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ABSTRACT

Two problems in electromagnetics are studied: numerical analysis
of electric currents in thin plates and experimental investigation of
electromagnetic crack-tip blunting. In the first part, electric cur-
rents in thin plates are analyzed numerically with emphasis on expand-
ing the capabilities of existing finite element programs. Specifi-
cally, the ability to calculate transport currents is added to pro-
grams which originally computed only induced currents. The final pro-
grams are capable of handling transport currents alone or combined
with induced currents generated by a transient external magnetic
field. Experimental and analytical verification of the resulting pro-

gram is presented.

The second half of this study deals with the blunting of fatigue
cracks by melting a hole at the crack tip by electromagnetic means.
This technique is investigated experimentally for stainless steel 304
and titanium alloy Ti-6A1-4V. The blunting technique is described in
detail, and the results from the testing program are presented. Anal-
ysis of éhe data emphasizes the hole sizes produced and their effect
on the ultimate strength and fracture resistance of the test speci-
mens. Electromagnetic blunting increases the ultimate static stress
of stainless steel 304 plates by up to 19 percent and of Ti-6Al-4V by
up to 78 percent. The effect of electromagnetic blunting on resis-

tance to further fatigue remains to be investigated.
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CHAPTER 1

INTRODUCTION

Two individual topics are considered in the research reported
here: the numerical analysis of electric currents and
electromagnetic crack tip blunting. The dual nature of this study
requires a twofold approach be used, and therefore, this

introduction is divided appropriately.

9

l.1 NUMERICAL ANALYSIS OF ELECTRIC CURRENTS

In the design of structures which are to be made of a
conducting material and subjected in service to magnetic fields,
the problem of induced currents is important. Both the external
magnetic fields and the magnetic fields induced by the currents

themselves interact with currents flowing in the structure to



generate forces. Hence, in problems such as these, it is
necessary to compute these induced currents, which are known as

eddy currents, in order to know the loadings on the structure.

Calculation of these eddy currents is especially important in
structural situations involving strong magnetic fields. Examples
of such situations include fusion reactors, superconducting motors
and generators, magnetically levitated vehicles, transmission
lines, magneto-hydfodynamic generators, and other electromagnetic
devices. These structures are subjected to large magnetic forces
because of the interaction between their fields and the eddy
currents flowing in them. EDDYl and EDDY2 are computer programs
which were developed in earlier research to address these types of
problems. In particular, EDDY2 analyzes currents induced in two

dimensions, while EDDY! considers the one-dimensional problem.

Structures such as these may also conduct directly applied

currents, called transport currents, which interact with the

magnetic fields to create additional forces. Magnetic forces
created by transport currents in these structures may be large
and, therefore, cannot be ignored. In their original versionms,
EDDY1l and EDDYZ2 lack the capability to address transport current
problems. The principal objective of this part of the study is to
extend the formulations of these programs to handle situations
involving transport currents. Although the ideas presented here .

apply to both programs, the actual changes are only made in EDDYl.



In these programs the governing relationship and associated
boundary conditions are formulated in terms of a stream function
for the current. The local magnitude of the current is given by
the gradient of the stream function, and its direction is

perpendicular to the gradient direction.

Two major changes are required to implement the transport
current capability. First, a rederivation of the governing
integro-differential equation is necessary to account correctly
for the magnetic field induced by the transport current. Second,
the finite element formulation must be modified to include both
the 'local and nonlocal (induced) effects of the nonzero boundary

conditions associated with the applied current.

In the case of a two-dimensional plate with an applied
transport current, the governing equation contains an additional
integro-differential term not present in the original formulation
used in EDDY2. Likewise, in the case of a one-dimensional plate
there are two additional terms; one for each edge. These terms
are refered to as "edge terms” because they are associated with
the value of the stream function on the particular plate edges.
As an alternative to calculating these terms in full, for simple
geometries such as the one~dimensional plate, an equivalent field

may be applied which produces the same effect as the edge terms.



The necessary changes in boundary conditions are accomplished
by rearranging the finite element equations to include the
constrained values as loading terms. Briefly, the changes
required to do this in the programs are: input the boundary
values, compute the necessary stiffness matrix, modify the load
terms with appropriate constraining terms, and alter the program
where homogenous boundary conditions are automatically assumed.
For these changes there is no alternative approach as there is in

the case of the governing differential equation.

By forcing the stream function to be zero on all plate
boundaries the scope of the original programs was restricted to
those problems in which the resulting currents flow in closed
loops entirely within the conductor. The modifications open the
possibility of solving problems where the resultant currents flow
into and out of the conductor. For example, the problem of a
conducting plate with a transport current imposed on it can now be

analyzed.

1.2 ELECTROMAGNETIC CRACK TIP BLUNTING

One significant mode of failure for structures and structural
components is brittle fracture. Failure by fracture, moreover, is
frequently without warning, and therefore, such failures may be

costly in terms of life and property.



Although cases of brittle fracture have been documented for
years, this problem was not fully addressed until numerous ships
failed in this manner during World War II. These failures
initiated considerable research in the area of fracture mechanics.
Despite an improved understanding of these problems, however,
brittle fractures have continued to occur. An example of the
continued problem is the 584-ft-long Tank Barge I1.0.S. 3301 which
broke in half in 1972 while at dock in calm water. Most of the
documented failures of this type have been in airplanes, ships,

pressure vessels, tanks, and bridges.

Much investigation into the behavior-of cracks has been
conducted, and the results have been used to develop suitable
fracture—control plans for a variety of situations. This study
focuses on the blunting of existing cracks and the increases in

strength and fracture toughness possible by such methods.

In the proposed blunting technique, a sufficiently large
current density is concentrated at the tip of a crack to cause
melting. The necessary current may be either an induced current
or a tramnsport current, but only the latter is used in this study.
Magnetic forces act on the molten material to create a hole at the
crack tip. This results in a potential increase in fracture

strength.



From a fracture mechanics perspective, the idea of
electromagnetically blunting cracks is similar to the drilled-hole
method of arresting cracks. In the latter approach, a hole is
drilled at the tip of a crack to lower the stress concentration
and keep the crack from growing. This technique is commonly used

to stop crack growth in airplane components and bridges.

From an electromagnetic standpoint, the proposed method can
be thought of as an extension of the use of induced currents for
nondestructive testing. By inducing currents in a structure
containing a crack, one can concentrate current at the tip of the
crack. Localized heating occurs at the points where the current
density is greatest. By infrared scanning one can detect the
regions of higher temperature or "hot spots”™ and thereby locate
the ends of the crack. Extending this method to blunting involves
increasing the current to the point where melting occurs at the

hot spots.

To investigate the blunting of cracks electromagnetically,
experiments are conducted on long, thin plates. By subjecting the
strips to a fatigue loading, one generates cracks in the side of
each specimen. A current pulse is then applied to the sample and
the resulting concentration of current produces a hole at the
crack tip. Figure l.l shows a magnified view of a typical hole
which was formed in stainless steel. Both blunted and unblunted

strips are then tested for ultimate load.



Figure 1.1 Typical Blunted Configuration in Stainless Steel 304
(Magnified 25X)



This study also analyzes the stresses in the geometry of the
blunted specimens. These stresses are determined by analytical
solutions and the finite element method. Results of these
analyses are then used to express the data obtained from the
blunting experiments in terms of apparent stress intensity factors

at ultimate load.

1.3 OVERVIEW

As indicated at the beginning of this chapter, the entire
discussion is divided according to the two electromagnetic
problems under consideration: numerical analysis of electric
currents and electromagnetic crack tip blunting. Chapter 2
consists of two parts, each of which covers the background theory
for one of these areas. Chapter 3 is related to the finite
element method as it is applied to the analysis of transport
currents in this study. The experimental work in;olving the
electromagnetic blunting of cracks is treated in Chapters 4 and 5.
For each area, Chapter 6 contains a summary, a list of

conclusions, and suggestions for further research.



CHAPTER 2

BACKGROUND THEORY

Two distinct fields of study are especially important to this
work. They are fracture mechanics and magnetomechanics. The
current chapter is divided into two main sections, each of which

is devoted to one of these areas.

2.1 FRACTURE MECHANICS FUNDAMENTALS

This section provides a brief overview of fracture mechanics
concepts as they apply to the problem at hand. There are two
basic stress situations which need to be examined as part of this
project. First is the stress field surrounding the fatigue crack,
and second the changed stress pattern due to the blunted geometry.

In the case of the blunted geometry, it is desired to know

the stress field around a circular hole at the end of a long
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slender notch, Figure 2.1(a). Very little has previously been
written about the state of stress for this configuration.
However, a state of stress very similar to the one at hand will
exist in the configuration shown in part (c) of that figure. The
shaded regions shown in part (b) sustain little stress and,
therefore, the stress field will be changed very little by
ignoring them. This idea parallels the "equivalent ellipse"
concept proposed by Cox [l] for ovaloids and similar shapes.

From the fracture mechanics literature it is evident that
several methods have been proposed for the analysis of cracks and
notches. There are three fundamental viewpoints from which these
problems may be studied. These are: 1) the energy balance
approach, 2) the stress intensity factor approach, and 3) the
surface layer energy and strain energy density approach. The
first and second methods have greater acceptance in the field of
fracture mechanics and are more applicable to this study than the
third. For completeness, the third approach is briefly discussed
in the following background section, while entire sections are
devoted to the first two approaches.

Preceding the descriptions of the first two techniques, a
brief historical account of this area of fracture mechanics is

given.

2.1.1 BACKGROUND

This section traces the development of fracture principles.
One can see how improved theories have arisen to describe more

accurately the conditions of stress around cracks, notches, and
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(a) Blunted Crack

g ////////Q
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(b) Regions of Low Stress
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(c) Geometry Considered

Figure 2.1 Specimen Geometries
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other disturbances. Furthermore, this brief review helps to show
how the different approaches are interrelated and what their
relevance is to the problem under study.

Many of the initial theories in fracture mechanics were
developed through study of the problems of a uniformly stressed
plate containing an elliptical hole or an isolated crack. The
literature on this subject frequently mentions the work of Inglis
[2] in solving the elliptical hole problem as a significant first
step in addressing fracture problems. 1Inglis” study analyzed the
concentration of stress caused by the presence of the elliptical
notch. Further studies in stress concentration for other shapes
followed with the work of Neuber [3], Timoshenko and Goodier [4],
and Savin [5].

Some difficulties arise in extending these stress
concentration solutions to situations containing cracks. To make
this transition various workers have used the notion that a crack
is a limiting case of the slender elliptical hole [6]. 1In the
elliptical hole the stress at the tips is proportional to the
major-to-minor axes ratio. As this ratio goes to infinity, the
case of the elliptical hole becomes that of a crack in the limit.
Hence, according to the stress concentration idea, which is based
on linear elastici;y, the stresses become singular at the tip as
the notch becomes a crack.

The stress concentration theory can be used to predict the

failure of structural elements containing notches or other
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non-singular disturbances. However, as Sih [7] points out in his
discussion of Griffith”s early work on fracture, this theory is
not easily applied to cracked configurations as a failure
criterion. Griffith used the stress concentration concept for
notch failures and a completely separate theory for crack
failures.,

The separate theory developed by Griffith for cracks is based
on an energy balance. Several modifications have since been
suggested for this theory since Griffith first proposed it in
1921. The energy balance approach to crack analysis is discussed
in the next section of this chapter.

The next major contribution to fracture mechanics was made in
1957 when Irwin [8] suggested a completely different approach than
Griffith”s for the study of cracks. Section 2.1.3 summarizes this

theory which is known as the stress intensity factor approach.

The concept advanced by Irwin considers the state of stress
surrounding the crack tip.

Development of fracture mechanics theory up to this time
still considered separate approaches for cracks and for notches.
Recently, Sih [9] has proposed a consistent theory for both cracks

and notches. Refered to as the surface layer energy and strain

energy density approach, it considers an element always a finite

distance in front of the crack tip. The theory assumes the crack
will advance after the element has absorbed a critical amount of

energy. This energy is then released upon material separation.
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2.1.2 THE ENERGY BALANCE APPROACH

As mentioned earlier, the energy balance theor& was first
presented by Griffith in 1921. Since then, many adaptatiomns and
modifications to the basic theory have been suggested to improve
and extend its applicability. A concise treatment of this theory
is given by Hayes [10].

The energy approach is based on the principle that an
existing crack will grow when the strain energy released during an
increment of crack growth is greater than the energy required to
form the new crack surfaces. Hence, with an excess amount of
energy being given off, an unstable situation exists which causes
the crack to propagate. This instability can be expressed by the

relationship:

5Utot > GUS (2-1)

in which GUtot is the change in strain energy for an increment of
crack growth and GUS is the surface energy used in opening the
crack increment. The utility of the energy balance theory is
limited here by the need to compute these terms. Griffith was
able to derive with the following equation for the critical
stress, Czr’ by assuming completely elastic behavior and the
classical surface energy theory. For an isolated crack of

length 2a:
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o] = 4_ (2_2)

in which vy is the specific surface energy and E is the modulus of
elasticity.

To check his theory, Griffith ran a series of experiments
with hard glass. Glass exhibits little plastic deformation before
failure and‘hence conforms well to the assumption of pure elastic
behavior. The experimental results, however, did not agree well
with the theory in equation (2-2). Later, a refinement to the
theory was suggested which produced conformity with the
experimental results. In the latter refinement the surface energy
term, 2Y, is replaced with a term,'Yp, which accounts for the
energy absorbed by plastic deformation. This provides for a small
area of plasticity around the crack tip.

Additional studies were done on this plastic surface energy
term. These resulted in a further modification of Griffith”s
theory based on strain energy release concepts. To apply this
theory, the strain energy release rates for various conditions
must be determined experimentally.

Finally, the energy balance approach can be useful as a
failure criterion for fracture studies but with several
limitations. The foremost of these requires the area of yielding
around the crack tip to be small relative to the dimensions of the
structure. Also, sufficient accuracy appears to be possible only
with the latest refinement of the theory which employs strain
lenergy release rates. This necessitates adequate experimentation

to determine these rates.
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2.1.3 THE STRESS INTENSITY FACTOR APPROACH

The stress intensity factor approach is based on solutions
from the theory of elasticity. Therefore, complete elastic
behavior has been assumed. In reality, however, a region of
yielding will always exist in the highly stressed area surrounding
the crack tip. Hence, this theory is most appropriately applied
to situations where the plastic zone can be assumed to be small

relative to the other dimensions.

Before discussing the stress intensity factor approach
further, two important points concerning its application to this
work must be made. First, the stress intensity factor approach is
devoted to the analysis of cracks or exceptionally slender notches
which exhibit singular behavior at the tip. This theory was
developed out of the need to compare the intensity of stress
singularity between different cracks which was not possible with
conventional theory. Therefore, only the unblunted crack geometry
can be analyzed by this approach as it was originally proposed.
This section describes the stress intensity factor approach in
this context, while a suggested extension of the theory for the
blunted crack geometry is treated in Chapter 5.

The second important point to be made involves the assumption
of a small plastic zone. This assumption is not always valid when

the theory is applied to plane stress situations such as plate
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test specimens. The stress intensity factor approach is based on
plane strain conditions which generally involve a small plastic
zone. A situation of plane stress exists in the strips used in
this study. Several difficulties to be discussed subsequently,
arise when the concept of stress intensity factors is extended to
the case of plane stress. The literature admits to inconsistent
distinction between 'plane stress' and '"plane strain" and points
to the need for further research to extend fracture analysis

concepts to the former.

The stress intensity factor is based on linear elasticity and
hence carries the restriction of "small-scale yielding" to
situations where it is applied. Nevertheless, this method is the
most widely used in fracture analysis and it is still applied to
situations where the size of the plastic zone is considerable.

The degree of accuracy required limits how large the nonlinear

zone may be to still have an acceptable solution.

A correction to-this theory for large-scale yielding has been
proposed which considers an "effective crack size." Tada et
al.[13] assert that this "effective crack size" correction is
especially appropriate for observing trends and relating similar
situatiaﬁs. One should bear in mind that the use of fracture

analysis in this report is mainly for comparitive purposes rather

than a precise determination of the stress state in one case.
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Based on the literature and related discussions [32], the
modification of the stress intensity approach used in Chapter 5 is
judged to be valid for the problem at hand.

The earlier discussion on fracture mechanics history
indicated that the stress intensity factor approach was firsﬁ
proposed by Irwin [8]. Irwin based his method on the work in
elasticty done by Westergaard [11].

These studies provide one with solutions for stresses and
displacements around the crack tip. The solutions were developed
for three different loading conditions. Figure 2.2 shows these
three conditions which are known as the basic "modes'" of crack
surface displacement. Rolfe and Barsom [12] note that any crack
configuration can be expressed as a superposition of these three
modes. Likewise, the linear solution to any crack problem can be
obtained by combining the solutions to each of the component
configurations.

The fundamental premise of the stress intensity factor
approach is that the pattern of stress (or strain) will be
indentical around any crack tip of a given mode. The magnitude of
the stresses (or strains) is expressed in a linear factor based on
the value of the load and the geometry of the structure. This

multiplier is known as the stress intensity factor (SIF).

Values of the stress intensity factor can be determined in a
variety of ways which will be described later. These factors are

tabulated in handbooks (such as Tada et al., [13]) for a wide
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range of loading configurations and geometries. The following
section applies the stress intensity factor approach to the

cracked test specimen used in this work.

2.1.3.1 The Case Under Study: Mode I.
In this study tests were done on thin strips under tensile
load. The situation is one of plane stress in Mode I. Using the
notation in Figure 2.3, Tada et al.[13] present the stress field

for this condition as follows:

gy =-(—21%—§cos—g- E - sin%sin% (2-3a)

oy =(—;I;;COS% E +s1’n%s1‘n§—g- - (2-3b)
_ KI . B 8 36 (2-3c)

Iy 'W“"?COSECOS =

=0, =0, =0 ‘ (2-3d)
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Figure 2.3 Coordinates at the Leading Edge of a Crack
(note: O is contained in the x-y plane)
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In these equations K_ is the stress intensity factor for Mode I.

I
For Modes II and III the factors are KII and KIII’ respectively.
Furthermore, these expressions neglect higher order terms
in P, e.g., 91/2, p3/2, etc., The solution then, is most accurate

when p is small compared to the dimensions of the plate.

Tada et al.[13] describes the K”s physically as 'the
intensity of load transmittal through the crack tip region as
caused by introducing the crack into the body of interest." Viewed
in this manner, the stress intensity factor is valuable for
comparing different cracks because it prdvides a measure of the
severity a crack to a structure. The question of wether the
stress intensity factor can be used to describe a nonsingular
situation is subject to much controversy. This question is
important to this study because herein it is necessary to compare
the stresses around a sharp-tipped crack with the stresses around
the blunted crack. Chapter 5 addresses this idea in more detail
while the current discussion will continue to focus on the stress

1

intensity factor approach in the conventional sense.

2.1.3.2 The Relationship to Stress Concentration Factors
A stress concentration factor approach does not offer the
advantages of the stress intensity factor approach as just
described. The latter approach is much more useful for studying
cracks. Nevertheless, stress intensity factor concepts are
closely related to the idea of stress concentration factors.
For an elliptical notch in a plate the stress concentration

factor is the ratio of the maximum stress to the applied stress.



23

This parameter provides an easy way to compare the amount of
concentration caused by different interuptions to stress flow.
Basically, by considering a slender notch with a tip radius, r,
one approaches the case of a crack in the limit as r goes to zero.
By reducing the case of the ellipse to that of a crack, the stress
concentration factor goes to infinity. Hence, this factor is not
useful for characterizing different cracks because the factor will
be infinity for all cracks. Also, the stress concentration factor
says nothing about the stress field surrounding the crack tip.
Only the condition at the point of maximum stress is described.

On the other hand, a stress intensity factor approach
characterizes the entire stress field surrounding a crack tip.

The main principle of this method asserts that the behavior
of a crack can be described by the stress field around the tip.
Furthermore, the method”s primary advantage lies in the
characterization of this stress field by a single parameter, K.
The problem thus reduces to one of determining K, the stress

intensity factor.

2.1.3.3 Determining Stress Intensity Factors

Both theoretical and experimental methods are used to
determine stress intensity factors. Cartwright and Rooke [14]
give an excellent review of the ways in which K”s are found.

0f the wide range of theoretical methods of computing stress
intensity factors, this study considers three in particular.
These are analytical solutions, stress concentration solutions,
and finite element analyses. Other methods are available such as

boundary collocation, conformal mapping, Green”s functions,



24

integral transforms and dislocation models, force-displacement
matching, and alternating methods. More on these is available in
Reference 14. Each of these individual methods is especially
useful in solving several different classes of problems having
similar geometries.

Again, analytical, stress concentration, and finite element
solutions are used to determine K”s in this work. The analytical
method seeks to solve the equations of elasticity and satisfy the
boundary conditions exactly. Two forms of elasticity solutions
have been proposed in terms of Airy“s stress functions. These are
the Westergaard stress function and the complex stress functions
of Mushkelishvili.

While these methods provide a convenient expression for K,
the number of configurations which can be solved in this manner is
limited. Fortunately, a solution does exist for a finite width

strip in tension containing a notch in one side.

Another way to obtain stress intensity factors is from stress
concentratation factors. A relationship between stress intensity
factors and stress concentration factors is developed in Chapter
5. Stress concentration factors are available for a wide variety
of situations and hence the ability to convert them to stress

intensity factors is valuable.
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The use of finite element analysis to determine stress
intensity factors can be approached in several ways depending on
the problem at hand. These approaches can be generalized into
three groups: 1) directly computing K”s, 2) indirectly computing
K’s from changes in energy, and 3) utilizing special crack tip
elements. The finite element stress analysis done in this work,
however, does not use these methods. Instead, finite elements are
used to determine the stress concentration factors from which the

stress intensity factors are in turn obtained.

2.1.3.4 Critical Stress Intensity Factors

Any discussion of stress intensity factors should mention the
ability of this approach to describe the conditions under which a
crack propagates. In such a critical crack situation the crack
penetrates further into the structure. Researchers in fracture
mechanics have shown a relationship to exist between the strain
energy release rate and the stress intensity factor. From the
discussion of energy concepts in fracture earlier in this chapter,
a crack propagates if a critical strain energy release rate is
reached. Together, these two points imply that the occurence of
fracture may be expressed by a critical stress field around a
crack or notch, or, in other words, a critical stress intensity
factor which is a property of the material. Thus, a value of Kcr
is defined as the critical stress intensity factor and is
associated with a critical energy or force necessary to drive a
crack forward.

In Mode I the critical stress intensity factor KIC is also

refered to as the fracture toughness. Since Mode I is generally
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the most critical crack situation, the fracture mechanics
literature deals with this Mode almost exclusively as will the
following discussion.

Values of KIc have been determined and are tabulated for a
wide range of materials under standard ASTM plane strain
conditions. For Ti-6A1-4V the fracture thoughness is 74.6 MPaVm
(68 ksifin) [15]. These values can be used to predict adequately
the occurrence of fracture in configurations which are
sufficiently close to a state of plane strain.

When the conditions of plane strain are not met, KIC can no
longer characterize the incidence of fracture as a material
property. Tests have shown the fracture toughness to be strongly
dependent on plate thickness. Only for sufficient thickness, can
a specific value of the pérameter be associated with the material.
Therefore, in the current work the tabulated values of fracture
toughness do not apply because the situation is one of plane
stress.

Boresi et al.[6] note that in a plane stress case, the actual
fracture load will typically be several times that which is

predicted with K_ . Large amounts of yielding will occur around

Ic
the crack zone prior to fracture. This behavior was observed as
part of this study in comparison of experimental resulté and
analytical calculations. Further discussion of this is given in
Chapter 5.

In the fracture analysis of real structures the value of K

must be accurately determined using one of the methods described
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earlier. These techniques must account for many factors such as
loading, geometry, corrosion environment, and fatigue. Crack
initiation in a notch or the extension of an existing crack in a
structure can then be predicted satisfactorily by how close this
parameter, K, approaches its critical value for the mode,

material, and stress state in question.

2.2 MAGNETOMECHANICS THEORY

The fundamental physical concepts involved in
magnetomechanical problems are first briefly discussed in general.
Following this presentation is a more specialized treatment of the
theory”s application to thin conducting plates in terms of a

stream function formulation.

2.2.1 BASIC CONCEPTS

Analysis of conducting structures subject to magnetic fields
1s complicated because the effects which must be studied involve
more than one discipline. The major areas concerned include
electromagnetics, continuum mechanies, and thermodynamics. Only a
brief discussion of the development behind the necessary

formulations is presented rather than a detailed derivation of the
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governing equations. A full account of this derivation can be

found in Reference 16.

From each of the three disciplines involved one has a set of
equations and boundary conditions. The equations from
electromagnetic theory are Maxwell”s equations, the Biot-Savart
Law, the Lorentz body force equation, and Ohm”s Law. From
continuum mechanics we have the equilibrium, compatibility, and
constitutive equations. Thermodynamic effects are governed by

energy balance equations and conductivity relationships.

Yuan et al.[17] present a chart which outlines some of the
couplings between the fields associated with each of these three

disciplines. This chart is reproduced in Figure 2.4.

These equations are coupled in several ways. Mechanical
equilibrium and temperature effects are related through the
Duhamel-Neumann Law. This relationship introduces an QAT term
into the mechanical constitutive equations (where @ is the
éoefficient of thermal expansion). The electromagnetic and

thermal conditions are coupled through the Joule heating effects.

The interdependence of the mechanical equilibrium and
electromagnetic field is the most complicated because several
relationships are involved. One has the Lorentz force created
when a magnetic field acts on moving charges. One also has
Faraday”s Law which implies that currents will be induced when the

magnetic field is changed by the displacement of the structure.
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Together, these last two effects can be thought of in terms of a
negative stiffness. - In other words, further deformations cause

the loads on the structure to increase.

Another coupling effect also exists between the mechanical
and electromagnetic fields. The motion of the plate in the
magnetic field will induce currents within the plate itself. This
is indicated mathematically by the velocity term in Ohm”s Law.
However, for the type of problems being considered in this study,

this effect is assumed to be negligible.

Physically, the overall interaction can be described for the
specific case of a plate as follows. Electric currents (known as
eddy currents) are induced in the plate by the magnetic field.

The eddy currents generate a further magnetic field which opposes
the external one. Both of these magnetic fields interact with
currents already present in the structure to cause magnetic
forces. These forces deform the structure, which in turn changes
the magnetic field distribution, and hence the coupled interaction
between these effects is evidenced. Some specific applications of

this theory for thin plates is given in the rnext section.
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2.2.2 APPLICATION OF THE THEORY TO PLATE PROBLEMS

This application of the theory concerns the basic problem of
an elastic conducting plate in a magnetic field. An important
aspect of this type of problem is that the magnetic fields exist
both in the plate and in the surrounding free space. Hence, the
problem is three dimensional. Techniques used to solve these
problems are discussed first, followed by a treatment of the types
of solution available. A list of simplifying assumptions is then

presented.

2.2.2.1 Solution Techniques
The coupled nature of problems of this type and the complex
equations governing them make analytical solutions obtainable only
for simple cases. Subsequently, these problems have usually been
solved using an uncoupled approach where one performs discrete
calculations for magnetic effects and then computes thermal and

mechanical response based on these results.

The situation is further complicated when time-dependent
magnetic fields are present. In this case a numerical approach is
necessary even for the uncoupled problem. With this in mind the
computer programs EDDY1 and EDDY2 were developed to analyze thin
conducting plates subjected to time-varying magnetic fields.

These programs use a finite element approach to compute the eddy
currents and then determine the induced temperatures and magnetic
pressures based on those results.,

Two different techniques of formulating the uncoupled

electromagnetic problem have been advocated by previous
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researchers. One method obtains the solution in terms of magnetic

vector potential, A. The vector potential is defined by:

B =g xA 2=

The governing equations are then written throughout the entire 3D
space in terms of this value. Other studies have developed finite
element formulations based on this technique. Since EDDY! and

EDDY2 are not based on this method it is not discussed further.

The second method introduces a stream function, Y, which
applies to the one- or two-dimensional plate only. A formulation
based on this function is used in EDDYl and EDDY2. A finite
element model is then used to determine the value of the stream
function throughout the plate. The development based on the
stream function formulation is used throughout this report. The
formulation of the uncoupled electromagnetic problem based on the
stream function will be briefly described in section 2.2.3. The
temperature and pressure calculations based on the electromagnetic
solution are also noted. A more detailed development of the
formulation will be given in a later chapter when the extension to
transport currents is discussed. Yuan [16] gives additional
treatment of this theory as it is used in the original versions of

the programs.
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2.2.2.2 Types of Solution

By considering different frequencies in these problems, the
possibility for two different types of solution is evideﬁt. These
are refered to as the local and nonlocal approaches. The programs
EDDY! and EDDY2 perform analyses based on both solution

techniques.

A local approach may be used when the frequency of the
magnetic field or transport current is low. This allows
simplification of the formulation to be made and the aim is then
to satisfy the governing differential equations and boundary
conditions direétly. The region considered in the problem then is
the full surrounding space, theoretically extending to an infinite

distance.

For high frequencies on the other hand, a nonlocal solution
is used. This approach reformulates the problem using integrals
so that the domain of the problem is reduced to the conductor

itself.
2+.2.2.3 Assumptions

Several important assumptions used in this formulation should

be made clear [16],[17].

1. The material is assumed to be a good conductor which is not

magnetizable or polarizable. This assumption has implications
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on the atomic level. Charge dipoles exist in the material due
to the "spin" property of the atoms. Consideration will be
given only to materials in which the dipoles do not reorient
themselves under an external field to create additional field

intensity,

Material properties are assumed to be independent of

temperature.

Eddy current density across the thickness of the plate is

assumed to be constant.

The electromagnetic relationships are considered in their
quasistatic form. As noted by Moon [18], this observation is
valid, because the wavelengths associated with frequencies in
these problems are much longer than conventional structure
dimensions. This manifests itself in allowing the velocity

term of Ohm”s Law to dropped as was mentioned earlier.

Eddy currents are assumed to flow parallel to midsurface of

the plate.

The normal component of the induced magnetic field does not

vary across the thickness of the plate.
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2.2.3 EDDY CURRENT ANALYSIS IN PLATES USING A STREAM FUNCTION
SOLUTION
The previous section discussed the theoretical aspects of
analyzing thin conducting plates subject to magnetic fields. The
solution method using stream functions was noted. This chapter
defines the stream function and develops the governing equations

necessary to solve these problems.

First, some definitions pertaining to the following

discussion are given here:

E = Electric field
B = Magnetic field

J = current density

O = material conductivity
M = magnetic pérmeability
w = frequency of the applied field

2.2.3.1 Definition of the Stream Function

The stream function is defined in terms of the current.
Following the assumptions stated earlier, the current will be
considered uniform over the thickness of the plate. 1In the
following development I = hJ is used as the current density, where
h is the plate thickness and I is current per unit width.

First, it will be helpful to define some other terms used in
the discussion to follow. A cartesian coordinate system, (x,y,z),

is used along with a set of orthogonal coordinates, (Qa, B). The
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latter coordinate system is coincident with the midsurface of the

plate. The relationship between the two coordinates is given by:

x = x(a, 8) y = y(a, 8) z= 2z(a, B) (2-5)

The unit vectors in the aand f3 directions are then defined as:

1o I
f 3o q 3B
. 1 3y =) 1 3y
F Ty g %8 T173 38 (256)
I, 1 ez
f dat g 38
in which f and g are:
e o @ ) (g
o 0 20 (2_7)
2 2 2
2 _ [5x)° , {3y 3z (2-8)
- & [as} + {3

The current density vector, I, can then be expressed as:

1=1%, 8) g, + I°(es 8) g (2-9)

Based on this the stream function, qJ; is defined in terms of the

current density components:

3y B = %3_1!) (2-10)
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One physical significance of the stream function is that the

current as travels along lines of constant stream function.

2.2.3.2 Basic Governing Equation
The basic governing equation for WY comes from Faraday”s Law
of Induction: curl E = -QB/Ot. The magnetic field can be thought
of as the sum of the applied field, BO, and the induced field, BI.
Furthermore, by substituting in for E using Ohm”s Law (E = I/h0)

and using the definition of W, one obtains the governing equation

in vector form. For the case of a flat plate this equation is:

2

v ll) = O'h (BO.+ Bi) (2‘11)

3
9t z

This form considers only the in-plane current and assumes the
mid-plane of the plate is aligned with the x-y plane.
In one dimension this problem simplifies to the case of an

infinite strip. The program EDDYl analyzes this problem.

2.2.3.3 The Induced Field Term
The induced magnetic field can be determined from the Biot
Savart Law. Reference 19 gives the induced field at the midplane

of the plate (z=0) as:

p (X', Y') dA

I
i [(X - X2 + (Y - v1)% + (h?/8)]

pA

Bo(X, ¥, 0) =% v - = 372

(2-12)
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in which A is the surface area of the top or bottom face. The
point at which BI is computed is given by the x and y coordinates.
The x” and y~ coordinates reference the current element which is
contributing and it is over these coordinates that the integration
is performed.

In this formula Y is assumed constant through the thickness
and zero on the lateral boundaries of the plate as is appropriate
for the eddy current problem. When Y is nonzero on the boundaries
of the plate in connection with the transport current problem,
this expression will involve additional terms which represent the
effect of the edges on the induced magnetic field. The
development of these terms and their implication is the subject of

Chapter 3.
2.2.3.4 Governing Equation for the Steady State Problem

By considering the case of a harmonically applied magnetic
. o} iwt .
field, B'= BQ e /2, the currents are then also harmonic and the

problem becomes steady state.

The previous equations are now combined to obtain one
differential equation for substitution into the Galerkin
criterion. First, substitute 8° (from above) and BI (from eqn.
2-12) into the governing equation for W(eqn. 2-~11).
Furthermore, one can simplify and generalize the formulation by
nondimensionalizing with respect to the half thickness, h/2, as

follows:
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(2-13)
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After substitution the equation is in terms of the
non-dimensionalized stream function @:
7% - i2nRs + iR [ oz, ”% de_dn > 377
pLlx=g)" +(y -n)"+1]
(2-14)

= i2mRe(x, y)

in which R =[.l(3wh2/81T = magnetic Reynold”s number.

This equation can be thought of as an equilibrium between the
applied magnetic field on the right hand side and the induced
magnetic field and eddy currents on the left hand side. On the
left hand side, the first term is associated with the eddy
currents induced by the externally applied field. The second and
third term are related to the induced magnetic field.

It is instructive at this point to examine equation (2-14)
further and note different categories of problems which may arise.
The previous section mentioned the theoretical aspects of the
local and nonlocal problems. This section examines their meaning
in more detail and addresses the implications for solution in each
of these cases. Furthermore, a third type of solution, the
"image'" solution, will be introduced. While the local and
nonlocal problems have low and medium Reynold”s numbers
respectively, the image solution is for very high Reynold~s

numbers .
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The first case to be discussed is the local problem. In this
case the freqﬁency of the applied field is small, and %ence the
induced magnetic field is weak. Therefore, the eddy currents can
be considered as due solely to the applied field acting at the
point in question. Hence, the term "local" solution is used.

This local condition is exploited in the solution process as
follows. In the equations, the frequency is included as part of
the magnetic Reynold”s number. The Reynold”s number will be small
in this case and hence this allows the second and third terms on
the left hand side of equation (2-14) to be dropped. The local

form of the governing equation is then:

w24 = i2nRe(x, ¥) (2-15)

This is a powerful simplification. The resulting coefficient
matrix is then symetric, banded, and requires much less computer
storage and time for solution.

In the second case the frequency is in the middle range of
values. This solution is generally refered to as the "nonlocal
solution'". Since the Reynold”s mumber is not small, the second
and third terms must be included. These latter terms couple the
eddy currents with the induced magnetic field. More specifically,
the second term is tied to the induced field at the point being
considered while the third term (the integral term) is tied to the
effect of the induced field from the rest of the plate. The eddy

currents influence the induced field as well.
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The third case involves a relatively high frequency and hence
a relatively high Reynold”s number. On the left hand side of the
equation, the second and third terms now dominate. Physically,
this means the induced magnetic field is strong and hence one can
think of an "image" which creates the opposing field. The image
would be a reflection of the configuration which sets up the
externally applied field but would lie on the other side of the
plate., The term "image solution" is used to refer to this type of

situation.



CHAPTER 3

FINITE ELEMENT ANALYSIS OF EDDY CURRENTS
AND TRANSPORT CURRENTS

The subject of this chapter is the analysis of electric
currents in thin conducting plates using finite element analysis.
In particular, the chapter focuses on the extension of the
existing programs, EDDYl AND EDDY2, to include the ability to
handle transport currents as well as induced currents.

As noted in the introduction, the new formulation applies to
both the one- and two-dimensional programs, EDDY1l and EDDY2. The

actual changes are implemented only in EDDY!l, however.

3.1 EXISTING PROGRAMS AND MOTIVATION FOR FURTHER DEVELOPMENT

This section describes the finite element method approach for
the problem developed in the last chapter and then describes the
computer programs EDDYl and EDDY2 that were developed based on

this schene.

42
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3.1.1 FINITE ELEMENT MODELING OF THE STREAM FUNCTION

The previous chapter developed the integro-differential
equation (2-14) which governs the flow of eddy currents in thin
plated subject to time varying magnetic fields. A stream
function, W, is defined in terms of the current, and the equation
is obtained in terms of that parameter. The equation is put in
steady state form, and the problem then remains to determine the
distribution of the stream function over the plate. Finite
element analysis is used to accomplish this final step in the

solution process.

For the one-dimensional case the steady state nondimensional

governing equation is a simplification of equation (2-14).

e

g rde = iRB(x) (3-1)

: . R
—5 - iR¢ + 1 5=
2 2m (X-£)2+E

=

in which £ is the half width of the plate, and R = p(thz.

The following finite element models are used to model the
nondimensional stream function over each element and over the
entire plate respectively [16].

G
E

2

E

¢ = Ny ¢ 6= ) M, o (3-2)
K o k=1 KK

in which Mk are the global interpolation functions generated from

the local element shape functions, N

K’ and qﬂc are the nodal
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values of the nondimensional stream function. In the second
expression G.is the total number of nodes in the structure.
Equation (3-1) and the above models are substituted into the
Galerkin criterion from which the following set of finite element

equations results:

E q E E = o : .
or
(-[S] - i[P] + i[G]) (4} = i{R} ors

in which [S] and [P] are banded, symetric nxn matrices, [Q] is a
nonsymetric, full nxn matrix,'{q» is an nxl vector of nodal stream
function values, and {R} is an nx] vector containing loading

terms. The integral expressions for these matrices are:

E b
dN> dN
e J K ] & 8 E \E
SjK = é A a0 dx PjK R é Nj NK dx
(3-5)
2
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in which the weighting function for the integral term is:

E
NZ(x) (3-6)
Wi(e) = - dx
E (g -x)"+ 7

These matrix equations form the basis of EDDYl. A similar

development in two dimensions is used for EDDY2.

3.1.2 A GENERAL OVERVIEW OF THE PROGRAMS: EDDY]l AND EDDY2

The computer programs, EDDYl and EDDY2, use the finite
element approach just described to calculate eddy currents in thin
plates subjected to time varying magnetic fields.

In the finite element equations the magnetic field, B, is
analogous to the load on a plate in structural mechanics. Hence,
the B term is frequently referea to as the loading.

Furthermore, in EDDY! and EDDY2 the source of the applied
magnetic field can be one of several types. EDDYl can accomodate
uniform fields and infinite filaments parallel to the long
direction of the plate. Following an improvement made by Hara
(Ref. 20), EDDY2 is capable of handling uniform magnetic fields,
line currents, and circular current loops in any orientation as
sources of the magnetic field.

Also required as input are the coordinates of several nodes
in the structure from which the complete set of nodes and their

locations are generated., The material properties are specified in
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a magnetic Reynold”s number. In EDDY2 this Reynold”s number is
defined as R =LKth2/8", where w = the frequency of the applied
field. The Reynold”s number is defined as R = Llcwhz in EDDYl
because of the difference in nondimensionalization. EDDYl and

EDDY2 are nondimensionalized with respect to the half thickness

and thickness respectively.

A temperature constant is also specified which contains the
material properties related to thermal behavior such as specific
heat, conductivity, and density. This value is used as a direct
multiplier in the temperatﬁre calculation and therefore is
important for comparing the temperature change of different
materials under the same loading;

The programs also have the capability of specifying multiple
load cases and multiple parameter sets. The latter option is
useful in doing parameter studies. Another valuable feature of
the programs is their connection to postprocessors which produces
graphical displays of the results. This facilitates
interpretation of the results.

The programs perform the three different types of solution
that were discussed in the previous chapter. These solutions
(local, nonlocal, and image) are all computed in a single program
execution. This allows one to observe the range of Reynold”s
numbers for which certain of these solutions are valid. Thus, one
can obtain insight of which frequencies create strong induced

fields and which do not.
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As discussed in the introduction, the motivation behind
modifying the original programs' lies in their inability to solve
cases in which a transport current exists. To implement this
capability it was necessary to alter the programs to admit the
possibility of non-zero boundary conditions. In their original
versions, EDDYl and EDDY2 automatically set the value of the
stream function to zero on the edges of the plate. Furthermore,
the equation for the induced field (2-12) used in the formulation
assumes zero edge values of the stream function. The requirements
for nonzero boundary conditions are discussed in more detail in

section 3.3.

3.2 FORMULATION OF THE TRANSPORT CURRENT PROBLEM

The basic formulation and capabilities of the original
versions of EDDYl and EDDY2 have been given. This section will
- now develop the formulation of the same problem in one- and
two-dimensions, but with the addition of an applied transport
current. The detailed development follows very closely that given
in Chapter 2. Thereﬁore, the fundamental steps are reviewed, and
the significant differénces in the development are emphasized as

they occur,

This section presents the formulation of the problem while a
full treatment of the differences between this and the original

formulation is reserved until the following section.
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The general two~dimensional case is derived first. This
formulation is then specialized to the case of a rectangular plate

and then for the case of an infinite strip.
3.2.1 THE GENERAL TWO-DIMENSIONAL CASE

In the following development is for a thin conducting plate
of arbitrary shape as shown in Figure 3.1(a). The plate is
subjected to an applied magnetic field, Bo, and a transport
current. The transport current loading is specified by the
derivative of the stream function along the plate edge, I-=
bq&(sh/bs. In this expression I is the tramsport current
perpendicular to the edge and 4% is the edge stream function

distribution in terms of the edge tangent coordinate, s.

As before, the fundamental equation begins with Faraday”s Law
of Induction. Furthermore, the stream function is defined in the
manner of section 2.2.3.1. The next step is substitution of this
definition, Ohm”s Law, and the applied and induced field
expressions into Faraday”s Law. Simplifying this for the midplane

of a plate, results in equation (2~11) as in the previous chapter,

(3-7)
0 I
(B, +8,)

Vzw = gh %f



(a) Two-Dimensional Plate of Arbitrary Shape

(b) Two-Dimensional Rectangular Plate

Figure 3.1 Two-Dimensional Plate Configurations
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Up to this point the development has been the same as in
Chapter 2, and, likewise, the assumptions used in that chapter are
applicable here. Now, however, the development departs from the
previous description. With nonzero values of the stream function
required on the edge to apply a transport current, the previous
formula used for the induced field no longer applies. However, in
the following discussion (in which the induced field expression
with nonzero boundary conditions is derived) one can see the

direct similarity between the two cases.

The important diffference between the two cases is the

existence of "

edge terms" in the expression admitting nonzero
boundary values. These '"edge terms'" arise out of the integration

of the stream function along the plate edge. Section 3.3.3.1

addresses the significance of these terms.

In section 2.2.3.3 the formula for the induced field is taken
directly from reference 16. The induced field expression for the

problem at hand is derived in a concise manner below.

The Biot-Savart Law is the basis of the B equation for the
case of both zero and nonzero boundary conditiomns. From
Biot-Savart  [24] one has the contribution, dB, to the total field
at the point in question due to an infintesimal current segment

dl:

sui 7" =
dB = 77 (3-8)
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In this expression r is the perpendicular vector between the
current segment dl and the point at which dB is being computed.
The current in the segment dl is i and M is the magnetic

permeability of the material inbetween.

To obtain the total induced field at the point in question,
the above expression is integrated over the entire current
distribution. For the case of a plate of volume V and current

distribution I(r”), the integral is:

(3-9)

In this derivatiom it is important to keep in mind that the
primed coordinates refer to the current distribution while the
unprimed coordinates refer to the point at which the field is

being computed.

The notation R= r-r” is now introduced. From vector calculus
the following identity is applied to the integrand of equation

(3-9):

(3-10)
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Using the definition of the stream function for the current,
one obtains the equation in its expanded vector form. For
I

substitution in equation (3-7) only the Z component of B~ is

necessary which leaves the following expression:

(3-11)

The corresponding derivative in the above expression with
respect to Z° 1s now both added and subtracted. This enables

equation (3-11) to be rewritten:

I e ) 1 3 8 |1 '
B, (r) = mf[vﬂ’ W RT = 577 3T (RH av (3-12)
v

in which V1 is the gradient operator in primed coordinates.

The second term in the integrand will be zero following the

assumption of uniform WYover the thickness.

In the next step the remaining term of the integrand is
expanded and several associated terms are then simultaneously
added and subtracted. After regrouping and simplifying back into

vector form:

1(r) = 2 \{E’T . [wv1 TH - 4l TR"I'l av (3-13)
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Integration by parts is now performed on the second term in
the integrand. The singularity involved is overcome using an

identity containing delta functions given by Jackson [21].

The divergence theorem is now applied to the first term to
transform it from an integral over the volume to an integral over
the surface area of the plate. From these two steps the resulting

expression is:

I _ oy U 1 |
B(r) =Yg+ gy [ 0 E‘V] W] o) (3-14)

in which ST is the total surface area of the plate, and n is the

unit vector normal to the surface.

The surface integral is now divided into an integral over the
top and bottom faces of the plate and an integral over the edge
surface. Denoting the surface area of the top or bottom face as

A, and the edge surface as S, the expression is:

I - Wy H w(X', Yl) )
B = B U dA
S) St g A (- x02 4 (1 - )2 + (nZ) 2

+ 2= [ n -Epv ]lﬂdS‘
4wh g S o1l |R (3-15)

in which ng is the unit vector normal to the edge surface. One

can observe that the first two terms in the above expression are
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identical to equation (2-12). It is the third term that involves

the transport current effect,

A further simplification of the expression can be made by
integrating over Z°. This step only involves the edge surface
integral. The result is a line integral around the edge of the

plate for the third term.

The final step in the development of the governing equation
for the general two-dimensional problem is differentiation of the
expression for BI with respect to time and substitution into
equation (3-7). With C to indicate the line integral in the third
term, the resuLting expression is

o
BBZ

2 3 , ouh ay/ ot dA' _ Tz
VY - ou == + i = gh
A ar(x - )2+ (Y - v)2 4 (nP/8)]3/2 BiE

h (ay /3t)[n (X = X*) + n (Y- ¥")] dc!
ou 0 X y .
T - X024 (Y - YOI - X%+ (Y - )2+ (hY/8)TF

+

(3-16)

In the following two sections this equation is modified for
the case of a rectangular plate and an infinite one-dimensional

strip.
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3.2.2 GOVERNING EQUATION FOR A RECTANGULAR PLATE

The notation for the rectangular plate is shown in Figure

3.1(b).

Simplification of equation (3-16) for this case involves the
last term only. Based on the geometry the function o takes on
the value 1 at X=a and =] at X=-a. Likewise, ny is 1 on Y=b and

-1 on Y=-b.

This implies a division of the final term into four separate
integrals, one on each edge face of the plate. The expression is

then written as:

58°

2, . . 8, ouh o aw(X', Y')/at dA" o o
b y! t X -

t ZUh | { 2[3¢1( e i ( a; 7,7, a3

ToBIX - )+ (Y - Y)II(X +a)s + Y - Y + (h°/4)]

owg(Y')/3t] (X + a) ; .
7 7 7 5 dY
[(X +a)c+ (Y =-Y)TI(Xx+a)+ (Y -Y")+ (h"/4)]

N

ouh 9 { [sz(X')/at] (Y - b)
-a U[(X - X')2 + (Y - b)2][(x - X')Z + (Y - b)2 R (h2/4)]%

1

[ay,(X*)/3t] (Y +b) }d
- X ]
[(X = x)2 + (Y + b)2IL(X - Xx)2 + (v + b)% + (h%/a)]?

(3-17)
in which lpi denotes the specified steam function distribution

along side 1i.
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3.2.3 GOVERNING EQUATION FOR A ONE-DIMENSIONAL STRIP

Figure 3.2 shows the notation used for this problem. The
case of an infinite one-dimensional strip assumes that everything
is constant in one dimension which is taken as the Y direction
here. Hence, only a cross-section of the plate need be considered

since the situation will be the same at any section.

Edges 2 and 4 on the rectangular plate in Figure 3.1(b) are
now at an infinite distance away from the section under
consideration. Equation (3-17) is now modified by allowing b to
go to infinity in the last two terms. These terms go to zero in
the limit as b goes to infinity. Physically, this makes sense
because the influence of these faces will not be felt at the

current section if they are large distance away.

Further simplification of the three remaining integral terms
is possible by integrating over Y” from negative to positive

infinity. The final expression is:

2 38°
3y _ 3y , guh aw(X')/at 4 = oh 2
X2 et 2m -g (X - X2 + (h%/a) ot
- u(?ﬂbl/at) = -1
5 > (x] + (1/11)(tan (1/x]) - tan ' Ay 4 (n/2))
(X - )% + (h¥/a)
-u(3¢3/3t) _'I _]
—_— (x3 + (1/x3)(tan (1/x3) - tan A3 + (n/2))

(a2 + (na)

(3-18)
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Figure 3.2 Infinite One-Dimensional Plate
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in which:

)ﬁ =1+ 4_(-)(—2-1—a_)[2(x -a) +J4(X - a)2 + hzj[ (3-19)
h

Ag =1+ 4(_X2_+~a_l[2(x +a) + {a(x + a)% + hz:[ 3220
h

3.3 IMPLEMENTING TRANSPORT CURRENT CAPABILITY IN THE 1D CASE

The necessary formulations for the one- and two-dimensional
transport current problem have been developed in the last section.
As noted earlier, the changes required to analyze this problem
were implemented in the one-~dimensional case only. Therefore, the
following discussion is in terms of the one-dimensional problem.
The required changes for the 2D case are an extension of the

procedure described here.

Two major changes are required to admit transport currents in
the programs. These two modifications correspond to changes in
the boundary conditions and changes in the differential equation.
First, to recognize nonzero boundary conditions the original

finite element equations must be rearranged. Second, in the
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differential equation, when a transport current exists, the
additional terms not found in the original equation must be
included. These aspects are treated seperately in sections 3.3.2

and 3.3.3, respectively.

Before addressing the modifications above, the formulation of
the 1D problem will be put in the nondimensional terms which are

used in EDDYl.

3.3.1 THE NONDIMENSIONAL STEADY STATE FORMULATION OF THE 1D

PROBLEM

Following Ehe method of Yuan [15], the 1D problem is
nondimensionalized with respect to the plate thickness, h, and put

in its steady state form using the relationships:

X = %- N %— R IR

(3-21)

jwt
3Ioe

8D = FBOII° &M%,y =re™t oy, =

in which Io is the current in the exciter coil, w is the the

frequency, @ is the dimensionless stream function, and Cl and C3

are the values of ¢ at the edges of the plate. To apply a

uniform transport current, Cl and C3 are given the same absolute

value and one is then made negative. 1In this way a linear
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distribution of the stream function is specified which represents

a uniform applied current.

Introducing these terms into equation (3~17) and substituting

in the magnetic Reynold”s number, one obtains:

2 o 2
24 qrp + R [ o) dE . pp(x)
X% -2 (x - g)" + g

1RC1[A] + (1/x])]
)Z

1 M ;-(v/z)] (3-22)

[tan'1(1/x]) - tan~
+

> —

i (X -2

1RC,L 5 + (1/ 5)] 1

- [tan'1(1/x3) - tan~
m|(x + )<+

K3 + (W/Z)]

in which Al and A3 are in the form of equations (3~19) and (3-20)

with X and a replaced by their dimensionless counterparts, x

and £. With the last two terms (the edge terms) neglected, it is

this governing equation which is solved by the original version of

EDDY1.

3.3.2 CHANGES TO THE FINITE ELEMENT FORMULATION

The necessary modifications at the finite element level are
now discussed. These changes allow the program to solve the
governing equation with nonzero boundary conditions but with the

differential equation unchanged. First, the new form of the
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_ finite element equations is explained and then the necessary
program alterations to implement them are examined. A third

subsection discusses the specific problems for EDDYl involved with

this step.

3.3.2.1 Changes to the System of Equations

Let the full set of finite element equations be symbolized

by:

(K] {¢} = {P} (3-23)

There is one equation expressing the condition at each node.

The equations are partitioned as shown in Figure 3.3.
Together, ¢2 and (D3 correspond to the value of @ at all the
boundary nodes. The nonzero values of QE are specified in the
input while the program assumes the <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>