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I. Research Objectives

1. Establish mathematical properties of optimal infinite

dimensional compensators based on linear-quadratic-

gaussian(LQG) theory for distributed systems, and

characterize the resulting closed-loop systems. Such

properties include the form of control and estimator gains

and the stability of the closed-loop systems. Extend

previous results on infinite dimensional Riccati operator

equations, which determine the gains for the infinite

dimensional compensators. This work includes both

continuous-time and discrete-time control o+ fle:.ible

strUctUre .

2. Develop approximation theory for numerical solution of

the infinite dimersional Riccati equations and construction

of the corresponding compensators. This research concerns

convergence analysis to determine necessary and sufficient

conditions for convergence of appro.Xifmate solutions to

infinite dimerisaional Riccati equations and the stL -Y of the

types of convergence produced by different approximation

schemes.

Develop widely applicable formulas for computing

approximations to functional control and estimator gains

from finite dimensional apprimations to the solutions to

.- ... .



infinite dimensional Riccati equatiors.

4. Investigate infinite dimensional autoregressive-moving-

averag(ARMA) models of distributed systems with

applications to large flexible structures. This discrete-

time representation of the distributed model of a flexible

str LcAurE- will serve as the basis for adaptive parameter

identification and control of large space structures.

Several difficult ex-istence and uniqueness questions arise

in the infinite dimensional case that do not arise in finite

di men-i ons.

5. rDevelop appro;,imation theory for computing infinite

dimensional ARMA representations for flexible structures

using finite, element approx-imations of the structures.
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If. Status of Research

Objective 1: For the continuous-time case with bounded

input operator, the results are parctically complete.

Their application was discussed in [5) and will be

illustrated in [3]. Some preliminary discrete-time results

are given in [1,2]. A compreser-sive treatment will be

presented ir [4].

Obecti ,-es 2 a nd 3: Prel iminary results were given in

[5,6], and complete results will be contained in [3,4].

Ob..ectn. 4: Results are reported in [1,2]. A journal

paper extending these results is planned for SIAM J. Contr.

ObJectitic 5: While initial results based on modal

approximation were used in [1,2], significant work remains

to develop theory and methods for arbitrary finite element

a p pr m ma ti o ns.

Research in discrete-time control and parameter

e -timiati on of fle.<ible space structures is continuing under

AFOSR Grant 840.09, "Optimal Control and Identification of

Large Space Structurc-s: Distributed System Theory and

Numeircal Approximation. Also, prpblems with unbounded

input operators are being investigated, especially in the

discrete-time case.
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DISCRETE-TIME OPTINAL CONTROL OF
FLEXIBLE STRUCTURES

J. S. Gibson and F. Jabbari

Mechanics and Structures Department
University of California, Los Angeles
Los Angei.., California 90024

Summary dimensional compensator produces what we call
a direct approximation of the ideal compen-

Approximation of an ideal infinite dimen- sator. In this approach, an infinite di-sional compensator for an infinite dimensional mensional ARMA representation of the idealsystem is discussed. Two approaches are con- compensator is constructed and then truncated
sidered; one is to design a compensator for a to obtain the ARMA representation of the finite
finite dimensional model of the system, and the dimensional compensator. For computational
other approach, which is stressed here, is to purposes, the ARMA representation of the
truncate an infinite dimensional ARMA representa- infinite dimensional compensator is obtained
tion of the ideal compensator. Performance of as the limit of the ARMA representations of
the closed-loop system is discussed, and an the finite dimensional compensators obtained
example from control of flexible structures is by the indirect approach. But these compen-
presented. sators are discarded once the ARMA coefficients

for the infinite dimensional compensator are
obtained, and the ideal compensator itself is

Introduction truncated to obtain the direct approximation.

This paper treats compensator design for In this paper, we are most interested
a discrete-time infinite-dimensional linear in the direct approximation of the ideal
control system. Usually, the compensator which compensator. We will discuss the performance
solves the optimal LQG problem for such a of the closed-loop system with the resulting
system is infinite dimensional; in other words, finite dimensional compensator, shoving thatit has an irrational transfer function. We will stability and near-optimality can be preserved.
refer to an infinite dimensional compensator as Finally, we give an example in which a flexible
an ideal compensator because, in applications, beam is controlled.
only finite dimensional compensators can be
built, preferably of low order. The design
philosophy of this paper is to construct finite The Infinite Dimensional Compensator
dimensional compensators which approximate the
ideal infinite dimensional compensators. Let E be an infinite dimensional Hilbert

space, T a bounded linear operator on E, B aFor the discrete-time problem discussed linear operator from R to E, C a bounded
here, we present two approaches to approximating linear operatornfrom E to Rp , and D a linear
an infinite dimensional compensator. The first operator from R .o Rp . We consider the
approach is to approximate the infinite di- discrete-time control system
mensional control system by a finite dimensional
model and then design a corresponding finite di- z(t~l) - T z(t) + B u(t), t-O,1,2..., (1)
mensional compensator. We call the resulting
implementable compensator an indirect approxima- y(t) - C z(t) + D u(t). (2)tion of the ideal compensator. This design
procedure is common practice among engineers
who use finite dimensional control methods for vector u~) REn the ontrol
flexible structures-and often works quite veil vec ude
-although the finite dimensional compensator y(t)e Rp.is rarely thought of as approximating some Our ideal compensator for this system is
ideal compensator. Our only suggestion is to bae ote i nt mensonal iscrete-tim
try to ensure that the finite dimensional based on the infinite dimensional discrete-time
compensator will perform well by selecting the state estimator
approximation scheme so that, as the dimension £(t~l) * T 9(t) * Bu~t). G~y~t) Ci(t) D u(t)) (3)
of the model increases, the finite dimensional " - ,
compensator converges, in an appropriate sense, wh
to the ideal Infinite dimensional compensator. V ere, he estimator gain G Is a linear operator

from N to E. The feedback control is
The second approach to designing a finite u(t) a-Ki(t) (4)

This research was supported by NSF Grant where the control gakn K Is a bounded linear
ENG78-04753. operator from E to B . Our first re resenta-

tion or the ideal Compensator iiven bjt3)
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and (4). We viii call this compensator optimal The Closed-loop System with the ARNA Compensator
if G and K are chosen according to an infinite-
dimensional discrete-time LQo problem for (1) Henceforth, ve will assume that the
and (2) (with added noise). This in not ,ec- aequecgs u(-J) an y(-J). j - 0.1.2,..., are
cesary for the discussion in this paper, al- in L;(R ) and I (R") respectively. In other

though we have chosen G and K this way in the vordi, the contfol and measurement hiutories
* Example. We call the compensator in (3) - (4) are oquare-summable. Thus, if i(t) is given

ideal because it Involves Infinite-dimensional by (10), (6) holds. For t k 0, ye define
dynamics.

U(t) - ut), u(t-1). u(t-2) .... )c t 2 () (14)

We vill assume
and

Hypothesis 1. The spectral radius of T-GC is Y(t) - {y(t), y(t-1), y(t-2)....) L (R
p ) 

(15)
less than 1. 0 2 (5

It is nov an easy exercise to show that, vhen
ThiLs means that there exist constants M and r, the compensator in (11) is used, there exists
r < 1, such that a constant M1 such that

11i (T-GC il . Mr n, n - 1 . ... (5) I-K z(t) - u(t)l S 14lrt(ll z€0)1 I t U(O)ll. II y(O)1I),

In applications to flexible structures, t - 1,2,... , (16)
Hypothesis 1 implies that all but a finite
number of modes are uniformly exponentially and
stable due to inherent system damping, and that
any unstable modes are observable. Also, from t
(5) it follown that z(t) approaches z(t) expo- ziO-lz(O)13() -- 1!yirt(j

ntially; i.e. 
12. .... (17)

il z(t)-2(t)ll S Mr il z(O)-(O)l , t-l,2..... For direct approximation of the ideal

(6) compensator, it will be useful to define the

To derive the infinite dimensional ARMA space Z = E x L2 (R
m
)x 1 2 (RP) and to define the

representation of (3) -. (4), we define unique bounded linear operator T on Z such

that, for t = 0,1,2,...,
S - T - GC and B - D, (7)

(z(t+l), U (t l), Y (t+l)) - TVz(t), U (t), Y(t)). (18)

and write (3) as

It would be easy to write out T explicitly,
z(t+l) = S i(t) + B u(t) + G y(t). (8) but this should not be necessary. Let us note

only that if, in addition to Hypothesis 1,
Repeated application of (8) yields T-BK is uniformly exponentially stable, then

so is T; i.e., the spectral radius of T is
(t) - I S 3

-(B u(t-+) + G y(t-j)) + Snz(t-n), less than 1. The purpose of (18) is to allow
J-1 (9) us to view the closed-loop system as an

n * 1,2 autonomous discrete-time process evolving on
the state space Z. When the ARMA compensator

If we set ;(t) - 0, u(t) 0 0, and y(t) - 0 for is used, the closed-loop system at time t is

t 5 0, then from (9) we have the vector (z(t), U(t), Y(tD Z; i.e., the
-vector consisting of the current state of the

i(t) - 7 Sj-I(B u(t-j) + G y(t-j)), 0 < t-. control system in (1) and the current histories

J=1 (10) of the control and the measurement.

Fur'.hermore, if the sequences r.'12(-j)I , Indirect Approximation of the Ideal Compensator
rJllu(-J)l1, and rJlly(-J)II, (3 - 0,1,2,...)
are summable, then we still can define i(t) by The idea here is to approximate the
(10),and (6) vill hold. infinite dimensional control system in (1) and

(2) by a sequence of control systems, each of
With (10), the control law in (4) becomes finite dimension N. Thus we will have se-

u(t)= -t au(t-3) -t 8 y(t-j), t 0,1,2,..., (11) quences of approximating operators TN, BN, CN,

J-1 j J1 a and DR. For each N, an I-dimensional compen-

sator of the form (3) - (i) is designed with
vhore each 05 is an mxm matrix and each B is estimator and control gains G and K., re-

and mxp matrix. The control law in (11) Jis t N
the ARMA representation of the ideal compensator spectively. This 

h 
compensator is then

In (3) -(4). The matrices aj and tS are given

by a K S B and B . K S 3 1 G, (12) iN(t+l) - TN ;(t) NW B Nu(t) + GM(y(t) - CN;N(t) -Du(t)).

j a j (19)
and in view of (5) and (7), we have

• 1(t) -* t . (20)
a II Kll NII1 r and II -I'1" It Gil . -

(13) If the approximation is done correctly
(see [1.2] for related continuous-time problems



and (31 for the discrete-time case), then the (s(tl), U(t+l), Y(t+l))
compensator in (19) - (20) will approximate 2

the ideal compensator in (3) - (k) as 5 becomes (2T)
large. Although stronger convergence often can T

be obtained, here we viii need only 1 2 'E1

Hypothesis 2. Let Novlet us write (11) and (26) as

S- T*- CN and N - - GaD (21) u(t~l) a K U(t) + K21(t) (28)
iUN

and

As 'N 

and

u(t+l) - K IN (t) + K2 1 Y(t). (29)
SN  S strongly. (22) 1 22

BN B strongly, (23) respectively, where K K c L(L (Rm).RM) and

ON G stron2ly, (24) KI. K2N2c (2P 'Ra). From (13), it

and follows that

KN * K strongly. 0 (25) 1I K1 - K11 II * 0 as N, - (30)

The statement that the finite dimensional
compensator in (19) - (20) converges to the and
infinite dimensional compensator in (3) - (()
means that S;. 0n Gn. and Kn converge in some 1 K2 - K2 12* 0 as 2 .(31)

sense to S, , 0 and K, respectivily. Also, 2
under additional but often realistic hypotheses,
it can be shown that the closed-loop system Finally, it is straightforward to show

consisting of (1), (2), (19), and (20) converges
to the ideal closed-loop system consisting of II r- T'IN 11 ,ijj Kl-K , 1l II K2-K 2N (32)
(1), (2), (3), and (4) in such a way as to l'2 1 2
preserve stability and near-optimality for E
sufficiently large. However, in this paper so that
we will pursue such convergence only for the
subsequent direct compensator approximation. T - T i 2 0 as 512(3

Direct Approximation of the Ideal Compensator From (33), we see that the response of

Truncation. The idea now Is to compute, as the closed-loop system obtained by using the

discussed later, the matrices * and 0 for finite dimensional compensator in (26) can be
.1 J made arbitrarily close to the response of the

the ARMA compensator in (11), and then to ap- ideal closed-loop system obtained by using
proximate this compensator directly. The the ideal compensator in (11). If the ideal
obvious way to approximate (11) is simply to closed-loop system is uniformly exponentially
truncate all but a finite number of terms in stable, then so is the closed-loop system with
each of the series in (11). That is, replace the finite dimensional ARMA compensator for
(11) by the control law N1 and N2 sufficiently large. Also, if the

1 2N1 N2 ideal closed-loop system is optimal in some
u(t) -a u(t-J) - 1 B y(t-J), t 0,1,2... (26) sense, then the closed-loop system obtained

J3u 1 3 with (26) can be made arbitrarily closed to
optimal. Of course, we hope that in applica-

For any positive integers N and N (26) is tions, stability and near optimality can be
obtained with reasonably small N and N2.

the finite dimensional ARA approximation of
the ideal compensator. Computation of a and B

Convergence and Performance of the Closed-loop

System. For the finite dimensional state estimator

and control law in (19) and (20), we can
When the ARMA compensator in (26) is used retrace the development in (7) - (11) to

to control the system in (1), we again will obtain an approximation of (11) with * and
call the triple (s(t), U(t), Y(t)1 N the

192 replaced respectively by
closed-loop system at time t. Note that U(t)
and Y(t) are still the infinite histories in J-1 J'1
(14) and (15). so that (z(t). U(t). Y(t)) is a and B d (34)
vector in Z whether (11) or .26) is used.

where S and B are given by (21). In otherAlso, ve can define a bounded linear N

operator T I,1 2 on Z such that the closed-loop words, after computing the gains G and Kn
system reultg from (26) can be written for (19) and 20), we replace the operators

.resultin 0, 8, and in (12) by Nth order approxima-

tions. Hypothesis 2 then guarantees

- .. * -. . . .



of the beam. Hence -he boundary condition

aim Qj and BiN * 0 as N * . (35)

2
2v~t I -(46)

An Infinite Dimensional MA Compensator Untn.(

In general, stability of both T-GC and This control is a piecewise constant function
T-BK does not guarantee stability of the of time t, and the length of the time step isoperator .03.

' §=T - GC - BK - GDK (36)

To put the system In first order form,
we write t(t) - (wf') and take the space E

However, S often is uniformly exponentially t e 2 ( it) x ( ,) whee e2 s0 a e)
stable. When this is the case, it is conven- to be no(0,l) x L2 (0, where H(0,1) =
ient to write (3) and (4) as [4 E R : 4(0) - 4(l) - 0). Then (43) becomes

;(t~l) = i (t) + Gy(t), (37) z - Az (47)

u(t) - -K i(t) . (38) where A (see [I]) generates a C -semigroup
T(*) on E. The operator T in 0(l) is T(.03),

Then, retracing the steps to (11) leads to and the operator B can be obtained from the
solution to (43) for constant u(t) in (46).
Note that B is bounded for the discrete-time

u(t) = Iy y(t-S), t = 0,1,..., (39) problem, although the input operator is un-
whee ebounded for the continuous-time problem.

wher eac yjis an m~p matrix given by

Our measurement is the slope at the left
y = K S-IG . (40) end of the beam:

The control law in (39) is the MA representa-
tion of the ideal compensator. .v(tn)m

y(t) .C z(t). (18)
O course, ye approximate (39) byn 0

N3 This operator C is a bounded linear functional
u(t) = l Y y(t-j) (41) on H = H

2
XL

The analysis of the convergence and performance For the estimator gain G we solved for
of the closed-loop system produced by (26) is the optimal filter for (1) and (2) when the
easily modified to obtain the same results process noise for (1) has covariance operator
when the finite dimensional MA compensator in I and the measurement noise for (2) has
(41) is used. Also, the matrices y are covariance 1. Because the resulting estimator
computed as the limits of had unsatisfactory eigenvalues (the eigenvalues

of S in (7)), we added an 0-shift to obtain a
G which made the eigenvalues of S all have

YJN K N j-l G N (42) magnitude less than .9.

For the control gain K, we solved the
Example optimal regulator problem for (1) and the

performance index

We will control the transverse vibrations 11 . 2
of a simply supported Euler-Bernoulli beam J " 1 0 (.03k)I u (.03k)] (49
represented by the partial differential equa- JOE E
tion To compute G and K we approximated the
PFt,*) + 2tA 1 1 2 *(tn) . A V(tr) - 0 (43) solutions to infinite dimensional discrete-

So time Riccati equations, as discussed in (3).
Basically, we projected the infinite dimen-

where n c(0,1) is measured along the beam. sional LQG problem on subspaces spanned by N
The basic space for w(t,.) is L2 (0,1), and natural modes of the beam, N - 1,2..... The
the operator A0 is defined by AR14A gains a, Oi, and y were computed as the

14 limits of (34) and (42) for increasing N.
D(Ao ) = 4C H (0,1): *(0) *41) a V"(0) - #(I) - 0), We found that 9 (see (36)) is exponentially

0 stable for this example.

The following tables give the values of
An* = 0 "". (45) the ARMA and MA compensator gains.

We take the damping ratio 4 a .01.

Our control is a moment on the left end



4 aN YJ 3

J1l0  aJ1 2  GJ14 j YJlO YJ12 Yj14

1 -.019 -.020 -.020 1 -1.387 -1.384 -1.383
2 .114 .117 .119 2 - .643 - .638 - .638
3 .o45 .o49 .051 3 l.444 1.k2 1.444
4 .027 .022 .021 4 .615 .620 .623
5 .198 .193 .191 5 -2.147 -2.151 -2.154

15 .029 .028 .028 15 .080 - .082 - .079
16 .034 .034 .034 16 - .214 - .221 - .223
17 -.024 -.023 -.023 17 .050 .0o49 .048

35 -.001 -. 001 -. 001 35 .007 .008 .008
36 .003 .003 .003 36 - .010 - .008 - .008
37 .001 .001 .001 37 .001 .0031 - .0001

References

JN 1. Gibson, J. S., "An Analysis of Optimal

1 8 BRegulation: Convergence and Stability,"
1 O J12 j14 SIAM J. Contr. Opt., 19 (5), pp. 686-

707, September 1981.
1 -1.387 -1.384 -1.383
2 - .616 - .611 - .611
3 1.298 1.292 1.291 2. Gibson, J.S., and lavid, M., "Approximation
4 .450 .448 .49 Theory for Linear-quadratic Optimal
5 -2.O61 -2.056 -2.055 Control of Hyperbolic Systems," to ap-

pear.

15 - .0,7 - .0;47 - .047 3. Rosen, I. G., and Gibson, J. S., "Approxima-
16 - .148 - .148 - .148 tion Theory for the Discrete-time
17 - .039 - .039 - .038 Infinite Dimensional Regulator Problem,"

to appear.

35 .009 .009 .009
36 .002 .002 .002
37 - .006 - .006 - .006
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AN ANNA MODEL FOR A CLASS OF DISTRIBUTED SYSTEMS

J. S. Gibson and F. Jobbari

Mechanical. Aerospace and Nuclear Engineering
University of California, Los Angeles 90024

Abstract

This paper presents an infinite dimen- of limited space, we will not prove all of the
sional ANRA model for infinite dimensional results stated here, but we will indicate the
time-invariant linear systems in which the main ideas of the missing proofs. In Section
state transition operator Is trace class. S, we apply the results to obtain the ARNA
The ANNA model appears to be the natural model of a flexible structure and the ARMA
extension of the finite dimensional ARNA representation of an optimal (infinite dimen-
model, and it is computed as the limit of a sienal) LOG compensator for the structure.
sequence of finite dimensional ARMA models.
In a flexible structure example, numerical As the example Illustrates, we are Inter-
results are given for the ARNA models of both ested in both the ARNA model for the open-loop
the open-loop plant and an optimal compensator. version of a distributed parameter control

system and the ANNA model for an Infinite
1. Introduction dimensional compensator for such a system.

The ANNA model of the open-loop system should
In [4], we introduced an infinite dimen- be useful for infinite dimensional adaptive

sional ANNA model for a class of Infinite control and parameter Identification theory.
dimensional discrete-time control systems, and as a limit that reveals the limiting
The method there, based on an Infinite dimen- properties of the ANNA representations of
sional observer for the state space representa- finite dimensional approximations to the dis-
tion of the system, can produce an Infinite tributed system. The ANNA representation of
number of different ANNA models of the same an infinite dimensional compensator for a dis-
system, but none of those ANNA models is a tributed system gives a concrete representa-
natural extension of the minimal order ANNA tion of an otherwise abstract entity, and can
model for a finite dimensional system repre- serve as a basis for deriving Implementable
sented in state space form. For a large class (finite dimensional) approximations to such a
of infinite dimensional systems, we present compensator.
In this paper the natural extension of the
minimal order finite dimensional ANNA model. We consider control systems whose state
This paper deals exclusively with single- space representations have the form
input/single-output systems, but the main
ideas and results can be extended to the X(t+l) - TZ(t) + I u(t), t - 0.1,2... (1.1)
multi-input/multi-output case.

That the infinite dimensional ANNA model yt) C 2(t). (1.2)
of this paper Is the natural extension of the where the state vector i(t) is In ai klbert
finite dimensional case should be clear from space E, T is a bounded linear operator on t,
the way the present ANNA model Is defined in is a linear operator from the real line intoSecion 2 and from certain of Its prop rtes. I (i.e.. |•[ and C Is a bounded linear
One of the most Important properties Is that functional on E. The $calar u(t) Is the
the ANNA coefficients corresponding to the control, and the scalar y(t) is the measurement.
infinite dimensional state space represents- To define the ANNA model of this paper, we
tion of the system are, under appropriate must assume that the operator T Is trace class
convergence criteria, the limits of the ANNA (see [2,5] and Section 2. Also, we assume that
coefficients corresponding to Increasingly the system (1.1)-(l.!) is observable in thelarge finite dimensional approximation of the sense that there Is no nonzero z(O) such that
infinite dimensional system. See Section 4. y(t) a 0 for each t a 0.

After defining the ANNA model and giving The condition that T be trace class holds
some of its important characteristics In for the discrete-time state space representa-
Sections 2 and 3, we sketch the relevant tion of the solutions to many generalized wave
approximation theory in Section 4. Because of equations, heat equations and time-delay

equations. As discussed in Section S. a common
This research was supported by AFOSR Grant modal damping model ensures that T Is trace
83-0317 and N R Textron Grant 6494S. class for the linear distributed model of a

flexible structure.

. o o. . • °. . .



76. - KT7-

Under the above hpteethe ANNA model y(t) In (1.2) Indeed satisfies (1.3) requires
ofth yse (.).l-)ha hefrmanontrivial proof along with precise defini.

- tions of the Infinite out put and input
y(t) *[(aiy(t-1) *blu(t-i)]. (1.3) histories assumed In (1.3). lecause of limited

1'1 space. we only will outline this proof In
Section 4.

where the ANNA coefficients a, and b, are 11 ~e ae o h RACefcet
scalars. The purpose of this paper is toI. caRte frthANACfiint
deine these coeficionts so that the measure- 1hoe . Frec .lmr 0.

*ent in (0.2) does satisfy (1.3). to esta i- Iaihoe 1 o ahr -0 '
the decay rate for &I and bi with increasing 1. In other words. the a 's decay faster than any
to Indicate how the coefficients can be com- epnnil
puted, end to illustrate the results with a epnnil
numerical example. -

The proof of Theorem 1 requires the
11. Definitions of the ANNA Coefficients followin lemma, which Is the generalization

o f the finite dimensional situation and can
2.1. Trace Class Operators be proved using (2.2).

W e will need some standard results on Lemma I. For I o 1.2.-.., the coefficient
trace class operators on Wilbert spaces. -
(See (2. p.1088-11051 and (5. p.521.524].) a1 Is (-I)i times the absolutely convergent
first, a linear operator is trace class If it countable sum of all products of I distinct
is compact and its singular values are summable. iegusofT
In this case, the trace norm of T. denote0d by gevle ofT
I11T111. is equal to the sum of the singular

T vausrpae :ccording to multiplicity. Trofj heorem 1. For I - 1.2.---. let the
From here on. T ill be trace class, proa uc T o istinct eigenvalues of T be

Let A1.12 ---- be the nonzero aigenvalues ordered and denoted by sk", k - 1,2.---, so

of T. Then that

tr T Ai (2.1) 1.2.--.. 31

1.1 Next. define

and - i*It~, .I*1.2..... (3.2)

il that each &I Is finite can be zeen by' def ining

The set of trace class operators on a Hilbert the infinite dimensional diagonal matrix whose
space E Is a linear space, and the composition elganvalues are the magnitudes of the eigen-

*of a trace class operator with a bounded linea vaues of T. this matrix represents a trace
operator Is trace class. deas operator T on 92. and the 11's In (3.2)

2.2. Recursive Definition of the ANNA are the cog fficients generated by (2.3) and
Coefficients (2.4) for T. Of course,

* For I - 1.2.3..-.. we define jails a,. 1.2.. (3.3)

Ci tr Si/i (2.3) For each 1") let 4 e hesu)o

the absolute values of all eigenvaluts of T
where except those In NPi) . Nence

*l T and S141 T(Si 1 ). (2.4) (1) s A1 I k a .... (3.4)
Al so. b 1adb CS IB . (.) The lay Identity here Is

1.2-- (33)
These @its and bis art the coefficients

that we use in (1.3). If the state space E From (3.2). (3.4) and (3.5). we have
has finite dimension s. then a, * bi a 0 fora

a . tn this case, the &,is are the 1 i#1 n+ a. ..*- (3.6)

negatives of the coefficients In the charac- which yields
teristic polynomial of T. and (2.3)-(2.6)li & a* constitute a well known algorithm for computing li 1 *a(3.7)
the ANNA coefficients. The algorithm here
then would appear to be the ntural way to for any r 0. Then the theorem follows
define the ANNA coefficients for the Infinlite from (3.3) end (3.7).
dimensional case. However, that the output

. .. . . . . .. . ._ A



Our numerical experience with examples sa bin- 0. 1 -sol, n..... (4.9)
suggests that the coefficients b, also decay Recall that. before now. It has not been
faster that any exponential, under our shown that the y(t) of (1.2) Satisfies (1.3).
hypotheses en T, I and C. So far, however, we If, for some to. we choose zG(t 0 ) such that
can prove this only when the eigenvectors of T
for an orthonormel basis for E. In this cast. lie I (t "(to). (4.10)
an argument similar to the proof of Theorem I n at
shows that II SI decays faster then any

exponential. We hope to extend this result then (4.1)-(4.3) along with (4.6)-(4.7) ensure
for any T of trace class, that

When the spectral radius of T is less than lie ya(t) a y(t), t a to . (4.11)
1, we can show at least that bi approaches zero.
This applies to the compensator of the example if
In Section S.

IV. Aoroximation y(t) - y(t) - w(t) - 0. t I to . (4.12)

then (4.1). (4.2) and (4.11) Imply that each
We assume that we have sequences of finite term in (4.I) converges to each term in (1.3).

rank operators To $n , C such that Without (4.10) and (4.12). we justify (1.3)S n iIn a similar way, but only as t * -. The
IITn' 1  0, (4.1) decay rates for aI and bi are then useful.

UI Sn'3l * 0, (4.2) V. Application to Flexible Structures

I CnCIj * 0, (4.3) 5.1. Abstract Structure Nodel

as n * s. For each n. we compute ANNA
coefficients 5in and bin according to (2.3)-(2.5). An Important class of applications forinfinite dimensional ANNA models is tte control of
Then (4.1)-(4-3) guarantee that, for each 1. flexible structures whose linter distributed

model has the form of the differential equa-
lii sin a ai (4.4) tion

and * * *4 A - *u. (1.)

ai. bin " bi. where the stiffness operator o usually
iN applications. (4.2) and (4.3) almost contains partial differential operators for

always hold because I and C have finite rank. the elastic components of the structure. In
However, (4.1) is stronger than the cenversoact applications Ao Is selfadlont with compact
obtained with many approximation schemes, and resolvent and No selfadjoint and coercive.
we hope to be able to weaken this condition. For details of the first order form of the
Our approximation of the open-loop system in
the example of the Next section Illustrates equation, see (3]. We only note that, with
the Important class of applications where (4. reasonable conditions on the damping Operator
holds because the eigenvectors of T form an Do. we can take the state vector
orthonormal basis for 9 and the approximation sit) 0 MO. ;it))
consists of projecting onto the elgenspaces of
T (modal approximation), and write the solution to (5.1) as (1.1) for

piecewise constant control u(t). Of course.As fwher the ienvpeator ofITsfm we scale the time variable so that the Input/TaTo + F, where the elenvectors of TO0 form samp11n9 Interval Is 1. For the observbiity

en orthonormal basis and F has finite rank, condition that we assumed In Section 1, It is
then approximation by projecting onto the eIen- sufficient that no natural frequency of the
spaces of To will yield (4.1). This is the undamped structure be a multiple of the sampling
case in our approximation of the compensator frequency.
In the example. A comon damping model for flexible

For each n, we have the finite dimensional structures is modal damping that provides the
same d mping ratio for each mode. This means
(see [1 that

an(t~l) a TnZn(t) *nu(t). (4.6) 0o a A.' (S.2)

TheNNA e fr ths s sin (5.1), with c* a positive real number. It
The ANeA model for this system is can be shown that - at lease for structures

ynlt) a t Cai,,lt'i) * binUltit)]" (4.4) whose flexible components are beams, plates,
strings or membranes - the damping operator in
(5.2) causes the operator T In (1.1) to be

where trace class.

We should note. however, that linear

• . - , " -• . " .
• I

I .- "



viscoelastic damping represented by (see (3]) * .02
0o  a c€oAo0 ( .3 ) e6 b

produces a non-trace class 7 because a subse- 1 .43 1.1 .23 [-2
quence of the eigenvalues of T converges to 2 .3 E.1 .11 1-2i€ -.87 [+1 -.!1 [-1
-1/c0  3 .11 .1 .21 [-1

C 4 -.82 E.1 .25 [-1

For (S.1) with either (5.2) or (5.3),
the oigenvectors. or modes. of the open-loop 10 .30 1.1 -.15 c-I
system form an orthonormal basis for the state 1 .39 1.1 .17 [-1
spaCe. so that modal approximation yields (4.1)-
(4.3). We used modal approximation In the
following example, but we are particularly 20 .32 1.0 .19 E-2
interested In being able to weaken (4.1) to 21 .64 140 -.35 1-2
Justify more general finite element approxime- 2-
tions for approximating ARNA models of flexible
Structures. 30 -.48 E-1 .14 1-3

5.2. Example 31 .32 E-1 -.90 1-4

The structure in this example consists of
an uler-Sernoulli beam cantilivered to rigid4.39 6 -.11 -7
disc which is free to rotate about its fixed 41 .78 1-6 -.22 E-8
center. In-plane motion is modeled, including
linear transverse vibratipns of the beam. The 50 -.11 1-12 .35 1-15
rotation of the disc gives a rigid-body mode. 51 .14 1-13 -.36 E-16
An actuator applies a control torque to the
disc, and a sensor measures the rotation of
the disc. Table I

For this problem, we used two levels of I
approximation. First, we used a finite element C .
approximation to compute the natural mode
shapes and frequencies of the composite system. i i bi
Then we used the system modes as the basis
vectors in the approximations of the ARNA 1 .26 1*1 .23 E-2
model and the optimal control problem. For 2 -.22 E1l -.62 E-2
computing both ARA coefficients and control 3 -.51 El .38 E-2
and estimator gains. we found that the first 4 .16 E1l .34 E-3
25 system modes were easily sufficient for
convergence. We made sure that our original
finite element approximation had converged for 10 -.88 1-1 -.21 E-2
the first 25 modes. 11 .24 EO -.37 E-3

The lowest natural frequency of the
structure was 4.9 red/sec. We used the modal 20 -.15 1-3 .44 E-6
damping model in (S.2) with both c. .02 21 .21 1-4 -.68 E-1
S(1 crtical damping) and c0 a .1 (55 critical
camping). 30 -.61 1-14 .16 1-11

We computed the open-loop ARNA coefficients 31 .47 1-16 -.87 1-18
as discussed in Section 4, with n being the
number of system modes Included In the approxi- Table 2
mation. Table 1 shows the converged (recall
(4.4) and (4.5)) values of the ANNA coeff- .3. Optimal LO Cntrol
cients, rounded to two significant digits. For (1.1). we use the performance index

J0t111 (t)112 * u2(tl03t. (S.4)

where a • 0. The optimal control low then is

u(t) -- 1(t), (S.S)

where

I - [Iu*|:PSB 1  PTm (5.6)

end the mnonegative selfadjoint operator P
satisfies the infinite dimensional iccati
equation

P • I. T (P-P3(|CIS ' Js) T ' (57

* o..(s..)
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where T eT/ and So $/s. As usual, the

s-shift in this problem ensures that the c-
spectral radius of the closed-loop operator ab
T-1K will be no greater than a. In this I

* . example, we used * a .9. -
I -. 4 E .31 E+3

The state estimator for (1.1) has the 2 -.44 10 -.52 143
form 3 .17 E41 .17 143

4 -.96 940 .13 143
i(t~l) - T i(t) * u(t) * 6(y(t)-C i(t)). (5.8)

To get the gain G, we solve the optimal 10 .78 1-1 -.17 W.1
estimator problem which Is the dual of the 11 -.81 [-1 .24 E42
preceding optimal control problem. This
yields

20 .15 1-3 -.41 1.1
T0P C. l.)C.P: "  (s.9) 21 -.19 E-4 .64 1-2

where satisfies
I* F0, 30 .55 1-14 -.16 E-11

a * [I (P- +C' [la. 1 ca )T (s.10) 31 -. 22 1-16 -. 20 1-14

and C - C/Q. Tbe

In state space form. the compensator .

i(t~l) - (T-GC) (t) * U(t) + S y(t) (5.11)
References

and
-d 1 a(t). (N.) 1Feedback Control of Flexibleu~t)- -Ki~t. (S12)Sustmsm, IEEE Trans,.AC. AC-23 (1978).

M67 .
Here, the aoshift eosures that the spectral
radius of closed-loop estimator operator 2. Dunford. M., and Schwartz, J.T.. Linear
T-GC is no greater than a. Again, we used Operators, Part I. Interscience e

9. Tor * 3.

Now, for (S.1l)-(S-12), We think of 1(t) 3. Gibson. J.S.. An Analysis of Optimal
as the input to the compensator and u(t) as Cn' Regulation: Conveorgencea and Stability'.
the output. Applying the method of Section 2. S AN J. Contr 13 (5). pp. 686-
we obtain the ANA repreasntatfon fur, sepcoser t.

Vt) * aCu(t-i) * b1 y(t-i)). (5.13) 4. Sibson J.S., and Jobbrl, F.. Di1screte-4_ (t+me 
Optimal Control of Flexible

To compute the less and 66's for the Strwctwres., Hnd COC, Son Antonio, TX.
example, we solved a lequence of finite December 1383.
dimensional LQS problems corresponding to the
sequence of modal approximations to our S. Kate, T.. Perturbation Thqory for Lnear
flexible structure. (See [6j for details.) lOorteors, springer-rle , ag. Nort,
This yields a sequence of finite dimensional

" . compensators of the form (5.il)-(5-12). For
each such compensator, we computed the 6. Rosen, 1.4.. and Gibson, J.S., gApproxime-
corresponding ANNA model of the form (5.13) tion Theory for the Discrete-time
with coefficients and whore n is the InfinIte Dimensional Regulator Problem,

w n adbi wto appear.
number of modes In the system approximation.
As in the open-loop case.

li a a 1..... (5.14)from I n

and

1 1 , b a b e 1 . • .. ( 5 .1 6 )

For the case where the open-loop dampingcoefficient is c. a I1 Table 3 gives the
ANNA coofficleatt to; (S.13).
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