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Abstract

"4he numerical solution of many prohlems in continuum dynamics is

seriously limited by the computation rates attainable on computers with serial

architecture. Parallel processing machines can achieve much higher rates.

However, applying additional processors to a calculation is only part of the

solution. In this report, parallel algorithms are developed for explicit and

implicit, Lagrangian and Eulerian finite difference schemes for computational

continuum dynamics in one spatial dimension.

First, the explicit conservation equations in the Lagrangian reference

frame are readily reformulated for concurrent processing. Second, an implicit

solution is derived for these equations. This is important because it yields

unconditional stability. The parallelism is achieved via a block implicit

numerical scheme. Third, a rezoning algorithm is employed with each

Lagranglan integration step to transform the mesh back to the Eulerian

reference frame. Along the algorithmic development path, a zone-by-zone

parallelization gives way to a block-by-block technique both of which are

self-scheduling. Then the latter is compared to an approach that keeps the

parallel processes alive for many time steps. At each step of this research

project, the derived numerical methods provide effective algorithms for

exploiting the architectural advantages of the HEP H1000 (Heterogeneous

Element processor) computer.
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Section I - Introduction

The conservation laws of volume, mass, momentum, and energy apply to any

continuum material: solid, liquid, gas, plasma, or multiphase. Hence, the

algorithms of computational continuum dynamics are very important for the

solution of many scientific problems. When the application is changed from

one material to another, only the material law (equation of state, constitu-

tive relation, or rate relation) changes. Thus, there is a similarity of

structure between the hydrocodes (gas and liquid dynamics), the wavecodes

(solid dynamics), and the magnetohydrocodes (plasma dynamics) that are the

computer implementations of schemes for continuum dynamics calculations.

It is well known that computer simulation codes are cost-effective tools

in continuum dynamics research. Indeed, a variety of problems arising in such

fields as aeronautics, controlled fusion, meteorology, reactor safety, and

structural analysis provide strong motivation for the development of higher

computing rates. However, the limits of current computing power prevent the

simulation of many important problems to the desired levels of temporal and

spatial resolution. The speed of light barrier imposes a theoretical limit on

what can be achieved with serial architecture.

To achieve higher computing rates it has become necessary to perform

calculations in parallel. The computer architecture with the greatest degree

of parallelism is labeled Multiple Instruction stream, Multiple Data stream

(MIMD). An example of a machine of this type is the HEP HIOO computer manu-

factured by the Denelcor Corporation.

In principle, many hydrocodes and wavecodes could be moved to a parallel

4processor. However, applying additional processors to a computational task is

* not, in general, sufficient to produce significant speed-up. Indeed, the

development of parallel algorithms is an area of research vital to the

effectiveness of parallel processors.1  Recent research indicates that the

parallelization of a program should be organized from the top down. 2'3 That

* * is, the existing structure and organization of a program do not permit signif-

icant improvements in speed. Consequently, it becomes necessary to reformu-

*1 late algorithms and to write new code.

The direct approach to the construction of parallel algorithms for con-

tinuum dynamics calculations can be quite complicated. Rather than plunge

.4



into a development project intended to generate a code with broad three-

dimensional capabilities, we have taken a step by step approach suggested by

Darrell Hicks. 4 Thus, in a modular fashion, the algorithms at each level of

complexity can be verified as they are derived. Our approach to the numerical

solution of the problems of continuum dynamics leads to algorithms well suited

for parallel architecture in general and for the HEP H1O00 computer in partic-

ular. The approach is a step-by-step procedure based on a progression from

the simplest hydrocode (one-dimensional, single-phase, explicit, Lagrangian)

through the most complex continuum dynamics codes. The latter programs can

involve two or three dimensions, multiphase, implicit-optional-explicit

differencing, arbitrary rezoning coordinate systems (Lagrangian or Eulerian),

or variable time steps from spatial zone to zone.

The specific objectives of the research reported in this paper involve a

three-step process for the development of parallel algorithms for one-

dimensional simulation codes. 5 First, we will consider an explicit, one-

dimensional, single-phase Lagrangian hydrocode. Its inherently simple data

structure makes it straightforward to integrate the volume, momentum, and

energy equations for each zone, or block of zones, in parallel. Thus, for

this case, the optimal parallelization problem is evidently easily solved. We

show that, in some sense, this is the best restructuring of the algorithm.

Second, a block implicit method is derived for the implicit differencing of

the equations. Third, we will convert the programs from Lagrangian to

Eulerian coordinates in such a way that the conserved quantities are preserved

in a parallel processing scheme.

Extensions to Eulerian codes can be achieved by a rezoning technique. It

has precursors in the work of F. Harlow6 (Particle In Cell codes) and in the
i )  work of W. Johnson (PIC codes converted to continuum simulations). We refer

to this method as the Harlow-Johnson rezoning technique. S It can be modified

to achieve dynamic rezoning (also known as adaptive mesh) methods. (See

Hicks 4 and Hicks and Walsh 7 for further details.)

The results of this work provide the foundation for extensions to more

elaborate hydrocodes. A direct extension appears to be possible for two-phase

or two-material flow in Eulerian coordinates.4 Through stages of increasing

complexity, one can achieve the block-by-block parallelization of oultiphase

(or multi-material) and multi-dimensional hydrocodes. It appears that

-~ - Yr .. - 2



block-by-block parallelization or some variation thereof will lead to the

optimal parallel algorithms. Two-phase flow extensions are readily accomp-

lished in an Eulerian coordinate system. Discussions of two-phase flow models

and their relevance to reactor safety may be found in Hicks 4',, 10 ,11 and

Ransom and Hicks 1 2 . One of the important problems in reactor safety is the

need for fast simulators and predictors to assist operators in handling

situations such as the event at Three Mile Island. Finally, extensions to

multi-dimensions may be achieved by operator splitting.
13

While the development of hydrocodes is a long standing achievement, it is

the utilization of new and unique advances in computer architecture for hydro-

code calculations that makes our research important and timely. In each of

the three steps, the crucial questions concern the extent to which the

algorithms can be separated into calculations that are performed concur-

rently. The algorithmic details are developed in Section III. Converting to

Eulerian coordinates is the topic of Section IV. The computational results

are presented in Section V.

The design of a parallel algorithm is interrelated with the particular

architecture of the parallel processor.1 ,2' 3 That is, although some progress

has been made, 14 general specifications for machine-independent algorithms

have not yet been agreed upon. In Section II, we begin by providing a

description of the architectural implications for parallel algorithms on the

HEP computer.

Section II - The 14EP Computer

If we categorize computer architectures by their parallel processing

capabilities, we have: SISD, SIMD, and MIMO. SISO stands for Single Instruc-

tion stream, Single Data stream. The typical serial computer has SISO archi-

tecture. SIMD stands for Single Instruction stream, Multiple Data stream.

Vector machines such as the CRAY-I have this architecture. The multiple data

streams consist of the components of the vectors. The instruction mode is

still single stream (or serial) although the instructions may generate vector

operations. MIMN stands for Multiple Instruction stream, Multiple Data stream.

The HEP (Heterogeneous Element Processor) by Denelcor has MIMD architecture.

The HEP computer is designed to combine from one up to 16 Process Execu-

tion Modules (PEM's) in a single computer. Each PEM is an eight-segment pipe-

lined processor consisting of eight Function Units in the Instruction

Processing Unit. The Function Units include the hardware for initiating

3
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parallel processing and for an integer addition, a floating point addition, a

multiplication, and several divides. The machine has a 64-bit word length.

More information on the HEP architecture and on its applications can be found

in the references by Smith 2 and Jordan.3

HEP Software

From the software point of view, the HEP achieves its parallel processing

capabilities by extending FORTRAN 77 in two ways. With their first implemen-

tation of a compiler, Denelcor provided the CREATE statement and the asynchro-

nous variable. In their more recent release, they have replaced these with

callable subroutines which make the FORTRAN portable. Even though this is a

good objective, the authors deplore the change of heart at Denelcor. The

CREATE statement and the asynchronous variable gave the programmer more

explicit language for coding calculations that are intended to be performed

concurrently. In any event, a discussion of these two terms is appropriate

for this report because it provides a good explanation of the considerations

that must be taken Into account when processing is divided into and reunited

from parallel paths.

1. The CREATE SUBROUTINE statement is similar (syntactically) to the well-
known CALL SUBROUTINE statement in FORTRAN. It has the effect of creating
a copy of (or "cloning") the original subroutine and executing the copy in
a calculational stream parallel to the mainstream.

2. The asynchronous ('dollar-sign*) variable is any acceptable FORTRAN
variable name prefixed with a "S". Asynchronous variables are used for
communication between parallel computational streams. Asynchronous
variables have two states, "full" and "empty". If a FORTRAN assignment
statement contains an asynchronous variable on the right hand side of the
equal sign, then the calculation waits until the state of the asynchronous
variable is full. If its state is full, then the value is fetched and the
state is set to empty. If the left hand side of the equal side of a
FORTRAN assignment statement is an asynchronous variable, then the assign-
ment of its value waits until its state is empty. Then, when the assign-
ment is made, its state is reset to full.

The diagram in Figure I presents a visual image of the parallel process-

ing as implemented on the HEP computer. At CREATE statements, the computa-

tional flow can "fork" into a number of parallel paths which the operating

system assigns to the available processors. An empty asynchronous variable

prevents the main stream from continuing beyond the point at which it needs

the results from the parallel streams. A *Join" point is marked by the return

from a CREATE statement and an asynchronous variable that must be reset to

full by the last parallel stream to finish processing.

4
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f ork point jin pon
single stream , main stream single stream

\ parallel streams vV

"CREATE statement e RETURN statement.
- Asynchronous variable e Asynchronous variable

emptied. filled.

Figure 1. Fork and join points in a FORTRAN program mark the beginning and
end, respectively, of concurrent (or parallel) processing segments of the
code.

One of the crucial aspects of parallel processing is, of course, the

development of software capable of coordinating concurrent computational

tasks. Denelcor has chosen a straightforward extension of FORTRAN for the

HEP. The "fork" and "join" procedures make the HEP computer immediately

accessible to the traditional scientific programming community. A collection

of lectures on various aspects of concurrent computation contains further

background material on parallel processing algorithms and architecture. 15 The

HEP FORTRAN 77 User's Guide is useful for more specific information on the HEP

software. 16

Section III - The Parallel Algorithms

The first step of the research is the application of the parallel process-

ing attributes of the HEP, as described above, to an explicit, one-dimensional

Lagrangian hydrocode. An examination of the theory shows that a zone-by-zone

parallelization is straightforward. A block-by-block parallelization may be

more efficient than the zone-by-zone when the number of processes is signifi-

cantly less than the number of zones. By a "block" we mean a set of4m
'W
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contiguous zones. The block (or granularity) size is found by dividing the

number of zones by the number of processes.

A hydrodynamic simulation is based on the conservation laws of volume,

mass, momentum, and energy. In the Lagrangian frame, the corresponding

differential equations are differenced on a mesh in which the grid points

remain fixed in the material. Let X be the Lagrangian spatial coordinate (the

one that identifies the initial location of the mass point) and let W he the

mass coordinate with units of mass per area. The two are related by

du Po dX ()

where p is the mass density as a function of X and the zero superscript indi-

cates o is evaluated at time t 0 0. Let V be the specific volume such that

v -. (2)0

This choice of coordinates guarantees conservation of mass.

Assuming rectangular symmetry (slab geometry), the remaining conservation

laws in differential form are

" Conservation of volume:

2V a (3)
at am

" Conservation of momentum:

1u (p + q) (4)

at au

" Conservation of energy:

LE  . C u (p + q)] (5)
at au

where u is the velocity (or specific momentum) of a fixed point in the mass, p

is the pressure, q is the material viscosity, and E is the total specific

energy. In vector notation this system can be written as

2U 3F(U)(6Lu. (6) -
where au

U - (V, u, E)T (7)

and -a F(U) - (u, -(p + q). -u(p + q))T. (8)

As usual, the superscript T denotes the transpose of the array.

63m
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If c is the specific internal energy, then

1 2
E = + 79

Taking the partial derivative of equation (9) with respect to time and suhsti-

tuting equations (3), (4), and (5) into the result yields an internal energy

equation
p_ +q (10)

Dt 3

in place of equation (5). This system of equations (3), r4), and (5) or (10)

is incomplete without an equation for the pressure. The system is closed with

a thernomechanical equation of state (EOS) relating p to V and c.

Of the two most common finite differencing schemes, we have chosen the

one attributable to von Neumann-Richtmyer 17 over that of Lax-Wendroff. It

appears to have good accuracy and less tendency to oscillate in response to

strong shocks and rarefactions. 18 For the discretization of the time and mass

per area independent variables, we adopt the usual convention by which a

superscript denotes time dependence and a subscript indicates the location in

the mass variable. With this notation, the half integers denote time and mass

centering in the mesh. Thus, the von Neumann-Richtmyer discretization scheme

for the conservation laws becomes
19

9 Conservation of volume:

V n+1 n un+1/2 un+1/2
+112 - V +1 12  a uj+ - u(11

tn+l _ tn . j+1 J (11)

e Conservation of momentum:

n+1/2 n-I/2 n-1/2, n n-1/2, [N
un ? - u .nP/+I/2 + qj+1/2' " Pj-1/2 + qj-1/ 2 _ (12)

t n+112 i n-1/2 Uj+ 1 / 2 - Uj-1/2

* Energy equation:

n+1 n [ (pn+1 +n n-/21gn n(1

'j+1/2 "J"+112  / + PJ+ 2112) j 112 -J+11 2 " Vj+1/ 2) " (13)
The EOS expresses pn+I/ 2 in terms of vn  and

2j+1/2 ndJ+12.i/2

When real viscous effects are negligible or, at least, insufficient to

handle severe gradients in the physical properties of the material, an

'~7
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artificial viscosity is superimposed to average the abrupt variatijns over

several adjacent zones. A well known implementation of arti'icial viscosity

is given by a formla due to von Neumann and Ricntmyer as modified by
Rosenbluth 1 7 and Landshoff. 2 0

The superscripts in the difference equations (11), (12), and (13) indi-

cate the order in which they are solved. First, the velocity u is updated

from time tn- I/ 2 to time tn+1/2 using equation (12) where, in practice, it has

not been found necessary to extrapolate the viscosity q to time tn. Then, in

a leapfrog fashion, equation (11) is employed to vault the specific volume V

over the velocity from time tn to time tn +1. Finally, all that remains is the

energy equation in which compression and viscous work contribute to the

heating of the material.

If the equation of state has a tractable analytic expression for the

pressure, it can be substituted into the energy equation (13). Then, upon

rearranging terms, the internal energy c is advanced from time tn to tnl.

One such form is the ideal gas law

p = ( - 1) C 0 (14)

where y is the ratio of specific heats cV to CT. A slight generalization of

this is the Mie-Gruneisen law

p - f(D) + " E P (15)

where - > 0 is the Gruneisen parameter. This form is often used in research

involving shock waves in solids. For both equations of state (14) and (15),

it is easy to reduce the von Neumann-Richtmyer implicit discretization of the
n+1

internal energy equation (13) to an explicit expression for E n+/2 If the

EOS is purely mechanical, meaning p depends only on V. then both the energy

equation (13) and the EOS are not needed to complete the system and they may

be omitted altogether.

One of the advantages of the parallel computer (MIMD architecture) over

the vector computer (SIMD architecture) pertains to the parallelization of the

material law routine. These calculations do not in general vectorize. We

have observed that, in certain cases, a large portion (often over 75%) of the

processing time is spent on computationally intensive material laws.

More complicated situations occur when the EOS Is not as straightforward

! I as equation (14) or equation (15) and when energy transport mechanisms such as

8
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conduction become important. In such cases, equation (13) with additional

terms for energy transport mechanisms must be solved implicitly. 2 1 A discus-

sion of parallel algorithms for implicit equatiins is contained in the follow-

ing paragraphs. MIore general energy equations are beyond the scope of this

article. An examination of these problems is a natural extension that the

authors would like to promote.

The time and space structure of the data as it has just been described

leaves it in a form that is immediately amenable for parallelization. The

data structure for the conservation of momentum is illustrated in Figure 2

while the conservation of volume is shown in Figure 3. The discrete conserva-

tion of momentim equation (12) has the form

Unew U old - right - aleft r (16)

where r = t and a - p + q. Similarly, the discrete conservation of volume

equation (11) has the form

Vnew a Vold + (Uright - uleft) r . 17)

figures 2 and 3 also show the offsets in both time and space (mass) between

the momenti and mass equations as specified by the von Neumann-Richtmyer

differencing scheme.

To advance the momentum in time, we construct a subroutine to evaluate

equation (16). The main program CREATEs the optimal number of copies of this

routine and uses the fork-join structure of parallel programming to advance

the velocities simultaneously. Asynchronous variablec passed between the main

program and the copies indicate when the main stream can continue. Then, in

similar fork-parallel-join fashion, the new velocities are used to update the

zone boundary locations from which new volumes are used to calculate the new

energies. These kinds of programming tasks are described further in refer-

ences [3, page 43] and [15, page 90]. Finally, the explicit equation of state

evaluations are done with the same type of zone-by-zone or block-by-block

parallel programming structure.

9



4 Vnew
U new t e

'"Iet (right Uleft Uright

- VO~Uold 0 Vd

Figure 2. The data structure for the Figure 3. The data structure for
conservation of momentum has an explicit the conservation of volume is also
form as stated by equation (16). explicit as stated hy equation (17).

Imllclt discretizatlon.

The second stage of the research plan is the parallelization of an

implicit scheme. The object of implicit calculations for a hydrocode is the

removal of restrictions on the time step. Explicit time steps are usually

constrained by the CFL (Courant, Friedrichs, Lewy) 17,22 condition that

is required for stability. Various necessary and sufficient conditions on the

CFL number in hydrocodes with classical thermomechanical equations of state

such as (14) or (15) are contained in Richtmyer and Morton1 7 while some recent

results for rate dependent and related computational techniques such as sub-

cycling have been developed by HicKs. 23,24"25 For a general discussion of

hydrocode convergence problems, see a couple of the references by Hicks. 26'27

The explicit solution advances the components of equation (6) from time

tn-i/2 to time tn+1/2 or from time tn to time tn+1 in terms of quantities

evaluated at times tn or tn+1 /2, respectively. Such a centered difference

scheme yields second order accuracy. However, the time centered quantities

have to be evaluated at the forward times tn+ I/2 or tn+ l, respectively, in

order for the unconditional stability of an implicit solution to be

achieved. A mixture of the two, that is, a weighted average of the explicit

and the implicit terms can achieve the stability of the implicit methods while

retaining some of the accuracy of the explicit scheme.
4

The implicit solution of coupled differential equations typically leads

to a tridlagonal linear system for which a parallel algorithm is not
immediately obvious. It is possible to solve the equations in parallel via an

* a priori, symbolic inversion of the system. 4  This involves the evaluation of

several recursive sequences. The method divides a recursive sequence into

10
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parallel processes by the concurrent evaluation of even and odd terms (or,

more generally, by the concurrent evaluation of the n sequences of terms whose

indices are equivalent modulo n). Work on parallel algorithms for the

solution of a tridiagonal system will be discussed in a future report. Alter-

natively, for hydrocode calculations, the original system of differential

equations can he divided into uncoupled tridlagonal systems by inserting

boundaries along which the values of the unknowns are determined by a stable

explicit scheme. Several explicit steps may be required for each implicit

integration step.

For the following discussion of the details, assume that a temporal seam

of boundary conditions is to be calculated at the mass mesh point wj. Let the

implicit integration step at time tn be at. Suppose that the CFL stability

condition for the Yon Neumann-Richtmyer explicit integration requires three

time steps to advance the dependent variables from tn to tn + at. Let

at At (18)

and use equation (12) to advance un- 1/2 from time tn-/2 to timen-/2

+ 6t for i - -1, 0, 1 as shown in Figure 4. Then, since the pressures are

Known in the appropriate zones up through time tn, the velocities can be

advanced from time tn/ 2 . 6t to time tn-1/2 . 2 at. At this point,

equations (11) and (13) have to be integrated in a similar manner from time tn

to time tn + at in the surrounding zones. Finally, the velocity is integrated

from time tn-1/2 + 2 at to time tn-I / 2 + 3 at - tnl1/2 to achieve u / 2 onon

the internal boundary seam. Figure 4 illustrates the domain of dependence
n1/2

for u. . The velocities, densities, pressures, and energies are evaluated

0 S explicitly within this domain.

Section IV - Eulerian Coordinates !

Once a Lagrangian hydrocode has been constructed, it can be converted to

an Eulerian code by making use of the Harlow-Johnson rezoning method. 5 Figure

5 illustrates the technique. An Eulerian calculation Is achieved in two

steps. The first is a Lagrangian calculation and the second is a rezoning of

the mesh back to its original location. Since the rezoning leaves the mesh

points fixed in space, the calculation is Eulerian. Another way of viewing

this rezoning scheme is from the point of view of operator splitting. That

is, the discretization of the Eulerlan operator 3/at + ua/ax is split into the

11



advance of the Lagrangian part (a/it) followed by the advance of the convec-

tive part (u3/3x).

Boundary seam

tt

tb

Figure 4. The domain of dependence for the velocities has a half-width of
just one zone when only thr~ explicit tin' /iteps st are required to integrate
the equations from time tn-172 to time t

In the Lagrangian advance the zone boundaries move from x n to x n+1 for.1 3
each 0 cj 4J + 1. The top part of Figure 5 shows the mass moving to the

right. Then, from the bottom part of the figure. we see that the rezoning

*step transfers mass from zone Cx3..,. xj) to zone Exj, xj.1lo Similarly,

momentuim and energy are transferred from one zone to the next. Careful book-

J keeping must be maintained to ensure conservation of these quantities.

Implicit here is the assumption that zone boundaries do not travel

Sfurther than a zone width. That is,

12
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If this constraint is violated then the rezoning gets a bit more complica-

ted. The inequality (19) is equivalent to

S_ 4xn+ At u n 1 /2  1  . (20)
jI 1 n j

Thus, if un+ /2 > 0, for example, then inequality (20) reduces toJ

un + 1/2 at xn  - x. . (21)j j+l

Constraints of this form are reminiscent of the CFL restriction and are some

times referred to as the material-Courant or the mass-flow-Courant restric-

t ions.

This rezoning algorithm automatically conserves volume and mass.

Momentum, internal energy, and kinetic energy are each conserved individually

according to a step function or a linear interpolation for the accumulated

mass per area. The derivation of such models can be found in Hicks and

McGrath. 2 8 These lead to recursive linear equations for the dependent

variables for which parallel algorithms are under development. For the

present, the rezoning calculations are performed within the block implicit

framework of the previous section.

Section VI - Timing Results on the HEP

Computer codes have been written for each of the four hydrodynamic simu-

lations: explicit and implicit, Lagrangian and Eulerian finite differences.

To demonstrate the improvements in computational efficiency, the results are

discussed in this section for the explicit Lagrangian hydrocode with a linear

pressure-volume material law. The simple test problem for which the exact

solution is known Involves shock and rarefaction waves. The initial condi-

tions are an ideal pressure and density shock in the interior of a motionless

slab. The boundaries are held fixed and the shock moves forward with a rare-

faction proceeding in the opposite direction.
29

For the explicit. Lagrangian equations (12) and (13), self-scheduling

processes were written and implemented as follows

Fork, compute viscosities, join;

Fork, compute velocities, join;

Fork, compute volumes, join; and

Fork, compute pressures, join.

13



For the zone-by-zone algorithm, the self-scheduling within each fork and join

means that the processes advance a single zone and then ask for another zone

until none remain. For the block-by-block algorithm, between each fork and

join, a block of NB contiguous zones is handed over to each of the Np parallel

processes. The algorithm is pre-scheduled by setting NpN B equal to the total

number of zones.

Move the mesh.

I g I
u 0

I I I IS I U , 0
IIII

II .= -- -. Ira- I

I g

Rezone to the previous location.

Figure S. Harlow's method rezones the mesh back to its previous location
after each Lagranian time step.

The zone-by-zone algorithm was run on 21 zones for 4000 integration

steps. Figure 6 shows the results over the range of one (a serial computer)

to 21 processes. The results for the block-by-block algorithm are shown in

Figure 7 for the same variation in the number of processes. It war demon-

strated on 4200 zones for 1000 integration steps.

The data shown on Figure 6 can be interpreted according to the following

model suggested by discussions in articles by Buzbee, 1 Larson, 30 and

Flatt. 3 1 Consider a computer program that consumes a total processing time of

Tt a T + T (23)
s p

where Ti s the total processing time spent on calculations which can be
-I

divided into parallel processes. Ts is the processing time required for the

calculations that are performed serially when the program is ekecuted in

14

Illl



either serial or parallel mode. Then, up until the point at which the hard-

ware is saturated, the processing time for n parallel processes is ipproxi-

mated by

T(n) - T + 1 T + K T (n) 124)
S n p o

where To(n) is the CREATE overhead for n parallel processes and K is the

number of times that forking and joining occur in the execution seluence.

Thus, the last term accounts for the parallel processing overhead, that Is.

the computer time lost to the creation of the parallel processes and to the

cormunication between them.

20

21 zonesm

4000 time steps

15 2

Processing
time
(seconds) 10 _

5 -

0020 5 10 15 20. 25

Number of processes

Figure 6. Parallel processing time achieves a minimum and then increases
linearly wit. the number of processes for the zone-by-zone algorithm.

A plot of T(n) versus n yields a curve qualitatively similar to that

displayed in Figure 6. In this case, the hardware is saturated at about six

processes at which point the term 1/n Tp in equation (24) is replaced by a

constant. Thus, the effect of the term K To(n) is a linear increase in proc-

essing time. The zone-by-zone calculations were done with too fine a granu-

larity. That is, the computational chunks were too small. We can increase

IsI



their size by going to blocks of zones instead of advancing a single zone at a

time. This, of course, leads to the block-by-block parallel structure.

The results of the block-by-block calculations as shown in Figure 7

indicate that the speed-up factor peaks at a valoe just under nine somewhere

in the range of 10-14 processes. The speed-up factor approaches this value

because there are essentially nine segments in the calculations: eight in the

pipeline plus the store operation. This peaking phenomena in the range of 10-

14 processes has been observed by several other investigators.2,3,32

10

Speed-up
factor

5 *4200 zones
1000 time steps

SJ

0 5 10 15 20 25

Number of processes

rigure 7. The block-by-block algorithm achieves a speed-up factor of nearly

nine at 10 processes before starting to tail off.

3ur objective is the maximization of the speed-up factor 31

T n
S(n) • 2 .

T(n) (n-1)T5  n K To(n) (25)

T Tt
where t

LT t a T(I) (26)

from equation (24). Thus, for S(n) and the efficiency 3 (

E(n) S(n) (27)
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to be high, the denominator of equation (25) has to be small. This means

that, for a fixed number of processes n, a quantity limited by the hardware,

we need small values of T., K, and To(n).

The parallel overhead To(n) is a machine-dependent quantity. It appears

to be proportional to n as shown above. While this is true of other

machines,31 it can also be proportional to log n.30 In any case, the values

of T. and K are subject to the effectiveness of the parallel algorithms.

Thus, for a given machine, it is important to reduce Ts and K as much as

possible in order to achieve the highest speed-up factor and the greatest

efficiency. One final remark concerns the trade-off between the CREATE

statement and the asynchronous variables. The value of K can be altered by

reducinc the number of CREATEs. The greatest effect can be achieved by

eliminating the repeated fork-parallel-join approach employed for both the

zone-by-zone and the block-by-block algorithms. To accomplish this, the

calculations for viscosities, velocities, volumes, and pressures were

incorporated into a single subroutine. The program forks into multiple copies

of this routine at the beginning of the simulation. Then each process in
either zone-by-zone or block-by-block fashion performs the complete set of

calculations for that time step. At the end of the time step, synchronization

is achieved through an asynchronous variable, but the process is not

terminated by returning to the mainstream. Instead, all processes continue

with the next time tep. They do not join until the integration is complete.

Of course, the synchronization step constitutes a "join" in the processing

to be followed by another "fork". Thus, this approach did not provide the

expected improvement in the speed-up factor. Evidently, the memory contention

for the asynchronous variable outweighs the savings in CREATE overhead. For

these reasons, we believe that Figure 7 illustrates close to the optimum

speed-up achievable for the explicit, Lagrangian calculations.
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