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THE BAYESTAN INVENTORY PROBLEM

Chapter 1. INTRODUCTION

1.1 Background,

Our objective is to improve the management of repair parts for newly
fielded weapon systems. The initial procurement of each part is made & lead
time before the system is fielded, and is based on an engineering estimate
of the mean part demaud rate per fielded system. There may be additional
procurements before the fielding date. Once the system is fielded, demand
exper ience accrues and is used to update the forecast of the demand rate,
improving its accuracy.

Inventories are managed under a periodic review, (g,S) policy:
when assets fall to s, order up to S. The period 1s as small as one week.
The issue of concern is how the expected improvement in accuracy of the demand
forecast should affect the values of the inventory control parameters.

Formally, we are seeking to determine optimum (s,S) parameters
- they change each period =- when there is Bayesian updating, periodic review
and a dynamic mean with demand randomly distributed about the mean. It has
long been known that this problem can be solved by dynamic programming, Cf.
[11]. However, in the general case s multi-dimensional state vector is required,
and the dynamic programming formulation has not been pursued. Thus Kaplan
and Kruse unsuccessfully solicited interest in designing a computationally
feasible algorithm [9]. 1In fact we have not even found useful qualitative
conclusions about the Bayesian solution in the general case.

Instead, the literature has focused on the specific situatiom in
vhich there is no cost to order so that the purchase price is simply (Unit
Price) x (amount ordered). In this c¢ :se several interesting results have
been obtained:

" is a sufficient

a. Optimum solutions are well behaved in that if "t
statistic for the demand experienced to date, the optimum policy is to order
each period up to the optimum S value for that period, and for & given period
S is a non-decreasing function of t".

b. If the distribution of demand, conditional on "t", has certain
properties, the optimum solution may be found by solving a dynamic program

with only a single dimensional state vector. For exsmple, if the conditional
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distribution is Weibull:

f(x;w) = w'k'(xw)k’l expi—xw]k x> o
and

the prior on w given "

t" is Gamma, then only & single dimensional state vector
is required.

These results were first obtained by Scarf [11,12] and are reviewed
and extended by Azoury [1].

Efforts have also been made to determine how Bayesian solutions
relate to non-Bayesian solutions. Thus, Scarf looked at how the Bayes solution
asymptotically approached the non-Bayes solution with increasing experience,
(again with no cost to order), and found that the Bayes S values could approach
from above or below the non-Bayes S values. However, Azoury and Miller do
show, for an n period model for repairable items, that the Bayes S is always
less than or equal to the non-Bayes S [2]. Again, they assume no cost to
order,

The purpose of this research is to explore the feasibility of the
dynaulc programming formulation as a basis for a computer algorithm, and
to obtain some insight into the impact and significance of uncertainty about

the demand rate.
1.2 Model.

A difficulty arose in formulating a mudel for newly fielded weapon sys-
tems,i,e. for the "provisioning" phase of repair part support, in that no
rigorous model for managing inventories after provisioning, when the demand
forecast stops 1improving, really exists! Few if any real world inventory
systems forecast demand as the average of all the historical demand ever
received; rather, some form of moving average, exponential smoothing or related
technique 1is used. Thus, the forecast cannot even asymptotically approach
the true wmean so long as demand variability does not diminish; yet, there
i8 no practical model we c¢re familiar with which rigorously deals with the
fact that the demand forecast 18 neithar the true mean nor approaches it.
Students at the University of North Carolina under Harvey Wagner have been
incerested in the problem and Ehrhardt has developed a "power" approximation
which 1s more robust to the use of estimated means and variances than the
more rigorous computations which assume the mean and variance are known
[5]. Some promising recent work of Miller [10] attacks a related problem

theoretically - he requires the forecast, derived by exponential .moothing,
6



to be the true mean, but allows this mean to change stochastically each period.

Developing a rigorous post-provisioning model would be a major
undertaking in its own right. As an alternative, we assume that at some
future period, period "M", updating of the inventory control parameters ceases.
While unrealistic, th}s assumption captures fhe reality that even after provi-
sioning, the (s,S) parameters will not reflect knowledge of the true mean.

The dynamic programming formulation can quite easily handle non-sta-
tionarities; these may be due to changes in cost and related parameters such
as an obsolescence rate, which™is-high only until weapon design stabilizes,
or non-stationarity may reflect changes in demand per period as the number
of fielded weapon systems increases. The heuristic used to model expected
costs after period "M" cannot handle these dynamic changes and is therefore
limiting. We will discuss later how this might be overcome under the "alterna-
tive formulation'" of the dynamic programming approach.

The standard dynamic programming formulation limits the choice
of demand distributions to those for which a sufficient statistic exists
for the mean. Moreover, practicality pretty much limits choice of the prior
to the conjugate distribution (Appendix A reviews sufficient statistics and
conjugate distributions). We discuss an alternative formulation which allows
any demand distribution but has these disadvantages: the prior must be expressed
as a discrete histogram1 and it is more time consuming to rum on a computer.

The cost structure allowed in the dynamic programming formulation
is quite general, but the heuristic used to model costs after period "M"
does require a discount rate. For readers unfamiliar with the discount rate
concept and its application to treatment of interest ratec and obsolescence
the paper on multi-vear holding costs is recommended [6]. In brief, use
of a discount rate is crucial to cost analysis when inventories may be held
for many years, as is possible when buys are made based on forecasts which
may be much too high. 1T1f 1 is the interest rate, per period, and 9 is the
probability of obsolescence in a period, the one period discount is (1-8)/(1+i),
where 1/(1+i) 1is the present value and (1-8) is the probability the item

can incur demand (it is not obsolete).

rd
1By this we mean a discrete distribution with a limited number of points with
positive probability, and in which it may not be possible to express the
probabilities other thar by enumeration.

7



)

-,

1.3 Organization of Report.

Both the "standard" dynamic programming lormulation based on a sufficient
statistic and the alternative {ormulation bLased on a histogram prior are
presented. Issues in moving from formulation to algorithm are discussed.
Starting the dynamlic programming recursion I1s the most Jdifficult 1ssue and
receives an exteusive treatment.

An algorithn based on the standard forwulation was programmed and
applied to a simple experimental design. Resultls are presented and conclusions

are drawn.
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Chapter 2, DYNAMIC PROGRAMMING FORMULATION
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2.1 Recursive Equation,

A perigdic review inventory policy is assumed. The sequence of events

in a period is assumed to be: receive demand, (ebiting wB8ets accordingly, .

record holding or backorder costs based on current on hand; receive delivery

of 1nventory ordered a lead time (L) ago; order new inventory if warranted.

Yy
-

Whiie the assumed sequence of events within 8 period is arbitrary, the formulation

could be adjusted to accormodate any other assumed sequence. -

[T

Inventory ordered at period n does not affect on hand, and therefore

! backorder and holding costs in the interval [u,n+L}), Therefore, in developinyg

- mul .

an inventory policy for perisd n, we do not weed to include those costs in
our cost expression,

Define Cn(x,tn) as the oxpected value of the present value of al)
future costs st period n, omitting backorder and holding costs in {n,n+L}.

x" arc assets just before ordering, and demand experience is summarized
1

by the sufficient statistic "t". Implicit is the use of a particular inventory

policy for deciding what to order in period n and thereafter; e.g. the policy

: mAy be to minimilze costs, )

Then, %

Calx,ty) = £10y=x) + £o(yle ) + a(zicn+1[y—d,f3(cn,d)] AT '

(2.1)

N y = fs(x,tn) .

’ vhere: '
y: asgsets after ordering in period n.

£,(z): cost of ordering z units of inventory. ‘

e fz(yitn): expected value of the present value of backorders and holding

’ costs 1n peried (n+l+1) given inventory at the end of the current period '

of y, and future demand whose distribution 1s conditional on t,» as well

as uvu the original prior on the demand distribution. :

. a: the discount rate which accounts for the time value of roney and

the possibility of obsolescence. !

d: demand 1n period n+l.

f4(t ,d): the function for recomputing the sufficient statistic after L

. one additional period has eclapscd and demand of d has occurred. Typically, |

but not always, l:n is the 2 dimeusional vector (n, sum of demands to date)

9
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80 13(tn.d) = t. '+ the vector (1,d). 1If demand is uniform, t, would be (n,
maximum demand in any period experienced)|4]).

f4(d|tn)' probability function for demand given t_

fo(x;t ): A mapping from (x,t; ) to y reflecting the inventory policy,
where y may equal x, If the objective ix solely to minimize costs, then
y is found as the value which when substituted into the RHS (right hand side)
of equation (2,1) minimizes Cn(x,tn).

Note that to handle non-stationarities, a subscript of n would
be sppended to f;, £1. @, £3, f, where f1n would mean ordering cost parameters
are !ime dependeut, f2n would veflect time dependency of backorder, holding
or discount parameters, and f, and f, would reflect the need to incorporate
the number of systems fieided in every period. For the first L periods before

any system ia fielded, fé(d|tn) is always G for d > O.

2.2 Use of Recursive Equation in an Algorithm,

The major problem is how to get C . (*,") for some n in order to start
the iterative process by which Cn('.') can eventually be determined. Period
zero represents the present, at ‘thich a decision must be made. As discussed
in the introduction, our efforts are devoted to determiring CM(','), M being
when updating of the inventory contro! parameters ceases, An entire sectiou
will be devoted to this,

The next problem 1is that there 18 no natural upper bound on the
demand which may be received, so some kind of truncation is necesrary. Truncation
ariscs 1in three distinct contexts:

a. Truncation on demand received in period n + 1 (the d values
in the recursive equation).

b. Truncation on total demand in the next (L+l) periode, used
in getting f,(y|t ).

c. Truncaticn on the valves of t . 1In particular, where t,  is

0

the vector (n,Dn), D_being total experienced demand in the first n periods,

n
we are referring to truncation oa possible values of D..
The single period (one week) demand values were truncated at a
cunulative probability of 1 - 10-4; 1.e., the value k was found such that:
k -4
é-o £,(d[t ) >1 - 10

10
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and then f“(kltn) was reset:

k
f(kle ) «1- T £(dlt)
4 n d=0 4 n )
Lead time demand was truncsted at a cumulative probability of 1 - 10 .
These truncation values were subjectively chosen,
Now let t:ax be the maximum value of the sufficient statistic

"t" considered in period n and let d:i; be the single period demand maximum

in period n+l, based on fa(dlt:ax). It would be natural to set t::i = tgax
plus the vector (l,d::’lt ).m;lovever, based on a kind of bootstrap mechanism
at work, as n increased, t, would tend to increase out of control, with
the state space, the values of (x,¢ ) to be evaluated, getting out of hand.
Moreover, the probability of values as large as such a t:ax actually occurring
on a real item would get increasingly small as n increased.

Therefore, let PMEqu and PSDEVn be the mean and standard deviation
of demand over n periods calculated using the original prior, before any
updating. Set: Dax

- 4 .
0 (n, PMEANn 4 PSDEVn]

vhere the value 4 was chosen after some experimentation on the sensitivity
of results to this value (see Appendix C). Truncate single period demand
as pecessary 80 as not to violate the upper bound on 1::; (the truncation
of lead time demand is not affected.) We are excluding values of tzax which
can occur only with very small probability, although 1f our initial knowledge
about the true mean is poor, PSDEVn will be large aund tzax will be large. Also,
t:‘x does increase with n.

One might ask how we limit the values of assets, x, to consider.
The maxiwmum x would be the largest order up to value, S, for any gax . The
current computer program makes a very conservative guess on what this will
be, and issues a warning if this guess proves to be too low.

The remeining issue relating to use of the recursion equatiomn is
vhether tv assume any particular form for the inventory policy, It is perfectly
fiasible to find the optimum y for each (x.g\) vector, which we will label
y (xvtn). Such answers, however, are not nearly as convenient to work with
as the optimum values for an (s,S) policy since potentially we need to record
a different y* for each (x,tn) whereas the (s,5) parameters, by definition,

ste independent of x.

11
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An interesting question is just what can we say theoretically about
the y* (x,tn). We assume order cost is of the form Cp + (UP)(y-x) and is
zero for y = x,.

Clain

1f x < y (o t )

x <y (x t )
Then vy (x t) =y (o ty)
Interpretation

The optimum order-up-to level when assets are 0, y*(o,tn),
will*also be the optimum order-up-to level when assets are x, for all
x ¢y (o,t ) at which it is worthwhile to place an order.

Proof

Let V, (x;y,t,) be the value of C, (x;t, ) if the amount y-x
is ordered in period n. For convenience drop the t, argument.

By inspection of the recursion equation, (2.1), V (x13Y) -
Vn(xz,y) + (up)(x ¥ ) for all values of X0 X, such that y > x,, x,. Hence

(A [o,y (x)) - v (x, y (x)l = (UP)(x)

v [o,y*(o)l - v [x, y (o)) = (UR)(x)
Also, by definition of y (o)

Vn[o,y (x)) - Vn[o,y*(o)l >0
Adding the second and third equation,

v lo,y () = V(x,y"(0)] 2 (UP)(x)
Subtracting this from the first equationm,

Vn[x.y*(o)] - Vn[x,y*(x)l <0
Q.E.D,

The methodology for determining (s,S) values in the algorithm is

therefore:
* *

a. Find y (o,t;) and set S =y (o,:n)

b. Find the smallest x such that y (x,t ) = x and set
8 x -1, It is easy to check that y*(s,tn) = S and thus 8 < S,
Since it has never been shown an (8,5) policy is optimal, there is no assurance
there is not some x greater than the 5 identified for which it would decrease
costs to order.
2.3 Algernative Forpujation.

If the prior is expressed in the form of a histogram it is always possible

to use dynamic programming as an evaluator of some given policy. 1If, in

12
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addition, we restrict the set of policies to those which are based on the
total demand experienced to daste, and do not consider the period to period
pattern of demand, then dynamic programming can be used to find the optimum
policy or optimum (8,8) policy. The technique does not depend on any assumption
about what the demand distribution is, but has computational disadvantages
compared to the sufficient statistic approach.

We will first show how to write the recursion equation, (2.1),
in a different way, one which is more readily gemeralized to our current
assumptions. Let C7 (y;t ) - note the prime - represent expected future
discounted costs -then assets are y after the order is placed in period n.
From the definition of fS(x'Hm) if assets after ordering in period n are
y, then assets after ordering in period n + 1, given that demand of d occurs,
are:

foly-d, f4(t ,d)]

Thus,
C;‘ (y;tn) = f2(y|tn) + a 3 f“(dltn)(Expression) (2.2)

Expression = fl{fs[y—d,f3 (tn,d)] - (y=d)}

+Ch (fs[y-d, f3[tn,d)]; f3(tn,d)]}

To generalize this to a histogram prior, let 1 be the set of
possible mean demand rates; let f6(1;tn) be the probability of 1 after observ-
ing tn where t is the 2-dimensional vector (n, total demand); and let C'(y;tn,i)
be the cost conditional on what the true mean demand rate is. It is C'(y;tn.i)
we calculate recursively:

C'n(y;tn,i) = ffy;i) + 8l fa(d;i)(Expression) (2.3)

d
Expression = f,{fgly-d,f,(t ,d)] - (y-d))
+C {fsly—d, f3(tn.d)]; f3(tn,d), i}

For purposes of finding (5,S) values, we set:
c, (y;t“) = I f6(1;tn) ¢, (y;tn,x)
i
and use the C~ (y;tn);e.g. we set S to y which minimizes (UP)(y) +
c; (yit)
The histogram form of the recursion has the obvious computational

disadvantage of requiring values of C; for each i. An important advantage

13
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is that the number of probability distributions which must be calculated

depends on the number of histogram points rather than on the number of values

of t .
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Chapter 3. STARTING THE RECURSION

We wish to determine values of CM(x,tM) over the range of (x,gp'

assuming that the (s,S) values are not updated after period M.

Our approach relies on being sble to approximate the priore at
period M (there is a different prior for each value of ty ) by histograus.
Other simplifications were made which while not essential, simplified coding
and reduced running times. Before reviewing these, let us make several obser-
vations in support of the belief that the details of the approach are not
critical.

a. The primary purpose of this research or any implemented algorithm
would be to improve the decisions made before or around the time of fielding
when uncertainty is greatest. Intuitively, because of discouﬁting, the impact
of the values Cy(*, ) on the values C,(*s 9y M > n, must decrease as the
time between M and n increases.

b. The decisions made at period n do not depend on the absolute
values of Cp(-+,+), but the relative values, i.e., Cn(O,tn) - Cn(x,gl), and
therefore depend only on the relative costs at period M. Inspection of the
recursion equation shows that the deciesse in cost for x assets, relative
to 0 assets, for x < s, is always (up)(x).

c¢. The impact of non-optimal (8,5) values at period M on the relative
costs associated with different asset levels at period M is likely to be
a second order effect. The primary effect would e to overstate somewhat
the costs which must be incurred for all values of starting assets, and even
then it is frequently found in inventory modelling that costs are flat in
the region of optimality.

3.1 Simplification.

We calculate the reorder quantity (S mious s) without regard to its
impact on backorders, then calculate s, rather than jointly optimizing s,S.
We also assume that when an order is placed, assets are exactly "s"; and
we also assume when it is convenient to do so, that backorder and holding
costs are recorded whenever the asset level changes, rather than only at
the end of the period. With a review period of only one week, these simplifi-
cations are not unreasonable, but the assumption that we can order at exactly
"s" would be inadequate for items characterized by low frequency of demand,

but large requisition sizes [7].
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3.3

Notation,

L(s,8;i): expected lifetime costs including backorder costs when the
mean demsnd rate is i, an (s,S) policy is followed and assets
of s are initially on hand and zero are due~in.

A}

B(x;p,1):/ expected backorder and holding costs, respectively

B(x;p,i): ) over the next p periods when the mean demand rate is i, initial

on hand is x, and there will be no additional stock arriving

during the p periods,

fs(i.tn): as esrlier, probability the true demand rate is i; the ty
subscript will be dropped in this section.

£,(p;x,1): probability mass function on the number of periods to accumulate

demand > x units, given a mean demand rate of i,

G(x;1): %apf7(p;x,i) where a is the discount rate
Cp: fixed cost to order
qQ: the order quantity, S minus s

Cost(Q;i): expected lifetime ordering and holding costs, but not backorder
coets, for initial assets of O, given i, and assuming Q is
ordered whenever assets are zero.

D mingtion S-a):

Minimize T f6(i) Cost (Q;1)
Q

Cost (Q;4) = Cp + (up) (Q) + [H(Q;~,1) - H(Q;L,1)]
+ G(Q;1) Cost (Q;1)

In the expression for holding cost, H(Q;~,i) is total lifetime

holding cost on the Q units assuming instantaneous delivery, from which costs

over the first L periods, H(Q;L,i) are subtracted, since the Q units are

still on order then.

6(Q;i) is the expected value of the present value of spending one

dollar, given that the doilar will be spent after Q units are demanded.

If the item survives that 1long, i.e., it does not become obsolete before

then, expected costs from that point on are Cost(Q;i) again,
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3.4 Determingtion of s.

The cost of a policy cannot be defined independently of the current
asset position. The s chosen is the smallest s such that it is as good or
better to use an (s,8+Q) policy rather than an (s+l, s+Q+l) policy, given
assets of s+l, It is assumed for convenience all s+1 assets are on hand,
but the cost difference between any two policies is independent of the status
of assets — on hand or on order ~ since policy decisions cannot affect backorder
or holding costs for a leasd time.

We wish to find the lowest s for which 4(s) is > o, where:

A(s) = i fe(i) [Ll(i) - Lz(i)]
Ll(i) = L(s+l, sHQ+1;1) - H(s+1l;»,1)
Lz(i) = 6(1;1) [L(s,s™Q;1) - H(s;=,1)])

Both Ll(i) and Lz(i) exclude holding coust on the initial s+l assets. In
the case of Lz(i), holding cost until the first demand - at which time assets
fall to 5 - are never charged, so only the remaining costs need to be netted
out. The use of G(l;1) discounts back to the initial time vhep ascets were
(s+1).

Computation of L(s,s+Q,i).

In the computation of the Cost(Q;i) we saw a renewal process at
work in that if the item survived, free of obsolescence, until Q demands
were incurred, expected costs from that point equalled expected costs from
the original starting point, We can take advantage of the same logic if
we exclude holding cost on the initial s assets, defining:

L°(s,s4Q;1) = L(s,8+Q;i) - H(s;=,1)

Just as we will associate with each order of Q the incremental
holding cosets caused by ordering those Q unite, we can associate the incremental
backorder cost caused by backorders which will be eliminated by these Q unite;
every backorder is eventually eliminated by a due-in, so if we associate
the btackorder and the due-ir which elimiunates it, we will accoupt for every

backorder, but never double count.
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Thus:

L'(s,84Q;1) = Cp + (up) Q + H (Q) + B (Q) + G (Q;1) L'(s,84Q;1)

where H(Q) is the incremental holding cost caused by ordering the Q units
and B(Q) is a backorder computation to be described.

Note first that

H(Q) = [H(s+Q;w,1) - H(s;=,1)] - [H(s+Q;L,i) - H(s;L,1)]

where the first term in brackets is the added cost assuming instantaneous
delivery, and the second term corrects for the lead time,
Also:

B(Q) ® B(B;Lni) - B(8+Q;L’1)

We are netting out those backorders, the B(s+Q;L,1), which would occur even
if all Q units were delivered instantaneously. These backorders will be
eliminated by some subsequent orders and will be associated with them.

Summarizing

L(s,s+Q;1) = L'(s,sHQ;1) + H(8;w,1)

L'(s,s4Q;1) = [Cp + (up) Q + H (Q + B (Q])/[1 - 6(Q;1)]
H(Q) = [H(sHQ;w,1) - H(8;«,1)] - [H(s+Q;L,1) - H(s;L,1)]
B(Q) = B(s;L,1) - B(s+Q;L,1)

3.5 Computation of C Sx,tMl.

Given the form of the recursion equation, (2.1), all backorder and holding
costs in [M, M+L] are accounted for by use of the fz(yltn) in periods (M-L)
thru (M-1). Therefore, the CM(x’tM) represent the expected value of all
costs after period M, net of backorder and holding costs ir [M+l, M+L].
The computation makes uses of the L(s,S ;i) with appropriate netting out.
It is assumed the x assets referenced by (IM(x,tM) are all on hand, but this
is for convenience only since it is only holding and backorder costs in [M,M+L]

which are affected by the status of the x units, and the final answer does

not reflect these costs.
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Claim.

Cylsity) = Cylsity) + lup) (s-x) for x < s (3.5a)

Cylsity) = T f. (i) {L(s,5:1) - B(s;L,1) - H(s;L, 1)} (3.5b)
i

CH(x;tN) =1 16(i;t\1) [Tl(i) + '1‘2(1)] for x > s (3.5¢)
. )

T,(1) = G(x-s31) [L(8,S;1) - H(s;=,1)]

Tz(i) = H(x;w’i) - H(X;Lni) - B(X;Lli)

Explanation. The equations follow almost entirely from the same
arguments we have been making throughout this and earlier sections. The
logic underlying (a) was used in the proof of the lemma on the properties
of the optimum inventory contro! parameters. Equation (b) is a special case
of (¢).

Tl (i) represents the expected value of the present value of all
future costs, net of all holding costs on the init:al x units. The approach
to holding cost 1is supported by the same logic uvaderlying the derivation
of Lz(i) in the sub-section on determination of s. Since the X units are
initially on hand, no backorders can occur in the time interval until assets
fall to s, so 'Il(i) includes all backorder costs. L(s,S;1) discounts them
back to the time when assets first fall to s, and G(x-s;1) discounts them
further back to period M.

T, {i) adds back in the holding coet on the initial assets which
is incurred after period M+L, and subtracts out backorders in {M,M+L}.

3.6 More General Formulations.

Suppose that updating of the demand forecast ceases after period
M, but non-stationarity persists in that additiconal weapon systems are fielded.
We may identify a vperiod M,, M, > M, aftex which we are willing
to assume conditions stabilize. If we checose M, large enough, 1t will make
little difference what we assume, because discounting will minimize the impact
on our current decisious, and w2 wa) use a very crude 3cheme for evaluating

the worth of azsets at r~12 relative to 0 assets.
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Under the histogram approach for periods M, > n > M, referring to

equation (2.3),

C,‘, (yityel) = £,(yi1) + & : £,(d;1) (Expression)

= e - - ' - .
Expression fl[fs(; d,tM) (y=d)] + cn+1[f5(y d,tM),tM,i]

Note that in accordance with our assumption the sufficilent statistic 1s mnot
updated. Because of this it 1s more feasible to extend the dynamic programming

to the additional 1interval [M'H2]’ If ty must “e updated, L:Ax

will continue
to srow as n increases past M (recall discussions on truncation) and the
number of states which must be evaluated will continue to grow, although
interpolation may be possible (see Appendix C).

Under the sufficient statistic approach (equation 2.2), we must
write:

Chp ityet ) = £o(yst ) + a r f,(d|t ) (Expression)

E = - - - \J - - .
xpression fl[fs(y d.tM) y-d] + Cn+l [fs(y d,tM),tM,tn]

In particular, the sufficient statistic naust be updated since it determines
the distribution of future demands. If we set fA(dltn) = fq(d‘tm) for all
n > M, we are ignoring the correlation between demand in successive periods,

i.e., 1if dewand in M+l is large, this makes 1t more likely demand in M+2

will be large since it 1s more likely the true mean 1s higher than the mean

imvlied by fa(d|LM.).




Chapter 4. MODEL RESULTS

4.1 Inputs and Assumptions.

The model was run for a number of different examples to get a feel for
how uncertainty affects the optimum (s,S) values, and what the cost implications
of ignoring uncertainty are.

All examples were set in the provisioning context in that there
was no demand for the first lead time before fielding. To simplify the inter-
pretation, it was assumed that full deployment occurred at the fielding date,
so that once demand bé;an it occurred at a constant mean rate per period.
The prior on the mean was assumed to be Gamma, and the distribution of demand
was assumed to be Poisson. The mathematics for these specific distributions,
including how to update the prior when deployment 1is increasing, is given
in Appendix B.

Other assumptions were that the review period was one week and
that updating of the (s,5) values ceased after one year. In all cases the
cost to procure was $450 and the discount rate was 80 percent for one year
and therefore .801/52for one week. No holding cost was charged since estimates
for US Army wholesale inventories are only 3%, and ignoring holding costs
simplified the coding of the algorithm. The discount rate reflects interest
and obsolescence costs which are significant.

A simple experimental design was used. A base case was defined

as:
Procurement Lead Time in Weeks (L) 52.
Unit Price (UP): $1400.
Average Yearly Demand, i.e. Mean of the Prior (AYD) 10.

Each of these variables was then varied, one at a time, to two other settings:
L of 26 or 78, UP of $350 or $5600, AYD of 5 or 20. For example, one case
run was for L = 26, UP = 1400, AYD = 10.

Each case was run for three uncertainty levels as measured by the
coefficient of variation (Y): the ratio of the standard deviation of the
prior to its mean. This ratio is independent of the period of time to which
the prior 1is applied, whether it be the prior on mean demand for one week
or one year (Appendix B). Uncertainty settings used were 10-.6 (essentially
no uncertainty), 0.5 and 1.0.

Each case was also run for at least two different levels of backorder

cost. For steady state models without discounting, for which the holding
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cost includes interest and obsolescence costs, there is a relationship between
the degree of protection afforded by the optimum reorder point and the ratio
of backorder cost to holding costs, so that it is more informative to report
this ratio than the specific value of the backorder cost. In our model holding
cost in a sense is the complement of the discount rate, i.e., 20 percent,
and all backorder costs are discounted back to the period for which the (s,S)
values are being determined. This motivated us to define a backorder ratio

(BR) and report this value, where for a discount of 80 percent,

[(Backorder Cost]‘BL/Si (BR)(UP)(.20)

V4
The base case was run for BR values of 4, 10, 100, 500 and all other cases

were run with BR values of 10 and 100.

4.2 Findings.

Table 1 shows the optimum (s,Q) values at time of fielding where Q 1is
defined as S minus s. Thus, for the case where lead time differs from the
base case and equals 78, BR = 100 and Y = 1/2, the optimum reorder point (s)
is 26 and the optimum reorder quantity (Q) is 7.

Let us first say something about the results for when there is
no uncertainty, ¥ = 0. There is some tendency for Q values to decrease as
BR increases; while not very intuitive, this is characteristic of stationary,
undiscounted models with certainty [8]. Otherwise Q”s behavior is intuitive,
and so is that of s, which increases with BR, L and UP, the last because
higher UP results in lower Q’s.

Uncertainty had relatively little impact on Q for Y = 0.5; and
when Q values were lower, s values, with one exception, were higher (the
exception was for AYD of 5 and BR of 10). For ¥ = 1, Q declined in all
cases, but showed less sensitivity to BR than under certainty.

The impact of uncertainty on s depended on BR and y . For lower
values of BR, s decreased, while for higher values s increased (for Y = .5)
or the discrepancy between certain and uncertain values narrowed (for Y =
1.0). For a very high BR of 500, s increased significantly even for Y =
1.

Intuitively, uncertainty suggests lower values of s in order to
hedge until more is known, but at the same time with uncertainty higher s
values are generaliy needed to get the same protection. Backup Table 1 offers

insight into how this tradeoff is apparently working to determine the s values.
22



Reported for each case are the probability that demand in the first (L+l)
weeks will exceed the s value found to be optimal at time of fielding, with
the probability accounting for uncertainty as to the true mean as well as
variance of demand around the mean. With two minor exceptions (L:26, BR:100,
Yy = .5 and AYD:5, BR:10, Y= .5), less protection was provided by the optimum
s as uncertainty increased, even in cases where the optimum s upon which
the calculations were based was higher for uncertainty than for certainty.

Table 2 shows the pre-fielding pattern of buys for each case.
For example, for the case (L:78, BR:10, Y:0) the first buy was for 6, a second
buy was made at period (-49), or 49 weeks before fielding, increasing on-order
to 14, and a third buy at period (-13) increased on order to 22. The first
buy is always made L weeks before fielding.

In every case for which BR was 100, the optimum amount on order
increased monotonically as a function of Y, for all pre-fielding periods.
For example, comparing ¥ = 0 and Y- = 1.0, for the base case, the optimum
initial order is 12 versus 9, and on~order is increased to 29 at (-34) versus
to only 17 at (-25); (-25) is 9 periods after (-34). Results are more mixed
at BR = 10, but clearlythere is a greater tendency to react to uncertainty
by increasing buys before fielding than there is after fielding.

The explanation is that hedging - buying less and waiting for more
information - is a more viable strategy after fielding than pre—fielding.
After fielding new information becomes available each week, while during
pre-fielding nothing is learned until demand begins. To support this theory
we show below the optimum s values from period (-52) thru period (-1) for
the case (Base, BR:100, Yy = 1.0) and we observe that the largest s value
of 25 actually occurs before fielding, and then the optimum s start to decline
as hedging becomes more viable:

Periods (-52) thru (-24): optimum s increase from O to 25

Periods (-24) thru (-14): optimum s stays at 25

Periods (-14) thru (-1): optimum s declines from 25 to 17
Incidentally, the pre-fielding buys for this case were inferred as follows:
at .~52) optimum S was 12; s first increased to 12 at period (-34), requiring
another buy then.

As further corroboration of the importance of hedging a special
run was made of the same (Base, BR:100, Y :1.0) case we have been examining.

In this run (s,S) values were fixed at (15,20) for periods 1 thru 13, 1In
23



the original run for this case (15,20) wae optimum for period 0 and subsequent
(8,5) values depended on the demand experienced. Now, without the flexibility
to revise (¢,5) for periods 1 thru 13, the optimum (6,5) values found for
period 0 were (28,32).

We have observed that the 1impact of uncertainty on the optimum
(8,5) values depends on a number of factors including the backorder cost,
amount of uncertainty, time until fielding. It would be difficult to imagine
a simple heuristic which takes a’'l these factors into account, so it is of
some interest to determine the cost of using & heuristic which ignores the
impact of uncertainty. Such a policy is described in Appendix D.

Table 3 shows the cost increase when this heuristic 1s used as
the pre-fielding policy. Cost increases are expressed as a percent of the
total expected iifetime cost under an optimum policy. Since the heuristic
is used only through period 0, but the costs reported are lifetime, the costs
increases reported tend to minimize the adverse impact of the heuristic.
Never theless it 18 clcar that ignoring uncertainty may be feasible for lower

values of backorder cost but is costly for higher values,

4,3 Summary.

The demand forecasting techniques used for real world inventory problems
suggest that the mean demand is not known with certainty, and in fact is
subject to change. This paper addresses uncertainty without ever really
coming to grips with the possibility of mean changes. Nevertheless, the
results should contribute to the formulation of improved policies for the
early stages of an item’s life, when uncertainty diminishes as the basis
of forecast changes from pre-fielding estimates to actual demand experience.

Two variants of a dynamic programming approach of the problem were
cons idered; one requires the existence of a sufficient statistic for the
mean, and the other requires that the prior be specified as a histogram. The
sufficient statistic approach was explored in depth and results were obtained
which provide insight into how uncertainty and learning impact on the optimum
inventory control parameters.

Even from the limited range of cases examined, 1t ewerges that
the question of whether the proper response to uncertainty 16 to raise or
lower inventory levels has no simple answer. Once learning began, it was
found to be worthwhile to tolerate higher probabilities of stockout in the

lead time, but this does nct always translate 1into lower "s" values. For
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higher backorders cost parameters, it became cost effective to raise s to
partially offset the greater stockout risk crested by uncertainty. Optimum
reorder quantities were insemsitive to uncertainty at the lower uncertainty
level examined, but did drop at the higher level.

During pre-fielding there is uncertainty, but no immediate learning,
and the proper response was more likely to be to raise inventory levels,
although this also depended on the level of the backorder cost parameters,
end how close to fielding the item was. A heuristic based on ignoring uncertainty
performed satisfactorily at lower backorder cost parameters, but under-bought
seriously for higher settings.

Computer processing times would permit implementation of the algorithm
developed, at least for selected items when high speed coumputers were used
for inventory countrol. The current algorithm is somewhat limiting in its
assumptions, and we discussed why a more general model may be more feasibly
developed under the alternative dynamic programming forwulation based on
a histogram prior. Our belief, however, is that the most promising path
for the future is to develop heuristics based on the dynamic programming
results and validated by semsitivity testing. Hopefully, such heuristics
would be lese sensitive to correct assumptions about the exact distribution
of demand, the exact distribution of the prior, and the exact dynamics of
changes in the wean than a more exact model. The success of the Power Approxi-

mation provides some precedent for such a hope [5].
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i TABLE 1. OPTIMUM (s,Q) AT FIELDING
i BR Yy =0 Y e1/2 Yl =
o 1
. BASE: 4 8/8  5/8 0/5 3
= 10 11/7 9/8 1/5 i
! 100 15/7 18/6 15/5 ]
500 18/6 24/5 26/5
i L-26: 10 5/7 4/7 1/4

100 8/7 10/5 8/4

1-78: 10 16/8 14/8 4/6

i 100 22/7 26/7 22/6
3 UE-350: 10 9/13 7/13 1/10

100 14/12 16/11 12/10
!] UP-5600: 10 12/4 11/4 4/3

100 16/4 19/3 17/2
- 100 9/5 10/4 9/4

AYD-303 10 22/10 18/10 4/8
> 100 28/9 33/9 25/7
]
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TABLE 1 BACKUP. PROBABILITY OF STOCKOUT

. BR y=0 Y «1/2 Ys=1 1
BASE: 4 68.8% 77.0% 91.1% ;
10 32.5% 47.1% 68.8%
100 5.6% 9.5% 22.4% ﬂ
500 0.97% 2.5% 7.3%
1-26: 10 41.8% 51.2% 70.3%
100 8.1% 7.8% 20.5%
1-78: 10 35.47% 46.57% 72.7%
100 3.7% 10.27% 23.1%
UP-350: 10 56.6% 62.37% 82.9%
100 9.4 14,37% 29.6%
UP-5600: 10 22.7% 35.2% 62.6%
100 3.1% 7.7% 18.6%
AYD-5: 10 40.1% 38.5% 69.97%
100 3.5% 7.3% 16.7%
AYD-30: 10 31.0% 50.27% 78.77%
100 4.2% 12.2% 28.8%

27




-y A Beeaw W

- TR ATt mAaSLTARY BLel Wlm WL T h il TR oTm YEBE TEmE T mew T mmw m o v

TABLE 2. OPTIMUM PRE-FIELDING ASSETS

BR y=0 Y = 1/2 Yel .
BASE: 4 ‘ 5; 13(-17: 4y 12(-24); 1( 63
10 ‘ 6; 14(-23); 6; 15(-26); ﬁ 5; 13(-35);
|
100 9; 17(-25); 115 24(-27); 12; 29(-34);
500 i 9; 16(~29); 23(~7) 10; 20(-36);30(-18); :12; 26(-41); 42(-28);
1-26: 10 7’ ' 8; ) 6:
100 7; 14(-6); L 75 16(-12); 143
L-78: 10 6; 14(-49); 22(-13) 8; 21(-42) b 75 19(-53);
100 9; 17(-51); 25(-20): 10;21(-56);34(=-31); 'll; 26(-62); 43(-43);
! ;
UP-350: 10 12; RLE 125
f |
100 16; 1235 23;
UP-5600: 10 6; 9(-34): 14(-13) ' 45 9(-37); 15(-20); | 4; 12(-37);
100 5;9(-41):13(-28);  6; 11(=41); 17(-30) 7; 16(-43); 28(-31);
18(-12) 24(-17)
AYD-5: 10 4; 9(-16); L4 9(-21); L 63
100 6; 12(-20); 75 14(-23); L 73 16(=33);
AYD=30: 10 8 18(=32); 29(-9) ' 11; 27(-28) 8; 23(-37)

100

i

D113 21(=34)332(<14) 13; 27(-33); 43(‘21)i 14332(~42) ;54 (-30) ;

i ! ‘ ‘
' |

|




TABLE 3.

INCREASE IN COST

BR y=0 Y = 1/2 Y=1

BASE: 4 0.1% 1.3%
10 0.2% 0.3%

100 1.9% 8.4%

500 6.3% 48.8%

L-26: 10 0.0% 0.0%
100 0.4% 1.4%

L-78: 10 0.6% 1.8%
100 4.87% 21.1%

UP-350: 10 0.17% 0.0%
100 2.2% 8.1%

UP-5600: 19 0.2% 0.3%
100 2.5% 10.6%

AYD-5: 10 0.2% 0.0%
100 0.8% 4.5%

AYD~30: 10 0.47% 1.4%
100 3.6% 13.8%

29 )
Next page 1s blank




WPAPRIRPY ) FATRTRCY

BIBLIOGRAPHY

1 Azoury, Katy S., Bayes Solution to Dynamic Iuventory Models Under Upknown
Demand Distribution, College of Business Administration, University of
Illinois, Chicago, 1981,

2 Azoury, Katy S. and Bruce L, Miller, A Comparison of the Optimal Ordering
Levels of Bavesisn and Non-Bayesian Inventory Models, School of Business
Administration and Economics, California State University, Northridge,
1982,

3 Brown, G. F. and W. F. Rogers, "A Bayesian Approach to Demand Estimation

and Inventory Provisioning,”"” Naval Research Llogistics rl \'{ 20,
1973, (p607-624).

4 DeGroot, Morris H,, QOptimal Statistical Decisions, McGraw-Hill, New York,
1970.

5 Ehrhardt, Richard, (8,S) I nt Policies With Limited Demand Infor ion

PhD Dissertation, Yale University, 1976.

6 Kaplan, Alan, Multi Year Holding Costs for Secondary Items, Inventory
Research Office, 1969, AD712315, LD25575.
7 Kaplan, Alan "A Note on Initial Fill Rate," Canadign Journal of Opergtiomns
Research, Vol 19, February 1981, LD45729MA.
8 Kaplan, Alan, "The Relationship Between Decision Variables and Penalty
Cost Parameters inQ,R Inventory Models," Naval Research Logistics Quarterly,
Vol 17, 1970, (p253-258).
. 9 Kaplan, Alan and Karl Kruse, ''Dynamic Model of a Continuous Review Inventory
System," presented at Fall 1978 TIMS/ORSA Nationzl Meeting.
10 Miller, Bruce L., Scarf’s State Reduction Method, Flexjbility, and a
Dependent Demand Inventory Model, Air Force Institute of Scientific
[ Research, 1983, ADA127483, LD5577IK.

11 Scarf, Herbert E, "Bayes Solution of the Statistical Inventory Problem,"

Anngls of Mathemstical Statistics, Vol 30, 1959, (p490-508), LD08436.

12 Scarf, Herbert E, "Some Remarks on Bayes Solutions to the Inventory

Problem," Nayvsl Research Logistics Quarterly, Vol 7, (p591-59).

31

Next page is blamnk




AR

APPENDIX A
SUFFICIENT STATISTICS

R

A convenient reference for most of this material is DeGroot [4].

Suppose that ve are sampling from a random variable X with probability

function (or probatility deasity function if X is continuous) f£f(X;w), where E
w is san unknown rparameter. All the sample values we see are governed by
the same w, but w is the realization of a random variable W, with distribution

g(W), termed the prior.

[ ] L
RS | AN
.

%
Let X be the sample values, where " is used to denote a vector.

In accordance with the Bayesian approech to statistics, it is meaningful

' to reference the updated prior g(w]:?), which reflects the cha:ged probabilities
of what W might be after taking into account the observed x, as well as the

original prior g(w),
A statistic T(x) is any functiecn defined over all poselble values

A
of x. A sufficient statistic is defined by the fact that g(wlT(x)) = g(W)l x)

? for all poussible values of x, where the equality must pertain only to values

- of W with positive probability. There 1is always at least one sufficient

w statistic, nauely T(;) = ;', but we are interested in sufficient statistics

.‘ of €ixed dimensionality; i.e., the dimensiong‘llity of T(’::) does not increase

- as sawmple size increases. An example of T(x) is the 2-dimensional wvector

(n,r x, where n is the sample size &nd x, the sample values.

. In the definition of a sufficient statistic the function g denotes

.j a mapping from the sample space to a prollabili.ty space. Now suppose g can

be written as a mathematical formula with T(x) and the sample size as parameters;

& also, suppose that if T(;,;) is the sufficient statistic after observing

a total sample (r:\'c,’;') where x is n-dimensional and y is m—dimensional, then

J gvIT(x,y), otm) = K g (W|TG), 0) g ITG), m) 1
vhere K is a normalizing constant chosen so that the right hand side integrated ‘
(or summed) over W equals one. The function g is then called a conjugate

. ) prior to the distribution £(X;w).

; It turne out that whenever there is a fixed dimensional sufficient

i statistic, there is a conjugate prior. In Appendix B we treat sxplicitly

: the Poisson conditional, f{X;w), and the Gamma conjugate.

.'. f(X;w) is said to belong tn the exponential family if for any possible
values of X,w, K

. f(x;w) =a(w) b(x)exp gy (W) b, (x)

- i=]
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For any member of the exponential family there is a sufficient statistic
of dimension k.

However, while the exponential family is very rich in that it encom-
passes many distributions, it is possible for the same distribution both
to be and not to be part of the exponential family! Let us illustrate with
the Negative Binomial which is much used in Army inventory models.

The Negative Binomial may be written:

£(x;r,p) = ;J(i-;’rf—(x,,_—l) P (1-p)” = {.—%g—’;%;;—l-)prexp[log(l-p)x]

Now if r is known, and p 1is the unknown parameter, the Negative Binomial
satisfies the condition for membership in the exponential family. However,
in an inventory coantext this would be an unlikely situation since r equals
the square of the mean divided by the difference between the variance and
mean. If, as is more likely, the p parameter is known, p being the reciprocal
of the variance to mean ratio, and r 1is unknown, f(X;r) does not satisfy
the condition for membership in the exponential family since T'(r+x) cannot

be written as exp[lg (rin (x)].
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APPENDIX B
MATHEMATICS FOR GAMMA-PNISSON

Bayesian Updating
A convenient reference for most of this material is Brown and Rogers

(31.

Write the Poisson, Gamma and Negative Binomial distributions as:

d =)
Poisgon: f(d;a) = A e
dt
a
. . - D a-1 -ba
Gamma : g(xs3a,b) Ta) )y e
Negative Binomial: h[d;a,b/(b+l)] = T(ad-1) ( b )a ( L )d
: 1T r{d)r(a-1) ‘b+l1 b+1

Then the following are the means and variances:

Mean Variance
Poisson X b
Gamma a/b a/b2
Negative Binomial a/b a/b2 + a/b

Note the variance of the Negative Binomial is the variance of a Poisson with
mean a/b plus uncertainty a/b2 around the mean,
If demand in a period is Poisson, with ucknown ) sawpled from a
Gamma prior, the distribution of demand allowing for uncertuinty about 2
18 Negative Binomial:
h[d;a,b/(b+1)] = fk g(X;a,b) £(d;A)

If after n periods demands of dl’ d ....dn are observed, then (nJg di) is

2
a sufficient statistic and the updated prior is a Gamma with revised parameters

o * b dy, by = b + nj the distribution of demand in one period,

2
given (n, Td ) 1s Negative Binomial with meai a/b and variance a/b + a/b.

a = a

The distribution over p periods is Negative Binomial with mean ap/b and variance
ap 2/b2 + ap/b.

We can redefine ) as the expected demand per weapon system per
period. Then if Wi are the number of systems deployed in period i we could
use _ne above results with these substitutions:

n
T W, 1s substituted for n
=1 1

n+p
. wi 1s substituted for p

i=n+1 e
35
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Computation of Functional Values

Let Bc be backorder cost per backorder per period and H, be holding
cost. Let f2 be as derined in Section 2.1. Capital letter functioms are

from Chapter 3 and the f, g and h functions are as defined in this Appendix.

y O
L - L. |
f.(y;t ) =a " H I h(dle)+a" g ¢ h(d't ) (d-y)
2 n c d=o n c d=y+1 n
Jovep DG@lE ) G-d) = T neale Yy-d) - T nedle ) (=)
y d=o d=o
y
= y - Expected Value (d|tn) - T h(d!tn)(y—d)
d=0
P o
B(x;P,i) =B [ I af £(di1))(d-x) 1= (1) (p)
p=l d=xt+1
P X P :
H(x;P,1) = H )X T a"f(d;1 ) (x=d) »
c P =
p=l d=o

For G{(x;i) and H(x;*,i) we assume costs are recorded continuously
4 . -at , . . . ~a
with a discount of e where t 15 the elapsed time 1n perlods and e = ]
. . . ~a GNP %
a. Thus, for ¢ periods, the discount is e P (e ) =a.

Now if demand is Poisson with mean of 1 per period, the time to
. . . . . 2 .2 .
order X units is Gamma with mean x/i and variance x/i from which we may

: 3 :

infer that the Gamma parameters are a = x and b = 1. Therefore, >
. e [ o0t ) - s 1 x=-1 -(a+i)t

G(x;1) g e g(t;x,1i)dt . ) t e dt

x ® x X
oA Fo (o)™ x-1 -(a)e i
G L Tay e de = (g »

since the last integral is the integral of a Gamma density over 1ts range.

Now suppose we numbered (conceptually) x assets from l to x with

»
‘This well known result follows from the ‘act that Poisson demand implies
exponential time between demand, and the sum of independent exponentials
1¢ Gamma,
»

]
“The use of the Gamma as shown here was suggested by Karl Kruse [9)
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th )
asset 1 issued first and so on. Suppose the k asset is issued at time
. th
t. Total holding costs for the k asset would be:

E oy i
Ho foe 7 dj =55 [1-e

-at
0 a ]

Since t is a random variable with distribution g(t;k,i},

H X = -0t
H(x;o,i) = = I S og(sk,i) [1-e 77}
' k=1 o
b4 k
- Eg r [1- (;%Iﬁ ]
v} k=1
H (r}(rx-lz
== [x - 1 ], Tt = 1/ (atl)

A continuous analogue of B(Q) was used in determining the optimum

" "

8" and developing 1(s,s+Q;i). Recall

B(Q) =/B(s;L,i) - B(sHQ;L,1)

Consider each of ;he Q units separately and index them by k. Let 4 be the
time until the k of the Q assets is demanded measured from the time the
order 1is placed. For the kth of the Q assets to be demanded, there must
be (s+k) demands, so the demsity on t is g(ty; s+k, i). If t occurs before

L there is a backorder and total backorder cost for that backorder is:

L -at
B/ e %far =B [e k e-aL]
¢ ¢ c
k
Thus,
B(Q) Q L -at ~alL
§£Q~ = I J g(t;s+k,1) [e at e ]
c k=1 ©
Now,
L —at stk L
é glt;stk,1) e = (I;E £ g(t;s+k,i+a)
{ stk
- @) [ - Flskel; ()]

where F(s+k-1;(i+®)L) is the probability a Poisson random variable with mean

(i#a)% is 2 s 4 k -~ 1; i.e. t <« L is equivalent to s + k demands by time
L.
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Putting all these results together,

Q . s+k
B Ly Ay 1 - R(etkel; (4001
B _y 4o
c k=1
_1 Q
- e oL T [1L - F(s+k-1;i L})]
k=1

Application of Functional Values.

The various functional values H( } and B{ ) are used to derive
the L(s,s+Q,1) and then the Gy (x,t) as discussed in the section of the report

on Starting the Recursion. Then the recursive equation is used.
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APPENDIX C
ALGORITHM PRECISYON AND PROCESSING TIMES

Precision. The issues investigated briefly were:

(1) In the formula from Section 2.2  for t™aX  yhat should
PSDEV be multiplied by? "

€2 In approximating the Camma prior by a histogram, how many points
should be used (Section 3.0)?

(3) How wmuch accuracy would be lost if we limited the number of values
of the sufficient statistic for which costs were calculated, and found the
rest by linear interpolation?

Four runs were made for the base case with Y = 1.0 and BR = 100
(see model results for a description of the base case). The first and second
runs multiplied PSDEV by 4 and used 10 histogram points, but the second
run calculated costs for a maximum of 30 values of the sufficient statistic
in any given period. At period 52, there were (coincidentally) 52 values
so that 22 were found by interpolation. Run 3 differed from run 1 in that
PSDEV was multiplied by 5, while run 4 differed from ruan 1 in that only 5
points were used for the histogram in starting the recursion.

Our conclusions were that Run 1 settings were adequate and that
interpolation might be practical. We recorded for each run the (s,S8) values
at fielding and a lead time before fielding. They were the same for each
run, (15-20) and (0,i2) respectively. At fielding we recorded the expected
lifetime costs {in tﬁgusands) if assets were 1 unit and you ordered up to
either 13, 14, 15,....21, or 22 (Table C.1). A lead time before fielding
we recorded expected cost if assets were 0 and you ordered up to 8, 9, 10...15,
16 units. We focused on how the costs changed as a function of assets bought,

looking at asset values around the inventory control parameters selected.

Processing Times

The algorithm was run on a CDC CYBER 76 computer under the SCOPE
2.1.5 operating system. For the base case, with BR = 100 and ¥ = 1,0, 17.5
CPU seconds were used., For Run 2, using interpolation, CPU seconds dropped
to 13.4 seconds. Of the 17.5 CPU scconds for Runm 1, approximately 4.5 were

used to get through the "Starting the Recursion" step.



TABLE C,]1. COMPARISON OF EXPECTED COSTS (AT FIELDING)

RUN ORDER TO:
13 14 15 16 17 19 20 21 22
1 $89.7 §88.1 $86.4 $84.8 $83.2 $81.7 $80.2 $78.8 S$77.4 S§76.1
2 89.9 88,3 86,6 84,9 83,4 81.9 80.4 79.0 71.6 76.3
3 90.3 88.7 87.0 85.3 83.8 82.3 80.8 79.4 78.0 76.7
4 89.3 87.7 86.0 84.4 82.8 81.3 79.8 78.4 77.1 715.7
TABLE C.2. COMPARISON OF EXPECTED COST (AT FIRST BUY)
RUN ORDER TO:
8 7 10 11 12 13 14 15 16
1 $87.4 $86.0 $84.5 $83.1 $81.7 $80.3 $78.9 $77.6 $76.2
2 87.6 86.2 843@ 83.3 81.9 80.5 79.2 77.8 76 .4
3 87.9 86.5 85.0 83.6 82.2 80.8 79.4 79.0 76.7
4 Not Recorded
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APPENDIX D
PRE-FIELDING HEURISTIC

Suppose we wish to order every QT (for Q Time) weeks, and for a
moment assume we order whenever assets fall beiow lead time demand.

Then, we draw a time line as follows:

| QT WEEKS { (L+1) WEEKS \

PRESENT i ‘

If we order up to our expected demand in the next (QT+L+l) weeks, and demand
occurs as expected, we will order next in QT-weeks. If "present" is pre~fielding,
some ouf the weeks on the time line will occur before fielding and we add
in zeroes for those weeks.

Now suppose the reorder point (the s value) is based on iead time
demand plus '"n" standard deviations, and that bascd on the Poisson assumption
the standard deviation is the square root of the mean. Then we must add
to our order~up-to level "n" nultiplied by the square root of demand in the
(L+1) weeks shown on the time life.

The beuristic takes as input the (8,Q) values found to be optimum
at time 0 (just before fielding) for the case with no uncertainty. From
these it computes "n' and QT and applies them as discussed to get the order-up-to
level at any time prior to fielding.

For the purpose of getting the reorder point (s), a different time

line 18 developed:

(L+1) WEEKS

PRESENT
Now demand in the first (L+l) weeks is used to get s, since this determines

OT VEEKS

_———— - - —

exposure tou backorders in the lead time. This 18 still consistent with the
derivation of the order-up-to level, since that derivation assumed that in
QT weeks the s value would be based on demand in the next (L+l) weeks counting

from that point,
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