
January 1985 LIUS-P-1428 

00 
00 

A PERSPECTIVE ON MULTIACCESS CHANNELS* 

by 

R. G. Gallager** 

in 

< 
i 

D 
< 

ABSTRACT 
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Communication Problems that both are modelling. We give some perspective 
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A FERSFeCTI^E ON MULTIACCESS CHANNELS 

1. JNIRQDIJCTIQN 

For the last ten years there have been at least three 

bodies of research on multiaccess channels, each proceeding in 

virtual isolation from the others and each using totally 

different models.  The objective here is to contrast these bodies 

of work and to give some perspective on what is needed to provide 

some unification between the areas.  We shall refer to the three 

areas' as collision resolution, multiaccess information theorv, 

and spread spectrum.'^  

The kind of communication situation that these three areas 

address is illustrated in fig. 1.1-.  There are multiple 

transmitters and a single receiver.  The received signal is 

corrupted both bv noise and by mutual interference between the fö 

transmitters.  Each of the transmitters is fed by an information 

source, and each information source generates a seguence of L 

messages, successive messages arriving at random instants of o 

time.  There is usualiv some small amount of feedback from the 

receiver to the transmitter, but this feedback will not be our 

main focus.  Our major focus, rather, is on the interference, the 

noise, and the random, or "bursty", message arrivals. 

This tvpe of model is appropriate for the uplink of a 

satellite network, for a radio network where there is one central 
■ 

repeater, and for the traffic to the central node on a multidrop 

telephone line.  It is also adequate in most respects for 

studying networks where a common channel allows all nodes to hear 

,', 
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all other nodes.  Common examples are a cable connecting many 

nodes and a fully connected radio network. 

The beginning of the collision resolution approach to 

multiaccess communication came in 1970 with rttaramson's Aloha 

network C13.  The idea here was that whenever a message (or 

oacket) arrived at a transmitter, it would simply be transmitted, 

ignoring all other transmitters in the network.  If another 

transmitter was transmitting in an overlapping interval,, 

interference would prevent the message from beina correctly 

received, the cvclic redundance check (CRC) would not check, no 

acknowlecigement would be sent, and the transmitter would try 

again later,;  the later time would be pseudorandomly chosen to 

avoid the certainty of another collision if both transmitters 

waited the same time. 

Over the vears. this basic strategy has been improved, 

generalised, and analysed in many wavs.  A number of varjations 

ere in widespread use, and the general topic of collision 

resolution has provided many challenging and interesting problems 

for research.  Section 4 provides an introduction to these 

problems and most of the other papers in this special issue are 

devoted to the current state of these problems. 

Collision resolution research has alwavs focused on the 

bursty arrivals of messages and the interference between 

transmitters, but has generally ignored the noise.  More 

generally, this approach ignores the underlying communication 

process, assuming onlv that a message transmission is correctly 

received in the absence of collision and incorrectly received 

',■.'-■.. ■.".'■•.■«■.•. ■'••■. •'.". • - ■". -p'". •'• "'-' •% n"» •*••,'. •'. ■"» '•.% ■•'» v^y» '"-v.""- •"*_'"- "'•v'*- ""* ""» "■"• b"* \ « *"* ■'•■ '. " "'•'•• '*J
,■ ^ *.**••" 
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atherwi se,. 

The fnulti access information theoretic approach to 

multiaccess began in 1973 with a coding theorem developed bv 

Ahlswede C2] and Liao [33.  This work has also been generalised 

in many wavs and has opened up a separate area of research 

problems.  Excellent summaries and descriptions of this research 

are given in C4.5,6].  In this approach, the noise and 

interference aspects of the multiaccess channel are aDoropriatelv 

modelled, but the random arrivals of the messages are .ignored. 

Before proceeding, it is important to understand why 

information theorists and communication svstem designers have 

alwavs essentially ignored random message arrivals for point to 

point channels, and why this is usaallv unreasonable for 

multiaccess channels.  For a ooint to point, channel, one normal.I. v 

assumes an infinite reservoir of data to be transmitted.  Trie 

reason for this is that it is a minor practical detail to inform 

the receiver when thor^ is no data to send; furthermore there is 

no other use for the channel, so potential lack of data mi-ght as 

well be left out of the model.  For multiaccess channels, on the 

other hand, most transmitters have nothing to send most of the 

time, and onlv a few are busv.  The prob 1 ein is then to share the 

channel between the busv users, and this is o«ten the central 

technical problem in multiaccess communication. 

s pure theoretician would properiv point out here that 

burstv message arrivals have nothing to do with coding theorems 

for multiaccess channels.  The arrivals have to do with the 

sources and can and should be dealt with throuah source coding. 

[. 

• 
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Even without source coding, if the arrival process is ergodic, 

then over the arbitrarily lang time intervals used in the coding 

theorems, the burstv arrivals will not matter. 

From a more practical point ot view, the sinaie user limit 

theorems of information theory are interesting both because thev 

put an upper limit on what is achievable and because the limit is 

usualIv not too far from what is practicalIv achievable.  For a 

multiaccess channel, however, the long time intervals required 

for the source arrivals to appear smoothed out are typically far 

greater than the tolerable delavs.  Conversely, the time interval 

required for coding to be effective (ie. the time for the noise 

to be smoothed out) is typicalIv smaller than the tolerable 

delay.  What is needed then is an information theoretic model 

that somehow precludes the possibility of imposing long delays on 

source messages. 

One approach to this, which is used in the collision 

resolution field, is to assume an infinite number of sources, or 

equi valervti v, that a new transmitter is created for each new 

arriving message and then destroyed when the message is 

successfully transmitted. The received sequence or waveform would 

then be some function of noise and whatever was being transmitted 

bv the active transmitters.  It seems that to develop 

understanding in this area, it is necessary first to develop some 

understanding of coding (as opposed to coding theorems) in a 

multiaccess environment.  This understanding should involve 

decoding in the presence of several messages being transmitted 

simultaneously, since otherwise the problem simplv reduces to 

mwwWjX&ttjX^^ 
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cantlict resolution with codinq added ior   reliable transmission 

in the absence o-f conflicts. WR 

In section 2, we discuss multiaccess information theory in tjv 

more detail, and in section 3, we discuss what little is known "-v 

about cooing.  In both sections, the discussion is restricted to 

systems with only two sources.  The rationale for this is to 

unoerstand multiacess codinq in the simplest context before ; ." 

tackling the problem of real interest with many sources and ^ ■ 

transmitters. ';!;. 

me spread spectrum approacn to multiaccess channels C7,S3 |s; 

will not be discussed in anv detail in this paper, but is briefIv ^ 

discusseo here in order to illustrate the types of possibilities M 

tor multiaccess communication that lie outside the conventional r-'/ 

collision resolution and coding theory approaches.  Spread h^- 

spectrum is a mode of communication orioinallv developed to V 

protect against jamming in a militarv environment.  The signal to 

be transmitted is modulated over a much broader frequency band, rj*. 

sav p   times more, than necessarv.  assuming that the jammer does 

not know the modulating sequence, the jammer's sianal will ■■'/ 

essentially look like broad band noise to the signal, and the jr-? 

noise seen by the receiver after demodulation will be reduced bv p; 

a tact or o+ p. |::' 

For multiaccess communication usinq spread spectrum, several p 

sources can transmit at once usino different modulatino •>' 

sequences, and each will look like broad band noise to the [&< 

others.  If we compare this type of system to frequency *-?, 

multiplexing, using p  frequency bands, it aopears at first that \" 
■■■> 

r-, 

:^-.\%'"N
,
:%\N'"^'>.^-/>,\V\V\^VV"^/S'!V
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spread spectrum is not a verv good idea.  When p  transmitters 

transmit together using spread spectrum, the self noise becomes 

considerable, and the resulting system is clearly interior to FDM 

in terms ot' capacity.  The problem with FDM, however, is that if 

there are many more than p  transmitters in the system, but 

typically many fewer than p  with messages to send, there is a 

problem allocating the frequencies to the busy transmitters (this 

is the same fundamental problem handled by the collision 

resolution approach).  Since many times more than jr. modulation 

sequences can be chosen that are almost orthogonal and look like 

noise to each other, spread spectrum provides an automatic 

solution to the problem of allocating the channel to the busy 

users.  This solution is not entirely satisfactory, since one 

still needs collision resolution when too many transmitters send 

at once, and the decoding is very compiex.  ft illustrates, 

howeveri a major point of this paper - namely that a better set 

of models and approaches are needed for multiaccess communication 

than collision resolution or information theory alone. 

•". • V" ■ •■ ■ •_. - • *_" mtt*mtt&S^^ 
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2.  The Information Theoretic Approach 

The coding theorems of intormation theory treat the question 

of how much data can be reliably communicated from one point, or 

set of points, to another point, or set of points.  It is tacitly 

assumed that the sources have a never empty reservoir of data to 

sand.  Thus the theoretical results in this area do not address 

the question of the delav that arises in multiaccess systems 

because of ehe random arrival times of data to be transmitted. 

The class of channels to be considered is illustrated in 

Fig. 2.1.  Each unit of time, the first transmitter sends a 

symbol ;■; from an alphabet X and the second transmitter sends a 

symbol w from an alphabet W.  There is an output alphabet r and a 

transmitter probaöiiity assignment P<V|KW) determining tne 

probabilicv of receiving each veV for each choice of inputs xsX. 

and weW.  The channel is memoryless in tne sense that if x - 

^'I '<^f   and w = (wi W|,^ reDreseni: the inputs to 

transmitters one and two resoectively over N successive time 

Liiij.cs. then the probability of receiving y = (y^,, . , .v^J for tne 

given x,w, is 

N 
PlyJKW)  =   IT ptv Ix w ) 1.2.1) ' .    n' n n n«! 

We assume for the tune being that the alphabets are all discrete, 

but it will soon be obvious that this can be generalised in the 

same wav as for single input channels. 

As indicated in the figure, there are two independent 

sources which are encoded independently into the two channel 

%v.<s.t-^ :••.-vv:.-^ 
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inputs.  Consider block codinq with a given block length N using 

H code words. O^.x^ »„>, tor transmitter 1 and L code words 

•tw1 .wLJ- tor transmitter 2: each code word is a seauence of N 

channel incuts.  For convenience we refer to a code with these 

parameters as an (N.M.L) code.  The rates of the two sources are 

defined as 

R.  =  (In M)/N.  R_.  =  an L)/N ,- -?) 

Each N units of time, source 1 generates an integer m uniformlv 

distributed from 1 to H   and source 2 independently generates an 

integer G uniformlv distributed from 1 to L.  The transmitters 

send xm and w^ respectxvelv, and the corresoonding channel output 

y enters the decoder and is mapped into a decoded "message" .fi.lf. 

It both m = m ana H = i.   the decoding i= correct and ctnerwise a 

decoding error occurs.  The probability' of decoding error, P  is 

minimized for each y by a maximum likelihood decocer. choosing 

l&.t)   as integers 1 i m' < l-l. 1 <   k'   < L ch^t majümi^ 

''vy ixtn'
wii/^ ■  IT

 the ma;; i mum 15 non-unique, anv maximizing 

Km'.n')   can be chosen with no effect on F'e.  Doth sets of code 

words tx1 ,*^i   and •i:wi wL> are known to the decoder, out. 

or course, the source outputs m.U   are unknown. 

The most fundamental result about these channels 13 the 

coding theorem due to Hhlswede C23 and Liao C33.  Let Q^;:) and 

a2(w) be probability assignments on the X and W input alphabets 

respectively.  Define the acnievable rate region R as the convex 

hull of the set or rate pairs (R^F^) which, for some choice of 

assignments b^.G^, satisfy each of the inequalities: 

■:C-:^'V\OC^\N':-;W:^^^^ 
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P t v j;; w / 

1 + F;-, < I(XW:Y) =   J       Q^.Cx )Q^<w^ P <y j^w; In   
;■!. w. y " P (y) (2.3) 

P(y|i-;w) 
0 < R1 < I<X:Y|W) =  2  0^ fi<)Q-l(w)P(y |KW) In   

K , w, y      " P (y | w ^ (2.4/ 

0 i R... <   I (W; Y | X) = 
PI.VJKW) 

2   (T' (;•;) Q-(w) P (v JKW; In   
:; , w , y P (y j;.; i (2.5) 

where P(v; = I,;w Q1 k;; / U2 (w; P (v [;<w; , P<yjw/ = I.., Qi LK / r-'> v |;;w/, ana 

P(VJK) = Iw Q-^^w; P (y JKW/. 

The reqian bounded by (2.3)-(2.5) for ä given Q^.Q.-, is shown 

in fici. 2.2.  it is easy to »ee that the break points of the 

boundary occur at R.^   -   I(X;Y|W). t>.- = i'.♦,:¥; and at R  = it. A;Y;, 

R:2 - i(W|;T|A/.  In general, since ;•! ana w are independent:, 

l(X;rjW/ >   l\\:ri   wi en equaiitv irf ;: ana w are also 

conai cional 1 y maeuendent given v. 

rheqrem 2.1 ».Hi»!swede, Liaa/:  For each e > 0. 6   >  0, m'^ .R'-:,) e|^, 

cnere exists an h0   such than for all N i W0. ivl i exp N^Ri-ö), L < 

e;;p NvR--6;. tnere exists an tN.M.L/ code with F'      <   E.  For each 

6 >  0 and (Ri,R2)iR. there exists E > 0 such thar. P  > e for all 

(N,M,L) codes with H > exp N(Ri + 6), L > exp N(R-?+6). 

In effect, the tneorem savs that reliable communication is 

possible for source rates in the interior of the achievable 

^rC'^vC-vy.' 
■ ■ * • ~ V - te 

.•»v- 



reqion and is impossible outside ot the achievable region. Mi 

Slepian and Wolf C9J later generalised this result by considering M 

a third source that could be encoded jointly -for both L"-"" 
• **" 

transmitters.  They also used a random codina araument which •$" 
^> 

showed that Pe can be made to decrease exponentially with N and 

showed also, in a sense, that most codes have this behavior. |>. 

Since this random coding argument is a very simple extension OT 

random coding tor single input channels and gives a great deal ot W 

insight into coding tor multiple access channels, we now go V-' 

through the argument tor the cwo source case. iW 

2. i  H Multiaccess Coding Theorem L|, 

Let Q^;;) and Q2<w) be probability assignments on tne X and -A- 

W alphabets respectively and consider an ensemble ot (N.M.L) "-V 

codes wnere each code word X|n. i < m < N. is indeoendentlv U- 

selected according ro tne prooability assianment W-- 

M 
Qi{k'f       = fr  ßi<!<n>.  X = AK,.;-!- KN; ^2.^) 

n=i  ' IM 

and each code wora w^. 1 < i> < L i s independently selected 

accardina to 

N 
G!2<w)  =   fT Q;,tw ),  w= wL WN) (2.7) 

n = l  ^ 

For each code in the ensemble, the decoder uses maximum 

likelihood decoding, and we want to upper bound the expected 

value P, ot P  tor this ensemble.  Detine an error event to oe ot 

&z^t^&xw£:m*^^ 
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type 1 if the decoded pair <ni,ii) and the original source pair 

(m,» satisfy ni ^ m, i? = C.  An error event is type 2 if ni = m 

and Ö F a.   and is of type 3 if ni * m and iß ?i «.  Let F' i,,, 1 < i < 

3, be the probability, over the ensemble, of a type i error 

event.: obviously Pe = Pel + Pg-, + P -,. 

Consider F,
e3 first.  Note that when (m,«)' enters the 

encoder, there are M-l choices for ni and (L-l) choices for ö, or 

(H-1)(L-1) pairs, that yield a type 3 error.  For each such pair 

(m,i2), the code word pair xm, wjj is statistically independent of 

^m' wii over the ensemble of codes.  Thus, regarding (x.w^ as a 

combined input to a single input channel with input alphabet X;;W, 

we can directly apply the coding theorem, theorem 5.6.1 of C103, 

which asserts* that for ail p., 0 < p < 1, 

Pe3 < C (M-l) (L-l)]'0 > [l       Q1(«):Q2(w)P(y:|KW) i^^P^ + P    (2.8) 

y x. w 

Using the product form of Qj, Q2, and P, Eqs. (2.1, 2.6, 2.7), 

and the definition of rates in (2.2), this simplifies to 

The statement of theorem 5.6.1 of CIO: assumes that all code 

words are chosen independently, but the proof only uses pairwise 

independence between the transmitted word (xm,w) and each other 

word (x^V'wjjj) ni ^ m> ß ^ Ö. 

.__» A » 1- • m~.i'mm.     m ■ -' ■ . ' ■ '  ^ «"_ «' .'. .'_ * .. > L_«!r.___« » - - ■ - > a._-J( K. S • - - - fc a __t ■ - <■ e H - ~  ^ »V m^» » ■ - «■ S_—a. 
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y !<, w      ' J   J 

N 

(2.9) 

Next consider Pel, the probability that m ^ m and 0 = 11.  We 

first condition this probability on a particular message il 

entering the second encoder, and a choice of code with a 

particular w^ transmitted äx.   the second input.  Biy'en w^, we can 

view the channel as a single input channel with input :<      and with 

transition probabilities PCyjxmwü). 

A maximum likelihood decider for that single input channel 

will make an error (.or be amöiauous) if 

t '•yiXm-*,'V - F'(yiXmW«) +Qr at lsa3t on e m* F m. (2.10* 

!=ince this event must occur whenever a type 1 error occurs, the 

probability of a type 1 error, conditional on w^ beinq sent 13 

upperbpunded  by the probability of error or ambiguity on the 

above single input channel.  Using theorem 5.6.1 of C10J again 

for this single input channel, we have, tor any p, 0 < p < 1, 

PC Type 1 error |wJ < (M-l)'5 £ 
y 

y Q1 (X>Pi.y |xw / 
1/ (1 + p/ l + p 

(2. 11) 

Faking the expected value of (2.11) over w,, and then usina tht 

C^XvffiVS^ifC^i^ö'.I-'-^ii'i^Vi^ ■ . - ^ ta « r 
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praduct form or L^.Q.-, and P again. 

P . < eKbCpNR.3 el 1 
v 7w 

; Q   U)P(y JüW; 
1/ (1 + p) 1 + P N 

(2.12) 

Applying the same argument to type 2 errors, -for all p, 0 < p < 

1, 

P   < expCpNR;^ s Q, (k) / 1 v.;; 
) £!.,(«) P (y | ;■: w > 
w 

1 (1 + P) i+P IN 12-. 13) 

Putting (2.9), (2.12). (2.13) in a form to emphasise the 

exponen-cial deaendence on N. we have: 

Theorem 2.2 (Slepi an-Wol t) :  Consider an ensemble o-f (N,ii,L/ 

codes in which ix ^ . . . . ,xms   and tw^ . . . . ,wL .) are indspendenti v 

chosen accordinq to (2.6) and (2.7.* for a aiven orobatailitv 

assignment Q:(!?w) = Q< (.« ) Q ■,, (w) .  Then the ejioected error 

probabilitv over the ensemble satisfies 

P  < P „ + P . 
e   el    e2 ,2.14) 

P   < exp -Nt-pR. + E  (P,Q):1 ei      I    r i    0.1  ' for all p, 0 < p < 1 
all i = 1,2.3. (2.15) 

■^v> ^v.-:-/:. w>. :<-■-^^ 
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Rl = 
l.n M 

R... = 
In L 
N 

R„  = R, + R, (2.lö< 

al  • 
=  -In 

y,w 
)    Q 1 (. K / P ( V | !•! W ) 

1/ a+p) 1+p (2« 17) 

E .. ( p. Q) = -in Ql(^ 
) Q _ (w) P i y j ;■; w / 

1 / < I + p) 1+p (2.16; 

ti _ t p . b!.' •In / 
v 

) (•■! 1 (x ) Gi._ (w )-P (v j ;•; w / 
1 / Kl + p) 1 + P (2.19) 

The behavior of the expressions E_j£:'(p,Q)^ i = 1,2,3, is the 

same as for the single inout case.  In particular let I., i - 

1,2.3, be ai ven bv 

- I ( X : Y i W; ,  I _; = I < W; Y | X ) .  1 .T = I ( XW; Y ) (2.20/ 

as defined in (2.3) -'.2.5) ,  men if lx    > 0. the function Eai<p,Q) 

:i B concave, strictlv xncreasinc in p. and positive for p > 0. 

Furthermore, the maximum of Ea£(p,Q)-pR- ever 0 < p S i is 

positive and decreasing in R^^ for 0 <  R^ < li    (see theorems 5.o.3 

and 5.6.4 of LiOl   fur proofs).  Theorem 2.2 then asserts that if 

Rj^ < Ij^, i = 1,2,3, then F'e decreases exponential 1 y with 

increasina N. 

.••Vr>'.- V .'• .'""■«'.>.  .%'.'-.%.-'v"'-.'y--S-.-..- -V." ■ • 
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There are two questions we want to explore in the rest at 

this section.  First, how tight is this bound on error 

probability, and second, what indication does it give a+ the 

practicality o+" coding for multiaccess channels.  To explore the 

question QT tightness, we first interpret the terms P^ in 

(2.14). 

Pp^, as upper bounded in (2.12). is the error probability 

that would result if a "genie" informed the decoder about the 

second source message 1.      This genie aided error probability is 

also clearly a lower bound to Pe, so that when type 1 errors are 

the predominant cause of errors, the genie aided error 

probability closely approximates P^.  Similarly, the bound for 

F'e-5; is the conventional single input random coding bound for a 

single code of rate R^+R^ using combined inputs with probability 

Q|(;<)Q2(w).  Our conclusion, then, is that the bound on P_ in 

theorem 5.2 is quite tight for the given ensemble o+ codes.  The 

problem, as we shall soon see through a set of examples, is that 

the best codes are not always representative of the ensembles. 

2.2 The Collision Channel 

Let. X = 'CO,!,. ..fO and W = 10,1,. „ . ,K3-.  We regard 0 as an 

"idle" input,, and if 0 is the x input for a given w input, then y 

is the pair (0,w).  Similarly if wr-0, the output is (x,0). 

Finally if x ^ 0 and w i*  0, the output y is a special symbol c 

representing "collision".  This is shown in fig. 2.3 for K=2. 

First consider the achievable rate region.  For any given 

Qj (x) ,0-:., (w) , it is easy to see that, conditional on the output y, 

the two inputs are statistically independent; thus I(X;Y|W) = 
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IVX:Y) and the set o+ rates satis-fving (2.3)-<2.5) -forms a 

rectangle.  We next   want to -find the set of rates so that (2.3)- 

(2.5) is satis-fied for some choice of Qj .G^.  It should be clear 

from symmetrv that Q^K) should be constant -for all x   >  0 and 

Q.?(w) should be constant +or w > 0; thus we need only consider 

the union o-f rates satisfying (2.3)-(2.5) over all choices of the 

idle probabilities Q1(0) and G^'O).  Fig. 2.4 shows the resulting 

union: for all K >  8, the set of rates is non-conve;-; (the non- 

convex itv for certain multi-access channels was first shown bv 

Cll]).  The conve:-; hull of this union region is the set of 

achievable rates of«theorem 2.1.  Theorem 2.2 assures us that 

exDonentiallv decaving error rates are achievable in the interior 

of the union region.  Anv given rate pair in the interior of the 

conve;-; hull is on a straight line between two pairs of races each 

in the interior of the union region. Bv time division 

multiplexing between codes for these rate pairs, reliable 

communication is   achieved for the given rate pair.  Thus theorem 

2,2 establishes the positive half of theorem 2.1. 

It is rather surorising at first that the union region is 

non-convex.  We note that I(XW;Y) is a concave function of Qj(x) 

and a concave function of QpCx), taut is non-concave as a ioint 

function of Q-,   and Q-..  It is also concave as a function of 

Q(x.w), but the set of probabilitv vectors Q(x.w) for which 

Q(x.w) = Q. (x)Q'-.(w) for some Qi.Q'? is a non convex region.  Thus 

maximising i(XW:Y) over Qj and Q2 can be viewed either as a non- 

concave maximisation or a concave maximization over a non-convex 

reaion.  Either way, multiple isolated extrema can exist and 

--.AjL^y- yLLtJ^^L^-A^S, 
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there is no analoq o-f the Arimoto-Blahut C12D.C1.33 algorithm that 

can be used to find the achievable rate region. 

It also might be surprising that the achievable region for 

the collision channel is not achieved by multiplexing between 

Qj (0) = 0. Q2<0) = 1 and Q^iO)   =   1, (^(O) =0 (i.e. bv one user nr 

the other "using" the channel while the other is idle).  The 

reason is that the choice of whether or not to be idle also 

convevs information, and the multiplexing solution -.although 

eminen-i-.lv practical for large K) loses this extra information. 

Next consider the achievable error probabilities for the 

collision channel.  In general, for an input distribution GHx,w) 

= Q| (x Xa-aw) , we can express theorem 2.2 in the form: 

expt-N   E   (R, .R... rQ) .] 
r      1      2 ■ (2.2!) 

Jhere    (wi'th   R-.!;   =  R.+R.-.) , 

E    < R., . R ,. . Q) r       1       .,,; mm     max      CE      < p , Q. > -cR   1 
i<i<3     0<o<i.      0l 

KZ. VZ.' 

tn principl.e tr (R^ . R.-,, y ^ can be maximised over product 

distributions Q, 

E (R. ,R,. ) 
r  1 .c max E (R. ,R.n,Q) , KZ.Z.51 

and this in principle creates an exponent of error decay for each 

h:.l,f':2 in the union region of fig. 2.4.  The same kinds of 

u■-\•^."^-^••v^v.v ^■Ä%•l^"^"^.•>x^'^.^•^•-\•.'"^•^.'C•■.•^-■^.,^Ä• • LN -^ J* . ' 



problems exist in performing this ma;; i mi:: at ion as exist in 

finding the -feasible region R.  Note now that if we want to 

achieve a given exponential decay «, and i-f there are two rate 

pairs, say R^R^ and R^,R^, such thar Er^R(,R2> 2: « and E^R'^.R-^) 

>  a, then, for any rats pair Ri.Ro 

Rl  =  XR1 + (1"X)Ri5  R'?  =  XR7 + (1"xlR2 (2.24) 

with 0 <.   X < 1, an exponent of a or more can be achieved, in a 

sense, by time sharing between equal block length codes for R^jR^ 

and for Ry,R-U,. using the first code a fraction A of the time and 

the second a fraction (l-X) of the time. 

This means that wa can define a region R^ of rate pairs as 

the convex hull of all pairs R,    >  0, R?   'i.  0 for which 

t^(Rj,R.,.' >   a.      Hs c.  increases from 0, Ra shrinks tram the 

feasible region R down to the origin. 

There are several other approaches to defining a random 

coding exponent a= a function of R^R-,.  First, tne random coding 

ensemble iteeit could use different probability assignments Q^-i1^ 

on different letters of the block.  This would lead to the 

functions t .(p.Q) in (2.15) and (2.22) being replaced by 

weicihted averages between the different choices of Q, as 

E ..p,X.Ö(0 Q<2)) oi r ' 
At- . (f',Q        i   +   (1-A)E . (p, oi. ' ' oi r ' 
'»!- Q(2)) (2.2b) 

No examples have been found where this approach enlarges the 

regions R  defined above; this approacn is sufficient, however, 

to achieve exponential decays in Pe for all rate pairs in the 

./■■-_■ .•'.'^' •-' •- ■-• •/ •■"-■• •■ *.-*.'■.' ^' «■'^< sJBJ ■-• >-''-- '-■'<■■ n-- o JjitLZLJjji^- ■-.-..-.-V•. ■•.. -.-.'"; J; -•. f.-'.•'.£> •'.-v••'.•".•;, 



interior or R. 

Another approach is to consider random coding ensembles in 

which successive letters are statistically dependent.  For the 

collision channel, for example, suppose the block is divided into 

sub-blocks o-f -four letters each.  Within each sub-block, we 

choose (K^K.^KT,,^* to have either the -form U',X,0,0) or the 

form (0,0,K.!C). each with equal probabiiity.  Similarly, 

LW^W.?,*,;.*^ has either the form ^w.O,w,0) or (0,w,0,w) with 

equal probability.  Finally, !< and w are independently and 

equiprobatalv chosen from C1.2,...,K).  With this arrangement, 

each sub-block of length 4 is equivalent to a noiseless !•; channel 

with 2K inputs and a noiseless w channel with 2K inputs (this 

example was suggested by Massev's coding scheme for 

unsvnchronized collision channels r.143).  The resulting random 

coding exponent is clearly larger than that where the successive 

letters are independent with the same marginal probabilities. 

The purpose of the above discussion was not to find the 

largest exponents achievable for the collision channel, but 

rather to illustrate why error exponents are far more complicated 

for multiaccess channels than tor single input channels.  It also 

illustrates why there is no simple sphere packing lower bound to 

P -i-or   multiaccess channels that yields the» same error exponents 

as the random coding bound.  Arutyunyan L15] has developed a type 

of sphere packing bound tor multiaccess channels, but it is 

somewhat loose since it does not account for the separation of 

the two encoders for the type 3 errors. 

,.\\-j'^\',~-.c:.- .- v <"'.-■ 
■-"."-■."»'•.-V"- K* "Tw iV ^"« ■•'- ''- •" -'. "" -'   -' -' ^' 
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2.3  Additive White Gaussian Noise Channel (AW6N/ 

We now turn to another example or somewhat greater practical 

importance where the random coding exponents work out more 

nicely.  Suppose the X, W, and Y alphabets are each the set ot 

real numbers, and the output y is given by 

y  =  K + w + z (2.26) 

where s is a zero mean Gaussian random variable ot variance tr2 

independent ot !•; and w.  The ;< input and w input are each 

constrained to have mean square values at most S1 and Sr> 

respectively.  If we consider the channel as a cascade o-f a 

noiseless channel adding ;■; and w followed by a single input 

Gaussian channel, we see that i(XW:V) is at most the capacity of 

the single input channel with the input constrained to energy 

&i+S7.  Thus 

1     I     S1+ S 
I tXW; Y)  < TT     log | I +  ~:——! ,■:■. .s/ > m 

i 1" is also easv to see that I(X;Y|W> is the average mutual 

■-} information between \<   and v in the absence of w.  Thus 

I I(X;r|UJ;  <| iag[l + -^-] (2.28) 

S 
.UW:Y|X)  <  |- logji + -J j (2.29) 

These inequalities are satisfied for all independent 

' - 1 
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distn but ions on !< and w and are all satisfied with equality if K 

and w are independent zero mean Gaussian with variances S« and S^ 

respectively.  Thus the rate region for which (2.3)-(2.5J are 

satisfied for some independent ;< and w distribution is 

1    f    Si+5~. -i Rr R2  Ä 2 lanl +   2 ^ I 
S.+3.., 

(2=30/ 

0 R1  < llog[l +^j 
<2.31) 

0  <  R,  <  1 lagfi + ll I                           (2>32; I 
2    L    er" J |i 

Since this reqion is canve;-! already, it is the achievable rate 

region R. V' 

This region R is sketched in fig,, 2.5 for various values of Ü 

signal to noise ratios A = S/a2,   S = ö^+S-ii for the case where 

Sl ~ S2'  Note that the region is almost rectangular for small A -;". 

and almost triangular for large A.  Note that if one uses TDM \% 

between a code for ;; and a code for w, then the achievable rates 

are limited to the region bounded bv the straight line between ;:' 

the axis intercepts of the boundary of R (see tig. 2.6).  Thus '/• 

for large A, I'DM is almost as good as the best coding, whereas L, 

for small A, TDM is quite inferior.  The reason for this can be pi 
.'. 

seen most clearly for the case Rj = R2 = R.  Alternating between !v 

(R.O) and (0,R) then wastes half the available power, since (by L 

our model), the first transmitter stays within its power •'-! 

limitation while transmitting.  Losing half the available power ':'_• 

'» • • »^V-^AiV . «J. V^JV^\> . ■ ^ " . •«. • • > vv_« •_. r_,vJ."Ji ■ ..-i -v^i ".i,^ ^ - - - "J. "J -j. -_. • . -j -J, -j.'_. -J "^^,-. ■. -J -.. •_. f-OÜ. ■_." . - >>_• ■ - ".t".« "> "." V ■ 
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loses only a small fraction of the availabla capacity for large A 

whereas, for small A, a large fraction is lost.  This suggests 

going to a continuous time  model rather than the discrete time 

model here and using frequency division multiplexing, thus 

achieving the same simplicitv as TDM, but being able to use ail 

the available power.  Figure 2.6 shows the resulting rate region, 

assuming the same power for each transmitter and the optimal 

split of frequency between the transmitters as a function of the 

rates. 

Next: consider the random coding exponent for these channels. 

Using the above Gaussian distribution for ;; and w, we can easily 

calculate Eai<p,Q) from (2.17)-t2.19), replacing sums with 

integrals.  The result is 

f r s i 
:ai(p,Q)  =  - In 1 + -r-±  

2 cr" (1 + p) J 

S. 
: 1 

where S3  = S1 + S2.  Letting f^ = S^cr2, we can maximize 

C^Qi ^pjGD-pRj 3 over f  to get the parametric equations 

P7 A 
n  i 

£    (R.;    =    ^ L 

<l + p. ) (1 + p. +A. ) 
i     i  i 0<pi<i 

A.  1 P.A, 
Ri  =  1 lnfl+^-l  -  -   ^Hl  1     2    L    1 + p, J     2KI + P   ) (l + p.+A. ) p M 1 + p. ri    ri  i 

(2.34) 

For rates lower than those wh ere P1 = 1, 
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i   r   A  -,   A. 
R     < linfl + -^1 - /, ■ ■ 
i   2   L     2 J   4(2+A.) 

for R (2.35) 

As in (2.22) and (2.23), the random coding exponent Er(R1,R-.) is 

the minimum of Eri(Ri) over i = 1,2,3.  The region R divides into 

three subragions as shown in fig. 2.7 where Eri(Ri) for each i is 

dominant.  As the rates decrease, the error probability of type 3 

errors decreases more rapidly than that for type 1 and 2 errors, 

so that for small rates the bound is dominated by errors in 

source 1 or 2 but not both. 

For a single input additive Gaussian noise channel, choosing 

a coding ensemble with the Gaussian distribution is not quite the 

best thing to do for error exponents.  The best distribution 

results from a shell constraint; that is, code words are chosen 

with a Gaussian distribution conditional on the resulting word 

having an energy very close to WSi.  This distribution (see 

section 7.4, C10J) yields the same exponent to P  as the sph ere 

packing bound for rates sufficiently close to capacity. 

For a multiaccess channel, it seems reasonable to again 

consider a random coding ensemble using a shell constraint on 

each set of code words.  From the genie interpretation of type 1 

and 2 errors, we see that Pej is upperbounded by the probability 

of error for the first set of code words with the additive 

Gaussian noise but without the second set of code words.  Thus, 

for 1=1,2, we have Pei < a^ e;!p:-NEri (Ri ) ], where from section 

h>.' 

F 

. .*- .*•."•.*•-. V ■" •.' -.' •  ■'• ■'• T"> "i^A < •,'• ■ > ■". "'• ■("v'v« C\.'~''\'C'''r "'■>.""• ""• "V"'-'"- ■'. *'- •'■• •'« •'. •"• •Vr% •'* "V-"- •'«.•"•> -V"\ •'»-■.'•'."-''.•V""."""."1'«", 
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?.4 of [10], A1   is a constant and Eri(R1) is given by: 

A. -r   , 
E . (R J  =   \ . - + - in (p. —r. ) (2.36) 

tar I: in [a/4/ (2+H^ J-^+A^  )J <  R .  < irr 1 n a +A . ) 
i    2       i 

(2.37) 

wnere 

A (p.-1) 
l-ir—[ 4p, 

i + T A (p.-1i 
-A CZ. •-■b) 

ß    =r   BMP (2 R. ) h 1 1 
(2.39) 

Far R  less than the lower limit in (2.37), 

H. A 
E  (R ) 
n  i i   -   P1   ■<■ -4— +   ±- InLp   Kp r=r,' 3 - R 

2    2    ' i h i    2      i 
\Z.4ü; 

if    A A 
1 + (2.41) 

For races satisfying (2.34), the sphere packing bound for the 

single input channel gives a lower bound 

- - - * •"":« ^-J^^&Z&tti^^ 
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P    >  e 
ei 

Kp -NCE  (R.) +a(NJ3|       ;i=l,2 

far all codes, where a(N) approaches 0 with increasing N. 

For type 3 errors, the situation is less simple since the 

combined code words x + w are not constrained.  In fact, i-f, 

after constraining x   to have energy NSj and w to have energy NS2? 

we then constrained x+w to have energy N(S1+S2), we would then be 

constraining the code words of the two codes to be orthogonal, 

which corresponds (on a continuous time channel) to the frequency 

division multiple;; ing discussed previouslv. 

We now develop a bound on Pg^ using a shell constraint on 

the code words x.- and Wp.  Choose each x independently using the 

densitv Q, *.x) and each w usina the density Q-(w) where 

•*— 

I 

-i    . .    [i       i       r   nl 

n=l  2il3,        i 
<2.42; 

4. (X) 
1 

1;  for NS. 

0:  otherwise. 

N 

n^l n 
<  NS (2.43) 

where 6 is an arbitrary positive number, and ^ is a normalizing 

constant to make Q^*) integrate to 1.  Substituting (2.42) for 

Q^x) and Q:,(w) into (2.8). replacing sums with integrals, and 

upoer bounding -^(x) by 

WfflS&SVft^ •.".'<." . ". ". • « 1 « • . S.'. 



1 
<     expCr.6   + 

i 

N 
r . (;•;   -S. ) 3 

i     n     i 
>  0, (2.44) 

we  find   that    (2.8)   breaks   into  a  product   -form   (as   in   section   7.3 

of   CIO]).      A-fter  some  tedious   integration,   we  get,   for  any   p,   0   < 

re;;pC 6 (r   +r^) 3 
 £        *  exp'C-N (E .._ ( p , r ) -pR.,) 3 

l-l.H.-:, J OO. 3 
(2.45) 

C- 03<P»r)   =   ^ + f>   In 
■J6!^ 

1 + p i-[-4-|] 
(2.46) 

0       =      (1+p)(l-2r.S.) 
i r ii 

(2.47 

The first term in (2.45) is proportional to M  i"' for any 

given choice of r^,^. and 6, so we simply bound it by aNÄ for 

some suitable a.  The exponent can be optimised over p, r-., r? 

(or equivaientiy over p., 6^, 6-1 for U < p i! 1 , 0 i 0, < l+-p). 

For the important case where A^ = rt^. the optimization can be 

carried out explicitly.  Here by symmetry, the optimal 6^ and #2 

are equal, and such a solution is also valid, but not optimal, 

for all A1 and Ag.  Using 6 for öj and 6.-, and A for Aj + A2, 

'Mvy :::>:>\Wv:>>:;:v:':^:^:;>;«A 
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E. (p,r)     =     (l + p)ln<f|-)   -  e + Ihlnd  +  |) (2.48) 

Optimising  the  eitponornt.   we  -find  that   far 

iln ia-a + 1        «       A'   , 
1   "   2   "  4" ) <     R^     <     - ln<l+A).      (2.49) 

E   „(FU) =      (1   +   p  -   9) >  In 
l + p (2.50) 

e   = i+p- P-A 1       r   , 2     2.,. 
(2.51) 

1+   2£._   1 
2        A 2 

1 + ¥'+ 161 -1/2 
-   1 

p     =     e:;p(2R..:r) (2.53) 

For   R-j   less  than   the   lower   bound   in   (2.49), 

.■/■•■■.-"•.■■.•.•:>.v.-.'.v? 
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E  ^RT)  =  2Cln J- ö -13+ ^-Ind + §.) - R,        (2.54.) 

A  , 1 

This exponent lies roughly half way between the previously 

derived exponent without a shell constraint and the exponent with 

a shell constraint that would result -for a single input Gaussian 

channel with signal to noise ratio A (i.e. that given by (2.36)- 

(2.41>. 

When we take the minimum of the three exponents E  (R ) for 

i = 1.2,3, we again find that the achievable region R breaks into 

3 subregions, one where each bound is dominant; the regions look 

the same as in fig 2.7, although numerically they are somewhat 

different.  We now know, however, that whenever the rate pair 

^Rj/.R-v) is in R., (or R2'   länc' Ri ^Dr &•■?}   is above the critical rate 

of (2.36), then Er(Rj,R.-5) is indeed the exponent for optimal 

codes.  For the symmetric case where R* -  R0, the region R-r 

vanishes for small enough Rj = R.J, and if the point where R- 

vanishes is above the critical rate far R1 and R-,, then the 

optimum exponent is given bv (2.37)-(2.39) between the point 

where R3 vanishes and the critical rate.  This phenomenon occurs 

whenever the combined signal to noise ratio AT is below about 3. 

% 

- 
=     1   -   rr    +   TT ln(A"+2A+4) (2.55)        ;■' 

^■.■.-.>^^^S-V"V"VVV-.:-.-:V:V>.-:V:'^^/:V:",VA' 



^ 3.  Codinq Techniques ':'^ 

While the theoretical development of coding theorems ?.'- 

for multiaccess channels is quite advanced, very little has been .'" 
-''.'■ 

done with respect to general techniques -for multiaccess coding. §"■:;• 

r~ As painted out in the introduction, what is needed is a coding 1-. 

technology that is applicable for a large set of transmitters ot 

which a small but variable subset simultaneously use the channel. '■'':■ 

Here, however, we restrict ourselves to the simpler problem of S 

the two input channel of fig. 2.1 where both sources always have -'■: 

somethinq to send. k\ 

First we observe that the error probability bounds fc- 

evaluated in the last section apply equally well to ensembles of [•.',; 

linear codes.  The argument for this is the same as in section 'v 

6.2 C10J.  In general, binary linear codes can be generated for |»- 

each transmitter, and sub-blocks of these binary digits can be -jv 

mapped many to one into the channel input alphabet, thus \y 

achieving any desired relative frequency of utilization of the L- 

various input letters. r\ 

Random codinq bounds for convolutionai codes have also .•"-. 

been generalised from single input channels to multiaccess L, 

channels C16] with the same type of enlarged exponent as occurs :•.•- 

for the single input channel.  Thus there is   no problem 

generating good codes, either block or convolutionai.  The |~ 

problem, as with single input channels, is with decoding. -;' 

Before discussing decoding, a brief discussion of .•> 

m 
channel modelling is in order.  The discrete time channels dear [u 

to the hearts of information theorists implicitly assume that 

'JiZB&sSZ^^ 



carrier phase and sampling time in physical channels are part o-f 

the channel model.  Furthermore, ideal performance ot these 

elements is usually assumed.  For single input channels this 

separation is usually perfectly reasonable, taut for multiaccess 

channels it is often questionable.  For example, for the AWGW 

multiaccess channel, it is well known C17J,C13J that feedback can 

increase the achievable Ri+R2 bevond that achievable bv a single 

source of rate Rv+'R^. and energv constraint 5,+S-^  In other 

words, the individual transmitters are limited to S1 and S-, 

respectively, but the signal energv at the receiver exceeds 

6^82.  This means that the two transmitting antennas are acting 

essentialIv as a phased array and that the additional receiver 

energy can be viewed as coming  from antenna gain (along with 

very clever feedback coordination).  While this is not 

impossible, it is certainly not a conventional situation. 

Tvpically we should expect the received carrier phase 

from the one transmitter to be roughly independent of that from 

the other.  Approximate symbol synchranism between the 

transmitters is slightly more reasonable than phase synchronism 

and approximate block svnchronism is eminentiv reasonable with 

only marginal feedback communication. 

There appears to be little of a general nature that can 

be said about the affect of asynchron!sm between the sources at 

the phase and baud level.  For the specific case of an AWGN 

channel, however, the situation is much simpler.  Using a 

continuous time narrowband Gaussian ensemble (with or without a 

shell constraint) to generate code words, the discrete time code 

"" ."• ."" -"■ iVi^iV /• ■'"" «'".-'" ."- -'" •'• ►'- ."" ."" 
, <:."-r^ ■<...*,, I m.   - ■■ 
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words of the last section can be considered as time samples ever 

tne block period at a narrow band stationary Gaussian process 

witn alternate letters representing in phase and out o-f phase 

components.  Thus for a given set o-f randomly chosen waveform 

code words, a change of receiver carrier phase and sample time 

will change the discrete time cade but will not change the 

ensemble statistics ^aside from some end effects at the ends of 

the block which we ignore).  The decoder must know the relative 

carrier phase and sample time for each of the two transmitters 

but there is no need for the two to be synchronized together.  in 

summary, the discrete time ttWGN multiaccess model of the last 

section is adequate for non-feedback communication maintaining 

only block synchronization, but is only adequate for feedback 

techniques in the rare case where the two transmitters are phase 

an d s y mb o 1 s y n c h r on i z ed. 

The problem of lack of block synchronization fat- 

multiaccess channels is somewhat better understood than that of 

phase and symbol synchronization.  Assuming a discrete time model 

(i.e. assuming away the phase and svmbol synchronization 

proDlems), it has been shown C193 that with a bounded amount of 

uncertainty in timing between the transmitters, the feasible 

region R is the same as with perfect synenromzation. 

Essentially one uses a coding constraint so large that the timing 

uncertainty becomes negligible.  For complete uncertainty in 

timing, on the other hand, it has been shown C553, C20'J that the 

feasible region is the union region of fig. 2.4 rather than its 

conve« hull.  The essential idea here is that time sharing cannot 

.•'■■/•.•''A'.''• .\N,
'V"'-.^-.V.'.>V-''VV--S''--V■'/»^^'"v^^^lv\>^N^-V'\^\>\>V-\V.,->>\'-!.>\,-^V-'i,'- V-'. I ...:. \ : , . ■■■■'•l-',-/>>'--.--Vlv! 
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be used in the total absence at relative timing between the 

transmitters. 

Having cautioned the reader about the modeling problems 

inherent in a discrete time memoryless model of multiaccess 

channels, we now return to this model to see '^hat can be said 

about coding. 

First, there is a -fairly simple general approach that 

can reduce the decoding problem to several single source decoding 

problems.  First suppose that (F^,%) satisfies Ri < UX;v!w>, R~ 

< nW:Y) -for some assignment Q^!-;), Q2(w).  Over the ensemble of 

codes using Qj.G^., a decoder can decode the w code word by 

ignoring the x code word and assuming a single input channel with 

transition probabilities Ptvjw; = Z.,, Q.^ ot )P.(y |KWK.  Over the 

ensemble of codes for the first encoder, this is precisely the 

set of transition probabilities from w to y.  Thus a "good" 

decoder for a single input channel can decade w reliably.  Given 

w, another decoder for a single input channel can decode w using 

Pvvnl!'nwn)"  This second decoding is somewhat unconventional for 

single incuts in that the transition probabilities depend on w 

and thus vary with n. but a number of decoding techniques such as 

sequential decoding and Viterbi decoding can deal with this 

Tji tuati an. 

As can be seen from fig. 3.1, any (Rj.R-,) in the 

interior of the achievable region of (2.3)-(2.5) for a given 

Q1,Q2 can be represented as a convex combination of two rate 

pairs, one of which, (R^.R^), satisfies 

.v.v.,'vSv.v.:'v"[-.^-.\%v KV^CV^/IV^VV^VMIVX^-C^ 



R[ I(X; Y|W)5 R^!, I(W;Y^ (3.1) 

and   the  other   ot   which   satisfies 

R^ I(X;Y): R^     <      I<W:Y|X) (3.2) 

Codes for each of these rate pairs can be decoded by 

the two step procedure described above and (Rj.Ro) can be decoded 

bv time sharing between two such codes. 

Finally, any point in the interior of the achievable 

rate region is a conveK combination of two rate pairs, one of 

which satisfies (2.3)-(2.5) with strict inequality for some Qj Gl- 

and the other for some other Q*b!*.  Thus an arbitrary point in 

the interior of R can be reliably decoded by time sharing between 

at most 4 cades, two of which use rates satisfying (3.1), (3.2) 

respectively for Q^Q-, and the other two of which satisfy (3,1), 

(3.2) for Q.Qo. 

This approach is not entirely satisfactory for two 

reasons.  The first is that the random coding exponents for error 

probability in this approach are often much smaller than those 

for joint decoding of the two code words together.  If we use 

error exponents as a crude measure of decoding simplicity, we see 

that joint decoding is potentially simpler than the above single 

input decoding.  Note, however, that error exponents can 

■-•; ." 
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sometimes be misleading as a guide to decoding comple;;i ty.  For 

example. the random coding exponent for a noiseless binary 

channel is not large, whereas coding and decoding are trivial. 

The other objection to this approach is that it -fails 

to provide much insight into the question of joint decoding of 

several sources.  It certainly does not generalize to the use of 

a small but unknown subset of a large set of transmitters. 

A second, simpler but less general, approach is to 

decode trie code words from each transmitter independently 

regarding the other as noise.  From fig. 2.5, it is seen that for 

the HWGN channel with small signal to noise ratio, the achievable 

rats region is almost rectangular.  Analytically I(XjY) = 

(l/2)lnCl + A^d+Ao)] which is close to IU:Y|W) = (1/2) InC l+Aj H 

when {^2   is small.  In this case, the error exponent for 

individual decoding is almost the same as for joint decoding. 

This approach has the advantage of generalizing immediately to 

the case of a large number of sources with an unknown subset of 

the sources transriu. tting.  Spread spectrum with pn seguences can 

be viewed as a special case of this approach where the use of a 

pn sequence or its complement over a given period is simply an 

added constraint on the encoding.  Multiaccess pulse position 

modulation l"213, C22], C56J can be viewed the same wav. 

For an arbitrary discrete time memoryless multiaccess 

channel, perhaps with more than two transmitters, one can 

similarly investigate ways to choose code word sets for the 

individual transmitters in such a way that they are mutually non 

'• t'VV,:% ■_"- »'» L."- ■_■'• L%Vr -'• -*'■■ ^"* «'• \~' -"^ V* »"^ -"" •T* -'',■ »'f ».'• .■T'* '«.^ i.1-"* ^ «•";*"_>■*<. • -7"»» '•••,.. -V •','• ■*■•'»".- . • .• '-* '." '*" V.'V 'V, •'. 
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interterinq (more precisely, so that they can be individually 

decoded with small error probability).  Time sharing within a 

code word is one possibility, but depending on the channel, other ;'^, 

possibilities might be preferable, as we have seen for the AWSN :-"' 

channel.  A more difficult related problem is to choose the code M 
> •;■ 

pS 
word sets in such a way as to maintain the non-intarference •."-; 

property in the presence of lack of svmbol synchronism between 

the transmitters.  We have seen that this can be done for the f.— 

AWGN channel, and Massey's coding scheme C143 for the ;.>; 

asynchronous collision channel also achieves this objective; at ; .-- 

present, however, no approaches are known for general discrete \T 

time memory less channels. ';•: 

As a third approach to decodina, consider true joint 

r decoding of the two code words.  I will not consider algebraic fej 

decoding techniques here since an algebraic structure must: be y; 

matched in some sense to the channel characteristics and I am not KJ 

r* 
aware of any examples of algebraic approaches for general hr 

multiaccess channels.  Viterbi decoding of convolutional codes is ;•!• 

another possibility, but it does not appear very promising as a ''■•' 
f 

joint decoding technique.  The problem is that the decoder should -_ 

track ail possible states of both encoders, which leads to a !•••. 

combined number of states which is the product of the individual ;>: 

numbers of states.  With more than two transmitters, the problem |^ 

u is even worse. 

Finally, sequential decoding appears to be a general l*;. 
i 

approach to multiaccess joint decoding and it has been shown C233 U-r 

that lack of block synchronisation is not a serious impediment to v. 

tes^m-Mtäzmr^^ 
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its operation.  Unfortunately, at this time, it is not clear how 

to make sequential decoding work for a multiaccess channel.  To 

explain the di-f-f icui ty, recall that sequential decoding is a 

search procedure that hypothesizes the encoded sequence up to a 

given point and either proceeds forward by extending the encoded 

sequence or searches backward depending on the value of a 

"metric" that stochastically drifts upward when the decoder is 

following the actual encoded sequence and drifts downward when 

the decoder yets off the track. 

The problem, now, is that the decoder can go off the 

track in three ways, corresponding to the three types of errors 

in section 2.  Unfortunately the appropriate metric to use 

depends on the type of error being made, and this knowledqe is 

unknown to the decoder. 

Another fundamental problem with sequential decoding 

has recently been discovered by Arikan L241.      Arikan considers a 

multiaccess binary erasure channel where X =• -CO,!}, W = 10,1} and 

V = {(0,0), a>,U. a,0;, a,l), (e,e)}.  With pcababi 1 ity i-e, 

tor some e > 0, v = <K,W;, whereas with probability s, 

independent of the input, y = (e,e).  In effect we have two 

erasure channels with perfectly correlated erasures.  Using 

equiprobable inputs for each transmitter, we can formally 

calculate the computational cutoff reqion R,.„„     for a ioin-i- comp      jwi 11._ 

decoder as 

tM&s&mtf^t^^ 
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R,     <     E   ^(l.Q) 
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-Am 
(3.3) 

(3.4) 

(3.5) 

we note  that 

, ln[i^]   >  . ^ , all   e,   0 <   £ 
(3.6) 

Thus far R-^ = R-^. <3.5) is the active constraint, and even 

without any ot the metric problems discussed above, (3.5) limits 

the achievable rate with joint sequential decoding.  However, 

using separate sequential decoders tor the two transmitters and 

ignoring the erasure correlation, we can achieve the higher rates 

of (3.3) and (5.4). 

To make the situation worse, we see that - lnC(i+3£;/43 is 

also tne computational cut off rate ot a single input quaternary 

erasure channel.  However, by regarding the inputs to the 

quaternary channel as two binary digits and using separate 

convoiutionai encoders and decoders tor the two digits, we can 

again achieve the higher rates.  The difficulty here does not 

reside in the particular search algorithm being used.  Over the 

ensemble of convoiutionai codes for the quaternary input (or 

pairs of codes for binary inputs), the expected number of 

potential encoded sequences (or pairs of sequences) at length N 

which are as likely as the transmitted sequence (or pair) is 

^vsv.-:s: ^v:-.> ■:% vXv^ 
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ej'.ponentially increasing in N for any combined rate in excess of 

-InC (1 I-3E)/4 3.  The conciusian that one must reach is that R comp 

is not really a fundamental parameter of communication.  This 

same example, in the context of the photon channel, has been 

discussed by Massey C253 and Humbiet C263. 

Summarizing the previous approaches to decoding, we see 

that much more research is necessary before any cohesive body of 

knowledge aPout coding and decoding for multiaccess channels will 

exist. 



4.  CÖLLiälüN RESOLUTION 

The collision resolution approach to multiaccess 

cammunication. as mentioned in section 1, focuses on allocating 

the channel among a large set of users at different transmitting 

sites.  It has the weakness of essentially ignoring the 

communication aspects of the problem.  We start by a set of 

assumptions that limit the class of systems we will be 

considering. 

a/  Slotted System;  We assume that each message (packet) to be 

transmitted fits into one time unit (a slot) for transmission. 

All transmitters are synchronized so that trie reception of each 

transmission starts at an integer time and ends before the next 

integer time.  Such synchronization is usually not too difficult 

given, first, a small guard space between packets, second, a 

small amount of timing feeaback from the receiver, and third, 

stable clocks.  Note that this assumpcion precludes both the 

possibilitv of sending short packets to make reservations for 

long packets and of carrier sensing, which we discuss later. 

Such systems can be understood simply after this basic model is 

understood. 

b;  Collision or Perfect Reception;  We assume that if more than 

one transmitter sends a oacket in a slot, then there is a 

collision and the receiver gets no information about the contents 

or origins of the transmitted packets.  If just one transmitter 

sends a packet in a slot, it is received with no errors.  This is 

the assumption that removes the noise and communication aspects 

from the problem; it allows collision resolution to be studied in 

s 

c 

Jh»'i 
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the simplest context but also severely limits the class o-f 

strategies and tradeo-rts that can be considered. 

c)  In-finite Set of Transmitters;  Assume that each arriving 

packet arrives at a transmitter that has never previously 

received a packet.  This precludes queueing at individual 

transmitters and precludes the use of TDM.  This is an 

unreasonable assumption from a practical point of view, but note 

that, given any algorithm determining when the transmitters senä 

packets, a finite set of transmitters can use the same algorithm, 

regarding each packet arrival as corresponding to a separate 

conceptual transmitter.  In this case, a physical transmitter 

would sometimes send simultaneous, colliding multiple packets. 

This shows, first, that assumption c) provides a worst case bound 

on a finite set of transmitters and, second, that the difference 

is oniv significant when two or more packets are waiting at the 

same  transmitter.  Collision resolution algorithms are primarily 

useful for low inout rates where multiple packets rarely queue up 

at one transmitter; xn this region, the performance witn a finite 

set of transmitters should be well appro:: i mated by that with an 

infinite set. The maximum throughput of an algorithm under the 

infinite set assumption is a qualitative measure of the goodness 

of the algorithm, avoiding the less fundamental throughput 

improvements achievable when queueing occurs at each transmitter. 

d) Foisson Arrivals;  Assume that new packet arrivals are 

Poisson at an overall rate X.  This is reasonable given 

independent arrival proceses at the individual nodes. 

e) 0, 1, c Immediate Feedback;  Assume that by the end of each 

./^vÄ-V-V^^-iS/^v 
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slot, each transmitter learns whether 0 packets, 1 packet, or 

more than one packet (c for collision) were transmitted in that 

slot.  This is the only information that each transmitter gets 

about the existence of packets elsewhere.  The assumption of 

immediate feedback is often unrealistic, but collision resolution 

algorithms can usually be modified to deal with delayed feedback; 

the introduction of delay in the feedback, however, complicates 

analysis with little benefit in insight.  The assumption of 0, 1, 

c feedback implies that the receiver <or the transmitters 

themselves) can distinguish between an idle slot and a collision, 

which is not always reasonable.  It also implies that idle 

transmitters are always listening for this feedoack, which is not 

always desirable.  Some alternative forms of feedback will be 

discussed in what follows. 

4n1 SLUTTED ALPHA 

The simplest form of collision resolution strategv using 

the assumptions above is Slotted Aiona (•Rdtaerts £271).  Slotted 

Aloha is a variation of pure Aloha »Abramson ill];, which will be 

described subsequently.  In slotted Aloha, whenever a packet 

arrives at one of the transmitters, that packet is transmitted in 

the next slot.  Whenever a collision occurs in a slot, each 

packet involved in the collision is said to be backloqged and 

remains backlogged until it is successfully transmitted.  Each 

such backlogged packet is transmitted in each subsequent slot 

with some fixed probability p > 0, independent of past slots and 

of other packets.  Note that if p were 1, backlogged packets 

would continue colliding and no more packets would ever be 

'A' 
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successfully transmitted.  Note also that because of the 

e-ffectiveiv infinite set of transmitters, the collision cannot be 

resolved by transmitters waiting some number of slots determined 

by the identity of the transmitter.  Such strategies can be used 

with a known set of transmitters and can be made to behave like 

TDf'IA under heavy loading. 

It can be seen that slotted Aloha can be analyzed as a 

homogeneous Markov chain, using the number 0+ backlogged packets 

at each integer time t as the state.  The state at time t 

includes packets that collided in the slot from t-1 to t but does 

not include new packet arrivals from t-1 to t.  Let k be the 

state at time t and k+i be the state at t+1.  Thus i is the 

number of new packet arrivals in Lt-l.t) less the number of 

successful transmissions (if any) in •Ct.t + 1).  It follows thar. 1 

= -i if no new packet arrives in ii-i,t>   and one backlogged 

packet is transmitted in tt.t+l).  Similarlv i = 0 if either no 

new packet arrives and no successful transmission occurs or one 

new packet arrives and is successfully transmitted. 

Analysing the cases i > 0 in the same way, we see that the 

state transition probabilities Pj, i,+i are given by 

k.k + i 

kp(l-p)k 1e~X 

Cl-kp(l-p)k 1:]e~k  +   a-p)kXe~X 

Cl - <l-p)k:.Xe~A 

, i  -X 
A  e 

i ! 

i = -1 

1 = 0 

i = 1 

i > 2 (4. 1) 
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* r - " * ' r ■ .• .- ,'. V .• .-•-•, 



-4. 

In understanding how this chain behaves, we look first at the 

drift, D^. defined as the expected value of i conditional on k 

(i.e. the expected difference between the state at t+1 and that 

at t conditional on the state at t). 

D^  =  X - C (1 -p) k Xe~A + kp (1 -p ) k"1 e~A ] (,4.2) 

The first term .\ is the arrival rate and the second term is the 

departure rate or throughput.  Note that for anv .X > 0 and any 

p > 0. Dk   will be positive for all sufficiently large k.  This 

means that if the system becomes sufficiently backlogged. it 

drifts in the direction of becoming more and more backlogged; 

this should not be surprising since collisions occur on almost 

ail slots when the backlog gets sufficiently large.  Kaplan C2S3 

gives a simple but elegant proof that this type of chain is 

unstable <i.e. non-ergodic). m 

Despite the instability of slotted Aloha, it can still be a ".I"' 

useful collision resolution approach especially if the system is 

modified to avoid or recover from the heavily backlogged fetate. 

Using a small value of p helps postpone the onset of the ;lS 

catastrophic behavior above, and for small p, (4.2) can be well ':.] 

approxi mated by vjk 

DjJ  a  X - (.X+pk)e <X+Pk) (4.3) 

Fig. 4.1 illustrates this equation.  For X > e" , we see that D^.. 

> 0 for all k.  For X <   e~ , there is a range of k for which 

LS 
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D^.. < 0, and the size of this range increases as X decreases and 

as p decreases.  Unfortunately, X is the arrival rate which we 

would rather not decrease, and small p means large delay between 

retrials of a collided packet. 

This tradeoff in p is very undesirable; large p makes it 

very easy to enter the unstable heavily backlogged region, 

whereas small p causes large delay for collided packets in the 

stable region.  The engineering solution is almost obvious— 

chance p as the backlog k changes.  Ideally, we would like to 

adjust p to minimize D^, which occurs at pk+X(l-p.) = 1.  For 

large k, this maintains a throughput of e~ .  For small k, on the 

other hand, p is large and thus delay is small.  The problem with 

this solution is that k is unknown, and either k must be 

estimated from the feedback or an appropriate value of p must be 

estimated.  Hajek and VanLoon C29] have analyzed a class of 

algorithms in which p is updated at each slot simplv as a 

function of the previous p and the feedback information.  They 

showed that such functions cam be chosen for any X < e-''- so as to 

make the resulting svstem stable. 

From (4.3), we see that D^, is positive whenever X   > 1/e, 

This is only an anproximation of (4.2), but the approximation is 

good when p is small, and p must be small when k is large to 

minimize D^...  Thus, for X > 1/e, D^ is positive for all 

sufficiently large k   no matter how p is chosen, so that slotted 

Aloha is unstable in this case even if k is Known. 

In the next subsection we show that much higher throughputs, 

and presumably smaller delays, are possible when newly arriving 
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packests are sometimes held up and collisions are resolved in more 

sophisticated ways. Slotted Aloha, however, has the advantage of 

not requiring all the teedback information we have assumed.  For 

many physical multiaccess channels, particularly dispersive 

fading channels, it is difficult to distinguish an idle slot from 

a collision with high reliability.  It is usually 

straightforward, through use of a cyclic redundancy check, to 

distinguish a successful transmission from idle or collision, and 

it can be seen that this kind of feedback is sufficient for 

slotted Aloha but not sufficient for the more sophisticated 

strategies.  Unfortunately it is much more difficult to estimate 

the backlog with this type of feedback.  Cruz [47], however, has 

shown that slotted Aloha can be stabilized for throughputs less 

than 1/e whenever the feedback can be modelled as the idle, 

success, or collision information passed through a discrete 

memoryless channel of positive capacity, and the case above can 

be modelled in this wav. 

Pure Aloha Cl] was the precursor of slotted Aloha and avoids 

our assumption of a slotted svstem. although we continue to 

assume that each packet requires one time unit for transmission, 

that overlapping packets collide, and that assumptions ci,   d), 

and e; hold.  Each newly arrived packet is transmitted 

limned.lately upon arrival and backloqqed packets are transmitted 

after an exponentially distributed delay.  The probability of 

collision is higher here than in a slotted system; a packet 

starting transmission at time t will collide with other packets 

starting anywhere in the interval (t-l,t+l).  The upper bound on 

b. 
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throughput becomes (2e;~  and the same kinds ot stability issues 

arise as -far the slotted system.  A major practical advantage of 

pure Hloha, however, is its ability to handle packets of 

different lengths C30,31D. 

4.2 SPLITTING ALGORITHMS 

In our discussion ot slotted Aloha, wg saw that the 

throughput is upper bounded by 1/e regardless of the strategy 

used to adjust the retransmission probability of collided 

packets.  This bound was imposed by the restriction that new 

arrivals were always transmitted in the next slot after their 

arrival and that backlogged packets depended upon a single 

parameter p for retransmission.  To get an intuitive idea of why 

the transmission or new arrivals should sometimes be postponed, 

consider a slot in which two packets collide.  If the new 

arrivals were held up until the cbii-ision were resiolved, then B 

reasonable strategy would be tor each  colliding packe- to 

retransmit in the following slot with probabi-lity ;l./2-,  W;.tn 

probability 1/2, then, a successful transmission occurs and the 

other packer, would be transmitted in the following slot. 

Alternatively, with probability 1/2, another collision or an idle 

slot ensues, wasting one slot.  Again, in this case, each packet 

would be transmitted in the following slot independently with 

probability 1/2, and so forth until the two packets are 

successfully transmitted.  The expected number of slots required 

to successfully transmit the two packets is easily seen to be 3, 

which yields an effective throughput of 2/3 during the collision 

resolution period. 

:>;:<;:-ö^v>::.\:^y^v-v--::^ ■.• -. V.'..W> 



This concept of probatai 1 istical i y splitting the set o-f 

packets involved in a collision into a transmitting set and a 

non-transmitting set while making other packets wait is the 

central idea o-f a variety of collision resolution algorithms that 

achieve throughputs larger than 1/e while using assumptions a) to 

e); we call these algorithms splitting algorithms.  These 

algorithms differ in the rules used tor splitting the collision 

set (which might involve more than two packets) and in the rules 

tor allowing waiting packets not involved in a collision to 

transmit after the collision is resolved. 

The first splitting algorithms were the tree algoritnms 

developed by Capetanakis C32J, Hayes C33II. and fsybakov and 

Mikhailov C34],  In these algorithms, the system alternates 

between two modes—normal mode and collision resolution mode. 

When a collision occurs in normal mode, all transmitters go into 

collision resolution mode, all new arrivals wait until the next 

transition into normal mode, and all packets involved xn the 

collision independently select one of two subsets with equal 

probability.  We view each subset as corresponding to a branch 

from the root, or a rooted binary tree (see fig. 4.2).  In the 

slot following tne collision, the first of these subsets is 

transmitted.   if another collision occurs, this subset is 

further split into two smaller subsets, corresponding to further- 

branches growing from the original branch.  The first of these 

subsets is transmitted in the ne;;t slot, and if this transmission 

is successful or idle, the second of the subsets is transmitted 

in the following slot.  In general, whenever the transmission of 

IM&J&S&ttSS^^ 
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a subset results in a collision, the subset is split and two new 

branches o-f the tree are grown from tne old branch.  Whenever the 

transmission o-f a subset is idle or successful (i.e. the subset 

is empty or contains one packet), the next slot is used to 

transmit the next subset.  When all subsets have been exhausted, 

the normal mode is again entered. 

It should be apparent that if this algorithm spends many 

slots resolving a collision, then typically many new arrivals 

will eagerly be awaiting the return to normal mode and a 

resounding collision will ensue.  What is even worse is that many 

successive collisions will follow until the expected number of 

packets in a subset becomes on the order of 1.  Thus the 

algorithm can be improved by eliminating the normal mode; at the 

end of a collision resolution period, a new collision resolution 

period is immediately entered and each waiting packet randomly 

joins one of k subsets.  The number k increases with the length 

of the preceding collision resolution period so that the expected 

number of packets per subset is on the order of one.  The 

corresponding tree has k branches rising from the root and two 

branches rising from each non-leaf node. 

Capetanakis C323 showed that this algorithm has a maximum 

throughput of 0.43 and is stable for all input ratas less than 

0.43.  The maximum throughput attainable with tree algorithms was 

later increased to 0.46 due to a simple improvement first 

suggested by Massey C353.  Note what the algorithm does when the 

set involved in a collision is split into two subsets of which 

the first is empty.  The first slot following the collision is 
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then idle and the next is a collision, involving all the packets 

in the first collision.  Massey's improvement was to avoid this 

predictable collison by resplitting the second subset of a 

collision set whenever the first subset is empty. |»V 
m 

The next improvement in throughput was due to 6al lager C36], [,_; 

and somewhat later, with a more complete analysis, by Tsybakov '.'■:/. 

and Mikhailov C373; this involved eliminating the tree structure 

entirely.  We shall describe this algorithm precisely later, 

since it is considerably easier to analyze than the tree 

algorithm.  First, however, we view it as another modification of 

the tree algorithm.  At the end of a collision resolution period, 

each of the k newly found subsets contains a Poisson distributed 

number of packets.  If a collision occurs for such a subset and 

then another collision occurs in the first of the two resulting 

subsets, then, conditional on these collisions, the number of 

packets in the second of the two subsets in Poisson distributed. 

Thus, as far as the algorithm is concerned, this subset is 

statistically identical to some time interval of new arrivals, 

and the algorithm would be improved if, rather than wasting a 

slot on this subset, we simply treated it like waiting new 

arrivals.  We will get to the bookkeeping issue of how to do this 

shortly, but note that if we eliminate the second subset as a 

separate entity every time the first subset is divided, then we 

never have more than two subsets to consider. 

The easiest way to do the bookkeeping concerning subsets and 

waiting packets is by means of the arrival times of the packets. 

If all the packets that arrived in a given time interval are 
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transnutted in a slot and a collision results, then the interval 

is split into two equal subintervals and the packets in the first 

su.bintarval are regarded as the first subset and those in the 

second as the second subset.  With this approach, packets are 

always sent in a first come first served (FCFS) order, so we call 

this a FCF3 splitting algorithm. 

We now express the algorithm precisely.  Suppose that at 

integer time t the algorithm has successfully transmitted ail 

packets that arrived before some time T(t) (not necessarilv 

integer).  In the slot Ct.t-t-i), all the packets that arrived 

between T(t) and T(:t)+u(t) are transmitted.  The time T(t) and 

the interval size |j(t) are determined by each transmitter based 

on the history of the feedback up to time t.  It is helpful to 

view the packet arrivals in CKtJ.t) as being in a distributed 

queue (seä   fig. 4.3).  We would like to allocate the queued 

packets one at a time starting at the front of the queue, but the 

individual arrival time of each packet is unknown except to the 

transmitter for that packet. Thus the algorithm attempts to 

allocate an interval (.tC't) at. the front of the queue so as to 

transmit the waiting packets as quickly as possible.  Note that 

maximizing the probability of success in the next slot, is not. the 

best thing to do since, as we have seen, a callisian in the next 

slot allows a higher throughput in the succeedina few slots than 

is possible with an idle slot or successful slot. 

The algorithm given below determines n(t), T(t), and 

Q(t)eU,2} for the slot Ct.t + l) in terms of n<t-l), T(t-l), Q(t- 

1). and the feedback (0,1,c) for the slot Ct-l,t).  The state 

•'"•■"ii'•"_"■*..'*"_ "»'J1
 ^"j "T.. VJ Vu '•*- *?■ *'»v"» K-
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Q(t) represents the number of subsets current!v under 

consideration.  Q(t) is set to 2 if one of the intervals for slot 

Ct-l,t) has been divided into 2 for slot Ct.t+l) and is set to 1 

otherwise.  The algorithm also has a parameter |.i0 that determines 

the size of allocation interval to be used after a collision 

resolution period is completed.  It turns out that to achieve 

maximum stable throughput, n(-j = 2.6.  Note that the allocation 

interval is also limited by t-T(t). the interval of arrival times 

that are still waiting for transmission. 

FCFS £p.l i ttino Algori thm; 

if feedback = c then 
TCt) = T(t-l); Q(t) = 2: 
uut) = u(t-l)/2 1.4.4) 

if   feedback = 0 or 1 ana Q(t-1/ = 1 then 
T(t) = T(t-l)+|.i<t-l; : Q(t; = 1; 
|.;(t.> = mmC uri,t-T<t> ] '.4. 5) 

if feedback = 1 and GMt-l;1 = 2 then 
T(t) = T(t-l)+|.i<t-l>; Q(t) = 1: 
|.'. (t) = u (t • -1) t 4. 6) 

if feedback = 0 and Q(t-l) = 2 then 
Tit) = Tvt-l)+-|.Ut-l) : Q<t; = 2: 
u * t) - |.l (t -1) / 2 '• 4. 7) 

In case of a collision in slat tt-l.t). Eq. (4.4) splits the 

allocation interval LT(t-l), T(t-.t)+u(t:~J.)') into two equal 

subintervais.  Q(t) = 2 allows the algorithm to "remember" the 

existence of these two subintervals.  If there was a previous 

subintervai CT (t-1)+n(t-l) , T <t-l)+2|.Ut-l) ) , the algorithm 

"forgets" about it at this point, regarding that subintervai as 

part of the waiting queue.  As painted out before, the number of 

L 

„.. 

'• •'■*"* .'' «'" •", •"" -"' -"• LV •'" -'" -"• *'* «"'' •'" »''' •'"' ^ H'"'*'' •*> •"■ •'• •"• **" •'■ •"'' •'* •■ 



-4.14- 

packets in that subinterval, conditional on the feedback history, 

is Poisson with parameter X|j(t-1), 

Eq.. (4.5> corresponds to the end of a collision resolution 

period or a subsequent period with no collisions and simply moves 

the head of the queue and allocates a new interval.  Eq. (4:16) 

corresponds to a successful transmission of the first subinterval 

from a previous collision and movement to the second subinterval. 

Finally (4,7) corresponds to Massey's improvement on the tree 

algorithm when a collision followed by an idle (or perhaps seveal 

idles) is followed bv splitting the second subinterval. 

The FCFS splitting algorithm can be analysed as a 

homogeneous Markov chain,, using Q(t), p.(t) and r.-T(t) as the 

state for integer values of t.  It is simpler, however, to 

segment the sequence of slots into collision resolution periods. 

where a new collision resolution period is defined to start each 

time that (4.5) is executed: note that a collision resolution 

period could be a single idle or successful slot as well as a 

collision with its subsequent resolution.  The Markov chain for -.. 

single collision resolution period depends on irut) = min C|j.-. t- 

lit.jj for t at the beginning of the period, taut is otherwise 

independent of t-T(t.).  Consider the case where the initial M(t) 

= Mo, since this is the critical case corresponding to large 

backlogs.  At each update in the period, n either stays the same 

or is halved, so p.  = 2"1 M0 for some i > 0..  The state of the 

chain at time t is described by Q(t) and |.i(t) , so we denote the 

state at time t by S,^. where j = Q(t) and i is such that M(t) = 

2  M0.  Figure 4.4 shows the possible state transitions as 

V "." V V > ".• "> \< '.■ ".' •""■••.-'_■< ^ «■■ V," > ."•''> N '. ,-.'. "• ■ VT V' V" •' • ,N ,'r'.'«'. '•'.,.' 
.'• ,'■ , '^ •_. • ." . '- ■.» V •.r.V.'.'.'.r.V.V^V'. , 
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defined by (4.4) za   (4.7).  From S-^ . , i > 0, an idle or 

cailisian leads to 32^+^ whereas a success leads to 6^ j.  From 

5^^, i > 0, an idle or success leads to 51>0 whereas a collision 

leads to S2 l+i. 

All that remains to complete the chain is to calculate the 

transition probabilities.  In state S-, ., we have two 

subin.tervals each ot sise n^ = n,^-1.  The number of packets in 

each subinterval is a Poisson random variable, with parameter 

XH^ , conditional on the sum 0+ the number ot packets in 

tne two sub intervals beina two or more.  The transition to S, .; 

occurs if the first subinterval contains exactly one packet (i.e. 

the transmission of the first subinterval is successful).  The 

probability of this is then 

c. ■ 

:•.:■ 

p.. 
2.1 

- A |.l.     - A jj . 

Xu  e    L1 -e   ^ ] 
■ 1 

-üAM 
1 - e (l+2Xd ) 

1 

:   1   >  I (4.3) 

In state S-^ ^ , i i 1. we are about to trahsmit: the second of 

two subintervals each of sizs   ^j .  The number of p'ack'ets in each 

subinterval is Poisson, with parameter A|.i. . conditional both on 

the sum being two or more and the first interval containing 

exactly one packet.  This means that the number of packets in the 

second subinterval is Poisson conditional on being one or more. 

The probability of a transition to S-^ ,-, is then the probability 

of exactly one packet, so 

.\:\\',r  V-'S'-V/,"''. •> - . • . • _ » .- ->..- v-..-v ■ 
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1.1 

-A Mi 
An. 

-AH, 
1   -   e 

;   i   >   1 (4.9) 

Finally  the  probability  of   a  direct   transition   from  S1   ,■.,  to  S-   .-, 

is 

P.    ..      =      (1   +   ALI... )e 1 . 0 h U 

•AH0 

(4.10) 

The number of slots in a collision resolution period is 

simply the number of states entered before the tirst return to 

Sli0.  The queue length, t-T(t), has an increment, over a 

collision resolution period, equal to the number of slots in tne 

period less the change in T(t); the change in T(t) is at most |.i(-, 

but is reduced bv m if a collision occurs in S-, ,'.      Letting V be 

the increment in queue length over a collision resolution period, 

Et'V) can be evaluated numerically as a function of A and \j.(!.   and 

for each JJ,,. there is a maximum A for which V < 0.  Thi!= maximum 

A is maximised over p0 at [xCl  =  2.6,   and the resulting maximum A 

i s 0,4071. 

Since we see now that the drift in zhe  queue length is 

negative for A <.   .4671, it is plausible that the algorithm is 

stable in this region.  To make this more precise, define a busy 

period of the algorithm as a consecutive string of collision 

resolution periods starting with a queue length t-T(t) < HQ and 

running up to the beginning of the next collision resolution 

period with t-T(t) < |JI<V  The sequence of queue lengths at the 

:■ ^■--•«.' 
■«". •'.. •', •'. 
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beginning of each collision resolution period •forms a random walk 

with an absorbing barrier at the end o-f the busy period.  The 

queue length increments are independent and are identically 

distributed except -for the first increment, where the initial 

i.i<t) is less than p.,-,.    Observe from (4.9) and (4.10) that F^j 

-;► 1/2 and P^ ^ -*• 1 as i -* •»..  This means that the random variable 

V (the queue length increment over a collision resolution period) 

has an exponentially decaying distribution function and thus has 

a moment generating function.  From Walds identity, it then 

follows that the number N of collision resolution periods in a 

busy period has an exponentially decaying distribution function 

for X < .4871.  It is also easy to see that the number of slots 

in a busy period is at most Nu,;» an(:' therefore the number of 

slots in a busy period also has an exponentially decaying 

distribution function.  Finally, all arrivals in a busy period 

(except perhaps those in the last interval of length p.,-) are 

successfully sent in that busy period.  Therefore the packet 

delay has an exponentially decaying distribution function for \ < 

.46'71 and the aigofithm is stable. 

Tsybakov and Likhanov C3S] have found an upper bound on 

delay and more recently Huang and Berger 11393 have constructed 

tight upper and lower bounds as well as simulation results.  The 

expected delay is about 5 1/2 slots at X = 1/e and about 16 slots 

at X = 0.46. 

The FCFS splitting algorithm can be improved somewhat if the 

intervals are split in an optimal way after collisions.  Because 

of the possibility of more than two packets in a collision, equal 

£?^:**?c^*^^ , A ;".; -I^M/M^Mmi 
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suDintervals are not quite optimal.  r-1o3ely and Humblet C403 and 

Tsybakav and Mikhailov C37:] show that choosing the optimum 

subintervals increases the maximum throughput to 0.4878. I 

Recently another improvement of 3.6 ;< lO-7 has been made by | 

Vvedenskava and Finsker C413.  Although this gain is small, it is 

of theoretical interest since it departs from the principle of | 

always resolving one collision before trying any new intervals. 

Considerable effort has been spent on finding upper bounds 

to the maximum throughput that can be achieved using the 

assumptions a) to e) C42, 43, 44, 45, 4o].  The tightest bound 

known is 0.587 and is due to Mikhailov and Tsvbakov £46;]. 

Pippenger's result C42: is also of particular interest since he 

shows that if the amount of feedback is increased to give the 

number of packets involved in each collision, then any throughput 

up to one may be achieved» 

One negative aspect of FCF5 splitting algorithms (and also 

Massey's improvement on the Tree älgorithVns) is their 

susceptibility to noisy feedback.  If an idle slot is mistakeniv 

fed back to the transmitters as a collision, then the algorithm 

as stated will forever continue to split a smaller and smaller 

second subinterval.  This problem could be solved, of course, by 

only splitting a given number of times in a row on receipt of 0 

feedback and then trying the entire interval.  The general 

subject of noisy feedback is still not well understood, but a 

number of partial results are known C35, 47, 48:].  The review 

paper by Tsybakov C4S] also reviews manv variations on collision 

resolution algorithms for a variety of other assumptions. 

Ütitä^ 
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fhe splitting algorithms discussd so far require all 

transmitters to sense the channel feedback at all times, so it is 

interesting to investigate algorithms in which sensing is only 

required after a transmitter has a packet to send.  Mathys and 

Flajolet C49] have developed an algorithm with a maximum stable 

throughput of 0.4 that has this limited sensing capability and is 

attractive both for its simplicity and robustness against 

feedback errors.  Very recently, Humblet L553 has shown that the 

FCFS splitting algorithm can be modified into a last come first 

serve algorithm which also has this limited sensing capability 

taut maintains the same maximum throughput of 0.487. 

For multiaccess systems with a finite number of users, it. is 

also of interest to modify these splitting algorithms so as to 

take advantage of the finite number of transmitters and to make a 

graceful transition from collision resolution to TDMtt as the 

arrival rate increases.  Specific approaches to this are 

discussed in L50.51. .1,  The approach in CSU is also o-f interest 

because OT drawing a parallel between splitting algorithms and 

croup testing, as developed in the statistics community in the 

40's and 50's. 

:<- 
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^^•LQ^^F1I§B_S§NSING:  We now want to chanqe the basic 

assumptions a) to e.» .  Note that in many multiaccess systems 

such as local networks, each transmitter can hear wnether or 

not the other transmitters are sendinq.  In such a 

situation, it makes sense to qive up the strict slotting 

specified in assumption a), and assume instead that a 

transmitter can start to send a packet in the middle of s 

data slot if no other transmitters are currently sendina. 

Not only does this allow idle slots to be shortened, but 

also it can reduce the number of collisions,, Carrier sense 

multiple access (CSMA) techniques were first developed by 

Kleinrock and Tobaqi C52.J.  The terminoloqy, carrier sense, 

does not necessarily imply the use of a carrier, but simply 

the abilitv to quickly detect use of the channel. 

Let o:  be the time required for all sources to determine 

that nothing is beinn transmitted? i.e., o: is the sum of the 

maximum propaaation delay between sources and the time 

required by a receiver to rel.iata.lv distinauish between 

si anal and no siqnal.  Assume that if nothinq is beina 

transmitted in a =Jot, tnen that siot terminates after o: 

time units and a new slot beqrns.  We still assume that, all 

packets require one time unit for transmission,, that 

feedback is instantaneous at the end of a slot., that 

arrivals are Poisson with intensity *, and that there are 

effectively an infinite number of sources.  We first modify 

slotted Aloha for this new situation and then modify the 

FCFS splitting alaorithm. 
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The ma-jor difference between sior.tsd Aloha CSHrt and 

ordinary slotted Aloha is that idle slots now have a 

duration a.  The other difference is that if a packet 

arrives at a source while a transmission is in progress,, the 

packet is reqarded as a backloocjed packet and begins 

transmission with probability p after each subsequent idle 

slot; packets arriving during an idle slot are transmitted 

in the next slot as usual.  T"h.i= technique was called 

non-persistent CSMA in :52J to distinciuish it trom two 

variations.  In one variation, persistent CSMA, all 

transmission attempts dur:inq a busv slot would simply be 

postponed to the end of that slot, thus causing a collision 

with hiqh probability.  In the other,, P-persi stent CSMA, 

collided packets and packets waitinn tor the end ot a busy 

period use different probabilities for transmission,,  We 

:i cincre these variations in what fol I.:pws since tnev appear to 

be uniformly •infenpr to non-persistent CSMA. 

lo analyze CSMA,, we can use a Markov Chain aqain., using 

the number ot backlogqed packets as the state and the ends 

of idle slots as the state transition times,,  Rather than 

write out the state transition equations,, which are not 

particularly insiqhtfu.l , we simply modifv the drift in (^.2) 

for this new model.  The expected number of arrivals in the 

idle slot before a qiven transition is MX, and with 

probability 1 •-e"'Va >; 1-p > :, this is followed by a full slot 

with >, expected arrivals. Mote that there is always an 

unused idle slot at. the end of e?ch full slot, but, we count. 

L.. 

!."• 

L- 
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the correspondinq arrivals as part of the -foilowing 

transition.  The model could be chanqed to eliminate this 

wasted idle slot, taut the difference is neqliqible for small 

oc.  The expected number of departures per state transition 

is simplv the probability ot a success,,  Thus -^or k>0, 

Oipill, 

k D^,. = Äo; + ACI—e "'•'i. l-p> .1 - [.»or+pk..' U.-p) .] 9    \. 1 -p .; r- 

(4.li) 

■or   > i 1 i-o:; :. 1 „   this   is   minimized   over   p 5T. 

P = .1 — 7\ i. I. i-o: i 

k   -   « ^ l+o:.' i4u  1.2) 

For k=0, D,. is aiven bv :, i. .1 io:> s. l-e'"3,0".'., which is 

independent ot p. 

' I he stability issues with slotted Aloha CSMA are almost 

the same as with ordinary slotted Aloha,  One can control p 

bv mom. tori nq the feedback, or one can simplv operate at a 

small, value of •>. and p and hops that the back loo rarely 

becomes too I. arqe. I.f we use the optimal value of p for e = ch 

k„ and suostitute this in ^4„ 11..», we find that D,, is 

neaati ve i-cr all. k.:i.i so I ona as 

A (1 +o:) i e l»---.. i4.13) 

Bv expandina (4.13) in a power series in I-A,, we find 

that for small •:•; the system is stable for all A less than 

l->|2c>:.  The optimal value o+ p then satisfies pk -- i|2o:.  It 

■&M^SI^£^&^^ 
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is interest.inq to observe that this optimal point occurs 

where the time spent on icJie slots is approximately equal to 

that spent on collisions;  naturalIv there are manv more 

idle slots tnan collisions, but idle slots have a mucn 

•shorter duration.  Delays also tend to be much smaller in a 

CSli« svstem since backloqqed packets qet a transmission 

opportunity after every idle slot, and,, although the 

probability of transmittinq in an idle slot decreases with 

ilc:, the probability o+ transmittinq per unit time increases 

as 1/J a- 

Me::t consider CSI'IA with pure rtloha.  We will not 

analyse this in detail, but simply note that with the same 

carrier sensinq time o: and the same transmission probability 

p. the probability of collision increases by a -factor of- 2. 

For maximum throughput, p should be decreased by a -factor of 

■12 Jeadinq to a maximum throuohput o ;• .1-2 Jo: for small o:.  Uie 

see that the difference between pure and slotted Aloha ■for 

CSHH is quite small, for small o:; moreover., the 

synchronisation required for slpttinq with CSMH is somewhat. 

trickier than that: -for ordinarv rtloha.  Thus pure Aloha 

appears to be the natural choice with CSMA. 

Final.I. v consider the FCF5 splitting algorithm modified 

for CSMA.  The same algorithm as in «4.4» to (4„7) can be 

used, although the parameter |JV) should be changed, and as we 

shall see shortly, intervals with collisions should not be 

split into equal subintervals.  Since collisions waste much 

more time than idle slots, the basic allocation interval M- 

0 

f.,. 

w ■ 

i».,.v- 

[■■• 
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should be chosen small.  This means in turn that, collisions 

with more than two packets are neal i q.ibl e. and thus the 

analysis is simpler than before. 

We first find the expected time and the expected number 

of successes in a collision resolution period, including a 

sinqle idle or successful slot as a deqenerate  case of a 

collision resolution period.,  Let * = AM,(V  With probability 

e  , an on. am a.I. allocation interval is empty, yieldinq a 

collision resolution time ot o: with no successes.  With 

probability «e"*', there is an initial success., yieldinq a 

collision resolution time 1+a   s.as betöre, we include an 

empty mini slot at the end of each full slot;.  Finally, with 

probability ^.^e"*. there is a collision., yielding a 

collision resolution time of l+o:+T, for some r to be 

calculated later, and two successes..  Thus,, ignoring the 

probabiJity of more than two packets in a coliision 

t: (time/per i/Qd.» ■-.:   o:e "^ f . j >o'; .fe T' + a-t-o-i-F > • .:pZ/2) e""1' 

(4,. 14; 

E ^ p ackets■period i :.:.; *(=    +• 2 (•P*1 / 2) S 4.,15i 

H= betöre, the maximum achievable throughput for given 

•T' is the ratio of i4. 15» to ^4.14), 

ma; (.j. + «.»x/ii'o: ■+■ 't'U.+•■:<:; + «'t'^/.ZM 1+on-T) 3 < 4. f6) 

We can now maximize the right hand side of (4.16) bv er * 

i^s^^S^StV^^ 
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n.e. over M'A.'.  In the limit ot small o:., we aet the 

asymptotic expressions 

•".■-■ 

* •*   i|2o:/ (J-l.» 

^max ^ l - r!:rTT:r 

t4»17) 

i4.13) 

'•:.-■ 

Finally we must calcüiate I, the time to resolve a 

collision atter it has occurred.  Let ü   be the traction ot 

an interval used in the first subset when an interval is 

split.  The -first slot after the idle slot terminating the 

collision is idle, successful, or collision with 

probabilities ir-k.»—, 2K il-'-x) , or xJ~ resoecTi vel v.  fhs 

exoected time required for the idle case is cc+-i „ that for 

the succss'sfui case is 2 ( 1 HT.) , and that for the collision 

case is i•+• a + n  I'hus 

I. -x .<'" i o: i-1") +• 4>i \ 1 -•;.' '■. .1 *•<:'. >   +• <-. I. i-o: +• i i '. 4„ [•;') 

T   is   minimised  bv   ■■;   =   ict+a1*  -  o;,   and   the  result inn 

value  bi:   I,   for   small   o:,   is   T  ■■■■-   2+-fix«     Substitutina   this   in 

i'4„ :! S) «   we   see  that 

max '4.20) 

For small o:, then,, the FCFS splitting algorithm has the 

same maximum throuahput as slotted Aloha, This is not 

surpnsinq, since without CSMA, the major advantage of the 

FCFS aloorithm is its efficiency in resolvinq collisions. 

% 
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and with CSMH, coiiisions rarely occur.  It is somewhat 

surprisinq at first that i-f we use the FCFS alqorithm with 

equal subintervals <ie„ !; = l/2), then we are limited to a 

throughput of 1H~.  This degradation is due to a 

substantial increase in the number of collisions. 

The same type of analysis as used here can be used for 

reservation multiaccess systems and a variety of other 

conditions.,  The idea, onqinallv due to Massey 15Z.1   and 

further developed by Humblet C543 is to qeneralisre our 

original assumotions a) to e) to allow arbitrary durations 

for idle, success,, or collision slots.  Recall that in CSMA, 

idle slots had duration o:   and success and collision slots 

hsri   duration 1 ••■*.■„  In a reservation system,, idle and 

collision slots would have the duration required to send a 

reservation packet, say *:, whereas success slots would have 

duration t+o;.  If a collision resolution alqorithm witn 

throuqhout ,v* is used for the reservations,, then o:/:--*- is the 

expected time for a successful, reservation-  Thus H-oi/v* is 

the expected time to send a (nesaaqs, and 1/(1+C</A*) IS the 

throughput of the system using reservations,.  Suppose a 

carrier sense system has the extra property that 

transmitters involved in a collision can detect the 

collision and stop transmission within o: time units (as in 

the Ethernet system.-.  Then idles and collisions each have 

duration o:„ successes have duration l+o:, and the throughput 

is the same as the above reservation system. 

^-'ä:VV'V^>^V:V::>V:V^:^::> 
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