AD-R1560 711 DESIGN AND ANALYSIS OF ORDERING RND JOIN FOR
MULTI-BACKED DATABASE SYSTEM(U) NAVAL POSTGRADUATE
SCHOOL MONTEREY CR S MULDUR JUN 84

UNCLASSIFIED F/G 9/2

o B SO St M it 3 -
. - B k3 R T T N T Ty o yrerey
' - -~ Tw e e e Te Tmw .

: |0 &= iz
4 == = 12 2o
= —_— 'I: 138 =
t T

p.
b

1.8

N
(8
I

o

< i

MICROCOPY RESOLUTION TEST CHART
NATIONAL BURELAU OF STANDARDS 1963-A

A A A B 2 Sk Yl Al B S DS) A i) <
A T N TR TR LY U LNV T T T T T b N <

kD,

e

S B g gl (S et

ne — £

NAVAL POSTGRADUATE SGHOOL

Monterey, California

F
F
{
M~ 5
o 1
n i
: - I
b.- | :
4 0 :
, ¢ < '
- }
B DESIGN AND ANALYSIS OF ORDERING AND JOIN
B FOR A MULTI-BACKEND DATABASE SYSTEM
DI'C
* & y
.) Serdar Muldur
' QO
June 1984
]
e ey
' e
| E’ Thesis Advisor: .David K. Hsiao
Approved for public release; distribution unlimited
¢
L)
' 85: 02 19 077 ﬁ
=l “es mL e n
'''''''''' P A ey . R A L N O Lo R
mauteloineonn oo et fon Bl Setee ket ik P T A S I A 41

SEZURITY T_A538 7 TAT IN T T 1 3-5E When De'a Eniereq)

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1

REPCRT Vv MBED 2. GOYT ACCESSION NO

't
i

]

3 RETOENT [TaT

A_Z > AL 3

.....

T T_.% ‘and Subtitie
!

Design and Analysis of Ordering and Joinl
Operations for a Multi-Backend Database

¢ TyPE 0F REF2AT
Master's T}
June 1334

L3313

&4 P$3,30 COVERED

§ PEARFQRMING 205

AESCAT N UMBER

Svstem

Ay TwOR/(S, 8. COMTRACTY 22 5RaN” NUMSER'S

Serdar Muldur

9 PERFIAMING DRGANIZAT TN NAsE ANS AQCRESS 1 10. PACSRAM £ _AMEN~ 20%,%
; AREA & 09K _N T ¢ _wBERS
Naval Postgraduate School
\Mlonterev, California 93943
YO ZONTAD_LNS 3FFICT NivE AND 30805, 12. RERCA~ ZAa~E --
Naval Postgraduate School June 1984 |
. 1

Montereyv, California 93943

e
L) e

MON TOR'NS ASENZIV NwE 2 ASCESS.{ Jiiferent from Zontrolling Oftice) 1S. SECUR. TV I. 33: Tin g repurt

-y

JNSTABUT SN STATZIVENT ¢ r1y Feaporr.

Approved for public release; distribution unlimited

DISTRMIBUTION STATEMENT “3f the abs:ract entered in 3lock 20, if different trom Report)

SUPPLEMENTARY NOQTES

XKEY WORCS /Continue nn reverse eide 1l neceesary and Identify by block number)

effective complexity, computing complexity, access complexity,
communication complexity

20

ABSTRACT ‘Continue on reverse side If necessary and idontity by dlock number)

This thesis proposes implementations of the sort and join in the
Multi-Backend Database System.. The idea of implementing these
operations is to provide better support for relational databases
and relational language interfaces. The key issue analy:zed is
the distribution of functionality of the operation across the
multiple minicomputers of the MDBS architecture. The join
analysis also examines alternative join algorithms.

DO , 2%, 1473

EJITION QF) MOV 8313 OBSOLETE

AP A

SECUMTY CLASSIFICAT OM OF Twui§ BAGE When Ders Enteredq,

IR,
2”4

kP

SR T AT
T Dt P

T e T W Ty et i i b A L ani v, -
[l S o S Pl S RO EC o Nt el s et o Mo i L I A s e g

Approved for Public Release, Distrizution

Design and Analysis of
Ordering and Join Cperations
for a
Multi-Backend Database System

oy

Serdar Muldur

Lieutenant Junior 3Srade, Turkish 'avy

3.S., Turxish laval Acadenmy, 1373

Submitted in partial fulfillment of
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIE
from the

NAVAL POSTGRADUATE SCHOOL
June 1984

-

P

Author: 'f:;Z;,':u,/g/gg/{l:

the

LR el Sl Al Sl o ek Al fal by \Tv‘?i

IV SO0 WY I R

Bt bt i L MR A

| ccessicn For

NTIS GRA&I
DTIC TAB
Unannounceqd

Justification _ -

By.

Distribution/
Availability Codes

Avail and/or

Dist Special

ﬁ*l

, —f N
Approved by: A£;§L<LL67 :725/Zﬁnﬁ’

—Thesis Advisor

/ Z,I'zzfznxléiﬁ) Jb o=l

Second Reader

A}’C”(cu?/ o ver ™

Chairman, Department of Computer Science

T Mot

A

Dean of Information and Rolicy Sciences

P, PO

Y RO

e T aY et C L wLe . e = AT T T gm e m e m
. - . - . ~ Lol

R ot At i At Rl il * Al A S A A Y ARM I § DA SRaTNAL N G “afa Tl i Sl Sl Sl Salb Il Al Ak Sal Sl A |

ABSTRACT

This thesis proposes implementations of the sort anid
join in the Multiple-3ackend Database System. The ilea of
implementing these operations is to provide better support
for relational databases and relational language interfaces.
Thne key issue analyzed is the distribution of functionalicy ,

of the operation acrosss the multiple minicomputers of the2

E MDBS architecture. The join analysis also e2xamines
;" alternative join algorithms,

.

L_.

P

[.

-

Vo
b
[

'
) -
» ' . . -
. . e .. . R . .t e e . LI e - . L e ot
[PP P WY PV SR SR TP PR P WS SIT S, GO, T TOY WP AT AL UL T AT S R SN ALY N P

* TR e T NN - - ~ 1 Ve T e T TR

TABLE OF CONTENTS

I. INTRODUCTION i vvavnnnns S h e e e ettt
A. THE ORGANIZATION OF THE THESIS e
II. A REVIEW OF THE MDBS HARDWARE AND
SOFTWARE ARCHITECTURES v iiivsenrnvenoonsonnns
A. DESIGN Z0D0ALS FOR MDBS...... e e
: 3. THE MD35 SOFTWARE ARCHITECZTURE ... iiiann
?;; ‘ TII. ALTERVATIVES 08 DISTRIBUTING THE
{,4 SORTING FUNCTION v'vrunnrenennnn.. e
ST
|® B, ASSUMPTIONS titvvnvenerunenneneeonennennanns
- 3. NOTATION wueevevenensnenenennecasennenenannn
t 2. SYNTAX FOR THE SORT FUNCTION ...evirvevennans
IvV. THE ISSUE OF DISTRIBUTION OF FUNCTIONALITY
A. THE CONTROLLER PERFORMS THE SORT FUNCTION ..
B. THE BACKENDS PERFORM THE SORT FUNCTION
} 1. All Backends 3Sort, and One or
fi; Two éackends Merge ...civevesotnanonsas ‘e
{;1 2. All Backends Sort Separately and
;! Share Mergingc.ceeveveriuiaennnnnn
- : C. THE CONTROLLER AND THE BACKENDS SHARE
i' THE SORT FUNCTION .iieieenaneosccnnsnnnnssns
"_ 1. Backends 3Sort Block-by-8lock and
o Controller Mergesieeereciansennanns
®
. m
j

.........

.............

..........

- - . .
3 - . - h - -
e e e W WU AT AT SEPRLATIOY . S AL 10 P, PR AP

AT A . .
T 2 T I S Y

e S o i Sal vl Nad Sk Acit ced and enk el g

A

29

33

33

AT e A R et |

= =T W e T LT TR TR TR RTR TR T o, T T e e e,
B Rl S AR il AP aeaC AR e e B S A R e B gt S mad e Ak 40 2oe ool

2. The 3ackends 3ort and Perform
a Partial Merge, and the Controller

Performs thne Tinal Mergeeeveveeenn 34

D. EVALUATING THE ALTERNATIVES +vveveenn. e 35 .
E. COMPARISONS BETWEEN ALTERNATIVES I
ol AND £ i ittt evnneseenesosnnensnnenas .. 41 i

F. RECOMMENDED DISTRIBUTION JF FUNCTIONALITY .. 45
V. DIFFERENT ALGORITHMS FOR THEZ SORT AND

MERGE PHASES ® 0 8 9 8 5 0 S F 00 % 6 0 8 0 S @ C S s s 20 e J

[V ¢ RNV ¢

—

A, SORTING WITH n BLOCKS AT A TIME ...vveevennn

B3, TYE K=WAY MERGE +.'vuvvevnnnnns ..

i
yy]

C. FITTING THE SOFTWARE ARCHITECTURE OJF MDBS

.
.

-

.

.

.

.

.

.

-

Ul

(AV)

ek AIIRA" 0"\ 4 a7 2 AEMAL 8 i 0 s

1. Utilizing the Descriptor and

Cluster Information Checee 53
2. Utilizing Existing Mechanism for i
Storing Temporary Dataceceeeeessn 50 ' :
3. The Case that Records are not Evenly ;
Distributed Across the Backends 52 ;
a. " The Backend Performs the
Sort Function ...eveevreccccnceancns 63
b. The Records are Distributed
Evenly Among the Other Backends .. _5&
J1. INTRODUCTION TO THE JOIN ..veeeevecesononsennnns 65
A. TERMINOLOGY AND NOTATION +.evevvevnenevennenn 653 :
B. ASSUMPTIONS tiiuietireennooasesnssannnansanns 63 i
C. A SYNTAX FOR THE JOIN .ivvuuevvnneenneennnes 70]

(9]]
W .

o
) d
»"]
> i
b
"'.
.
]
3 - . . -
- . .
. . . L .
. N - . X oS - . . PO S
R R A Sty . -« LT e e
healinahc B ettt v PO T WD P 1 CEP ISR TP Rl AP . TP S N -t e

. A e A e s S din sy 4 bt v
AT A L D AR S RV A et Tanh . ek Aok S 4 L Ak el Al PR A AT A 7 hi oAt B et 2o s

YII. THE ALTERNATIVE DISTRUBUTIONS OF THE

‘ JOIN FUNCTION e e . 72
A, C4E IDHTRILLIR PIIFIANS THE

JOIN FUNCTION e 7>

B. THE BACXENDS PERFORM THE JOIN FUNCTION 73

1. The Backends Share the

Join Zqually et e s e e T4
2, The Backends Perform the
J31n St2p=Dy=3ten .. i e 73
3. DOne Sackend Performs the
Jain Functioniveenenans e cee e)
E‘. C. THE CONTRCLLER AMD THE B8ACXENDS
? SHARE THE JOIN FUNCTION ...;..... 39
g D. EVALUATING THE ALTERNATIVE

DISTRIBUTIONS OF THE FUNCTIOMALITY 32

VIII. AN ALTERNATIVE JOIN ALSORITHM e b
A. ALTERNATIVE DISTRIBUTIONS OF THE JOIN

FUNCTION BY USING A SORT-MATCH ALGORITHM ... 35

1. The Backends Share the Join 37.
i;ﬁ‘ 2. The Controller Performs the Join 90
é!;T B. COMPARISONS BETWEEN THE TWO ALTERNATIVES ... 92
- C. COMPARISONS BETWEEN THE STRAIGHTFORWARD

- AND THE SORT;QATCH JOIN ALGORITHMS 96
:0‘ D. RECOMMENDED PROPOSAL FOR THE

: DISTRIBUTION OF THE JOIN OPERATION 98

[RS L PRI SR el
. .~ T
e - et e
(P Py - - - - AT - “ -
~ ” PO WPV N G PRI NP . S . A

9 ottt Aa’ it vl S e "Rt B tan B sy T T h -~
- - PELAVAA fe AN v P ~ RS R e T - ~ L2 A e S i Yie i * B Rl e S0 st v e L T TR, TR TS TR T, ‘\‘-‘1

Y, O L O T 1 3 L 113
LIST OF REFERENCES tietererterirsnentoronsesnccsannnses 15

INITIAL DISTRIBUTION LIST .ivviiiiieiiininnnrnonnnsans 125

t X - . S - -

. »«‘_’\‘ - -, - . A A A - - St At «. 'y - .

. * - - - . N A L . . . ~ “ - N T - [. - .

a4 " ~ .t . e e RS . . R . .
PO DL PSS TSP IR T L LWV PR VPR PR WL s g Y SN PR

Dl) ".\-“."'4'.*_1"7.‘; - Gt Rl R i Sl Sl R & A0 A A 8 A SR 0 A ST SRELY L LA o " e A S S St B dedt tec SN o B D T e dis v gl "ang s ave gv)

T. INTRODYCTION

A current research effort at the Yaval Postgraduate
School is the investigation of the idea of a database

<ernel. It is proposed that the attribute-based data 1cdel {

and the attribute-based data language (4A3DL) is used 25 2
xernel to support relational, tierarchical, and network

databhases. A prototype software database svstem, tha 'Mulfi-
’

.
:
X
«
:
i

!

|

3ackend Database System (MDB3), whiczh a3es fna

[$)

attribute-hased Jdata model, is the target kernel s3ystem,

The operations of the attribute-based data languaze are
RETRIEZVE, INSERT, DELET®, und UJPDATE, the four prinmary
operations of any database management., One proposal is thas
additional operations be implemented in MDBS to provide a
more complete database Kkernel. In this thesis, e
investigate the addition of a sorting capability and the
relational join operation.

MDB3S is a multiple-processor system. .The interesting
issue, when considering the implementation of the sort and

join operations, is the distribution of functionality among

the multiple processors. In this thesis, we propose and

analyze various distributions of the functionality.

el R e i

-..ll' . . - N
R e R v, .
., ~ " R
DR T .." T . “ T - .. L.
P ST B W W Sy 2 AT RS N T U Y ST N P Pyt

Padhit i

P - . (St e B Min it ese ami St e i st Jags 3 .TW Y e Ty - "f“'?’"."‘-"."rs‘

In analyzing the issues 2f 3lternative d4istributiosns >f
the functions, our approach will be to use the existing ‘

functional units ia MDBS. 4Ye propose alternatives, ani

evaluate them according to the design goals of “D83. “ur
proposals require minimal 1interface <changes among the
functional units.

We will approach the issues in the following manner. V2
will make a number of proposals. We will analyze the tinma

complexity of the proposals. Then, based on the D83 Zesii~

zoals and the complexity analyses, we will make specifi:

recommendations.

A. THE ORGANIZATION OF THE THESIS

Ll In the rest of the thesis, ws examine the distribution

of functionality for the sort and join operations,

Specifically, Chapters II through V cover the sort function.

Then, Chapters VI through VIII cover the join.
In Chapter II, we give a brief review of the 4DBS
hardﬁare and sotware architectures. 1In Chapter 1III, we .

present the general assumptions and notation wused in

analyzing the alternatives. 1In Chapter IV, we consider the
distribution of functionality among the controller and the

backends. In Chapter V, we consider specific algorithms for

introducing the sorting function. We also examine the case
where a particular sorting task does not fit the “DBS

;- ' architecture. We -~discuss how the sort function might

L T . R T O |

- e Bl "Nl Ml el Bl A S i g ey, Pl A AR s Aot Sl e Sun st 2 B d-B ol - K Ad et e e Ak aad sl

el d

incorporate feaztuyrses of the MDR3 software architecture as

well,

k. a_a_2_ .

Chapter VI introduces the join., In Zhapter JII, w2

:

examine the alternative distributions of the j2ia functinn

] among the controller and the backends. In Zhapter VIII, 23
I

! specific join algorithm, the sort-match join algorithm, is
! axamined in the context of MDRS, “inally, in CThapter IY, w2
ﬁ summarize our conzlusions and Ziscuss the contributisns of
ﬁ the thesis.

' 10

.

I Y

S SV N D S RIS S P S

R ' S Wiadl Wik B 28 G i i AFNE 464D Sdllah aom S Badh- o
S Rt A S A L5 A0 A 204 Bl A SRt anm o adh " e i Badi = AN et Sttt S

IT. A REVIEW 2F THET MDB3 HARDWARET 1YD

SOFTWARE ARCHITECTUR

S

MDBS is a multiple minicomputer system that wuses off-
~he-shelf hardware and special-purpose software in an innc-
vative configuration to support nigh-performance databasse
Jperations and large-capacity databases. An overview o5f the
MDB8S nardware organization is shown in Tigure 2,1, The hac
ends and the 2ontroller, which are general-purpose minizoma-
puters, are connected by a broadcast bus. The contrsllar
Wwill broadcast each request to all backends at the same
time. The backends process the request, and send the rasults
to the controller via the broadcast bus. Intercommunication
between the backends is also via the broadcast bus. Tvery
backend has 1its own dedicated disk drives. Reader should

refer to [Ref. 1, 2, 3] for more detail.

A, DESIGN GOALS FOR MDBS

The major problem for conventional database éystems is
their inability to achieve high performance as the database
grows and the rate of requests increases., In order to over-
come this problem, a high-performance multi-backend database

system should have the following properties.

IR

. T. “.. "-'.q
P L L L ST T WL S

U wn ACEEENY N
v N .o
[o =4 O o
. (YIRS] 0 {1, ot
S [] [0
’ [VI | b | PR}
o
< [N o ¢
v wn L1]
* [(ST M._”\"
o™ (SIS] O [
) ’ O
. -l
Y 2
. N
e
[
o
’ N
' (9
(&
[}
1S}
* a
5 2
' e
(i |18}
Ly
T
' 6 w
i [e0]
> I (&)
. (o s
' . . N m
’ .c e
: 1 &
n u [
' o
. i3]
"
(R °
i prn gty Lt = o —t
_ [T .
1) o~
v- \-. “‘Am
(7] . Q
.“ "3 j
‘0 2
Ve bl
& Y] e
"w {1,
£ !
m
ar ¥}
0 R
ol
(AN 1]
0 0o
) "wou

RTINS s Ui T R SR W o

e] I T W T T T Ty

(1) The throughput improvement is proportional to the
number of backends. That is, if the number of backends is
doubled, it should be possible to nearly double the size
of the database without affecting the throughput.
(2) The response time is 1inversely proportional to the
number of backends, It should be possible to nearly halve
the average response time by 4doubling the number 5F
backends.
(3) The system is extensible for capacity growtn ani/or
performance improvement. By extensibility, we mean that an
upgrade of the system can be made with no modificatiosn 2
the existing hardware and software, 2and no major
disruption of the system activity.

To meet the MDBS design goals, the controller is
implemented with the following goals. The amount of the work
that the controller should perform must be minimized 1in
order to avoid controller bottleneck problems.
Communication between the controller and the backends must
also be minimized in order to avoid bus contention. As a
consequence of the controller implementation goals, the
backends should do most of the work. Further, the

communication among the bhackends must be minimized.

13

e Y 2 i

7[-\ - R A R A A A A At b em AP i B At Sl Ak B s Aa 2l 4 2 2 acnpcas o0 @ o)

N

b

[

- 3. THE 4233 SOFTWARE ARCHITECTURE

; MDBS is designed to oprovide for datadbase zIrcwtn anid

E‘. performance enhancement by the addition of identizzl

; hackeands and their disks. The software architecture does not

' require the development of new software wWwhen a backend is

'i added. In other words, the existing software suppcﬁts many i

: backends as well as a3 few backends. The softwars

% archnitecture allows replication 2f the existing softwarse for

ﬁl the new Hackends added for expansiosn, ‘Yo new software is i

! developed. Reconfiguration is simple, and dces not reguirs ,

} N

’ extensive system regeneration. The software architecturs 3°7 f

b - K

¢ MDBS is shown in Figure 2.2, For more detail, refer to [Ref. i

f'-'j 1, 2, 31. X

- The software architecture also takes full advantage of :
o
4

the parallelism in the hardware architecture. The software
of the backends supports parallel processing of the
database. There are three primary features which support

this parallelism. The first is the method by which the

database is distributed over the disk "drives of the

backends.

The data model chosen for the system is the attribute-
based data model [Ref. 1]. In MDBS the datahase consists of

files of records. Each record is a collection of keywords ,

¢ optionally followed by a record body. A keyword is made up
of an attribute-value pair. A record body 1is string of
characters not wused by MDBS for search purposes. In
[]
14
e
s . T T T o o SR SR

partizular, the first attribute-value palir of each recori 5°
a file consists of the attribute FILE and the file name 13s
its value., For performance reasons, records are logically
grouped into clusters based on the attribute values and
attribute value ranges in the records. These wvalues ani

value ranges are called descriptors. A%t database creztion

time, the database creator specifies a qunber of
descriptors., These descriptors are <called as clusterin

descriptors that are used for forming clusters of recoris.

in attribute that appears in a descriptor is callad 13

directory attribute. For the purposes of :2lustering, only

those xeywords of the records which <contain directory
attributes are considered. Such keywords of the record are

termed directory keywords.

This concept of clusters contributes to parallel
processing in the following manner. The distribution of
data across the backends is based on the concept of
clusters, The records of a cluster are distributed. accross
the backends according to the distribution algorithnm
proposed in [Ref. 1]. Therefore, each backend has a part of
the cluster. Thus, each backend may access a portion of the
data required by a request. All backends can work and access
their portions in parallel.

The second feature of the software architecture whizh

exploits the paralellism is the way in which directory data .

is managed. Every}backend has its own copy of the ‘clusters.

15

L. - . I T I TV S M SN Pl el Ve & A il S Al A S Al A Al Tl il Wl R il g el i i i Ml Al el tal S Sl St R P AN
- |
-
: i
5 “ne saarzn for the descriptors related to 3 reguest tan thus
g he shared by all of the backends. _
E The third feature whicn supports paralellism Is the {
method used for scheduling reguests and controlling
b
concurrent access to the Jatabase and the directory jata.

‘c Ay L

Tach backend xeeps a3 request jueue., Requests are sghedulad
independently, as resources Ddecone availabla, Zoncurrency i3
maintained separately a3t each backend with a2 L2S%ing ;
algorithn. Thus, the backends work independently ani 7 e
parallel. In exploring alternatives for the sort and -1-
b
{ operations, we will preserve this idea of independent, ;
L
tf parallel processing in the hackends. i
g

)
. .‘\._ . - .
) kWP, 10 P - B e e N .. -) Y o' .. - .
. PRI SO T W, PR WD G TR SUNCHURY S, SLT GO WP IS W W T B U R R

5 POST PROCESSING

REQUEST PREPARATION

i f
L -
INSERT INFORMATION GENERATION
LI CLUSTER 1D DESCRIPTOR [D .
; { GENERATOR GEMERATOR
§ | ' [BACKEND f
- ; ! ' SELECTOR |
;.’ : ' '
BACKEND .
| DIRECTORY MANAGEMENT
. 1
CLUSTER . | DERERIPTOR ||
SEARCH ~2EARCH 4
{
ADDRESS |
L GENERATION .
; RECORD PROCESSING
® - ,
"~ AGGREGATE | (PHYSICAL DATA! . CONCURRENCY CONTROL
y ~ OPERATION || operaTiON i [;
: : |
o
Figl;re 2.2. MDBS Software Architecture
°
- 17
o
. i el et B ..";:VL . L1: &@;‘_.A. B I c T SR “ “.\:.

~ -
k CONTROLLZER

——
oty

AP

D
LI S]

Y

v

(AR

N~ D

v

yyy

I T S A A B AN S L BN AU iy LA R N it A Aok

IIT. ALTERNATIVES FOR DISTRIZUTING

v
1
(K3}

SAnmTA~ S Aame A
i = !
:v?-..a.-tJ S i et

When considering alternatives for distributing the sor

ot

»d

ing function among the processors o>f MDBS, we mMust consi

er
both the hardware and software architectures., The hnariwJara

- -

and software architectures, as explzained in Thapter 17, ar

[th

designed for distributing the functionality 2f the <databas

w

management operations across the backends. 'le must s=2la:2%

an alternative that exploits the innerent parallelism of o=

v

¥
1]

D

architecture, The architecture of MDBS dictates mininmsl
controller function, minimal message traffic, and identical
software for the backends. The alternatives which we recom-
mend should be consistent with the dictations made on t==
existing hardware and software architectures.

Ne will consider the complexity of the sort function to
include only the overhead incurred by adding an ordering

specification to a RETRIEVE request, the time required to

retrieve reccrds is not considered. We will develop expres-

sions which represent the CPU activity, -expressions which
represent the I/0 activity, and expressions which represent

the communication activity on the bus, i.e., the computing

complexity , the access complexity , and the communication-

complexity , respectively.

When analyzing complexity for functions distributed

accross the backends, remember that the backends are working

18

- -

Tel T Te T Ne T Tl Ta T W e N TR R TTR T Y TR TS TR NRCT e v o e e RSl bt vl gl v Mt S Al sl Al Sal St s eah M A b et

T. N i D~ it
P:' Vj‘
E .
p-’ -
& parallel. The rasult of this distribution of work across 2 N
. Al
[backends operating in parallel is that the linear zomplax- .
. A
EI ity, the sum of tne work done at all 8 backends, is reduce? :
s o

to an effective complexity, the work required at the ona

aa e

backend which does the most work. Assumption 5 is that the
number of locks to be sorted is evenly distributed across
the backends. Therefore, since each backend will 3o an

equal amount of work, the effective complexity is egual t>

a the complexity at any one backend,
| A. ASSUMPTIONS . *
- In each case, we Wwill analyze the worst-case <complexity ;
? of the current alternative. 1In order to simplify the !
analysis, we make phe following assumptions. ?
(1) Internal sorting only is considered, due to memory j
limitations. The backends are currently 15=-bit

minicomputers with a fixed, 32 K-byte address space.
Therefore, memory limitation is a real problem.

. (2) All records in a block are to be sorted (i.e.,
selection of records is performed by record processing
before sorting).

(3) Sorting is block-by-block (i.e., a block of records

selected by the record processing function is passed to
_ the sorting function, where they are sorted and stored in

- the secondary storage for merging).

19

o * ‘ P - e . - " ., DN .- T N e,
S e . L . - . S O . - . - .
R A S N T S P . T T T e S S S L

»
L,
DR T TN

A0 Ce % o,

NPT SR

PO T 9y ‘ol g PSP Y

e . Ly T T e T e Y, e . Lt e e g T TN T ETW TV TR eV
SOV TRTL TR

4) “Merge is 2-way. Thls is the simplest case. e w4ill
consider X-way merge in CZhapter V.
(5) The naumber of blocks to be sorted is avenly

distributed across the backends i.e., 1f fheres are ¢

. Dlocks to he sorted and B8 Dbackends, then each backend

sorts v/8 blocks).

’

(5) Some sorting algorithms of the order [r¥l2g -~
~wrnere r 1s the nunmber of records, will be used.

(7) Records are sorted 5n 3 single concatenated kev "i.e.,
only a singlie execution).

(3) The time to send a block of data across the b5roadcase
bus 1s an average time, which will be represented as 3
constant,

(3) The time to read (or write) a block of data from “or
to) the disk is an average time, which will bhe represented
as a constant, and is the same for the controller ani the
backends.

(1) The CPUJ time required for a comparison operation is

the same at the controller and at the backends.

B. NOTATION

In analyzing the time complexity, we will deal with
variables which represent the number of backends, the number
of records to be sorted, the number of records in a block,
etc. We will also deal with certain constants. For example,

according to assumption 8 above, there 1is some .constant

AR AR AL DA B A DA A G5 Bl i dn datan o s Aci s

“

LT S R S N S AR IR SR IR SR I SO N JFE R SR LW N T W E TN T T T T e e T Y S T T T T

which represents the time required to seni a 2l1ocx o7 I3ta

across the broadcast bus, For uniformity, we define the

following wvariables and constants to bYe used tharsuznout <2 |
analysis. :

. :
{1) 8 = the number of backends in the systen. #

§

{2y Y = total number of racoris to bHe sorted for 3 J

particular request.

(3) » = the number of reccrds in a Hlock.

4) » the number of Hlocks to he sorted a3t the &L - 2nd,

Yote that according to assumption 5 , b=V/(3%*r)., To
simplify the analysis, we will assume that b Iis a sower

of 2,

B s

(5) 1log : stands for logarithm to the base 2 unless

otherwise noted.

C. SYNTAX FOR THE SORT FUNCTION

The syntax of a retrieve request in MDBS is as follows.

N
!
[
r
t‘ RETRIEVE Query Target-list [BY attribute][WITH pointer]
g
b
; That is, it consists of five parts. The first part is the
[. -
t name of the request. The second part is a query which
¢
- identifies the portion of the database to be retrieved, The %
Target-list is a list of elements. Eack element is either
an attribute or an aggregate opérator to be performed on an q
‘ ' q
21 g
' |
: >
i A T A L L
B n’ s.m tata o' A A &% 0 S e AR A" e bttt v A aw a0~ . " woa

. P T T TNy TEYTET YT -

ate

-3

. - P . : . . _— C .
ibute, Tne fourth part 3f the raequest, 3V clzuse, is

optional, It descrines the whole alternative

(9]
. '.
L4
-
[11]

attribute such that BY DE?T means every Zepartnen:t in 1Aa

W

database. Tne fifth part of the request, WITH opointer, i

w

also optional which specifies whether pointers ts &n

retrieved records nust be returned to the user oor

o

|
in
b

3

orogram for later use in an update request which Is out

)

our concerns for sort function,

To perform tne sort function, we first need to ret-iava
the records that are relevant Lo the user ragies:.
Therefore, modified retrieve request can Ye used as 3 sv~tax
for the sort function.

With modified RETRIEVE request, we may consider tw>
different alternatives for a syntax to implement the join

function in MDBS:

1) RETRIEVE Query Target-list (ORDER_BY (Attribute_list 1))

2) RETRIEVE Query (ORDER_BY (Attribute list 1),
: _ (Attribute_list_2))

In both alternatives, the first two parts are the sanme
as 1in regular retrieve request. In the first alternative,
Target-list clause consists of the attribute names with

which the result of the sort function is given to the user.

ORDER_BY clause defines the function to be performed on the

{ retrieved records. Attribute_list_1 defines the list of
:

e

: 22

e

Tre v Rt T T T Tt Ty T s T T YT T TR T e P S ARCANICE G A ISR S/ Cai A et Al e Al Al Rl A |

attridutes' names with wWhizn *the retrieved reccris are
sorted., If there are T0ore than one attribute name In tne
Attridbute_list_1, then it be assumed that tne order I <n2
attributes in attribute_list_° gives the Srzer 2
implementation of <consequitive sort function on The

retrieved records. Attribute_list_? may ¢cont3ain eicna-

3

~
Ji

ectory Attribute(s) or non-directory attributes or 2:3%n,

The important point is tnhat e3ach attritusce i

attribute_list_7? must be an attridbute thnat ta

>
]

3
1]
O
«©

3
133
Wi

retrieved from Jdatabase obtain it.

In the second alternative, Atribute_list_ ! inzluies <n

th

attribute names with which the record are sorted. The orie-

of performing the sort function on the records is again tn

19

same as the order of the attributes Ziven in
attridbute_list 1.

Attribute_list_2 includes the attribute names with wnizn
the result of the sort function is given to the user. In

other words, it can be thought as a target-list.

T S D el R T S N AR B B S TR & W " S al i S T e R b e

I',_ - - o - A A FTFTYTER T ETY T TN IR
r':\'
¢
g |
.
Iv. HE IS3SYZ OF DISTRISUTION OF FUNITICMNALITY
[
In analyzing the distribution of function, ~e Wwill

assume that the sort function consists o9f two phases: %a=2

REMNN - DOAEOAE |

internal sort phase and the merge phase. Because >f nmain
memory limitations, w“e reqguire that the rec¢2rds Tirst ce ;
sorted block-by-blocx, The sorted 2lo2ks are 3ngred i i
temporary storage In the secondary nenory., Tnhis is lone oy é
the internal sort phase, Sorted HSlozks Will than 52 :
R
accessed from the secondary storage and merged. This Is donz)
:0 by the merze phase. The time complexity of these ¢tuo }

processes wWwill bHe shown separately. At the end of the

analysis of each alternative, the total time complexity will

be given.

e will consider three alternatives regarding
distribution of function through the system. Since MDBS
consists of two type of functional units, namely the
controller and the backends, the possible distributions of
functionality are the follewing;

A. The controller performs the sort function.

B. The backends perform the sort function. .
C. The controller and the backends share the sort

function.

9 4
24)

1

“d

K

‘ 1
- S e A

= e s W ’ sl -, R P R L - N {

A,

)

1%
t
4]
§e

We Will analyze these three alternatives in 2

following sections.

A. THE CONTRQOLLER PERFORMS THE SCRT rUNCTICH

In this alternative, the backends perform no additionzal
functions. All of the sorting is done at the controller,
The Ybackends perform the selection, orojection, anz
aggregation operations specified in the RETRIZVZI ra2gi1es<,
and forward the result records to the controller. The
controller accumulates tne result records from all 27 tne

bacxkends, and sorts them in the order specified :in ==

[17]

RETRIZVE request bYefore forwarding them to the requestar.

There 1s no change in the functionality of the bacxkenids.
Therefore, no modification of the software of the %ackends
is required. However, at least two oprocesses in the
controller will require modification. First, the request
processing process must be augmented to recognize the
ordering specification of the request, and to forwa.< Lhe
ordering specification to the post-processing process. Th~
post-processing process must be augmented to recognize that
sorting is required, and to accumulate and sort result
records for a request according to the proper ordering
specification.

First, we assume that all blocks for a query have been
accumulated and stored in the secondary storage of the

controller. The controller will have (B*b) blocks to sort.

25

T T s s . e . .-

L - . i -
L TG S R T T Y. S R S S S P L ot P A AP AP T s e I

R e R D A N e Mt S Sl S S/ i i AR S i i B BN i o A S v St S g i p——

of
.
. 4

4 £ s ammE s v v

The internal sort phase for each Hlogsk Wwill raquire
J(r*logr) time, where there are r records per >Sl32K. The
total computing zomplexity for the internal sort shase tine

is, then,

O(3*p¥r¥log »),

e MMt s b s A AR YE s s .

2*3%*H 3ccesses to the secondary storage are raguiraed

during the internal sort phase. 35S0, tne access 2omplexity

of the internal sort phase L3

. AL . s .

0(C 8%y). R
- - :
| ¢ Since there are (3%b) blocks at the controller, log(3*hH) i
- will be the number of passes over data for merging. Zach k
. pass will require (B*b*r . 1) comparisons. So, the S

computing complexity for the merge phase will be

(log(B*b)*(B*b*r-1)), which is in
o(B*b*r*ﬁog(B*bﬂ).

2*B*b*log (B*h) accesses to the secondary storag: are

required for merging, so the access complexity of the merge

L phase is
' 0(3%¥10g (8%b)]).
! Therefore, the worst-case computing complexity for the

sort function is

26

-y R TETE YU W T W — v — v —w -y .
P SR M TETET TR YT T i N e N TR T N T T T T T

.....

.- 2(B¥*p*r#%(log (3*b*r)),or

OC N * log N),

b and the access complexity 1is

J(B*b*log(B*b)), or

CERL L L. L

O(C (N/r)*(log(N/r)).

In this case, since all sorting and merging is Zone 'y f
one processor, the controller, the effective complaxity and ;
the linear complexity are the same. !

2 D — L
8. THE RACKZINDS PERFORM THE SORT FUNCTION]

J

Here we consider two strategies. In the first, all of i

the backends share the internal sort phase, and the merge

Pt

phase is performed by one or two backends. In the second,

each backend sorts and merges the blocks of data resident at
that backend. The backends then share the work of merging
with B/2 backends performing the first partial merge, B/4

backends performing the next partial merge, etc, L2t us

examine each of these strategies in datail.

1. All Backends Sort, and One or Two Backends Merge

L In this alternative all Dbackends perform the q
internal sort phase individually. After the internal sort -

phase 1is complete, one or two predetermined backends

complete the process by merging all of the sorted blocks.
So each backend sorts b blocks of r records. The

computing complexity of the 1internal sort phase at one

27

DR AN aen St A a0 Al o
. Bl

« ¥
.

T T L L T T T N N W Y Y T Y T T Y T e T T AN ok 5l A med a0 A s el g ey reyey

hackend s

D(o*r*log r),

and 2*H accesses £o the secondary storage are regquired, sO

the access zomplexity of the internal sort phase is

20 9).

This is the effactive zomplexity for sorting. Since thnes wor«
2% sorting is snhared among the backends, Je use £is
effective 2omplexity in our analysis.

Next, the sorted Dblocks of ~ecords mush o2
transmitted along the broadcast bus to the one or twWo

backends which will perform the merge phase. Let us take

the <case where one backend does all the merging. Then, if
there are B backends, (B-1)*b blocks must be transmitted.

The communication complexity is

O(B*b).

41so, B*b accesses to the secondary storage are required to
store the transmitted blocks at the backend assigned to

perform the merge phase. This requires the access complexity

O(B*).

The backend selected to perform the merging now has
(B*b) blocks. Merging (B*b) blocks at the backend requires

the time of (B*b*r-1)%*log (B*b). The computing complexi.y is

28

P SR i W PO “a S LR W o

2 m e ik mia m— - e—m

m—

A e s s s A e—m A e —

et —

TATY T TeTY TN
e

Ct 5

M T e St

Chufc IAS s A3 0 S Bde Aon Sen 4 S0 S S & 1 A NEA A ikt el Aol S Al i ARt A A I £ e A e A e s Pl e) o

3(3kp#re Jlog(B*b)T) ,

since 2%3#¥ph*log (B*H) accesses to the secondary storage are

required, the access complexity of the merge phase at tals

hackend is

3¢ 3%5¥lag (3%5)]).

(@
by
«

Therefore, the total computing complexity for
sort function is
3(b*r*(log r + 3¥log (B*bﬂ)),
the access complexity is

O(b*B*log (3*b)),

and the communication complexity is O(B8%b),

2. All Backends Sort Separately and Share Merging
In this strategy,‘ all the backends, as i1 the
previous section, share the work of sorting. Therefore, the
computing complexity of the internal sort phase 1is, again,

the effective complexity,
O(b*r*log r),

and the effective access complexity is 0(b).
Then, each backend performs the merge phase over its

own b blocks. This requires the computing complexity of

29

AMCad-atel

et ot

TR TR TR TR

the manner shown

!

b

'® 1. step

3 2. step

. 3. step

- 4., step
5. step

llog B| step

Adiad - g v g
b VRN T N T—— DA QANA G-I AN Sun gt ns Jew are s sns g ang e s e

and the access conmplaxity of
0(n¥*log bl).

Next, the merge phase is shared bdy %tne

in Figure 4.1, First, 8/2 b3

a merge 2ass, 2ach narzing 2%¥5 5locks.
perform 3 merge pass,

is repeated 1og 3 times. Yow let us

NN N N

(

~

eacn merging 4%b blocks.

)

JoleR 3t

complaxity of the merge oghase step by step.

Q¥pkr - 1)* log (2)
U¥p¥r - 1)* 1og (2)
S¥p*r - 1)* log (2)
16%b*r <« 1)* log (2)
32%pb¥r - 1)* 1log (2)
.

agd]

2 %p¥r _ 1)* log (2)

The expression for the computing complexity

phase, then, as derived from the above, is

] 0351
O(b*r*(2)).

Again, this is the effective complexity.

30

Dalken

of

the

(i

[}
W)
7

)
ba
U

ot
)
.

merge

v
Y ¥

Ty

At each step, each target backend first stores <thne
hlocks transmitted from their neignbor backends bhefore tne

merge phase starts. This requires the access complexity

193]
2(b*2 °).,

Since the merge phase is performed in log 2 stieps,
the access complexity of the merge phase is derived 3s thne

following.

1. step (2%p)Y*1og(2)
2. step (4*p)*log(2)

3. step (3%*b)*log(2)

r
0q®

log B step (27 #p Y®1log(2)

Therefore, the effective access complexity of sharing the
merge phase for this alternative is
Mg 5]
0 b*(2 27),

At each step, one half of the total number of blocks must be
transmitted over the broadcast bus to the target backends
for the next step. Since there are log B steps, the

communication complexity between the backends is

0(8*b*|10g 81).

31

|
|
|
1
|
|
|

S K

ol AR e

LR B D D R R S0 24 TSR MM R Al A Ak Sl S A R A SR

t o
O. [a] [}
€ tat tet
1 b - V-
w [Val (Xa)
it
mny
@ .
Y
i
o ————

5,
b

22

f

¥ ~1_

.

: o)

»

]

[

a

)

.

.

.

L]

|

.

[. IR » -
AN O S SN - " Fay

STEP
LogB

- '.N"“ .
e B i e ke

32

N WAy

SN R
. R
NI DU G W Wy

R
«® e e, . o .
o T e)

Performing the Sort Function Step-by-Step

at the Backends

w e
' Bdndh i i

.
—
.
<
@
1
-]
o
o—
[T W

ay e e et
e -

»

e

P Tw
O

S
P

v

.
LRI

.

N
C)

s

LA Lt
® -

.
e

T LASMMR IR~~~ IvIr s
» . “ . s, .
K . R EAC

5, R

.-

A

IR L T R 1 At e M A A S Sl A A e Y

C. THE CONTROLLER AND THE 3ACKXZINDS SHARE THE SCRT FuUNTITION

Ne examine two strategies for distributing the sorting

-

cr

ne firs

™

function bhetween the controller and the backends.

ct

strategy is that the backends perform only tne intsernal sor
phase, and the controller performs the merge phnase. The
second strategy is that the backends perform the internal
sort phase and a partial merge, merging all of the recuris
in the blocks stored at that backend, and the zontrolla-
completes the merge process. Let us examine each of tne

strategies in detail.

1. Backends Sort B8lock-by-Blocx and Controller “2arzss

Every backend performs the internal sort phase on
its part of the file. Fach block is sorted and forwarded
directly to the controller for merging. The time complexity
for the internal sorting of a block is O(r log r), where
there are r records in a block, The effective comput.ug

complexity of the internal sort phase is
O(b*r*log.r),

where there are b blocks per backend. 2*b accesses to the
secondary storage are required, so the effective access

complexity is
0(b).

The sorted blocks are sent to the controller via the

broadcast bus. This communication cost is included in the

33

S . Pt e I
- - . S Pl }

. o Lt . . - - -
sl treilimsorfiptn it dbedbod S B - B . @ . A" . 2 wm e m oom™ e

A SO A AT Pt AO Sl S il SN S S arel Ssiis o s Loy

N

vy,
’

q ;
P < [
L~
[“f 208t 5fF 3 3TTRIIVE operation, and is n20% an averhnezd 2os:

h.': ,

- for sorting. However, tne zontrollar must sicre [3%%)

?: 2locks before thne nerge pnase starts, This regquires o2 i

3(B%*p),

The controller now nas 2*b blocks o te nmerzai, Tha

NS - IR
4 N .
:

- =

2omputing complexity for a 2-way merge 1s {

? 1)), waich is
p
:

!. 2#3%p*15g(3%9) accesses to the secondary storage are

D([%*o%*r* 1o5g (3%*¥H)),

required, so the access complexity for the merge phase is

. .
O(B¥*n¥log (B*d),).

So,the computing complexity for this alternative is

O(b*r*log r + B*b*r*'log(B*bﬂ.) or

OC b*r*(log r +.log(B*bﬂ)),

s

and the access complexity is

0(b*B* [1og(B*b)]). q

2. The Backends Sort and Perform a Partial Merge, and

the Controller Performs the Final Merge *
In this case every backend sorts its part of the

requested file, and the controller merges those partially

' | 34 ‘

-

sorted fils parts teing sent from every Zackend. 3Since tne
backends perform thne internal sort pnase 310CK-2y=21234, tne
effective computing complexity of internal sort znas2 (s

O(b%*r*log r).
Assuming tnat every internally sorted blocx is stored cack
into the secondary storage, the access complexity (s

2(C b).
Now each dackend merges thne sorted blocks resident 3t tnas
backend, The number of passes over the datz required T2or-
the merge phase 1is 1log b. "Therefore, the effective

computing complexity of merging b blocks at the backznd is

(b*r-1)%*log b, or
014 b*r*flog b]),
and the access complexity is
* 0(b* ﬁog o).

So, the computing complexity for the internal

and merge phases at the backends 1is
O(b*r* (log r + log b)),
and the access complexity is

0(b* 1log bl).

35

sort

M
.
y
L
'T
y
]
y
)
%

E Communization of these Hlocks £o the controller is, 3z3ln, .
r .
' . , . . '
p - not 3 part o2f tne sorting cost. dcwever, Since e .
transmitted bHlocks are to de stored befors tnhne ~merz2 7332 :
|
starts, this requires the 2access complexity .
2(3%*b). .
) «
!
The controller, now, will nave 3 runs 27 s2-<2fd .
b. .

records £to be merged. The logaritnmicz value 2§ tne numb2ar o7

q :

ﬁl Yackends gives the nundber o5f passes over data, 1oz 3 32
- the computing compiexity of tne mergz2 onhzsz 3t naa ;
. controller is ;
g : J
, ¢ Q(B¥*p*r*]1og B]), \
. Y
b‘ . . J
- and the access complexity 1is 4
_4
. \)
O(B*b* log Bl). .

D, EVALUATING THE ALTERNATIVES
In the previous sections we have presented five

alternative distributions of funtionality between the

controller and the backends, In this section we will

analyze the tradeoffs of the alternatives. Table !
summarizes the computing complexities of the internal sort

and the merge phases, the access complexity, and the

¢ communication complexity for all five alternatives.
qe 36
<

3

g NOT1ONN{ 140§ 3HL 40

[SNOTINAINISTQ IATLYNYILTY 3HL ¥O4 SITLIXITdWOy IWl| 3H] T 378v)
s ¥31108INOY 1) ‘SANINOVG :Sg
! ! v b —_
., m —— . AN, ’" ﬁ, . E —_— —_— ..n ¥ 11y

. [T I CORIN a0 _A) 1)
3) ‘)

a L _ o . o o -

2 mﬂ.m ﬂ_lf_iuo _Qsﬁ?f._vv“a_vﬁwﬁ AAnd—“.ﬁ.w_“ %jvo, ﬁLoo_:.Jgo ar
I]

5 o (19)0 o ~_§5Dé.¢ — {ibyeonae)o T | Fr)of Ty
. M ! |
3 . L w S S — |
! , i |

C L et — i) = [0S — |y
SR e) s¢ | 9 sq) sg | 7

. wozozs JHL INOWY, JHL v JHI :\.-. . mE 1V JHL 1V JHL 1V JHL 1Y m

: . | ISYHd 30¥FW | 3SYHJ 140S TYNYIINI| £

: ALTXT31dW0) ALTX3NdWO) SSTOYW b o L -

: NOT LY INNWWO?) ALIXITdWOD ONILNAWOI s
e e Lo

[P

'
‘r
‘
O
J

~

Lealat

oviboooniten

- e v e . T . m TR TR T T T T L BTN TV T O Y T 'Y N W™
- - . R e A e A I I S A AC R e o Sl Ml s L A QAL A o AN SN A S S SNt e SutLADe aun o |

&5 ‘
- o
! «
I~ . .) . , .
Alternative 1 renra2sents tne distridbution of funzscisn
sresented in 32c2ticn A of this chapter. The zontroller

performs all »f tne sorting and 3all of <ie mergingzg,
Alternative 3,1 represents the distrioution presentei in
section 3.1 of this chapter. All of the dacxkends nerform the "

sorting , and one or two bacxkends perform the merzing o7 ..o

Y, (s s amn e 34
g ~

(G

na 4ig-rin.
ne 215

sorted blocks. ilternative 3,2 represents

of function p2resented in Saction 3.2 of

.
o

LR B a8 an o g

sackends perform the sorting 3nd snare the merging,

Alternative Z,7 reprasents tne Zdistribution o

—

presented in Sectizn .1 of tnis chapter. All the %3ci2":Zs

perform the sorting and the zontroller performs the mer3iing.

Finally, alternative (.2 represents the distributisn of

function presentad in Section C.2 in this chapter. 3ackanis

L IR N IR G STt e ana

sort and perform a partial merge, and the controller
performs final merge.

The complexity formulas of those both accesses o5 fhe

secondary storage and block transmission are given only for

the additional accesses or transmissions necessary £0
complete the sort function. 1In other words, accesses to the
t. secondary storage to retrieve the records in order to
Ef perform selection and projection before the sort function
i- starts, and transmission of the blocks from the backends to ﬁ
:; the controller are not included. In general, each y
alternative, -except A, has the same time complexity with ﬂ
)
L 38
e

Y AT T iRt T i ety hal Bt e |

regard Lo the ia%ternal scort phase, Therefore, we wWwill focus

2n the other co.urns in comparing tne alternatives,

Tirst, let us examine alternative i, where the :

controller performs all sorting and nergiag. The computin

[W2]

complaxity is O(3*h*r* 1og(3%b)) for sorting and merging .

(B*b) dlocks of r records. As easily seen, this alter.ative

is contrary to the design goal of the minimizing consr~lear

function. Therefore, we will eliminate it f{rom furcner '

considerations.
Vext, let us examine alternative 3.1, where all 2ack27s

berform the sorting and one or two backends perform 72

merge. The backends perform all of the work of sorting and
merging. Even though this alternative seems £0 me2t the
design goal of minimizing the controller function, it is

contrary to the second design goal of minimizing the message
traffic between the backends. The communocation com.lexity

is 0(B*b) for (B*b) blocks. Clearly, for queries involving

AN Ae s otres b s RN, . s bt L4 SSRGS w8 e oeatew

a large number of blocks, the communication overhead will be
"hizh - and bus congestion may result. Another disadvantage is.
that a single backend performs the merging. Also, when the

single Dbackend 1is performing the merging, it may delay the

Y P S

processing of other queries, thus causing a decrease in
system throughput. Because of the communication overhead f
and the potential for decrease in throughput, we will also :

eliminate alternative B.1 from further consideration.

Too.T R R Y T e - 50 -0 0 /rrT iTEm AT e T T W e,y L s
- .. Dl N N e \
- S e W Y T T T e s R AR e WS ba i it Sed S Bk s 2

gf Next, wWwe zonsider alternative 3.2, Wwhere all 3zackends
é{ share tLthe sor:;ng and the nerzing. The communlicaticn
:1 complexity is O2(3*p*log 3) for (B%5) DlocKks., The '
; communication complexity increases logzarithamically with 3, ”
E the number of backends. Tlearly, tnis alternative s also
ii contrary to degign goal of nminimizing the nessagze trefifi: .
3 vetwaen the backends., ilso, the zomputing complaxity for < e !
- .
5' mer3e phase 3nd the 3ccess complexity incre2ase axocnentiszlly
I by 129 3, where 3 i3 the aunber of bHackends., Tleariv, «~iltn
{ this alternative, 1increasing the naunber 57 lackands GilL
;
‘ cause longer response time and Jjecreassd throcughput., 2, we
:. #ill not consider 3.2 to be a desirables distribution of
function, .
£ This leaves us with alternatives C.1 and 7.2,
Alternative .1 is that the backends perform the s)riirg i
block-by=-bloek and the controller merges all the bHlocks. f

Alternative C.2 is that the backends perform the sorting and)

a partial merge, and then the controller performs the final

merge. Neither alternative incurs transmissisn overhead.

TN .

Therefore, the design goal of minimizing the bus traffic is

met. 4

In both alternatives the work of sorting and merging is R

}: shared between the backends and the controller. Alternative E
i C.1,however,does involve more work for the controller th.n
alternative (.2, Since the backends perform the .udain

portion of the merge process'in C.2 the controller's work is

| a
40

1

1

0 ° L

e T T et et - -
PGy A etk RPN Lt L., .. o . e . B

_ I Dndeeediensnt, At - - Y Y N s o L= . L [-

I-V‘ e B R Ak e M e A S A N e taa e b todonl kD el et Gk

reduzed., 32n the other hand, the workload of the backends is
greater with alternative C.2, than with alternative (.1,
?: Let us analyze these two alternatives with respect to the
- desizgn goals of minimizing the <controller functiosn anag
iﬁ; maximizing the w“ork done by the backends in the next

section.

{5
4

. CCMPARISTNS 3ZTWEEN ALTERNATIVES C.1 AND 2.2

L]

aamely Z.1! and C.2. In comparing these twWwo 3alternatives, w2

i

3
H‘ In this section Wwe will compare the two alternatives,
!

b
b

(94

will analyze computing complexity 2and access <omplexi

0

separately. Since the time to do one disk access is much

longer than the CPU time to perform one comparison, sepsarate

UL B4 it e

analyses will be more meaningful.

As 1s snhown in Table 1, the internal sort nAas-
computing cqmplexity is the same for both alternatives.
However, with alternative C.2, the backends perform a part
of the merge. Consider that, for both alternatives, if the
number of blocks is held c¢onstant, 1increasing the number
baékends will cause the number of blocks to be sorted at one
backend, b, to decrease., This decrase 1is linear work respect

to the number of backends. Therefore the computing

complexity on the backends decreases linearly with an
increasing number of backends.
However, meeting the amount of work done by *he

controller’ function 1is <clearly 1less with alternative C.2

41

Ij‘ ST . i B N A N A A S i e M oot A i a nl ea o o v
E;
- f
5 than ~ith alternative 2.1, due %to the fact that the Hackends :
b .
9 offload some of the worx of merging from the 20ntrollar. .
A .
n Consider the case where the total number of recors “Nz3¥n¥r-) ;
s is neld costant. The computing complexity of alternative Z.°]
P «
] will not wvary with the number of backends. For the :
_i alternative <C.2, the computing complexity 2of the margi-sg 3% i
F- the sontroller wWwill increase logarithmizally witn the number ?
- of Ddackends., However, the computing zomplaxity for merzinag :
Li at the controller will always be less for %the alternative =4
* C.2 than T.1 by a factor of (3*5¥%r*log 5)., Since 5 i2-r=2as523 ?
4 as 3 increases, the z2ain will be proportionataly small2~ 33
[i 3 grows large. Clearly, however, the 3lternative .2 hettar
L fits the 3goal of minimizing the <controller funat.iou, ﬁ
% Clearly, a substantial reduction in the controller ~orklrad
will result from assigning more functionality to the <
backends. ﬂ

Now let us examine the effect of increasing the number

of Dbackends. We will analyze the computing complexitiss,
access complexities, and communication complexities of bHoth

alternatives. Let us examine the case that the total number

of records, N=B*b*r, and the number of records per Dblocks,

r, remaining constant, while the number of backends, B,

increases.

«
.
oL a R
- '.-.‘ S . --. . - = - .. . - LT . . B
ot - ” - . N 2 -7 f . - te - - - e
(oA Aaies At ala’ o + PR ST N - St e, R - e
tnah LN SN A - - " e e .

Tor alternative C.1, the total computing conmplexity .o

b¥*r#log r + 3¥ph#r#1og(3%H), or

N#(log ¥ - ((8=1)/8)*log r), since bz=N/(3%*r),

This obviously yields decreasing results for increasing

T

values of B. This reduction,however,will nave mitor affec

T

~

¢

on the result of the c¢omputing complexity. Furtner,
reduction can be ignored for large N values.

For alternative C.2, the total computing complaxity is

DRr#¥log r & bD¥r¥log H 4+ 3¥pEr¥isg 3 0 or

N*((1/8)*log N + ((8-1)/B)*log 3), since b=N/(3%-),

(1/B)*log N obviously decreases wWwith the increasing 3.
However, ((B-1)/B)*log B increases for increasing B values.
There 1is some Dbreakpoint for where the effect of the
decreasing term has more effect than the increasing tera.
Let us assume that we double the number of Dbackends. The
difference in the total complexities between the case that

the backends are not doubled and the case that do double is
N*((1/(2%B))*log N =-(1/(2%*B))*log B -((2*B-1)/(2%8))).

As long as the condition, log N > log 83 + (2%B-1), holis,

the total complexities will be reduced. So, if the condition

28-1
N > B*2 holds after doubling the number of backends, then

the computing complexity decreases.

AR A A e T ~ A A A" 4

DA A O i AT A A St Tt e S B e 8 O RS "l A A i At e

3 C
. How, let us examine “<he 3ccess <comolaxity. Tor the -
3 "
p . -
. alternative C.,1, the total 3access complexity is "
. b + 3%*HhR1og(3%h), or 4
8 N*((1/(3%*r)) + log(N/r)), since »5=N/(3%9), .
p 0
b .
Clearly, this complexity <decrease 3s 3 increases. Howevar, i

the decrease st¢ill nas nizor effect, espezially for 2 lLargs

N,

The access complexity for alternative 7,2 is =
']
b*log b + 3%b*log 3, or .
7
(N/r)*((1/8)%(log N - log r) + ((3-1)/3)%*log 3). i
9 .

' Again (1/B)*(log N - log r) decreases , but ((8=1)/3'%is5z 3
increases as B increases. Let us again assume “hat w2 Joucl?2 N

1

the number of backends. The difference in complexities zoing

from B3 backends to 2*B backends 1is

(N/r)®((1/(2%*B))*(log N =-log B =-log r ~2%3 + 1)),

As long as-the condition, log N > log B + 1log r «+ 2%B.1,
holds, the total access complexity decreases. So, if the
28-1

condition (N/r) > B*2 holds after doubling the number of

backends, then the total access complexity decreases.

4y

- - - . . . - . ro. . . . N PO
- . « - . . - -
. P A - . - . -t
LN o« T, . “ - - . - .

PRI TR AEPEAS . . o le e
5 e e LI S - - A . LI CI
WA SN T Wl IS R T P R SN

o -
PPN RPN DA G, TR A T T

Te e gt
I S g i W W

o

DediRACRIAK
h

v

LAbe e e e ae 4

-

AR A N P E S e T AL At Vet Pal S Sl e Sl Al S Ak Gad St Al JRd And Andr Aadl S A
. e W -

Figure 4,2 1illustrates “he computing ani 3csess

o
"

complexities for both alternatives for H=2 and Y=2 an:

(Y]

rzAl4 as B increases. 1is is easily seen, alternative .

3

always better than alternative .1 for meeting tne Zasig

goals of MDBS.

., RECOMMENDED DISTRIBUTION OF SUNCTIONALITY

In the previous sections of &this 2haptsr ~2 f1ave
analyzed the alternatives of the distribution 2f tn=2
functionality and shown t- e tracecifs and the aivantzzas :oF
each one, Briefly, alternatives 4, 3,1, and 2.2, ar:
contrary to the design and implementation goals cf MTBS., Tn2

other two alternatives, C.1 and C.2, are pertinent for our
concerns.

At each comparison for alternatives C.,! and 2.2 ia rhe
previous section, we have shown that <C.2 is Dbetter
alternative for large number of records. Therefore, we
recommend that the functionality be distributed 1in the

following manner: the backends perform the sorting and

partial merge , and the controller performs the final merge.

45

TETET T T

Y B

LA A peaiCote B

T ———"s;

A Bl e B i S

A

A0 mae

b AT a8 A~ R aaanh Sodk afn - at

ST TS

91

—~- v vy
;v
~h -» -l Y o

Hl S

A | SAMTEUSII)i €} D

Chint
17

Sy puP [T SOALIPUAY Y A0) K11xddwo) Butynduo)
(s1) ONADVE

A 8 L4

*2°p aanbiy

0 ---0--- -0

D

-.AIIIIv. IIIIII .Lv

T | T 1 7 1

A A A A D

ST SN Y J S » NUPEEUE & U ¥
S mmw«

.-.!.-C,.w
R ©

—tt i L g

4) I A A

R ey

gOLxL

gOLxZ

—
—
=
m
<
—

e
x
—
(@]
w
p -3
x
—_
o
w
w
x
—
o
w
-

46

TR T AT

ST

)

= YT

1"—:‘ ‘." e

%

9l

2T PUP [T SAALIPUARYY 40} »ixo:_:_ou $Saddy g p aanbyy
Al (1) aNIAOVE g b

[Sty S S WY W WISy SRR PRI T N R . . 1‘

)
.
’;

R e e

S
e

]
T
!

gOLxl

LR & *®o-. L AR EEEEEREE . SETELEIEN L Y TR L I . P . “ ”.—,
=3 P

™ =~ R

’ = s

n v

=z 9

— F

.

— ,

. v 4

01 xZ

g12=N ‘279 N
c1¢=N ‘') —— e
w (2N 2 e .- Ry
. pre=N 1°) v -

S, T ETe TR T e TR TR WY

H Gre=N ‘20 - e
. gre=M ‘1’3 - b e
. &

: +-- oo + ' bt ' t SR R B t R e U 2 I L
q Q, o

‘®

ah

rryerree
PN
P

~

——

i '!‘v ;

,.
@
o

B R M “ S Poe i S

V. DIFFERENT ALSCRITHMS FOR THZ SORT AND YZ33:E

V)
s
(97}
i1
n

In our previous analyses, w~we made Lthe assuingtizn <nzEst
records are sorted one Dblock at a time, using some wall-
Xnown sorting algorithm with time complexicy 3¢ Z/ir*_5z -1

where r is the number 2f records in

chapter, ~e Wwill 2xa3amine the effect O5f sorcing ~2227313 -

[}
«

5locks 3t a time, and the effect of using 2 x-w~37v "er

A, SCRTIVNG WITH n 3LOCY3 AT i TIv:

In this case, we sSort n bdlccks at 3 time, Ther2 ar2 <42

197}
T
W
Y
1)
[V

cases to consider. First, if the sorted Ylocks ara
back into the backend's secondary storage, our analysis will
De the same 33 the previous one, except that - wn2
coefficients of the computing complexity formulaze wvill ©De
proportional to n.

The computing complexity for n~blocks-at-a-time sorting
is O(n*r*log n*r). This process will be repeated H/n times,
Therefore, the effective computihg complexity is ‘O(b*r*log
n*r), The access complexity remains the same, 02(5%). Since
there will be %/n runs to be merged, the number of passes
over data becomes log (b/n). Computing complexity for merge

phase, then, will be 2(b¥*r*log(b/n)). Access complexity

for the merge phaselis O(b*log(b/n).

u8

v

il

T—TTTw—y

T, s, wT gy W e T e vy -
.o - T e TR N RACAEAE A aAR ATl A e A " Al Jal e 4 Y Bt - 0 v

Table 2 summarizes time complexities for toth Hlz1i=-by-
block and n-block-:z-a=time algzorithms, As is5 easil;, seen,
the computing comg 2xity for sorting n1-5lock-at-3-tine
algorithm is (b¥*r*log n) times that for sorting »lo02k-by-
block. However, the computing complexity for merging is less
by (b*r*log n), and the access complexity is less by
n).

Tigure 5.1 shows the effect of increaéing the number 27
backends on the throughput of the CPJ when sorting n-%
at-3a-time., The x-axis shows the number of dackands, an
axis shows the computing complexity of sorting 3ani merzi-g
at the backends., The y-axls is shown with log scale.
values were derived as follows. The complexity formulae are
expressed in terms of N, the total number of records to Dbe

sorted, and B, the number of backends. The computing

complexity required at the backends is

(b%r¥%*log(n¥*r)) » (b*rﬂlog(b/nﬂ) or

(N/B)*(log N - log B), since b=N/(B*r).

Using various values of N, varying B from 2 to 16, we arrive

at the curves shown in Figure 5.1.

49

PSSP . .. P R)

BERAL ik ot ML A s 8 _4 _a 2

P

i

m. M I RN A R F IS Vi T T T TR Y et sne N g ~ Ao T G 111.*‘ ﬂ.. J
2 ’
] :
b’ i
v. A
. B
-w]
., .,
: *]
w.. .._
P, h
8) o ...1”,
W IWE[-V-1Y HI0TG-N WHLIHO9IY *SA NIOTG-AE-XD01g WHLINO9T 7 37av] B
“ o ¥311041NO) 9 SANINIVE :Sq - ,mn
“. . a _N et <
N U~ u . .u

] — | @)l Gl (ghatao| Cibpaal] e g, E 1
) I =]
) | @ (4 =¥)0|(4 o_t.g.vo“ (ate)2ea)o — Ck ..?m 2 w
5 _ ' o
3 —-— R Ce e i S -1 -- -
g A EEE) sq) s) sa | Z 5
. ONOWY| INOWY (| 3HL LV M1 1V JH1 1V JHL 1V JHL LV JHL 1V m -
j . N -, et vee e an e -\.-A
5 ASVYHd 3943 ISVYHd 1Y0S TYNYIINI u.nm : @
g ALIX31dWOD ALTX3TdW0D SS3IIIY S 1= R
ﬂ“ NOT 1Y) TNAWWO) ALIX31dW0D 9NILNdWOD = R
. S ST e e e e e o
: R
.]
. ...“,L
AN nb-l.».lP.b.P.L.Lf..&l. o »L.Lp b

EREREAR] T s

he e i Al
*

AT MR WY

SRR RS [T A AR AR Y Al e A

AL A

257 OALITPHAO Y YTEM But oS dogq-u Jo £11xddwo) butindmo)

Al

(9) AN NIV

8

14

"1°G 24nb1 4

T
- €
-

T

el : S v -
'

¢ A

S
(*I[‘ll:*.

T

..
Y
.JT
Il
¥
- f—
- »

e

yO1xG

cOLxt

(;OLXZ

01 %3¢

LIND 3WIL

51

PR IR SR

DMAEIORPIIN A i i o8

PR
e

.

. e
ohill

Ll et o

.

vlivvjvvl

At A

T TR VLY TUwWTTS Y - g "
* AY ey e N T O O T T Ty

8. THE ¥4-WAY MERCE

Jp to this point, w~e nave utilized 2-~43y merge pricess
for our analyses., As we recall, the Time 225mplaxity 27 merze
is dominated by thne number of runs, i.e., %he numder o°F
blocks which are already internally sorted. The logarithmio:

value of the number of the runs gives the aumder 55 9225325
over data, In 2-43y mnerge, the number 57 z3ssas is Sna2
togarithm base 2 5f the aumber of runs. ¥ we ingrease
order of the mer3zs to «, for X-w3y merge, M2 numsar o7
passes Wwill De tne lozaritnm to Tne 2as2 < 27 %na3 aumter o7

rans.

Let us 2xamine what wWe g3ain Wwith this reduced number 5

{4

passes. We assume that all runs are of 2qual lenzth. T

notation used is:

R = the number of runs = %/n
log x = logarithm %ase 2 of x
LOG x = logarithm base k of x

First of all, our access time will be reduced.

In 2-way merge, access complexity is
0(b* .log Rl).

In k-way merge, access complexity is:
2 (b*'loc R1).

Figure 5.2 gives us some information about the reduction 1in

access complexity for a fixed number of R}, and a fixed

q
number of blocks, b, as k increases. The x-axis shows ¥,
- where k 1is the number of blocks merged at one time, The
4
52
q
. " RPN 3 e et e . PRI e N .

W UL

'
«
«

R SO . ORISR | L o

4

o

e

IR A
0

DL AL
v

SSadiitn diate dinse, St St M el St] LA R R S A A SR AN Bta_ e I S -The ~Mn Yt A Auty IO T N N Sl S A A Al Aie gy

y=axis is scalad zs maximun where 1 1s *ne 3ccess

complexity for the 2-way merge. The ratio of X-way merge

access complexity to the 2-way merge complexity is zrapn

b
LA

{7

(V)

here, ror lnstance, the access complexity for 3 4-yay ner
is one half of that for a 2-way merge.

On the othner hand,of zourse, increasing ¥k ~il
the computing complexity, or time that I1s necessary <:

compare the values., In tne 2-way aqerge, fthe 2ompuUtin

(VY]

complexity 1is

2(H%*r* log R).,
In «_wWay merge, computing complexity 1is

2(H*r¥(Kk-1)%* LOG ﬂ) or

2(o*r¥*(k-1)* (log 3 /log k)i) ,

since LOG(R)= log(R) / log X«.

Figure 5.3 shows the increase in computing ~—omplaxity
Wwlth regard to k for a fixed R. The y-axis for t- 35 formulsa
is scaled starting with minimum 1, where 1 represents the
computing complexity for a 2-way merge at the backend, The
ratio of k-way merge computing complexity to the 2-way merge
computing complexity 1is graphed here. <or instance, the
Y-way merge computing complexity is 1.5 times that of the

2-wWway merge computing complexity.

53

.- 1 ® ® . .7 %7 T T Ty T T T T Y, TS T a
LY TR N RN RN I N A M A AL S LA AL AL & S B it AR na ard sre i e s SR R

- As seen from Figure 3.4, the 3ccess 221plavicy radyces
o rapidly wup to 43% of <thne 2-way merge zomplexitv 3%t k=3,

s
t
<
5
[V}
w
A
[0}
<
(9]
v
4
(PN
N

i
T .. .

:! dowever, at this point the computing 2omplexi
After this point, k>5, the raduction in.access comalexity
g becomes negligible relative to the increasing <co2mputing
hi complexity. Therefore, Wwe can take the point, k=%, 35 3n

- implementation point for the degrse of the nmerge,

Su

a
SETIRY JIOURINN . YR

-~

¥.

‘I

T

AR

L a4

L ¥adh il Ay

NN arCaer SO ot il et aiele Sovi SN cubs SuaE JPue es s e o

TNV T Y

R4

r
'

R e ————T—y ——— Y TSR T

¥ SNOLapA y1tm burhaay 40y A31xadwo) $s33dy *2°G danbry

AA ‘

T T T T _ T T 1 :
| © .
Z .
O——o-— o o ,
:,.:.O;/,..D | y
— O J
lfr
/ O N .. ,
/ ~1 'S .
'
ot X
L o
IE W
>t x> w
- <
'
)
|
M

. .A oo . - Co . L.v...

R (PR | ARAEaRONIG 1 LA ¢ HAMNPUFAPERAR S LSRG O Rs I Y INES i v

—
“

“

-
1

'

T aT LYW

Al

4 SnotapA yrem butbasy a0y A3xadwoy buryndwo) c¢°g aanbiy

A A 8 v
T T H T I T T P 8

L e cud
A
o]
-

i A
Q'L

<
»
|

Y
‘

A A

0¢C

AYM=2
56

el Bl Y lite e St e
»
LAYMA L

-

PR

»

3
"

3 -
.
3 .
. * — S
» .
B 2

n

r N m-‘. .
‘-. . “.. g .

i * -4
-. ..n,.
ﬁ.- » .
B 5
-.]
| .-
8 .-. .

AL Sl a2

v -K - -"' .

L Sadh Sl)

bt Tl St

i

-~

-

PO S S, Sl S

e

T e

Lo g TR T T

11111 S R TR T Y Y Y e YT TR T AT TV T T T T T, YRR 3 X A R L L SRERET T Y F YRR . LT LT LT L, TRl T T T T e

¥ snorava 3im bhutbaay

91 z\

0 sar1uxadwo) $saddy pue butindmoy "o g .ﬁ:mC.

3) v

L 1 T 1

P O g

T ! ' ~
LS e . ¢ D -
— o 4
p=J
"
” 1 o
.
*«
= EN)
A
a 1
| ., .;....
A31xa|dwo) sS3d0y —S—O— |
A |4
£31x31dwo) Gurandwoy - ¢ v

W W AT PN S SRR YU W 2 O GRS W) ORI R S A

=
L

Pt
s i
el

e

H

RPN

;

I AL A
" ': ..‘ f '1

.

T w ¥, w LW

; B T e Yk T - reoAmoin . AR ~
C. FITTING THE SOFTWARE ARCHITECTURZ OF “I3S

I

2
‘Jp to this point wWwe nave not consilerd new the existing

P IR

features of MDBS software archaitecturs nic~t e uti

ized Tor
the sort function. We may ask a guesticn such 3s Whetnher th2
descriptor and cluster information can de used t3 imprzvs2
sorting? Another question is whether existing I/7 mechz24is"s
can 2e used to support the t2mporary storage reguiramancs,
third gquestion is whetner an zlternarnive strategy snouli 22
adopted Aien the number of recoris are not avenl
1istributed across the 2ackends. We will 2xamine tn2sa tT-ra22
questions in detail,

1. Utilizing the Descriptor and Cluster Information

Recall that the databass in MDBS 1. organized inc<o

clusters. Each cluster has a wunijue cluster id , 2and
associated with a unique set of <¢luster ids. A record

belongs to one and only one cluster. The cluster to which a

record belongs is determined by the set of descriptor 1ids

-which can be derived from the directory keywords of the

record.

How might this helps us in sorting? First consider
the case that the primary(first-listed) attributes in the
ordering specification are not directory attributes. In this
case, the cluster to which a record belongs has no hearing
on the final sorted order.

Mext consider the case where the 2**ributes in the

ordering specification are all directory attributes. In this

58

e

:
o

.,—v 1
LR

“

| AR

DM RC A A ARl e AR T T Aol N Al S o e S i A S i e 2 (e 30 A PP Tl el Sl Sl S A e A i S S v Saes g me
- B R e TR ST LT AT AT T

case, we can uJse 2luster informaticon In wne fallosing

2

manner. If we 31so know the relative order of the descriptor

ct
3
V7]
(&2
W

ids which determine the z2lusters, we may simply <concate:
the records from the <2luster havin: <ne lowest orier
descriptor ids with the cluster having “he next aigher orier
descriptor ids, and so on.)

Tinally, consider the <case wWhere the orimary
(first-listed) attributes in the ordering specification are
directory attributes, and the secondary attributes in the
ordering specification are non-directory attributes.

Let us first take a look at what w2 may 1222 22
utilize the existing machanisms. What is useful for sorting
process 1s to know cluster ids and consequently the group of
descripter 1ids(DIDs). The necessary point is to know the
JIDs associated with records. If the recurd process 1is
informed with the DIDs of records as we'l as their addresses
and also the records are retrieved 1in terms of cluster
numbers, that 1is, there is no record retrieved belongs to
anotner cluster till all theiéecords belonging to a <cluster
are retrieved. This process guarantees that if the records
are going to be sorted with an attribute which is directory
table attribute, and if the attribute is either type_A or
type_ B attribute then none of the <clusters will have a2
record wWith the same attribute value. We also need another

process to define which cluster has less or larger value of

attributes. This process needs to check DIDs of clusters

L OO

SR -

YV SIS

A)

L T . T T e RTTRUN TR RN W Y W W T w s ew w o e

from descriptor-to-descriptor-id tadle and gives 3 list of
2I0s.

We may consider the utility of tne 3above zases. i

(1]

-
-

ren

First of all, wWwe need to implement three diff

ey

3
(L

algorithms to handle these three different cases. 3econ

12

probabilty that primary sort specification attridbutes are

AGER g v e

directory attributes 1s unknown.

Let us assume that the system will de augmentad wion

the implementation of the cluster information. In <hat case,

T

modifications to MDBS are to be done. Recall that the razo-i

processing knows ounly the addresses of the racords %22 =2

L o ane o o

< retrieved. Therefore, record processing is to be informed
. with not only cluster info hut also descriptor information
-

. from directory management, including relative ordering =of

clusters based on descriptor ids. We do not nave 3
mechanism available to support the idea. On the other hand,

this implementation violates the information-hiding

principles upon wnich directory managems2nt .5 designed.

2. Utilizing Existing Mechanism for Storing Temporary

Data

q In the previous sections we have assumed that the
system was providing the temporary storage requirements for
the sort function. We have not_considered about how this

‘d might be accomplished. We know that system allocates tracks
as required for new clusters or for extending existing

clusters. Therefore, we know that there exists a mechanism

60

e T . D - . % - e Ly e b Wt T T VgV aT W TR TR TR e e Y, T T —= — -
- - B TV TS WY w | -y —w - ——— - - o -
P A ey e S Aduaid polihen Bt A e

pa g
«
'

f
' ' R
® "

L e

" v T L)
e e .
[St el

. for allocating storage, The Jdifficulty lies in %23t =<hs
allocation is vrelated to tne concept of 2 2luster, 3nd no:s
to a "block" of data.

In order to use the existing mechanisms, then, w2
must establish some relationships between bHlocks oF sorted
data and clusters., Since we are sorting block-at-az-time, ~2
initially need to establish as many temporary zlusters 2as w2
nave blocks of data., Then, with each su2cesiva pass o0f -2
merge algorithm, We will require 22y nalf the previous
number of clusters, although the total space requirai

remains the same.

b A g s e o o

'Y In current MDBS, storage is allocated only ia tha
case of an insert request, where the records is to bde

- inserted into an already-full cluster or a new cluster is %£o

T

be established., The 1list of available (free) secondary
storage addresses is maintained by directory management. ‘lew

addresses for new clusters are assigned during the address~

generation phase.

The second consideration s th-t addresses are
associated with specific clusters, and new cluster ids ars
assigned only by the controller. The third consideration is
that records are inserted record-at-a-time, hased on an

insert request. For the sorting process, we wish to write

blocks of records.

61

RN S S M A AR S | i b i o b A G A" AR A et

VOB e v
ol
|

In order to use the existing mechanisms, w2 ~mus:

o modify MDB3 so that

- . {1) The sort process can reguest a new %temporary <cluster,

- This may involve sending a message Lo the controller.

(2) Directory management can generate addresses as reguired F

for the temporary 2lusters.

{(3) Record processing can insert Hlocks of records as q4ell

3s single recori.

i

4) Temporary ,2lusters and their storage can ne fread Jnhen
no longer needed.
This is a disadvantage due to extensive modifications.

As an alternative, we may <consider the following

case. Reserve a certain naumber of addresses as temporary
storage at system setup time. Use these addresses and the
low-level read and write functions of record processing for
temporary storage.

3. The Case that Records are not Evenly Distributed

Across the Backends

Qur time complexity formulas reflect the perfect

conditions for distribution of the records which are to be

sorted. They do not give the correct results for the

condition that one backend contains all the records to he
'sorted and the other backends do not contain any records. In 1
such a case there are two alternatives to be considered. The 1

h2

WL, e

>
..
>
3
3

b et

et .
g et .o C . R A DTN PRI . K . .
E_.:L‘_.‘..L'_gma_mhz...;_' PV RN Sl IO N Y S L U . ey

)
]

B

first is that tnhe backend naving the rscords gcerfdrms tns

sort function without redistributi -~ of records, The seconsd

.

is that the records are redistr.zuted =svenly 2mong the

J

backends, In the following sections we will 2xanine =<nese
two alternatives in detail.

a. Tne Backend Performs the Sort Function

.

issuming that the algorithm In TChapter e
section £.2 has been selected for impliaerting sort funciiszn
in MDBS, we will calculate the time c-mplexities for <h2

sort function. The backend now contains (3%¥n) wlsoxs, I3,

the internal sort phase time complexity is
O (B¥p¥%r¥%log r),

and 2%*3*bH accesses to the secondary memory are ragquired

which is

0 (B*b).

The merge process requires the time QJ(B®*b¥*r¥* flog (3%*h):)
with the access time to the secondary memory'O(B*b* logz
(8%b)]).

Therefore, the sort functinn time complexity is
J ° b
O (B*b*r*(log r + log (B*pn))),
and the required accesses to the secondary memory are

0 (B*b* log(B*bd)|). - -

53

") e . e " e e . e . IS N ‘ . o :
PSR LI DRI Os I I DI S B S LB 0 U IR N i R S R R R N A T L T R DT

E LR R R g T T T Y LT LY T T T LT TT T g T TUY T T y—eT WL vg
B . F T

TETICR T T U™

i
i
1

ekt &4

- R e P P S S A o v i - e
- e e T T Y R N T T W W e W e W e Y WX W W W =W W ey
LS . . - - . -

i
5. Tha Records are Tistributed Ivealy iAmong tn2 g
Dtnher 3ackends

In this alternative the 2ackenis s37z2uld iaform -
|

the controller if thay do not have any records %o %2 sortaz,
The controller then manages the transfer of the records fron :
one hacxkend to the otner backends. -
, , ’
Sinze 21e Sackend contains (3¥>) nlozks, =2 z-"" %
records are %to De transmitted to the Jtner sagkeais, Tals 1
]
requires c¢>mmunication tine of J73%L), The Zazkenlds oA j

b
-~
)
ot
]
(v
Ui
)
W

zontain 2qual nuamder of Hiocks, 2, The nin2 :27p

: 10w 2e calculated as in the Thapter IV section 2.2,

¢ The internal sort process time is DJ(o¥*r¥*loz),
.
2 The merge process time 3t the backends is J(b*r¥*lcg o 1,

Accesses required at the backands are 0 (b*{1+l3g b)).

ot
O

Depending on the average time required

transmit a bHlock from a backend to another backend, we can
analyze the difference between the aforementioned
alternatives., At this moment we do not know the value of the
transmission time a block. Clearly, there are some cases 1in

which the transmission 1s not cost-etfective.

IL_JECHRIURNAT . JONARATE | JEARAIRSS

¢
]
.
¢
54 [
4
P . Lo -
‘-‘.n".- . . - R “4~_
PINE TR et § da, L PP SR SR "l AL - -

A A A D A A I OO Airi A S S e i Nt S Ny e R SR RS W A Sadh il Gl Al S Aic e s T RIS ar i

TT. INTR22UCTI To -HT JTIN

— — —

acaia’ s AWK 2 a0 s MR 4

In this part of the tnesis, ws irvestigate possitls ~ays
of implamenting the join operation in MDBS, We consiler now
) the functions 0of the join operation can ze distributed :2ver ;

é; the controller and the “ackends, Az3in, we wish t2 zaka =11 E

i: p0ssidle advantage »f the parallelism inherent ia <ne VD33 ?

? nardware and software architecture. We 3150 Wwish to adner2 a

. Lo the design z23ls of MD3S, ia particular the miainizzni:)
of the controller function and message traffic.

;. In this chapter, we define the terminology and notation é
which we will use in our analysis, and make some simplifving E
assumptions. In Chapter VII, we c:onsider alternativa ;
distributions of the functions of t*e join operation ovar g
the controller and the backends. We examine an alternative E
join algorithm, a sort-and-match algorithm, in Chapter VIII. i
finally, a recommendation for implementation is given ‘I~ £

Chapter IX.

A. TERMINOLOGY AND NOTATION

First, let us define some terminology. A join involves

- two relations, the source relation and the target relation.

The join is formed over an attribute (or attributes) that
belong both to the source relation and to the the tarzet

relation. We will call these the source attribute(s) and the

55

SR A A S P P Pl A A Nl A Al S e - e Aty

LA v A g Sl Sl Sl A I b e A=A vt ans Nt aut aee aon e

5)
)]
W
(@]
|

3

(9]

(]

EE [P
target attributels)

b

ot

attribute(s) must hHe the 3ame as tne domains 2 the Sar

[HF]

attribute(s).

There are many types 2f joins.

(]
(& 4
)
v

natural Jjoin. et wus use an example £o illustrat

natural join. The relations particinreting in 3 natural 2In

are 3Ziven in Tigure 5.1.3, R2lation S, %he source r2l3"ic-,
2onsists of ftaree-tuplas 2f attributses, 4, 2, ani

L
Ui
<

Felation T, the tarzet relation, consists of tharse-tucy

-y

attributes, 3, Z, and D. “Me assumption is mzZse T

[
ot

v
'Y
3
b

attributes naving tne same name are ZJefina2d ovar wh2
domain of wvalues. Thus, the attributes 8 and T in ra2latinn

-~

S are assumed to be drawn from the same Jdomain of values 3

2}

the attributes 8 and 7 in ralation T. “igure 5.1 shows %t==2

(¢

cross product SxT of relations S and T, SxT. SxT is fornme
by concatenating each tuple of relation S with every *turple

of relation T.

t

The natural join is formed in two steps. Tirst salea
from SxT the tuples such that the values of bofh columns
headed by B and both columns headed by C are the same.
There are three such tuples, the first, fifth, and naintn
shown in Figure A.1.(b). The second step is to project from

those tuples: - one column for each distinct attribute, The

result relation, SIX!T, is shown in Figure /6.1.(c2).

66

T T pT—p——

N O N}

L __J RN

A

m.-\ - e e - - e T R e T Y TPy T T T TR P T T,
r,
W-
o
¢
.
_‘-
4
7-
T
-
rn
A e o - - /3] . [1}] —~ [G
. | ' < "n £ v 4 O
- t oy BNt S L A PR N le)
. ! ' v M o
[y oo e . - — o0 - » o
] 1 [9 3 (o]
[N s diVeNsaNasaklalN s Naa Ve la s ko) 4 A > 0 — D
1 ' ' c n “ - ®
. ' el © jo - A e [&)
p]] o 4+ 3 <
3 (RN A T BV VoW SN oV Vo W o WA VIR Ta¥s o} o3 B® " v o + +
A £ ' ~ v v o ©
: D T T Ko - ot 0 [(2]
9 0o) ~ 1)) G - [} ©
1 [I a Vo aNaaTa N e RVal s AW e W s 2N oy - O [\}]
x ' 1 o 0 v £t £ o
s) s m e e e e e e o ()] o] 3 L Q
- ! } Fu) Q. - i) [} ol
4 I N SV U VTN O N To R SR o s o) © “w n N -
g 1 | — t (0] K
!] |||_i|||l||||||||II\|||11 [\ }] [)] - © 3] — O
. ! | & Ko ()] Ko [0} [}
A I <% | — — — =7 = o7 -t~ b i " 12 L E o
’ 1] O | & 3 © n
X o e o o e e e 0 — =t~ x [y G >
3 2 o [e} ()] [}
r.A b o e e e Lo - [} 0
G 0 0 1] | &
k. F &) o O O (o] j =) |)] (o] o
- —~ o] (@] o } {e, — [
X ~e (4] [of ot o > - 3 el
e e e e - ~ —t o] [1\] [0} (14} (o]
[SR |] (78] m o an (o] (4} | | > . Q
‘. PO e o ™ L. o —~ .
' 1 ' . v o o v o
: Vo mm e —~ O 0 n o - >
\ ' 1 B © o L P o O
; 1O 1Mo L e) o O
", ' ' L 3 c £ £ c 3 ®©
3 " |||-||| [, » il o] (1] [} 0
4] (o] (] | 9 [« }] - [}
[ISR B aVETaYo o} = ™ ol)] K | 8 —
.] 1 | 98 0, » o Q,
2 e e e - (4] © o Q 42 E
3 . Q. 0 (4] [4+]
— - B >
. —~ o] [] +» [\ V]
D..-Icll-lllllllll \a.d/ O [} Q 0 1] ()]
¢ | = QO Q, o Q
1O 1Mo [LY = el | & <
] t | & C o » K of I44] F
“ »||.|..|n|-x|| 3 [J) —t n)
) 0 » | = [&4
1 m oo ~ Vv o v A
' ' Lx |] € o] — <
y -- l-lllblllll - = L P |
. » O x
1 < § — 3t~ Eal > — e Q
' ' Lt £ © © c
. e e e e (41} T | & 10] ['2]
s
]
.
3
]
4
e @ Nk L
VY YA LI NIR »LL;E» Pl b.»..l»!r aa »r.l. ..

S r—

L

2 _» . a a

P

A-‘...'A)
PN

.

. h - A A L - S Sal A A A AR A SN s
b
S
P' —
L
—

S and T wWnere attribute values 5f 3 and T in 5 are identical

to the attribute values 2f 2 and T in T, i.e., 3.3=T7.3 3nd
K
’tfn S.C=T.C. When the =27ual comparison operator 1s used, tha
A RS .
{ join operation is called an equality join, '4nen any other
g comparison operator is used, the join operation is called an
2
hi’ inequality join. The join operation is associative, 50 thz®
’-..w" . .
L more than two ralatisns may de joluned., For 2xample the [2in
¢
- of three relations S, 7, and 7!, is *1e same as the j2i-~ 27 3
I and T, and the join of 'J and the first join.

There are a variety of join algorithns., The 3i-nlast L3

the straightforward or nested-lo0ps join. The 2lzoritnh~ i
;. shown in Figure 5.2,
[et et —mm————— - et memm—m—————— tm—mmm—— e e - t—mme—eam

for each tuple in the source relation do
For each tuple in the target relation do

If the join condition holds true then

form a result tuple

Figure 6.2. Straightorward Join Algorithm

In the chapters which follow, we will simplify our
P analysis by assuming that join operations are restricted to
equality joins over a single source attribute and a single

target attribute. The. terms, source relation and target

58

o et e T

B S R e e S e W TR

Lo i ISRt S A Sl Pl At A Sadei it Al Ak R (i A i R SN PN S ST SN g g |

Lo
)
/

A
P W
—

relation, refer to the files partizipating in a join
operation in MDBS. Henée, the source file refers to a source
relation, and the target file refers to a target ~elation, |
We will also adopt the following notation:

Cs : The number of records in a source file

Ct : The number of records in a target file

L I VIO T

“

n : The number of blocks belonzing to a source file at

- T yy e AN M e o o
R A DR R A)
o i . PRSI
. et

‘e,

a backend, Cs/(B*r).

The number of blocks belonging to a target file 3t

a backend, Ct/(3%*r),

(o9

3%}

= | : Quotion of the cross=-praydnat of 3 source file

a target file which participate in a2 join

T —
Y YU

7 3N

operation.

f: log : Logarithm to the base 2,

3. ASSUMPTIONS

In analyzing the alternatives of the distributions »of

the join function, we make the following assumptions.

1) The source and target records are distributed equally
across the backends.
2) The join operation is an equality join over a single

source attribute and a single target attribute.

e

3) The join function is performzad after the retrieval and

selection operations specified 1in the request have been

A

performed.

. NN

59

. v

1.
-
\
.
’
* .- P

. n
L,
L
-
A

AN

o

— Lot ae e an g
..d....._

.
.
L-.
.
r

1
«
]
" .
%
.'.

S T, T

T WY S}

STy T e TN T e, Sl it
- . Ol NP RN A i SNl M Pl ks

4) The straigntforward or nes.ec=10¢ps join

[}

used to perform the join,
5) Accesses to the secondary
hlock=-by-block,

~ v

5) The source and target

duplicate records (i.e.,, after retrieval
which are to partizipate in th
no two identical
target file). Therafore, there i3 no

arocess from tne files.

C. A SYNTAX FOR THE JOIN

In this section, we will zive a syntax for a 2-way

MDBS utilizes an

user gqueries, Indeed, an ABDL can be used for

applications as a

storage are

files do not

records 1n tnhn=2 source

record

()
Ca
O
(XS
6
9]
O
19
3
w
cr
'
Q
B
T
8}
"
3
(D

attripute-based data languaze, 137.,

any data’

machines. Current database application language Qqueries,

instance, SQL, can be be mapped to ABDL requests.

Using ABDL, a 2-way equality join request

the following.

is shown

RETRIEVE (attribute _list_1) (query_1)

CONNECT ON (attridbute_1, attribdbute_2)

(attribute_list_2) (query_2)

70

iV
]
(1]

xernel language of 3any kxiand of 1atiadzse

for

3s

N UV

.
lma’a a'e®s

e

M

S A

A

B{ AR RN)

Py "‘n“‘““‘

s

e

L

I TR At At i Sl S A AR S LA R At a Rt N A Seh S SaA A S A AR AR A S PR LN S A S T SRR NC IS

P

The RETRIESYR <clause Imoiies tnat tne recoris wWwhose

attribute-value pairs given in attribute_list_] satisfy tne2

conditions gziven in query_1, and the records Wnose .
- |
L]
attribute-value pairs given in attrivbute_list_2 satisfy tne
conditions given in query_2, are extracted fron tnha

database. Let R]1 and R2 be the two iifferent °fil=23

PR R I Snlale.l Nt

containing these racords, respectively. The ToMMEITS0Y :

clause specifies ¢the Join on tne relations 31 and 2 wizn

IV

the attributes attribute_1, which is (implicitly 1 no%

X 1%

axplizitly) in attridute_list_1 and attribute 2, wnaicn i3
— — ’ —

in attribute_liist 2.

i

71

.
»

.
.

T ——

Ml AN

el et -

.

vy yoww

i
.
.

R AR T ¥ AR S A iy B A I 2 |
{
VII. THE ALTERNATIVE SISTRISYTICNS 2F THZ JOIN =ZUNITICZH ’
q
In analyzing the zlternative distributions o2f 4Lhe i:zin
function, ~e will again consider three ilffarens -
possibilities. .
<
1. The controller performs the idin function
3., The backends perform tne isin funcriosn :
C. The join function is shared by the z2ontrdllar zn: <12 -
Qe
vackends.
We will 2xamine eacn o2f these zlternatives in detail 37 <=2
following sections. o
L
4. THE CONTROLLER PERFORMS THE JOIN FUNCTIOHN o
In this alternative, the backends perform tne retrisval "
o
3
2f the records which will participate in the join operation. e
These records are then sent to the controller, and tae .
controller performs the join. R
. -1
Since each backend contains n source file blocks and =n g

target file blocks, the communication complexity 1is

0(B*(n+m)), or

0((Cs+Ct)/r).

Then, storing these blocks in the secondary storage of the

controller has

T2

B L S e G e il R e et “ELS W SEAE SR an smnde san sk an an oo g
¥ . RN -:- vy LA vl o e A i Zhee 2 T — e Ty
N .
L
Y
~
=
-7 ., e
- L3+ T -
N_'-
b -
[‘-

3 aczess 2omplexity.
A

After raceiving <h1e recoris from oall

(9]
w
0O
FaS
1
3
(o
w
ot
)
[17]

: 2onsrollaer 10w nas (3% source file blocks and (3% c3rzac
file blocks. sing tne straizhtforwardi join algorithm, 2232

record in the source file is compared with each ra2czcori 1=
the target file in order to form ¢h join., This rejui-2s

{Zs*Ct) comparisons., So, the computing complexity is
20 s * Ztg).

Assuming tnat no more than one Hlock of the s0urze file
and one block of the target file are in the primary storags
at one time, 2*(§an*m) accesses to the secondary menmory are
required. In terms of the cardinalities of the source ani

target files, this 1s the access complexity of

0((Cs*Ct)/r).

B. THE BACKEMDS PERFORM THE JOIN FUNCTION

In this alternative, we will consider three different
strategies. In the first, the backends share the join
operation equally. In the second, the join function 1is
performed step-by-step at the backends. In the third, a
single backend performs the join function with the complete
source and target files. Let us examine the details of these

strategies.

73

. - . T IO . e . . -t e .
. - . L. . T L . - «c
- . A e L
AR

e e . . -
P DAL Bl WA AP Y. D Y

L

A, wm e LY T TENT YR T -y - -
. R IO 0 A Mt e R AR N e e S W A Sa s Sl A A A SN AP - an Sna g sns b aee trd s e ane o

E] TN gi

1. The 8Backends Share the Join Zgually

In this strategy, %tne Yackends send either source or
rarget records to each other. Let us assume tnat the targe:
records are transmitted Ddetween the backends, After
transmission of tne records, each backend contains Ct-target

records, MNext, each backend performs the join function over

.
he tarzet

cr

L its own part of source records and 3ll of

. records., Then, the result records from %he DDackenis are

z transmitted to the z2ontroller.

¢
{
T[T LS.) TRt | N

Since each fackand contains m target file >Hlozks,
{ (3%*m) target file bHlocks are transmitted.

‘ complexity of transmitting the target file blocks among the

i

3 backends 1is

Lo

0(3%*m), or

20 Ct/r).

W

Each backend first stores (B*m) target file blocks i

which requires access complexity of

0(C Ct/r).

i Each bhackend now contains n source file blocks and

1
o

(3*m) target file blocks. Therefore, the effective computing R

complexity for performing the join is

2
O(B*n*m#*r) or

-
-l! s

O(Cs*Ct/B).

L

\]

| 74 &
4
9
4
1

. .

_ L |
;

. - - . — * . .. ‘
- s - e T e . : Lo
B A, e .« e N R T -t T A
~ Beelisinedine i il IR I N WS L PR N S i U I . P Pt ~ -

A R I T A s, . W R T T e T Y W N N Y T W N e ¥, BTTRNETE TN T, e,
L R R B B S " e . . - - - - - - 0y . - - - IR - Sl gt) TrerQw i SRR Bk hinr et Sk et S ettt 4 Chad . |
. AR L. . e LR A . -

2%3%m#*n 3cces35e3 L0 the secondary storage are required, so

the access complexity is
2(Cs*Ct/(B*r)). |

Sinally, each backend transmits the result records

(o

to the controller., Let us assume that each backend vyields

. RS

cr

the same number of result records, sxpressed as a percenta

[V18]
19

i

it

q of the <c¢ross-production of the records particigatin

the join, Then, the number of the records to be transmitted

from each backend to the controller will be (g*3%a¥m¥*-~) o~
(q*(Cs*Ct)/8)., The communication complexity for transmissisn

- the result racords from B backends to the controller, then,

is

|
i
a

O(q*(Cs*Ct)/r).

2. The Backends Perform the Join Step-by-Step

In this strategy, the join c¢peration 1is performed
step-by-step at the backends. At each step, the number of
backends involved in the join is reduced by one-half. A

backend performing the join function sends its source and

DURN, SO

target records to its neight Jackend. Figure 7.1 depicts

the the flow of records. The total number of steps required

is log B, where 3 is the number of backends.

The arrows indicate the transmission direction of
% blocks. At each step, the backends involved first perform
the join on the portions of the source and target files

available, and send the partiél result to the controller,.

75

e -.' -"-‘&“fa-' ‘e .~ - .. hd Tt . ’-- - - ¢ T - .-t toel T N : '
T I SRR N PO SR I O SV R I I O D o O S R T P R T PO R P A L N DU

[V U S S

L]
L]
W
]
L
(9]
¢

. PR}
—— —
- -
> -
- ! -~

--Step log3

ISR L Y WA SRS |)

Figure 7.1. Performing the Join Function Step-by-Step
a at the Backends

-
~J
[93)
NIRRT . R IrOR

-

.) . . SRR N ot . . . N - T T . A .
P it ttaniaad J) i PGP UG T W e midmadis At S i - P T L T A

I A L P i -_;—_'-y-»\.-}---:'—‘.va‘""tT'\"4_ﬁ.ﬁ‘. IR 4 “Bie A AuiA R Sl Aal Ml Aol S Sk Sty LA A G Sl A At i S A S D 2P b e i REdCIaah e amar ool
- . .-

Next, the subsets of the source and t:zrget files are sa2nt o
the neighbor backend.
At each step, the number of bHlocks to be transmittad

over the Broadcast dus 1s half of the total number of source

[11]

file blocks plus nalf of the total number of target Ffil

w

blocks. Thus the communication complexity for log 3 ster
1

is

0(((Cs+Ct)/r)* log 3|).

{7
122
.

At each step, the backends receiving the sour:
targzet records from their neighbors first store tnen 22f:r2
. @ the join starts., The effective access complexity of storing

the records at each step is derived as follows.

1. step (1/72)%(Cs+Ct)/(B*r)

2. step 1 *(Cs+Ct)/(B*r)
3.step 2 *(Cs+Ct)/(B#*r)
4. step 4 *(Cs+Ct)/(B*r)
ﬁ33-2]
hog d step 2 *(Cs+Ct)/(B*r)

Therefore, the total affective access complexity for storing

- o _a

the records is

' .’:’njﬁl {
. o(C 2 (Cs+Ct)/(B¥*r)).

,
V. ‘
L
’ 77
.
L T e . ,,,,4.,4;;;) B B \

S 7 = ™= R = s wm w1 I R T AR S . ST AT AT B A S R S T i i e T I S

{
Tne <computing complexity for the doin is derived as ;
following.
1. step (n¥*r)*(m¥*r) = q¥m*r i
2. step (2%¥n¥r)R 2%m¥pr) = J*n*m*;
3. step (U¥n¥r)R(U¥qmkr) z 15%aknky
. - . - .) _
log B8 step (2 ¥n¥*r)*(2- *m¥r) = 2 ¥n¥m¥r
e
Therefore, tﬁe total effactive computing complaxisy 13
Py .
0(2~ *Cs*Ct/B), g
e
- Since the number of source and target Hlocks partizigatning :
in the Jjoin changes at each step, the access z2omMplLaxiyy i
f

during the join is derived as following.

1. step 2%(n¥*m)
2. step 2*(2n*um) ?
3. step 2% (U4n*um)
g 4, step 2%(8n*8m)
[}
:L:-' , L]
~ - ,-‘ -4", .h 6-“
g log B]step 2*(2°J n*2J m)
[}
t
73

(
[
s
1

[

!
A
Y

ML SN PR atak aP MO N R A L A AL Sk A U LRt AN SO S $hAEie M Sudl S S ANl Aol Andh Ped i AUEMAStal Saafl i B Sl Sadh Sl Sul iRt Acdh A Al S

The total effective access complexity Is, then,

-
v

l.'l.!"v"VI I Sndhihans. |

'., 'v TN ‘H—bl

"EQI

5 -, &
D(2 7 *(Cs*Zt)/(B*r)).

T
(T
o
[N
ot
(&}
ot
3
{1

Only the result records are transmi

*

controller. Since we use 3*Cs*Ct to represent the number 2!

result records, communication complexity 1s

- e

0(q*(Cs*Zt)/r).

;I 3. One Backend Performs the Join Sunction

Tn this strategy, the source and target r2c27:13 2%

3
[N

3

s

2

, each Dbackend are transmitted to a designated hacken
this performs the join, Since each backend contains A
source file Slocks and m target file DHlocks, th=2

communication complexity is

0(S*(n+m)), or

0((Cs+Ct)/r).

The records sent from the other backends are first
stored into the .secondary storage of the designated bsokend.

This is the access complexity of

0((Cs+Ct)/r).

79

[PV b P L. TGP T - . - . . S : N :
LRI NPT W S ST At i ala el vttt oM

AR YR e
ar’ .

[32l
i

A S T e T A A P R S A T o ARt A Jamet SR e lnach B o e e i P e
. - - v .- .= - . - - . . .

records and Tt targer recoris.

alzorithm, the computing comdlexity Iis
3(Cs#*Ce),

and 2%*3%*n%m accesses to the secondary storag2 are -

an ~a S
T A - - -y
for access complaxity oF
2(Cs#*Co/r).
The desiznated hackeni aroduces 1¥Is*Tt rez sl
records, Transmission 2f these result records =52 ===

controller has complexity of

0(g*(Cs*Ct)/r).

Cc. TH

n

CONTROLLER AND THE BACXZNDS SHARZ THE JOIN FUNCTICW

In this alternative, the controller and the backends

share the join function , and the controller integrates tha2

results., £Each backend transmits the its part of both the

source records and the target records to the controller. At

the same time, each backend performs a partial join with its

source and target records. In the meantime, the controller

performs the join function with the sets sent from the

backends, except for those sets which are joined at the

backends.,

30

P - - I ~ v

. aumm

PRI WL R

TN I SN

N\ | Ve

2

Y

J RO

RO s adin =

I o

Lame 4

PR

s

e N~ v

e

M e e

L= T Uy AW TR R -

Let nt,n2,...,n3 %e tn2 sudsets >f tne 3ource Ii
ml,m2,...,m3 e tn2 sussets o7 tne target files su
backend i, 31, <z .talas the sudsets nai and =i
transmission of tnhe whole source and target fils °
controller nas tne communication complexity of

2(3%(n+m)), or
20 (Cs+Zt)/r).

The controllier first stores the records. Tnis r
tne access complaxity of D((Zs+lw)/r .

The partial join functisn a3t the Dackend 0
computing complexicy of 2 Cs*Ct/B;), and a3
complexity of O Cs*Ct/(é*:)).

The controller now contains ai source sat 3
target set. Since the Dbackends perform only part
Join , the rest of the join function 1is performed

j§Y]
[V}

@]
«Q
1]
[V}
7]

)]
i

at

fa

[3V]
D

.
tn

controller, This means each ni is compared with mj to outpu

the result records such that 1<(z i <(=B and 1<z j <=

Therefore, the join function at the controller has computing

complexity of

Q¢ n*m*B*(B-1)*f'), or

0(Cs*Ct),

PA
and access complexity of O(3*n¥*m), or 2 Cs*Ct/r).

31

A -, o“ s . .., P . -
R s ce . L o . . PR
. - . . S Som -

P TR S O ATSRAL VO ND V. W WU YA W S S . S L) - .) - C-

3,

an

{1

o f

n

i7=j. This requires B*(38-1) times (n*m) comparisons.

148

R e S T e R et T
i
D. TVALJATING THE ALTHERNATIVE SISTRIRUTIONS ST T4z S
FUNCTIOMALITY "
In the previous sections we Tthave oresentad filua ;
.
alternative distridbutions 2f tne functionalit, 58 icin
between the controller and the backends. In this section, we
will anslyze the tradeoffs of the alternatives. Taolz 2 -
®
summarizes the results 2f the analyses ia terms 57 wnzt 4ne -
computing, access, and communication complaxitises, é
dlternative A represeats tne distridution 27 functisn Q
®
presented 1 3ection 3 f this chaptar, The 22ns-2llar-
performs tne joia function. Alternative 2,1 reprasaents <5n=2
distribution opresented in Section 3.1 of thls chaptar., Tre a
backends share the join function equally. Alternative 3.2 j
represents the distribution presented in Sectionn 3.2 of tnis]
chapter. The backends perform the join function sten-Sv- -
)
step. Alternative B.3 represents the distribution 3.3 8
presented 1in Section B.3 of this chapter. Finally, -]
alternative € represent the distribution < presented in i'
Section C of this chapter. The'controller and the backends j
share the Jjoin function. Let us examine each of these]
alternatives with regard to the design goals of MDBS.]
[J
Alternative A is clearly contrary to design goal »f ?
minimizing controller function. Therefore, we will eliminate :;
it from further consideration. Alternative 8.1 meets the ?i
)

Zoal of minimizing controller function and distributing the

Jork over the backends. The communication complexity is also

82

Y. JOSPENRER)

s
al a4 4’

e
- .

"
PR

T

A AR R A A s e e el S AU R N S A A RIS AT AMCA S

less than that of either of the other alternatives, 2.2 ani
3.3.

Alternative 3.2 meets the design goal 27 miaimizing
2ontroller function., However, the c¢omputing 2and 3z2zess

complaxities increase exponentially with the factor of 2%lsg

3

~
Lor

P4

3. This 1is an especially important consideraticz
overhead in the system. Tn addition, the same Hlocks ~ill 22
oroadcasted 1og 3 times over broadcast bdus, increasiag ~izn

communication overhead. As we recall, a2 similar procedira

[B]
v
3

was proposad in Chapter IV the sort funztizxn., Howa.
the characteristic of the join function does 5% a2
advantage of this procedure. At each step, the outsut »7 tne
backends 1s wasted, since each record in the source filis
must be compared with every record in the target file %o
form the join. The same records will be transmitted between
the Dvackends redundantly. Therefore, we will eliminate this
alternative from further consideration. Alternative 3.3
does not meet the design goal of sharing the work between
the backends. Furthermére, transmission of source and tarzget
file blocks 1into the designated backend 1increases the
communication overhead. This alternative is also eliminated
from further consideration.

Alternative C increases the amount of work which is to

be done by the controller. This is also contrary to design

goal of minimizing controller function. Therefore, we will

eliminate thfs alternative from further consideration.

83

AL, L L. L

PL _J S

i

f

“l

|

|

«

B

3
.

e . . e — .. vam o ¢ ™ EMak. [| GMEMieatiacim acaacaad | so aeet gy
.
¢ .0
'. ’
B
L
v
'
1 1] G [@ [[[[no
™~ (8] P | ™ 9] w i3] Y [. }
el O et G, [} o0 IRl o -
[oy Y) ') w, T
1} < (84} < £ (8} - .
[99 (@] « o (] [} st .,
L. et L. > +> 490 e
aQ (8 ke @ -1 N L. “ .
I8 0 [o) » o a 0 L '
vy O © r [-t ["m
m el 2 4] ' 0. 0 .
IS | & L. e Q D
(%] O [} -1 < < .
- el G 1) 0 G 9» 4
n Ty B [}] -4 e
< Kot L2 it - < .
o [2%3] R} Q b’ el ;
ot Q e < ™~ £
» < m 4> &) (@] [T .
w 1 [$ 14 [el 23] N .q
< e b Q qr < []
w 74} ™~ 0 < e (Y e .
e =~ 3 (& [1~ o
(. 0O r e vl r- m .A.
b4 50 (4] Q R [m ~ CEE.
[} o 1 94 [94 G a N X
m) 2] R .
QO « e @ . 9
>~ £ (o) L1 O s C
' (o] O - he) et @ <. =
. 0 1] -t 0 i3 3 [Q] o .
H,. m [e] - 0 T) » G, - .
F. 1. o] (& ., el
. [\ 0. [9) O ~ . z
i R 0, Q [}] G m v .
T +2 a t ial ™ i «
y a4 (g w «
' € N [L.]]
! O [et By e . (A S A
, 1. el 2 [] [0O | [m v
G n - rd Ty ot et il .
1 Q Fu) > (73] IRl 4
y [9 O) 0 [3 o
O L2 as @ (@ N o
- (] < @
(] 3 (8] o 78] .
' il . " . O e o
~, < ~ e) Q « .
R e Fe) » < no T [SR y
el el (@] [L\)] 9
' 1] et -t -t - ~ .
. m o . 3 e 2 L e |2
@ 0n [£ o o < N « .]
: et o) Ke) Kel P 45} » <.)
N 4] et] 4 - 4 & .l q 1
T S | S 1 L 1 L. | ES) 4
' O (& » 4 (g} @ o . :
i — c nn n " hn » no ® R
. 3 et -t)] rt - < . }
m G w m ksl m m m (] oo
" 3
]
_]
L
' L
.4
RPN . NS h‘l»ﬁr - .| o D . SOUTOD .) RISt VI AU . . el

Y
. . -
L. P P

L VR W U W

D AT
T Tt
LR .

ALEIVHOTIONI | NTOp ML 40
SHOLENTINES T FATIYINTE Y W N0 STTEDAAAN0Y WL I ¢ 3749V
. _ . . e
—A y) N
YEETNY o - - - ol
,.AJ.AJ V NSH J v ﬁ Ay ._VJQ Avu nnuJ) m. g
_\lyl-' *—. AJA&ﬁ“/ i_ll/ (" T IH'_.‘:IM‘WJHI ¥ : _— = llmd' ®
IRRIES) I 5575)0 SIRY) gﬁ,_«.vQ 1) ..ﬁaﬂww Oz
R B
: :.s_ Dol (5500 1 == (o ——- Vo g
” _ e LD IR TR JD:U v
, | . : R P
3 m
3 m []) .nt_ o
. —_— - - . - — —— —_— v- *W J —
3 A:.AQVC /uqfuvc ﬁu va _ v
! | SUn TV | T
’ AT (N SUN TADVAIE ¥ 1T ITNOY SUN TV [T 108 ENOD SUNINIVY —
g _._ﬁ_:.ﬂ__z:“ I OMOWY Ty Ty ELINERY L 1y o
7 1 INOW C |
'u s L
8 AMITXT14W0Y NOT IV THANWO™Y AT T1AH0Y SSIHIY ALTX3 W0 INTINJWOD =
. m
. : RO .
,
;
’

85

. .
LW

! il .
RPN VI W

-

"b""

e

S el i Al A b B () A S o VA naa A acama s e -

VIIT. AN ALTERNATIVE JOIN AL303I7H

- e T e e e -

In the previous chapter, We analyzed tne 2istribu
the functions of the joiln operation in “MDBS assuming wnat 2

straightforward join algorithm is used, In tne first =2zr7

>f the thesis, «e discussed 1ow tas sort

implamented in MT3S., 3issuning that <Tae sort functiczn L3

3

implamentad as recoamended in cnapter IV, we n2cw 3132033 o

tne join operation zan de implemented using

[$V)
[¥/]
O
3
14

]
3
W
ot

algorithm.

A. ALT=ZRMATIVE DISTRIBUTIONS OF THE JOIN FUNCTION 3Y 317G

A SORT-MATCH ALGORITHM

Ahen using 3 sort-matcn algorithm, <the source racoris
and the target records are first sorted. Then, the join
function is performed. The join can be formed by a simple
matching of the source attribute values and the targzet
attribute values.

In Chapter IV, we examined how to perform the sort
function at MDB3S. As we recall, our proposal was to apply
the alternative C.2 in Chapter IV, the backends sort and
perform a partial merge, and the controller performs <he
final merge. With such a capability, we propose two
alternatives for distributing the functions of the sort-

match join algorithm among the controller and the Dbacgends.

86

...) .
. -t ~ L .
. N W g

. .
RS N R
L W SR R R W .

WP A Y

— W % N N W N W W L xR Y g g
- B - LR MR LA M R A P LA AP St TR SR it Bt M A S 2t Tacte T -0 D |
PN Coa L. P o A R I

Tne first alternativa is as follows. Z3ch dackend performs

sort and partial merge of tnhe source and target recorss.
Then, each backend broadcasts 1its ‘target records <2 2all
other backends. Zach backend then joins its porticn 37 tn2

source records with all of the target records, transmictting

the results to the controller,

w

The second alternative is the following. The DSackend

o

perform sort and partial merge on the source ani tarzge

records, which are then transmictted to the <controller, Tha

controller performs the final merze of the source r2c002r:s

sin 2f 31

and of the target records, and then performs the
3
b of

t

K
-

P. the source records and all of the target records. L2t .s
;’ examine each of these alternatives in detail,

} .

. 1. The Backends Share the Join

In this case, both source and target files are first
sorted at the backends separately. Using a comparison-based
sorting algorithm, the effective computing complexity of tne
internal sort phases of both Cs/8 source and Ct/B target

records is

0(((Cs+Ct)/B) * log r).

2*(n+m) accesses to the secondary storage are required. So,
the effective access <complexity during the internal sort

phases of both source and target files is

0((Cs+Ct)/(B¥*r)). .

' 87

D L et R D I A S S g ¢ L Nt ‘2B e a2 -
M - - At Bl A e SERr kA C At o st A 2ee Ban aven oo B 3 oyl UC e B e e Sk i i A wad sede e

Assuming that the merie phase is 2lso performed =2

complete the sorting of both files, the effactive zomzuting

Q¢ n*r*iog - m*r*iog ﬁ‘), or

0((Cs/B)*1og(Cs/(B*r))} + (Ct/3)*1og(Ct/(B*r)))

2*(n*log an + m*log m) accesses to the secondary storzze are
regquired to complete the nerge

effective access complexity for the merge at the H3acxke133s L3

B TF

2(n*log n o+ 2%1og mi), or

0((Cs/(B¥%r))#1og(Cs/(B*r))l + (Ct/(B*r))*iog(le/ (3%~} 1.

el

Next, the target records are transmitted betwesn tne

backends . This is the communication complexity of

Al g0n a4
. 4

O(3%m), or

0(ct/r).

The target records transmitted from the ther
backends -are first stored before the ioin starts. This is

the access complexity of

la T T 7T T @

Q(C Ct/r).

Each backend now contains n blocks of the source and

. B*m blocks of the tar file. That is, each backend nas one

run of source file and 3 runs of target file blocks with the

length 'of n and m, respectively. B*m target blocks, then, 4

3 se a

P I NS SR A SR SE R R L AR A 'L R o3 a-fl ol At L8 ol Jir /g it R R RS v R

must HSe merzad by each vackend. Assuming that a 2-4ay mergs2
is used, the computing complexity of mer3ing 3%m S10CKs at a3
backend 1is

1

O(B*m¥*r*log 3!), or

g
0(CtAiog B]). |

2#3%m*15g 3 accesses to the sscondary storage are reguired.
So, the access complexity regquired during =22 merge o

target records 1is

3¢ (Ct/r) * log 3]).

Finally, each backend performs the Jjoin over Zs/8
source and Ct target records. The effective <computing

complexity of the join 1is

0(min (n¥*r, B*m¥*r)), or

O(min (Cs/B , Ct)),

and 2%(max (n, B*m)) accesses to the secondary storage

are required. This is the access complexity of

0(max (Cs/(B*r), Ct/r)).

89

0 . .o
e Lt - . Coe s . .. L. . . .
- e e v . - . . -, - - . . N N . L . S
T - - . L S IO . RER O . et . . Lo R
Pl SNV AP S 3 oA A T Lz N L . . N D

hd . - - .
W -
@ WS ¥ s PN AVIEE NP VLA

- e e T e el - i haen intt Riage Jheut Bawe s ot B0t S B ey e Mg Snesxambe g
Bl N At s e e

Zach backend 10w has a portion 2f the r~a2sult
records. Using the 3ame notations as in tne previous

chapter, there are 3*{min { Zs/3 , Ct)) rasult recoris z%

2ach backend. The communication zomplexity 27 4“ransnm

the result records from each backend to Lhe zontroller is

2((B/r)*g*min (Cs/3 , Tt)).

2. The Controller Performs the Join

[7]]
@)
3
T
(@]
]
[49)
i
1Y)

Here, each bYackend performs the internal

cr

and the partizal merze phase of the its portiocon 38 h2 s57u722

and the target records, and then traansmits these recori

w

the controller. The controller first merges the sourze 221
target records separately, and then performs the join on tha
source and the target records.

The effective computing complexity to sort n source

file blocks and m target relation blocks at the backend is

O(n¥*r*log r + m¥*r¥*log r), or

0(((Cs+Ct)/B)¥*log r)).

-~

2*(n+m) accesses to the secondary storage are required. 3o,

the effective access complexity is
O((Cs+Ct)/(B*r)),

Assuming that a 2-way merge 1is implemented to
complete tne sort of n source and m target file blocks. 39

the computing complexity of the .merge is

30

..r_T_‘i
PN ;

2 n*rglog 51+m*r*log m]), or
30 (C3/3)*10g(Cs/(3%r))] + (Ct/3)%log(Ct/{(3%r))).
2*(n*log n + m*log m) accesses to the secondary storsge ara i
required. This is the access complexity of .
ol¢ n*ﬁog n]+ mﬂiog m}), or é

2((Cs/(3%r)¥]log Cs/(B*r)ﬂ + (Ct/(B*r)*log(Ct/(B*r)f

Next, the sorted records are transmitted <o <the

controller. So, the communication complexity is

0(B¥(a+m)), or

0(C (Cs+Ct)/r).

LSEFL) PO | NP PO

The records are first stored at the controller before <he

Join starts. This is the access complexity of
0(C (Cs + Ct)/r).

The controller now contains B¥*n blocks of source
file and B*m blocks of target file. That is, B runs of
source file and B runs of target file with the length of
and m, respectively. The computing complexity of merging

source and target records saperately is

0(B*n*rﬂlog B]+ B*m*rﬂlog B]), or

0(C (Cs+ Ct)*ﬁog B]).

2*B*(n+m)*log B accesses to the secondary storage are

91

.) '...-"-h.". " . . N L R
PINRE GO WO 2N S T s P AP L WP WS A P S A S S DL

.

N

e

Y

.."-.....'.-‘. “.‘.-."
b tia e e Kt b Cn

o

RN e R A R R A R Rt gt i Bt b st i ol Bl 0 B BUL & N AR lh ban s g v 4 4n aen e s o
A Bl f - .

required. Tnis i3 an 2¢gess complexity of tnhe merge at the
controller whica is J(({CZs+Ct)/r)¥*log 3¢ ..
Finally, the controller performs the join on scrtazl

source and target files. The computing complexicy for the

N

join is 0(min (3%n#*r 3¥p¥r)) or 2(min (Zs, Tt

Uty
-

and 2*(max (3*n, 3*m)) accesses to the secondary storsz

-
-

o f

ne ioin

1Y)

are required. Thls is an access complexity o7

the controller which is 2(max (Zs/r, Tt/r) 1},

3 TCMPARISZONS 3ETWIZIZN THE TWCS ALTERYNATIVES

Table 4 illustrates *+tne time complexiti=zs
alternatives, wusing 3 sort-match algoritanm, 1gzzin, =ne
computing complexity, the access complexity, and t1e
communication complexity are Ziven separately. ne
computing complexity includes the sum of the <computing
complexities of the internal sort phase, the merge phas=2,
and the join.

The access complexity includes the sum of the access
complexities of the internal sort phase, the merge phase,
and the join. Finally, the communication complexity shows
the time required to transmit the source and the target
records among the backends and between the controller and
the Dbackends. The complexity formulas of accesses to thne
secondary storage are given only for the adcitional accesses
necessary to complete the join. In other words, accesses to

the secondary storage to retrieve the records to perform

32

LA . R Ca . . . - s . - .
o e e e e, .0 A . B .
- B P I - P -

- . . . - N ,
. .v .) .
WP ST WG NP ST N S SO N T S SR NP

AL

L

Pl B

.
:

i
=
e

. JENO

) RN

o

.

|

I

Eamin
4 7

ST T

BN ARy an 4
T,
ﬂ.‘

Ay

A L At

D e A T A e P R A S - L T Y T W T Y T W vy T ¥

f
[\V)

3
(&1
(7]
w

3
[\
23
9]
«t

selection and projection Do2efore tne JZin s

included. Let us examine the Table 4 row by row 2omparing
the two z2lternatives,

The computing complexity in the ©Hackends f:or “na2
alternative A.1 1is larger than the 3lternativs A.2 siaca
each backend in alternative A.1 contains all the target fil=
records. Jdn the contrary, the altsrnative 1.2 =133z 2

computing complexity at the controller. Thera
alternative A,1 1s bYetter than alternative 1,2 with r2zzr:

4

the design 303l »>f ninimizin

[VN]

to meetin

oQ

function.
The alternative A.1 requires more accesses o %n2

secondary storage for the backends than the alternative 1,2,

n

However, again, the alternative A.2 requires nore =accaess2

to the secondary storage at the controller. Therafors,

(9

alternative A.1 1is Dbetter than 3alternative A.2 due -
meeting the design goal of minimizing controller function.
Despite the situation that the alternative 4.2 has lLower
transmission ove%head, this may be negligible when dalznced
against I/0 requirements at the controller. Therefore, we
will recommend the alternative A.2, 1.e.,the Dbackends
perform the join, for implementation of the join wusing 3
sort-match algorithm in MDBS. This alternative best meets
the design goals of minimizing controller function and

sharing the work equally at the backends.

93

P . . . e - .
a a PR A WY S W Y I U O R T

-~

TEET

YRS VTR NN

. A—

R)

NIV . Y SR

.

UNEW | SEIPIST SLNENE W _ _ SR

AW e

A

LA L A il
~

2°\ JATLVNYILTY SA
MITT0YLINOY) 1)

"T°V IATLYNYILTY
*SANINIVY :Sq

Ve '

CREREA]

I

” _ \ _ mm mm
) 1 ,. ’ : U N - » o ‘ .m =
: (0 e DI Y -
. o) INOWM 2=
7 , (1) sg | 23
MLl =

. 3 i) oNOWd| =
L ~ U o
] A v, Ss,nw N — IHL| S
L. Dy ,4 ~f - 1D .P< ﬂn‘m.w
» — e ——— ——— e _WA._E
[—
. ~ang aeg g g o, — o J g~ g ke 1 N Sq wl
m_ (s WV« s gavﬂs ety e ey BUER ol)
3) - D o0
] Qyi,bgzlﬁs»::;g: — = = - ML ==
m .] s
e 1 -:s,m; o 4 PR L N o Rdk: Yol S Y NI w_mh 52
m (=S 5:% (S 55 0155 55t il
: WHITHO9 WY 11D LVK- [40S
“ Y ONISN_AZ NIOr 3HI WHLTY091Y HILVW-140S ¥ ONISN
w SWHOSMId ¥ITTIONINOD THI "'V AG NTOF 3HL FYVHS SANINIYE FHL "T'V

i dnd ket o AA D PN - - 7 W T

. -
......

P Wy

W WLV S S, Vg O

PP Pw,

*SANINIVY TFHL

i LV NTOP T ONTWHO P SWHLTHOO Iy NTOP OM| W1 40 SITLIXTNdW0) 3Wi] 3] g 114v)
, 43TI0YINOY 7 “SANINIVY :Sg
L oas
o _ \ - IJHL ==
AAJV DRI R A«U. S
IONOWM =
f Lo~ . - cee - R P S — Zo
m | (550 | =1
._,) =
4 L - - e -
B ! u
T - JHL

,. I ¥)4 dy J » wm
(ERE ;.um e, ,_30 (2223 o

p—
<€
ALIX31dW0D
SS3AY

T e T W W W WY VT wTTY

_N) D))) D kD #ut $)) IS 1V 2
. L
-, JHi| T
T | WIvE
. | .. . T .. e =
‘ - g 1 43~ g 'on 4 9 54 2
) AAVV ﬂqv;::+m :yq..; v>,|w*, ﬁ4<3|mw+a.£yU+auvo Agu.nuuo uﬂﬁ
”M WHLTY09 TV WHLI4097Y
_ NIOr NIOr
HILVW-1Y0S (IHYMYOJLHITVYLS
ARAR IS AP . e tbiontont, PRI VI I DU AN SR T R

“-a L

sa e

. . Y

(el W

.
Bt it ot N e s W B A

AD-A158 7i1 DESIGN RND RNﬂLVSIS OF ORDERING AND JOIN FOR A

MULTI-BACKED DRTRBRSE SYSTEMU) NIWRL POSTGRADUATE
SCHOOL MONTEREY CA S MULDUR JUN 8

UNCLASSIFIED F/6 9/2

P S R U L e g g NE_ o g e i et R (,.11

R i ST el A A o B g

.0 8 1

—— | KA mz.z
‘- 4

i -

1.8

o |

2 i e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 19644

v
A2
(1
(V7]

‘)
LN}

. ZOMPARISCNS 3ETWIIN THE 3TRAIGHTFIZWARZD AND

MATCH JJIN, ALGCRITHMS

T
5}
({1
oy
o
wn
t

Table 5 depizts the time complexities for

3
w

3
L
Ct

b)
©®

alternative using tne stralizhtforward joia algoritnrs

[¢1]
c?
|8
(7]

.
i

best 3alternative usiang the sorte-match join algorithn,

[
ot
Y
[¢7]

now QJompare the Lwo alternatives., Let us assums 413

«t
t

3
7
of

aumder 0f source records is equal to the aunmdber OF

Uty

W
i

ot
(W)

records, i.e., Cs = Tt., Let the dSlock 3ize, r, Cte 23.

~

)

e

. de Wwill compare the a3ccess <2omplexities ani PR

77

23mputing complaxities 2f tne two alternative

L
77}
IS
'
.

selected numdber of records iavolved, Cs and Ct, the -

W)

proportionality, g, and varying the nunmber of backends,

Zt=2 3ni

Figure 3.1 shows the access complexities for Cs

Twa

Iy

2 , q=0.1, and number of backends, B8, from 2 to °

cess

O
U

increasing number of bhackends nas little effect on a2
complexity when a sort-match algorithm is used. However,
when the straizhtforward algorithm 1is used, the access
complexity decreases sharply as the number of backends
increases. Note that for a large number of backends, B8>15,
the reduction becomes negligible. The access complexity
required for the sort-match algorithm is always 1less than
that required for the spraightforward algorithm, and is

substantially less for a smaller number of backends.

96

P e} . .
. I S) . - . -
. a0l oo . . 3 K J - - N . .
. . ' e o . L e e e -
0 e ., - . . - . . | . . - . . 0T S R .- B % S «
= - F WL . o - . . . » a ‘ot .-.. . . . 4. AR R . . .
e B ‘. > L. : LU DA Y v e

Sy aoh |y 4o YeR-10045 pur parmaoyybieals doy urop jJo A31x3adno) s93d3y "1 aanbi4

9. 2 (9) ONDIVE g . v

¥ I 1 1 | T [o
- . Q N . L
IS S SO SRR S S ST S SO S S - LI

-
yOlL X1t

A) !
. e 4
m
. A c
— r~
N — &
* N
\ >
Ay N —
. W.U
‘D rF' S
L]
. L]
\
A}
...
\ w
»
1°0=b =
4- O
»

1873053 0 0 O

. 1719750 - CA A

S P S o O Y WYYy
.

Figure 3.2 shows tne 2amputing 2omplexity Tan srth

algorithms with Cs::t:fs and 24. 322.7, In whils zase, zoun

alternatives have Jdecreasiag <2somputing 2omplexizy. Azszin,
the computing <complexity for %tne sort-matan alzorisnm is R
less than that required for the straigzatforwari izin ;
algorithm, and substantially less for a smail nuns2r 57 »
a
backends. When the aunmber of sourcze and tarzst rec:r:s ﬁ
increase, the 1ifference Gtetween <the Two 3lzoritiams :zlse ﬂ

lacreass.

Tigure 3.3 shows the communization 2omplexiny of Lne
straizntforward join algorithm with Cs=Tt= 27, 2, and 2. Tn=2
quotion, 3, ranges from 2.1 to 0.5. Figure 8.4 depizts ¢the
same complexity for the sort-match join algorithm ~ith

2

Cs=Ct=2 - 28, and g9=:2.1-9.5. These two figures illustrate
that increasing Cs, Ct, and q affect on tne communication

complexity of the straizhtforward join algorithm more than

the sort-match join algorithm.

D. RECOMMENDED PROPOSAL FOR THE DISTRIBUTION OF THE JOJIN
OPERATION
In tnhe previous sections, we have analyzed the
alternatives of the distribution of the functionality and
shown the tradeoffs and the advantages 5f each one by wusing

two different join algorithms, namely the straightforwara

join algorithm and the sort-match join algorithm,

33 iﬂ

Sriefl; 3lternative 3,1 in Chapter 7II 45in 3
’

cu

straigatforward oin algoritnm 2and tne alternative A.1 in

Chapter VIII using a sort-match join alzorithm are the GCcest
alternatives for distribution of the functiosnality. I boon

alternatives, the functional unit performing the ioin in

MDBS is the bha

[p]

kends. Finally, comparisons betweesn these Lo
zlternatives have shown %hat the alternative A1, ioin ac
the 2azkends using 2 sortematch join algorithm, i{s 52ntar

tnan the alternative 3.7, Jjoin at the backends usiag

W

straizntforward join alzorithm, on acgount >f meeting <2
desizn goal of minimizing the comnmuniczation overheald Sata22n
the controller and the backends.

Having analyzed all the alternatives, the most

appropriate choice for implementing the joia in MDBS is that

each backend performs a3 partial join with its portion »>f

source records and all target records. Then,the results are

sent to the controller. The controller will then forward the

final result to the host computer.

SMREAE] A NOA I il ¥ AN ATNCNIN AR) | adrtamanors,
3

-

o

4 W00 [RS 10 pur paesiogiybies) a0y utop jo A3txapdmo) burindmoy *2°g 3anbiy

: at 0 () aNpaove o)

.. r ey pe S S R YT S Wbt Smr ey S " —"—t— 3 P
. Rl SRR [} ' }- e
. .«I’l’;T;IIl—ffxn/T
——_
. A---pn... T
N /./
: A A
A
. . AN
. D SH o
KA x
. A <,
RN —
| a :
N ﬁ - ‘
. - 3
) Lo
. It
g a
N ~
.)
\ . ~.On7 .,. Z
: 2350 0 o et o []X
\ £10=33- 1]lo
A I A A ®
L
: A
, ~
fnr.-v. e e e K -_~. - R ;..._. . . 3 _-,....»,... CeL . v . e ;. Ly »-) -» T L g,. .

wytaohy pacrsogiqbreads ayly putsp urop Joy A31x9dwo)

L
<0 LAY £0

uot3edlunuuo) ‘€8

3anbt 4

1 t 1 LI | 1

e et

aanver
searse -

c=3)=3)
N"“U"wUOCC LR N A
N”‘U"mu.'.’.l'

tl
vl
Sl

90l*9 gOLXV gOsz

¢0i x8

tun awt]

—4
€
4

p.A
[

.]
. Ny
.
5) . |
1)t by g e 12085 0y hugsy utop a0y A3 1xa | dimo) woprIpHunmmo) "§° g Aanb1 4 | m
£_

1 T N " . : | _ O ,
w“ - : | | i ..A
T B) o ~....
E N
o
(@]
JUPPERE 'e) |
. N .
| [aal
. fond
z . o
3 o .
o~ ’ _
|] O
o
. S B
B
-\\:\\-\-.mwmu 3es) —— |
N o p12=13=5) . |
. 2=313=5) R)
- 61] m |
o 91¢=13=5) o
. N~NH.~UHWU - .
v. l | I'In . .
m. wANHHU|mU L - ..L
! .
3 . .u

S
.

-

. LA P . .
-\f\--u-_f.- . ..- . . , . ., | . .

... .- ' .
NN LSRN AE
P YO P& O S ot TV ST o

.

e §
-

,."vr.r,

- E RS A R I I NN
-(o vl D v
- a = - - = - s
In tals thesis, we inatrcduce tne sort and S
= \ -3 ' i N < 2 =3
>perations ianto the Mylti-3ac«cend ZataZase 5/s5tem [MIES)

; ~ - - N -y Y3 5 -~ R FE o -
11ding so2r0% 321 Join cananititias vill L1cm 233 DA
affazxtivzanass >7 thae 373%em L1 3D tial c2linican
~ - oy r,,..' mal - - 1 1 ~ 2a < 3~ yAn 2 T ‘e a ey R s
datazase and ral3ztinsnal lianguaage {ntar~faces, The <2y 133532

for 3lternatives 13 the way in which tne functionszlicy of

“he operatizn i3 distributad zmong the contrsllar 3ndi -2
~ A~ csants i ~na ra N = x;'—J - t agan ~aga -, -
z3acxkands, de 1372 Jbservel at, 1n =ac lase, Tnzs
- .) - |' Al ‘, i -~ § 0= Al r - ,
3s3i3ning %1e most Hf the Wore %o the Dackenis 13 always the

1]

better 3pprosacn. S3Since the work is shared equally 92y 7
sackends, increasing the number of backends ian the systanm
reduces tne response time and increases the througnput, thus
meeting the desizn goals. The selected solutions m3ay 3also bHa
implemented with less impact on the existing software.

Qur proposal for the sort function is that the backends

perform the sorting and partial merge, and the controller

performs the final merge. Qur proposal for the join

function wusing the sort-match join algorithm is that each

backend performs 3 partial join with its portion of source

records and all target records. Then, the results are sant

to the controller. The controller will then forward tha

final result to the host computer.

103

An ares for furthar rafinamant 2onZerns tne I25iznz
2% 30urcze z3nd warger reliations for the l2in funztion,
Sur 3nalysis, W~e 3ss3ume2 wnat the numser 27 <ha sour:ze
“arget r2cords are 23u2l, If thils zssumption 2rnanges,
tne 2cmmunization complexity 3and the 3aczess 2omplaxisy
Jur propirsals /i1l be 3affected, CZlearly, transmitting
3mall number racords decrezses the 2ommunlcatiosn omozlav
The effazt 31 322633 ocomplexity i3 la2ss 2la2ar., T2 o3z
Samo el Tor wnoe 3traizntiorward Ioin 3.30~1%2
sensinive T> tne size of tTne file resizent Lo main oman
Trneresfore, it may e desiranla £ty s2lec¢t the larger oF
two filas as the fFils to ne “ransmitted.

Tnis thesis provides the groundwork for fur
analysis. e have presented 2omputing, 2access,

complexities separately. If some r=ala

~alzhts can Dbe assigned to tnese <complexities, fur

analyses to 2valuate the tradeoffs may lead to poroviiin

tnoice among s5everal 3lternatives, depeniing on

iistribution 2f the relevant records among the backends,

communication cost and the acess complexity,

194

«f

L Al el S A and gy o mitn o]
.

0
8

N

1Y}

(9]
.

7

v
~
{7

W

the

the

CA AL

HPIRPEPRY ¥

LR 44‘1‘1 CAC

I\ MM\ SRR Rrrh

&
L L1 (507 PRI 2 - -] - o

(AR (NRE RN A o | o~ (28 ({47 B oy vy
b i o e b e t LA PR et M
‘ e Cner Yol hoy I8 [ARE S 1 0
', Lomjolo - @ e oy n © @ L.
g LANFR Y (3] o] 0 O] 1 | & [QES]

o311 X [1}] (5] L4 (88} QO wd (M

T ooaleele g e MmNt] Ol > E 0] .

M [4$] fF @ 3 n. (I8 N L ot ™M

[SUE 211751 K IR [1L (o Pl . — o .
. [I e .o Oy] e) O™ .4
. Y e - a e of oy e (SR — .
b, Rd Pad ROEr | " . - — o n
g oo o X e~ (@] N~ o | G of B)]

v ~apel o (LY Al el (@) [<}]] 0 olc 4
' LIS AR F3 1 1 SN o L. [t o T o > L QA3 .
L -)y v b [¢) IRENE i joad —Alo D o P 9
* Alm}) o~)y N . [Gal MRERS) ol O b

e o len ony - - o~ o @y~
Coofeymia ~ Ml Q.o o0 -3 ¢ N
[(2] t ey (8 X/ T .o - QO P ChO .
() P iz lo o O wict o @y .
LR L] o v o 31y B o] ,
o o anijto]o Kol t.{of -~ e o
) (8] ool m ~ O (L2 LY [—~ w]
o [N T of L2 K e L = ~ Q. o -
(1 o7 oo > o © I -5]
fr. - tJOle jap] Q5 @ [@ RS L))
ty) RERE SR ($9% 1300 B 5] at .y s 1lO
(v OO0 - [o131 o] Vgl
v Lafeto{n., — — i - m (@]
L. (3} n. (o] O [103 [Oh P = 0O — L
(8] M)y , 4 O -0 P [} PR
Ty) L2 Kol < < w vt U} - p
[3 O c:w) > O [} >~ T o -
73] [IK(]] [T K] [%0] e+{en el Xod I U~ 0 A
A (G S ER A (A] b P i1 0. CY .
D)) s e L) (31 K © L. O
cjofen] -~ 1 s N Gafor . pd
~ (oLli=Een 0 [R82 Ne\) -0] -
n gl Ol I O : : T o« 1
@y al-e N ke rA]ee e loO I | T D .
L~ D m yﬁ/_dw..“a olo . ®]
23] (211210 | LR H 214 La R O | D >0 0 K
3 oo g (4] Yy ko= Y no o O] =4]
O Cleabei PR (Y| I f+ @ o .
(o= taorhm) . ball bod 1") - v -~ K
< e o o OISO o Ep Ll o't
. [TAN] n. < e o, 2 Ol e s .
N~ 't -t £ (@l o gla ™ ©E '
a Mt - “fr-a [Y ()] Bl o Oft L1
Lo (@] (] [eyt m [SR R © e
L3 micye > N 21 (22 [Z 2 e | S o N e 2] 1
O @ >~y m O e > aly @ © FElo e >
enLantentss o (M oylzje bS] bol (Yt D
. e [£R =) i

i

Y

/T‘ri
. -

e

[0 il 2 4 ok 2 “uill sl

[X9]

-~

INTTTAL TISTRIRUTICN
Defance T2chnical Informatizn Tent
Tamersn Station
ilaxandria, Tirginia 22274
Zibrary, Tod2 1.2
"aval P22stz~atuate 32h00l
fon4aray, Zalifs-~niz 23372
Tenartmant Thaicman, Tods 32
T2partment o7 Iomputer Zoiance
Yaval 2ostzraduate 32no0l
“oaterey, Zalifornia 33743
Curricula 2€fizier, ZTode 37
Computer Technology
'faval Postiraduate 3chool
“onterey, Taliforniz J33143

4

Profasscor Zavii Y. Hsiao, Toyle 372
Computer 3cience Department

Naval %ostagraduate 3cnhool
Monterey, California 739343

Or. Paula Strawser, 52
Computer 3Science Department
‘laval Pcstgraduate School
Monterey, California 723943

Turk Jeniz Xuvvetleri
Zgitim Daire 3askanligi
3akaniiklar Ankara TUJRKEY

Ltjg. Serdar Muldur

Yildirim Mahallesi

Civiciler Sokak .
Sandikcioglu Apt. No.2

. Balikesir TURKEY

Istanbul 3Bogazici Jniversitesi

3ilzisayar Solumu
Istanbul T'YRKEY

194

3
v
iS)

Qh

)]
i
1

(W8]

4-85

