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I. Research Obijectives

WL

1. Establish mathematical properties of optimal infinite

dimensional compensators based on linear—quadratic-

.ll_l A.L.L;.'

gaussian (LG theory for distributed systems, and

(ot ol ol

characterize the resulting closed-loop systems. Such

properties include the form of control and estimator gains

il

and the stability of the closed-loop systems. Extend

previous results on infinite dimensional Riccati operator

L
; egquations, which determine the gains for the infinite é
- -
- dimensiconal compensators. This work includes both
continuwous—time and discrete--time control ot +fle:ible
structures. é

<. Develop approximation theory for numerical solution of

AZRan e st an o~~~ Lotoun iy

the infinite dimernsional Riccati equations and construction
of the corresponding compensators. This research concerns
convergence analyesis to determine necessary and sufficient
conditions for convergence of approximate solutions to
infinite dimensaional Riccati equations and the study of the

types of convergence produced by different approximation

schemes.

p -

Z. Develop widely applicable formulas for computing
F approximations to functional control and estimator gains .J
-4

from finite dimensional apprimations to the solutions to

. - - -

. - ~ . N < . N - ~

. - - . . LI .t A} . <t . - SR . . . L T e, - R L Cle

rel ... - . T e e e . o mate - A . o, . S - X . .
P s SR - LI (T WS A S W S A L LI S . W U R ST SRy, NPT SN Y S SIS SUIp S S S




Ll At Bel Aok Sag Sl S g d S e A ate 4 S S i S 4 B Aaeciuie i vl il S Sel Sl Sad i i Rt A i i A S A L S el T

k)

infinite dimensional Riccati equatiors.

4. Investigate infinite dimensional autoregressive-moving-
average (ARMA) models of distributed systems with
applications to large flexible structures. This discrete-
time representation of the distributed model of a flexible
structure will eerve as the basis for adaptive parameter
identification and control of large space structures.
Several difficult existence and uniqueness questions arise
in the 1nfinite dimensional case that do not arise in finite

dimensions.

9. Develop approximation theory for computing infinite

dimensional ARMA representations for flexible structures -

using finite element approximations ot the structures.
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II. Status of Research

Obiective i: For the continuous—-time case with bounded
input operator, the results are parctically complete.

Their application was discussed in [S] and will be

tmn

1llustrated in [2]1. Some preliminary discrete-time result

are given in [1,27. A compresensive treatment will be

Chiectives & and 2: Freliminary results were given in

[5,6], and complete results will be contained in [3,41.

(o]
rr
p
~
b
m

Xz Results are reported in [1,23. A Jjournal

paper extending these results is planned for S1AM J. Contr.

Chiective S: While initiel results based on modal
approximation were used in [1,2]1, significant work remains
to develop theory and methods for arbitrary finite element

approsimations.

Fesearch in discrete-time control and parameter
estimation of flexible space structures is continuing under
AFOSK Grant 840209, "Optimal Control and ldentification of
Large Space Structures: Distributed System Theory and
Numeircal Appro<imation." Also, prpblems with unbounded
input operators are being investigated, especially in the

dicscrete~-time case.
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DISCRETE-TIME OPTIMAL CONTROL OF -
FLEXIBLE STRUCTURES

J. S. Gibson and F. Jabbari

Mechanics and Structures Lepartment
Univers: ty of California, Los Angeles
Los Angeic., Californis 90024

Sumnary dimensional compensator produces what ve call
a direct approximation of the ideal compen-
Approximation of an ideal infinite dimen- sator. In this approach, an infinite di-
sional compensator for an infinite dimensionsal mensional ARMA representation of the ideal
system is discussed. Two approaches are con- compensator is constructed and then truncated
sidered; one is to design s compensator for s to obtain the ARMA representstion of the finite
finite dimensional model of the system, and the dimensional compensator. For computational
other spproach, vhich i5s stressed here, is to purposes, the ARMA representation of the
truncate an infinite dimensional ARMA representa- infinite dimensional compensator is obtained
tion of the ideal compensator. Performance of as the limit of the ARMA representations of
the closed-loop system is discussed, and an the finite dimensional compensators obtained
example from control of flexible structures is by the indirect approach. But these coapen-
presented. sators are discarded once the ARMA coefficients

for the infinite dimensional compensator are
obtained, and the ideal compensator itself is

Introduction truncated to obtain the direct approximation.
This paper treats compensator design for In this paper, ve are most interested
& discrete-time infinite-dimensional linear in the direct approximation of the ideal
control system. Usually, the compensator which compensator. We will discuss the performance
solves the optimal LQG problem for such s of the closed-loop system vith the resulting

system is infinite dimensional; in other wvords, finite dimensional compensator, showing that

it has an irrational transfer function. We will stability and near-optimality can be preserved.
refer to an infinite dimensional compensstor as Finally, ve give an example in vhich a flexible
an ideal compensator because, in applications, beam {8 controlled.

only finite dimensional compensators can be

built, preferably of lov order. The design

philosophy of this paper is to construct finite The Infinite Dimensional Compensator
dimensional compensstors which approximate the

ideal infinite dimensionsl compensators. Let E be an infinite dimensional Hilbert

space, T a bdounded linear operator on E, B a
For the discrete-time prodlem discussed linear operator from R to E, C a bounded
here, ve present twvo approaches to approximating 1linear operator from E to Rp. and D a linear
an infinite dimensional compensator. The first operator from R .o R*. We consider the

approach is to spproximate the infinjte di- discrete-tine control system
mensional control system by a finite dimensional
model and then design a corresponding finite ai- z(t+l) = T 2(t) + B u(t), t=0,1,2,..., (1)

mensional compensator. We call the resulting
implementable compensator an indirect approxima-

tion of the idesl compensator. This design y(t) = ¢ z(¢t) + D u(t), (2)
procedure is cosmon practice among engineers

vho use finite dimensionel control methods for 'h':° thzt::';' '::t::eziz)is; t::tcgzzzgl
flexible structures-and often wvorks quite well z:§€°; u . tsurem r
-although the finite dimensional compensator Y .

is rarely thought of as approximating some

ideal compensator. Our only suggestion is to Our ideal compensator for this system is
try to ensure that the finite dimensional based on the infinfite dimensional discrete-time

compensator will perform well by selecting the state estimator

approximation scheme so that, as the dimension .

of the model increases, the finite dimensional B(ted) o 7 2(t) ¢ Bu(t)e Gly(t) - ctlt) uled, (3)
compensator converges, in an appropriate sense,

to the jidesl infinite dimensional compensator. ::::eksh:o.;t‘-;::rr::::ugkizo:tii:e:: operator

The second spproach to designing a finite

u(t) « -K2(t) (&)
b vhere the control gajin K i3 a bounded linear
znc7533t;s;.'e.YCh vas supported by NSF Crent operator from E to R‘. Quyr first representa-

compensator is given by (3)

: O ¥

. e

P S

(i

1
|

e
Y D R

S ‘.’l. -,




We vill call this compensator optimal

and (4).
{f G and K are chosen according to an infinite-
dimensionel discrete-time LQG prodlem for (1)

and (2) (with sdded noise). This is not nec-
cesary for the discussion in this paper, al-
though we have chosen G and K this way in the
Example. We call the compensator in (3) - (&)
ideal because it involves infinite-dimensional
dynaamics.

*We will sassume

'Hypothesis 1. The spectral radius of T-GC is

less than 1. O

This means that there exist constants M and r,
r < 1, such that

h(t-60)®l s Mr®, n =1,2,... . (s)
In applications to flexible structures,
Hypothesis 1 implies that all but a finite
number of mcdes are uniformly exponentially
stable due to inherent system damping, and that
any unstable modes are observabdble. Also, from
{5) it follows that z(t) approaches z(t) expo-
nentially; i.c.,

il 20e)-2(t) ]| s Me¥|] z(0)-2(0) || , t=1,2,... .

(6)
To derive the infinite dimensional ARMA
representation of (3) -.(k), ve define

S =T-GC and B = B - GD, (1)
and write (3) as
2(t+1) = s 2(t) + B u(t) + G y(t). (8)

Repeated application of (8) yields

-~ D 3-1,2 n
z(t) = T s (B u(t-3) + G y(t-3)) +« s z(t-n),
=1 (9)
ns=1,2,... .

If wve set 2{(t) = 0, u(t) = 0, and y(t) = 0 for

t s 0, then from (9) we have

2(t) = £ SY71(B ult-3) + 6 y(t-3)), 0 < t<m,
=1 (10)

Fur.hermore, if the sequences rJ|z2(-3)][| ,
rdfu(-3) 1, and PIy(-$1, (5 = 0,1,2,...)
are summadble, then we still can define z(t) by
(10),and (6) will hold.

With (10), the control lawv in (4) becomes

u(t)= L aJu(t—J) -L 8, y(t-3), ts= 0,1,2,..., (11)
=1 =1

vhere each @3 is an mxm matrix and each BJ is
and mxp matrix., The control law in (11) Yis

the ARMA representation of the ideal compensator
in !:! : !Ei. The matrices oJ and EJ are given

by

a, = k s9°18  ana 8, = k s9°1g, (12)

J J

and in viev of (5) and (7), ve have
Haghs ke lsle wed™ ana [i8yils 1M1 1 ll -wed=2,
(13)

Al i Mt S el ah S S et 2 ou S avas B g
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The Closed-loop System with the ARMA Compensator
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Henceforth, ve vill assume that the
sequencgs u(-3) and y(-3), § = 0,1,2,..., are
in £_(R") anda _{(R”), respectively. 1In other
vordg, the contfol and messurement histories
arc cquarc-summable. Thus, if z(t) is given
by (10), (6) holds. Por t 2 0, ve define

u(t) = {ult), u(t-1), u(t-2),...}e zz(n') (14)

and

1(t) « {y(t), y(t-1), y(e-2),...}e £, (RP) (15)
It is nov an easy exercise to shov that, vhen
the compensator in (11) is used, there exists
s constant Ml such that

il -X 2(6) - u(e)ll s mrt(]l sto)ff « [ uto)l|« [ x(o)ip),

t=1.2,..., (16)

and
Il (1-BK)®2(0) - 2(0) | s M x®(]] 20} [[+ || uCO)[f+ || x(O)I[),

t=1,2,... (17)
For direct epproximation of the idesl
compensator, it will be useful to define the
space Z = E x (R™)x lz(Rp) and to defins the
unique bounded "linesr operator T on 2 such
that, for t = 0,1,2,...,
(z(t+1),U (t+1), Y(t+1)) = T(2(t), U(t), Y(t)). (18)
It would be easy to write out T explicitly,
but this should not be necessary. Let us note
only that i{f, in sddition to Hypothesis 1,
T-BK is uniformly exponentiaslly stable, then
so is T; i.e., the spectral radius of T is
less than 1. The purpose of (18) is to allow
us to viev the closed-loop system as an
autonomous discrete-time process evolving on
the state space Z. When the ARMA compensator
is used, the closed-loop system at time t is
the vector (z2(t), U(t), Y(tDe 2; f.e., the
vector consisting of the current state of the
control system in (1) and the current histories
of the control and the measurement.

Indirect Approximation of the Ideal Compensator

The idea here is to approximate the
infinite dimensional control system in (1) and
(2) by & sequence of control systems, each of
finite dimension N. Thus ve vwill have se-
quences of approximating operators TN' B C

N* ON°
and D". N-dimensional compen-

sator of the form (3) - (L) 4s designed with
estimator and control gains G' and K', re-

This NP

For each N, an

spectively. compensator is then

Ty (te1) = Tniu(t) + Byu(t) ¢ G (y(¢) - cn;n(‘)‘nnu(‘))'
(19)

ult) = "-;n“’ . (20)

If the approximation is done correctly

(see [1,2) for related continuous-time probleas

-
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and (3] for the discretestime case), then the
compensator in (19) -~ (20) will approximate

the 1deal compensator in (3) - (Bg as N becomes
large. Although stronger convergence often can
be obdtained, here ve will need only

Hypothesis 2. Let

Sy = Ty - GyCy snd By = By - GuD, . (21)
As 'l - ®,
Sy * § strongly, {22)
SN + B strongly, (23)
Gl + G strongly, (24%)
and
Ky * K strongly. D (25)

The statement that the finite dimensionsl
compensator in (19) - (20) converges to the
infinite dinens%onnl compensator in (3) - (&)
means that S,, N Gn' and Kn converge in some

sense to S, 8, G, and X, respectivily. Also,

under additional dbut often realistic hypotheses,

it can be shown that the closed-loop system

consisting of (1), (2), (19), ana (20) converges

to the ideal closed-loop system consisting of
(1), (2), (3), and (4) &in such a way as to
preserve stability and near-optimality for N
sufficiently large. Howvever, in this paper
ve will pursue such convergence only for the
subsequent direct compensator approximation.

Direct Approximation of the Ideal Compensator

Truncation. The idea nov is to compute, as
discussed later, the matrices a, and BJ for

the ARMA compensator in {(11), and then to ap-
proximate this compensator directly. The
obvious wvay to approximate (1l1) is simply to
truncate all dut a finite numbdber of terms in
each of the series ian (11). That is, replace
(11) by the control law

Y N
u(t) = -L a_ u(t-)) - L B, y(t-3), t=0,1,2,... . (26)
Jtl J J-l 3

For any positive integers ll and N,, (26) is

the finite dimensional ARMA approximstion of
the ideal compensator.

Convergence and Performance of the Closed-loop
System.

When the ARMA compensator in (26) is used
to control the system in (1), ve again will
call the triple (sz(t), U(t), r(e». the

]
1*°72
closed-loop system at time t. UNote that U(t)
and Y(t) are stil)l the infinite histories in
(14) and (15), so that (z(t), Ul(t), Y(t) is o
vector in Z whether (11) or (26) is used.

Also, ve can define a dounded linear
operator T' y_ ©8 2 such that the closed-loop
172
system resulting from (26) can be vritten

e e g wmmm =gy P e s

e e - - mn o man

NP L. . T

— A dlevte S Blhenih i et Jhmsn S St Jhas il JERatt it i

(z(t+l), U(t+1), !(tol)).

ok
T (z(t), u(e), Y(t)) (21
- z » » t
- .1"2 .l'.2
Now let us vrite (lf) and (26) as
u(tel) = ‘1“(‘) + K,1(¢) (28)
and
u(t+l) = Kl"xu(” . x”a!(t). (29)

respectively, vhere Kl'“ll € L(lz(R.).R.) and

Ky, x”ze L(e,®RP), R®). rrom (13), it
follovs that

Ik, - K“‘1” +0 a5 W =+ (30)
and

IIK2 - Kzlzllo 0 as N, + = (31)

Pinally, it is straightforvard to showv

f7-T 1S o g | R | SO oy | (32)
LIRL A 1w 27w, 1

so that
hr - T’;"’z" 0 as NN, *=. (33)

Prom (33), ve see that the response of
the closed-loop system obtained dy using the
finite dimensional compensator in (26) can be
made arbitrarily close to the response of the
ideal closed-loop system obtained by using
the ideal compensator in (11). If the ideal
closed-loop system is uniformly exponentially
stable, then s0 is the closed-loop system wvith
the finite dimensional ARMA compensator for

.1 and l2 sufficiently large. Also, if the

ideal closed-loop system is optimal in some
sense, then the closed-loop system odbtained
with (26) can be made ardbitrarily closed to
optimal. Of course, we hope that in applica-
tions, stability and near optimality can be

obtained with reasonadly small '1 and RZ‘

Computation of a, and BJ

3

FPor the finite dimensional state estimator
and control lav in (19) ana (20), wve can
retrace the development in (7) - (11) to
obtain an approximation of (11) with a_ and

3
8y

<.;J“-|t“s:'1 By ana By, = 592, (34)

vhere S, and i. are given by (21). 1In other

replaced respectively by

vords, after computing the gains Gn and Kn

for (19) and (20), ve replace the operstors
K, G, 85, and B 1in (12) by Nth order approxima-
tions. nypothon;. 2 then guarantees

B Y o it it o L e e
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a,, * o, and 8 . (35)

JN J J

" BJ as

Yy V.Y § ¥

Ao Infinite Dimensional MA Compensator

In general, atability of both T-GC and
T-BK does not guarantee stability of the
operator
' § =T - GC - BK - GDK (36)

However, § often is uniformly exponentially

O ERT T T el

stable. When this is the case, it is conven-

ient to write (3) and (L) as
T(t+l) = 8 2(t) + cy(e), (37)
ult) = -x z(t) . (38)

Then, retracing the steps to (1l1) leads to

rl u(t) = 3§1YJ y(t-3), t=0,1,..., (39)
r vhere each YJ is an m*Xp matrix given by
Yy = K §3-1g . (40)

The control lawv in (39) is the
tion of the ideal compensator.

MA representa-

Of course, we approximate (39) by
N

u(t) = -I v (41)

=19

The analysis of the convergence and performance
of the closed-loop system produced by (26) is
easily modified to odtain the same results

vhen the finite dimensional MA compensator in
(41) is usea.

y(t-3)

Also, the matrices y, are
computed as the limits of J
AJ-l
YN " Kg S Gy - (42)
Example

We will control the trensverse vibrations
of a simply supported Euler-Bernoullil beam
represented by the partial differential equa-
tion

/

Wen) o 20/ S(e,n) e A vt =0 (43)

vhere n €{(0,1) is measured along the beanm.
The basic space for w(t,*) {is L2(0,1). and
the operator Ao is defined by

, D(A) = (6 € K'(0,1): 6(0) = 6(1) = ¢7(0) = ¢(1) = O},
(k)

E A S = "7, (us)

We take the damping ratio f = .01,

Our control is a moment on the left end

w e memym 30 R
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of the beam. Hence the boundary condition

32\l(t.!]). - u(t). " (L6)
3“2 n=0

This control 4is a plecevise constant function
of time t, and the length of the time step is
.03,

To put the system in first order form,
ve vrite z(t) = (v, ,¥) and take the space E

to be Hi(O.l) x L2(0.1). vhere Hi(o,l) =
{¢ € 52: ¢(0) = ¢(1) = 0}. Then (43) becomes

2 = Az (7)
vhere A (see [1]) generates a C -semigroup
T{+) on E. The operator T in °(1) is T(.03),
and the operator B can be obtained from the
solution to (43) for constant u(t) in (46).
Note that B is bounded for the discrete-time
prodblem, although the input operator is un-
bounded for the continuous-time probdlem.

Our measurement is the slope at the left
end of the beam:

dw(t,n)

_Tn_l_

y(t) = = C z(t). (u8)

n=0

This operator C is a bounded linear functional
on E = HZKLZ.

For the estimator gain G ve solved for
the optimal filter for (1) and (2) wvhen the
process noise for (1) has covariance operator
I and the measurement nofse for (2) has
covariance 1. Because the resulting estimator
had unsatisfactory eigenvalues (the eigenvalues
of 5§ in (7)), we added an a-shift to obtain a
G which made the eigenvalues of $§ all have
magnitude less than .9.

FPor the control gain K, ve solved the
optimal regulator prodlem for (1) and the
performance index

J -kgo[llz(.osk)lli + w¥(.03x))

(49 )
To compute G and K ve approximated the

solutions to infinite dimensional discrete-
time Riccati equations, as discussed in (3).
Basically, wve projected the infinite dimen-
sional LQG problem on subspaces spsanned by N
natural modes of the beam, N = 1,2,... The
ARMA gains GJ' 8,, and y, vere computed as the

limits of (34) and (42) for increasing N.
We found that § (see (36)) is exponentially
stadble for this example.

The folloving tables give the values
the ARMA and MA compensator gains.

of

L _J .A:A!L‘
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4 %410 %412 9414

1 -.019 -.020 -.020

2 L11b L1117 .119

3 .05 .049 .051

N .027 .022 .021

5 .198 .193 .191
15 .029 .028 .028
16 . 034 .034 .03k
17 -.024 -.023 -.023
35 -.001 -.001 -.001
36 .003 .003 .003
37 .001 .001 .001

SN

3 8,110 s_112 Bth
1 -1.387 -1.38L4 -1.383

2 - .616 - .611 - .611

3 1.298 1.292  1.291

L .Lso .LL8 Lubko

5 -2.061 -2.056 -2.055
15 LohT - 04T . .OLT
16 - .1u8 - 148 - 148
17 .039 - .039 - .038
35 .009 .009 .009
36 .002 .002 .002
27 - .006 - .006 - .006

Yy10 . Yy12 Y14

1.

2.

3.

hi

1 -1.387 -1.38% -1.383
2 - .643 - .638 - .638
3 1.blk 1.kk2 1. bbb
4 .615 .620 .623
5 -2.147 -2.151 ~2.154
15 .080 - .082 - .079
16 - .21k - 221 - .223
17 .050 .049 .048
35 .007 .008 .008
36 - .010 - .008 - .008
37 .001 L0001 - .0001
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a AN ARMA MODEL FOR A CLASS OF DISTRIBUTED SYSTEMS

€ "

J. S. Gibson and F. Jabbari

Nechanical, Aerospace and Nuclear Engineering

Abstract

This paper presents an infinite dimen-
siona)l ARMA model for infinite dimensiona)
time-invarfant linear systems {n which the
state transition operator is trace class.

The ARMA mode! appears to be the natural
extension of the finite dimensional ARMA
model, and it is computed as the limit of a
sequence of finite dimensional ARMA models.

In a flexible structure example, numerical
results are given for tHe ARMA models of both
the open-loop plant and an optimal compensator.

| 8 ntroduction

In [4], we introduced an infinite dimen-
sional ARMA model for a class of infinite
dimensional discrete-time control systems.

The method there, based on an infinite dimen-
sional observer for the state space representa-
tion of the system, can produce an infintite
number of different ARMA models of the same
system, but none of those ARMA models 13 a
natural extension of the minimal order ARMA
mode) for a finite dimensional system repre-
sented in state space form. For a large class
of infinite dimensional systems, we present

in this paper the natural extension of the
minimal order finite dimensfonal ARMA model.
This paper deals exclusively with single-
input/single-output systems, but the main
fdeas and results can be extended to the
sulti-input/multi-output case.

That the infinite dimensional ARMA model
of this paper 1s the natural extension of the
finite dimensional case should be clear from
the way the present ARMA model {s defined in
Section 2 and from certain of i1ts properties.
One of the most important properties is that
the ARMA coefficients corresponding to the
infinite dimensional state space representa-
tion of the system are, under appropriate
convergence criteria, the 1imits of the ARMA
coefficients corresponding to increasingly
Jarge finite dimensional approximation of the
infinite dimensiona) system. See Section 4.

After defining the ARMA mode)l and giving
some of fts important characteristics in
Sections 2 and 3, we sketch the relevant
spproximation theory fn Section 4. Because of

This research was supported by AFOSR Grant
83-0317 and H R Textron Grant 64945,

D m Al m s w . a.s L W S 3 A A e

University of California, Los Angeles 90024

of limited space, we will not prove all of the
results stated here, but we will indicate the
main {deas of the missing proofs. In Section
5, we apply the results to obdtain the ARMA
wodel of a flextble structure and the ARMA
representation of an optimal (infinite dimen-
sional) LQG compensator for the structure.

As the exsmple fl1lustrates, we are finter-
ested {n both the ARMA mode! for the open-lgop
version of a distridbuted parameter control
system and the ARMA model for an infinite
dimensional compensator for such & system.

The ARMA model of the open-loop system should
be useful for Infinite dimensfonal adaptive
control and parameter {1dentification theory,
and as 8 limit that reveals the limiting
properties of the ARMA representations of
finite dimensional approximations to the dis-
tributed system. The ARNA representation of
an infinite dimensional compensator for a dis-
tridbuted system gives a concrete representa-
tion of an otherwise abstract entity, and can
serve as & basis for deriving isplementadle
(finite dimensional) approximations to such a
compensator.

We consider control systems whose state
space representations have the foram

z(te)) = T2 (t) ¢+ B u(t), t=0,1,2... (1.1)
y(t) = C 2(t), (1.2)

where the state vector 2(t) 1s fn a Wilbert
space E, T 13 a bounded Yinear operatoer on E,
B 1s a Vinear operator from the real) 1ine tnto
E (.., 8 ¢ E)and C 15 a bounded linear
functional on E. The scalar u(t) 1s the

control, and the scalar y(t) 1s the messurement.

To define the ARMA model of this paper, we
must assume that the operator T 1s trace class
(see [2,5] and Section 2. Also, we assume that
the system (1.1)-(1.2) s odbservabdle in the
sense that there 1s no nonzero z(0) such that
y(t) = 0 for each ¢t 2 0.

The condition that T be trace class holds
for the discrete-time state space represents-
tion of the solutions to many generalized wave
equations, heat equations and time-delay
equations. As discussed fn Section §, a common
®uodal demping model ensures that T 1s trace
class for the linear distridbuted mode! of a
flexible structure.
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Under the above hypotheses, the ARNA model
of the system (1.1)-(1-2) has the fors

y(t) o F lagy(t-1) ¢ dou(e-1)], (1.3)
1=
where the ARMA coefficients G, and b1 are

scalars. The purpose of this paper 1s to

define these coefficients so that the measure-
ment in (1.2) does satisfy (1.3), to estadlish
the decay rate for a, and b, with {acreasing i,

to indicate how the coefficients can be com-
puted, and to 1llustrate the results with a
numerical example.

11. Definitions of the ARMA Coefficients

2.1. Yrace Class erators

We will need some standard results on
trace class operators on Hilbert spaces.
(See [2, p.1088-1105) and [5, p.521.524].)
First, a 1inear operator §s trace class if 1t

fs compact and 1ts singular values are summabdle.

In this case, the trace norm of T, denoted by
||T||‘. fs equal to the sum of the singular
values repeated according to multiplicity.
From here on, T will be trace class.

Let A'.Az.--- be the nonzero esfgenvalues
of 7. Then

tr T o E Ay {2.1)
11
and
Ingt s vy <e. (2.2)
1o

The set of trace class operators on a Hilbert
space E 13 a linear space, and the composition
of a trace class operator with a bounded linesr
operator 1s trace class.

2.2. Recursive Definition of the ARMA
CoefTicTents

For § & 1,2,3,°¢¢, we define
0 ot S/ (2.3)

where
Sy o Tand S, = T(S;-a,1). (2.9)
Al‘ov

by = CBand by = C(5, y-ay,1)B, 12 2. (2.5)

These ui‘s and D,'s are the coefficients

that we use fn (1.3). 1f the state space €
has finite dimension n, then ay - b' * 0 for

i >a. In this cose, the o"s are the

negatives of the coefficients fn the charac-
teristic polynomfal of T, and (2.3)-(2.5)
constitute a well known algorithe for computing
the ARMA coefficients. The algorithm here
then would sppear to be the natural way to
define the ARMA coefficients for the itnfinite
dimensiona) case. However, that the output

t .
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y(t) 1n (1.2) tndeed satisfies (1.)) requires
a nontrivial proof along with precise defini-
tions of the infinite output and fnput
histories assumed 1n (l.ag. Because of liaited
space, we only wil) outline this proof in
Section 4.

111. Decay Rates for the ARMA Coefficients

Theorem 1. For sach r > 0, Vim r'.1 = 0.
{on

In other words, the n"s decay faster than any
exponential.

The proof of Theorem 1 requires the
following lemma, which is the generalization
of the finite dimensiona) situation and can
be proved using (2.2).

femma 1. For { » 1,2,-cc, the coefficient
8 is (-1)"‘ times the absolutely convergent

countable sum of all products of § distinct
etgenvalues of T.

Proof of Theorem V. For § = 1,2,--¢, lat the
proauc%s of | distinct efgenvalues of T be

ordered and denoted by n{‘), k= 1,2,°°°, 80
that
L))
LR o 10 1.2,000, kR |
| .Z, & (3.1)

fiext, define
. n o 13 1,2,000, 3.2

that exch &, \s fintte can be seen hy‘deflning

the infinite dimensional diagonal matrix whose
eigenvelues are the magnitudes of the eigen-
values of T. his matrix represents a trace

clas operator T on 'z- and the I,'s 1n (3.2)

are the cogfficients generated by (2.3) and
(2.4) for 0f course,

logls By 1@ V,2,000, (3.3)

For esach n{'). Tet q{') be the sum of
the adbsolute values of all efgenvalues of T
except those in l{" . MNence

Vst . tkenrze.. (3.0)
The key fdentity here is

T (1) ot T (19
.§1|n{ ’ln, )e (M)tg‘ln{ Mg e 1,2,000. (3.5)

From (3.2), (3.4) and (3.5), we have

.'.‘ ‘1%\ .13 fe1,2,00., (3“)
which yields
te AN AN (3.7)

for any r > 0. Then the theorem fol)
from (3.3) and (3.7). ollows
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Our aumerical experience with examples
suggests that the coefficlents b, also decay

faster that any exponential, under our
hypotheses on T, 8 and C. So far, however, we
can prove this enly when the efgenvectors of T
for an orthonormal basis for £. In this case,
an argument similar to the proof of Theores )
shows that 'lsi|h decays faster than sny

exponential. WMe hope to extend this result
for any T of trace class.

When the spectral radius of T 15 less than
1, we can show at least that by spproaches zero.
This applies to the compensator of the exsaaple
in Section §.

IV. Approximstion

We assume that we have sequences of finite
rank operators 7n' ln. C, such that

It Tp=Tll; = 0. (e.1)
" .n-'" hd o. (‘.2)
Il CpeClit =0, (4.3)

as h » =, For esach n, we compute ARMA

coefficients a, and b, according to (2.3)-(2.5).

Then (4.1)-(4-3) guarantee that, for each 1,

1 . a4

He o = 8 (4.4)
and

Ha by, = by (4.5)

In applications, (4.2) and (4.3) simost
slways hold because 8 and C have finite rank.
However, (4.1) 15 stronger than the convergence
obtained with many approximation schemes, and
we hope to be able to weaken this condition.
Our approximation of the open-loop system in
the example of the mext sectfon 1liustrates
the important class of applications where (4.1)
holds because the efgenvectors of T form an
orthonormal dasis for £ and the approximation
consists of projecting onto the efgenspaces of
T (modal approximation).

Also, 1f the transition operator {s
Te T° ¢ F, where the efigenvectors of t° form

sh orthonormal basis and F has finite rank,
then approximation by projecting onto the efgen-
spaces of T° will yteld (4.1). This (s the

case fn our approximation of the compensator
in the example. s

For sach n, we have the finite dimensions!
systes

z,(t41) = Tnxn(t) * l"u(t). (4.6)

ya(t) = ann(g). (4.7)
The ARMA mode! for this system {s

,ll(t) . ‘!‘[.‘"’”(t") . ."'“(t'ﬂ]- (4.8)
where

8n ® 0" 0 1o ml, w200, (4.9)

Recall that, before now, 1t Aas not been
shown that the y(t) of (1.2) satisfies (1.3).
1f, for some t . we choose ‘n('o) such that

1im z"(ta) - l(to). {(4.10)
[ ol

then (4.1)-(4.3) along with (4.6)-(4.7) ensure
that

Ha yn(t) = y(t), tat (¢. 1)
Ao

o
1f

y(t) = y (t) = u(t) e 0, ¢t <t , (4.32)

then (4.1), (4.2) and (4.11) 1mply that each
tera {n (4.8 convcrges to each term In (1.3).
Mithout (4.10) and (4.12), we Justify (1.3)

in & steilar way, but only as t <« @, The
decay rates for : and 'i are then useful.

V. Application to Flexible Structures
$.1. Abstract Structure Mode!

An {1mportant class of applications for
infinite dimensionsl ARMA models is the control of
flexible structures whose linear distributed
:?dcl has the form of the differential equa-

on

WX ¢ Dok ¢ Ayx = Bu, (s.1)

where the stiffness eperator A° vsually

containg partial differential operators for
the elastic components of the structure. In
applications A° is selfadfoint uwith compact

resolvent and ﬂ° selfadjoint and coercive.

For details of the first order form of the
equation, see [3]. We only mote that, with
reasonable conditions on the damping operator
Do. we can take the state vector

2(t) = (x(t), x(t))

and write the solution to (5.1) as (1.1) for
plecewise constant control u(t). Of course,

we scale the time varfable so0 that the input/
sempling interval s 1. For the observability
condition that we assumed in Sectfon 1, it s
sufficient that mo matural frequency of the
undamped structure be a multiple of the sampling
frequency.

A common damping mode! for flexible
structures 1s modal damping that provides the
same ¢a-ging rotio for each mode. This means
(see [1)) that

-
D, = c A (s.2)

fn (5.1), with €o 8 Positive real number. It

can be shown thet - at lease for structures
whose flexible components are beams, plates,
strings or membranes - the damping operator in
(5.2) causes the operator T fa (1.1) to be
trace class.

¥e should note, hewever, that linear
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viscoelastic damping represented by (see [3]) c. = .02

° -H

% ° oo (s.3) ' 8 b ]
produces a non-trace class T because a subse- . ’
quence of the efgenvalues of T converges to } .::; E:: .:¥: E_i i;

Ve, 3 1 EN .21 E-) g
¢ . 4 -.82 £ .25 E-1 .

For (5.1) with either (5.2) or (5.3), : ]
the eigenvectors, or modes, of the open-loop 10 30 £+l .16 E-) -
system form sn orthonorms) basis for the state n 139 £ 17 €41 .
space, 50 that modal spproximation yfelds (4.1)- . * B
'Ji%).i We usod‘-od;l lpprolinutiog 1? t?e . g

ollowing exsmple, but we are particularly .

interested in being able to weaken (4.1) to g? ':2 E:g .';: E_g s M

Justify more general finite element approxime- . ¢ * .

tions for approximating ARMA models of flexibdle . )

structures. 30 -.48 E- 14 E-3 )

§.2. Example 3! .32 E-1 -.90 E-4 -
. -

The structure in this example consists of b
an Euler-Bernoulli beam cantilivered to & rigid :? ";: E:: : ;; E:; »
disc which s free to rotate about its fixed . .
center. In-plane motion 1s modeled, tncluding . .?
linear transverse vidbratipns of the beam. The $0 M g-12 36 E-15
rotation of the disc gives a rigid-body mode. M "“ £-13 36 E-16
An actuator applies a control torque to the * T -
disc, and a sensor measures the rotation of Table 1
the disc. adie )

For this problem, we used two levels of . 1
approximation. First, we used a finite element € * - i;
approximation to compute the natural mode 1 b b
shapes and frequencies of the composite system. .y [ !
Then we used the system modes as the basis
vectors in the approximations of the ARMA ) .26 E+1 .29 E-2 -
mode) and the optimal control problem. For 2 -.22 E4) -.62 £-2 !
computing both ARMA coefficients and control 3 .51 E+1 .38 E-2
and estimator gains, we found that the first 4 16 E+) .34 E-I
25 system modes were easily sufficient for o
convergence. MWe made sure that our orfgtinal . - 4
finite element approximation had converged for 10 -.88 E-1 -, 21 E-2 o]
the first 25 wodes. n .24 E¢0 -.37 E22 1

. K

The lowest natural frequency of the . R
structure was 4.9 rad/sec. We used the moda) 20 «. 15 E-3 .44 E-6
damping model 1n (5.2) with both € .02 21 2 E- .58 E-) 11
(1% critical damping) and € * A (5% critical . -
cemping). 30 -.5) E-14 .16 E-16

“lo co-pu:odstho'opcz-lo?p Alﬂ: gooff;c!enn n -47 E-16 -.87 E-18 [
as scussed in Section with n being the -
uu-?or of1sy:to? l:dcs 1=éludcd in th: lpp::x!- ladble 2 fj
mation. able shows the converged (reca -
(4.4) and (4.5)) values of the ARMA coeffi- §.3. Qptima! LQG Control

cients, rounded to two significant digits. For (1.1), we use the performance {ndex

E 9= L 22 ¢ (03, (s.4) :
r where @ > 0. The optimel contro! law then s !%
t U(t) s K l(t)l (S.S) :3
b where :;
E K= Dengen, ) neer, (s.6) B
é th ]
r Satisfies the tntinite diasmsrone] Rl cort) e
: equation

. Perenaem i T T, (5.
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where T = T/a and l. o B/a. As usual, the

e-shift fn this prodbliem ensures that the
spectral radius of the closed-loop operator
T-BK will be no greater than a. In this
exsmple, we used o = .9.

The state estimator for (1.1) has the
fora

Z(te1) = T 2(t) + Bu(t) ¢ G(y(t)-C 2(t)). (5.8)

To get the gain 6, we solve the optima)
estimator problem which 1s the dual of the
p:og:ding optimal control prodlem. This
ylelds

6« T c2 [1ec e (5.9)
where P satisfies

PedoT, (P-cs Do e Pt (5.10)
and (2‘l = C/a.

In state space form, the compensator s

2(t+1) = (T-6C)2(t) + Bu(t) ¢ 6 y(t) (s.11)
and

u(t) = -K £(t). {5.12)

Here, the a-shift ersures that the spectral
radius of closed-loop estimator operator
T-6C ;s no greater than a. Again, we used
a" ,.9.

Now, for (5.11)-(5-12), we think of y(t)
as the input to the compensator and u(t) as
the output. Applying the method of Section 2,
we obtain the ARNA representation

o) = T [ofute1) o 0§ yie-0). (s.13)

To compute the 8S's and bf's for the
example, we solved @ ‘oqucncc of finite
disensional LQG problems corresponding to the
sequence of modal approximations to our
flexible structure. (See (6] for detatls.)
This yields a sequence of finite dimensional
compensators of the form (5.11)-(5-12). For
esch such compensator, we computed the
corresponding ARMA mode) of the form (5.13)

with coefficients ‘:n and ’:n' where n s the
aumber of modes 1n the system spproximation,
As tn the open-loop case,

:1: o8, - . 1 e1,2,000, (5.14)

and
::: o5, -'of . 1 81,2000, (s.15)
For the case where the epen-loop demping

coefficient 1s ¢c_ = .1, Table 3 gives the
ARNA coefficient® for (5.13).

€ " .1
¢
1 Lh b'
1 .14 [} -3 k)
2 =44 40 -.852 £¢)
3 .17 E9 17 Ee3
q «.98 E+0 .19 Ee3
10 .78 E-1 =017 €9
n -.8) E-1 .24 Ee2
20 15 E-3 -.41 E-)
3 -.19 E-4 .84 E-2
30 .55 E-14 -,16 E-11
n .22 £-16 ~.20 E-14
JTadle 3
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