D-R150 M4 PRESENTRTION BASED USER INTERFACES(U) MASSACHUSETTS 173
NST OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB
E C CICARELLI RUG 84 AI-TR-794 NOO@14-75-C-65
UNCLASSIFIED F/G 972

T, o
P C R T IC PP
' e L e e o
RN M A e - e aam 4
RN G SIS A St ——"
A Pl —— .
T T T Ty —r

T

o
o

I

I
I

S
MN
N

I

FFTEEEE

EEEE

i

rer

€
Fe

=

N
O
B

[

llis

l

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

v w s

& -
‘e
_Technical Report 794

Presentation

= Based User

< Interfaces

<O: e o
Eugene C. Ciccarelli IV

® o
MIT Artificial Intelligence Laboratory -

B ‘
R faw?®
LECTE B
e i R X
I od \ w0
S e . ; been approv roe “: B
JgruaLent bhas " - 78141085 & BX
:.\v ‘xuhlw 1819059,nnd sale: 118 A it B2
T -’;'k:mon g unlimuted i% 18t Ml
e .

o bl

€0 w1 4,

T FILE COPY

.......

UNCLASS IFIED col

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) . .)
TONS IR .-
REPORT DOCUMENTATION PAGE BEF G O R L
t. REPOCRT NUMBER 2. GOVY ACCESSION NO, 3. RECIPIENT'S CATALOG NUMBER RN
AI-TR-794 D A/50 Y .

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED - ___‘

Presentation Based User Interfaces technical report

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(e)
Cy, . '
Eugene C1care111/ . NO0014-75-C-0522
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

3 . - - E
Artificial Intelligence Laboratory AREA & WORKUNIT NumMBERS

545 Technology Square
Cambridge, Massachusetts 02139

1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE ® °
Advanced Research Projects Agency August 1984
1400 Wilson Blvd 5. NUMBER OF PAGES

Arlington, Virginia 22209

4 MONITORING AGENCY NAME & ADDRESS(!! diiferent from Controlling Otlice) 18. SECURITY CLASS. (of thte report,

Office of Naval Research UNCLASSIFIED
Information Systems .
Arlington, Virginia 22217 1854, DECEASSIFICATION, DOWNGRADING » ®

16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered In Block 20, I different from Report)

LTS R 2

Distribution is unlimited)

10. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on reverse side if necessary and identily by block number) . ®

user interfaces editor

presentation systems

programming tools .
display

20 ABSTRACT (Continue on reverse eide |{ neceasary and Identify by dlock number) . ®

- A prototype "presentation system base" is described. It offers mechanisms,
tools, and ready-made parts for building user interfaces. A general user inter-
face model underlies the base, organized around the concept of a "presentation"
a visible text or graphic form conveying information. The base and model em-
phasize domain independence and style independence, to apply to the widest
possible range of interfaces. ™e “primitive presentation system model" ;
treats the interface as a system of processes maintaining a semantic relation

e

DD , 5", 1473 eoition oF i nov 6815 omsoLETE UNCLASSIFIED (OVER) S

S/N 002014+ AR01 —gt—r
SECURITY CLASSIFICATION OF Tii$S PAGE ("hen Dara Bntered)

Ty
.

7

i 3

Y v T —— i PR AL L o T MOl e R i Sk i i U i AU A P I S s Bl R S Bl R

Block 20 cont.

. between an’"abplication data base™ and a "éresen;ation data base", the symbolic

screen description containing presentations. A *presenter" continually updates

the the presentation data base from the application data base. The user manipulates

presentations with a presentation editor™. A recognlzé?" translates the user's
presentation manipulation into application data base commands. The primitive
presentation system can be extended to model more complex systems by attaching
additional presentation systems. In order to illustrate the model's generality
and descriptive capabilities, extended model structures for several existing
user interfaces are discussed.

The base provides support for building the application and presentation data
bases, linked together into a single, uniform network, graphics to continuously
display it, and editing functions. A variety of tools and mechanisms help

create and control presenters and recognizers. To demonstrate the base's utility,
three interfaces to an operating system were constructed, embodying different
styles: icon, menu, and graphical annotation.,

ot '-'-' "' "&".‘.\1.1. a_‘.' A R A S S T U WP

PRESENTATION BASED USER INTERFACES I
" e
Eugene Charles Cicearelli 1V
B.S., Massachusetts Institute of Technology
(1975)

M.S.. Massachusctts Institute of Technology
E (1978)

Artificial Intclligence Laboratory

| Muassachusetts Institute of Technology
? ‘ August 1984

(C) Massachusctts Institute of Technology 1984

This is a revised version of a thesis submitted to the Department of Flectrical Engincering
and Computer Science on August 27, 1984, in partial fulfillment of the requirements for the
degree of Doctor of Philosophy.

This report describes research done at the Artificial Intelligence Laboratory of the
Massachusctts Institute of Technology. Support for the laboratory's artificial intelligence
rescarch is provided in part by the Office of Naval Rescarch under Office of Naval
Rescarch contract N00014-75-C-0522, in part by the System Development Foundation, and
in part by Wang Laboratorics.

j Accession For

"NTIS GRA«I
{170 TAB 0
" U+ rwcunced 3

S J.stification

D - \ ";_VDtstlrib'-t‘ion/_._’

.~s.‘,':","° i 1 Availadbility Codes

N L | ‘Avail and/or
1 ‘Dist Sp--ial

-

i

L .. Vo e ST e e T R A
A A I P e JL PR LR IR IR PN T e .
A .-. -l ey .’ 2 a e '. ‘e \ .l' .‘. o .l' .V -l:..‘ 'j. o8 ... -t.‘A. ‘l' ‘I'b._‘.: .")' l' hd -AL‘A :-_"-»‘l':.~'.-‘i' .J

- P~

PRESENTATION BASED USER INTERFACES
by

Eugene Charles Cicearclli 1V

Abstract

A prototype presentation system base is described. It offers mechanisms, tools, and ready-
made parts for building user interfaces. A gencral user interface model underlics the base,
organized around the concept of a presentation: a visible text or graphic form conveying
information. The base and model cmphasize domain independence and style
independence, to apply to the widest possible range of interfaccs.

The primitive presentation system model treats the interface as a system of processes
maintaining a semantic relation between an application data base and a presentation data
base, the symbolic screen description containing presentations. A presenter continually
updates the presentation data base from the application data base. The user manipulates
presentations with a presentation editor. A recognizer translates the user's presentation
manipufation into application data basc commands. ‘The primitive presentation system can
be extended to model more complex systems by attaching additional presentation systems.
In order to illustrate the model's generality and descriptive capabilities, extended model
structures for several existing user intcrfaces are discussed.

The basc provides support for building the application and presentation data bases,
linked togcther into a single. uniform network, including descriptions of classes of objects as
wcll as the objects themselves. The base provides an initial presentation data base network,
graphics 10 continuously disptay it, and cditing functions. A varicty of tools and
mechanisms help create and control presenters and recognizers. To demonstrate the base’s
utility, three interfaces to an operating system were constructed, embodying diflerent styles:
icon, menu, and graphical annotation.

Thesis Supervisor: Professor Carl Hewitt
Title: Associate Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Dr. Richard Waters
Title: Principal Rescarch Scientist, Artificial Intelligence Laboratory

-—

Acknowledgments

My thesis committee, Cart Hewitt, Dick Waters, and Hal Abcelson. have been helpful and

cncouraging. ‘They have all aided signiticantly in shaping this thesis and improving its

quality.

Norton Greenfeld and Martin Yonke introduced me to the world of the presentation
concept. It was while working in their group at BBN that I began to think that the concept .

could serve to explain what was going on in various user interfaces.

Several people have helped with discussions and suggestions at various stages in the

development of the ide;\s, including Lece Blaine, Ron Brachman, Charles Davis, Jeff ;.’7 .-
Gibbons, Earl Killian, Henry Lieberman, Fanya Montalvo, Chuck Rich, Jan Walker, Bill R ’_Li{
Woods, and Frank Zdybel.

Dan Halbert and Bruce Roberts provided information and the sample scrcen images for —.~—-4

the Xcrox Star and Stcamer systems, respectively.

.’n_-""..-‘ . o Tt MY Toet I I R L A T A T e L A e
- .'. :- . - . - . - - 'u \-‘ . .
RN ot S e ., e . RN . . P - . . N RN AR P LA
'l' 2, S‘ -2 ~I'P. .n. s - P A;!.‘ "‘ ‘I. "’.' * .‘ -l. .l' e .l. ‘A. '!..:: .J. .1.4.!‘ .'-.1-..'.:i..". .‘.:“i. * “.:..:A‘ ‘. .‘.‘..\:\. “.‘.‘. Y

A USRI SRR T A AT O A O A T et g0 LA aten sren o D SENA areat Sl aSei amests mpdirabey et e
O T N I R R T T ot

)
: ‘Table of Contents SR
i ._‘ ‘,' v-‘-
{ Chapter One: Introduction and Overview 8 :
i 1.1 The Primitive Presentation System Model 9
i 1.2 Constructing Larger Presentation System Modcls 16
::: 1.3 Describing Presentation Systems 17
L 1.4 PSBase: A Presentation System Base 18
v 1.5 Constructing User Interfaces ' 20
1.6 Related Work 21
Chapter Two: The Primitive Presentation System (PPS) Model 28
2.1 PPSCalc 28
2.2 The Application Data Base 32
2.3 The Presentation Data Base 35
2.4 The Presentation Editor 39
2.5 The Prescnter 39
2.6 The Recognizer 43
2.7 The Representation Shift Model and Direct Manipulation 48
Chapter Three: Constructing Larger Presentation System Models 54
3.1 Adding a Planned Data Base 54
3.2 Adding a Data Basc of Commands 53
3.3 Adding laterfucces to PPS Components 60
3.4 Shared Screcn Space and Presentation Structure 62
3.5 Concluding Remarks 66
Chapter Four: Describing Prescentation Systems 67
4.1 Emacs Dired 68
4.2 Zmacs 74
4.3 Xerox Star 80
o8 4.4 Stcamer %9
b 4.5 Summary of Structural 'catures 97
:_ Chapter Five: PSBase: A Prescatation System Base 100
Lb 5.1 Data Base Mcchanisms 103
- 5.2 Graphics Redisplay 114
5.3 Presentation Editor Functions 115
5.4 Presenter Support 115
5.5 Recognizer Support 124
»
=
o0 4
o
i

5.6 Basic Stylc Packages
5.7 Summary

' Chapter Six: Constructing Presentation Systems
> 6.1 The User's Vicw of the Three Interfaces
- 6.2 Common Implementation Details

- 6.3 Icon-Style Interface Implementation

| 6.4 Mcnu-Style Interface Implementation
6.5 Annotation-Style Interface Implementation
6.6 Other Style Possibilities
6.7 Summary

Chapter Seven: Areas for Further Research

| 2|

7.1 PSBasc Limitations

)]

AT

|
[}
‘afe

NG (_BORSUAIAACAEN IRl

TN Y T T T T

127
141

142

142
167
173
178
181
183
184

187
187

P]

! e
Table of Figures R
l . e g
. . .
N Figure 1-1: A Rudimentary User Interface 11
" Figure 1-2: The Representation Shift Model 13
. Figure 1-3: The Primitive Presentation System (PPS) Model 1§
Figure 1-4: Structure of PSBase 19
Figure 2-1: The Primitive Presentation System (PPS) Model 29 R
. Figure 2-2: PPSCalc -- Formula Display 30]
- Figure 2-3: PPSCalc -- Value Display 30 Ll
h Figure 2-4: PPSCalc -- After Editing 31 o
g Figure 2-5: PPSCalc -- After Recalculation 31 e
L Figure 2-6: PPSCalc -- New Formulas 31 ’
’ Figure 2-7: PPSCalc -- Values of New Formulas 32
Figure 2-8: World Model 34
Figure 2-9: Presenter Parts 40
Figure 2-10: Recognizer Parts 44 "o 1
Figure 2-11: PPSCalc -- Value Moved 45 A
Figure 2-12: PPSCalc -- Formula Moved 46 R
Fignre 2-13: PPSCalc -- Preparing to Copy Formula 46 x;'..f'-fjﬁf::
Figure 2-14: Representation Shift Model 49 R
Figure 2-15: Functional Mapping in the PPS Model 52
Figure 3-1: Planned Data Base Extension 56
Figure 3-2: Extension with Both Planning and Immediate Changes 57
Figure 3-3: Command Data Base Extension 59
Figure 3-4: Presenter Interface Extension 61
Figure 3-5: Prescnter Commands Extension 63
Figure 4-1: Dircd Model 72
Figure 4-2: Zmacs Model 75
Figure 4-3: Zmacs Scroll Bar 81
- Figure 4-4: Xcrox Star -- Desktop Display 83
> Figure 4-5: Xcrox Star -- Opencd Folder 84
- Figure 4-6: Xcrox Star -- Property Sheet 86
- Figure 4-7: Xerox Star -- Delete Confirmation 87
- Figure 4-8: Xerox Star Model 88
Figure 4-9: Sample Stcamer Schematic 91
N Figure 4-10: Stcamer Menu Console 93 T
L Figure 4-11: Steamer Model 9 . @
o Figure 4-12: Sample of Stcamer Icons 95 - . 1
:‘_.: Figure 5-1: PSBasc Support of PPS Components 101 T
< Figure 5-2: Structure of PSBase 102 ey
. Figure 5-3: A Class Description Network 105 Sy
D

Figure 5-4: Sample Presentation Data Base Structure 107

Figure 5-5: Inter-Presentation Relationships 108
m Figure 5-6: Commaund Description Support 110
" Figuie 5-7: Reference Resolution 113
: Figure 5-8: Result of a Presentation Style 122
- Figure 5-9: Result of Phrasal Presenter 131
o Figure 5-10: Before Curve Recognition 133
- Figure 5-11: Aficr Curve Recognition 134
' Figure 6-1: Icon-Style Interface 144
Figure 6-2: Icon-Style Intcrface 145

Figure 6-3: Icon-Style Interface : 147

- Figure 6-4: Icon-Style Interface 148
E Figure 6-5: Icon-Style Interface 149
! Figure 6-6: Icon-Style Interface 151
Figure 6+~ Icon-Style Interface 152

Figure 6-8: Icon-Stylec Interface 153

B Figure 6-9: Menu-Style Interface 155
- - Figure 6-10: Mcnu-Style Interface 156
4 Figure 6-11: Mcnu-Style Interface 158
Figure 6-12: Menu-Style Interface 159

Figure 6-13: Menu-Style Interface 160

Figuic 0-14: Menu-Style Interface 161

- Figure 6-15: Menu-Style Interface 163
E Figure 6-16: Annotation-Stylc Interface 165
- Figure 6-17: Annotation-Style Interface 166
Figure 6-18: Annotation-Style Intcrface 168

Figure 6-19: Application Data Basc Management 171

ST R e A S AW TS T T T . b Sian e e sn - e T ————

Chapter One

Introduction and Qverview

Building good user interfaces is a slow and difficult process. Good user interfaces are
generally large, complex, and hard to understand, and these characteristics tend to be
exacerbated when the interface is modified. All too often, interfaces arc built that lack
flexibility in their use, lack some functionality, or lack uniformity with interfaces to different ®

applications.

The primary result of this research is the development of a prototype presentation system
{‘ base, called PSBase. PSBase contains tools, mechanisms, and ready-madce parts for the °
construction of user interfaces. Independence of particular interface styles and application

domains is ecmphasized, in order to maximize the generality and utility of the base. PSBase

also provides a conceptual framework for user interfaces. Underlying the base is a general
modet of user interfaces, called the presentation system model. The report claims that, with a - "

presentation base, interface construction is easier and quicker, and the results are better.

To demonstrate the utility of PSBase, a uscr interface was constructed on top of it, and

three different styles were implemented for this interface. A presentation systecm base
should be independent of any particular application domain or any particular interface
style. It should support the construction of (and e¢xperimentation with) many different

kinds of applications and styles.

[
For cxample, consider the following spectrum of styles. At onc end is direct manipulation
[Shaciderman 83): the object of interest is continually displayed. and the user's actions
appear to be manipulating the object with no intervening command language. An °

alternative style is preparing a desired future version. (This style looks the same as direct

manipulation, but the object of interest is not continualiy changing -- the specification of the

future version is.). Another style is annotating the current view with commands for how to

e T T e A T e e T et a e et ara

. - c CTe e TLe e et

LI AV AL S I SRR A TR A L I Nl
. _‘-'.-'..‘.'.‘.'.'.'.'.'-'.‘.'-‘\“.'.‘.\-'- DO T
LR NP I WA S A AP S AP AP AP S AP A PP P . VR P P P)

DA R A A R P AP I - LAY

- —— — AV A o P A Jivan Juein, St Ja S e S SHIA AL 10N S e R A T

change the object. At the othier extreme from direct manipulation is a separate command
El language Tor describing the manipulation, Examples of these alternative styles can be seen o
when readers request changes in a draft paper: sometimes the original file is cdiicd,

sometimes a new file is created, sometimes the (paper) draft is annotated, and sometimes the

changes arc discussed separately.

Another result of this rescarch is the presentation system model itsclf. This is a general
model of user interfaces, and it is the foundation of PSBase. Even by itsclf, however, it has
benefits. Tt aids the understanding of user interfaces in general by providing a unifying sct
of concepts for thinking about user interfaces. There are two ways that it helps someone
building a uscr interface in the absence of a presentation system base. It serves as a checklist
of the possible kinds of functionality in a user interface. The structure of the modcl serves

as an architectural framework for the interface. e

The model may also be of aid to people studying interface styles in general. One problem
in such a study is the large number and diversity of possible styles. The model defines
various classes of general parameters for interfaces. One can define styles as patierns of °

these paramecter specifications.

The following five sections provide an overview of the five major chapters in this report.
These chapters divide into two groups. The first group. comprising chapters two, three, and N
four, discusscs the presentation system mode! that underlics the presentation system base. ST
The second group, comprising chapters five and six, discusses the presentation system base

and its application.

1.1 The Primitive Presentation System Model

This section introduces the primitive prescntation system (PPS) modcl of user interfaccs,
which is discussed further in chapter two. Two simple models of a data base interface will
first be introduced. They will be used to focus attention on certain aspects and to motivate
the development of the full PPS model. The first model focuses on the data base,

considering a rudimentary interfuce o it. The sccond modzl, the representation shift model, ®

< te
PR LI T ST UL U Tho WL W Yy

PR A AL R I TP L L SR I PR Wl S
el i tatat altata 8 al el el

focuses on the user's need for a more uscful and coherent representation of the data base
information and commands. ‘The representation shift model is also uscful in itsell. as it is a
special case of the full PPS model and applics to some common interface styles. The PPS
model ¢xtends the representation shift model to allow more flexibility in the relationship

between the screen and the data base.

A Rudimentary User Interface. Figure 1-1 shows the basic interface to an application data
base and a rudimentary user interface constructed from it. The data basc has three external
inputs and outputs. Commands change the state of the data base (adding, changing, or
delcting information). Queries allow the state of the data base to be cxamined, producing

the relevant information at the observubles output.

These inputs and outputs are not dircctly usable by a person -- they are in a format
designed for usc by programs. (The user is not the only one using data bases, after all) In
order to provide cven a rudimentary user interface, some simple kind of trunsducers must be

piaced on cach input and output line.

The transducer on the command input, for example, might convert a text version of a
command to the binary form rcquired by the data base. The transducers do not provide a
diffcrent overall model of data basc use -- the user still must use the commands and queries
provided by the data base. The language used to express them has been changed slighdly so
that it is printable and mnemonic, much the samc kind of translation that a simple

assembiler performs.

The rudimentary interface is usable, but suffers from two basic problems from the user’s
point of view. First. thc user must express the data base modification in terms of the data
base commands available. Second, the results of such modification, as well as any vicwing

desired. must be explicitly requested via queries.

Representation Shift. Figure 1-2 shows an expanded uscer interface. Here, two data bascs
arc involved, the application data base as before and a new onc, called a presentation of the

data base, introduced to allow the user morc dircct modification and viewing, The

10

P I LTIt

adaand o

Figure 1-1: A Rudimentary Uscr Interface

User

l«(m—

OBSQFV&\)L&S

queries APPL\CO.iiQV\
Data
Base,

commands

Use

- -
—_— e
. -l

L Y AT AR I IS A A e e e b Sas jnan e e J0te Sy se Smm v B s aean e LI 2 -~ ~ v~ -

presentation data base contains the same information as the application data base, but it is
represented in a way that is directly viewable, i.c.. in terms of teat and graphic forms. 1t is

continuously displayed (on the user’s terminal). so that the user docs not have 1o explicitly

request information to be viewed.

h The presentation -- or, loosely speaking, the screen -- can be dircctly edited by the user,
; by means ol the presentation editor. The ¢ditor allows the user to manipulate the fornis on
L the screen, creating new forms or changing. or dceleting existing oncs. Conceptually, it
& combines capabilities of a text editor with those of a graphics (diagram) editor. As these S
F changes are made, their results arc immediately visible. - . -
- In addition, the commands for presentation cditing are chosen to be convenient for the
}7‘ user. For cxample, they might include a base of general text-editing and graphics-cditing R '
5~ commands. so that the user does not have to lcarn a special language for each particular "o -
F application data base. e
- AN
3 The presenter creates the prescntation data base from the application data base. At

appropriate times as the uscr cdits the presentations, the recognizer creates a new version of . -

the application data basc from the presentation data base. In the representation shift model
the presentation contains all and only the information contained in the application data

base. The presenter uses a single application data basc query (labcled get-db in the figure)

to get a representation of the cntire application data basc, converts the representation, and

then uses a single presentation data base command (labeled load-db) to load the entire LR

presentation data base. Similarly, the recognizer gets the entire prescntation contents,

converts it, and loads the entire application data base.

In the representation shift model, the presenter relation must be invertible, since the

recognizer must be able to specify the cntire application data base from the presentation
data base. In general the presenter relation is a subsct of the recognizer relation, or in other
words, the recognizer will recognize several different variants of the same presentation,
allowing the user more latitude For example, the recognizer might allow the user to create

any of "12", "12.0", "12.000", ctc.. whereas the presenter might always choose "12.0",

12

] - i A
Pa— S
- T e

Figure 1-2: The Representation Shift Model

0.
[]
C°“"“QnJ
(toan-pg) Prg;u\t,_(All i
n DB -
\\ = .
p - gy S5
uS‘er_ Pf!sen'tqt'on r‘s);:.tt:t‘ n [G‘T DB) * APYDLC{ +|°.\
du*u\ Ed '-tor‘ B quer ola
Con,\;?n‘s asre e — (GET:?'DB) 8“5&
~

Command
(oan- bB)

13

e e e e e .
T O S T e T ST A YR T CC
S e T SRS LI N A AR T e e e e e e e e o
............... . e et et et et . I - AR AT DAL LAt et e,
- ol et et L A a = a e A'AWA IAEINE R AN A VPR TR TR A T T D DA AR TR TR D TR)

T - ——r - -
B S e T T e T T N PP P el A AR A AIAA S 0 Jitac ara s i e b e Sl A 2 APlesan o S N e e Y v w = =i i— o= = = .

The representation shift model is a direct manipulation interface [Shnciderman 83]. The

screen continuously displays the data base. Whenever the data base changes, the screen is IS

updated. Similarly, the user manipulates the data base by manipulating the forms on the

screen, and the data basc is continually updated from this.

The major restriction of the representation shift model is that the entire application data

basc be viewed {(and in an invertible presentation). This can lcad to incfTiciency. It can also
lead to the inconvenicnce of visual clutter -~ the user cannot view just a retcvant subsct of a
complex data base. The ability to control the sclection of information to be viewed and the

way it is to be viewed can be crucial to the successful use of the data base. ®

The Full PPS Model. The full PPS model, shown in figurc 1-3. relaxes the restriction that
the cntire application data basc must be viewed. The prescntation, i.c., the visual data base,
may convey only a small part of the information in the application data base. The screen) ..'
thus can no longer be recognized in a simple manner as specilying all the information in the
application data basc. This necessitates a generalization in the recognizer from that in the
representation shift model: the recognizer tranclates editing actions into data base SR
commands, rather than translating editing results into data base data. (The term editing -0
actions includes both the editing command and the editing result. Therefore, the PPS
recognizer includes, as a special case, the possibility of just having to examine the editing

result.)

The presenter is responsible for making the screen continually show the relevant part of S

the data base. It creates the initial display and updates the display when the data base

changes. The presenter collects the relevant information from the application data base,

converts that information to text and/or graphics, and organizes the layout of this visual ;
information on the screen. S
The recognizer causcs the data base to change to reflect the user's cditing of the ‘ ’"

presentation. Specifically, in addition to affccting the screen. the user's editing operations
are recognized as -- i.c., translated into -- operations on the data base. Thus, the PPS model

is also a direct manipulation interface: the data basc is continually presented on the screen,

14

B T N T L A
. '\.-'.--','.'_:-'_ .'_'.':-", .";.'.;.’_'.'_' -
- . e R L O

DAEYADAT U AU WY SR AL P AN I,

,—v—.

EERTI v DA AT R A SO G AT A Ao Al

Figure 1-3: The Primitive Presentation System (PPS) Model

data
basze
Cotmma g

i At A

Pfesen tmtulc n
a
Bose

Prese nfed‘.‘. "
Edty~

Use r
editia
Cmﬁ:ads

ed'tin
acliews

Pchcn t'—f‘

b ferva k Lcr

e ?

Applicatian
PRata

Bose

@ i

v
‘

gl e .)

PPN AT

Y

alaa an i

with screen foltowing data base changes (by presenter action) and data basc following screen

changes (by recognizer action).

1.2 Constructing Larger Presentation System Models

The primitive presentation system model can be extended to model more complex
presentation systems as discussed in chapter three. The basic technique for extending the
presentation system model is to attach an. additional presentation system to it, cither
replacing or augmenting some part of it. The resulting presentation system may thus
contain scveral smaller presentation systems. The cxtensions discussed in this scction are

suggested by examining the major limitations of the PPS model,

Adding a Planned Data Base. In the PPS model changes to the data base arc immcdiate.
To avoid this, a sccond application data base can be added to a presentation system: a
future (i.c.. planned) version of the original data base. The user can edit the planned

version's presentation, separate from the presentation of the current state of the data base.

When the planned version looks acceptable, the uscr gives a do it command that causcs the

actual data base to bc updated.

Adding a Data Basc of Commands. In thc PPS modcl the user cannot sce a description of
the changes or the commands to effect them presented explicitly. (Only the data base that
results from these commands is scen.) Using a technique similar to the previous one of
adding a planned version of the data base, a data base of commands can be added. In this
extension, the planned changes are represented in the new data base explicitly, and can be

presented in a style different from the style for the application data base.

Adding Interfaces to PPPS Components. In the PPS model the cditor, presenter, and
recognizer are not presented; the user only has an interface of primitive signals to them
(c.g.. keystrokes or a pointing device). To circumvent this limitation, presentation system
interfaces to these components can be added. One technigue involves adding a data basc
for the particular component’s state, e.g.. some options controlling the presenter's style, and

constructing presenters and recognizers for showing and manipulating it. Alternatively, a

16

———— oot Al S Al AR =
A AR e e T Mbeaciuie b G Ve A AR A P e R S Pl X L

data base of commands for the component can be added. just as in the previous section a

command data basc was added for the application data base.

1.3 Describing Presentation Systems

The presentation system model can be used as a descriptive tool. The model provides a
sct of concepts for enumerating and categorizing basic functions and intcractions in a user

interface, even when that interface was not designed with the model in mind.

In chapter four several uscr interfaces will be described using the presentation system
mode!l. The selection exhibits a variety of interface styles in order to illustrate the model's
generality. In cach example the focus will be on those presentation system miechanisms that
play the most important part in defining that particular style. Two interfaces, drawn from

those described in-chapter four, are sketched below.

Xcrox Star /7 Apple Lisa. The Xcrox Star [Smith, Irby, Kimball, Verplank & Harslem 83)
and the Apple Lisa [Lisa 84] systems offcr an interfacc using icons -- pictorial presentations
of commands and data. Some recognition is simple refcrence resolution such as pointing to
an icon that prescnts a particular command. Other recognition involves more complicated
inter-icon relations such as proximity. For cxample, in Lisa the uscr dcletes a file by
moving the filc's icon to a trash can icon. In both Star and Lisa the user prints the file by

moving its icon to the printer icon,

Emucs Dired. A subsystem of the Emacs editor [Stallman 81], Dired is uscd to perform
various dircctory opcrations. It is an example of an extended presentation system that
provides both direct munipulation of the data basc (the dircctory being edited), e.g., when
certain file propertics are changed, and planned operations, e.g.. when files are marked for
later deletion. The planned deletions are presented as annotations to the presentation of the

current directory.,

17

@
- —
o . ‘
S
A -4w
———

I

o, . AR
' N . 0 R .
. S BT
., A

1

.
R

-
=
R

D
"1
-

T N S A AL A A RS AT S AR S el M R e A i i R e i AT e S e S ~ T PR SR S T e et AT 71

1.4 PSBase: A Presentation System Base

i Chapter five discusses PSBasc, the prototype presentation system base that was

N implemented in the course of this rescarch.,

PSBase explicitly incorporates the presentation system model structure. It includes tools,
I mechanisms, and ready-made parts for building an interface consisting of an application

data basc. presentation data basc. presenters, recognizers, and presentation editor. Domain-
independent and style-independent mechanisms are provided and may be combined largely

independently. These characteristics cause PSBase to be usclul in constructing a wide range

F of interfaces.

; Figure 1-4 shows the overall structure of PSBase. The data base mechanisms provide
. support for building application data bascs structured in a network somewhat similar to
h knowledge representation networks. The nctwork includes descriptions of the classcs of
- objects as well as the objects themselves, and class inheritance is supported. An important

point js that this netwark is used to build the presentation data base as well and the

F presentation and application data bases are linked together into a large, uniformly
" structured data base. This uniformity is an important factor in the power of the PSBase
b . : . .

" mechanisms. PSBase predefines a large part of the presentation data base class network.

b

L

F PSBase also provides mechanisms that accompany the presentation data base: Graphics
redisplay ensures that the presentation data base is continuously displayed on the terminal.
Several presentation editor functions arc provided; the interface builder may sclect these, as

desired.

The presenter support and recognizer support modules provide a variety of tools and

mechanisms for creating and controlling presenters and recognizers. Most important among

o these mechanisms is a language for describing presentation styles and gencral presenters N {
!« that interpret these languages. The interface builder nced only describe how the .0]
:;:f' presentation structure relates to the application data base structure, and the presenters :jl-,_f'v‘-.-i-I]

¥

perform the actual creation and updating of the presentations. j-.‘-}.:j-..;f?.-

cw e w e
172"
oA
N
.

3
’

e
[

. i

Figure 1-4: Structure of PSBase

BAsic STtrLe PckAages

Prescnrer Recoanizer

SvrPPorT SupporT

GRAPHICS EDrToR

ReoisPLAY FunCTioNs

DATA BASE MECHANISMS

19

s E
o e o s L

A numbcer of basic style packages offer specific components of domain-independent
interface styles that the interface builder may choose to include. Some general presenters
and recognizers arc provided. For example. a presenter is provided to produce command
menus. As another eaample, a recognizer is provided to interpret simple rule descriptions
in order Lo recognize icon movement, similar 1o the Xcrox Star and Apple Lisa systems (see

scction 1.3).

No claim is made that PSBasc would serve as a production presentation system base. Itis
a prototype, and needs more and improved features of many kinds, It provides only a part
of the presentation cditor functions that would be nceded. Many more dormain-
independent presenters and recognizers could be included. The presentation style
description language could be improved and used to drive recognition as well, This would
result in more uniformity in what the system can present and what it can recognize,

providing the uscr with increased consistency and power.

1.5 Constructing User Interfaces

In order to demonstrate the utility of PSBase, three intcrfaces were constructed using the
PSBasc mechanisms and tools. The three intertaces share the same application data basc,
but embody diffcrent styles. The first style uses icons, similar 10 the Xcrox Star and Apple
Lisa system described in section 1.3, The second style uses text displays with accompanying
command menus. The third style is a graphical annotation style, an extension of the Dired

style described in section 1.3,

Somc of the work was donc once and shared between the three implementations, namely,
the style-independent development of the application data base. Once that work was
completed. implementing a particulur style was largely a matter of writing a fow small pieces
using PSBasc tools and choosing some standard PSBase ready-made parts from the basic

style puckages module,

20

1.6 Related Work
I This report discusses two developments, a domain-independent. style-independent
| presentation system base for building user interfuces, and its underlying model of user
interfiaces. This section discusses characteristics of the base and the model that distinguish it |
' from other rescarch. Two characteristics of both the base and the model are particularly °

important:

First. the model and the base attempt to concentrate on general mechanisms, independent

of any particular domain and independent of any particular style. ‘The intent has been that °

L !

they should be free of value judgments concerning styles, Discussing what constitutes a
good style or developing new styles arc separate cfforts; this rescarch offers a conceptual]
vocabulary in which such a discussion can be phrascd and offers a base for experimenting

® with or combining alternative styles. -

Sccond, the model and the base center about the high-level concept of the presentation. .’ . S

This concent considers the cemantic connection between the ccreen and the annlication,

i The model is structured to show how the presentation is used as a medium for - 1
communication between the user and the application. The emphasis in both the model and
the presentation system base has been on the system aspects: how the system of processes
and data bases are structurcd and interact regarding the presentation relationship. This Sl
i rescarch has not emphasized any one particular part of this system: several other studies
| cmphasize the application data base, or the presentation data base, or presenters, or y

recognizers. e '.‘_‘;

Other rescarch that this work resembles can be classed into three broad areas: human o ?
factors, systems and techniqucs, and prescentation systems, Although this rescarch is related L]
to these arcas. the author knows of no other research that directly addresses the same goals ; .i'-.':; =
of studying and providing support for a system of gencral user interfaces mechanisms. °
Rather than being an alternative approach, this work complements the others that are - -Z-'.-':-Lj-"
mentioned. The third area, presentations systems, is the closest to this rescarch, in that its

includes systemns for aiding user interface construction, based on concepts similar to the

21

et e T e e e e NS e T e T e e e e e e L e L

. e et B T . RO e e e . oo .
P A A R R S S RN DS PR T I UL ARSI AT AU B S SO R W N e N
et e e T el At ettt e Na ety N TN L o ki il - N PRV A Sy

presentation concept used here.

Human Factors. At the psychological cnd of the spectrum, there have been several
efforts to which this rescarch is somewhat related. Two major kinds of work is described,

first, user modeling and. second, interface specification techniyues and guidelines. Some
8 { &

representative rescarch is mentioned.

There have been cefforts to develop modcls of user behavior, user performance, and user
understanding of systems. Often these studies concentrate on particular classes of users or
n interface styles. Shneiderman, for cxantple, has examined a class of interface styles that he
4 terms direct manipulation [Shnciderman 83). These interfaces are marked by "visibility of
the object of intercst; rapid, reversible, incremental actions; and replacement of comiplex
; command language syntax by dircct manipulation of the object of interest.” He discusses
o direct manipulation style, and its affect on and acceptance by different kinds of users, in
. f> terms of a semantic/syntactic model of user behavior [Shnciderman & Mayer 79)

IShneiderman 80). According to this model, two kinds of knowlcdgpe about uscr interfaces

reside in long-term memory, syntactic and semantic. Syntactic knowledge includes details
of command syntax; it has an arbitrary character and is easily forgotten unless frequently
used. Scmantic knowledge includes the hierarchically-structured concepts of functionality
and processes for performing various tasks. Semantic knowledge is largely independent of
particular systems and is more casily retained. The success of the direct manipulation style
follows from the fact that "the object of interest is displayed so that actions are directly in

the high-level problem domain,"” requiring little necd for syntactic knowledge.

Modcling the user can be a tool for cvaluating the behavioral style of an interface, by
studying the match between the interface behavior and the user behavior, The presentation
system model, on the other hand, complements the user model by approaching the problem

from the other end. discussing the kinds and internal structures of interface mechanisms

that will by their interaction produce the particular overall behavior as seen by the user.

Some guidclines and formal techniguces have been developed for specifying user interface
dialogs, a part of the user interface style. Formal grammars (or. cquivalently, state transition °
)]
2 T
<
1

e Catae T—— o —

networks) are onc technique for deseribing and designing the dialog between user and
computer [Reisner 81] [Reisner 82] [Bleser & Foley 82] [Jacob 82] [Brown 82]. lFormal e
grammars describe the intcraction between user actions and system responses. Some

grammars include cognitive information, describing what a user has to learn and remember.

A grammar can be used as a design tool. cvaluating designs for consistency and simplicity.

Problems users might have and mistakes they might make can be predicted.

As with user models, dialog descriptions arc complemented by the work reported here.,
One may identify three layers of study. all requiring models and description techniqucs:
genceral user interface mechanisms (presentation system model). overall user interface style

(dialog specifications), and the user (uscr models).

Systems and Techniques. The sccond areca of related work is the building of systems,
from cooperative user interfuces to graphics systems, and the development of techniques to
usc in such systems. Some of these projects tend to concentrate on one side or the other of

the presentation relation: on representing the knowledge in the application data base or on

manipulating and displaying the presentation data base. Others tend to concentrate on the °

development of particular interface styles.

Research into cooperative user interfaces, such as the Cousin effort at CMU [Hayes 84]
and the Consul/Cuc effort at Information Sciences Institute [Kaczmarck, Mark & ®
Wilczynski 83] [Mark 81], study various ways that uscr interface can be more casily
constructed to actively aid the user. An important part of such systems is the provision of a
uniform view of the applications and a helpful assistant, bascd on an extensive description
of thosc applications or the interface styles. Such an assistant might try to understand why

the user is having difficulty or try to understand requests made in an uncexpected form.

A large part of the Consul/Cue work concentrates on the representation of knowledge
about the application and its commands (services). The different applications are described
in a uniform manner. This is separated from the particular choice of styles uscd to interface

to these applications, such as windows/pointing, command languages. or natural language.

The user interface assistant understands the data base representation and usces it to provide °

23

L AL ISP RS R WA S S SAT HEE WLV S SISV SUPLIT WA D Sl Sl VU Wt SR WEUAT S SR WM VI WU St S SIS SRt S g o]

s o o S DL AR
PR Sy .

e

Ot aas Jed A e san o MRt
[ERCE [eoe S
S BN IR

explanations, flexible recovery from command language errors, and assistance in using

several different applications by understanding their functionality.

The rescarch reported here is closer to the Cousin project. The Cousin project does not
concentrate on incorporating knowledge about application semantics, but rather on
developing a uniform interface style to support a uscr interface assistant. The assistant
corrects erroncous or abbreviated input. interacts with the user to resolve errors, and offers
integral and automatically generated on-line help and documentation. The Cousin system
provides a common interface base, separate from the application, that interprets an interface
definition provided by the application builder. This definition expresses the uscr interface

as a sct of forms, with ficlds that convey information between the uscr and the application.

There is an emphasis in these rescarch efforts on developing cooperative styles,
developing techniques for them (such as morc intelligent recognizers), and for Consul/Cue,
investigating the problems of representing knowledge about the application’s functionality.
The work reported in this report also relies heavily on the separation and uniformity of the
application data base mechanism. But this work has not studicd the issues of knowledge
representation involved. Nor has it been involved with developing particular styles. And
unlike the cooperative systems projects, this work attempts to be able to model and support

arbitrary existing interface styles.

There arc scveral research efforts studying different uniform styles of information
prescentation and interaction, and several efforts at developing presentation and interaction
techniques for specific domains. For example, spatial data basc management systems
[Herot 80] [Donclson 78], the Boxer system [diSessa 85], the Xerox Star [Purvy, Farrell &
Klose 83] [Smith. Irby, Kimball. Verplank & Harslem 83], and the Query-by-Example-
hased office systems [Zloof 82] {Zloof & de Jong 77] all offer the user a consistent way of
interacting with a varicty of applications. in a spatial data base managcment system, the
user accesses information by "moving through” the data base -- information from many

different domains is organized spatially, with related information nearby. Retrieval is

somcthing like flying over a land of information: information is found by moving to it, and

-

ala o4 .

detail is controlled by zooming. In the Query-by-Example systems, on the other hand, the
user accesses different kinds of information by providing an cxample of the kind of L4
information desired. Scveral systems have been developed that offer complex presentation

techniques and styles for particular domains, Simulators are perhaps the most widely

RTIR
TR

oot .

P M TR

e b bdeadecione hode

known: the Steamer system |Stevens, Roberts & Stead 83). discussed in chapter four, is one R
example. Another arca of increcasing interest is the presentation of the organirzation and
cxecution of programs, such as the Computer Corporation of Amcrica’s program

visualization system [CCA 79}, Henry Lieberman's Tinker system [Licberman 84]

[Licberman 83], and the Brown University system for program animation [Brown & e
Sedgewick 844} [Brown & Sedgewick 84b] [Brown & Sedgewick 84c]. The intent of the
work reported in this report is to develop a model and system that can be used to describe

and build any of these kinds of styles.

4 s ' 4 oAl . a

The books by Newman and Sproull [Newman & Sproull 79] and Foley and Van Dam
[Foley & Van Dam 82] primarily discuss low-level drawing and intcraction techniques for
Biaphics sysicins. Tor the most pait, they are concemed with only one Kind of appiication
data base -- gcometric models of solids, surfaces, ctc. Within the framework of the model of L
this report, their books discuss detailed techniques for building presentation editors and s

presentation data bases. However, concerning the presentation data base, their emphasis is

more on representation at a low level, suitable for display processors, and docs not attempt
to offer a general representation tecchnique. This is in contrast to the presentation system
basc of chapter five, for example. which uses a general description mechanism for both the
presentation data base and the application data basc. The standard graphics systcms are less
in need of such a scheme, as they arc not involved with any sort of "reasoning" about the -
data bascs, and instead need to perform computations efficiently. Thus, the graphics system

should be viewed as a low-level component of a presentation data basc as described in this

report.

Information Presentation Systems. The rescarch reported in this report most closely o
rescmbles rescarch developing what have been called information presentation systems or SRR
systems for uutomatically synthesizing graphics environments, for example the Bharat system . .

25

Ll i ongh s Sous s oo

[Gnanamgari 81}, the View system [Friedell 83]. and the AIPS system [Zdybel, Gibbons,

Greenfeld & Yonke 81] {Zdybel, Greenfeld, Yonke & Gibbons 81]. These systems all

cmphasize a knowledge-based approach to creating what this report would call intelligent
L presenters. The systems explicitly incorporate concepts similar to the presentation concept
X uscd here, particularly the AIPS system. All three systems have interesting and individual
. aspects. but from the point of view of this rescarch, it will suffice to discuss the AIPS work
_ as representative. (It was while working with the AIPS group that the author first started
3 thinking about the presentation’s use as an organizing concept for modeling user interfaces.)
F The goal of AIPS as an information presentation system is to provide an interface to a
large knowledge base or knowledge-based system. The system automatically generates
: displays from content-oriented (i.e., domain) specifications. (F.g., "display the ships in the
F Mediterrancan.”) AIPS is itsclf a knowledge-based system. Using a large knowledge base
q describing how structures of domain information can be related to structures of graphical
t. displays, the system automatically selects or constructs an appropriate presentation style. A
j fall information prescitation systcm would diiclude Kiowicdge about ithe user, gencidl
F domains, a wide variety of presentation styles, and human factors decisions involved in
;Z:_ graphical display.

There are three aspects in which the work reported in this report differs from the AIPS
research. First. this report addresses a more general class of interfaces than information
presentation systems. Information presentation systems currently exist only in prototype
form; there arc many other kinds of interfaces to be supported now and, presumably, even
when full information presentation systems arc available, Most interfaces do not have
intelligent or automatic presenters, One reflection of this difference is scen in the gencral

modcl of interfaces developed in this report.

Sccond, this rcport emphasizes the system aspects of the interface, rather than
concentrating on any one component of the system. This is onc reason why this research
and the others are complementary: the AIPS work considers presenters in detail; this work

considers the refationship between presenters and the rest of the uscr interface system.

L 26

J T T T

N e e e
T T T A L T
WA R R . A WP PR VRSP R L Wi P S L)

T T v o w—

o v——————

O

p T T ~ v YT - ~ A e i ane AN T ST SRS
=
L
Third. the most distinguishing characteristic of the AIPS work is its emphasis on issues of
knowledge representation. This report does not address those issues, again because the)
cmphasis here is not on intelligent presenters or on techniques of describing presentation
styles. Relatively simple description techniques suftice for the PSBase system. However, s
the results of rescarch into the representation of knowledge about graphical display could be C
. L]
incorporated into a production version of a presentation system base to great effect. ‘
. @
L

27

- .o B TSI CH S e e I .

DRI R T -'~(:A'_'-u'-4.‘~' N PR C LN M S LT PR ¥ VAP O VA |

Chapter Two

The Primitive ’resentation System (I’PS) Model

This chapter discusses the PPS model in Jetail. Figure 2-1 reproduces figure 1-3 of
chapter one, except that here two new primitive-signat inputs are added, controls for the
presenter and recognizer. Each of the components of the PPS model will be discussed in

turn in scctions below, e

] 2.1 PPSCalc

The scctions in this chapter use an example program called PPSCalc. This is a simple ®
- spreadsheet program, a trivial version of VisiCale [Beil 82]. PPSCalc was desigined

a specifically for this explanation -- its behavior strictly follows the PPS model. PPSCalc is

tiustraled in figures 2-Z and 2-3.

The spreadsheet consists of cells, organized in rows and columns. Each cell may be

emply, contain just a numeric value, or contain a formula and a numeric value. In a cell . S
with a formula, the numecric value is computed by the formula from the values in other cells. '-":-‘"‘-:'.ij-j
Cells which just have a numeric valuc -- no formula -- are called independent cells. Their . '
values arc set by the user. Cells which have a formula are called dependent cells. Their N
values arc rccomputed periodically, as will be discussed below. Cells with neither a formula

nor a valuc are empty. .

PPSCalc has two display modes. formula display and value display, iltustrated by the two

figures. Figure 2-2 shows the mode that displays the dependent cclls’ formulas. Figure

2-3 shows the mode displaying the dependent cells’ values computed by those formulas. . N
PPSCalc is shown in figure 2-2 with an assignment of cell formulas for computing a SR
simple bill, based on the prices for two kinds of items and the numbers of the items f:jt e

L J

28

e ._ - ._._(..._._‘h.' -

O L . e .
K KA L. e, . Je e e e e T e
e e Sa cauta dalrlal sl Al e at e at et e e e T T T et

v

ﬁ.

3

b

)
l.
f
.
X

— -

-

T

GRS AN M N S 2

Figurc 2-1: The Primitive Prescntation System (PPS) Model

JE*‘QU KLY RIY) h,p-J.NL

dmdm_
w133)ddy [5quam,

uda.;()«ﬁﬂuﬁa

JJLPCOU an¥CQwvﬁL

va :anL&

Spo2)>e
P

.Um,om.

dU-lO A

Io._u.du. <vnVLn—

RPwvrvetnod
2509

GPJV

=¥ P3
SO...*.OU.Q VHQL&

e, el e e .
- IS A IR I AT SRR
mshenieetihonbttfon sl cofhesbondhtnd el

R e I
".“:\-.\ V..'..'*.)

.
2. 2"

DR TR
. e Lt

Las’

o W il Wy

'."'l...i.

AN O IR h A TR vrwre e ——— 1 P ——— y—

o 1
Ny
I '}
) - 1
. 9
E.-]
t7; A B c 4
|=-----ommmmmm- [====mmommmmm f-o--mmmmmmmem | " -

1] 100 | 20 | A1*B1 | °
=-m=mmmmmmmo - |--=mmmmmmmmm s f-----mmmmmom o | S
2| 75 | 5 | A2+B2 | SR
|==m=mmmmmmmmes e f-oomommmmmem s (DA
3 J | C1+C2 | RO
[--=mmmmmmmmmm f-mmmmmmmmmmme f-ommmmmmmmmees | PROEARA)

°

A B c
|-ommmnma o |-=mmmm e | --ommmsmennee |
1| 100 | 20 | 2000 |
|--mmmm oo mees |--mmmmmome |--mmmoomenee- |
2 | 75 | 5 | 375 |
[--ommmm e [-=mmmemmme |--momoomenmes !
3| i I 2375 |
|-ommmmmmmees Rt R |

Figure 2-3: PPSCalc -- Value Display

purchased. The Al and A2 independent cells specify the prices. and the Bl and B2
indepcndent cells specify the number purchased. Dependent cells C1 and C2 compute the
amount to be paid for the two items, and dependent cell C3 computes the total amount to

be paid. Cells A3 and B3 arc cmpty.

In both display modes, the visible contents of the cells can be edited. using the text cditor
Emacs. After a certain amount of cditing, typically just changing the contents of one cell,
the user types the return key. This signals PPSCalc to update the spreadsheet basced on the
edits to the visible text. Recalculation is then performed: each dependent cell, from left to
right, top to bottom, has its formula evaluated and its numeric value recalculated. After

that, the visiblc text is updated to display any of the cells that changed.

For example, the uscr might edit the "S" in the B2 cell display to be "11", in order to
indicate that 11 items of the second Kind are being purchascd, instcad of 5. The display now

looks like ligure 2-4.

The user types a return, and PPSCalc recalculates the dependent cells C1, C2, and C3. C2

—
........................ - L T e LT U TP R S T P
R . "\-'.' S et et e e e S et et e et e e e e e e e .
e . T e TN SRS R S R L P T R NN .
DU PN g S e N SRR s SRR AL S e T N PN N A N A AP S P ‘L.\;:‘-l- .;'\ -‘\-'\-'\ ;'..-‘

aad ok

. PR T L "
. » % e
ey ot st e e oAk

T e

A B C
=== -=mmmmmmmmeeo [===-mmmmmmmme- |
A 1 100 | 20 [2000 |
, |=-=mmmmmmmmme |=m=mmmmmmmmoe == I
: 2 | 75 | 11 | 375 |
: |===m=mmmmmmoos |===-mmmmmmmee |-==--=-mmmmmm- I
3 | | | 2375 |
=== == |-=m=mmmmmo - |

. Figure 2-4: PPSCalc -- After Editing

changcs its value because of B2, and C3 bccausc of C2. PPSCalc redisplays the sprcadsheet,

E showing the new bill, as in figure 2-5.
‘ A B c
' fommm e |====mmmmmmmm e |-=mmmmmmmmmee |
1| 100 I 20 | 2000 |
=== |=-mm=m=mmmmme- - I
2 | 75 | 11 | 825 |
|- mmmmme e |--mmmemmmene- |--mmmmmm oo !
3| I I 2825 I
I I

Figure 2-5: PPSCalc -- After Recalculation

The user now decides to change the cell formulas, to add accumulation of a S percent

sales tax. The user requests the formula display mode, types formulas into the previously

empty A3 and B3 cells, and edits thc formula in the C3 cell. Ccll A3 totals the amounts, ccll

i B3 computes the sales tax, and cell C3 computes the total charge. This is illustrated in figure S
[2-6. ﬁ::: ".'_‘_'
[A B c

|--mmmommmee |--mmmm e [-oommmnmnee ! * |
3 1 100 I 20 | A1*B1 I .
o= |--=-mmmmommem- === |
2 | 75 | 11 | A2+B2 |]
""""""" eiieiieieiebiniied Ietalobeliiiniaiebauidd |
3 | C1+C2 | A3720 | A3+B3 |
|-=mmmmmne e s R ! .

Figure 2-6: PPSCalc -- New Formulas

31 R

BN

. -‘ AN

T ——

When the uscr switches back to displaying the dependent values, these new formulas

result in the display shown in figure 2-7.

A B C
|--moesmee e |--mmmeonoee |-emmseoeas !
1| 100 | 20 | 2000 |
|--ommememe e [-mmem e frommmmoomenes |
2 | 75 | 11 | 825 |
-------------- I B
3| 2825 | 141 | 2966 |
| -=mmmmmmmeeee | -ormmsmem e | -=mmmmme e |

Figurc 2-7: PPSCalc -- Values of New Formulas

A question ariscs as to what should happen when dcpendent values are being displayed,
and the user edits a dependent value to a differcnt numeric value. PPSCalc has two modces
rcgarding this. In one mode PPSCalc will ignore the edit -- when the user types return,
PPSCalc beeps, recomputes the dependent value normally, and displays the result. In the
other mode PPSCalc interprets the edit as changing that dependent cell to be an

independent cell with that value,

PPSCalc will be further discussed in the scctions below as it is used to illustrate issues in

presentation system modeling,

2.2 The Application Data Base

A uscr interface does not exist by itself -- its whole purpose is to provide the user with the
ability to use somcething, typically a program or system of programs. [t may also be
something that the user docs not consider to be an active agent -- for example, a collection
of values, or in general a data basc. In some applications the uscr’s view is of a passive data
base, cven though in the background (external or internal to the data basc) there is some
active agent managing the data basc. For example, typically a user will view a file system as
passive, though in the background various operating system programs maintain the integrity

and rcliability of the file system. (Backup and salvager programs arc examplcs.)

Any application can be viewcd, from the perspective of the uscr interface, as a data base.

32

PR Soa e, o B A ALt ISP RN SO L S S TR UPU Y
LSS, S PRu. S S P LSOV SVE SR W UL W S SR . SO ol W P S S P UL W, S I

- 4
R
w—‘;-a;—i
- :
-
Y
4
®
N -
]
. .
®
o A

Y WP B TN

o, %

il i S Jven Bre aefan au T T Y " - T LA A B e e SresBon e NE BB

In other words, interfucing o a data base, besides being an important case in itself, can
simulate the situation with other applications. For example, consider a user interface to an
application program where there is no obvious data base in the implementation. One such
example is a process control system, allowing the user 1o monitor and control the state of a
powcer gencrator, say, Here, much of the state is not in the program but in the physical
world: temperatures, pressures, ete. However, from the point of view of the user interface.
the behavior of the application program is similar to the behavior of a data base. ‘The system
can thus be treated as a system that maintains a data basc describing this world state and the
control options. In the model the job of the uscr interface system is to let the user view and

manipulate this world description.

Since any application can be viewed as a data base, for the model developed in this report
we will treat the user interface as providing the user with access to a data base. ‘The user’s

task will be to view and manipulate the contents of the data base.

The PPSCalc spreadsheet can be considered a data base. It has an active component.

namely recalculation, which determines the values of the dependent cells in the spreadsheet.

Warld Modcls. The basic data base model being used does not specify anything about
the internals of what is being called the application data base. It only matters that the data

base takes commands and qucrics and returns observables. Nothing is said about whether

the data basc is implemented by information records, or by computation. or by conncction R

to the physical world. lts external behavior is that of a data base. N RO

[t may wcll be reasonable to implement an application that connects to physical objects e
by having a world modcl. i.c., an explicit description of the world. This situation is really

just an extension of the primitive presentation model proposed for the uscer interface. Here

the world model data basc is a representation of the outside world. Figure 2-8 shows this ST

.

4 2 da o

modularization of the implementation, Tl

'

In this approach programs (and not only programs of the user interface system) deal with

a data basc describing the relevant parts of the physical world. Separately. the world model

S r
P L S

33

v

.. AT . R A B L UL S DR S e S S . B
.- v . . RN [B A AT, IR A ST EPUR SRR PN IR SRV A AR L
_rd o e . O R A T R G T A.‘ dmadecndens bbbt feeetn i e enhe b ecendh ek)JM

Figure 2-8: World Model

“L‘Qrvaklg;

senser nfo

que ries

\IJOflJ MOJQL
b"iﬁ BQSQ,

stfect
Com *““Js v Com :\ monrJS

Ormn0g rP»o~unu<iI®

34

- " ‘e (0 - .

- .- PR . .
S ' L ce e SO A L SR R - e e e -
e S A e e T e &.{ AR L IRV PRI I VA, I

Ll

L, e e P e —y
——— —y e p v g v RO i) L Rafin .

presenter and recognizer perform the job of keeping the world model up to date and
cflecting changes to the physical world as the world model is manipulated. The interface to
the physical world is much like an interface to another data base. Instead of queries, there
are commands o sensors; instead of data base obscrvables. there is the information returned
by those sensors. Instead of data base comnuinds, there are commands to effectors, the

hardware that performs some physical-world action.

Cascaded Interfaces. This approach to modularizing a system can just as well apply to the
casc where there is another data basc, instead of the physical world. In this casc one sct of
programs (user interface programs in the special case) view and manipulate one data base,
which is a representation of a sccond data base, viewed and manipulated by another sct of

programs.

This is not a symmetrical communication between two groups of programs. The second
sc: of data base programs arc gencrally unaware of the first set -- the first data base is
intended to serve as an extended interface to the sccond, i.c.. main, data base. In the special
casc of the uscr interface, idcally the application programs are unawarc or at least not
dependent on the structure, style, or opceration of the prescntation data base and its

associated programs.

As a final note on this asymmetry, consider the presenter and recognizer in the user
interface. They arc not undcr shared responsibility of user and application program -- both
are acting entirely for the user, under the user's control. The entire user interface subsystem

is an internal agent of the user, not an impartial intcrmediary between two equal

communicators.

2.3 The Presentation Data Base

We now consider the other components of the PPS, those strictly within the user interface
system. The presentation data base is the symbolic description of the screen comprising
presentations and their propertics and relations; it conveys information about the data base.

‘Though it is not the purpose of this rescarch to study in detail such representation issucs,

35

PR
. r

v s .
RPN T Ul W ©

l. PO

&
"

this section will identify the basic properties of presentation structure that concern a

presentation system.,

The Simplicity of Two Data Bascs. An interface containing two data bases, the
presentation data base and the application data base, may at first seem o be more complex
for the uscr than the rudimentary data base user interface discussed in chapter one.

However, the situation for the user is actually much better in a PPS uscr interface.

Many of the details of the application data base’s interface are hidden from the user, The
application data base still has an interface of commands, queries, and observables, but the
user docs not deal with that interface -- only the presenter, recognizer and any outside
programs do. The user is no longer concerned with the access and organization of the

application data base -- the user deals only with the presentation data basc.

The presentation data base has a more direct interface than the rudimentary data base
model did. The presentation cditor has taken the place of the command transducer. The
commands for presentation editing are chosen to be convenient for the user. For example,
they might include a base of general text-cditing commands, so that the user does not have

to learn a special language for a particular application data base.

Also, as mentioned above, the presentation data base is in a form directly viewable by the
user. There is essentially no need for queries to the presentation data base, since the
presentation is directly and continuously viewed. There are only a few vestigial queries,

remaining in the form of viewing commands to scroll the screen, for example.

Name Presentations. Name presentations are the most fundamental of presentations,
conveying no other information other than the identity of a data basc object. Complex,
structured presentations are built out of name presentations. In PPSCalc, column names
{c.g.. "A") arc examples of name presentations presenting a particular column. Single digits
are name prescntations presenting the numbers O through 9. Formula operation symbols

(c.g., "+ ") arc name presentations presenting particular arithmetic operations.

36

e

i "- ;\-‘._L'_‘ P W VAR A VY - M - ’-A_.:""‘ - - .'- . -" -l ." o .'. . Ry .L

v T —— ———T" YT

Name presentations do not have parts or propertics that are also presentations. A name
presentation may have structure, c.g.. smaller text or graphical forms that are part of it. but
any parts are not in themselves presenting domain information. For eaxample, from the
point of view of a map. the letters in the name "Boston™, while parts of the teat string. do

not individually present information.

Composite Presentations. Composite presentations, on the other hand. have graphical
structure in which a larger presentation is constructed from smaller presentations. The
composite presentation as a whole presents some domain information, and in addition some
of its parts or propertics present domain information as well. Generally, the hierarchical
structuring of sub-presentations into a composite presentation follows a similar structure of
the information in the data basc. For example, the entirc PPSCalc text table is a
presentation of the spreadsheet. The presentation is composed of text string presentations

for the values and formulas of cells, and thosc cells in turn are parts of the spreadsheet.

In PPSCulc the presentation "A2" is composed of the name presentations "A” and "2",
presenting column and row. The presentation "A2" as a whole presents a particular cc't or
the value contents of it Similarly the numeral presentation 75" is composed of digit
presentations. Howcever, the presentation 75" is gencrally not just a presentation of the
number 75 -- in figure 2-2 on page 30, for example, it is a presentation of the number in the
A2 cell, i.c., a presentation of a property of or fact about the A2 cell. It is the value of this
property that is the number 75. The presentation style here presents the property by
presenting its value, It is essentially a composite presentation composed of just one sub-

presentation,

Composite presentations, as well as name presentations, may have parts or properties that
arc not in themsclves presentations. For example, the overall PPSCalc presentation has the
grid as one of its parts. The grid. howcever, is not a presentation. [t serves a purpose in the
overall presentation -- it makes the communication more effective -- but it is not itself
presenting anything in the data base. 1t is a kind of template. in which presentations are

placed. A common example of template presentations is a bibliographic reference, such as

37

G '-"'T—l MO 'Bf_"',

,r“j.

I R i Tt - - - T T Y T Y T Y v Y v

"[Carroll6S]". The brackets are a part of the composite presentation, but do not present

anything. The parts "Carroll” and 65", on the other hand, arc presentations.

Relations and Propertics. Relations between presentations and propertics of
presentations can themselves convey information, Presentation style frequently imposes
strong conventions on such "non-object” presentations. A relation between two
presentations, such as nearncss, alignment, or comparative size, can be chosen to convey
information, frequently reinforcing information presented in some other way. A property
of a presentation, such as its size, color, font, position, or direction, can similarly present
information. The information presented by the property is usually very closely related to
the information presented by the presentation form, just as composite prescntation structure

generally follows domain structure.

PPSCalc as shown above has no example of property presentations. However, if it were
to display dcpendent values in a manner different from independent values, e.g., in a
different font. the font of the text would be a property presentation. Many examples of
property presentations can be found in road maps. A line, for example, presents a particular
road. and the line’s color presents the class of road (highway, street, dirt road). Frequently,
a property presentation presents a property of the object presented by the presentation
form. For cxample, the color of an area of a map may present the amount of rainfall in the

geographical arca presented.

Onc common relation presentation is alignment used to present some kind of similarity.
In other words it shows that thc domain objects presented by the aligned presentations
sharc some common property. In the PPSCale example, the fact that "75" is aligned with
"100" above indicates that the cclls whose contents are presented are both in the same data

base column.

Ty Y.L r TwL, Y YT YT W w o wTY

| ;
1
!
‘4
{
i
1
‘I
i
1
1
®
[——
N
el
RN
e
L 'A‘-v-.Z;a.\d
.
N
ST
- 1
®
M
vy
- 1
.
|
®
5
" ‘
.
e

2.4 The Presentation Editor

The presentations can be directly edited by the user by means of the presentation editor.
tCallows the user to manipulate the forms on the screen, creating new forms or changing or
deleting existing ones. It combines capabilitics of a teat editor with those of a graphics

(diagram) editor. As changes are made, their results are immediately visible.

Graphics Redisplay. The screen is continually updated 1o reflect changes in the
preseatation data basce, in a process called graphics redisplay. 1t is this process that involves
traditional grapaics (drawing) routines. Graphics redisplay is in ¢ffect another presentation
system, taking the information in the presentation data basc, expressed in terms of symbolic
graphic forms (text, circles, lines, etc.), and converting it to a data base of pixels, for

instance.

This report will not concentrate on this level of presentation system, for two reasons.
First, it has been studicd extensively clsewhere [Newman & Sproull 79] [Foley & Van Dam
871 Second it i< nsually not the level at which the user is interacting conceptunlly. The
uscr typically does not think about or use commands that are defined in terms of pixels, but
rather in terms of symbolic forms. These symbolic forms are the ones that present the
application data base. A presentation style presents a number as text, for example, but it
does not matter whether the graphics system chooses a bitmap or vector display technique

to present that text on the screen.

2.5 The Presenter

The presenter process modcels the decisions and actions of constructing or updating a
presentation. The presenter can be divided into three major parts, the domain collector, the

semantic presenter, and the organizational presenter, as shown in figure 2-9.

This division of the presenter allows the identification and study of its basic functions and
the interactions between them. They can be classilicd by the kind of knowledge the
functions depend upon: knowledge about the structure of information in the application

data base. knowledge about the mapping between domain information and the presentation

39

RS et e e e R el e R
s e e ‘. e oty - et e - . o e et e
B R S R TR I T T, Do S N P SIS YR T Sl TR TR Gl Tl SPar oL P J Yy e

e

St et et et
VI W WY WP XY

> LUH\Q (=
A

“ o..+du__&f ’ “.....

Prescuter Parts

x
.
.

&
o~ -
. e N
] s
A 2
. 49423(]%) smpuasay >2puesnd
ﬁ UL J..#{G—\UVI (fb_ﬁvﬁ.rﬂg ;
4 ; .
- ...

m\O.\#‘:QQ LJM\idudLL. ”.,.....y

P

PR AR WY AL A PR W

data basc. and knowledge about purcly visual considerations,

‘The domain collector finds and interprets the relevant part of the data base. The dontain
collector understands the organization of the application data base, the query language. and
the format of the obscrvables. 1t is the part of the presenter that connects with the data
base. Given the specification of what is to be selected, it constructs the needed queries and
passes them to the data base. The obscrvables (or parts of them) are then assembled into

the information needed by the semantic presenter.

The domain collcctor thus has knowledge about the kind of domain information that will
be relevant for the user interface, and about the way that information is represented in the
application data base. It does not, on the other hand, know anything about the way such
information will be presented to the user. In PPSCalc the domain collector accesses the
internal variables that implement the data base cclls, collecting the formulas or cell values

for usc by the semantic presenter.,

The semantic presenter cmbodies the primary mapping from data basc domain to visual
domain, the kind of mapping specified by a map legend, for example. 1t specifics the
particular visual clements (text strings, circles, lines, etc.) to be used, and those relationships
between them that directly convey data base information. It may partially specify some of
these relationships, e.g.. that some text string (a label) should be ncar some other object,
leaving the organizational presenter to specify the exact position (taking into account purely

spatial relationships, such as overlap and clutter).

In PPSCalc the semantic presenter converts the numeric values and formulas (formulas
are stored in the data base as small programs) to text strings. 1t also crecates the text strings

that label the rows and columns.

The organizational presenter imposes purcly visual organization on the presentation. The
organizational prescnter, unlike the semantic presenter and the domain collector, is domain-
independent. 1t uses knowledge about spatial layout and, more gencrally, about improving

the cffectiveness of visual communication. [t uses various tabular layouts, alignment,

41

R SR U

o oL et ~. -
L N e e L .
s ~ > b * o ay Lad A

positioning to avoid clutter, fonts, spacing. and highlighting. The semantic presenter might
sometimes partially specify some of these, e.g.. specifying that some text or graphic form °
should be highlighted. The organizational presenter, however, has the job of pinning down :

these specitications, 1t typically takes into account the other forms that will be on the J_l_
screen. Onee the semantic presenter has made its typically local decisions about visual
styles, the organizational presenter reasons about the lurger groups of forms and their visual

interactions.

This view, that the presenter stages successively restrict the specification of the visual
presentation, ¢an be eatended into the presentation data base itself. Part of the job of the
presentation data base is to maintain a screen image reflecting the presentation information.
As discussed in section 2.4, this is a task of traditional graphics packages. They too restrict
the specification of the visual presentation, e.g., determining which pixels arc to be set or

choosing fonts if not otherwise specificd.

In PPSCalc the organizational presenter uses a tabular layout for the overall presentation.

The organizational presenter also is responsible for creating the table’s grid. (Some much R —
more intclligent organizational presenter might decide whether or not to use a grid,
embodying various kinds of human factors knowledge. The decision is fixed in PPSCalc.)
Within the grid cells, numcric values are aligned in one style (right ends of th¢ number : 2

strings aligned), and formulas are aligned in another style (left justificd in the ccll).)

One issuc not discussed in chapter one is user control of the presenter and recognizer. :
The presenter has an input, called presenter control. This is a primitive command signal R
interface to the presenter that controls the style it uses and what it will present from the data e
base. In PPSCalc there is just one such control, a key that toggles whether formulas or

dependent vatues arc presented. In gencral, there may be difterent presenter control inputs,

affecting the three components of the presenter.

42

I N "= s LA

2.6 The Recognizer

The recognizer process observes the user's editing of the screen presentations and
interprets this as manipulation of the data base. As with presenters, recognizers are divided
into three major parts, namely, the organizational recognizer, the semantic recognizer, and

the domain changer, as shown in figure 2-10.

‘The organizational recognizer identifies the spatial relationships, presentations, and
actions upon them that are relevant. It imposes a syntactic structure on these.
Organizational recognition is gencralized parsing. Text parsing is a special case; the more ° '

general organizational recognition works with text, graphical forms. visual propertics and

Y

relationships, and cditing actions. In general, the organizational recognizer is looking for

changes to the presentation structure from the user's editing.

The semantic recognizer translates the syntactic structurc into a semantic structure

describing charges to the data base information. Generally this involves assigning
internrotations 10 the text forms, graphic forms, spatial nroperties, spatial relationships,

editing actions, and the syntactic relationships among these clements. - T4

The scparation of recognition of presentation structure from recognition of the semantic
structure can be scen in the division of natural language parsers and compilers into syntactic

and semantic modules.

The domain changer translates this description of changes into the actual data base

commands necessary to cffect those changes.

In PPSCalc the organizational recognizer, when considering the presentation structure for

the presentation of the C2 cell's formula, for instance, starts by {inding the position where
this presentation is located within the grid presentation. It then parses the formula from the
surrounding spaces and decomposcs it into tokens (e.g., "A2". "*", and "B2"). The
semantic recognizer converts this into the program required for the data base ccll. The

domain changer performs the actual modifications of the internal variables.

Recognizer Parts

5~g =7
vor M‘U.. -LL(

Figure 2-10

L

JdR v h.QvUN&

M..N oLU-(. QU

L.N..: hOUUM

™o * ﬂ-‘.-... QGP

Uudm .v#dp
to...rd*:vwel

ﬁo..«d#(¢y

_‘-..'. e
al s

Ter
. L%
o ap’s

The PPSCale example just given illustrates only a special case of recognition, namely
recognition based on just the visible presentations. the results of whatever editing ook
place. This special case is very similar o the representation shift model discussed carlier,
and is an inverse operation (o that of the presenter. However, the more general kind of
recognition takes account of the cditing actions as well. Different cdits that produce the
same result might be recognized as different changes to the data base. (Whether such
recognition is performed, or the extent to which it is performed. depends on the particular
application and uscr community. But a’general model should be able to account for such

behavior.)

Consider some examples in PPSCalc. Suppose that the spreadsheet is currently in the
state corresponding to figures 2-2 and 2-3 on page 30. The uscr is vicwing dependent
values, as in figurc 2-3. Consider the possible recognition when the user moves the "2375"
in the C3 cel! to the A3 cell, ¢.g., by deleting the text in the C3 cell, and undecleting it into

the A3 ccll. The presentation that results is shown in figure 2-11.

A B C
| --mm e e -mmmmmsneeee | -=mmmmsmmmees |
1| 100 [20 | 2000 I
|mmmnemes |-ommmmmee R |
2 | 75 | 5 | 375 |
. |--mmmmmmm e | --mm e e |
3| 2375 [| [
| --emmmmmm e R | =mmmmmemmeeee |

Figure 2-11: PPSCalc -- Value Moved

One possible recognition style is similar to the representation shift model in that it only
depends on the visible result. It would recognize this as two changes., lirst that the C3 cell
become empty. and sccond that the A3 cell be given an independent value of 2375. This case
is indistinguishable from that where the user typed "2375" into the A3 ccll instead of

moving that text into the A3 cell.

However, another recognition style might treat that move of "2375" as moving what the

"2375" presents -- the dependent value computed by the formula CL+C2. Thus moving

45

laaa A

—— P —— T T R T R T R R O O O —y— Pr——

the "2375" from the C3 cell o the A3 cell might be recognized as the two actions, first that
] the A3 cell be given the C3 cell's formula C1+ C2, and second that the C3 cell be emptied
(as before). The visible result is as in figure 2-11 above. However, switching into the mode

displaying formulas shows the different cficet of the recognition:

A B C
iy |-===m==mmmmms |
1| 100 | 20 | A1*B1 |
|--mmmmneeeee |- mmmm s |-omooenonnones |
2 | 75 | 5 | A2*B2 |
|====mmmmmmmee | === I |
3 | c1+C2 | | |
. | ==-mmmemmees | -mmmm e | --ommmnmneene |
Figure 2-12: PPSCalc -- Formula Moved
] A similar kind of recognition, providing an cffect found in commercial sprcadsheet

programs such as VisiCalc, is to recognize certain copy actions as meaning that the formula
be partially copied -- but with changes based on the row or column. For instance, say

during the initial creating of the spreadshcet the user had:

-
» A B c
: |---mmmmmmeeee |---mmmommeeee i |
7 1] 100 | 20 | A1*B1 |
2 | -mmm e | -=mmmmee e J-=mmme e !
= 2 | 75 | 5 | |
i |--=rmmennmnes |--mmmmmmeee |--mmmmmmmee |
3 | | |
R | =nmmmmmmmees | ==emmnnneaes !

Figure 2-13: PPSCalc -- Preparing to Copy Formula

If' the user now uscs a copy-with-changes command to copy the "Al1*Bl1" formula

presentation from the C1 cell to the C2 cell, recognition would interpret this as putting the .
formula A2*B2 into the C2 cell. (The references to row 1 have been changed to row 2.) R 4
b B)
T Reference and Recognition. An important class of presentation editor commands are
o those providing the uscr with the ability to refer to text, graphic forms, areas. or positions on _'.f-_ R
the screen. Examples include pointing devices such as tablets and "mice.” There are other e jf]

J °
. - . L
- 46 IS
A
b () 1
S0 0]
: \:“ _ _:

possibilitics, such as using arrow ke, s to move a pointer around the screen, or keyboard
commands that refer to positions. quadrants, etc. by name or coordinates. The reference
capabilitics provided by a pointing decvice can be extended by tracking the pointer, thus
achicving the ability to refer to arcas or groups of forms, for instance. Although reference
does not change the visible presentations, it is an important editor action since it undcergoes

recognition,

PPSCalc could be extendced to include reference recognition. For cxample, a refercence to
an independent vatue presentation could be recognized as a command to increment that
value, As another example, a reference to a cell containing a formula and then to a blank
cell could be recognized as a command to copy the formula to the sccond cell. (This could

perhaps include changes to uccommodate different columns and rows as mentioned carlier).

When Recognition Happens. 1n the PPS model recognition happens continually and is in
cfTect over the entire screen (i.e., over the entire presentation data basc). The intent is that
the screen continually present the state of the data base, providing the uscr with direct
manipulation of the data base by continual presenter and recognizcr action. Some
presentation editor command sets may allow such continuity at the granularity of single
commands, i.c., allow recognition to happen after every single command. Howeyver, in
general there may be groups of commands that, taken together, form a larger atomic unit

from the recognizer's point of view.

For instance, in PPSCalc the recognizer is not be ablc to act upon a partially typed,
syntactically incomplcte formula such as ")+ A2". (It would be possible, though, to have a
more tolerant organizational rccognizer -- in this case parser -- that allows this string and
assigns some sort of interpretation to it, such as the interpretation for "(0)+A2") In
PPSCalc typing the return key signals the end of an atomic edit. After cach return, the
rccognizer is invoked, the data base changed, the presenter invoked, and the presentation

data base updatced.

Recognizer Controls, Figurc 2-10 on page 44 shows recognizer controls, a primitive

command signal that affects the operation of the recognizer. In PPSCalc a single-key

47

2
YN

—% W TN v T v ——— 8 - — ~——y— ——— e w e ——y

R heg s e .

command toggles how the recognizer will treat edits of a dependent value (for the mode
when dependent values, not formulas, are displayed). Onc choice is to treat the edit as an PY

crror and just ignore it. The other choice is to treat the edit as changing that cell to be an

PR .
POy)

independent cell with that value. (The formula is erased.) In general, there may be

-, B
PR

recognizer control inputs for cach of the recognizer components.

2.7 The Representation Shift Model and Direct Manipulation

The representation shift model. introduced in chapter ong, is a special casc of the PPS
. model, [t is shown in figure 2-14. In the representation shilt model, the presentation data o
base contains all and only the information in the application data base. As a result, the
presenter and recognizer have simpler, more restricted tasks. The presenter gets a
representation of the entire application data base, converts it. and loads the entire -
presentation dam'busc. The recognizer has the opposite operation: the recognizer gets a
representation of the entire prescntation data base, converts it, and loads the entire

apnlication data bage,

The representation shift modcel and the PPS model embody different metaphors. In the

representation shift metaphor the presenter creates a picture of the data base. The user edits SRR

the picturc. At the end of an atomic cdit, the recognizer makes the data basc be what is .

i depicted. In the PPS mctaphor the presenter creates a picture of typically a small view of a
subsct of the data base. The user edits the picture. The recognizer watches how the user

makes the changes and changes the duta base in the same way. e ﬁt_’ -

‘ In the representation shift model, the presentation data base must conlain all the e
. information in the application data base. This is cquivalent to saying that the entire
application data basc be viewed. (And because of this restriction, the converter can simply
load the centirc application data basc from its translations of the presentation data base.)
This restriction can be incfficient for large data bases or when rapid user interaction with
the application is desired. The restriction is unacceptable when the size of the data basc gets

so large that the ume to perform the translation cycle between the application and

48

-'.'l'..' .
. e
I SR RSV 2 2P S W ¢

PR) METREES

.

R
HPRIP I T S

“igure 2-14: Representation Shift Model

Uhdm
oyeq
FQ..PdU.‘gn@%W\

94

°3v1)y

d clf—(KOU <37 " “v n.OUNL

ga

VoS4

nv

d d4-139
h.nLU).V Uhllom.

Soﬁ*d#(duNL&.

(89 -dvo)

PuYwwogy

Joerives I wwcwmuuk

u
.

.....

LO#J.MUU
;OJHOU‘{IWwiwLL'

........

Ldn,ﬁ

49

S S

- .~ s e T
A ST
PSR

o
»
oy

‘4
Ay
..~-hk
.. -.L
oy

PO S S

-

AN -

-

° o g

presentation data bases is slower than the desired intcraction time. It also feads to
inconvenient visual clutter; the user cannot view just a relevant portion of the data base.
This is a scrious problem for complex data bases. The ability to control the selection of
information to be viewed and the way it is to be viewed can be crucial. However, for small
application data bases, the representation shift model can be advantageous by virtue of its

great simplicity.

Becausc of the no-formula display mode, PPSCalc is not presenting all the information in
the application data basc. (The data base is the collection of spreadshect cells). PPSCale is
therefore not simply a representation shift v - interface, and must be modeled with the full
PPS model. However, if the display of spreadsheet cells were modificd to show both the

formula and the value, PPSCalc could be modeled as a representation shift interface.

Because of the restriction that the presentation -'1ta base convey all the information in the
application data base, the representation shift model has another difference from the PPS
model -- the representation shift recognizer need only look at the current state of the
presentation data base, not the sequence of editing operations that produced it. The cditing
operations cannot matter: if two editing actions result in the same visual data basc state,

they must be equivalent.

For example, there can be no difference between (1) moving a presentation from one
place to another and (2) first dcleting that presentation and then creating at the sccond
position a new presentation that looks exactly like the first once. Similarly, there can be no
such thing as renaming an object by editing its name. Editing its name must be equivalent
to deleting the object and then creating a new onc with the second name. In fact renaming
really has no meaning for the application data base, since it is produced completely from the

rccognizer's data. In other words, all the objects are created anew,

For the full PPS modcl we assume that the presentation data base conveys only a subsct
of the information in the application data base. often a small subsct. The representation
shift model cin be slightly extended to apply to some cases of subset presentation. When

the subset of the application data base is separable from the rest of the application data base,

50

7 VP W WA AP DL WPy S EP Sl W

. St
PORNE IV ST W

‘
T Y
1
3
Y

o

Ty -

i.c.. there are no references into or out of the subset, the presentation data base can show all
the information of that part of the application data base. In effect, that subsct is being

treated as an entire application data base in its own right.

The restriction of the PPS model that produces the representation shift model can be
summarized by examining the functions between the presentation and application data
hases, as defined by the presenter and recognizer operations. Deline the presenter function
to be the mapping of presentation data base states from application data base states as
produced by the presenter. Similarly, define the recognizer function to be the mapping of
application data base states from presentation data Lase states as produced by the

recognizer.

The presenter function must be invertible, so that the presentation data base conveys all
the information about the application data base. The recognizer function is an cxtension of
the presenter’s inverse. The recognizer gencrally extends the inverse for the convenience of
the user: the user can create any of several variations on the form that the presenter would
have chosen. For example, the PPSCale recognizer allows latitude in positioning of
formulas within cell presentations, cven though the presenter always aligns the formulas
with the [eft edge of the cell. We can say that there are gencrally sets of presentation data
base states that are equivalent: the presenter produces only onc of these states, but the user

and the recognizer interpret the others as conveying the same information,

In the PPS model. however, the presenter and recognizer functions arc of a different
~ature, because of the need to allow operations on only partial presentations. The major
difference is that the domain of the recognizer function is not the range of the presenter
function. The presenter maps from application data base to presentation data base. The
rccognizer, however, maps from scquences of presentation editing commands to sequences
of data base commands. Figure 2-15 shows a schematic form of the PPS model that

highlights these mappings.

A restriction is placed on the decoupling of the presenter and recognizer functions in the

full PPS maodel. This restriction gives the PPS model a direet mampulation style similar to

51

a4 g

|
L

T T TR Y
o

Figure 2-15: Functional Mapping in the PPS Model

,. Prese,.t\,ftcn A‘PPI.tzk'f‘.'oy\ .
o Data Data .
' Base - Base- o

\

PP VIR

5 A A :

- vy

v
.

. ﬁ‘..')

P SR

C .bk‘(t(‘\ B oL S(
> Coopttecad
Sez.,.g ne e

52 e

-
S TR 4_"_'.._~.' T .Y - . -._< R N T e «

LR, PR A A - e L e N U e e T N T
P S SRAL WAl Vol NPT P P, At aSalacaa s aladts aleciaetadealatadetat o0 o8, 2 of

P R — pucies. SRR S A St A

the style of the representation shiflt model. The restriction can be stated by expanding the
notion of inverse presenter and recognizer functions, as discussed for the representation

shift model:

Consider scquences of presentation editing commands as functions, mapping one
presentation data base state to another. Similarly, scquences of data base commands map
one application data base state to another. If P is the presenter relation, R is the recognizer
rclation, and C is any particular atomic presentation editing command sequence, the
restriction can be stated in the following form (using "*" for function composition and

= =" for cquivalence of two presentation data base states due to recognizer tolerance):
C*P == P*R(C)

In other words, the editing commands C acting on a presentation data base created by the
presenter P should result in the same presentation data base as would result from the
presentation of the application data basc that results from recognition of thosc cditing

commands.

There are interfaces where the style of recognition is very diffcrent from the style of
presentation -- i.e., the above rule is not even approximated. In such an interface the cditing
action may dircctly but temporarily result in a presentation data base state very dilferent
from what the presentation data base will be after recognition and presenter update. This
report does not attempt to argue whether such a user interface style is good or bad, nor docs
the restriction on the PPS model eliminate such a uscr interface from consideration. Rather,
the restriction changes the way the user interface would be modeled -- it cannot be modeled
as a PPS. The techniques discussed in chapter three can be used, however, to model such a
user interface as an extended presentation system. In particular it will be modcled as a
combination of one PPS capturing the presentation and another PPS capturing the
recognition. By modeling the user interface as an extended system, the very different nature

of presentation and recognition is highlighted.

53

o e e S I AR AR R e re R e e e S S SRR S O

[V Y

Chapter Three

Constructing Larger Presentation System Models

This chapter shows how the primitive presentation system (PPS) model can be extended
to model more complex presentation systems. Chapter four contains several examples of
complex presentation system models of cxis'ling user interfaces. The basic technique for
extending a presentation system model is to attach an additional presentation system to it,
either replacing or augmenting some part of it. The resulting presentation system may thus
contain scveral smaller presentation systems. The particular extensions discussed in this

chapter are suggested by an examination of the major limitations of the PPS model:

* The user can only make immediate changes to the data base -- there is no
planning.

*The neer can only see the current state of the application data base resulting
from the commands to change it -- there is no presentation of the commands
themscelves or the differences between states.

*The user can only interact with the presentation editor, presenter, and
recognizer through primitive signals -- therc are no presentation system
interfaces to thesc components,

Each of these limitations suggests a particular extension. The limitations and the

extensions are discussed in the following sections.

3.1 Adding a Planned Data Base

The first major limitation of the PPS model is that it only allows immediate changes to the
application data base. In the PPS model, as the user edits the presentation, continual
recognition causcs the application data base 10 change accordingly. This can be
inconvenicnt if the user would like to sce what the result looks like before commiitting to it.

Immediate change can also be a more serious problem if the application data base changes

54

T ————— P —————r————

A e e e e o e e e e e e e o T ————r———
4 . - . : .

3

S

)

o

arc irreversible. This is often the case when an application program or physical process is

h being controtled through the data base. Thercfore, if the presentation system model is to
. support the construction of user interfaces where the user can postpone the effects of
&

- commands -- i.c.. where the user can plan changes -- the PPS model must be extended.

i One method of postponing changes is to add a new, sccond, data base that is a future (i.c.,
i planned) version of the original data base. This is itlustrated in figure 3-1. The user can edit

the planned version’s presentation, separate from the presentation of the actual data base,

and when the planncd version looks acceptable, give a "do it” command that causes the
actual data base to be updated. The "do it” command, like the other commands affecting
the application data base, emanates from the recognizer. The user may causc this to happen
cither by a dircct recognizer control signal or by performing some presentation cditing

command that is rccognized as a "do it."

In general the planned version of the application data base will behave similarly to the
actual data basc, ideally reproducing all the active components. For example. in PPSCalc a
planned data basc ideally would include all the recalculation capabilitics of the actual data
base. When this is the case, the user does not lose power or convenicnce in manipulating

the planned version over what the user would have had manipulating the actual data base.

As with the other extensions discussed in this chapter, this is only an illustration of the
technique of extending a presentation system to achicve some goal. This extension

technique may be used in combination with other prescntation system structures.

For example, figure 3-2 shows a combination of the straightforward PPS model and the
future data basc model discussed above. This combination allows the uscr to have two
presentations at once, one showing the future version of the data base, the other showing the
current version of the data base. With two separate presentations and presentation editors,
the user can interact with both, planning some changes and cffecting some changes

immediately.

55

c ot s g e g8 L~ o~

Figure 3-1: Planned Data Base Extension

4 o

’.- .
& .
b * 1

P"escntq'f ;,a;, F_‘kturﬁ A‘Pp‘.\cq'flpn
Data Data o Dota
Ba:e Bose Base

@ *De Tt~

Pfescn(a‘f on
Ed . tor

56

T S e o e s i a

Figure 3-2: Extension with Both Planning and Immediate Changes |

L
.

1

P((,$¢ n't..r

4 A >ltcattbﬂ
P’Dmt;\
Base

RQ (43 nrer

Freseater

Pr&xe t t')
ntalion F— -
D&tq ‘sti-t:e ‘—J

Base Base

Do it" .‘ ’ w4

o ..

» i
F SRR
3 Sole e 1

57

o ‘. T .. LR -

- . T tLe e .. .
. B - .

LA . ~

RN CYPATRERIY RO et N, LIRS

S ad W) PSP) A o gty g o g

R et i e e e - T — — PNt Sar i S T T T T T T i T e e

3.2 Adding a Data Base of Commands

The sccond major limitation of the PPS model is that the user cannot see a description of P
the changes or the commands o ¢ffect them presented eaplicidy, ‘The PPS model offers the
user a feeling of direct manipulation of the application data base contents. However, it is
sometimes safer or more convenient to see and edit a command or a description of the
change to be made. So, although direct manipulation is becoming more and more common
and is undeniably useful, a complete model must support the construction of interfaces in
which change is described or scen. Some systems may offer a combination of dircct
manipulation and command cditing, Others may offer the ability to sce or prescribe the
kinds of changes desired -- goals -- without specifying the particular operations needed to

achieve these goals.

Instead of adding a planned version of the data base, with content and presentation style
mirroring the actual data base, a data base of the plans or commands themselves can be
added. In this cxtension, the planned changes are rcpresented in the new data base

explicitly and can be presented in a style ditferent from that of the actual data base.

Figure 3-3 shows an extended presentation system in which the user can interact with the
- application data base directly, via the PPS at the top of the figure, and also indirectly, by

'.fj; giving commands to the application data base via the PPS at the bottom of the figure. The

uscr can see and ¢dit these commands presented in the presentation data base in the bottom

PPS. When the user gives the "do it" command, these data base commands are passed to

the application data base.

Thus this extension also gives the user a planning capability, and is similar in structure to
the previous extension in that a new data base has been added as a bufter. The difference is
that the data basc in this case has commands, whercas in the previous casc it was a copy of

the application data base.

As in the future data base extension, the figure shows two copics each of the presentation

L

F bottom PPS has a data base containing commands for the application data base above. The . @

et
La a’a sy o o

PN T ST U

R Tt el

Figure 3-3: Comunand Data Base Extension

’
1

)
e
PP ST S TP

PVQSQ n't er

Prcf;nqu(an A?‘oluiqttbn
atla Data
Buse 3::e L {

deta
base
Camman J 5

res en'fat on
Ed.tor

Ktco Alter
J

Data
Bose

Cchnar\c/:

’%‘_K/(*De TL” * .

Prese ntation
Data

P"Qsen’tr.{i-,‘
Editer

Base

.'._' 59

. - - - - N
EURE TS . N - . Ce e e S e e T L e e T T JRCIP R PN e T N T s
i St T W Wt e L e T e e e T e e T e T e T L Tt e e e e RN . oo
AT atea Ata e T o ealatota ol ol ST SRS PO . W L, .. Y e Bt PP Y N LI S I N R

o
o
’ "o]
A editor, presentation data base, presenter, and recognizer. Though their gencral purpose is
g the same and they are labeled the same. they are in general different. In this extension this "o]
is especially the case for the presenters and recognizers. The application data base in the top
PPS. and the data base of commands in the bottom PPS, have very different kinds of j
information in them. The presentation and recognition styles will thercfore in general be j
| quite different.) . - 1
3.3 Adding Interfaces to PPS Components
C The third major limitation of the PPS model is that the presentation editor, presenter, and
recognizer are not presented. The user controls them through presentation cditing
commands, presenter controls, and recognizer controls. There are two aspects to this
. problem in the PPS model:
o
First. these controls arc only primitive signals. such as keystrokes. There is no ability to
sce the commands the user is typing, edit them, or get help in their use. The only thing
,,. being scen and cdited (i.e., presented) is the application data base.
A
Sccond, the user must give commands to affect the editor, presenter, and recognizer. The
uscr cannot directly sce the state of thosc processes, their modes, control variables, ctc. As
i the user interface becomes more powerful and complex, the user interface components, as

well as the application data base, become important objects to present. The text editor

Emacs, for instance, has nearly fifty options variables in its simplest. initial form. Many

systems have many option variables controlling presenter style, modes, etc.

Instead of primitive signals to control the prescntation cditor, presenter, and recognizer, ,
- and no ability to present their state, PPS interfaces to these components can be added. This]
5 involves adding a data basc for the particular component’s state (c.g.. a data base of the 7_21
» presenter’s options controlling its vis. . yle) or using the previous technique of adding a °
data basce for the component’s comnands. '
Figure 3-4 shows onc such interface, providing a representation shift interface to the
»
: % :
4
. . T 'V 1
e I

- ———— i e PSP Boue e T T T T T Y T T T T N T T N Y WY Y VTN T Y W W T T W W T VW R SR T L v e

Figure 3-4: Presenter Interface Eatension

L1

Presenter

. Pr‘ftnt f:Au
User Fresentation D,‘ZA B ‘ Freseater
. gdg‘tGr B“L St&t&

P‘e;gnfa{,;ﬁ‘ Appl\tafmh
| Do.tq Du‘tq
Bﬂ se B ase

T7f€.5 M‘t&l"

?flse n'foi'.'m\
Editor

i User

T » Re.utj nmzer

fecoqniver
Contlal

61

v e e . . e T PR . e e e e T . e . e =

PRSP . . I L e A I SR AL AL ORI TR L SR L A SR St

M -, .. . R T TR AL R R R P S IR A N SR P UL AP et e B T
» "ot - 8" . - A e e . . - e e e % e U e . RN
PP LI IS L PP LIPS WP U S WD G PLFCIY LN G LRI LD S ST G G T G YT T

[auge magns LA S A AR A Al s —— = g .. B - 3 9 0 ? - . T —— - n - - s T

presenter. The presenter's state has been expanded into a duta base presented by the

representation shift presentation system at the top. As with all the additional presentation

systems in this chapter, there are many possible presentation systems that could be added.

A PPS could have been used instead of the representation shift, for example.

i In this eatended presentation system the user can interact with the application data base,
via the main presentation system at the bottom. The user can also interact with the
presenter, via the presentation system at the top, which has replaced the original presenter
control input. The user can change the way the presenter behaves by editing the presenter’s

b state presentation. For instance, this might include changing the amount of detail shown in

the presentation of the application data base. It might include changing how the presenter

shows different kinds of domain information, ¢.g., whether tables or graphs arc used.

Finally, it might include changing what parts of the application data basc are being

presented. (Recall that the PPS modcl atlows that the application data base to be only

partially presented.)

Figurc 3-5 shows an alternative extension for controlling the presenter. Here, instead of

-tl

cditing the presenter’s state, the user cdits commands to the presenter, just as in the
previous scction the tcchnique was used to allow the user to give commands to the
: application data base. The top presentation system (again a representation shift model, but
i as before it could be any kind of presentation system) hooks dircctly into the presenter

control input to the presenter.

This technique of adding a presentation system to allow the user to interact more
conveniently with the presenter can be applied to the other presentation system components

as well, e.g., to the presentation editor and recognizer,

3.4 Shared Screen Space -ad Presentation Structure
This section examines three kinds ol sharing that can occur in presentations systemns. In
general, sharing occurs when some part of a presentation system, e.g.. a particular part of the

screen space or a particular presentation, simubtancously fulfills two different roles, There

62

O A UG N S By

fcknfif.,
EJ;r.r‘

Fesenlat.

duts Buse

Pms«:nfat:‘an
Edotor

D L S R S Y
. .)

T — M aEE e s o Ee duei

Figure 3-5: Presenter Commands Extension

)

Preseater
aﬂmq ncls

f: wj.‘, Res

Pre senlation
Data
Bose

.Rec:ajm'{(r

63

LI PR S S R S S
PP WK WAL P UL WP WP

Preseater
Contral

A??Ll(l\ttbn
Data

s

are tradeofTs between benefits of compactness and costs of ambiguity.,

The first kKind of sharing is sharing of screen space between two presentation systems, ¢.g.,
- two PPS components in a larger, extended presentation system. Presentations that

conceptually belong to the different presentation systems are often intermingled within the

L4
ol
RN R S R Y U G ¢

same space. For example, in the Emacs Dired system o be discussed in section 4.1, a

L

directory listing (a presentation in one PPS) is annotated with ""s, which arc presentations

o of plans to delete files and which belong to a separate, command-planning PPS. This is
; contrasted with an interface that has two such presentation systems occupying completely

separate arcas of the screen, ¢.g., different windows. o

The second kind is sharing of one prescntation form between two presentation systems.
The shared presentation presents two different picees of information, in the two different
application data bases. Consider, for example, a directory listing. An interface could use a ®
directory listing for more than just presenting a directory: it could also use it as a means of

controlling the directory listing presenter. The user could trim the directory listing to

inform the presenter that certain files should not be included. This editing, and recognition - e
of it, conceptually occurs in a separate PPS. The direclory presentation is shared between
the two PPSs. In the presenter-control PPS, the directory listing functions as a prescntation

of the presenter’s state.

A third kind is sharing of one presentation between two presented domain objects it one

PPS. This occurs when one domain object is presented in order to present another domain

object. A typical case is presentation of a filc's creation-date property in a directory listing.

ST |

To present the property, the value of that property is presented, namely, the particular date. °
{And the process thay continue; to present the month property of the date, the particular
month is prescnted.) Thus, a single presentation form (e.g., the text "3/4/83") presents

both the creation-date property and the particular date (3/4/83) that satisfics that property.

Sharing of screen space or prescntation structure can provide convenicnce to the user
because it results in a compact presentation. Sharing can achieve what might be called

visual locality: two presentations of related domain objects are located near cach other.

64

et e, W Sl - . S) T L . .
S, L AL . PP WV WP, P PO U, ST PO CH . SR S W U W U S S L S U AP SR N

T

Unfortunately, sharing can also lead to ambiguity, both for the user and for the

implementor. The user may not know which cditing functions apply to presentations "o
shared between two presentation systems. When screen space is shared, the user may not
know what kind of recognition to eapect when cditing the ditferent presentations. The
implementation must also keep the two kinds of presentation distinet. so that the proper
editing and recognition happen to cach, When presentation structure is shared, the user
may not be awarc how presentation cditor functions are recognized differendy by the
recognizers in the two presentation systems, The implementation must include a means for
sclecting the recognizer based on the kind of editing performed. The ambiguity is most
severe when the capabilitics of the presentation editors overlap. The choice between the

two recognizers then must depend on context or user choice.

The designer should identify ambiguities in the proposed presentation system. and decide
which one¢s to resolve, Such a decision must take into account the prospective users,
conventions in the style of the interface, the particular tasks to be performed, and the
application doinaiin. Shaiing might be climinaicd. Conventions might be iniposed on the

kinds of sharing and the methods of uscr or system resolution, °

However. regardless of the outcome of the decision, the designer must consider that there
is always ambiguity due to potential sharing. The uscr cannot tell, merely by viewing the
directory listing, whether deleting a line in a directory listing, for example, will mean don’t [}
present that file (manipulating the presenter). or whether it will mean delete the file
(manipulating the application data basc). Ambiguity of presentation structure, unlike
ambiguity of shared space, is an inherent possibility of the view. Resolving an ambiguity by
climinating sharing of presentation structure does not make the presentation appear
different. (Howcver, another presentation may be introduced nearby to perform the

climinated function.)

Sharing of presentation structure within a PPS. such as ariscs from presenting a property
by presenting its valuc. is less troublesome. fts ambigity can be resolved by the recognizer, PN

by deciding which of the possibilities is appropriate for the command being recognized. el

05

.
o
:
3
s
,
3
1
3
|
5
F_*y .

MANe Bthn Tiu enesfinen Jnosn Suent S e, Seten: By T T ——_—— TR TV TR

For example. if user editing of the creation-date presentation for a file is recognized as a
change command, then only the creation-date property fits the recognition -- one cannot
change a date. (By changing the property. ong is selecting a different date to be the value of
the property. The original date value is lett unchanged.) This technique is offered by the

PSBasc system, and so further discussion of this technigue appears in section 5.1,

3.5 Concluding Remarks

This chapter has discussed only a few examples of how presentation systems can be
constructed by hooking primitive presentation systems together. There are many more
possibilitics. including combining these extensions and creating new kinds of extensions
using similar techniques. (For example, a system might offer cascaded presentation
systems, presenting the presentation data base.) In modeling actual user interfaces. the next

chapter illustrates several of these possibilities.

—— vv‘-rv v

e as U ae . aaae
o [

T - - ~— — T Y e T, e e T T T T T T

Chapter Four

Describing Presentation Systems

‘This chapter illustrates the use of the presentation system model as a descriptive tool.
The model provides a set of concepts for cnumerating and categorizing basic functions and
interactions in user interfaces, whether or not those interfaces were designed with this model
in mind. The behavior of four different user interfaces will be described in terms of the
presentation system model. In each example the focus will be on those presentation system

mechanisms that play the most important part in defining the style of interaction.

A secondary aim of this chapter is to offer support for claims of the modcl’s gencerality,
i.c.. that thc model applics to a wide range of uscr interfaces. The sclection of user
interfaces described here has been chosen to show the descriptive process by example. The

reader should then be able to apply this process to other interfaces and thercby gain

confidence in the model’s gencerality.

The selection thus emphasizes different approaches in user interface techniques. At the
same time, an cffort was made to choosc user intertaces that exemplify diffcrent aspects of
user interface research and development. Part of that cffort was an informal poll of pcople
involved with developing, studying, or just interested in uscr interfaces. They were asked to
name three "cxemplary user interfaces.” The interfaces used in this chapter all have
followers. There were many favorites and strong opinions, but nothing ncar a conscnsus
except on the Xerox Star [Purvy, Farrell & Klose 83] [Smith, Irby, Kimball, Verplank &
Harslem 83] and Apple Lisa systems [Lisa 84].

PPSCalc was discussed and modeled in chapter two. Because PPSCale is a simple version
of VisiCalc [Beil 82]. VisiCale has already been treated to some extent. Actually modeling
VisiCale would involve describing extensions to the main PPS. Such cxtensions will be

suggested by those used in modeling the user interfaces of this chapter. To avoid this

67

. . . S, . . . B <« e -
P T « . DR Y . et N L P PR PSR Y
. PEVAETAE S L P SRR IR N AR ¥

PP ORP U WP P LIPS I Sl Tl Vil S VA Wi e

n.‘.'~ P PPN Py P NP RT PPy SRy Yl ey WU T gy ey

falale 4

®
Y
]
3
3
4
- PR
LI
.)
®]
]
]
. 4
® |
S
. F
® |

®

redundancy, VisiCalc or other spreadsheet programs will not be discussed further.

4.1 Emacs Dired

Dired is a subsystem of the Emacs cditor that allows the user to perform several dircctory

operations by manipulation a directory listing. The version of Dired described here is the

'
. -‘ . ' . L :
. PR I

W B a At A hadalad

one in Emacs on the ITS operating system [Stallman 81].

Dired is an extended presentation system, allowing both immecdiate changes to the .
application data base (the file system directory) and planned operations. Annotations to the ® ‘
dircctory’s presentation present the planned operations. Dired has two other component
presentation systems. One recognizes presentation editing as changing the state of the)
presenter. The other confirms the user’s planned operations by offering an alternative :
presentation of the planned operations. L4

Dired Scenario. The following scenario will illustrate the usc of Dired. After the
scenario, the presentation system model of Dired will be discussed. ‘

.9

The user invokes Dired, initially vicwing the full dircctory listing shown below: : -
MC NSR -
FREE BI.OCKS #0=1666 #1=625 #13=1163 #15=1461 #14=1549 #16=1149 T

0 BABYL BUGS 26 +486 4/02/84 14:09:26 (4/02/84) .MAIL. o s

13 BABYL INFO 27 +488 8/31/83 14:37:09 (11/16/83) .MAIL. - @ B

L FIXLIB 209 ==> EMACS1;FIXLIB > (5/06/83) -

13 MAINT BABYL 5 +27 2/18/84 17:01:42 (3/01/84)

1 QUEUE NOTES 2 +83 3/10/84 10:20:13 (3/23/84)

1 TEST VALUES 0 +69 1/17/84 19:20:14 (4/03/84)

1 TMSG 2 1 +34 § 3/28/84 11:03:39 (4/03/84) -

1 TMSG 3 1 +20 ! 4/03/84 21:53:21 (4/03/84) {

1 TMSG 4 1 +248 ' 4/03/84 21:57:45 (4/03/84)

1 TMSG 5 2 +94 \ 4/03/84 22:14:15 (4/03/84)

1 TMSG 6 2 +86 ! 4/03/84 23:34:36 (4/03/84)

L TS NSRMAC ==)> NSR;TSNSRM > (2/24/84)

15 TSNSRM 1320 13 +463 8/19/83 20:44:23 (2/24/84)

. ®

The user wishes to restrict attention to those files that might plausibly be dceleted or
moved to a sccondary disk pack. In particular, several files are related to the maintenance o
of the mail reader Babyl and should definitely not be considered for deletion. Using the '

. @

68

.....
......

Fmacs command Delete Matching Lines, lines containing the text "BABYL" are removed.
This does not delete those files -- it only atfects the view the user has of the directory.

resulting in the trimmied directory listing shown below:

MC NSR
FREE BLOCKS #0-1666 #1=625 #13=1163 #15=1461 #14=1549 #16=1149
L FIXLIB 209 ==> EMACS1;FIXLIB > (5/06/83)

1 QUEUE NOTES 2 +83 3/10/84 10:20:13 (3/23/84)

1 TEST VALUES 0 +69 1/17/84 19:20:14 (4/03/84)

1 TMSG 2 1 +34 $ 3/28/84 11:03:39 (4/03/84)

1 TMSG 3 1 +20 ! . 4/03/84 21:53:21 (4/03/84)

1 TMSG 4 1 +248 | 4/03/84 21:57:45 (4/03/84)

1 TMSG 5 2 494 ! 4/03/84 22:14:15 (4/03/84)

1 TMSG 6 2 +86 ! 4/03/84 23:34:36 (4/03/84)

L TS NSRMAC ==> NSR;TSNSRM > (2/24/84)

15 TSNSRM 1320 13 +463 8/19/83 20:44:23 (2/24/84)

Deciding that the file named "QUEUE NOTES" is no longer needed, the user moves the
Emacs cursor to that line in the directory and types a "D", marking that file for deletion.
The file marked for deletion is shown by annotating that line in the direclory listing with a
"D". There are several versions of the "TMSG™ file. and using the "H" (Delcte Hcelp)
command instructs Dired to mark old versions for delction. The " conninaind geincially
marks all but the two most recent versions. However, in this casc the version "TMSG 2"
has a property protecting it from automatic deletions or migrations to tape (indicated by the
"$" in the listing). Dired will therefore leave that version alone. The resulting directory

listing is shown below:

MC NSR

FREE BLOCKS #0-1666 #1=625 #13=1163 #15=1461 #14=1549 #16=1149
L FIXLIB 209 ==> EMACSI;FIXLIB > (5/06/83)

D1 QUEUE NOTES 2 +83 3/10/84 10:20:13 (3/23/84)
1 TEST VALUES 0 +69 1/17/84 19:20:14 (4/03/84)
1 TMSG 2 1 +34 § 3/28/84 11:03:39 (4/03/84)

D1 TMSG 3 1 +20 ! 4/03/84 21:53:21 (4/03/84)

D1 TMSG 4 1 +248 ! 4/03/84 21:57:45 (4/03/84)
1 TMSG 5 2 +94 ! 4/03/84 22:14:15 (4/03/84)
1 TMSG 6 2 +86 ! 4/03/84 23:34:36 (4/03/84)
L TS NSRMAC ==> NSR;TSNSRM > (2/24/84)
15 TSMSRM 1320 13 +463 8/19/83 20:44:23 (2/24/84)

Next, the user moves the file named "TEST VALUES" from the primary to the

secondary disk pack with the "S" command, changing the line

69

e e e e e e e T e e . STt L
DRI DAL I S T W A SIS0 S S0 SO S PRSP S8 VK WPUEIPE SPULEP W SO VO -y

1 TEST VALUES 0 +69 1/17/84 19:20:14 (4/03/84)

to

13 TEST VALUES 0 +69 1/17/84 19:20:14 (4/03/84)

The lefumost "1 and "13" in these two lines indicate the disk pack numbers (0 and 1 are
primary packs, 13 is the sccondary pack). ‘The "S" command takes cffect immediately,
moving the file to the sccondary pack when the "S" is typed. In this respect, the "S"

command is unlike the "D and "H" commands, which mark the files for later deletion.

The "$" command changes the property protecting against automatic deletion. The user
moves the Emacs cursor to the "TMSG 6" line and types “$”. That immediately scts that

property and updates the display, changing the line

1 TMSG 6 " 2 +86 ! 4/03/84 23:34:36 (4/03/84)
to
1 TMSG 6 2 +86)% 4/03/84 23:34:36 (4/03/84)

The full directory listing now looks like:

mMC NSR

FREE BLOCKS #0=1666 #1-625 #13=1163 #15-1461 #14=1549 #16=1149
L FIXLIB 209 ==> EMACS1;FIXLIB > (5/06/83)

D1 QUEUE NOTES 2 +83 3/10/84 10:20:13 (3/23/84)
13 TEST VALUES 0 +69 1/17/84 19:20:14 (4/03/84)
1 TMSG 2 1 +34 §$ 3/28/84 11:03:39 (4/03/84)

D1 TMSG 3 1 +20 ! 4/03/84 21:53:21 (4/03/84)

b1 TMSG 4 1 42483 ! 4/03/84 21:57:45 (4/03/84)
1 TMSG 5 2 +94 | 4/03/84 22:14:15 (4/03/84)
1 TMSG 6 2 +86 !$ 4/03/84 23:34:36 (4/03/84)
L TS NSRMAC ==> NSR;TSNSRM > (2/24/84)
15 TSNSRM 1320 13 +463 8/19/83 20:44:23 (2/24/84)

The user types a "Q" to indicate that the deletion plan is complcte, and is offered the

following alternative display of the deletion plan for confirmation:
Deleting the following files:

QUEUE NOTES ! TMSG 3 ! TMSG 4
0k?

70

IR LA, S ',_-'.‘-'_-'_ R L S S P SRR P T e e L.
-~ - o ¥ SO N, LI AL AL, S . S S S A A D R

ﬁﬂv't.

The confirmation shows only the files to be deleted and some of their important

propertics. For instance, indicates that a file has not yet been backed up on tape. In this
case, that is all right for "TMSG 3" and "TMSG 4", since those arc not the most recent
versions of the file. (If the user had marked the most recent version of a file for deletion, a
">" would indicate that fact.) Typing "YES" causcs the plan to be executed and the files are

thereby deleted.

Dired Presentation Model. Figure 4-1 shows the structure of the extended presentation
system model of Dired. It has four component presentation systems, labeled “Presenter

Control,” "Directory Listing,”" "Dclction Planning,” and "Confirmation."

Diroctory Listing PPS. The main PPS presents the directory and recognizes the
immediate commands, such as "S" (move filc to sccondary pack) and "$" (change property
protecting against automatic deletion). The presentation data base PDBI comprises the text
that makes up the dircctory listing. A linc of text is a compositc presentation presenting a
file or link: the text within the line presents propertics of the file, such as the file's name
("QUEUE NOTES"), creation date ("3/10/84 10:20:13") and last-reference date
("(3723/84)"). Several of these presentations are in turn composites of smaller

presentations (e.g., "3". 23", and "84" are components of *3/23/84").

The presentation editor PE1 offers the "S" and "$" commands, both of which are
references to the current file presentation within the directory, as well as Emacs commands
for moving the cursor and scrolling text. Recognizer R1 immediatcly translates the "S"
command into the command to the file system to move the file. Presenter P1 then updates
the dircctory listing to show the "13" presenting the disk pack. Similarly, the "$" command
is translated by the R1 into the file system command to change the file property. Pl then

changes the directory listing to show the "$" presenting this property.

Presenter Control PPS. The PPS at the top of the figure is an interface to the presenter
P1 of the directory listing PPS. The application data basc of this extension is the state of Pl
describing which files arc to be listed. The presentation data basc of the extension, PDB2, is

shared with the dircctory listing PPS. In other words, the same presentation data base is

71

Figurc 4-1: Dired Model

P i
PE 2 PDR2 IC:?_Z:}EP PL StaTe .)

Line- deletes T

'

i (R >}
[H

A o bl et

Dir‘e.c'tor
PDB oeta | ADE
1 L's't\"\j (ﬂ‘Lc Sjstzn«)]

* Su - "
, B

Commands

__/

"DaTt"

L
e S
A bn'atad

RN
-..' .<
. ..

ST -3
S
.

involved in both presentation systems,

The eatension’s presentation editor, PE2, however, is not the same. It does share Fmacs
cursor movement and scrolling commands, however, ‘The primary editing commands for
PE2 arc those Emacs commands that delete lines, such as the Delete Matching Lines
command mentioned in the scenario above, The recognizer R2 translates these line
deletions into changes to the directory presenter Pl, informing it that certain files (those

{iles whosc presentations were deleted) are no longer Lo be presented.

Since this extension shares the presentation data base of the directory listing PPS, P2 is an
implicit presenter, ticd to Pl in that P1's output (the presentation data base) is itself a
presentation of P1. In gencral, the output of a process can serve as a presentation of the

state of that process.

Deletion Planning PPS. The third PPS is an extension of the main dircctory listing PPS
using the technique of adding a data base of planned commands. A delete command is
presented by an annotation to the dircctory listing presentation: a "™ placed at the left of
the line presenting the file to be delcted. Again there is a close relationship between the
presentation data basc of the deletion planning PPS, PDB3, and that of the directory listing
PPS, PDBI, although the two are not the same in this case. They share some of the same

screen space, but the component text presentations are different.

The deletion planning PPS is a representation shift presentation system: the state of the
presentation data base conveys all the information about the delete commands. The
presentation editor PE3 contains the Dired "D" and "H" commands discussed in the
scenario, as well as a wide range of other Emacs editing commands. The user can use "D"
or "H" commands to crcate the annotation presentations. They simply insc.e "D"
annotations on file presentation lines. Aliernatively, the user can use any Emacs editing
mcthod of inscrting a "D" at the bcgiﬁning of a line, and that "D" will be recognized as a

delete command.

Confirmation PPS. The presentation system at the bottom of the figure is an cxtension to

73

PO SR P SN NI SR St WY S S W S W)

]
1
‘o
1
®
4
®
1
R
SR
e
1
L
IRSIR KA
[4

P
)

T B Abes BIPA A B e T—————— P—— oaa o e o L T

the deletion planning presentation system. The job of the confirmation system is to give the
user a different presentation of the planned delete commands, and recognize the "do it"
signal for the deletion planning commands. When the user types "Q" after creating the
plan of deletions, the deletion planning PPS s cuspended. and control passes to the
contirmation PPS. (If the user does not confirm the deletion plan, control will pass back to
the deletion planning PPS.) The planned delete commands arc presented by presenting the
files to be deleted -- their names and those propertics most frequently useful for checking

the plan.

Unlike the other presentation data bases, PDB4 is a completely separate presentation data
base. 1t has a trivial presentation cditor, PE4, which allows the user to type in the
confirmation answer. Recognizer R4 watches for these answers, and signals "do it" if the
answer is "YES". (Other than the "do it," R4 sends no commands to the delete-commands

application data base.)

4.2 Zmacs

Zmacs [Zmacs 84] is the text editor for the MIT Lisp machine [Weinreb, Moon &
Stallman 83]. Zmacs has many capabilitics, and a complete model of its prescntation system
behavior would be very large. This section will describe the major presentation systems

aspects and sample the rest.

Buffer PPS and Screen PPS. Figure 4-2 shows the most important structure of the
prescntation system model of Zmacs. The PPS labeled "Buffer PPS" and that labeled
"Screen PPS" model the primary presentation. In the buffer PPS the application data base
ADB is presented as text in the bufTer, i.e., PDB1. (Text files arc treated here as long-term
storage of presentation data bases. ‘Therefore, this section will concentrate only on the
buffer) The application data base can be of many forms and is frequently not realized as
any explicit set of programs or information. For ¢cxample, when PDBIL contains English
text. the application data base would comprise language constructs (words, scntences,

paragraphs, ctc.) and the subject matter they discuss. These things do not cxist in the

74

Ty

At 4 a2 g

3
3
B
- e
L] 4
o
4
B
4
e
]
1
L
4
[N ——
. e 4

o
4
K
. L
e
. @ 4
.; - ..1
S
s 9
LR
L *q
L

N e e St St e v s)

igure 4-2: Zmacs Model

e i o (

t &

Sdd 223409y

(~334~9)
T9qd

mv!‘f:lo.u

(2309 1)
€94Qd

T |

ﬁ:v.cuwv

*adad

Sdd

JU.\ULJVUL

m Rrow

............

.....
.....

75

POV Sk gl

L
I R . LN - -~

LT A

-":‘ . .“..
NP T

PO « "
e Rt ot ata? ot

. ol e

e e e e el
Y At ata'a's " a"a'm

L
-
-

i

T p—— " ™ el Ay

computer anywhere, but they are nevertheless being presented. When the teat is a Lisp
program. on the other hand. the application data base is the Lisp maching’s computational

cnvironment.

The screen PPS cascades with the bufter PPS, further presenting the buffer as the text
that appears on the screen. Most user interfices can be modeled with this extra stage, but
often the operation at this level is trivial. For Zmacs, however, it is useful to discuss the
screen PPS, as certain Zmacs commands depend on the distinction of PDBI (the buffer) and

PDB?2 (the screen),

The buffer contains text (a large amount possible -- much more than fits on the screen).
It has an associated currcnt position called point; uscr-typed text is inscrted at point, for
instance. There is somctimes another position called the mark, and the interval between

point and the mark is called the region.

Presenter P2 presents a window of text around point, i.c., a contiguous section of PDB1
text that will fit on the display window. Point is presented by the cursor. The region is
highlighted on the screen, cither by underlining or by reverse video. This choice is made by
a user option, i.c., a P2 presenter control. In addition to choosing the window of text P2
must also consider what to do with lines of text that are too wide for the window. In Zmacs
these lines are wrapped, so that they continuc on the next screen line, with an exclamation

point to present the fact that wrapping has occurred,

Buffer PPS commands. To a large degrec, the opceration of a text cditor concerns only
PEL and PDBI, with most uscr editing going unrecognized until much later. Zmagcs is,
however, more than just the combination of PEL and PDBI (and the screen PPS) -- there

are several commands whose behavior involves recognizer and presenter action,

For instance. consider the Fill Paragraph command to P1, which edits the paragraph of
text around point to have lines that achicve a good fit within the margins, As the user types
and edits the teat of the paragraph, R1's organizational recognizer determines the block of

text presenting the paragraph, crcating that paragraph in ADB. The Fill Paragraph

16

.

LR SO S W O S S PSPPI B P U A A T TP A S

- S
-
-
. 4
o e il
® d
1

®
4

[

o
Aaded b

e et -
Al a ' e e

command signals P1l's organizational presenter to perform the filling, updating the
presentation data base to present the ADB paragraph in the filled style. Finally, P2 updates

PDR2, the screen, and the user sees the result.

Similarly, consider the Indent For Lisp command, which indents the current line of a
Lisp expression according to its syntactic structure. Recognition has been proceeding (in
clfect) as the user edits, constructing and editing the Lisp object in the Lisp environment
ADB. Up to this point, Pl's organizational presenter has followed the user -- i.e., done
nothing to change the text. The Indent For Lisp command signals the organizational
presenter to update the presentation according to the presenter’s indenting style. P2 then

updates the screen to rellect the PDBI changes.

The Mark Thing command sets the region around some presentation at point, the kind of
prescntation being determined by exactly where point is, If point is in a word or Lisp
symbol presentation, that presentation is marked. If point is at the start of a Lisp
eapression, the whole expression presentation is marked. Recoguition of this command
translates into a mark of the object in the ADB followed by presenter update. The PDBI1
region is sct to present that selected ADB object. This illustrates the need to consider more
than just text as prescntation forms -- the region, and also point and mark scparately, can

present information in the application data base.

Finally, consider the Evaluate Region and Evaluate Into Buffer commands. Evaluate
Region causes the Lisp capression rccognized from the region text (or if there is no region,
then the Lisp definition around point) to bc evaluated in the Lisp computational
environment. The value is presented in a small window at the bottom of the screen.
Evaluate Into Buffer takes its text to be recognized from a different arca (a minibuffer, to be

discusscd below). and after evaluation, presents the resulting Lisp vatue in PDBI1 as text.

Secreen PPS commands. Most Zmacs user connnands go to PEL, the presentation cditor
for the butfer PPS. Commands o the screen PPS components involve the screen
appearance as opposed 1o the underlying buffer text. Such commands concern mouse

references. window scrolling, window reshaping, and any text commands that depend on

m

E I B
LT et e
UYL S S T DL Y

A ARty

whether lines are wrapped. (For instance, such a command might move the cursor down
one screen line. moving forward in the buller teat line to a point presented on the screen as

dircetly below)) Window movement and reshaping commands go to the presenter P2,

Consider the PE2 mouse command to move point. ‘The user points to a bufler position
presented on the screen and clicks a mouse button. Recognizer R2 translates the reference
in screen coordinates to a reference to the position within PDBLs text, the position which is
presented by the referenced screen position, and a command to move point to that position.

Presenter P2 then updates the screen so that the cursor presents the new position of point.

Consider also the PE2 mouse command to mark the thing at the mouse position. The
uscr points to a presentation. e.g., a word or Lisp expression. and clicks a mouse button.
Again R1 must translate a screcn coordinate reference into a buffer text position reference
and a command to move point to that position. In addition the reference translation
includes a mark-thing command. That mark-thing command is further recognized, within
the buffer PPS by R1. as described above. Thus, the mouse command to mark a thing

requires action by PE2, R2, R1, P1, and P2,

Command Minibuffer and Completion. The lower half of figure 4-2 shows the model for
the Zmacs extended command minibyffer, by which Zmacs commands can be given by
name. Many Zmacs commands are connected o keys, so that they may be invoked by a
single keystroke. However, all commands may be invoked from the minibuffer, rclicving
the user of the neced to remember infrequently used keys. Thus, the minibutfer offers a
presentation system to the Zimacs commands. (For simplicity, we will consider only PE1

commands.)

The minibufler is a two-line buffer at the bottom of the screen and is edited almost
entirely as is the main buffer: i.c.. PE3 is almost a duplicate of PEL. PEJ3 does have some
additional commands, primarily concerning command completion [Zmacs 84}, As the user
constructs the command name, the command name recognizer, R3, attcmpts to determine
the possible commands that have the user text as a partial string. The user can signal the

command presenter P3 to aid in constructing the command name by filling in morc of the

78

e -

WL SN S Nl S W S L L. I

T

AP

name -- as much as can unambiguously be completed. (E.g.. if the user has typed "1 Mo™,
{‘ and the only command whose first word starts with "1 and sccond word starts with "Mo”
is Lisp Mode. then "L Mo" can be completed to "Lisp Mode™) ‘The user causes the

command o be executed by typing Returns this causes R3 o signal the "do ic”

v v v, o

h In addition, the user can invoke a command that fists the possible completions of the text
constructed so far. This command triggers the presenter P4 in the command completion list
PPS. It creates a new presentation data base PDB4 on the screen, a window of the
completions. The command minibuffer PPS and the command completion list PPS both
'{h‘ interface 1o the same application data base of PEL commands. PE4 allows the user to select ®
a completion from PDB4 with the mouse. That reference is recognized by R4 as choosing

' that particular PE1 command and signalling the "do it.”

O Other Presentation Aspects of Zmacs. This section will briefly discuss two of the many ®
other presentation and interaction mechanisms in Zmacs. Most of those not discussed here

arc very similar to the oncs that are discussed.

h Mode Line. One of the constant features of the Zmacs screen is the mode line, a small
onc-line window near the bottom of the screen that presents important information about

L the state of Zmacs and the buffer of text being displayed.

' L . . - . e
h For instance. the mode line presents a list of the control modes that affect the action of
presenter P, recognizer R1, and some of the connections of keystrokes to commands. One

= ol these is the major mode, which describes the kind of application data base information:

teat, lisp programs, etc. There arc also a sct of minor modes, with more localized eftects; an
example is a mode causing lines 1o be continually filled as they are being typed. The mode
line’s text presents these modes, and thus presents the states of PPS components, with labels
such as "Teat” and "Fill”. The mode tine as described thus far would be an example of a
representation shift except that it cannot be directly edited. (For example. one cannot L

change the major mode by cditing its presentation in the mode line.)

The mode line also contains a presentation of the screen PPS presenter. P2, and PDB2's

79

DI SN S PR e e e T e B L S T e T et . N e L
e e e e e e e et . P . . . At et . N . JENRT Y
D A A DR A AT IR A AL PSS RL I Tk S CHB T S TS URPCHLP -SRI Shpr W SOV e e W e . S BUR 2L e o ot LT SLP A S hhed

T e e eaa e St Juote Dese Mt Jamend T 3 B b T

relation to PDBIL. Small arrows pointing up or down can appear at the right of the mode
line. An upward-pointing arrow, for example, presents the fact (hat P2 has chosen a

window with more of PIDB1 above it.

Scroll Bar. The scroll bar is a small display that appears inside the left edge of the Zmacs
window when the mouse moves to that edge. (Sce figure 4-3.) The scroll bar consists of a
vertical line segment juxtaposed against the left window border. The line scgmient. by its
position along the border and its relative size-compared with the border, shows the size and
position of the PDB2 window rclative to the size of PDBI. In figure 4-3 the PDB2 window

is about one fourth the size of PDBI and is at about the two thirds position in PDBI.

The line segment preseats PDB2; the border 11ac presents PDBL. By presenting PDB2
and its relation to PDB2, the scroll bar is presenting the state of the presenter P2, (In
genceral, the state of a process can be presented by presentiag the state of its inputs and/or

outputs.)

The user can interact through the scroll bar using the mouse. For instance, the PDB2
window can be scrolled by a quarter of its size by making one kind of mousc reference to a
position a quarter of the way down the line segment (PDB2 presentation). Or, the PDB2
window can be repositioned within PDB1 by pointing to the relative position along the
border (PDB1 presentation). The scroll bar thus offers a simple PPS interface to the

prescnter of the screen PPS, P2,

4.3 Xerox Star

The Xerox Star [Purvy, Farrell & Klose 83 [Smith, Irby, Kimball, Verplank & Harslem
83] and the Apnic Lisa[Lisa 84] systems offer an interfacc organized around the
manipulation of icons -- pictorial presentations of commands and data. The two systems are

similar in many respects. so only the Xerox Star will be discussed.

Xcrox Star Scenario. The Xcerox Star models the user's environment after an office

desktop. (The desktop is. in effect, a directory.) Arranged about the desktop are various

80

T T e S Sl e e T e
PRI WP AT VI VR VW WP DR W WO VR R T R o/ i

Figure 4-3: Zmacs Scroll Bar

Rlways do right. This wi1ll gratify ®
sagme people, and astonish the rest.
- Mark Twain
Mhen angry, count ten before you
speak; 1if very angry, an hundred. . ®
- Thomas Jefterson L
Lhen angry, count four; .
when very angry, swear. - ‘ .
- Mark Twain L
- Mothing so needs reforming v'f?
- as other people’s habits. s
v .
;ﬁ - Mark Twain
[ZMACS (Text FL111 AObrev) SAMPLE.TXT P&:
O *
1
>]
} °
o .
. . - Y
NSRRI
° b
81 Ry
L
° |

4
®

<

documents, in-boxes, out-boxes, and folders. These are depicted on the screen by icons, .
small pictures. A document icon looks like a picce of paper with a title on it. An in-box . 4
icon looks like an in-box. Folders contain documents, and their icons look like manila *]
, : folders. (Folders are. in effect, sub-directorics.) Figure 4-4 shows a sample desktop display. j

Also on the screen are icons for more things than would normally appear on a real desk,

such as printers and file-drawers. File-drawer icons look like small file cabinets and indicate * 1
directorics on remotc lile scrvers. !
r‘; Interaction involves a mouse and command kceys. The uscr selects somcething, such as a o 4
document icon, by pointing to it with the mousc and clicking the left mouse buuton. The f
sclected icon is highlighted. The user then gives a command that affects the selected icon.)

Special keys are provided for several commands. T

T P——
[] .

One important command key is open. It causes the contents of the sclected thing to be]

displayed. For example. opening a document displays the text of that document. Opening

§ a folder displays the documents within that folder, Figure 4-5 shows a display after the user

opens the folder Backup. B)

There arc four universal command keys: move, copy, delete, and properties. These :'::_1_-.
commands can be applied to any Xerox Star object. In its simplest usage the move -
command allows the user to rcorganize the visual desktop. The user selects the document " '“1
icon and gives the move command. Then, as the user moves the mouse, the document icon

follows it. Clicking again releases the icon from the mouse. -

Another important use of the move command is to manipulate the document itself, not o
just the organization of the visual display. The document is printed by moving the
document icon to a printer icon. The document is moved into a folder by moving its ,‘
document icon into the display of the opened folder. A document is moved to a directory

on a remote file server by moving the document icon to the file-drawer icon.

Typing the properties command key produces a property sheet for the sclected item.

82

i
0

s

x

1

.
hte o o s

UL - . et PPN . S et e T . . - . P L L .
. . e g . . I RN o gt e e Tl - S ST e .
[] b} P o, UL PN IPRLIN PRI W WL W TR ST YL Ul WS ST Tl St? WY VW TLEP T WP S LA G U IR Y A el o & 'a a'a 8 2", 'a_a’'aatar

e

"

it et St

isplay

Xerox Star -- Desktop D

gure 4-4:

$1850)

BT

8R6]

19329000)]

v.uv,_. .

sIppT
$10Ar
e

Gasty
cuLayy

awoy
133

oy ulr i

dnyseg

oydeJt
[LTT LT

$
wden,
aseg

o1yde 10,

Heqiesy

=

00

[SHIs] M

—

-

v

Tt R ——p—

T —y

Xerox Star -- Opened Folder

Figure 4-5

(19

BLEE
BRT

13118AU0)

DB

SwippY
ioar
FEITER

i

hep)
sideq

Tty
ey

e

4
aidey s

3 goeg

ISR -V 1
€1 40 vNIen
ST BIPRS00
¥/ TN

sbeg
sohey

dbey |

abeg |

suexhuy O
sadrcepy uot durg [
oy)

¢ty O

7andeyn J

LE S vRULTEG sabey
FEY-1T:% waeyl AE Sl BTN sabeg 01 Landeyy
ue 21197
e ﬂs " 40 Nrse 30 3z
IVE) <
wrooy ydese
queig P T

Figure 4-6 shows the part of the desktop displaying the property sheet for the document
named Chaprer 7. The property sheet is a table, displaying properties such as the
document’s name. creation date ("version of:"), and whether to display a cover sheet when
the document is opened. (A cover sheet contains fickds that help in mailing the document,

such as from. to. subject. and an accompanying remark.)

‘The user may modify the name and show cover sheet propertics. Editing the name

property is the way one renames a document.

A document or folder is deleted by sclecting its icon and then typing the delete command
key. (Similarly, a sclected section of document text in an opened document is deleted with
the same command.) Because deletions are currently not retractable, Xerox Star requires
confirmation from the uscer. A onc-line message is displayed at the top of the screen,
together with a yes/no choice. The user confirms the deletion by choosing "yes™ with the

mouse. Figure 4-7 shows thie upper part of the screen during a delete of the Backup folder.

Xcrox Star Presentation Model, Figure 4-8 shows the presentation model for the part of
the Xerox Star system discussed in the previous scenario. The model comprises four PPS
componcents. As in the modcl for Zmacs, a window-display PPS cascades with the primary

PPS.

Desktop PPS. The desktop PPS is the primary PPS. The application data base ADB
contains documents. folders, remote file servers, in-boxes. out-boxes, and printers, These
are presented by icons and windows in the presentation data base PDBI (the picture of the
desktop). Windows present domain objects. such as documents, by presenting their

contents or propertics,

Icons have little presentation structure, but even icons are not primitive. i.c.. they arc not
name presentations. T'wo kinds of presentation structure occur. lcons present the name of
the document, printer, cte.. and the appearance of the icon presents the type of the object,

by depicting a stylized typical example.

85

Figure 4-6: Xcrox Star -- Property Sheet

{
3
Yy Y)

bt o

P)

setul
3raphics

Name

show [COVER SHEET : - e
®

Version Of: 03/27/84 1625 By: Caniel €. Halbert: OSBU North:<erax ’]

5ize as of LastPaginate: 1 L R

Figure 4-7: Xerox Star -- Delete Confirmation

Are you sure you want to DELETE that objer

]]PES]NO[

Jrasetul
“Agraphics

PGP Gl W S

hed

.
A

. .
PR ST Y

Y

87

e,

o B L . . -
P R 2P I At T R A s . A RERARYL RN
-{_l--v..l."-!..’l',‘_"‘,‘.'.l_'L-.l_"L“"‘ S S U e e M Yy el L W RS SR . AL

AP

.....:.......
i 1
O S S T S VR,

® @ ® [) ® ® N ® ® [o
: .

\ \ [. [A

ey .

Sd] © e

(O,/.Gf.L,%.(lGU ma& on.WL‘ .. ¢
{M#U_Vq -

T W T YT Y T N T e T e T T e w e W e — %

d

daqy Sdd

o
=
=
[
m
n
:) n_chAuA %2
b L
3 x
f . & e
g <
. (2]
Tom
E
=0 L
2 ST Y
-y
wmx::{ 10 sg
o] S9d | *gad pe-Chad
\ SR m& %
o
! o
..“J
,
' - o
e .-.vJ
! o
a
h S
r"

— —~ —=

Windows are composite presentations with many sub-presentations. Folder windows, for
,i example, present the collection of documents and sub-folders in the folder by presenting

them as icons within the window.

-:: Consider the move command discussed in the scenario, an operation provided by the
. presentation ceditor PELL The move may go unrccognized. merely changing the position of
icons on the desktop. However. when a document icon is moved neat to a printer icon,
recognizer R1 translates the move into a print command. When a document icon is moved
into a window presenting an opened folder, R1 translates the move into a command to

move the document into that folder. In other words, spatial adjacency to a printer icon

el

prescnts the fact that a document is being printed; spatial containment within a folder
window presents the containment of a document within a folder. The user can create these
spatial relations using PEl, and R1 implements the commands to create those presented

conditions,

The delete command in the scenario refers to a selected document icon. Recognizer R1

translates this into a delete-document command, but does not immediately send it to the

) B

application data base. The delete-confirmation PPS is used to allow the uscr to first confirm

the dceletion.

Delete-Confirmation PPS. The application data base of the delcie-conlirmation PPS
contains two rccognizer control commands: a confirmation ("do it") and an abort. These

commands are presented in PDB2 by presenting the delete command in the question and by

- presenting the choice between the two commiands as a yes/no box.

_J

The user references the yes/no box with the mouse. using presentation editor PE2.
Recognizer R2 translates this into the confirmation or abort command and sends the
A command to R1. If confirmed, R1 proceeds to send the delete command to ADB.

.

Window PPS. Some text and graphical objects in PDBIL are within windows for opened
EZ:“_: documents, propeity sheets, ete. From these PDB1 objects, presenter P3 sclects those
: objccts that will appcar in the window. These visible icons and text are the contents of the

89

i

P
[
b
’

« e ot miime S N TV AICREMEA A St St gt Nastl ey 4 T — Lt o L)

presentation data base PDB3,

Mouse references Lo text or icons within the window are made with presentation editor
PE3 and translated into references to the presentation data base PDBL by recognizer R3.

Thesc are then further recognized by R1 as commands to the application data base.

P3-Control PPS. The window presenter P3 accepts presenter control commands for
scrolling the window. Scroll commands arc presented by arrows in the margin of the
window, i.c., in presentation data base PDB4, by presenter P4, The user can point to those
arrows with presentation cditor PE4. Recognizer R4 translates those refcrences into

selection of scroll commands, together with a "do it” causing them to be sent to P3.

4.4 Steamer

Steamer is a prototype system designed to help train operators of U.S. Navy stcam
propulsion systems, incorporating color graphics. knowledge-based instruction, and
comprchensive simulation models {Stevens, Roberts & Stead 83] [Stevens & Roberts 83)
Only the uscr interface aspects of the graphics and its connccted simulation model will be

considered here.

Steamer uscs a simulation model that consists of about eight thousand state variables,
together with updating functions, which are processed once a second. (The simulation
proceeds in real-time.) The uscr watches an animated schematic view of the simulaticn.
There are scveral such vicws, one of which is shown in figure 4-9. The schematic is
continually updated, producing an animated view of the system. Certain elements in the

system can be muade to fail (e.g., a valve sticks open), to provide training for emergencics.

The user controls the system by pointing to various parts of the schematic with a mouse
and by using menus. Pointing (o a valvc icon changes its state, opening or closing it
Throttles are sct by pointing to the position within them that indicates the new value. Fluid
levels are changed by pointing to a new level position within the fluid tank icon. In addition

to pointing, another console displays different menus of operations and choices ¢

90

T YT

A

St s

— At

Figure 4-9: Sample Stcamer Schematic

A Ad o

kit E-UF L E CTETT FEED
Lai-iom

FEEC Thnk

fFE M FEOR Sl

CONCEN IR FEOY ME

GFam T TEn
WE Iy

HE Fal

EMLINE T ricat

”
L g

10 -

PN T OND :T

VRCLIN DRRG

D

t1arf -ﬂé |
120-

T E

VE FLC ForE

3,
T LD ETHIR

I". FEOEY FEEH

T LIATER [FAIN
IR R

TEE Cree

; TEQ EMEFS

FLED TAanr,

[NN
\.. . e T T T = et
WD RSP LT PSP Py N

T e,
ol ialonadd

| 4 v Eiaidi) G et i i M i e et Sl e e St S T TRy Ny ng T ———

et

controlling the simulation and choosing displays. Figure 4-10 shows a sample display of the

menu console.

In what follows, two kinds of users will be mentioned. the student and the instructor.,

Both use Steamer's schematic editor. The instructor uses the schematic editor to build the

schematic views of the system. The student uses the schematic editor to build controllers for

a process.

The Feedback Minil.ab [Forbus 81] is an extension to Steamer designed to teach control
system concepts. FFor instance, onc exercise is o ensure that the temperature of oil in a
sump remains at a specified value, The student builds a controller by sclecting graphical
icons of a measurement device, comparator, actuator, ctc.. and connecting them together on
the screen. Steamer builds the underlying simulation for this device and connects it into the

main simulation model so that the student can study the resulting operation.

Steamer Presentation Model. The heart of the Steamer user interface is the continual
schematic view of the state of the simulation. This view is modeled by the PPS labeled
“Simulation Schematic PPS" in figure 4-11. The application data base ADBI contains the
sct of simulation state variables and various functions of thesc variables. The presentation

data basec PDBI is the color graphics schematic.

Steamer schematic presentations are constructed from icons, ¢.g., symbols for valves,
gauges. pipes. cte. Figure 4-12 shows a sample of these icons. These present state variables
or functions of statc variables. Each kind of icon presents information in a particular way.,
Valve icons are green to present an open valve, red to present a closed valve. Dials have
indicators that point to the presented valves. Pipe presentations (rectangular pathways
between other icons) use color map techniques to show animated fluid, with small colored
biocks moving through the pipes. The apparent speed of movement presents the speed of
the fluid, as computed from state variables. The kind of Tuid (c.g.. steam. water. oil) is

presented by the color of the moving blocks.

The schematic presentation is updated by presenter P1after cach oy 1o of the simulation,

92

T et T T e T e T T et S R -

-t e e st e et .
By B BBt adio At e B R LA

v —v -

imer Menu Console

Ve
3

Ste

gure 4-10

‘i

R R EE TR,

' . EERE I
Py Ly
PR L N T) (R TS I uuu
I Qe pEcy =g R RS -
) [ED 0 XN PR TR IV FRITIE (L oTs RIS DU I
copnE Ry E e R a0 ,u.u:,‘;M~ M
CEOTRCOFREYLEL dued gy o u:u:‘., e
HOET Wl 0T Qe Dy uzdn
DD T B R3S 3 0] e s D
4 M3 2 Al 433 13 =7 FRNE 1
(14V15) W04 8anpaso.ay Jusuoduiory
L Y TENELE S PRI
: ARRIEERINRIE 2| _ 2b
NI TERERNFI FY _
PR O NN 10OV
gy (P
Wi RIURREPI o .
SOy 1 e e
{ ‘ [i .

sarjense)
sdojew
C@mw,.nvmw

dieyy
sniejy
9j1eYy

C R AR S I

PR

IR

EMTEIRTTT
MESEN|
aqo.ay

93

AD-A158 341 PRESENTATION BASED USER INTERFACES(U) MASSACHUSETTS 2/3
INST OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB
E € CICARELLI AUG 84 AI-TR-794 N@BB14-75- C—9522

UNCLASSIFIED

LT W

J3 3
o~ (] o~
= =

Sl

18

=
———

HEEF]

EEE] m—,._n._m_._._m

|.O
———
——
e————
——
—

I

E)

.

I

[]

P Ml

P
PR B

|

| —
——

14

==—
—

=3

AL

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

.
f
)

“ s 4--
PR PR ']

. ,. .
EASTIFAN I
RS

- e o o
. D
. S

T I

W LT, P T ———

Figure 4-11: Stcamer Model

Tastructor

PDB4
(f\.lneha.tac)

Schematic -
E-_d st,‘l. l\j
PPs

P Sale

S hematic

F")() o man

Mena Sehemet [E
ds

t-

] (S-:mA(c\t.}.sn)

PDB4

;a-‘\? r'\(\t ,.<_

....................

,,,,,,,,,,,

S [24 WV N Lf:\t\.k‘)\

Sc_ he Mc\t_«g

PPS

................
........

ADRB

S‘ML\L L't [
ver e blas

)

-

B

..........................

MO G ke Jhaa-ire s Gi I a0 I -t S0 N ate Siye]

Figure 4-12: Sample of Steamer lcons

-
S N ... — S ———
¢ B R Iy § . . ®
() S S I . |
N y - o L} L
o N a,

circle square diamond triangle ocragon lozange

=) 00 = n oz} on L
=L L ,. = : S

centrifugal FHABy pymp 21 E-'e':"ﬂ‘fggle swritamrtary switch rani

digital bar bar force bar Calymn zigrial

Fooo

=

graph multi-plot graph

10 l 50] 100 -

qj 40 — E—so -
E-:. :B_t' :-—e.aj

a-j 20 — — 40

E"j 19 b~ 21 O
n —t—Trr—Trrrr (5] v Y ey T ™~ Y v —ll - ®

e e AR R S Tk T It Ak Pae S A S AT ST

T

O et Nt
'

when the st of state variables is consistent. Thus the user sees an animated presentation of o e el

the ongoing process. This is a different situation from the other user interfaces discussed in S

this chapter. ‘.-_"-‘.':‘

There arc two kinds of animation in this presentation. First is the overall schematic

animation just mentioned, produced by continually updating a presentation of a changing

process. The other kind of animation, however, is an explicit graphics technique uscd as a S ‘
presentation itself -- the presentation of fluid flow within pipes. This animation is produced S
by graphics routines from a static description of the process. i.c., computed from a single,
instantaneous simulation state. (The pipe flow animation continues even when the : 9.
simulation is halted -- just as other information about that single statc is still visible, such as

dial readings or valve colors.)

Presentation editor PE1 lets the user interact in the simulation schematic PPS by mouse -9
references. Recognizer R1 interprets these references in many ways, depending on their -

positions within the different kinds of icons, translating the references into changes to state o o

variables. —id

Presentation editor PE1 in the Feedback MiniLab also lets the user crcate, move, connect,
and cedit icons for the process controller. Recognizer R1 translates these created controller

presentations into commands to create the simulation for that controller and connect it to

the rest of the Stcamer simulation,

Steamer Menus. Steamer has many menus, occupying a second screcn. Several of these

are modcled in figure 4-11. The sclect-schematic menu PPS models the menu that lets the g
uscr select which schematic to view. This PPS is an interface to the presenter Pl, with an
application data base of P1 commands to sclect the various schematics. Presentation data
base PDB2 is a menu. a sct of text prescntations, each naming a schematic. Prescntation
cditor PE2 modcls the uscr’s sclecting a menu item with the mouse. Rccognizer R2 then

translates that into a choice of the presented select-schematic command and sends it to

presenter P1,

The casualty menu PPS is another interface to the main application data basec ADBI, the
set of simulation variables. With this menu. the student or instructor chooses a casualty,
recognized as a command to change some sct of variables to simulate the particular device

failure.

Creating Views. The instructor schematic-editing PPS cnables the instructor to build and
alter the main presenter Pl's schematic views of the simulation. The schematic editing
offered by presentation editor PE4 is similar to what the student has when creating a process
controller, except for this PPS the simulation is not being changed. Instead, the style of

schematic presentations that P1 builds of the simulation is changed or extended.

The PPS labeled "Tap PPS™ extends the instructor’s interface 1o the recognizer, R4, of the
schematic editing PPS. As the instructor builds a schematic presentation for a new view, R4
must be able to determine what simulation variables or functions on them thesc new icons
will present. (In Steamer terminology, R4 has the job of establishing taps from the icons to
the state variables.) Presentation data basc PDB6 in the tap PPS offers a form for the

instructor to fill in, e.g., specifying a expression of some state variables. R4 combines this

information with mouse references (o the new icons by PE4 to cstablish the icon-simulation

specification for the Pl style.

4.5 Summary of Structural Features . @ 4
This scction summarizes the features characterizing the structures of the extended 2
presentation system models used in this chapter to model the computational behavior of the s |
different user interfaces. Although the interfaces discussed appear very different, there are : .
some strong underlying computational similaritics, and the presentation system model ‘ e 1

highlights these. The overall appearance to the uscr, the use of icons versus menus, etc., is
certainly very important to the success of the interface. However, these arc questions of

interface style: the presentation system model looks below the style to identify common

components and behavior. 'The success of the presentation system base concept, as

developed in chapter five, depends on this commonality.

97

T T T T N L T e Ty e e T T W e e e,

The primary structural feature to be discussed is the way in which onc PPS is attached to

h another. There were several kinds:

- PPS to a Presenter. In Dired, the main presentation data base, the directory listing, is
also used as a presentation of the directory presenter’s state. Editing the dircctory listing is
P recognized as controlling the presenter’s state. Presenter scroll commands are presented by

icons in Xerox Star and the scroll bar in Zmacs. Stcamer has two kinds of presenter
interfaces: a menu allows sclecting schematics, and schematics can be edited by the
h instructor to change the schematic style. The latter capability is similar to Dired’s use of the

directory listing.

.-_f PPS with Commands. A PPS with commands to a component in some other PPS allows

o planning -- to postpone the action while the action is being specified. Dired includes an
k annotation interface to the main application data base in order to plan dclete commands.
r s . .

g The Zmacs minibuffer interfacc allows the uscr to compose a presentation editor command,
!

Star and Steamer include command interfaces to recognizers, the delete confirmation PPS

in Star and the fap PPS in Steamer.

Muitiple PPS Interfaces. An application data basc can be presented in two or more
scparate PPS interfaces. In Dired, the delction planning PPS and the deletion confirmation
PPS present the same data base of delete commands. In Zmacs, the command minibuffer
PPS and command completion list PPS both present the same data base of presentation
editor commands. In Steamer, the main (simulation schematic) PPS and the casualty menu

PPS both offer interfaccs to the main (simulation) application data base.

Cascaded PPS Interfaces. Zmacs and Xcrox Star both include a simifar cascade of
screcn/window PPS and main (buffer/desktop) PPS. The screen/window PPS provides
such fcatures as clipping, scrolling, line wrapping, and mouse reference. Some user
commands operate within the screen/window PPS, others within the main PPS, depending

on whether they depend on the visual aspect within the window.

Sharing. Scction 3.4 discussed the kinds of sharing that can occur within presentation

98

systems. Two important examples have occurred in this chapter. First, Dired and Steamer
include a presentation shared between two PPS interfaces, the main presentation data base
(dircctory listing or schematic) and a PPS interface to the main presenter. By cditing the

dircctory listing or schematic, the user controls the main presenter’s presentition style.

Sccond, in Dired, screen space is shared: directory annotations are intcrmingled with the
parts of the directory listing. Somewhat simpler, hierarchical space sharing occurs in the

Xerox Star, where windows appear within the overall desktop area, and such things as scroll

icons control the window presenter appear within the windows.

v T . e L I T E——p——

TR S . .. RS ~ . W R T —— P A e -

a4 e

Chapter Five N

. PSBase: A Presentation System Base

N

' A presentation system buse is a collection of mechanisms and tools for building user

: interfaces whose architecture follows the structure of the presentation system model. A
prototype, called PSBase, has been implcmcntéd on the MIT Lisp machine [Wcinrcb, Moon

H & Stallman 83] and will be discussed in this chapter. With a presentation system base, the
job of building good uscr interfaces becomes much casier. Chapter six illustrates the utility
of PSBasc by discussing the implementation of an interface built on top of PSBase.

) In certain respects the architecture of PSBase resembles the presentation system model
proposcd in chapters two and three. Some of the PSBase modules support particular PPS
components, and in gencral, domain-indecpendent and style-independent mechanisms are
isolated. This structure in turn cncourages good modularity in the user interfaces

i constructed. Figure 5-1 shows the fundamental support of PSBase modules for PPS

components. Figure 5-2 shows the overall structure of PSBase, with arrows indicating uses

. relations. The reason the PSBase architecture does not exactly resemble the PPS model (sce

figure 2-1 on page 29) is due to the different goals of the model and the base. The PPS

model analyzes the activity of a user interface. PSBasc is structured to emphasize the

sharing of knowledge: information is not redundantly represented. Also, figure 5-1 shows
only some of the PSBuase support: the busic style packages module supports the

) construction of combinations of PPS components and PPS extensions. °

Each PSBasc module will be discussed in a section below. There are three layers in the

- structure: The data base mechanisms module at the bottom of the figure is (10 a large

) extent) a general support package, not specific to user interfaces. The four middle-layer) .A]

7 modules represent gencral presentation-system support, i.e.. tools and mechanisims used to S :
construct various interface styles. The basic style packages module at the top of the figure 1

comprises specific components of interface styles that the interface builder may or may not

100

Cem Sttt et At

e ‘2

« T
-.\..h "
PN N

IR R S R Y

RS T OIS -
el A A" A o’ 8 0" w Al

A R
- Aty
Tt a et T Tt N T

N Y B

PR AL ISR AP LIPS T S AR, SUN WAl ST St Ul ST GO Wl SL S Uy S

..................

.........................

Figure 5-1: PSBase Support of PPS Components

S

| APP“Cnflon

a

Base

) Pesentatl
Fresestation q = ‘E ota ton
Edter Bose

GRAPHICS Resewrer| |Rezoewrzer
RebdispLAay SurPPORT SOPPOR T

ED/ToOR
FuncTions

DaTA Base Mecyanisms

101

....................................

....................

.........

»N [S}

§

A T AR Al A
TN NV T Y
[
e

Figure 5-2: Structure of PSBasc

BASic StrLe Pckages

Presenrer

SvprPorT

T ———

Recoanizer

SurporT

G RAPHICS

REO/sPLAy

EDITQR

'[Z’NCT'/ON,S

DATA BASE MECHAN ISMS

LA AL e A AN b g

M v MRS = . e e LY '-'-"—.'."n"-'l".".'..'-_'."“'.
. et e et e T LT L . .

choosce to include. These packages, however, are independent of any particular application
h' domain.

5.1 Data Base Mechanisms

- PSBase includes support for building data bases structured as networks of objects. Much
of this support is provided by the Lisp machinc’s fluvor system for object-oriented

programming. PSBasc imposes certain conventions, provides an existing flavor structure for

the deseriptions, and provides tools for manipulating and extending the network structure.

The Lisp machine flavor mechanism allows multiple inheritance of classes of objects
(flavors). PSBasc extends this slightly to allow limited inheritance and description of

propertics of objects (instance variables of flavor instances).

The basic data base mechanism is used for building application data bases (descriptions of
files. directorics, mail, and commands, for example) and the presentation data base (various
kinds of presentations, their propertics, and their relationships). An important point is that
the presentation and application data bases are linked together, so that in cffect they are
both part of a large, uniformly structured data base. Many of the PSBasc mechanisms rcly
strongly on the fact that the same data basc mechanism is used throughout. Because of the

importance of the data base mechanisms, they will be discussed in detail in this scction.

One example of the benefits of having a uniform representation technique is that the

presenter’s domain collector and other domain-dependent modules can be minimized and

more presentation mechanisms can be shared. The interface builder can cxperiment and ST

change the implementation more easily, changing the presentation styles or adding new e

prescntations, for example. Uniformity facilitates the construction of presenters, L :23
This rescarch did not attempt to build a state-of-the-art knowledge representation system. E;:.':;jﬁj_':.'_-_'-.zf
Howcver, the data base mechanisms in PSBase arc inspired by such systems (c.g., KL-One N I 1
4

and its successors NIKL and KL-Two [Brachman 78] [Brachman & Schmolse 85] and '
Omega [Attardi & Simi 81] [Barber 82]), and a full-scale presentation system base may very K
well benefit from such a system. e
. J
103 RSN
- 9

e e . o e e . . P .
e e A, T e T B T L WA o) R
A R P S S S P N Ny et
SONPSANEAY VRE Wy W W W Y PWRE VR WA AP W i W R P

An important capability of the data base mechanism is allowing the description of clusses
of objects and the relationships between classes -- particularly specialization and the
inheritance of propertics of objects of a class. Figure 5-3 shows an example. part of an
application data base network describing files and directorics. The application data basc

contains both class descriptions and also instances of them,

The style of the figure is based on that used for drawing K1.-One nctworks. Ellipscs show
class descriptions; shaded ellipses show instances of classes. Double-stemmed arrows show
the containing class. Small boxces connected to cllipses show properties; these propertics are
inhcrited by more specialized classes. (In addition, as will be scen later in this chapter, other
mcchanisms in cffect "hang off” of particular classes of the data basc, and these also

undergo a sort of inheritance.)

For example, the class file is shown by the ellipse labeled "file”: it is a specialization of
the class (i.e., a kind of) generalized file, which in turn is a specialization of the class
operating system object and domain object. A file link is also a kind of generalized file. The
network shows that generalized files have scveral properties: directory, pathname, ctc. Files

and links inherit these propertics.

Each particular filc in the application data base would be represented by an instance of
Jile. One such instance is shown. Its reference date property is shown, linking that file
instance with a particular instance of the class date. The file instance also has several other
properties (dircctory, path, cte), linking the file instance to dircctory, pathname, etc.,

instances, though they have not been shown in this figure.

Single-stemmed arrows from a box shows the value of that property, or for classes, the
type of such a valuc. Some propertics are specificd as having a list of valucs; directorics, for
instance, have a property whosc value is a list of files. A list property is shown as a box with
a circumscribed circle. (Onc of the limitations of PSBase is that thesc type-restriction links
arc not fully imiplemented in the current implementation. They are shown here to better
document the rclationships of classes when instantiated. Flowever, PSBase does include a

simplified type restriction mechanism used for certain parts of the data base.)

104

AT e T T T TSR
ot PRI OL IP R S R O R N S SRR Yl SR VA ST S PR Ny Ft PR S ZAN TR N

L. et et e e Lt e e T e e e T i et e e et e e e e T Py
AN RIPRIPLIN Iy IO il adandea d et a 2 a S toa A gt gt At A ot At ot ot et e

o
-
A
1
)
T
®
|
K
T
B
‘ 1
"
)l
;
‘
q
[l
- i
L '
rl
)
[l
o

I 2 Ut e s Bt sl)

Figure 5-3: A Class Description Network

174 nl - :. ——

[g ‘m-\' J\ t'i

Ge nerr (mmed

file

reference -date D(’*f&‘ o :

RO .T-'.ﬁ'v"
PR .

e
' 1
t

d“lit et a

g m

f'
o

105

PSBasce also offers a rudimentary ability to classify propertics. This ability is not reflected
in these figures, in the interest of clarity. For instance. circles, teat, and other presentitions
typically have properties defining their positions. The description mechanisms allows these
propertics to be labeled as defining positions. One example of the benefit of such a scheme
occurs in the implementation of the presentation editor function that moves presentations:
the function can examine the description of the presentation to find its position-defining
propertics and change them, without any knowledge about the particular kind of

presentation,

Presentation Data Base. PSBasc provides a mechanism for building the presentation
data base, This includes an already-constructed part of the data base network structure that
defines scveral classcs of presentations, inter-presentation relationships, and the properties
that connect the presentation data base with the application data base. (As already
discussed, they are not really separate data bases, but rather different parts of the same,
overall data basc network.) Each presentation can have a record of the presented data base
object aind the picsciitation style used. Most of Uie miwdules in FSDase {proseuicrs,
recognizers, graphics redisplay, ctc.) depend on the known organization of the presentation

data base and on the fact that it is part of the overall, uniform data base structure.

Figure 5-4 shows part of the presentation data base and its relation to the application data
base. The main class is presentation. All presentations have a property called presented
domain object, which records the domain object being presented. For example, text
presentation 77 (an instance of the text presentation class) is shown presenting the file
OZ:ANSR>QUEUE.NOTES. This is recorded by TI's presented-domain-object property

linking 7'/ with the filc instance.

Figure 5-5 illustrates three kinds of inter-presentation relationships supported by the
presentation data base network structure. First, composite presentations may be
constructed; these have a property whose valuc is a list of sub-presentations, Second, a
connecting arrow joins two presentations: the arrow’s end positions (x1, y1, x2. y2) arc

derived from its end presentations’ positions. Third, two presentations may be attached.

106

J
- 4

3
3

L
]
1
1

]
o]
N 23
.'~-‘
- s ce—
o 4

[1
PR et T
f N

-4

®
1
D
L
.“.;.‘..‘ >‘.1
°)

G , .
..... .x.. ! . N ; S o
@ ® T @) ® .. K PY) RPN ®
! i S I [A S P
A AR .
b
P
3
-
- ore ocg
b

.S3LeN 31300,

h(.l—.*v

T ———

Sample Presentation Data Base Structure
107

,

’ ["g]
(4]
T
=
o8
[

4

3

.

'~.

y.

'.

.

CaNE N et A R i s AP

Figure 5-5: Inter-Prescntation Relationships

M ’
¥
t

e

. -‘..-'
. s et
'K
]

P < P"\Stn*uk\.c . _ i °

@ S\Jb P(‘eggy\ko_k\ov_s

X0) ‘
3.0 nd-p, ~5
Dend -,

N % > & e
.

LJ l

108

e e e e e
. . ~ *. R R R
o - - - - -

Conncecting arrows cause themselves to be attached to their end presentations; in general,
any two presentations may be attached. The attachment relationship is asymmetric and has
the tollowing micaning: pf attached to p2 implies that pl is repositioned or deleted whenever
p2 is repositioned or deleted. respectively. In the figure connecting arrow CA/ is shown
connecting Text! and Text2. If Textl, say, is moved, CA7 will have its end positions
rederived. The arrow will be redrawn, and the arrow will remain connected to the two

picces of text.

The important lact about this scheme for structuring the presentation data base is that the
general data base mcechanism is being usced, rather than a representation tailored to
particular kinds of pictures. ‘The presentation data basc fits within an overall data base

nctwork with a uniform method of organization.

This has four implications. First, the data base mechanisms can be shared. Second, the
data basc mechanism docs not limit the kinds of presentations that can be used -- the
nctwork can be extended by the interface builder to add new kinds. Third. ancillary
information about the presentation can be recorded; such information can be useful to
presenters, recogrizers, and presentation editing commands that need to make decisions
about the presentation. Fourth, the presentation data base can itself be treated as an

application data base -- it can be presented.

The last of these is important for matching the structure of the implementation to the
structure of the model. One kind of example is the cascaded presentation systems of Zmacs

and Xerox Star as modcled in chapter four.

Command Description Support. PSBasc has a mechanism for describing commands in
the data base and connecting these descriptions to the actual Lisp machine functions. User
options (Lisp variables) can also be described, and command documentation can refer to
these variable descriptions. Variable descriptions themselves can have associated

documentation.

The classes of description involved are shown in figure 5-6. The primary kinds of objects

109

A d

- -. 4
: o
- il
. e
S
P T
®
- 1
. _4
1
._'.1
.
. ’_l
"
L]

Figure 5-6: Command Description Support

L-\Si)

Fu:\(_t-on

S?(k\C\C kt.ﬂég
of pe rameter types

(S S

Pl . . P . > - Pl S R sl e N

are commands, describing Lisp functions, command sets, describing groups of related
functions, and command applications, describing the invocation of a Lisp function with a list
of arguments. A command application has a stare, which specifies whether the function has
not ye¢t been invoked on these arguments, is currently being cxccuted, or has completed.
Functions may be invoked by building a command application description and then, using
the Lisp machine's flavor-system message-passing. sending the command application object

an execute message.

In addition to the properties shown in the figure, commands also include properties
specifying the name, documentation, sub-commands, variables used, and the verbs that may

be used to describe the command.

Each command description includes a list of parameter descriptions, which must match
the arguments given to the command application. The command application object checks
its arguments for validity when it is formed. Each command paramcter description includes
propertics specifying name, documentation. and a description of the type of the argument
required. There are scveral specializations of command parameter type, one for cach kind of

argument that may be supplied to user commands,

For example, one of the Lisp functions printing files takes two arguments: a file and a
printer, which is to say two instances in the application data basc. a file instance and a
printer instance. The command instance for this function includcs a list of two parameter
descriptions that describe these restrictions: the first parameter specifies the type file, and
the second parameter specifics the type printer. To invoke this function, @ command
application instance is created, its argumcnt list containing the particular file and printer
instances. As the command application is formed. the arguments are automatically checked
against the parameter types for validity. The command application is then sent the execute

message, causing the function to be applicd to the arguments, and the file is printed.

Fxecution Monitor. The command description mechanism is cxtended by automatic
conncctions to the Lisp environment, for use by thec PSBasc exccution monitor. When a

command instance is created, the Lisp function it corresponds to is automatically modificd

1

4
g
- . PR 1
. @ 4

S
s E
* |
. o Y
L)
. 4

J
LT
R

so that the exccution monitor is notified when the function is invoked and when it returns.

The exccution monitor maintains a stack indicating the current exccution state in terms of
the described procedures. In addition, command application descriptions are placed on the

stack while they exccute.

Reference Resolution. Presenters and recognizers must often resolve a presentation

reference to an instance in the data base of a particular type (or. in general, to an instance

that satisfics some predicate). In the simple case, the value of the presentation’s presented

domain object property is of the correct type and no resolution is needed. For cascs when
K this is not truc, PSBasc includes a mechanism for finding a related data base instance that is
[of the correct type.
;h An cxample will serve to introduce the three kinds of resolution provided. The uscr
_ invokes a command that requircs a directory as one of its arguments; the user sclects a
< presentation as this argument. In the simple case, the presented domain object property
= links the presentation to a dircctory. and the resolution is trivial -- just follow the presented

domain object link. Figure 5-7 illustrates this case and the others to be discussed. The
dotied arrow indicates the path fotlowed by the resolution mechanism in order to reach the
dircctory instance. (It is the dircctory instance in all cases that will be rcturned by the

resolution mechanism,)

The first (and most common) kind of resolution applics when the presented domain
object is a property. and the property’s value is of the desired type. Resolution is to the
property’s value. In the case illustrated in the second part of figure 5-7, the user has selected

a presentation of the directory property of a file.

The sccond kind of resolution applics only to certain kinds of properties. tcrmed essential

properties. These are propertics for which the value is, in some sense, cquivalent to the

object owning the property -- equivalent in terms of its usc as a referent. The pathname
property of a file is essential -- any name property is. (Specifying which properties are
esscntial is part of the task of dcfining the application data base class network.) For

esscntial propertics, the resolution mechanism walks to the owning object. In the case

112

i
R .)

P LI D - - PN e
AT o e TN . oS- PRI . R . ¢ . T T -
S, ittt St PP OU S el S e PO SN TS T Ol Vol S N e e

kY

X)

sl

" — g— —— o ivogs e PPy e 1—"-t_‘,-f

Figure 5-7: Reference Resolution

~“ Du{t ’//

~ .

_— = e e e— - e — ss 7y

RQ'@I’CnCQ_ S'"‘Pte Case : no resolotion .

RG SC(Ve tv)
Re\‘emnce, l)rchQ,'— Cj'S Va (ue

Re'x'lve ﬁu

-
QF‘Q_FQI\CL Ff'c/ﬁgrtj"s Owrle ™

ps G

— o —

Resclve ¢

rurin(’s P/?S\"'Tvlc{
dericon ob\j’ect .

- o . ~ .
< AN “) ” Fd- = Fre S nZ:J
dc‘ MG P

¢bject

13 DN
s ,-‘1
.

.......

L A

ML S Shot Saae g

illustrated in the third part of figure 5-7, the user has selected a presentation of the name of

the dircctory. RN
o
The third kind of resolution walks up the presentation hicrarchy, from the referenced : .
presentation to the composite presentation that contains it looking for a satisfactory S ~
presented domain object. 1n the case illustrated in the fourth part of figure 5-7. the user has o ‘
selected a presentation that is a part of a directory presentation, but which does not itself ®]
present something that can be resolved to a directory. o]
5.2 Graphics Redisplay ®
This section discusses the next PSBase module shown in figure 5-2, an incremental
graphics redisplay mechanism that has the responsibility for continually displaying the L
prescntation data base. The graphics redisplay module maintains a description of the forms . A
drawn on the screcn. It continually compares this with the presentation data base ' .
description. Those presentations whose defining properties have changed arc redrawn and 7';
the sccen description is updated, new presentations are drawn, and deleted oncs erased. |
— e
Each presentation instance has a timestamp that is automatically sct whenever any change : 4
is made to that presentation. Graphics redisplay restricts its attention to those presentations
that have changed since the last graphics redisplay. Compositc presentations are marked S]
changed whenever one of their sub-presentations is changed. Therefore, e search for ‘e M_j
changed presentations is substantially reduced: entire composite presentations can be |
skipped by a single check of the composite presentation’s timestamp. ;:
Graphics redisplay connects the presentation data base to the Lisp machine's graphics * 1

package (extended slightly for PSBasc). The defining propertics of the forms to be druwn or

erased arc passed as arguments to the appropriate drawing procedures,

114

» R e
P . et
p N B DAL AL PN W W

‘. ",
PR

W N U WL T RN .

P ——

Emv. .

5.3 Presentation Lditor Functions

PSBase offers a sct of presentation editing functions that as a whole can be used as a
general presentation cditor, or the functions can be selectively combined as part of a specific
user interface. “the presentation editor functions are independent of the data base domain,
presenters, recognizers, and their styles. The editor functions also have a history-keeping
mechanism that records commiands used and the presentations affected. This history is used
by some editor functions (¢.g.. the command to undo a previous crase command) and by

other PSBasc modules if needed (¢.g.. a recognizer may need to inspect the editing history).

The presentation editor is a combination of a text editor and a diagram cditor. The user
can place text at any point on the screen and use Emacs-like commands to edit the text.
There are only a few such text-editing commands in PSBase. However, this is duc to the
limited nature of the project, and not to any inherent limitations. A full-scale presentation
system base following this approach would include a much larger editor module. The

diagram-editing capabilitics in PSBase include the following:

* Creating lincs and arrows between two positions or between two presentations
* Creating cllipscs, circles, and rectangles

* Creating an cllipse or rectangle around a given presentation, computing the size
and position from the presentation

* Moving a presentation to a new position
* Erasing a presentation or undoing an erase
* Attaching or unattaching (two presentations and presenting attachments visually

* Aligning one presentation with another, by center or edge positions

5.4 Presenter Support

This scction discusses three kinds of presenter support provided by PSBasc: first, a data
base mechanism (or describing certain propertics of presentation styles, second, three

general semantic presenters that are driven by these style descriptions, and third, some

115

Y Y T T

organizational presenters that may be independently combined with the semantic presenters

' in order to spccify a style’s layout method. S

I , -
\ o

-' Presentation Style Descriptions. A presenter has an associated style, which describes how

: the presentation is structured and related 1o the presented information. There arc four basic

i classes of style descriptions in the current PSBase implementation:

Primitive prescntation styles do not refer to other presentation styles, nor do they describe

the structurc of the prescntation. Instead; they specify a procedure that creates it (a
" "canned” presenter). One goal of PSBuse is to reduce the number of primitive presentation
styles that must be written, as they require considerably more effort than do the other styles

discussed here.

) Graphical presentation styles do not refer to other styles either, but do include a
specification of the prcscnmtion forms and their properties. These propertics may be
computed from properties of the presented domain object and from properties of the

composite presentation being constructed.

Sequence presentation styles specify how to present sequences of objects in the
application data base. For instance, a directory contains a sequence of files, along with
other properties of the dircctory, such as its name and protection. Sequence presentation

l styles specify a presentation style to usc for the element prescntations. They also optionally
may specify prefix, infix, and suffix presentations to separale the presentations of the

elemcnts of the sequence.

Template presentation styles build larger presentation styles out of a fixed number of
smaller ones, interspersed with text prescntations that do not present any domain

information, but merely scrve as the template.

Each kind of style description also spccifies a style name, the class of domain object (in
the data base network) for which this style is appropriatc, a flag specifying whether this is

5 the default style for that class, information concerning semantic redisplay, and an

116

. ,'_*.:;'. s N

. .~." PR
RSEASIIA SRR S,

it ite Shate Ja Sho 2 n o i ag aoos Bage Jnad Jde dee Seges S ¥

organizational presenter. Since domain object classes can be specialized. styles can apply to
a wide varicty of objects or to just a specific few. One can think of presentation styles as
being attached to classes in the data base. These attachments drive the process of sclecting a

suitable presentation style,

For example, PSBase provides a very gencral presenter, called the phrasal presenter. This
presenter produces (in most cases) noun phrases for a given domain object. This style
description for this presenter specifies that it applics to the class domain object. i.e., it applices
to any instance in the data base. This applicability derives from the fact that the phrasal
presenter can always produce something -- at least something of the form "a" followed by
the name of the domain object class, e.g., "a file". Furthermore, it takes advantage of the
uniformity of the description mechanism and inspects the propertics of the object to see if it
has any property that is a kind of name. If so, it uses the name, c.g., "the file

O7:<KNSR>QUEUE.NOTES.1". The phrasal presenter will be more fully discussed below.

On the other hand. another presentation styvle applies to the specific class time of day.

producing text presentations such as "02:04:46".

The presentation style mechanism supports two major operations, finding a named
prescntation style and finding the most specific presentation style applicable for a given
instance in the data basc. Typically, several stylcs have a matching class, i.c., attach to
classes to which the instance belongs. The one with thc most specific matching class is
chosen. (E.g., time of day would be preferred over domain object if both match.) If there are
two or more styles with the same, most-specific class, the default is chosen. Styles that are
not defaults are invoked specifically by name. In a larger presentation system basc the
comparison could be inore involved, taking into account specific propertics of the domain

object to be presented.

Style-Driven Semantic Presenters. PSBase offers three semantic presenters whose
behavior is determined by the hinds of style descriptions described above. 1t also provides a
semantic redisplay mechanism that periodically invokes the presenters so that they update

cxisting presentations. Examples of the three major Kinds of style descriptions will be used

117

R At TSP IR SRR

to discuss the action of their associated presenters,

The first example i_s a simple clock presentation. The presented domain object is the
current time of day instance in the application data base. Here, the presentation is a
composite of two sub-presentations, a circle (the face of the clock) and a vector (the hour
hand). In this stimple clock there is no minute hand and there are no text labels on the face.
The following is waat the interface builder would write 10 construct this presentation style
(the small function angle-from-hours-and-minutes, which performs the simple trigonometric

calculations, would also have to be written):

(def-graphics-presentation-style CLOCK TIME-OF-DAY nil t 120
((NIL
(circle-presentation
:x (relative-to-parent-x 25)
:y (relative-to-parent-y 25)
:radius 25))
(: HOURS
(vector-presentation
:length 14
:angle (angle-from-hours-and-minutes
{senu presenied-domdin-vbject ‘:hours)
(send presented-domain-object ':minutes))
:x1 (relative-to-parent-x 25)
:y1l (relative-to-parent-y 25)))))

The first line specifies five gencral parameters: the style name, the applicable domain
object class, a flag spccifying whether this is the default style for that class (nil here
indicating that it is not the default), and two paramcters for semantic redisplay. The first of
the twe, ¢, is a flag specifying that this is an active presentation and therefore should be
updated periodically. The second, 120, spccifies how often it should be updated, every 120

scconds. (This updating will be discussed below.)

Next is a list of prescntation specifications. The first one specifics the circle. The nil
indicates that the circle does not present any domain information Then comes a Lisp
property list. (circle-presentation ...), specifying that this presentation is a circle and
specifying its properties. For instance, the first property specified is the x coordinate of the
circle’s center. Its valuc is given by a form to evailuate, which relates the circle’s position to

the composite’s position (which gencrally is its upper-left comer),

118

P T R .
e T AT NS, e EAN R S et .
N AT A el el Lt el T T et e -
S T A A AL P e .
PRI ICI SN . -t) v

N B I I I S AL -
PR LS AL FEIPS N R LIPS PP E AP JPU IR WL DR P Wil W i Sy o P S)

e .
R
.

Lo e Y
P
PN GPROULS Vo S Ja0 T S

APy

" Rl

AR rﬁ*‘ .

Tr—— S_AR Shun danse s o Rk B Jnas e et e e T v —w d ~ - —

Next is the specification of the hour-hand vector. The first item gives the property this
prescntation presents, namely, the Aours property. The property list for the vector is similar
to the one for the circle, except that it has a more complicated form to specify the angle. In
particular. it has two message-passing forms that access propertics of the presented domain
object. (The symbol presented-domain-object will be bound o the comiposite presentation’s
presented domain object.) The first, for example, (send presented-domain-object hours),

retricves the value of the hours property of the presented time of day object.

The following is what the interface builder would write to create a presentation style,

named set-notation, for presenting instances of the object-sequence class:

(def-sequence~presentation-style SET-NOTATION OBJECT-SEQUENCE
nil nil nil
"{ " " . " Il} "

just-name
thorizontal-layout
:border-box)

An object-sequence has an elements property containing a list of objects. For example, if
s were a list ot objects with the names UNE, [WU, and { HK I E, the scquence would be

prescnted in this style as

mNE, TWO, THREE}‘

The first five arguments arc the same as for the graphical presentation style. (In this case,

the last two nils indicate that the style is not active, i.c.. it will not be periodically updated.)

The third line of the definition specifies that there will be prefix ("{"). infix (",), and
suffix ("}") text presentations. ‘The fourth line, just-name, names the style to use for
presenting the elements. The filth line, :horizontal-layout, names the organizational
presenier to use, so that in this case the clement presentations will be laid out horizontally
(with the infix presentations interspersed). The last line, sborder-box. spccifies that a

rectangle should be created. fitting around the presentation.

The following is an example of the last of the three style descriptions, a template style for

119

.‘\- T T ~e e TR TR

L R T I R R T U R T AP
LS AR PP G AP AT AR VR VO ViR T ST WL W . ¢ SO VS .

4

LR

p e

3
.
¥
|

St il g S’
e SN

T R T — . e . e - - - - T ——

presenting objects of the class zime:

(def-template-presentation-style DEFAULT-TIME TIME t
((:date default-date)

(:time-of-day default-time-of-day))
:horizontai-layout)

The presenter constructed produces composile presentations that look like
"04/15/84 14:22:65". 'The name of the presentation style is default-time. The ¢ after the

name indicates that this is the default style for class time.

The next three lines specify the domain collector and semantic presenter, building the
template and spccifying the sub-presentations’ presenters. The domain collector is
described by naming the properties of the time object whose values should be collected. (In
more complicated presenter specifications, this can be a list of properties. "walking™ from

onc domain object to another, starting from the object being presented.)

The first snecification, (rdate defnult-dare), causes the dute nroperty of the time ohicct o

be presented as the first sub-presentation, using the style default date.

The second spccification is a text string containing a single space. This causcs the
composite prescntation to contain that text as a constant sub-presentation. (I.c., it does not

present any domain object -- it is just part of the template.)

The third specification, (:time-of-day defuult-time-of-day). causcs the time of day property

to be presented as the third sub-presentation, using the style default time of day.

The last form specifics the organizational presenter, namely horizontal layout. This takes
the presentation structure created and positions the three sub-presentations within the

composite presentation, juxtaposed horizontally.

The templatc below illustrates the use of the property-walking capability that can be used
in presentation styles. The examples given previously have all specified a direct property of

the presented domain object, e.g.. the hours of the time, or the clements of the object-

120

St T e
@ ;
. .o

T TrY — -

sequence. However, in genceral it is necessary 1o specifly i property path, a list of propertics

to tollow, starting from the presented domain object.

Here, a presenter is created for the class user-at-host, and the style is named
RIFC733-User- At-Host. ("REFC733" is the name of a network protocol. which includes this
format for specifying recipients.) This produces a form of electronic mail address. such as:
"Norman S. Rafferty KNSR at MIT-OZ>". Figurc 5-8 shows a sample section of the data

base network.

(def-template-presentation-style USER-AT-HOST
RFC733-USER-AT-HOST

nil
{(((:user :personal-name) default-name)
" <"
(:self simple-atword-user-at-host)
") ")

:horizontal-layout)

The specification ((user :personal-name) default-name) tells the domain collector to walk
from the wuser at host object to its user and from there to the user's personal name. The
result is presented in the defuult name style:, for the example in the figure, it is the string
“"Norman S. Rafferty”. The :self "property™ in the sccond domain collector specification
micans that the user at host itsclf is to be presented, rather than one of its propertics. Thus,
the composite presentation, which presents the user at host, will have a sub-presentation that

also presents that user at host, though in a simpler style: "NSR at MIT-OZ".

Organizational Presenters. PSBase provides four general organizational presenters, and
these may be combined with any of the semantic presenters by the style description. Each
organizational prescnter positions the sub-presentations of a composite presentation

according to a specific layout method.

The first has alrcady been mentioned above: the horizontal organizational presenter
positions the sub-presentations in a horizontal ling, cach presentation juxtaposed against the
right edge of the previous one. This organizational presenter, as well as the others, takes
advantage of a facility provided by the presentation data base mechanism: each

presentation can be asked for its extent, a specification of the upper-left and lower-right

121

Figurc 5-8: Result of a Presentation Style

-*lr'.".‘.v.."..“. -

Norman S. .9
Raffe r‘tj

L

pdo= presute/ :

Oéjzct

122

.......................................
..............................
............................
.........................
................

W ra—r—

IR~

corners of a rectangle that would enclose the presentation. In addition, the presentation
editor mechanism offers a general facility for moving presentations. Using these
capabilitics. the organizational presenter does not need o consider the particular kind of
presentation: the presentations are moved so that their extent boxes are juntaposed. Note
that the extent box technique works as well for sub-presentations which are themsclves
composites of further sub-presentations: the entire composite has an eatent computed from

those of its sub-presentations.,

Similar to the horizontal layout presenter is the vertical layout presenter. It juxtaposes

sub-presentations vertically, again using the extent boxes as a guide.

The third organizational presenter uses a tabular layout method. The composite
presentation is assumed to have sub-presentations which will be the rows of a table. These
row presentations will be laid out vertically, Furthermore, each row presentation is itself a
composite (in general). whose sub-presentations are the elements of the row. Thesc clement
presentations are positioned so that those presenting the same kind of property arc aligned
under cach other. For example, in a directory listing, thosc presentations presenting file-

length propertics appcar alighed under each other.

The fourth organizational presenter is a paragraph filler, positioning the sub-

presentations (generally single-word text presentations) within a rectangular area.

The PSBasc graphics presentation style descriptions do not use standard organizational
presenters. Instead. the styles define their own layout in the style description itsclf by

explicitly positioning the component presentations.

Semantic Redisplay. Fach presentation style specifics whether presentations created in
that style will be active, i.c., whether itis to be periodically updated. and if so. how often it is
to be updated. Thus, for example. an active scquence presentation will be updated to reflect
changges in the elements or in the order of the clements of the presented sequence. Or, for
the clock example given above. the propertics of the vector presentation (the hour hand)

will be recomputed from the presented current-time-of-day object.

123

bataat s

Each tinic an active presentation is created, & semantic redisplay task is created for it and
added to a list of alf current semantic redisplay tasks. Each task specifies the nresentation,

its presentation style, and the next time that the presentation should be updated.

A background process manages these semantic redisplay tasks. When a task’s scmantic
redisplay time has arrived, the presenter for its presentation style is invoked on the
presentation. This invocation is similar to. but slightly different from, that for creating the
presentation in the first place. Hcere, emphasis is on retaining presentations that can be
re-used and avoiding computation for presentations that do not present anything. After
updating the prescntation, the presentation style’s organizational presenter is invoked again

to adjust the presentation’s layout.

5.5 Recognizer Suppeort

PSBasc provides two kinds of support for recognizer control: First is a mechanism that
records the presentations on which a particular recognition depends. The dependency
mechanism allows some recognition to be retracted if changes occur in the presentations

that recognition was based upon. Sccond is a recognizer-invocation mechanism.

PSBase divides recognizers into three kinds, differing in how and when they arc invoked.
Continual recognizers have the effect of acting continually as the user gives commands.
General recognizers arc invoked on demand, by particular commands. Invocation of general
recognizers is slower than for continual recoghizers, and the invocation involves
consideration of a larger portion of the prescntation data base. PSBusc offers two
invocation mcchanisms, onc for continual and onc for general recognizers. The remaining
recognizers arce invoked spccifically by othier recogmizers, to perform particular sub-tasks in

the recognition process.

Recognition Dependencies. Fach recognition depends on a set of presentations. For
example, scction 4.1 described the Emacs Dired style of annotations to a directory listing:
the user places a "D by files to mark them for luter deletion. Rcecognition of a "D (as a

plan to delete a particular file) depends on two presentations: the "D and the file

124

- S raoniag

v il SR A AR o
. . N

presentation. If the user moves that "D to a different line, however, its original recognition
must be retracted and new recognition performed -- it now presents a plan to delete a
diffcrent file.

The PSBase recognition dependency mechanism allows recognizers to record the
presentations on which they depended, together with the actions necessary (0 retract that
recognition. Recognizers specify this information as they build the application data base

commands.

Invocation of Continual Recognizers. The interface builder specifies a list of continual

recognizers. Each is invoked immediately after each keystroke or niouse command.

Each continual recognizer has two phases. First, it quickly decides whether it is in fact
applicable to the command that the user just gave. Second, if applicable, it triggers and

performs whatever recognition is necessary.

‘Tne recognizer has access to the presentation editing nistory entry for the command just
completed. 1t also has access to the list of recognizers triggered so far, if any. The latter
allows the recognizer to trigger dependent on whether or not others did. The presentation
cditing history entry specifies what kind of editing function was performed and which
presentations were affected by it. This information allows the recognizer to quickly
detcrmine whether it is applicable, without performing a scarch of the presentation data
base. If the recognizer triggers, it too creates an entry in the presentation editing history,

specifying that a recognition was performed, its kind, and the presentations it affected.

Currently, the mechanism for invoking continual recognizers does not use the recognition
dependency mechanism, because of efficicncy reasons and because the continual

recognizers do not in general bencfit as much from the possibility of recognition retraction.

Invocation of General Recognizers. A sccond kind of recognizer invocation mechanism is
provided by PSBasc for gencral recognizers, In contrast to the invocation of continual

recognizers (including their quick checks for applicability), which considered a fixed set of

125

b s S e e cee see e aan o e

J
o

o
SR
- pER——
®
K
o 4
®
1
o

vy

A o e e e e e e e e e » ———y

recognizers and a smiall, given set of presentations (those affected by the latest presentation
editing function), invocation of general recognizers involves scarching the presentation data

base and a larger set of potential recognizers,

PSBase supports two kinds of geacral recognizers. Both are invoked upon a particular
presentation. though they may (and typically will) examine other presentations and related
domain information in the data base. The first kind of general recognizer interprets user
cdits 1o presentations that were created by .presenters. These recognizers are typically
simple. taking advantage of the existing links from the presentation to the presented domain
object. For example, one such recognizer might interpret a change in teat presenting the
reference dute properiy of a file. This recognizer simply parses the text, creates a new date
instance, and changes the value of the file property. Notc that it docs not need to deciue
between recognition as a date and as somcthing clse -- it already knows that it should be a
datc presentation from the presenter-recorded information, namely, the presented domain

object property that links it to the filc's reference date property.

The second kind of general recognizer is invoked upon presentations for which there is no
presented domain object link, i.e., presentations whose mcaning is unknown. This kind of

rccognizer must determine the kind of recognition to be performed.

Both kinds of gencral recognizers are atlached to classes of presentations in the
presentation data base. For example, the parscer for a file's reference date property would be

attached to the text presentation class.

The invocation mechanism begins by ccanning the cdit history, detcrmining which
presentations have changed since the last recognition. Any recognition that depended on
those changed prescentations is retracted if possible. This has the effect of allowing the user
to make changes in a plan (such as the Dired plan of deletions): the cffect is incremental
rccognition of the changes, but no specific recognizers for incremental changes need o be

provided.

Sccond, all presentations that had been created by presenters, but cdited by the user

126

Py S WS

el AL a4l

4

(since the previous general recognition), are collected. For cach of these presentations, a
1 general recognizer (of the first kind discussed above) is invoked. Sclection of this recognizer
) is based on the class of the presentation and the kind of property (such as reference dute).
R Mhird. recognition is performed on all presentations with no presented domain object
. property value, i.c.. those presentations that are unrccognized. (Note that some

presentations may have been previously recognized, but are now unrecognized because of
recognition retraction.) These recognizers are also invoked based on the class of the

presentations they are to recognize.

5.6 Basic Style Packages

PSBasc offers a supply of presenters, recognizers, and combinations that the uscr
9 interface builder may choose to use as components in a user interface. In a sensc, one such
component has already been mentioned: the presentation cditor functions, taken as a

whole.

Presenters. Three presenters arc provided, for presenting command scts as menus, for

S
[

presenting the exccution monitor's current statc by highlighting the current command, and
for presenting any domain object by a noun phrase. Like the other components described

here, these are all independent of any particular application domain. (This is not strictly

true, as the first two deal with the domain of commands; however, that domain, like the

domain of presentations, is universal in that it is always included in any user interface.)

Command Menus. 'This component is very simple, consisting of a few stylc descriptions. °
Since a command set is a specialization of object-sequence, where the elements property is a o 1
list of command descriptions, a scquence presentation style can be used. The following is :
the description for a vertical command menu style. (The style dcefinition for horizontal]
menus is similar.) . ® 4

127

. \ PRI
. EENEPEN N, .
A te et ut et .
S RS S

s e tat . N St et
T B I ORI ST WP PR P A P ‘

(def-sequence-presentation-style VERTICAL-COMMAND-MENU :
COMMAND-SET t - -

nil nil ; Not active.
nil nil nil . No prefix, infixes, or suffix, i
just-name R
:vertical-layout :border-box fonts:cptfontb) A

N

8 Fxccution State Presenter. PSBase provides a simple presenter for the execution monitor S
p p b

discussed on page 111, The presenter is invoked whenever the execution monitor places a
command or command application instancc on its stack, i.c., when the command is
executed. The presenter examines the presentation data base to determine whether the

command or command application is being presented. f it finds a presentation, it

by

highlights it,

For cxample, when the uscr invokes the erase presentation editing command, the
o execution state presenter might find the command presented in a menu of editor
commands. Whether the uscr invoked the command by referencing that item in the menu

or by typing thc delete key, the menu item is highlighted to present the current state.

»l

There are other possibilitics. Consider the following scenario. A command’s
documentation is currently being presented. The documentation comprises three
paragraphs, cach presenting a step in the command. As that command cxecutes, the
exceution state presenter will highlight the thrce paragraphs in sequence. (The presentation
of the documentation is not strictly a presentation of the command. The presenter will still
consider the documentation presentation as a suitable reference, using a special version of

the mechanism for resolving references to essential properties discussed in section 5.1.)

D

Phrasal Presenter. The phrasal presenter produces a phrase describing a domain object,
: in most cases a noun phrase such as "the file OZ:KNSR>LOGIN.CMD.4", "a plan to delcte
N the file OZ<NSRXDEMO.TXT.1", or "the reference date of the file
D 07 ANSR>QUEUE.NOTES.I. Friday. March 23, 1984".
: The presentations have composite presentation structure that follows the semantic and]
grammatical structure. The user can therefore reference part of the phrase to indicate a -
: |
. * |
o 128 R
o S
- . .:. 1
)

¢ h

L e S S e e L e et T T e e T S e

Y

domain object other than the one presented by the entire phrase. I-or example, given the
reference-date presentation mentioned above. ihe user could reference just the sub-phrase
"the file OZ:ANSR>QUEUE.NOTES.1" and therefore indicate the file, insicad of its

reference-date property. Similarly, the user could reference just the date.

The interface builde- provides a set of dictionary cntrics, templates used by the phrasal
presenter. The phrasal presenter and its dictionary entrics are simple in comparison with
those developed in natural language systems (e.g.. [McDonald 83]). They should, however,

give an idea how natural language presenters would it into a more powerful presentation

system base, and the scheme used here is quite useful as it is.

In essence. the dictionary entry hangs off a class node in the data basc network. The most
specific entry for a given instance is chosen. This section illustrates the phrasal presenter by
showing a sumple entry for the cluss of date instances. FEach date instance has four
propertics: day of month, month, year, and duy of week. The dictionary entry for date rcfers

to dictionary entrics for the values of these properties.

The entry is written as the :phrasal-presenter-dictionary-entry method for the Lisp flavor
date, the flavor implementing the date class in the data base. The Lisp dctails below can be
largely ignored. since the delinition is simply a template. The template has slots that are
filled in by cvaluating Lisp expressions: these sfots are indicated by commas. The values
filling the slots may be other filled-in dictionary entrics. The result is a grammatically

structured tree of text. The tree is annotated with the domain objects being presented.

The dcfinition therefore drives the domain collector and semantic presenter, but has left
the text positioning details up to a standard organizational presenter. (The organizational

presenter used is the one that fills a rectangular area with the text, as a paragraph would be

filled.)
)
The following is the dictionary entry as the builder would write it, to produce text such as
“Thursday, August 9. 1984.”
)
‘; 129
,

RV 2R WVRN

¥ et
g™ o o

- Te e

A N
LAY A W S S el

e e oy e <
- — —————— SEL e 2 omm an a0 st a0 et o o T T T

(defmethod (DATE :PHRASAL-PRESENTER-DICTIONARY-ENTRY) ()
"(:SAY ,self

(:FURTHER-INFO

(:SAY-PROPERTY (,self :DAY-OF-WELK)
.(phrasal-presenter-dictionary-entry day-of-week)))

(:SAY-PROPERTY (,self :MONTH)
,(phrasal-presenter-dictionary-entry month))

(:SAY-PROPERTY (.self :DAY-OF-MONTH)
,(phrasal-presenter-dictionary-entry day-of-month))

(:SAY-PROPERTY (,self :YEAR)
.(phrasal-presenter-dictionary-entry year))))

The tree produced has the following items:

* An identifying symbol, :say
* The presented domain object -- the date instance, since self will be bound to it

* A sub-tree, flagged as carrying non-restrictive further information, that accesses
the dictionary entry for the day of week property, labeled as presenting the day
of week property

“ A subritee lial dueesses e dictiondry enivy for ihie month propety

* A sub-tree that accesses the dictionary entry for the day of month, similarly
labeled as a property presentation

* Some template text, acomma

* A sub-tree that accesscs the dictionary entry for the year property

The sub-trees invoke other phrasal dictionary entries. For the case of "Thursday. August
9, 1984.", the sub-trce entries would produce, respectively, the text "Thursday”, "August”,
"9" and "1984". (Thesc are single words; in general, the sub-trces might themsclves specify

more complex phrascs.)

The general phrasal secmantic presenter takes this specification tree and produces a
composite presentation structure, Figure 5-9 illustrates the resulting presentation structure
and its rclation to the data base nctwork. Some very simple anaphora processing is

performed if possible (not possible here). Commas are added around the non-restrictive

130

PR R e raTr e T T e T T e e - .
DROPEIPC IO VR VR P PR TR RPN VT VR

4
- -
]
Y
. T
®
;
e
4
L
-9 4
C e
1

»
s

PRy

<
cere]
. :
® 4
. 4
RN
- 1

®

Figure 5-9: Result of Phrasal Presenter

r

b}

\\n ur'bdc\

"

Ny

131

&L\j £ mcv\T\r\

i 9 .

Text

PJQ
AV

'Te.,x‘t

\\l ‘?Y? g

F(‘ ¢ = P fese n‘T(C/ 7 RS
t’MCk\:r\ o .'j

o) JQ c,t | >.

PUNE WP LU S 1P U LIV WA VN SUp S S

" —— e~ e PrTTTT—y — Ty ——— ...-T

Surther-info structures. The first letter is capitalized. and a period s added at the end. The
presenter can optionally be invoked to produce a bricfer presentation, in which case it : 4

ignores the sub-trees marked as further information.

Recognizers. The next two sub-scctions describe particular recognizers and recognier
frameworks that PSBase provides, for recognizing presentation cditor comiaands from

sketches and for recognizing commands from the movement of presentations.

Curve Recognizers, Presentation editor commands may be invoked in two general ways.,

ARbehabnhinbe

by primitive command signals (such as keystrokes or mouse clicks) and by rccognition.
b Section 4.2 showed examples of Zmacs editor commands invoked by recognition: the user

can type commaid names or sclect commands from a menu. ;

h
? PSBasc offers another kind of extension to the presentation editor: recognition of ' ®
presentation editor commands by "sketching curves”. Figurc 5-10 shows the screen’s

display as the user "sketches™ an arrow [rom the cllipse to the rectangle. The user sketches

The curve is displayed as a set of dots while the user is drawing it. When the bulton is . @
released, an immediate recognizer interprets the creation of this curve as a presentation
cditor command, in this case a command to connect the ellipse to the rectangle by an arrow,

3 . . .
F by moving the mouse, holding a mousc button down until the curve has been completed.
4
g
L
F Figure 5-11 shows the result. J

Note that these sketched curves are not just recognized as presentations, e.g., not just an

arrow. They are recognized as presentation editor commands. This has two advantages.

ol o

First, the user can understand the semantics of the recognition, since the results are just as if
the uscr had invoked the cditor command directly (assuming that the interface provides the
user with that editor command). Second, recognition can be more powerful -- it can do .

more than just create a presentation. For example, onc could write a curve recognizer that

P D]

p

:

3

*‘ interpreted a sketched line through a presentation as a command to delete that presentation, °

.
[

The curve recognizers are, in a sinmple sense, a scrics of rules. (This is not a complex STl

'
hedindnd 22

rulc-bascd system -- there is no iteration over the set of rules. for instance. Also, these rules g B

132

r
1
<

Figure 5-10: Before Curve Recognition

Edit Commands: L4
Need Menu
Line

Arrow

Box Around
El11pse Around
Mcove o
Erase
Fresent Directory ’ o
Fecognize
Change Style

133

. . e e e e T T T e e T T
PRI EL I I AP YD S 0 S S i St T A ER S-St B MEPUIR G Sl S X S S S} CHMIRI M

[)

) rfv-‘-v

Figure 5-11: After Curve Recognition

Edit Commands:
Necd Menu

Line

Arrow

Box Around
El1lipse Around
Move

Erase

Recognize
Change Style

Present Directory

oSt o P PR

LV ST W A T I R S T AT VAT S R Y

R
. 4
®

do not have declarative patterns, but instead are implemented by special procedures.) The
rules are simple. and the success of the recognizers, is duc o four, inter-related facts. First,
there are few possibilities to distinguish. These will be listed below. Sceond. the
recognition is fast cnough o be usually preferred over other ways of invoking the same
commands. Third, the user can sce the result and change it if the recognizers were
mistaken. Fourth, the recognizers are able to use the presentation data basc to great

advantage. A discussion of the curve recognition rules will clarify the last point.

There arc three functions that examine only the list of positions defining the curve.
(These functions do not examing the presentation data basc.) They are largely responsible
for determining the kind of presentation the curve appears most like: line, arrow, circle,
cltipse. or rectangle. The first function determines whether the curve is open or closed. The
second determines, for open curves, whether there are arrowheads at one or both ends. The
third produces a ranked match to a circle, ellipse, and rectangle, specilying the defining

parameters (e.g., center and radius for a circle).

These functions are not necessarily always invoked -- they are invoked by the rules,
depending on the presentation data base structure. As these determinations are made, a
description of the curve is built up and can be uscd by later rules. The current sct of rules
first invokes the function to determine whether the curve is open or closed. If open, a rule
asks whether the end positions lie within presentations; if so, the curve is an object of class
connecting thing (line or arrow). If open, another rule determines whether there are
arrowheads, and extends the description to distinguish between line, single-headed arrow,
or two-heading arrow. Finally, if open and connecting, a rule examines whether the ends
can be "pulled out”, i.c., whether there is a surrounding cllipsc or box. If so, the line or

arrow will be connected to that outer form,

IT the curve is closed, a rule asks whether the curve encloses a presentation, If so, the
rccoghized command will be ellipse around or rectangle around. The iype is determined
cither by the style of the diagram (c.g., only cltipses surround teat) or by the rule that

classifics closed curves. In the latter case, the default parameters for the form are ignored:

135

W m - .
- S N e e AT T IR I ettt aTmt TNt
- R R AT N N . .

- o NP o PP L L .
LR PP L P .. > LIPS LA A S . L. A e N PR Wl Wy

e matans

the command will compute @t ¢se from the circumscribed presentation.

There are a few other rules. which deal with particular styles of diagrams. These rules

produce editor commands to create particular patterns of presentations.

Move Recognizer Mechunism. PSBase offers a framework for implementing continual
rccognizers that interpret movement of presentations as commands. in the style of, for
example, the Xerox Star and Apple Lisa systems. Scction 4.3 illustrated some kinds of move
rccognition; for example, moving a document presentation to a printer presentation is

recognized as a command to print that document.

A move recognition driver (or just driver when the context is clear) is a predefined
continual recognizer: it provides the first phase of a continual recognizer, checking for
applicability. It checks for a move command and, if so, detcrmines the presentation being
moved and the (possibly several) presentations to which it has becn moved. It then matches

these possible candidates against a sct of patterns that attach to the data base network.

Each pattemn has an associated sccond-phase recognizer, which is invoked if that is the
pattern that matches. (In this implementation there is no consideration of multiple matches
-- the first entry whosc pattern matches is used.) [t is this associated recognizer that
performs the actual recognition of the move as a data basc command. This division of the
recognition process follows the division described in scction 2.6: the driver is the

organizational recognizer, and the selected recognizer is the semantic recognizer.

A sample definition of one of these pattern-to-recognizer associations is the following, the

one for rccognizing movement of document icons to printer icons;

(def-move-recognition-rule move-document-to-printer
(:overlap (file (document-icon))
(printer (printer-icon)))
:recognize-printer-movement)

The sccond and third lines specify the pattern, which consists of three parts. The first part
specilics the kind of overlap between the presentation being moved and the candidate

destination presentation, This can be, in order of increasing restrictiveness. near. overlap, or

136

within. This relation is determined from the presentations’ extent boxes.

The next two elements of the pattern specify the class of presented domain object and the
presentation styles. This entry specifies that the presentation being moved must present a .
file in the document-icon style. (Each presentation has propertics connecting it to both the .
presented domain object and the presentation style used to crcate the presentation.) The ' L
entry also specifies that the destination presentation must present a printer in the printer- -

icon style.

The fourth line specifies the recognizer that will create a command application for

printing the file.

Combinations. The next three sections describe modules that combine presenters and

recognizers into lacger control structures.

Mouse-Tracking Reference. This module provides a mouse-based reference and
documentation facility. A simpie fast recognizer continuaily watches the movement of the e
mouse and determines whether the mouse cursor is within any presentation. This check is -
made using the presentations’ extent boxes; in the case of more than one prescntation - B
containing the mousc, the one with the smallest extent box is sclected. The presentation :

data base records this choice. "o O

At the same time, the current choice is presented by being highlighted on the screen.
Thus, as the user moves the mouse, the highlighting continually shows what presentation

contains the mouse cursor. @

In addition. about once every second (i.c., at a rate considerably slower than the operation
of the tracking recognizer and presenter just described). a documentation line at the bottom C
of the screen is updated. It presents the current choice by using the phrasal presenter, °
described carlier. This can help to disambiguate some cascs where the highlighting box .
alone would be insufficient. [t can also be helpful in providing documentation about the

presentation style -- e.g.. to find out that a particular number in a directory listing is the SR

length of a file. No presentation structure is created for the documentation line -- the result
is simply a text string -- though the anaphora and other processing is performed. Further-

information sub-trees arc climinated if the resulting string is too long.

An additional reference mechanism is provided that allows the user to move the selection
choice up and down the hicrarchy of presentations, ¢.g.. moving from a text presentation in
a dircctory listing up to the row presenting a file or to the cntire directory presentation.
Again, this choice is reflected by the highlighting and phrasal presenters automatically:
these commands affect the presentation data basc's record of the current choice, which is

continually and automatically presented by them.

Open/Close Mechanism. Llike the move recognition driver discussed above, this
mechanism provides a general framework for implementing opening and closing of domain
objects, like that used in the Xerox Star and Apple Lisa styles (see section 4.3). In those

systems, opening a document icon, for example, causcs the text of the file to be displayed.

Opcening and closing domain objects can be thought of as changing presentation styles.
The interface builder specifics links between the domain object class and the opened and

closed presentation styles. The following specification is typical:

(def-open-close-presentation-style file-document
file
document-icon
text-file-contents
fonts:cptfont)

This spccifics that for instances of class file the document icon style will be used for the
closed presentation and the text file contents style for the opened presentation. The default

font for the opened style is also spccificd.

The open command is given a presentation as an argument and a position. It finds the
entry for the presentation, based on the presented domain object. and invokes the presenter
for the openced presentation stylc specified by the entry. The presenter creates the opened
prescntation at the given position. The original presentation is crased but remembered as a

property of the opened presentation. This allows the original presentation to be redrawn

138

- s -

PPy o - N —— —————— T N ol i Lol

when the opened presentation is later closced, if possible. for efficiency und so that its

original position is restored. g

The decisions to erase and record the original presentation are a matter of style and are j
casily changed. This style attempts. by having only one presentation of a domain object at a - -1
time. to give a feeling of directness -- that the visual presentation is the domain object. and i
opening is a "physical” act. However, this always-crasc rule is probably too simple: there
are probably certain kinds of presentations, e.g., icons, that do scem “to be” their presented J
domain objects, while others, ¢.g., phrasal presentations, may merely "taik about™ them. ’ .> ‘

Farlicr it was mentioned that opening and closing can be considered to be a matter of w0
changing presentation styles. However, there is another considcration that must generally
be made: signalling the application data base that more detail is needed from the outside o ‘
world or that it is time to save such detail. This issue is raiscd when the application data
base is a modcl of some outside world. An opened presentation typically involves 1
presenting much more domain information than a closed presentation. (For example. a “—“‘
document icon may only be labeled with the file name, while an opencd presentation :. 1
contains tie file's text.) ‘_ﬁ_'jf:'.’_

Therefore, the open command also sends a message to the presented domain object to be " --l
surc that its contents are fully described and updated. For a file, this may involve getting B 1
the file's text. Each class of domain object can provide its own method for handling this
message, or inherit a more general one. The default method is to do nothing,

Closing an object requires two actions in addition to the presentation style change. First, g q
recognition of cditing changes to the open presentation must be performed. Thus, in s
general, the user may have changed some of the parts of the opened presentation, and these j
changes are reflected in changes to the presented domain object’s contents in some way. ° :

Sccond, the domain object is sent a message to save its contents. For a file, this involves

saving the file’s teat. Again, the inherited default is to do nothing. Tl

Top-Level Control Structures. PSBase provides two alternative control structures that

139

processes command sighals (keystrokes and mouse clicks), invoke immediate and other

recognizers, and causc graphics redisptay to be performed. They differ primarily in the

p

method of command invocation and command argument sclection. [n the first top-level
style, the user first specifies a command, then selects its arguments; in the sccond style, the

user selects the arguments first, then specifics the command.

The first style has the benefit of the command's description while selecting the arguments
for the command. The parameter descriptions have control of the sclection, prompting the
uscr with the parameter name and documentation, and checking that the argument sclected
is of the proper type. For example, if the parameter specifics that a file must be selected, it
will immediately reject any sclection that is not a file, letting the user make the selection
again. Though the style as provided does not do this, it would be a relatively simple matter
to tailor the mouse-tracking mechanism so that only presentations of the correct type would

be sensitive to selection, i.e., only those being highlighted as the mouse moved across them.

The second style collects sclected arpuments, presciting thecm by keeping them
highlighted until the command is chosen, and then when a command presentation is
sclected, creates a command application for it, letting the command application check that

the arguments are of the proper type.

Each style allows two kinds of mouse clicks to be made: a left-button click sclects a

presentation or its presented domain object, and a right-button click stlects a position. In

Y

v‘"r""\ g N
RN ORI
! R

the second style, positions arc highlighted with a small circle-cross mark.

Both styles select commands (as opposed to their arguments) similarly. If the user types a , .

:._Z kcy, that key is translated into a command, using a standard dispatch table. On the other

- hand, when the user selects a presentation, the top level checks whether its presented RIS
: domain object can be resolved to a command -- i.e., a simple command recognition is L :
? performed. This is, for example, what happens when the uscr selects an item in a command . 1
o menu. R
= LI
X Similarly, when the user sclccts a presentation of a command application, that command SRR
-9 4
ot 140 T
3 Tae T
LT ‘1
- . e ‘

. @

et et a) - - " - . \‘ - o RS
- - - - - - . - L4 . - . -
- oy e N e
', - e U e et . N e %N . . . o0 - oSN .
s o . e . . s . S
LB AN S NPT AT A R A A S RPN AR AL AT WL W, g VAR P RO P P AR

T S BASMIAAS

L gu

>

application is eaecuted. In this case, however, the command application alrcady supplics

the arguments,

After cach sclection. whether argument or command. immediate recognizers are invoked,
and graphics redisplay is performed if there is no typeahead to process. In addition, the
sccond top-level style executes any command applications that have been accumulated, by
recognizers such as move recognizers. On the other hand. the first style allows command
applications to be accumulated without; in general, immediate execution. This is the case
when those command applications are presented, as just mentioned above. Scction

4.1 illustrated such "plan presentations” in Emacs Dired.

5.7 Summary

This chapter opened with some gencral comments about the benelits of a presentation
systerm base, and in particular, PSBasc. Summarizing these briefly: The structurc of PSBase
is basced on the structure of the general presentation system model. This is the source of
much generality and modularity, in both PSBase and the interfaces built on top of it. In
particular, domain-independent and style-independent parts can be identified and provided
in the basc. Furthermore, most of the modules in PSBase rely heavily on the uniformity of

the data base network, which is uscd to implement both the presentation data base and the

application data base.

141

PSS S W o

s

Chapter Six

Constructing Presentation Systems

This chapter illustrates the utility of the presentation system base. PSBase, by discussing
three user interfaces constructed on top of the base. The interfaces differ in style, but share
the same purpose, to provide an interface to the Tops-20 operating system top level [Tops20
80]. as does the Excc, Tops-20's normal top level. The sections below will describe how
these interfaces are constructed, emphasizing how much of the PSBase mechanisin is shared
between them and how relatively little needs to be written by the interface builder.
(Throughout this chapter, the term user refers to the user of the constructed interface. The
term interface builder or just builder refers to the person who constructs the interface using

the PSBasc tools and mechanisms.)

6.1 The User’s View of the Thiree Interfaces

The sections below will bricfly illustrate the three interfaces by discussing scenarios in
which the user views directorics, files, mail, and user information: cdits some of these:;
prints and deletes files; and sends messages. Each scenario has the same fictitious user,
Norman S. Rafferty, whose [ogin name is NSR, The host computer is MIT-OZ. The
discussion will be accompanicd by diagrams showing the screen at various points during the

scenarios. In order to save space. not all steps in the scenarios will be shown,

The first interface incorporates a style similtar to the Xerox Star discussed in chapter four,
cmphasizing the manipulation of icons. The sccond interface incorporates a style
emphasizing the use of text displays with associated command menus. The third style
incorporates a style emphasizing the use of graphical annotations, an extension of the Emacs

Dirced style discussed in section 4.1,

The annotation interface is somewhat less complete than the other two in that it offers an

142

4

[]
1
A
- -

LB

_.._7‘ .-l
. 1
4
-
L

®
{

o
p
R
]

B J

'. . 4

At A

. >-‘

: 1
®

E

Y

* 1
e

4

. _.:q

RN

1

|

e T e e S e e e T e . . . e T T C T et SR S T T I e
- - -, ol P} "y . " - Bictmrelo - ~ e b - b - . e N . St z M - bl e et = b M h h = .
AP AP . | e, s Seale e W L et B AV e 4 s et e’ s atua’at _“ataa

VA PRI IAL WA VA AT, WA WL LW P WS PP PRI

interface to the file system only. This is not an inherent limitation, but instead reflects the
fact that the current implementation of PSBase offers less support for building the

annotation interface than for building the others.

It is not the intention of this report 1o arguc that these particular interface styles are ideal
or cven good as implemented here. ‘The styles represent three different. important classes of
styles. The important point is how these interfaces can be designed, constructed, and

changed more casily given a presentation system base on which to construct them.

lcon-Style Interface. The initial screen display of the icon-style interface scenario is
shown in figure 6-1. At the top left is a clock, updated every minute. Below it arc icons for
an in-box (received mail), out-box (for sending mail), two printers (the Dover lascr printer
and a linc printer), and a campfire (used for deleting filcs). Across the top are icons
showing the users currently logged in. (One of the user figures is not in his chair, This
indicates that the user has not typed anything withiu the last twenty minutes and is perhaps
away from the erminal.) The user display is updated cvery few minutes. Below the users
are three folder icons, presenting NSR's three dircctorics, NSR, NSR.R, and NSR.R.T.
(These happen to be hicrarchically nested directorics. the directorics owned by this user,

though any sct of dircctorics can be displayed.)

The user opens the NSR.R.T folder: First, the folder icon is sclccted, by pointing to it
with the mousce and pressing a mouse button. While sclected, the icon is displayed in
reverse video, The mousc is used to select a position for the opened presentation. The user
types a special open command key. The folder icon disappears and a new display showing
the contents of the dircctory appears at the selected position, as shown in figure 6-2. This
display shows the files in the directory, as a set of document icons. the full directory name,
and disk space information. The "6/20221" indicates that this directory uses 6 disk blocks,

and 20221 disk blocks remain free.

While this openced directory is displayed. it will be periodically updated. If the number of
free disk blocks changes, the "20221" will be replaced by the new amount. Also, the

document icons will change if the set of files in the directory changes.

143

P L LTI Tolr VR UL AR AP T IS
LR S R P T AT T T T e e

——— Y —

Figure 6-1: Icon-Style interface

i S st S e g

A

ﬁnﬂ

|3A

Tl 2le A2

ERS [“SR
S o

144

i e de)

p—pr————"

R GA o et s Sty

Figure 6-2: lcon-Style Interface

0Z : < NSR.R.T > 6720221

‘
[T | TP

145

''''''''''''''

AN A AR B s S e Jan S -0l At -shoes Smas San g ——

Next, the user opens the file MSG.TXT. The process is the same as before: the
n document icon is sclected. a position is selected, and the open command key is typed.
Figure 6-3 shows the screen at this point. ‘The MSG.TXT icon no longer appears in the
dircctory display, since it has been brought out to the desktop arca and opencd. When

i
}’)
h closed. it will retake its place in the directory display as a document icon.

Figure 6-3 also shows a change in the logged-in user display: the set of users has

changed.

F The user cdits the text of the MSG.TXT file. A position within the text is selected, and
the set edit point command key is typed. A text-editing cursor appears at that place in the

text. Editing takes place by using simple Emacs-like command keys. For instance, typing

r‘ letters inserts them, and typing certain control-characters moves the cursor or delctes
: characters.

.

.

X The user also cdits the 7o field (i.c., destination specification) at the top of the opened file

display. This indicates the user who will reccive this file if it is mailed (put in the out-box).

This cditing is performed in the same manner as the teat editing just discussed. The result,

shown in figure 6-4, is that the user ECD at MIT-OZ will receive a copy of this file when

mailed.

The user now closcs MSG.TXT, by sclecting it and typing the close command key, The

opencd file display disappears, and the document icon rcappears in the opened dircctory.

Next, the file TEST.TXT is printed. The document icon is sclected, a position at the

e

Dover icon is sclected, and the move command key is typed. The print icon is highlighted to

3 show that the print command has been understood and is underway. (The background

p

- process sends a request is made to the host computer to print the file.) The highlighting is

? then turned off, and the document icon is positioned adjacent to the printer icon. Sce figure

o 6-5.

RO

;- . After printing, the user deletes the file by moving the TEST.TXT document icon to the IR
»

o .

: 4

=)

146 iff-_;-";'}_‘_:‘.:.a

- - . . - - - - 0 . - .‘. --~ - ~..)
N I I AP R LIPS I P P S L T VU P S L T T e T RERIRIARIRIEL I S S
>y e T ST RN T RTINS SR TR SR AN G SR NI RIS VNIRRT -'--i

Figure 6-3: Icon-Style Interface

L
r’ s : CNSR.R.T O 6/20221

0z

MSG.TXT.1 To: 777
%
Q I saw the article, Could youw plcase

send me a copy of the report it Y
mentions? (TM-132, I think.)

-- Norm

147

T S v AME AT e e aan men 4iaeen e e e s e s o T e =y —Yﬁﬁv-—,wﬁﬁﬁ—vj
. . PR v AR A Jan 2oy

T

A denih i domn Ao emal

Figure 6-4: lcon-Style Interface

PN .

) "-4

: < NSR.R.T O 6720221 4

oz

b D Y
saag || oo it
YO | ENYY] xr

—,
b4

[

MSG.TXT.1 To: ECDBMIT-0Z

Ed,

34

I saw the article. Ccduld you pleass
send me a copy of the report it
mentions? (It was TM-132, I think.)

-- Norm . ® 4

L]
@
.._.',' (‘,A) '
e a e A Rt

Pl
-~
K
g
.
e . T e T e T T T e e et T T e T
PRI AN CIRP P B TY TP LA T UL TR U AP I Tl T B Wl P T B 10T 5. ¥

LT N - g . T " T -— —-‘vvﬁ.1

Figure 6-5: Icon-Style Interface

.

G
&P
o
=,

0Z : < NSR.R.T > 6720221

149

-

SIS wanAnOOM: W

LN 280

B |

I A
RO

AAEIE Rl S Y L ey

campfire. The campfire is highlighted as the file is deleted. The highlighting is then turned

off und the document icon disappears.

The user moves the MSG.TXT document icon out of the directory to the desktop, i.c., the
open part of the screen. The user now closes the directory: the original folder icon is

displayced. instead of the opened directory display. See figure 6-6.

Mail is viewed by opening the in-box icon. This opened presentation shows the messages
in the mail file as summary lines, shown in figure 6-7. A summary line can be opened,
showing the text of the message. This process is similar o that for viewing directories and

files.

The user can send the contents of a file in two ways. First, he can move the document
icon to onc of the uscr icons at the top of the screen. This causes the text of the message to
appear as a message on that user's terminal. Sccond, the document icon can be moved to
the out-box. The user takes the latter action, moving the MSG.TXT document icon to the

out-box, causing the contents of the file to be mailed to the user ECD.

Finally, the user opens the NSR icon representing himself, displaying information about
his terminal location and personnel information, such as office, supervisor, etc. This is
shown in figure 6-8. He updates the oftice information, using the same text-cditing process

described above, and then closes the display.

150

Ta .

-'.-_',.' Wt . - v
. S R T T A
. S T S TR T G S S PN T D

PR

Figure 6-6: Icon-Style Interfuce

151

.................................

................................

Figure 6-7: Icon-Style Interface

MAIL.TXT.1

)
21 13-Aug Your cadr has a EHL@MIT-0Z -+ NSR@MIT-0Z

11 13-Aug That was a mess EHL@MIT-0Z - NSR@MIT-0Z -

2R

152

) e L
RERARN RS . . .
R T Ve W s
- 3 N a2 a o 8 Ky St

P T . e Al S e e ane

Figure 6-8: Icon-Style Interface

N .

S UName: NSR Fork: FINGER _
Idle: Location: MIT-LISPM-2 (Chaos) °
Norman S. Rafferty (Norm)
=) Office: NEA43-809, x3-5871, working for HENSON . 1

&) S
B |
®
- 1
:]
®
. . ﬁ
P
®
1
. @ 4
153 : :
s e A
- «
S T
. .
.) K
. ;
K
- «
- - s . - - ~ - St et T et s s s _.A'_._ K
s . o - < N R S R L. !
.. S, e, e e - s R RSO N AR N, AT s T e e) N '
TN TN DS PRI S SR WA P R AP S N O S S Sl SUAGE O W, B, AL SR WAL B KL S SO TR . "V |

AR Bt maas Jus s e aeny e T —— — USRS S A O SR A e et e & Al SASE AN souls Mt Jutes e el e sume o e agy

Menu-Style Interface. Figure 6-9 shows the initial screen display at the start of the
scenario for the menu-style interface. Across the top is a display of current information
about the status of the host computer: the time. the time-sharing load, and the number of
jobs. (The time-sharing load on Tops-20 is represented by three load averages, the first
specifying the load at the current time, the sccond, the average load over the past 5 minutes,
and the third, the average load over the past 15 minutes.) This display is updated every few

minutes.

Two command menus are displayed below the host information. The top menu contains
commands for choosing what to present and for updating the host's information from user
editing of the presentations. (The latter is the perform changes command.) The bottom
menu containg presentation editor commands. These commands are invoked by command

keys in the icon-style interface,

The scenario starts with the uscr invoking the present directory command (the result of
which is shown in figure 6-10): The user first points to the menu item and selects it by
pressing a mouse button. A small window appears at the bottom of the screen, requesting
that the uscr type the directory’'s pathname. The user types the pathname "<NSR.R.T>"
(and can cdit it using the text-editing commands). When the user types the End key, the
small window disappears, and the uscr is prompted for the next argument, the position for
the directory presentation. The interface displays these prompts (for domain object,
presentation, and position sclection) briefly, in a line at the bottom of the screen (not shown
in these pictures), by specifying the kind of command argument expected. Here, the
prompt is "Position”. The user selects a position with the mouse, and the directory is
displayed as shown in figure 6-10. Whiic the command is being cxccuted, i.c., until the
directory display appears, the present directory item in the menu is highlighted by reverse

video.

The dircctory display is accompanicd by a menu of commands that view, dclete, and print
files. The user invokes the present file command from that menu, and then selects (as an

argument to the command). the MSG.TXT file. This selection can be done by pointing to

154

LRI NP A W S I S Sy) . TR VAT WA I AU NS YL SR SR WL WAL ST WAL U DR R WL LI

- 4
o
e ‘
AN
PO y
®
E
4
-
]
4
L4 4

- 1
SR
o
2

-1

®
'
"

. ® j
IR
g

-

o |
- 1

[
v

L L L S
\ = . - .« S

-t et ata e . PR Y -
calalaSalata®atoa®asa® o

T — T - v a4 W T W T T T - -—————— v

Figure 6-9: Menu-Style Interface

{Host MIT-0Z Time: 21:19:. Load Avgs: 4.07 3.26 3.28 ; & jobs. |

[Present Directory
v ‘Present User Jobs

Present Matl T
Perform Changes .

Erase
Move
Set Point

Ll
°

P

155

.

.

e T Mttt e - L - e e e
- . SoT . Calts N T T T et .

- e e et R MO e o . . AR .

M ST T T TP P U NI DI T DP T T V- A R I WL UL St JuP - Tarr WPt S T RRoL.) Y " PRIEPUAY S WHE WA I S |

Figure 6-10: Menu-Style Interface

y - 4
—I .
. [Host MIiT-0Z _ Time: 21:23; Load Avgs: 4.07 _3.26_ 3.28 ; 6 jobs. | :
K Present Directory : -
N Present User Jobs S
Present Mail RN
l Perform Changes T 3
o
4
Erase .
Move
Set Point
”
* 3
Present File 0Z : < NSR.R.T > 6/19053 e
Delete File 1
Dover Print File EMACS.INIT.374 3 07/26/84 10:34:57 177 NSR 7?7 k
Line-Print File LOGIN.CMD.34 1 07/03/84 (02:47:05 777 NSR 772 ik
MSG.TXT.1 1 08/13/84 20:58:27 08/13/84 NSR ECDGMIT-0Z ©
TEST.TXT.1 1 08/13/84 20:39:15 08/13/84 NSR 777 T
. N .
*
R
4‘.‘1
5
1

.
' a” 4

156 RIS

[S S SN

J
just the teat presenting the name of the fite, "MSGEXT", the entire file row, or even the
presentations of the file’s propertics (such as the "1" presenting the file fength). The user
] also selects a position for the file display.

The user at this point can edit the file and its To field, just as in the icon-style scenario.

See figure 6-11.

The user prints the file LOGIN.CMD by sclecting Dover Print File and the file entry in
the dircctory. (Note that if the user wished to print MSG. TXT at this point, he could cither

scicet its entry in the directory or sclect the file display.) As before, while the command

[2

executes, its item in the menu is highlighted.

The user next deletes LOGIN.CMD. Now, in addition to the highlighting of the delete
command menu item, the LOGIN.CAD linc is removed from the display, as shown in
figure 6-12.

The user now erascs the dircctory listing. (This is not a delete command -- 1t just removes

the directory display from view.)

B

A display of the current uscr jobs is next displayed, illustrated in figure 6-13. From left to
right, the ficlds in this display are: login name, user name, current job, and terminal
H information. The terminal information starts, in somc cases, with the time the terminal has

been idle (1:17 for one uscr, 1 minute for another here) and follows with the terminal

Incation. The user can get the identification of these ficlds by pointing to them with the

mouse: the documentation line at the bottom of the screen (not shown here) shows a phrase
® identifying the field. For cxample, pointing to the text "MIT-LISPM-2 (Chaos)”, the uscr L4)
sces "the location of the terminal of the user NSR, Norman S, Rafferty”. The user edits this -

ficld to add more information, changing it to "LM2: 7th floor”. He makes this change take

cffect by invoking the perform changes command from the menu at the top left. Sce figure . T
6-14. FR
SRS
N]

The user next erases the user display and invokes present mail. resulting in the display

157 S

)
Figure 6-11: Menu-Style Interface
| [Host MIT-0Z Time: 21 :24: Load Avgs: 4.07 3.26 3.28 ; 6 jobs. |
t Present Directory
. Present User Jobs
B Present Matl
i |Perform Changes
Erase
Move
Sat Point
|
» Present File 0Z : < NSR.R.T > 6719053
. Delete File
Dover Print File EMACS . INIT.374 3 07/26/84 10:34:57 77? NSR 777
Line-Print File LCGIN.CMD.34 1 07/037/84 02:47:05 777 NSR 777
MSG.TXT.1 1 08/13/84 20:58:27 08/13/84 NSR ECDOMIT-0Z
TEST.TXT.1 1 08713784 20:39:15 08/13/84 NSR 777
»
MSG.TXT.1 To: ECOQMIT-0Z
{a,
I saw tha article. Could you please
i send me 3 copy of the raport it
mentions: (It was TM-132, I think.)

~- Norm

R -

Pl S . I O, LA AP

LI e e e e ST
PRI EAr PPN S G RA .

158

yYr .
1

-
'

p—p "iivi" —— 7“'::,‘

Figure 6-12: Menu-Style Interface

[Host MIT-O0Z Time: 21:26; Load Avgs: 4.07 3.26 3.28 ; 6 jobs. |
Tbresent Directory
Prasent User Jobs
iPresent Mail
{Perform Changes
Erase
Move
Set Point
[Prosent File 0Z: < NSR.R.T > 6719053
Delete File
Dovar Print File EMACS. INIT.374 3 07726784 10:34:57 777? NSR ?717?
|Line-Print File MSG.TXT.1 1 08s13/84 20:58:27 08/13/84 NSR ECDOMIT-0Z
TEST.TXT.1 1 08/713/84 20:39:15 08/13/84 HSR ?77?
MSG.TXT.1 To: ECDEMIT-0Z
I saw the article. Could you please

send me a copy of the rapact it

mentions? (It was TM-132,

-- Norm

I think.)

« Lo ic

e

159

e ‘..'_. RO

: y a g% e DA e e . PRI
AT PR B IPAL I S S T Ul U O T WAt T Wt TRV T S SO - .

b,

Figure 6-13: Mcnu-Style Interface

- P
[Most MIT-0Z Time: 21:29) Load Avgs: 4.07 3.26 3.28 ; 6 jobs. | L
Present Directory ‘ .
Present User Jobs .
Prosent Mail N
(Perform Changes AJ 2
L
®
Erase X
Move ’]
Set Point
o
User jobs:
PHW Patrick H. Winston EXEC 1:17 MIT-NE43-8A-HUB (Chaos)
FONER Leonard N. foner VOIREC x8-3260: Dialup
BERWICK Robert C. Berwick ZEMACS 1 x8-8268: Dialup
SECRETARY Jerry Roylance LISP 777 7?? -
NSR Norman S. Rafferty FINGER MIT-LISPM-2 (Chaos) 1
[
1
]
- el
o
- 1
4

;
o

1

1
® !
SR

160

- RN . . i) . A - .
. EA - L R A L T N P I P S St S N N CERT PR .« e e e
e Tm T T et et e R IRL B St e e e T e S N e T NN Y T T ST T Tt et T N .
PRI RS S A AP P L P PP PO R P T A YA T AL P VA A A T AT P i R ORI e e

o
Figure 6-14: Mcnu-Style Interface
[Host MIT-0Z Time: 21:30; Load Avgs: 4.07 3.26 3.28 ; 5 jobs.] o
[Present Diractory
;Prasant User Jobs
|Present Mail
Perform Changes
®
Erase
Move
! Set Point
!
b
?"‘ °
: User jobs:
b
[PlHwW Patrick H. Winston EXEC 1:17 MIT-NE43-8A-HUB (Chaos)
FONER Leonard N. Foner VOIREC x8-8260: Dialup
BERWICK Robert C. Berwick IEMACS 1 x8-8268: Dialup
SECRETARY Jerry Roylance LISP 2?7 7?77
NSR Norman S. Rafferty FINGER LM2: 7th floor
o °
4
g
o
|a .
bl .
3
b
P
r
3
o °
[J
e
161
[

c e e e e e e P T R B o 4-‘_-.‘7-._:'-".. -‘_‘-':-'_’-'\'J_.-' " STt
DA R T SR TR IR T T YRR

. P T TR S . R cel e L ST
RS S 2 S P P S PP S NP ST T S S S SRR -SRI SESP TP WS SR S A S S S SR N S-S §

T T T

] ° j
shown in tigure 6-15. The mail summary display is accompanied by a menu of commands

h for viewing messages or sending the contents of files as messages. The user can mail or 3

gsend (i.e.. send 1o a terminal. so the recipient sces the message quickly) by selecting the i :

command. the MSGTXT file, and then a user. There are a number of ways of selecting the . j

: recipient user, because there can be a number of user presentations displayed: in the 7o of -._'._1':?:_' 3

. a file display. in a display of user jobs. and in message sunimary lines. ‘ .) 1

)

r‘ .

.
!
RJ
/ L
:
»
.3
3
,
r .
.
}I °
3
.
:
>
N
‘ [
.
°
]
~ ®
J
o
;
»
S asintdeaniemdinadbondon oo NN TP L MY W Sl S . . - a PRI

Figure 6-15: Menu-Style Intcrface

[Host MIT-0Z Time: 21:32; Load Avgs: 4.07 3.26 3.28 ; 6 jobs. |

[Present Directory
Present User Jobs
Present Mail
Perform Changes

S

; Erase

3 Move

3 Set Point

MAIL.TXT.1

Mail File
|Qsand File

[Presont Message J

21

13 -Aug Your cadr has a

EHL@MIT-0Z » NSR@MIT-~0Z
EHL@MIT-0Z » NSR@MIT~0Z

11 13-Aug That was a ness

163

L TP e T T S O PP SR PG
T T et . LT et " R ,~--~-.4_..\.'._. Ce e et -'\~.< Lt
A ST AT A SAr A AP W S PP, PV AP AP e APPSO PR Y §

Pl e

. B

Ve

.

- 2 .

P .
Ltatatati"e s a

4

AL

Annotation-Style Interface. The initial screen display for the annotation-style interface is
very simidar to that for the menu-style interface. A new command, recognize, appears in the
top menu, and the presentation editor menu has been expanded to include commands for
drawing tincs and arrows. In addition, the interface offers the user the curve-recognition
facility for creating lines and arrows. This expanded menu reflects the targer role the
presentation cditor plays in this style of interface: the user creates graphical annotations to

presentations displayed by the system. Sce the upper left portion of figure 6-16.

The uscr starts by presenting the directory <NSR.R.T). As with the menu-style intcrface,
the user selects the menu ttem and is prompted for pathname and position. ‘The directory

display in this intcrface, however, does not include an associated menu of commands.

The user first decides to correct some information in the directory, namely, that the
author of the file EMACS. INIT. 374, currently NSR, really should be EAK. To do this, the
user invokes the set point command to place the text-editing cursor in an arca above the
display and then tvpes the text "CHANGE". The text "EAK" is crcated ncarby in a similar
manner. The user then connects "CHANGE" to the author presentation by a line, and

connects "CHANGE' to "EAK” by an arrow. The result is shown in 6-16.

To check that the system will correctly undcerstand this annotation command, the user
invokes the recognize command. Up to this point, the text, line, and arrow crecated by the
user had not been recognized by the interface. The recognize command specifically invokes
the annotation recognizer. The menu item is highlighted while the recognition is being
performed. The user then checks the result of the recognition by pointing to the text
"CHANGE". The documentation line now displays "a plan to change the author of the file
O7:<NSR.R. T>EMACS.INIT.374, NSR, to EAK." This change has not yet been made

-- the user has only had the system confirm the meaning of the planned command.

The user next makes several more annotations, as shown in figure 6-17. These tell the
systcm to set the reference date of the file EMACS.INIT.374 10 be the same as its creation

dute, delcte the file LOGIN.CMD.34. and print the file TEST.TXT.1.

164

. .
PR . R e
v e L e T T TRtV S e

RPN P N

TT———— ™ LT A e e Jenih il Bt bt e - ——— —~——r - .'

— 4
Figurc 6-16: Annotation-Style Interface o
oS T . T8 © 5 jobs.] e
[Host MIT-0Z Time: 2t :456; Load Avgs: 2.84 2.83 2.94 : 6 Jobs.
o RN
Prasent Directory S
Preasent User Jobs
Present Mail Lo
Recognize RN
Parform Changes °
Line
Arrow . ;
Erase : N
Move k
Set Point B }
EAK
]
-
CHANGE 4
—_——— = E
0% : ¢ NSR.R.T > 6/18561 ' °
EMACS. INIT.374 3 07/26/84 10:34:57 7?7? NSR 2?7)
LOGIN.CMD.34 1 07/03/84 (02:47:05 08/13/84 NSR 7?77 ‘
MSG.TXT.1 1 087/13/84 20:58:27 08/13/84 MSR ECDRMIT-0Z
Tesi.1Ai.1 i ubs13/64 cu:rsy:ls 08718784 NOR O r((f |
R——
,,. -
. '
®
®
— -.
®
165
®

. . I T I S B
ST aT et R R P S L L
[l SRAP R ST AT Sl VPG S Sl S Vall Wl Woal W ¢ a

- -4
. -
3
. N
Figure 6-17: Annotation-Style Interface]
R
- 4
[Most MIT-0Z Time: 21 :48 ;. Load Avgs: 2.64 2.83 2.94 ; 6 Ebs.-] o 4
. PR -
Present Directory NN R
Present User Jobs - R
Present Mail Lo
Recognize R
Perform Changes) b
| J
Line
Arrow
Erase .
Move :
Set Point .
EAK 3
e
4
CHANGE
CHANGE 4
0Z: <NSR.R.T > 6/ 18561 I , Py ‘
1
EMACS.INIT.374 3 07/26/84 10:34:57 177 NSR ?7? .
DELETE > LOGIN.CMD. 34 1 07/03/84 02:47:05 08/13/84 NSR 77? b
. MSG.TXT.1 1 08/13/84 20:58:27 08/713/84 NSR FCDOMIT-0Z :
LMD PAINT -~ IEST.TAT. I Gps13/84 2u:dy:1b UL/13/88 NSK (¢

.1.‘—“
T
®,

H
Al

.
.

vr—rrv—.fvvrﬁq—v. -
o

L 4
S <
. G
L.
e - Cd
=3 _.- .. "
L e
RS . A
. s

.‘.' v‘
[]

166 e

ata oAl

a2

P o v v — P —— - ———Y T YW ———y v 14 ‘1

The user now tells the system to perform these commands, by imvoking the perform

e

{

changes command. The command’s menu item is highlighted. ‘The first thing the interface
must do is recognize the new annotations, so the recognize command is automatically
invoked by the interface. The user sees that this is taking place: the recognize menu item is

now highlighted. After recognition, the commands are exccuted one by one. As with the

[]
R SR

highlighting of the recognize command. the user sces the progress of the perform changes

command: the annotation commands are highlighted while they are being exccuted.

When the annotation commands have all been performed, the display is updated in (wo
ways. First, the line in the dircctory presenting the file LOGIN.CM D.34 is recmoved, since)
the file has been deleted. Sceond, the annotation verbs are changed o past tense. The

resulting display is shown in figure 6-18.

6.2 Common Iinplementation Details
The basic order of development of the uscr interface was as follows:

* Create application data base network and a background process to conncect it
with the operating system, b

* Define some initial presentation styles so that further development can be tested
with them (c.g.. icons).

* Enable sclected PSBasc basic style packages, cspecially top-level control
structure. cdit functions, and the mousc-tracking reference mechanism.,

* Define and describe commands and command sets, sclect menu prescntation

styles.
..)
* Specify move recognition and open/close rules.
* Write recognizers as needed (move recognizers, direct-edit recognizers). i
* Define and change presentation styles as desired. °
hY
Common Implementation. Certain parts of the user interface implementation are shared
between all three of the styles. These parts, once constructed, are invariant under further)
®

167

T e e . - C et et gt m DS P R NR SRACTE Ut U UYL UAS DT Gt I Wit Wi U WP WAPIT SN S S S SR Ry]

R2adich U A SN R ateh il e - AZunte i ain Secie 2 T N n
L 5
. A
[
Figure 6-18: Annotation-Style Interface
- 4
[Host MIT-0Z Time: 21:49;: Load Avgs: 2.64 2.83 2.94 ; 6 jobs. | o
5
T
Preasent Directory el 9
Praesent Usar Jobs .
Present Mail RO
Recognize T
Perform Changes) ®
1
¥ 4
- Line <
Arrow 4
Erase -4
Move
r Set Point . 1
EAK
K y .
a
1 changed
8
changed
0Z : < NSR.R.T > 6718561 / r
EMACS.INIT.374 3 07/26/84 10:34:57 777 MSR 7??
MSG.TXT.1 1 08713/84 20:58:27 08,13/84 NSR FCORMIT-QZ
, i | > TEST.TXT.1 1 08/13/84 20:39:15 08/13/84 NSR 7?
£rints
o
. P
® ;
. ® |
168 -
s hd “’.."’-'—‘ e . > l' = AP ".;:;-" "4"" " _.__i‘;._;.-f;_-.':s...";.:.'..»'

r'—'j. R RN A S A S A A AT TV T " 3 " " - T T - — —~— T T T v .—v—v—-,!
i
) }
; -
y
. e
i
P
t ‘ development and eaperimentation with interfice styles.
. . . - . . 4
The most important of these parts is the application data basc, whose development will be) 1
discussed scparately in the following sub-section. The application data base models the .
operating system, and at first it seems redundant. Yet it is well worth the modest cffort to
construct it: ‘The uniformity of the data base network is vital to the utility of the PSBase R
mechanisms. In future systems, applications may be built from the first with this kind of
data base, completcly relieving the interface builder from this work. (The benefits of a
uniform data basc mechanism in modeling the application are not limited o the .'
mechanisms of the user interface.) A sub-scction below discusses the continual updating of ®]
the application data base in more detail.
A number of simple parscrs are provided as part of the general recognizer mechanism
that rccognizes user edits of property presentations. These are called direct edits and are "o j
also discussed in detail in a sub-section below. o]
Finally, all the styles share a number of PSBase components. Since these components are o
simply sclected and enabled, requiring almost no work on the part of the interface builder, o i
the componcents that appear in the three style implementations will be listed here:
*The two top-level control structurcs (argument-first for the icon-style k
implementation; command-first for the menu-stylc and annotation-style
implementations) " @ ‘4
* The command execution presenter (for highlighting commands as they exccute))
a
* The mouse-tracking/reference mechanism .
2
. . . o
Vertical command menu presentation styles (for the menu-style and annotation- 1
style implementations) : .
* Prescntation editor functions: all styles inciude move, set text cursor position, ISR
and text-cditing commands; menu style adds erase; annotauon style adds line B
and arrow
* Curve recognizers for the annotation style.
N S
169 .

o

B T N S e S PR T
fafalaSafolk. otoa. m. a.ant Lt -

NI

& T T
]

'.J

y

4

J

The Application Data Base. Like PSBase, this interface is implemented on the ML Lisp
machine. The Lisp machine acts as the user's terminal: the Lisp machine communicates
with the host computer via network connections. The user of the interface, however, does

not nced to be aware of these connections.

The large scale structure of this system is shown in figure 6-19. The application data base
models the current state of relevant parts of the host computer, using the uniform data base
mechanism provided by PSBase. A background process maintains the application data base
by periodically polling the host computer, getting information about the users currently
logged in, the time-sharing load, the contents of relevant directorics, and the contents of the

user's mail file ("in box").

Some host information is retricved or saved upon demand, rather than by regular polling.
For instance, when the user opens a document icon, the presented file instance in the
application data basc receives a make-contents message: the file instance must expand its
description to include the text contents of the file. At this point. therefore. the file is read
into the Lisp machine from the host computer. Similarly, when the file instance receives a

save-contents message, the text of the file is written back to the host computer.

Recognizers for Direct Editing. Three instances of direct cditing of a presentation occur
in the icon-style interface scenario: editing of the file text, the file destination field, and
ficlds in the user information display. All such dircct editing is handled in the same
manner. The PSBase recognizer control structure finds those presentations created by
presenters and cdited by the user. For each of these, it invokes a spccific recognizer to
handle thar kind of presentation; currently, only text presentations have such a recognizer.
This recognizer, still part of the general mechanism, checks for a parser specifically for the

kind of presented domain object and invokes it.

The interface builder must therefore provide such parsers for those kinds of application
data base instances that are specit'c to this interface. The following are two sample parsers.
Note that both are specified not by the class of domain object. but by the property name.

Text presentations that are directly cdited arc presentations of propertics (since they are

170

e e e e e e T e T e R

K K o e T o - - R L R - - LI - - - . et e N TR -, P T SRS R
-, o NP, . L L, i S S A -‘;‘-‘L;_L'L'L'A'L'._‘_L"_;:AA*LALALAL.L;-,-l~L---,----J

- 1

=

1

<

.
ey
R

< 9

' q
"y

¢

Figure 6-19: Application Data Base Management

APPLICATION |
DA TA |
Base |

B AckarounDd .
PROCE;‘s .:j- .
L AN /"lﬁiﬁ]h/;’ i .._‘ L-.;
— = - —- — —] -~ — ®
NETWORK
CCNNEC Tiovs o }
¢ 1
:
Hos ° |
CompPUuTER ;
o

171

Ty e e o v ¥ -y
- NEERCMRE e A e B Ao 4 " P T " e P ——— P o—r———

parts of a larger style). This approach is clearly limited: for instance, even if based on the

'f] property name, the specification really should include the kind of owning object or the kind) ®
of property value, since property name alone may be ambiguous, -
(defmethod (TEXT-PRESINTATION Sl
. :PARSE-WORK~PHONE -PRESENTED-DOMAIN-OBJECT) () SRR
- string) e
®

{defmethod (TEXT-PRESENTATION
:PARSE-REFERENCE~DATE-PRESENTED-DOMAIN-OBJECT) ()
(make-instance 'date

":universal-time (time:parse-universal-time string
E 0 nil nil))) °

The first parser simply returns the string of the text presentation as the string to use for
the valuc of the presented domain object’s property. In fact, most of the parsers for these
interfaces have such trivial parsers, since most of these properties have string values. Here,
for example, the user instance in the application data base has a work phone property: its

value is not a data base instance, but is simply a string,

The sccond parser is only slightly more complicated. The reference date property of a file .
instance has a valuc that is a date instance. The datc instance in turn has a universal time
property, cncoding a time or date as a number. The Lisp machine provides a package of

o functions for manipulating such time representations, including the parsing function used

H here that retums a universal time given a string. Thus, there arc two phascs, the actual .‘*

parsing of the string and the creation of the data base instance. (These phases arc simple

cases of what section 2.6 described as the semuantic recognizer and domain changer parts of

the recognizer.) o

>
v

The number of parsers to be specified varies with the number of propertics in the

application data basc that will be edited. 1t does not depend on the number of presentation

styles presenting these propertics. Thus, the interface can become quite extensive without .)
requiring much additional work in this regard. For example, the icon and menu styles both LA
show a user's terminal location, but they embed this in different styles. one in a display of
information about a single uscr, and the other in a table of information about all the users.]
. -~
1

. . PSRN N N
PRt 2" - Gt te LT T e N 4
1 Py S 2 Bd Y e o PR T W Yl SR T 1. B OSSP S LI N

1

However, once the parser for the location property has been created. both presentation

styles immediately offer the user the ability to edit this field.

6.3 Icon-Style Interface Implementation

This section and the following two describe the implementation of the interfaces just
described. building on PSBase. The icon-style interface implementation consists of five
major parts: presentation style descriptions, open/close mechanism, move recognition,

rccognizers for direct editing, and simple usc of various PSBase components.

Presentation Style Descriptions. In gencral, the icon-style interface uses a graphical
presentation style to deline the icons, and template and scquence presentation styles to
define the openced presentations. Examples of these styles™ specifications wifl be given

below.

The icon style descriptions are simple, though somewhat verbose (as cach line, circle,
rectangle. etc., must be specificd by listing its propertics). These descriptions are casily
generated, though one would expect a full-scale presentation system base to provide more
tools for creating icons by editing pictures. (Whether the pictures are constructed from
lings, circles, ctc., as here, or from bitmap. or a combination, is an indcpendent issue. The

non-bitmap approach used here was chosen because it used existing PSBasc facilities.)

The presentation style description for the document icon is shown below:

173

®
1
o 1
b
o

| AP A G e I S T—g Y v - T ———— - n —T— ~r —— T r—r————— ———— . -

(def-graphics-presentation-style DOCUMENT-ICON FILE nil
nil nil
((nil
{LINE-PRESENTATION ; Top
:x1 (relative-to-parent-x 0)
:yl (relative-to-parent-y 0)
:x2 (relative-to-parent-x 16)
:y2 (relative-to-parent-y 0)))
(nil
(LINE-PRESENTATION ; Left
:x1 (relative-to-parent-x 0)
:yl (relative-to-parent-y 0)
:x2 (relative-to-parent-x 0)
:y2 (relative-to-parent-y 30)))

((:PATHNAME :STRING-FOR-EDITOR)
(TEXT-PRESENTATION
:x (relative-to-parent-x 2)
:y (relative-to-parent-y 9)
:font 'fonts:hl16
:mouse-trackable-p ':no-track
:string (substring-or-null-string
(send presented-domain-object ':component-walk
"(:pathname :string-for-editor))
0 4)))
{((:PATHNAME :STRING-FOR-EDITOR)
(TEXT-PRESENTATION
:x (relative-to-parent-x 2)
:y (relative-to-parent-y 19)
:font 'fonts:hi6
:mouse-trackable-p ':no-track
:string (substring-or-null-string
(send presented-domain-object ':component-walk
‘(:pathname :string-for-editor))

4.8))))

nil)

Just as with the example shown in scction 5.4, the first iwo lines of this style description
specify the name, document-icon. the application data base class to which it applics, file, and
flags specifying here that it is not the default style for files. nor is it an active presentation.
The first presentation description in the following list specifies the tine across the top of the
icon. The nil that starts the specification indicates that this linc alone does not present
anything. The description tor the line down the left side of the icon is similar, as arc the five

line descriptions that have been elided.

The style description ends with entrics for the two lines of text presenting the file name,

174

4
a4
d

A S

‘*.:- ;:'y"'. ",rm' -

v

T

Fach starts with a specification of the presented domain - object. (pathname
sstring-for-editor). This means that the textis comiputed from the string-for-cditor property
of the file’s pathname, (A pﬁlhlhnnc has several string properties. specifying different ways
of writing the pathoamc,) The strings for the two et presentations are compated by forms

that extract the first four letters for the first line. and the second four for the second line.

The text piesentation entries also specify mouse-trackable-p propertics. A sno-track value
informs the mouse-tracking mechanism that these text presentations should not be mouse-
sensitive. The intent of the style is that an icon be an atomic unit, and theretore no smalfer
part of it should be mousc-sensitive. By dclault these presentations would be mouse-
sensitive, since they present something, The lines, on the other hand, would not be mouse-

sensitive by default.

The following are representative of style descriptions for opened presentations, using
template and sequence presentation styles. There arc three primary styles here: a template
stvle for the directory labe! and disk usage line. a sequence style for the row of document

icons, and a template style that combines the label and row styles.

The following is the template for the dircctory header. This styic is also used by the other

dircctory styles, those used in the other two interfaces.

def-template-presentation-style TOPS20-DIRECTORY-HEADER
y
DIRECTORY il
((:selt tops20-directory-name fonts:cptfontb)

(:disk-space-used active-text)
Ql//"
(:free-disk-space active-text))
chorizontal-layout
nil)

Two other styles are referred to by this template. ‘The tops20-directory-name style simply
presents the directory’s host and name in a text template of colon and brackets, e.g..
"O7: KNSRY™, The active-text style is a simple graphical presentation styfe that defines a
et presentation whose string ts the same as that it presents, and which is specified as being

active, updated every minute. Unlike most graphical presentation styles, it only specifics

175

M ; n ~. ,".. .“" T . .'.“ .“ ..‘ .“- .. S -.'.‘
VS FASINUNLMCOASROREROADN RO FOIRE IRSREBE PV SV ISRV A= P o e e e e

1

one presentation, the text presentation. The reason for having it s simply to specify its

aclive nature.

The following is the presentation style description for the row of document icons in the

dircctory display:
(def-sequence-presentation-style
ICON-DIRECTORY-FILE-GROUP-STYLE
(LIST-PROPERTY DIRECTORY :FILES FILE)
nil t 999999
nil nil nil
document-icon
:horizontal-layout)

The third linc of this description, (list-property ...), specifies the property of the directory
being presented, namely, the files property, and the kind of objects in the list, namcly, file
instances. ‘The fourth line specifizs that this is not the default style for such properties, and
that, while it is an active presentation, it should not (in effect) be periodically updated -- it
will instead be updated automatically whenever the directory instance in the application

data base is changed.

This sequence has no prefix, infix, or suffix presentations (fifth line). The style used to
present the clements of the files list is document-icon. The document icons will be

positioncd in a horizontal row.

Finally, the following is the template style description that composes the above two styles
into the overall opened-directory style:
(def-template-presentation-style

TOPS20-DIRECTORY-ICON-LISTING-STYLE DIRECTORY nil
((:self tops20-directory-header)

(:files icon-directory-file-group-style}))
:vertical-tayout
:border-box)
The third line of this template specifies that the dircctory (self) will be presented both by
the whole composite and by the header line. The null string in the fourth line cffectively
produces a blank linc scparating the header from the document row. And. as mentioned

previously, the fifes property of the directory, a fist of files, will be presented in the style

176

which Hnes them up as a row of document icons. The header, blank line, and document row

are laid out vertically, and a border box is placed around the entire directory presentation.,

Opening, Closing. T'he PSBase mechanism for opening and closing presentations is
driven by a setof specifications linking domain object classes and the presentation styles for
their opencd and closed presentations. These are casily provided: the following is onc of
these specilications (there are four others, all similar);

(def-open-close-presentation-style message-open-close
message
message-summary
full-message
fonts:cptfont)

Move Recognition. Chapter five described the general move recognition mechanism
provided by PSBase. To use this mechanism, the interface builder must provide the move
recognition rules and some small semantic recognizers 10 handle the recognition, once the
genceral organizational recognizer has determined that it applies. The following specifics the
move recoghition rule used for recognizing movement of a document icon to a directory
(cither a folder icon or an opencd dircctory display) as a command to move the file to that

dircctory (there are four other similar rules specified for the interface):

(def-move-recognition-rule move-document-to-directory
(:overlap (file (document-icon))
(directory (folder-icon
tops20-directory-icon-listing)))
:recognize-file-directory-movement)

The semantic rccognizers for move recognition are all very similar. The following is a

sample:

(defmethod (PRESENTATION :RECOGNIZE-MAIL-FILE-MOVEMENT)
(out-box-presentation edit-history-entry)
(let* ((file (send self ':resolve-presented-domain-object
#'typep 'file))
(command-apptication
{make-command-application
(intern-command 'send-file-as-mail-1)
(Vist file))))
(send command-application ':execute)
(send self ':move-next-to-presentation
out-box-presentation edit-history-entry ‘:right)))

m

This recognizer is invoked by sending a recognize-mail-file-movement message to the
?» presentation being moved. the document icon. It is given the out-box icon as one of its
arguments. The first binding form in the let* resolves the presented domain object to a file

instance. The sccond binding form creates the command application, specifying the

= send-file-as-mail-1 command and an argument list with the file as the single argument.

L

!
{ The body of the ler* execules the command application (the general PSBase command

exccution presenter will take care of the highlighting automatically) and cnds by moving the

document icon to a standard position to the right of the out-box.

e
The other move recognizers are about this simple. Unfortunately, sume need to specify
highlighting themselves because of inadequacies in the general command execution
presenter. (Specifically, the presenter looks for presentations of the command or the .
command application. However, moving a document to a printer docs not involve a ® '
command presentation -- the printer icon presents a printer, not a command. The out-box, :
on the other hand. presents the mail command. Perhaps the command exccution presenter '
could be improved to handlc such cases. In any case, the highlighting is a simple matter to o .
specify.) - ® «
6.4 Menu-Style Interface Implemen!ation :
. - g
The implementation of the menu-style interface consists primarily of presentation style ® .
descriptions. For example, the host information at the top of the screen is produced by the
following template style:
(def-template-presentation-style HOST-INFQ HOST ni} °
("Host "
(:name nil)
" Time: "
(:current-time digital-clock-no-border)
(:load-averages host-info-load-averages) "
(:number-of-jobs nil) P
" jobs.") e e
:horizontal-layout :border-box) S
N

178

e T e e . e S e e I UL ST B A S - e c et
e . e e e e et e AR R L e T e T e T e e e e e et St T T e e e
LRI I] P PR W VW OPEINLIPS JP S G T S i Sl W S S S N PP P A P UL Iyl A i S LT L S

e T ———

This style is similar to the other template styles discussed. One distinguishing feature

i here is the presentation style specified for the name and number of jobs propertics: nil ‘o
. indicates that the data base network should be scarched for the best applicable deflault style. »
- The two other sub-styles named are straightforward templates. E
i Implementing displays with associated menus has two parts: specifying the relevant .'
command sct in the application data base and delining the presentation styles. The
S dircectory presentation will be used here as an example.
§
i;‘ The directory presentation and menu combination is a template-style composite °
. presentation, and as a whole it presents the directory. [t has two sub-presentations, the
menu and the directory display. These must, by the nature of PSBase template presentation
styles, present properties of the dircctory (or the directory itself again -- the directory .
;0 display falls into the latter category.) Thus, the interface builder must bc sure that a .
A command set is defined, consisting of the relevant commands (present file, delete file, etc.),
and that this command set serves as the value of some property of the directory to be »
presented. Since all directories will share the same command set, this is a property of the - .",;..l.;
entire class, inherited by cach directory instance. ' : 1
This is implemented in the current PSBase data base mcchanism by defining a method
for directory. (All propertics are acccssed by the message passing. Some properties are - Py ““j
defined by the contents of slots in the instances; but the Lisp machine message-passing 1
systcm automatically crcates methods to retrieve these as well. Thus, the property accessing - N
is uniform.) This mecthod is shown below: }
(de 'method (DIRECTORY :FILE-COMMAND-SET) () o ;
short-file-command-set) . _
This defines the file command set property for directories. It returns the command set ’ iy
instance in the data base network that the variable *short-file-command-set* is bound to. S j
That variable and the command sct instance in turm arc crcated from the following . 1
specification: |
.
179 B
R
o |
: o

LTt B . SO D T T T R RN
T LT S PP S k- LU, WL z i SRR TR W LY P a e et ot g s
R S S Y A, . > ¥ S oy

(i ST R —— - — " w T——— - Aama e Lne S S o]
B

"W‘\' 1"‘
®

(defvar *SHORT-FILE-COMMAND-SET*
(make-command-set-from-spec -
"(present-file o
delete-file
dover-print-file
line-print-file)))

This specification defines a command sct instance by simply listing the names of the

commands to be included. These commands are defined individually elsewhere. (They ¢
may be included in several different command sets. The PSBase command description
mechanism interns command instances in the data base network based on their Lisp
function specifications.) For cxample, the command description for the present-file °

command is written as follows:

ey W TR

(def-command PRESENT-FILE
:arglist ((parameter :select :domain-object
] :domain-object-type file
@ :presentation-type t) o
(parameter :select :position)}))

The interface builder must also write the functions for the presentation commands that

appear in these menus, The definition of the present-file function is as {ollows:

(defun PRESENT-FILE (file-instance position} . ®
(send file-instance ':make-contents)
{(present file-instance
(position-x position) (position-y position)
nil
‘text-file-contents))

This function (like the open mechanism discussed in chapter five) first ensurcs that the ..r
file instance includes the current contents (the text of the file). The file is then presented:
the present function is a general one that takes as arguments the application data base object
(the file instance) to be presented, the position for the presentation, the default font (none .
specified here), and the name of the presentation style to use (text-file-contents). Since
these present-... functions all tend to have this same structuic, there is potential for
converting this task of writing functions to simply describing the action, as is done with
open/close mechanism, o
Some of the presentation styles were shared with the icon-style interface. (In the icon- o :ji-j'-'
style interface these werc all used as opened presentations.) These shared styles are, first, R
®
180

LA S T ST IN S e Goe,
e et T . DR
PR P P PP EPS P N SRR ISP IO

D PR
PRI, DI N

- T T Ty 4 T

the presentation of files showing pathname, destination, and text contents; sccond, the
presentation of the mail file by showing message summary lines: and third. the presentation

of the text of messages.

The recognition of direct cdits is cxactly the same as in the icon-style interface. In fact, no
additional work was done at all here, since all the parsers for the propertics had already

been defined.

6.5 Annotation-Style Interface Implementation

The annotation-style interface uses the same presentation styles as the menu-style
interface, differing only in the choice of the command sets and top level presentation style
for the directory. (In the annotation-style interface the top-level dircctory presentation is

just the dircctory listing, without the associated menu.)

The command cxccution presenter provides the facility whereiy the annotation verbs are
changed to past tense (in addition to providing the command highlighting). The annotation
recognizer only nceds to record the presentation style (namcly, the annotation presentation
style) in the annotation prescntation instance. The command exccution presenter checks
the command presentation (which it has been highlighting) for being of that style; if so, the

verb is changed to past tense.

The bulk of the effort was dcvoted to writing the annotation recognizer. Unlike the other
mechanisms discussed in these interface implementations. the annotation recognizer is fairly
large and is both style-specific and domain-specific. It did not prove very difficult to
modify at various times, as parts of the structure scem almost descriptive. However, a better
approach for future devclopment would be to abstract a general PSBase mechanism driven
by a sct of interface-specific annotation descriptions. This scems to be plausible, judging

from the final structure of the programs,

Recognition of the annotations works by matching structural patterns against the

presentation data base structure and checking presented domain objects of cligible

181

o
®
]

- 4
L

3

<

SRR

® 4
o

L4]

B 9

L

- 4

=«

h |

H presentations, For example, consider the case of an arrow connecting the text "delete” with
f .
’n a presentation of a file. The recognizer starts by checking that the text presentation is a _ "

command verb. Its job is now to verily that this is indeed a presentation of a delete

command application and (o determing its arguments. AT

v

The organizational recognizer collects lines and arrows attached (o the text presentation w0

.'7'" kN
N .
POy W »

and collects the presentations at the other ends; here, only onc arrow is collected.

The semantic recognizer part checks that the presentation at the other end of the arrow

c matches (by reference resolution if necessary) something that can be delcted. In this case,
1 the domain object is a file, and the command application can be created, with the file as its

single argument,

k‘ Even though the annotation recognizer is a fairly large and complex, hand-written
program, compared with the other interface-specific parts of the project the annotation

rccognizer still benefits from PSBase support. Its recognition task is simplificd by having a

structured prescntation data base: it docs not have to do any work to find arrows and lines

connected to the verb text. And because the presentation data base records presented

domain objects for the rich structure crcated by the dircctory presenter, recognition is an
incremental task -- only the annotations to the directory need be recognized, and the SRR

rccognizer can casily check that presentations at the ends of delete arrows present files, or

: . . >
those at the end of change lines present properties that may be changed, for instance, . J
These checks are aided too by the PSBase reference resolution mechanism: whether the 1
S
prescntation at the end of the change arrow presents a date, a time-and-date, a property R
°
whose value is one of those, ctc., is immatcrial -- when the recognizer checks a change- o

reference-date annotation, it need only ask the resolution mechanism to check for a date

instance.

_.f: Part of the previous two points, and a more general benefit as well, is the fact that the

application data base is constructed from a uniform data base mechanism. N Ij o

And finally, the larger, interactive nature of the interface benefits from the general
PSBasc recognition dependency and retraction mechanism. The annotation recognizer does
s not need to consider changes in the annotation soructure from a previously recognized state
-- any such changes cause the previous recognition to be retracted automatically, The
- : recognizer only nceds to consider the recognition from an unrecognized state and to inform
the dependency mechanism of the presentations on which the recognition depends and how

to retract the recognition it specifics.

6.6 Other Style Possibilities

Combinations. Thesc interfaces do not have to be (and were not in this project)
constructed separately. The interface builder can develop them together, combining them
at various times, experimenting with combinations of presentation styles in order to develop
a desired overall style, and so on. One command that PSBase provides in this regard is the
change presentation style command. The command is given a presentation as its argument.
The sot of all nresentation styles applicable to the presentation’s presented domuain ohject is
collected. The user selects one of the applicable styles from a menu, and the presentation is
replaced with a new one, of the same domain object, in the selected style. Thus, the builder
or user can be offered control over the way the objects in the application data base are

presented.

Planning. In the interfaces devcloped here, only the annotation-style included planning
-- the separation of accumulation and recognition of commands from their exccution. The C

other styles appear to inherently bc more of a direct manipulation style of intcrface.

However, one can imagine developing extensions of those styles, adding features of the b]
annotation style to add planning. :
]
The user could create arrows between presentations in the icon-style interface to present a ;
planncd move -- and thercfore a planned command using the move recognizer. For * - ‘
instance, the user could draw an arrow from a document icon to a printer icon. This could S
be recognized as a plan (o print that file. The user could sec this recognition documented, T
. .
183
]

as in the annotation-style interface, and accumulate a set of move-arrow plans before giving

the command to excecute them.

Similarly, some commands could be planncd by drawing arrows in the menu-style
interface, an arrow from the delete file menu item to a file presentation, for example. Some
mcnu commands might require more than one input, which would require a somewhat
more complicated visual style to distinguish and group the different inputs to a planned

command application.

6.7 Summary

This chapter has described the construction of a user interface on top of the PSBase
system described in chapter five. Three alternative styles were implemented. The

implementation comprised two major phases:

The first phase was style-independent, primarily the creation of the application data base
(and the background process that periodically updates the application data basc). Other

style-independent work is the writing of the simple direct-cdit recognizers.

The second phase (for the icon-style and menu-style interfaces, at least) primarily
consisted in using the PSBasc-provided tools for defining and describing presentation styles,
commands, command sets, move recognition rules, and presentation styles for opened and
closcd domain objects. These definitions have been illustrated in this chapter, and cach is
small and can be quickly and independently written. The cxamples given in this chapter are
representative: the others are of about the same difficulty and size. The annotation-style
interface requircd significant additional work in writing its recognizer. An improved
PSBase would reduce this work to the scale of the other styles: the builder would simply

write a few simplc descriptions of the annotation style.

In other words, once the style-independent work has been completed, implementing a
particular style is generally a matter of writing a relatively few small picces using PSBase

tools and choosing some standard PSBase components. This project has demonstrated that

134

ededeationdh

P IR .
Al bt ab B

Sabnde 4

o

P

i
i.

PRV SS T

Ak

.

’a * " . . B N
mla alololsn e atalaate e oa ae e e

cven the small number of features provided by PSBase, a prototype presentation system
base. covers a substantial amount of ground, enhanced by the ability to combine

mechanisms in an independent manner.

Some rough statistics on the project reported here may help to support the claims about
the case and spced with which interfaces can be built on top of a presentation system base.
(This discussion primarily covers just the icon-style and menu-style interfaces, since the
annotation-style interface was developed together with PSBase at an carlier stage.) Of the
roughly thirty days spent on the project, more than half were devoted to further work on
PSBase tiself. About five or six days were devoted to creating the application data base, the
background management process, and the other common parts of the implementation. The
background process took most of the time, more than anticipated, partly due to the
problems of getting information from a distant host via communication network
conncctions. (A few days involved determining the network schicme best suited for this

expcriment.)

About seven days were required to build the icon-style and menu-stylc interfaces (and the
parts of the annotation-style interface that had not yet been completed -- the parts other
than the annotation rccognizer). This includes time spent at the end changing styles to

experiment with the look of things.

Thus. six days were required for style-independent work and seven days for the style-
specific work on the three different style implementations, An interesting note is that, while
many interface builders will be constructing only onc interface, some builders will want to
cxperiment with different styles. This project illustrates how the experimentation process is

helped too: the style-independent work, nearly half the effort here, is done just once.

Another statistic is thc number of presentation styles. At the project’s end there were
about 80 styles dcfined. Several of the PSBase tools evolved during the project, and this
number would be less il the presentation styles were defined from scratch now -- the
number might be closer to 50 or 60. This chapter and chapter five have shown scven of

these. These numbers., in any case, are not very large. and the definitions arc simplified by

185

st i bl

R AR

n.‘v

the fact that they do not have complex interactions. (They have few interactions, in fact

-- merely the static inclusion of one style within another.)

Similarly. though only one move recognition rale and one open/close rule have been
inctuded here (and once of cach in the previous chapier). there are only about five others in

cach category. The total in both categorics is no more than a page ol delinitions.

The characteristics and statistics discussed lend credence to claims that a presentation
system base greatly casces and speeds the dc?elopnmnt of a uscr interface. These are not
flawless arguments, unfortunately. First. this has only been one project. It benefits in
generality by including different styles, but there are a few categorics that have not been
included: onc such is command completion [Tops20 80} [Zmacs 84] (and see scction 4.2,
page 78). Sccond, the project is a demonstration, not a user interface that will really be
uscd. 1t lacks many features that would be required. The intent was to pick a representative
sample of these featurcs and to attempt to at least mimic styles and characteristics that are
used in good-quality user interfaces. However, onc cannot say that a good-quality.
production uscr interface has yet been constructed on a presentation system basc. More
work needs to be done, to build more substantial presentation system bases and to discover

just what benefits they can provide.

186

T

1
o
4
3
L]
U
T
-
. 4
P
]
v
{
]
®
1
° e ey
1
' 4
L J
-
o ’
N
: . |
®
)

‘r

rrorsy

| e A Sl a4 0 S LEn BEM st e s s che nh dme g

Chapter Seven

Arceas for l'urther Research

This report discusses presentation based user interfices in two major phases: first,
discussion of the presentation system model and its use in describing existing user
interfaces: and scecond. discussion of PSBase, the prototype presentation system base for
building uscr interfaces. Fach arca can be further studied; both the model and PSBase have

the character of a framework and nced 1o be fleshed out.

The presentation system model could be developed further, its structure refined. More
general paramceters could be identificd, kinds of presenter and recognizer control, for

instance, or general ambiguilics in recognizer action.

¢ is currcntly human factors vescarch into what uscr interfaces should dou for
particular user groups, for instance, what properties they should have, what the structure of
dialogs should be, and what error messages should say. However, there needs o be more
work donc from the opposite end, determining what uscr interfaces can do -- what the range
of possible styles is. In terms of the definition of styles as patterns of presentation system
paramcters, the possible fundamental structures for these patterns should be determined,

thus defining broad classes of styles.

7.1 PSBase Limitations

PSBase has several fimitations, PSBase is a prototype. not a full-scale production system.
Several parts of its implementation are patchy or somewhat inconsistent, resulting from the
evolution of its design and the pressure of time. 1 provides examples of various features
that a presentation system should have, cnough in fact to build the interface discussed in the
nent chepter. However, more featares in cach category need to be provided, the evisting

mechanisms need to be improved. especially in order o better match the structare of the

187

e e T T,

LR . BT A .
N = - Tt ° N VLN T . - -~ . . - ~ . » . -
e co L PR YW PP PP . YR, Y

s . a— a . PSPPI PRI {

s A.‘-’.“.\;'\‘...

presentation system model, and various mechanisms could benefit from being unified.

More Features Offered. Although this chapter has not fully enumerated ali the features
offered in cach major category, most of the features have been illustrated. The following
lists what would be requiced for a full-scale presentation system base:

* More kinds of presentations, presentation relations

* More presentation editor functions

* More curve recognizers
. * More command argument parameter types
* Morc (and cleverer) organizational presenters

* More presenters

@
* More recognizers, recognizer drivers
r - L) . . » .
] Better Mechanisms. In addition to providing more each kind of feature or mechanism,
k those that have been provided could be improved, by being made more genceral, more
cificient, or more intelligent. The following lists the most important improvements needed;

3 the first three are important in a general sense, in that they are requirements that PSBase
- match the structure of the model more closcly:

4
h * Allow spccification of semantic presenter style separate from domain collector,

so it can be shared between styles, as organizationat cotlector is

P" ' . .-
s * Allow identification of parts of presentation data base as PPS units
e * Allow recognizer invocation to depend on presentation context, or vary between

PPS units

* Improve the data base mechanism: richer structure, knowledge representation
language. perhaps: better matching procedures

* Have move recognizers driven more from descriptions, so interface builder does
not need to write the semantic recognizers

188

IR AP LIPS TLiP UL T S S S0 A Th S S LY A NI IRV, Uil DA N AP NP YO WD S WA Ny YT SR SISO, AT SRS Yt TR T SR L Y S ¥

———————y T w Y =k = wogw v = v o w

Unified Viechanisms, Two major Kinds of unification needs to be achieved in PSBase
mechanisms, First is the invocation of continual and general recognizers. The distinetion
between the two kinds of recognizers does not seem to be aninberent one, non is it a sharp
distinction even in the current implementation. Perhaps there could be assingle recognizer

invocation mechanism,

Sccond, the various presentation style descriptions should be unified into a single
language for describing presentation styles. The three kinds of descriptions shown in
scction S.-4 for defining graphical, sequence. and template presentation styles, are very
similar. Making a single description language that merges the capabilities of these three

kinds ol defining forms should not be difficult.

Beyond that, however, the description of presentation style might be interpreted by more
than just a presenter. Perhaps it could be interpreted by a recognizer as well. This would
then ensure that many presenters and recognizers would be inverses, allowing the interface
builder to provide nrcater uniformity in the interface style. between the presentation stvle
uscd for output (constructed by presenters) and the presentation style used for input

(recognized from user constructions).

189

-A1356 311 PRESENTRTION BASED USER INTERFACES(U) MASSACHUSETTS ~
T OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB

E C CICARELLI AUG 84 AI-TR-794 NOBOB14-75-C-0522
UNCLASSIFIED F/G 9/2

Mu 4%

AN Tade

R v

T
N

« Ve WU WL

p

’ .
EFEFE
: EEE
,.. m—mmmumuuhm

°f

m——
e —

t———

l\

1.4

—
—
e —
——

I

|

1.25

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

I
I

References

[Auardi & Simi 81)
Attardi, G.. and Simi, M.

Semantics of Inheritance and Attributions in the Description System Omega.

In Proceedings of 1JCAl 81. 1JCAI, Vancouver, B.C., Canada, August, 1981,

[Barber 82)
Barber, G.
Office Semantics.
PhD thesis, Massachusetts Institute of Technology, February, 1982,

[Bcil 82)
Beil, D.H.
The VisiCalc Book.
Reston Publishing Co., Inc., Reston, VA, 1982.

[Bleser & Foley 82]
Bleser, T. and Foley, J. D.
Towards Specifying and Evaluating the Human Factors of User-Computer
Interfaccs,

In Human Factors in Computer Systems, pages 309-314. ACM, March, 1982.

[Brachman 78]
Brachman, R. J.
A Structural Paradigm for Representing Knowledge.
Report 3605, Bolt Beranck and Newman, Inc., May, 1978.

[Brachman & Schmolze 85}
Brachman, R.J., and Schmolze, J.G.
An Overvicw of the KL-ONE Knowlcdge Representation System.
Cognitive Science, 1985.
To appear.

[Brown 82]
Brown, J. W.
Controlling thc Complexity of Menu Networks.
Communications of the ACM 25(7):412-418, July, 1982.

[Brown & Sedgewick 84a]
Brown, M. H. and Sedgewick, R.
A System for Algorithm Animation.
Technical Report CS-84-01, Brown University, January, 1984,

190

-8y
o

o
PR
.0 1
7

-—

[Brown & Sedgewick 84b] L
Brown, M. H. and Scdgewick, R.
Techniques for Algorithm Animation. o
Technical Report CS-84-02, Brown University, January, 1984.

[Brown & Sedgewick 84c)
Brown, M. H. and Scdgewick. R. T
Progress Report: Brown University Instructional computing [.aboratory. e Ll
In 15th Annual Technical Symposium on Computer Science Education (ACM
SIGCSE). ACM, February, 1984,
Also available as Brown University Technical Report No, CS-83-28

{CCA 79) o
Program Visualization Concept Paper.)
Computer Corporation of America. o
Cambridge, MA

[diSessa 85] o
- diSessa, A. — s
F A Principled Design for an Integrated Computational Environment. -9
Human-Computer Interaction 1(1), January, 1985. e
To appear.
= [Donelson 78] SRR
Donelson, W. ®
Spatial Management of Data.
ACM, Atlanta. GA, 1978.

[Foley & Van Dam 82}
Folcy. J. D. and Van Dam, A. P
Fundamentals of Interactive Computer Graphics. -® e
Addison-Wesley, Reading, MA, 1982, S

[Forbus 81)

- Forbus, K. D. Sl
L An Interactive Laboratory for Teaching Control System Concepls. ‘@

- Report 4752, Bolt Beranek and Newman, Inc., September, 1981. T

[Friedeil 83]
Friedell, M.
- Automutic Graphics Environment Synthesis. S
> Technical Report CCA-83-03, Computer Corporation of America, 1983, -® ‘

!
;

F".‘.v:.- R e e AP S S el P P T I A N s S

[Gnanamgari 81]
Gnanamgari, S.
Information Presentation through Default Displays.
Computer and Information Sciences technical report 81-05-02, University of
Pennsylvania, 1981.

[Hayes 84]
Hayes, P. J.
Exccutable Interface Definitions Using Form-Based Interface Abstractions.
In H. R. Hartson. editor, Advances in Computer-Human Interaction. Ablex, New
Jersey, 1984,

[Herot 80)
Herot, C. F.
Spatial Managcment of Data.
ACM Trunsactions on Database Systems 5(4):493-513, December, 1980.

[Jacob 82)
Jacob, R. J. K.
Using Formal Specifications in the Design of a Human-Computer Interface.
In Human Factors in Computer Systems, pages 315-321. ACM, March, 1982.

[Kaczmarek Mark & Wilczynski 83}
Kaczmarek, T., Mark, W., and Wilczynski, D.
The CUE Project.
In SoftFair -- Software Development: Tools, Techniques, and Alternatives, pages
383-389. 1EEE, July, 1983,

[Lieberman 83]
Lieberman, H.
Designing Interactive Systems from the User’s Viewpoint.
In P. Degano and E. Sandewall, editors, /ntegrated Interactive Computer Systems,
pages 45-59. North-Holland, Amsterdam, 1983.

[Lieberman 84]
Lieberman, H.
Sceing What Your Programs Are Doing.
International Jourral of Man-Machine Studies , July, 1984.

[Lisa 84]
Apple Lisa reference manual.
1984,

192

L S

t @
—
. . P .

[Mark 81) P
Mark, W. RS
Representation and Inference in the Consul System.

In Proceedings-of IJCAI 81, pages 375-381. 1JCAL, Vancouver, B.C., Canada,
August, 1981.

[McDonald 83)
McDonald, David D.
Natural Language Generation as a Computational Problem: an introduction.
In Brady & Berwick, cditors, Computational Models of Discourse, pages 209-264.
MIT Press, 1983.

[Newman & Sproull 79) i
Newman, W. M. and Sproull, R. F. o
Principles of Inteructive Computer Graphics, 2nd edition. A
McGraw-Hill, New York, 1979,

[Purvy, Farrell & Klose 83] A
F Purvy, R., Farrell, J., and Klose, P.

oL
[l

The Design of Star’s Records Processing: Data Processing for the Noncomputer
Profcssional.
- ACM Trunsactions on Databuse Systems 1(1):3, January, 1983.

[Reisner 81]

Reisner, P.
Formal Grammar and Human Factors Design of an Intcractive Graphics System.
- IEEE Transactions on Software Engineering SE-7(2):229-240, March, 1981.

[Reisner 82]
Reisner, P.
Further Developments Toward Using Formal Grammar as a Design Tool.
In Human Factors in Computer Systems, pages 304-308. ACM, March, 1982,

[Shnciderman 80]
Shneidcrman, B.
Software Psychology: Human Factors in Computer and Information Systems. o
Little, Brown, and Co., Boston, MA, 1980. KRS

[Shnciderman83)
Shneiderman, B. e
Direct Manipulation: A Step Beyond Programming. o
IEEE Computer , August, 1983,

...................

[Shneiderman & Mayer 79]
Shnciderman, B., Mayer, R.
Syntactic/Semantic Interactions in Programmer Behavior: A Model and
Experimental Results.
International Journal of Computer and Information Sciences 8(3):219-239, 1979.

[Smith, Irby, Kimball, Verplank & Harslem 83]
Smith, D.C., Irby, C.. Kimball, R., Verplank, B., and Harslcm, E.
Designing the Star User Interface.
In P. Degano and E. Sandewall, editors, Integrated Interactive Computer Systems,
pages 297-313. North-Holland, Arusterdam, 1983,

[Stallman 81]

Stallman, R. M.

EMACS Manual for ITS Users.

Al Mcmo 554, Massachusetts Institute of Technology Artificial Intelligence
Laboratory, April, 1981. ‘

Now only available as report AD-A093-186 from the National Technical Information
Scrvice, U.S. Dept. of Commerce, Reports Division, 5285 Port Royal Road,
Springficld, Virginia 22161.

[Stevens & Roberts 83)
Sicvens, A., and Roberts, B.
Quantitative and Qualitative Simulation in Computer Based Training.
Journal of Computer- Based Instruction 10(1,2):16-19, summer, 1983.

[Stevens, Roberts & Stead 83]
Stevens, A., Roberts, B., and Stead, L.
The Use of a Sophisticated Graphics Interface in Computer-Assisted Instruction.
IEEE Computer Graphics and Applications :25-31, March/April, 1983.

[Tops20 80}
TOPS-20 User's Guide.
Digital Equipment Corporation, Marlboro, MA, 1980.
Order no. AA-4179C-TM. Sections 2.2-2.4 discuss command completion.

[Weinreb, Moon & Staliman 83]]

Weinreb, D. L., Moon, D. A., and Staliman, R. M. SRR

Lisp Muchine Manual. R

Fifth cdition, Massachusctts Institute of Technology Artificial Intelligence SRR
Laboratory, Cambridge, MA, 1983, PO

[Zdybel. Gibbons, Greenfeld & Yonke 81]
Zdybel, F., Gibbons, J.. Greenleld, N. & Yonke, M.

I Application of Symbolic Processing to Command and Control: An Advanced £
Information Presentation System. f.
v.'.:j Report 4752, Bolt Beranck and Newman, Inc., August, 1981. o

Gty
ag’

P

[Zdybel. Greenfeld. Yonke & Gibbons 81]
Zdybel, F.. Greenfeld. N., Yonke, M. & Gibbons, J.

. An Information Presentation System.

’ In Procecdings of IJCAI 81. 1JCAL, Vancouver, B.C., Canada, August, 1981.
[Zloot 82] '

g Zloof, M. M.

: Office-by-Example: A Business Language that Unifics Data and Word Processing

and Elcctronic Mail.
I1BM Systems Journal 21(3):272-304, 1982.

v [Zloof & de Jong 77]
Zloof, M. M. and de Jong, S. P.

E The System for Business Automation (SBA): Programming Langhage.
L Communications of the ACM 20(6), June, 1977.
:'_ [7maes R4]
' Zmacs Manual.
Symbolics Inc., Cambridge, MA, 1984,
” -
.
&

v At
. SRS
L0t e T e e

" ‘v""-_'.',’
H PR DL

.........

.

........

195 e,

e

.»...-.,.:' ------ P R A .

AL SRR -
s Y NN N A,

S e, ., P T T e T

P T s L i At AR ’ﬁ—f"vlo‘s:r"-—’.-

FILMED

