no change in the resulting raniking.

In order to calculate the average search time, we can sum up the amount of

work expended in trying to recognize each object times the probability that that

particular position in the ranking will be reached:

F Z, flrJ(I - Pi).

* It is always possible that no object can be recognized in some images, but this

* just means that thc probabilities will not sunm to 1 and does not affect the above

formulas. We can also calculate the mecdian search time, which is equal to the

sung of all the W1, terms up to the point at which the Pk ternms add up to 0.5.

Of course, an image is likely to contain many objects, and we have only been

calculating the time required to recognize the first object. However, as soon as

one object is recognized it provides contextual information which updates the

rankings and aids in the search process, so it would be improper to incorporate

p. multiple object recognition in a single ranmking as given above.

Our objective will be to use all available evidence to update the rankings

of objects so as to minimize the average recognition times. Assuming that the

r Wt terms are fixed, our objective will be to increase the Pk probability terms by

making usc of evidence regarding the particular image under consideration. As

showni in the formula above for average recognition times, any increase in a P

has an effect on the product term for all objects which occur lower in the ranking.
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There is a further positive effect due to any changes in the ranking caused by

the updated value.

6.2.2: Evidential reasoning for reducing search

Methods for combining information from different sources of evidence to up-

date probabilistic expectations have received a considerable amount of attention

recently for use in medical expert systems. In many respects, the problem of

diagnosing a disease from a number of symptoms is very similar to the problem

of trying to identify an object from a number of different sources of evidence

in the image. However, the. image recognition problem as we have framed it is

actually simpler, since we will be using evidential reasoning only to speed up the

search process across different objects rather than to make the final judgment of

correctness for a match. The final decision regarding the correctness of a match

can rely on much more reliable quantitative matching as described in the next

chapter. Therefore, some of thc more complex aspects of recent work on evi-

dential reasoning in medicine are unlikely to be needed or useful. For example,

there has been a considerable amount of interest recently in the Dempster-Shafer

imodel of evidential reasoning which allows the user to represent degrees of igno-

rance as well as expected probabilities [Shafer, 1976; Lowrance & Oarvcy, 1982].

However, there seems to be no need for an estimate of ignorance when calculating

rankings for a search process, so the many complications in applying this type

of method need not concern us.

The problem of decision-nmaking under uncertainty has been a longstandingF topic of research in mathematics, based on the use of conditional probabilities
and Bayesian statistics. However, the use of Bayesian statistics was rejected

by the initial researchers in medical expert systems, since they assumed that it

would either require unrealistic independence assumptions or an impossibly large

number of known statistical parameters. Instead, they developed various heuris-

tic imethods for combining evidence which seemingly eased these requirements
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[Shortliffe & Buchanan, 1975; Szolovitz & Pauker, 1978]. However, Charniak

has shown in an interesting recent paper, (Charniak, 19831, that these heuristic

methods actually correspond to Bayesian reasoning under certain reasonable as-

sumptions and that they can be formalized within the framework of conditional

probabilities. These methods can be readily applied to many situations requiring

evidential reasoning. The rest of this section presents an overview of Charniak's

techniques and describes how they can be applied to the problem of model-based

vision.

Let us assume that we have detected a number of features or properties of

the image, fl,... ,f,, and wish to estimate the probability of the presence of a

particular object model, mi. In terms of conditional probabilities, this means

that we want to calculate P(milfil... , f). It would obviously be impossible to

store the value of this quantity for all possible combinations of features, which

is why we need methods for combining evidence. Charniak bases his method on

the following form of Bayes's theorem:

P(m,) * P(f1 , . ,fIm,). ' P(yL,... ,/,

In order to express this formula as a combination of probabilities for the individ-

ual features, we must make two independence assumptions:

P(f,&fh) = P(f,) * P(fh)

P(fi&fi m) = P(fim) * P(hflm)

There will be many cases in which each of these independence assumptions are

violated, but these cases can be handled by methods which will be described

below. The independence assumptions allow us to break the joint probabilities

into combinations of individual terms:

P(m,f,...,f,)- P(m,) * P(film,) ,... P(fIm,), ~P(f,) ,.,P(A,)

= P(m) P(flm)] [P(f,Imi)]tP(U) *" V .)

S--- - --- - .,. .. ... ..
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This last formula gives the updating term for each new fi. We start with some

initial probability estimate P(m,) for an object, and for each new feature which

is detected we multiply this estimate by P(h lm')

This still leaves the problem of what to do when the independence as-

sumptions we made above are violated. The first assumption, P(fi&fi) =

P(f ) * P(fy), is very restrictive. In fact, it is in contradiction to the whole en-

terprise in which we are engaged, since it will be violated whenever two features

tend to arise together from the presence of a single object. However, Charniak

points out that this assumption is used only to determine the denominator-of

the above conditional expression, and is independent of any particular object.

Therefore, any violations of this assumption will affect all object probability es-

timates by the same factor, and will have no effect upon probability rankings.

This explains why it is possible to keep multiplying a probability by new factors

which may cause its value to become greater than 1. The final result should

therefore not be interpreted as an absolute probability estimate, but should be

used only for establishing relative rankings. Happily, this is all that is needed for

our application.

The second independence assumption, P(f,&f'jm) - P(f.Ilm) • P(film),
states that two features are independent given the presence of a particular object.

This assumption will be violated if what we are calling a single object actually

has different subcases, one of which tends to contain the features while the other

one doesn't. Charniak's solution in this case would be to introduce states which

represent the different subcases and to express the conditional probabilities with

respect to these subcases. There may be other situations in which the indepen-

dence of features given an object does not hold, but it is always possible to just ex-

plicitly remember the joint probability of P(f,&film) in these cases, and to plug

this value into our updating formula whenever the two features are both present.

Therefore, we are assuming independence as our default assumption, but are also

retaining the option to include any information regarding non-independence.

- ...! .I
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6.2.3: Design of a vision system using evidential reasoning

The attractive feature of using evidential reasoning for computer vision is that it

allow. us to combine information of varying reliability from many sources, even

though no particular item of evidence is necessary or sufficient for recognizing

a particular object. For example, if we have just walked into an office (or have

already recognized one object in an image which suggests that we are looking

at an office environment), we would like to increase our expectations of seeing

certain other objects, such as desks, chairs, filing cabinets, telephones, etc., but

we don't want to completely rule out the surprising presence of any other objects.

Given that a desk is only one of thousands of common objects with which we

S interact, our initial P(desk) in any scene might be only 0.001. However, since

we often expect to be in an office when we see a desk, say P(officeldesk)=

0.5, and since our initial estimate for the presence of a desk was based on a low

probability for being in an office, P(office) = 0.01, we can now update our P(desk)

by a factor of 0.5/0.01 = 50. As Charnink points out, we could just remember

this updating factor rather than the separate probabilities. Therefore, P(desk)

now equals 0.05 (for any given part of the scene), which will move it much closer

towards the front in our rankings of objects to consider. If we now consider some

perceptual grouping of a number. of equally spaced horizontal lines which could

be caused by the drawers of a desk, we can increase our expectation for a desk

* at that location by another substantial factor. If the region between these lines

is of a color that is statistically associated with desks, or if it has a wood-grain

texture, we can multiply these factors into our expectations. In this way, we can

* quickly move this object to the head of the ranked list, eyen though none of the

items of evidence is in -itself very conclusive.

One obvious concern is that we need to avoid spending so much time on this

updating and ranking task that we undo the savings we are trying to make in the

search process. It would clearly be impractical to update our expectations for

*L-*
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every known object for every item of evidence that we encounter. The solution

is to adopt some threshold on the significance of object probabilities and impli-

cations which limits the number of objects which will be updated. We should

only consider those objects for which we have either a high current expectation

or for which the evidence under consideration carries a strong implication. This

will fail to uncover those objects which could achieve a strong significance after

combining many individual items of evidence, none of which are even moderately

strong. However, it is not clear that even human vision would perform well in

these situations.

Another problem is that the Bayesian scheme assumes that all evidence is

being collected for a single conclusion. In medical diagnosis, this is known as

the multiple disease problem, since a set of symptoms may be the result of more

than one disease. Fortunately, the consequences of violating this assumption are

not very severe. In the medical situation, it is common to just assume that all

evidence is referring to a single disease, and then to use some other method of

looking at the top few higlmst-rankcd conclusions to see which combinations of

them best exp~lain the evidence. Since in computer vision we will already be

relying on other miethods to verily our final interpretations, this problem should

be of limited consequence. On the other hand, a typical image will conta in a

substantial nmber of different objects, so it would be useful to make some effort

to see that the evidence we are combining refers to a single object. Contextual.

information will typically update our expectations for an entire scene, but per-

ceptual groupings, color, or texture refer only to a particular region. Therefore,

we should only combine these items of evidence if they are related by enclosure,

connectedness, adjacency, or other indication that they are related in the image.

Even better, we could weight their combination by the degree to which these

criteria are met.

Many readers may be wondering at this point exactly what the dividing

line is between an object and a feature. After all, an object can be built up
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from a hierarchy of component parts, each of which can be recognized in its own

right. For example, we can recognize the shape of the human body as a whole,

or recognition can proceed by first recognizing an eye or a hand and proceeding

from that to recognizing other components. So, should our ranked list of objects

Consist of overall object descriptions or merely the simplest level of components

out of which complex objects can be assembled? The answer is clearly that both

should be included, and that each type of description will be useful in different

types of images. A desk is part of an office in much the same way that a handle

is part of a desk. We can proceed from the whole to the part or from the part

to the whole depending upon which is easier to recognize first. We can make use

of either evidential reasoning or of explicit model parameters as described in the

previous section to propagate information in either direction. The obvious result

is that our list of possible objects is going to be large, which makes the use of

evidential reasoning all the more important.

We have been assuming that the various probability values are somehow

known in advance. One important extension would be to have these acquired by

a learning system and continuously updated as the system gains visual experi-

ence. Since thc purpose or these values is'to speed up system performance, the

system would still function given rough initial values for new objects, but would

gradually gain in speed as the values became more and more accurate. It would

be straightforward to update the values of P(f,) and P(fim,) for the features

after each successful recognition has occurred. The more difficult problem would.

be to recognize instances in which the independence assumptions do not hold, and

* to introduce intermediate states or the P(!,&fIm) values for combinations of

features. This is related to the problem of inferring optimal object categorizations

from a sample of data and is clearly a topic needing further research. However,

even without recognizing violations of independence, the automatic updating of

the conditional probabilities would greatly simplify the input of information.
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6.3: Summary

Methods for searching over the range of possible viewpoints and paraneterized

instances of an object are now fairly well understood, at least for well-structured

objects. They have been successfully implemented in working systems, and con-

stitute an existence proof for the fact that bottom-up extraction of depth in-

formation is not necessary for recognizing three-dimensional objects. As new

capabilities are introduced for performing perceptual organization, they can be

expected to result in dramatic improvements in speed over the exhaustive con-

sideration of every edge or other primitive feature in an image.

The topic of the second section of this chapter, the use of evidential rea-

soning, is more speculative in nature, but it could eventually prove to be even

more inportant since it deals with an inherently larger search space. Although

there are many aspects that could benefit from further research, enough has been

developed so that it should be of practical use in, say, an industrial vision system

recognizing a large number of known objects. These methods are interesting front

the psychological viewpoint because they allow a systeini to incorporate litany dif-

ferent sources of evidenuce that are probabilistic in nature, including contextual

expectations. llumiuan vision seenis Lo make extensive use of contextual informa-

tion from botlh cognitive amd strictly visual sources (see [lfiedertnan, 1981] for

many relevant experiments). Another potential impact of evidential reasoning

is that the ability to conl)ine information from different sources could help to

redlscc SouIIe of the iSolAion amolng various stab-fields of computer vision. For

exalple, it could encourage the use of color, which is not sulfficiemlt in itself for

solving most visual problens but can be very useful in conjunction with other

information. Finally, the potential for building a system which learns to improve

its )erforlance as it gains visual experience is of obvious long-terni interest.

, -- . %. ** , ';, *.o * .



Chapter 7

THE VERIFICATION
OF IMAGE

INTERPRETATION'S

One of the central arguments given in previous chapters for the importance of

perceptual organization is that it reduces the otherwise enormous task of search-

ing for spatial correspondence betwcen image features and prior knowledge of

objects in the sccne. However, this argument is based on the assumption that

the final verification of the correctness of a set of correspondences can be carried

out quickly and reliably as part of the search process. In this chapter, sonic

practical methods will bc described for performing this verification process, in

particular for determining the viewpoint and unknown parameters of a three-

dimensional object as accurately as possible and measuring the degree to which

the spatial information in the image agrees with the predictions of the model.

It may seem that this use of spatial information for vcrificatiou places too

much empbasis on a single aspect of correspondence while ignoring shading,

color, texture, context, aud other dimensions along which comparisons could be

made between image and model. However, there is good reason to believe that

spatial information is the dominant source of information for verification in most

recognition tasks, as well a being a prerequisite to the application of thc other

measures. If we compare the number and accuracy of spatial predictions which

109
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can be made for a typical object with the number and accuracy of predictions

for the other classes of features, the sheer quantity of spatial information seems

to be much greater for most object classes. This can be intuitively demonstrated

by comparing a line drawing, in which much of the spatial information is present

and the other dimensions are missing, with an image containing only patches

of shading, color or texture with loosely defiped boundaries. The certainty we

would ascribe to an interpretation is likely to be far stronger in the first case

than in the second. There are some classes of objects (for example, some types

of natural vegetation) which may be defined more by color and texture than by

shape, but these cases seem to be in a distinct minority. Even in these cases,

it is usually necessary to first establish a shape correspondence between image

and object before the other dimensions can be accurately compared for specific

regions of the object.

The most difficult aspect of using spatial information is that it is highly

dependent upon viewpoint and shape variations of the object. The search meth-

ods outlined in the previous chapter establish tentative correspondences for given

ranges of viewpoints and object parameters. These search methods discretize the

ranges of variation, and invariably discard sonic degree or spatial accuracy for the

sake of efficiency of the representation. In order to veriry these interpretations, it

is necessary to apply a second level of analysis to these initial correspondences to

determine values for the viewpoint and shape paraneters which are accurate to

the limits of the data. By looking for consistency among these correspondences

and by using the calculated paraimeters to predict further mItatches at specific lo-

cations, it is possible to carry out the verification with great reliability for most

types or objects. Currently, almost no vision systems have mechanisms which

make use of image locations in this way to their full accuracy. This is no doubt

due to the difficulty of the mathenatical problem of determining exact viewpoint

from initial matches. This chapter will be principally devoted to developing a

practical and efficient solution to this problem.

S
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7.1 Viewpoint determination in human vision Ul

7.1: Viewpoint determination in human vision

The extent to which human vision makes use of spatial information during recog-

nition has not been the object of much study within the field of psychology. How-

ever, it is clear that accurate determination of object location, orientation, and

internal parameters is necessary for many visual and motor tasks, such as the

task of judging a three-dimensional length from a two-dimensional image. It also

seems clear that human vision makes full use of accurate viewpoint estimates to

judge the consistency and plausibility of an interpretation. Any amateur artist

knows that it is essential to get the "proportions" correct in order to produce a

realistic drawing of an object. Many computer vision systems which look only

at connectivity patterns or qualitative shape descriptions throw out much of this

important spatial information. While viewpoint-invariant properties are impor-

tant for reducing the search space leading to recognition, the process of verifying

an interpretation has much to gain from being based upon as accurate a deter-

mination of viewpoint as possible.

One interesting and relevant piece of psychological data on viewpoint de-

termination is the work on mental rotation [Shepard & Metzler, 1971]. In this

experiment, subjects were asked to compare two perspective line drawings of

simple objects and make a judgment regarding their similarity as quickly as pos-

sible. It was found that the time required to make this judgment varied linearly

according to the three-dimensional angle separating the orientations of two views

of an identical object (see Figure 7-1). Not only was the degree or linearity strik-

ing, but rotation in three-dimensions occurred at the same rate as rotation in

the plane (this rate of rotation was roughly 600 per second). During the cou-

ple of seconds that it often took to complete the task, the subjects reported a

strong subjective impression that they were mentally rotating one object until it

matched the second.
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* Figure 7-1: On the left arc examples of the pairs of line drawings presented to aubjects
as describcd in [Slicpard & Metzler, 19711. The graphs on Lhe right show the amount of
tirne rcquircd to determine whether a pair of figures are rotationally equivalent. Graph
A is for objects which were only rotated in the picture plane, and Graph B is for objects

* which were rotated in depth. Both graphs are linear to a surprisingly high degree of
accuracy and are also very similar in their values.

This data seems to lend significant.- support to the hypothesis that view-

* point determination in human vision can be acconplishcd through a process of

rotating a three-dimensional muental model of an object to bring its projection

into correspondence with an image. The appearance of common objects is likely

to be overlearned in the sense that their projected appearance is known from

a number of typical viewpoints. However, for exact viewpoint determination,

there would still need to be a small mental rotation of the model from an initial
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estimated viewpoint, and from unfamiliar viewpoints the required rotation may

be substantial. This mental rotation process is conceptually similar to the itera-

tive process presented in this chapter, although the method we will present has

quadratic rather than linear convergence. [Funt, 1983; Morgan, 1983] have ex-

amined restrictions on computational architecture which could lead to the slower

linear rate of rotation in human vision.

Note that viewpoint determination involves scaling and translation as well

as rotation. [Bundesen & Larsen, 1975] have described an experiment in which

subjects were asked to compare objects of differing size, and they found the same

type of linear relationship between difference of scale and reaction time as was

found for angle of rotation. It would be interesting to see whether there are

similar experimental results for translation or variable model parameters.

7.2: Definition of the problem

In the simuiplest formulation, the problem will be to determine the orientation

and position of a camera which would result in the projection of a given set

of three-dimensional points into a given set of image points. Since there are 7

six parameters determining orientation and location of the camera and since

each match between an objqct point and an image point constrains two degrees

of freedom, only three of these point-to-point matches are needed to achieve a

complete solution (but there may still be a few discrete solutions). Although this

aslpect of the problem is not mathematically easy, a considerable amount of work

has already been done on it ws described in the next section.

However, the problem of matching object models to image features is usually

substantially more complicated than is implied by this simple formulation. Our

knowledge of three- dimensional objects is often not in terms of specific three-

dimensional coordinates, but may involve many parameters of variation in object

size, shape, or articulation. Since the spatial consequences of these parameters

2I
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are confounded in the image with the effects of viewpoint, it is often necessary to

solve simultaneously for viewpoint and model-specific parameters. In addition,

the matches specified by the correspondences may not be in terms of points, but

may instead be in terms of transverse distance from a model line to an image

* line or in ternms of matches between more complex curves. This is particularly

important for making use of current low-level edge detection methods which are

much better at localizing the transverse position of a curve than in detecting the

endpoints of a curve. A further important function of the verification process

* in developing practical vision systems is to remove positional errors from the

initial set of matches by looking for consistent subsets with the most accurately

determined parameters. A process which removes occasional incorrect matches

can also greatly reduce the number of sets of correspondences which must be

examined. These various extensions to the basic problem will all be addressed

by the methods to'be described in this chapter.

Let us consider for a moment the role of these mechanisms in a fairly dif-

ficult example of the verification problem. Imagine that we are trying to solve

for viewpoint and model parameters in the case of recognizing a human figure.

Although wc know a great deal about the shape and structure of the human

body, none of the dimensions are fixed in magnitude. Not only (1o people vary

in every dimension of size and shape, but there are also numerous joints which

S can be articulated over a wide range of positions. However, many of the dimen-

sions of variation are constrained to fairly narrow absolute or relative limits, and

we have strong expectations for the bilateral symmetry of certain parameters.

0 Civen some tenitative correspondences for say, the head, eyes and nose, we could

use the expectation of bilateral symmetry and the mostly tightly constrained

dimensions of our model to solve for approximate viewpoint. This would then

suggest quite tightly constrained regions in which to search for other features,

such as ears, neck, eyebrows, etc., each of which could be used to derive better

estinmates of viewpoint and the other parameters. An accurate determination for
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viewpoint and position of the head would then constrain the possible locations

of the shoulders and arms, which could be predicted using mechanisms such as

those in ACRONYM [Brooks, 1981]. In this chapter we will confine our atten-

tion to methods for solving for viewpoint and model parameters, making use of

symmetry conditions, and extending the class of features which can be matched.

7.3: Previous research on viewpoint determination

The problem of solving for the six parameters of camera location and orientation

given image locations for known three-dimensional points has received a consid-

erable amount of attention in the field of photogrammetry. In photogrammetry

this problem must be solved in order to use the positions of known landmarks in

an aerial photograph to infer the ground coordinates of other parts of the image.

One analytic solution to this problem-knows as the Church method-solves

first for camera location and then orientation in a two-stage process. However,

the first step of this process involves nonlinear equations which must be solved

by an iterative numerical method. The current preferred method for solving this

problem in the field of photograminetry [Wolf, 1983] is an iterative method which

solves for changes in all parameters simultameously on each iteration, in a similar

manner to the methods which will be presented in this chapter.

[Fischler & Bolles, 1981] present another closed-form solution for this prob-

lem and describe important results on the conditions under which multiple so-

lutions exist for various numbers of correspondences between image and model.

They establish that there are up to four solutions in the case of matching three

points, and that multiple solutions may exist even for four or five matches in

general position. This surprising result means that at least six matches of points

in general position (a total of twelve constraints) is required to assure a unique

solution to the six-parameter problem. The closed-form solution they present

is quite complex and contains a quartic polynomial that presumably must be



116 CHAPTER 7: THE VERIFICATION OF IMAGE INTERPRETATIONS

solved by iterative methods; However, these analytic results are useful on theo-

retical grounds. They may someday be extended to include model parameters,

overdetermined systems, and forms of correspondence other than point-to-point

matches, in which case they could replace the iterative methods used in this

chapter. On the other hand, since the iterative methods are fast and typically

require only two or three iterations, it is still not clear which would be most

efficient.

[Ganapathy, 1984] describes a method for decomposing an already-given

transformation matrix into the underlying camera parameters. Since this chapter

is devoted to the problem of deriving the transformation matrix, Ganapathy's

method could then be used to calculate camera parameters, including scaling

and translation in the inage plane, if these are desired. This is more likely of use

as a camera calibration step than as an internal part of the recognition process.

7.4: Formulation of perspective projection

Before the techniques for calculating the projection parameters can be presented,

it is first necessary to define the methods and notation used for projection in the

forward direction. The projection method presented here is similar to those

which are commonly used for computer graphics. In essence, the technique is

0 to specify a model of the camera being used and its location and orientation

with respect to the three-dimensional model. These parameters are used in a

coordinate transform to compute two-dimensional coordinates for points in the

inage from three-dimensional model coordinates.

The following transform models a standard camera with the lens pointing

along a vector normal to the center of the image plane. The variable f specifies

the distance of the image plane from the projection point, and usually does not

need to be determined from the image when we are using a known camera (for

convenience, we can let f represent the ratio of image distance to the width of

•............................ .................. ......... .-.... .......- -.
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the image plane, which means that image coordinates vary from 0 to 1 across

the image). We must also specify a vector T giving the location of the camera

lens in terms of world coordinates, and a rotation matrix R which depends on

the camera orientation and maps points in world coordinates into points in a

coordinate system with z and y axes parallel to the z and y axes of the camera

fihn plane. Then the transform

(z, Y,z) R(p- T)

first transforms the point p in world coordinates into the point (z, y, z) in camera-

based coordinates, and then creates the perspective projection of this point onto

the image plane, with image coordinates (zIty').

The most difficult aspect of the transformation is representing and work-

ing with the rotation R. Most work in computer graphics chooses to represent

rotations with three-by-three matrices, but this representation is not very good

for our purposes since it uses nine variables to represent something which has

only three underlying parameters. Another possibility is to represent the ro-

tation by giving its axis of rotation plus the angle of rotation about this axis.

In fact, we can let the magnitude of the axis vector represent the magnitude

of the rotation, and we have thus reduced the rotation to the minimal three

parameters. However, the axis-angle representation requires a good deal of com-

putation when we actually wish to rotate a point, and also makes it difficult

to compose rotations. Quaternions [Salamin, 1979] are a representation which

combine the advantages of these other methods and have proved to be the most

useful for our work. They use four variables to represent a rotation in such a

way that composition, normalization, rotation, and creation of a rotation about

an arbitrary axis are all computationally efficient. Although the implementation

•1 -, n'. o m •- - - o
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which will be described uses quaternions, the solution we will give to the view-

point determination problem is independent of any particular representation for

rotations.

7.5: Parameter determination using Newton-Raphson convergence

There are seven underlying parameters in the camera transform presented above:

three parameters give the camera position T, three more are sufficient to spec-

ify the rotation R, and f specifies a property of the camera itself. In ad-

dition, there can be any number of parameters specifying variations in the

model. Our problem is to calculate the values for these parameters which

produce the best fit between an image and the projection of a model. Al-

though we have mentioned work on developing an analytic solution, it seems

that an iterative solution is currently the best alternative in terms of generality

and efficiency. The method we have chosen is Newton-Raphson convergence,

which has a fast quadratic convergence and can be cleanly applied to this prob-

lem. This technique works best when the derivatives are all fairly independent

of one another and are smooth enough over the error range for good conver-

gence.

Unfortunately, the specification of the camera transform given in the pre-

vious section does not have simple derivatives of z' and y' with respect to the

camera transform parameters. Once again, this is a result of the fact that it

is difficult to represent a rotation in terms of its three underlying parameters.

This difficulty can be-eliminated by reparamneterizing the canera trouisform to

express it in terms of parameters that are related to the camera coordinate sys-

tern rather than world coordinates. This new transform must be chosen carefully

from among the various possibilities in order to keep the parameters as indepen-

dent as possible from each other and to keep the derivatives simple. As before,

our new transform specifies how a three-dimensional point p is to be mapped

*5-5 . ... ,. P. - S *, .... -.. - . . . . . .. .- . . .. . , , .... -. . ., .. _ . . .
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onto a point in the image (z', y'):

(z,, )-Z) R(p)

(z ' z)D

= (fzc + Dx, fyc + Dy) where c =

z +D
Here the variables R and f remain the same as in the previous transform, but

the vector T has been replaced by (Dx,Dy,D6), where the two transforms are

equivalent when

_Dx(z + D) Dyz +L1DQ

The new parameterization is much better for our purposes, since Dx and

Dy simply specify the location of the object on the image plane and D& specifies

the distance of the object from the camera. Compare this with the very indirect

specification of these same camera-related variables given by T. However, we

have still solved only half the problem, since the three parameters underlying

the rotation matrix are still difficult to express in a form closely related to the
image. Our solution to this second problem was not to try to somehow express
R in terms of image-centered parameters, but to take the initial specification of

R as given and add to it incremental rotations Obx, Oy and 4 about the z, yt and

z axes of the camera coordinate system. It is easy to compose rotations (and

particularly efficient when the quaternion representation of rotations is used as

mentioned above), -and the incremental rotations are fairly independent of one

another if they are small. The Newton-Raphson method is now carried out by

correcting errors in z' and y' by calculating the optimum correction rotations ix,

Oy and Oz to be made about the image axes. Instead of adding these corrections

to underlying parameters of R we create rotations of the given magnitudes about

their respective coordinate axes and compose these new rotations with R.

A1
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2 VIZ0 -z Y

Oy z 0 -z

-Y X 0

Figure 7-2: Partial derivatives of x, y and z with respect to counterclockwise rotations
0' (in radians) about the coordinate axes.

One major advantage of using the O's as our convergence parameters is that

the derivatives of z, y, and z (and therefore of z' and y') with respect to them

can be expressed in a strikingly simple form. For example, the derivative of z at a

point (x, I,) with respect to a counter-clockwise rotation of Os about the z axis is

simply - y, since (z, y) = (dcos Oz, dsin 0s) and therefore az/8#z = -dsin4s =

-y. The table in Figure 7-2 gives these derivatives for all combinations of values.

Given these derivatives it is straightforward to accomplish our original ob-

jective of calculating the partial derivatives of z' and V' with respect to each of

the original camera paraneters. For example, our transform tells us that:

x' _z + 
z+D

6 50

-- |
8Dx

and
0' f 8Z fz 8Z

z* A4 6+1 0y, (Z + L) 2 g40

- Icz + fc 2 z2  fc(z + Cz2)

and
Z' f Z :

All the other derivatives can be calculated in a similar way, and the table in
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Dx 1 0
S 0 1

A -fc 2 z -fc 2 Y

O'x -_c_2__ -fc(z + cy 2)

Y fc(Z + c: 2 ) fc 2zy

.9 -fcY fcz
f cz Cy

Figure 7-3: Partial derivatives of z' and y' with respect to each of the camera trans-
form parameters.

Figure 7-3 gives the derivatives of z' and y' with respect to each of the seven

parameters of our camera model.

Given these partial derivatives of x' and y', it is easy to perform the conver-

gence. For each point in the model which should match against some correspond-

ing point in the image, we first calculate the camera transform of the model point

and measure the error in its z component when compared to the given image

point. We then create an equation which expresses this error E as the sum of

the products of its partial derivatives times the error correction values:

+ aO + =x A0D' ax'

Using the same point we create a similar equation for its y component, so for each

point correspondence we derive two equations. From three point correspondences

we can derive six equations and produce a complete linear system which can be

solved for all six camera model corrections (we are assuming in this example

that the camera parameter f is either given, or can be approximated by a large

S
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value). After each iteration the A terms should shrink by about one order of

magnitude, and no more than a few iterations should be needed even for high

accuracy.

In most applications of this method we will be given more correspondences

between model and inage than are strictly necessary, and we will want to perform

some kind of best fit. In this case the Gauss least-squares method can easily be

applied. The matrix equation given above can be expressed as

[AJ[A] = [EJ

where [A] is the derivative matrix, [A] is the vector of unknown corrections, and

[E] is the vector of error terms. When this system is overdetermined, we can

perform a least-squares fit of the errors simply by solving

[A]T[AI[A] = [AIT[E] p

where AJTIA] is square and has the correct dimensions for the vector [A].

The convergence properties of this solution are such that there should be

few problems in picking the initial parameter values from which to converge. As

long as the rotation errors Ox, Oy and 0z are not greater than about 45 degrees,

almost any values can be chosen for the other parameters. Usually, the source

of the hypothesized matches carries a rough implication of the orientation of the

object-for example, the search methods described in the previous chapter break

the range or orientations down into smaller sets, so that approximate viewpoint

is known for any final match.

I%1

7.6: Solving for model parameters

We have been describing the process of solving for the parameters which de-

termine iu object's position and orientation with respect to the external world.

An important extension to this method is the ability to use models which are

S

. - .. . .. . . -. , . .. . . . . . . . . . ..... . . . . . . . . . . • ..:Iil.



7.6 Solving for model parameters 123

parameterized internally, and have variable parts or articulations between parts.

We can determine the values of these model parameters in the samne way that we

determine the correct projection parameters. The only requirement is that we be

able to calculate the directional derivatives of points in the model with respect

to the new parameters. For the common types of model parameterization, such

as variable lengths or variable rotations about some axis, these derivatives are

easily determined in closed form. For other forms of parameterization, a Sim-

ple numerical technique which slightly perturbs the parameter and measures the

resulting change in the image can be used to determine the derivative. These

derivatives can then be used in the same way for convergence as were those for

the other parameters. We will now require more given correspondences between

image and model in order to have a fully- determined system, but since each ad-

ditional correspondence between an image point and a model point allows us to

solve for two more unknown variables there should be little difficulty in meeting

this requirement.

The power of this method can be best illustrated by giving an example.

Assume that we want to recognize images of different types of airplanes, and

we do not know in advance which type of airplane will be in a certain image.

In this case our airplane model will have to be quite general and will not be

able to give precise mecasurements for various lengths or such things as the angle

between the wings and the fuselage. However, certain important constraints are A

known, such as the fact that thc airplane will be symmetrical about the fuselage.

This symmetry will be represented to the convergence algorithm by the fact

that the miodel parameters referring to the right wing will be the same as those

referring to the left wing, and any changes in these parameters refer to both2

wings. The convergence algorithm will then determine a camera transform and

wing-fuselage angle which together produce the closest fit of model to image, as in

the examuple in Figure 7-5. Note that there may well be instuificicnt information to

determine either the camera transform or the wing-fuselage angle independently,
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so the ability to solve for both simultaneously using knowledge of the airplane 's

symmetry is crucial to determining a solution.

Another form of constraint arises when we have some prior knowledge about

the location of an object. For example, we may know the position of the ground

plane relative to the camera and we can constrain the airplane to be positioned

on the ground. In this case the airplane has only three degrees of freedom in

its position (its x and y location on the ground and its orientation about the

vertical axis). In this situation we do not need to solve for the full camera

model, since this has already been determined relative to the ground plane.

Instead, we can just solve for the parameters giving the position of the airplane

relative to the ground using the techniques given above. This suggests that a

more uniform description of the viewpoint-determination algorithm would be t

treat the parameters which we have been calling "projection parameters" as just

other kinds of model parameters which give the position of the entire object

relative to camera space.

7.7: Matching lines instead of points

Another important extension to the basic algorithmn is to allow it to use line-

to-line correspondences in addition to point-to-point ones. This is important in

practice because low-level vision routines are relatively good at finding the trans-

verse locations of lines but are much less certain about exactly where the lines

terminate. What we need to do is express our errors in termis of the distance

of onc line from another, rather than in terms of the error in the locations of

points. The solution we have adopted is to measure as our errors the perpendic-

ular distance of each endpoint of the model line from the corresponding line in

the imiage, and to then take the derivatives in terms of this distance rathcr than

in termns of x' or yj'. This the appropriate constraint mathemiatically-that the

model line should lie on top of the image line but that the endpoints need not
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correspond. In order to express the perpendicular distance of a point from a line

it is useful to first express the line as an equation of the following form, in which

m is the slope:

- 1
y=d

In this equation d is the perpendicular distance of the line from the origin. If

we substitute some point (W, y') into the left side of the equation and calculate

the new value of d for this point (call it d'), then the perpendicular distance of

this point from the line is simply d - d'. What is inore, it is easy to calculate

the derivatives of d' for use in the convergence, since the derivatives of d' are

just a linear combination of the derivatives of z' and y' as given in the above

equation, and we already know how to calculate the z' and y' derivatives from the

solution given for using point correspondences. The result is that each line-to-line

correspondence we are given between model and image gives us two equations

for our linear system-the same amount of information that is conveyed by a

point-to-point correspondence.

7.8: Implementation and future research

The full viewpoint determination method and extensions described above have

been implemented in MACLISP on a DEC KL-10 computer. The algorithm has

performed reliably and usually converges to the correct transform and parameter

values to within about I part in 104 in less than 4 iterations. When solving

simultaneously for six or seven paraneters and making use of 10 to 15 matches

in the image, each iteration executes in about 20 milliseconds.

The example shown in Figure 7-4 makes use of models from the ACRONYM

vision system [Brooks, 1981J. Although ACRONYM allows its models to be exten-

sively paramcterized, in this case all parameters of the model arc fixed in value

to represent ,n LI011 passenger plane. Correspondences are specified between
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2

3 4

Figure 7-4: The three-dimensional model of the airplane is from the ACRONYM

* vision system. The initial estimate of position and orientation is shown in the box
at the upper left, and the program is also given correspondences between edges in the
model and the displayed two-dimensional lines. The first three iterations of convergence
towards a least-squares solution of viewpoint are shown in the other boxes. Note that
endpoints of image lines are not forced to correspond with endpoints in the model.

I
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a.

Figure 7-5: The simple airplane model in this example is paranneterized so that the
wings can sweep back and forth while maintaining the bilateral symnetry of the model.

The algorithm can solve for the wing sweep simuiltancously with solving for viewpoint,

as shown in the three iterations of the convergence.

some two-dimensional lines in the image plane and three-dimensional edges of

the model, and rough initial estinates of the camera parameters are given. As

shown, the algorithm then converges to the best least-squares estimate of view-

point within about three iterations. Note that the endpoints of the image lines

are not forced to match the endpoints of the model lines, since the algorithm

only attempts to minimize the perpendicular distance between the edges. The

standard deviation of the errors remaining after the least-squares process is an
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indication of the consistency and therefore the correctness of the original match.

More significantly, the model now makes many predictions for further edges at

specific locations in the image, which can be searched for in order to perform

further verification or increase the accuracy of the viewpoint determination.

Figure 7-5 is an example of solving for model parameters simultaneously

with viewpoint. The airplane model is parameterized so that the wings can be

swept back and forth, and the same parameter is used for both wings so that

the model is constrained to be symmetric. There is not enough information in

the given correspondences to solve for either viewpoint or the wing sweep in-

dependently, so it is only the capability for simultaneous solution that enables

the problem to be solved. This is a common example of the way in which view-

point and model parameters can be confounded in the spatial information of an

image.

This algorithm has also recently been applied in a successful commercial

vision system [Goad, 1983]. After some initial edge matches have been found by

a fast search process, the viewpoint- determination is used for final verification

and dectermination of precise position.

There mre a ntumber of other potentially useful extensions to this algorithm.

After producing the least-squares fit for overdetermined data, it would be use-

ful if the algorithm could then use the extra information to throw out those

points which are least consistent with the others. The easiest method would

be to discard points or lines with the highest residual errors and to reconverge

on the remaining ones. This procedure can fail when there mre gross errors,

in which case the RANSAC method [Fischlcr & B~olles, 1981] may be the most

appropriate. However, for the matching techniques described in the previous

chapter, the errors in correspondence may be small enough to make this unnec-

essary.

There is also further work to be done at the level of integrating this mnethod

with other components of a vision system. Given a model, the various unknown
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parameters, and a set of correspondences between model and inage features,

there could be a supervisory procedure which selects which parameters to solve

for first. Also, given a least-squares solution, it would be useful to carry the

resulting error estimates back to the matching components for use in further

predictions. There is much further work to be done on the remaining aspects

of verification, such as using the region correspondences resulting from spatial

matching to verify color, texture or shading properties. However, the methods

which have been presented in this chapter are more than sufficient for a wide

class of common vision problems.

4

4

4



Chapter 8

CONCLUSIONS

We are now in a position to look back over the range of material in this disser-

tation and evaluate its contributions to computer vision research. The direction

which has been taken is substantially different from the mainstream of current

computer vision research. Our goal at the outset was to develop methods for

visual recognition based upon the use of spatial information in the image. The

direct formation of depth information from the image has been de-emphasiSed,

and a process of perceptual organization has taken its place as a primary bottom-

up descriptive process. The problem of visual recognition has been cast as essen-

tially a problem of search, in which the major research effort needs to be devoted

to reducing the size of the search space at each level of the visual hierarchy.

A consequence of this search-based methodology is that intermediate levels of

description are not required to be highly reliable; rather, it is their average sta-

tistical performance in distinguishing useful alternatives which is of importance A

for reducing the search space. This naturally leads to methods for evaluating

relations which are probabilistic in nature rather than being based upon binary

decisions.

Some parts of this thesis have been developed to a much greater extent

than others. Fortunately, the most crucial component upon which the search-

based methodology relies-the ability to make a reliable final judgment regarding

the correctness of an interpretation-is one of the most completely developed

components. The method presented in Chapter 7 for using a few initial matches
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to determine spatial correspondence is fast, reliable, and operates to the limits

of accuracy in the data. It also provides a basis for examining correspondence of

region-based measures, such as color, texture or shading. Although the method

works for parameterized models of an object, further work would be required to

apply the method to objects with poorly defined structure.

The actual enumeration of the full search space can be decomposed into

two components: searching over the set of possible viewpoints for an object and

searching over the set of possible objects. The problem of searching over the range

of viewpoints has already been solved and implemented in a working system as

described in [Goad, 1983]. A preliminary solution is proposed in Chapter 6

for the problem of searching over the set of known objects. This method has

the important capability of combining probabilistic information from multiple

sources to speed the search process. However, until it is more fully developed

and tested, the methbod must be considered somewhat speculative.

The remainder of this thesis has been devoted to the use of perceptual or-

* - ganization as a bottom-up process for structuring the spatial information in an

image, with the end goal of using these structures to reduce the size of the search

space during recognition. This objective lcd to the requirement that algorithms

for perceptual organization be designed to distinguish significant structural re-

lations as reliably as possible from those which arise by accident. Chapter 3

presented a number of important criteria derived from this requirement which

must be taken into account in the design of any algorithms for perceptual or-

ganization. These criteria provide a unified basis for the problem of perceptual

* organization, even though there may be a large collection of separate algorithms

for carrying out the component processes. The component of perceptual orga-

nization which was chosen for the most extensive investigation was the problem

of scgmenting two-dimensional image curves. This is an important problem for

mnany other aspects of organization, and the algoritbimi which was developed has

the capability of detecting significant structure wherever it occurs at multiple
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scales of resolution. Another component which was investigated in some detail

was the process of inferring curve categorizations and three-dimensional relations

from perceptual groupings. However, the .topic of perceptual organization covers

a very large number of capabilities, and these components must be considered as

only first steps on a long pathway.

A major overall goal of this dissertation has been to provide support for

a computational model of visual recognition based upon spatial correspondence

and perceptual organization. The full development of this model would require

the simultaneous solution of a number of difficult problems from different areas

of research. However, enough has been presented to provide a strong degree of

support for this direction of research and to demonstrate the current practicality

of systems based on these methods.

8.1: Directions for future development

The search-based methodology for recognition provides an attractive route for

the incremental development of computer vision systems with improved capa-

bilities. It is possible right now to build model-based vision systems which can

operate well in domains with small numbers of well-specified objects. We can

expect improved performance from further development of any of the underlying

components of this methodology.

As new methods of perceptual organization are developed, we can expect

significant decreases in the size of this search space. The extent of this decrease

provides a well-specified criterion for evaluating the success of proposed improve-

ments in algorithms for perceptual organization. We can hope that the many

components of perceptual organization will yield to common techniques and that

it is unnecessary to explore separate algorithms for each form of grouping or de-

scription. The goal of identifying non-accidentalness provides a unifying objective

for these many processes. lowever, current neurophysiological evidence regard-

ing the human visual system seems to indicate that there are many different

k,..
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modules for carrying out the different descriptive processes, so there may be a

large number of separate problems which must be solved. Fortunately, the highly

redundant and overconstrained nature of visual information means that useful

performance can be achieved long before all these problems are solved.

Another topic for further research is the integration of depth information

with the two-dimensional perceptual grouping operations. We have paid little

attention to this topic, possibly in an overreaction to the previous emphasis

on the direct derivation of depth information as a prerequisite to recognition.

Clearly, motion and stereo correspondence provide a useful source of quantita-

tive constraints which can be used to limit the search required for recognition.

They are particularly important when the recognition process breaks down, as

when encountering a completely unfamiliar object for the first time. Perceptual

organization can operate as well in three dimensions as it can in two, and this can

be an important aspect of learning the most natural description for a new object.

In the reverse direction, perceptual groupings and recognition can be important

comnponents for establishing correspondence for motion and stereo. To the extent

that perceptual groupings are non-accidental in origin and invariant with respect

to viewpoint, we can expect thein to be present in a sequence of different views

of a scene. These groupings provide far less aunbiguotis descriptions for matching

than do lower-level image features.

The methods for model-based verification described in Chapter 7 could be

extended in a number of directions. Once the determination of spatial corre-

spondence has been performed, it is possible to examine correspondence between

region-based properties such as color, shading, or texture. Methods need to

be developed for measuring and comparing each of these properties. Another

direction for the development of verification is to allow greater variation in ob-

ject models. The simple forms of continuous parameterization that have been

described are only a start in this direction. It is necessary to model not only in-

dividual objects but also the typical relations between objects that are expected
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in a coherent scene. New forms of object modeling must be developed as well

as ways to carry out the search and verification processes with these types of

models.

One of the most exciting areas for further research is the development of

evidential reasoning and related methods for automatically learning associations

between evidence and interpretations. These methods show promise for carrying

out the longstanding objective of combining many sources of information in a

flexible way to achieve recognition. Just as important is the potential for build-

ing learning systems which improve their performance as they accumulate visual

experience. The use of evidential reasoning would greatly facilitate the incremen-

tal incorporation of new research results in image description, object modeling,

and verification.

Finally, there is much room for development in the areas of improved corn-

putational hardware and methods for handling large quantities of information.

It is often remarked that vision requires a large amount of computational power.

It is miuch less common to note that vision also places extreme demands on the

amnount of knowledge that a system needs to retain and access. Human memn-

ory continucs to accumulate new inforination regardling tile visual appearance of

objects and their arrangemtent in scenes throughout decaules of visual exposure

during almost every waking mioment. Experiments with visual memory indicate

that the human brain probably contains more knowledge about visual appearance

than about any other single topic. One of the greatest challenges of computer

vision research may be to develop ways to accumulate and make efficient use of

this vast quantity of knowledge.6
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