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NOMENCLATURE

e = measure of non-parallelism

Independent Coordinates

t = time

x = horizontal spatial coordinate
y = vertical spatial coordinate
x] = eX

Mean Flow Variables

U(x1, y) = Uo(x], y) + sU1(X], y) = component of velocity
V(xl, y) = eV (Xl’ y) = y component of velocity

P(xqs ¥) = P(xq) + ¢ Pi(x;» ¥) = pressure

R(x], y) = Ro(x], y) + ¢ R](x], y) = density

a(x], y) = speed of sound

cp = specific heat

Perturbation Variables

G(x], y, t) = (ao(x], y) + ed, (x], y))eie = x component of velocity
9(x], ys t) = (bo(x], y) + eb] (x], y))ei8 = y component of velocity
;(X], ¥y, t) = (co(x], y) + ey (x]‘ y))eie = density ]
P(xs ¥s t) = (d (x5 ¥) +ed) (xq, y))e'® = pressure

S0, y, t) = (f5(x15 y) + efy (%1, ¥))e'® = entropy
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Perturbation Variables (Cont'd)
] = k(X]) - wt
w = frequency
k(x]) = wave function
Others
[L] = matrix operator
[L]* = adjoint matrix operator
H( ) = Hankel function
i = /21
B, A = intermediate functions of k
¢ = vector of perturbation components
n = shear layer deflection =
“(xl)’ v(x])= intermediate functions of X ‘ﬂ
* ::
() = adjoint function i
(") = perturbation quantity %
(") = perturbation amplitude R
| o
5 ( )T = matrix transpose .
g (), = variable for flow outside cavity
i (). = variable for flow inside cavity e
i L = cavity length :
5 = cavity depth -
E M = free stream Mach number .
~
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I. INTRODUCTION :

The problem of a compressible flow over an open cavity is one of great 1;!?
practical importance. Examples of such flows are those over aircraft wheel | ;
wells and weapons bays. Bartel and McAvoy (1981) experimentally measured
sound pressure levels as high as 170 dB in a weapons bay environment. Levels :jf‘,
this high can lead to structural failure and will cause extreme personal

discomfort. Thus, methods of reducing sound pressure levels demand immediate

attention, The first step in this reduction is to obtain a useful analytical
model of the compressible fisw over an open cavity.

Open cavity flows have been investigated analytically and experimentally.
However, many analytical models have severe limitations on their range of
application or do not match experimental data. Some of the best analytical
models are, in fact, semi-empirical.

Karamcheti (1955) pe-formed one of the first experimental investigations
on a simulated weapons bay. He obtained discrete frequency radiation for both
subsonic and supersonic mean flows. This result has been verified by other
investigators including Gibson (1958), Spee (1966), East (1966), and Smith
and Shaw (1974), among others.

The first significant analtyical study of open cavity flows was that of

Plumblee,Gibson, and Lassiter (1962). They identified acoustic resonances
of the cavity and speculated that the observed discrete frequencies are
identical to the resonant cavity frequencies. They also suggested that the ]
driving mechanism of cavity oscillations is the turbulent shear layer spanning --!ﬁ
the cavity. Their result is in conflict with the experimental observations of |
Karamcheti (1955) and Rossiter (1964) whose experiments indicate that larger

pressure oscillations are obtained for laminar boundary layers. -

Based upon his own experimental observations, Rossiter (1964) proposed
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a vortex shedding model to explain the generation of cavity tones. He was
then able to derive a semi-empirical formula for the tone frequencies. In
addition to Rossiter, Smith and Shaw (1974) and Bartel and McAvoy (1981)
have developed semi-empirical models of open cavity flows based upon their
experimental observations. These models do reflect the data obtained by the
respective investigators, but are limited in application. For example, the
validity of Rossiter's model appears to be limited to the Mach number range
0.4 <M<1.2,

Analytical efforts at modelling open cavity flows have increased within
the past 15 years. Covert (1970) classified cavities as shallow or deep
depending upon their length to depth ratio. He argued that vorticity tends
to excite the modes in the direction of the greatest physical dimension.

Bilanin and Covert (1973) developed an analytical model of a shallow
cavity using an acoustic monopole to model the trailing edge behavior. Their
model is based upon a feedback mechanism first proposed by Rossiter (1964)
where the pressure field of the monopole drives the shear layer. The cavity
floor influences the shear layer by changing the amplification rate of the shear
layer motion and thus, changing the excitation frequency. The model predicts
excitation frequencies for M > 1, Block (1976) extended the work of Bilanin
and Covert to include effects of leng;h to depth ratio.

The appropriate trailing edge behavior has created some controversy.
Heller and Bliss (1975) analyzed the wave motion of a thin shear layer over
a boundary. They superimposed solutions for waves moving between a shear
layer and solid boundary to approximate an oscillating cavity. They modelled
the trailing edge behavior with a moving piston to simulate an entrainment
process. Heller and Bliss argue that while the feedback mechanism model of

Bilanin and Covert will predict excitation frequencies it will not predict

\J JFA

)
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whether they will occur. They believe that an entrainment model is superior
as mass addition and subtraction must occur at the trailing edge as the shear
layer deflects. Results from their model compare favorably with results from
their water table tests, but they are unable to predict discrete frequencies.
Heller and Bliss also examined methods of oscillation suppression using vortex
spoilers,

Tam and Block (1978), in a study directed toward open wheel well noise,

analyzed the open cavity problem using a feedback model significantly differ-

ent from that of Bilanin and Covert. However, their model is consistent with

the water table observations of Heller and Bliss. The work of Tam and Block

AW

( is important because it was, until this study, the only analytical cavity
A study to include shear layer thickness effects. They used a mean velocity

profile for the shear layer the same as that of a two-dimensional free turbu-

. R

lent mixing layer near he trailing edge of a thin flat plate and assumed the
shear layer to be of constant momentum thickness. Their results compare well
with the experimental data of Rossiter. Tam and Block also show that shear b

layer instabilities could be the origin of acoustic energy which produces
cavity resonances.

The above survey of literature led the author to believe that a unified

analytical theory of open cavity flows is lacking. Some theories apply only

over certain ranges of significant parameters while others ignore shear layer

thickness effects which have been found to be extremely important. In view of
! the work of Tam and Block the author also decided that a more detailed
- .
g analysis of the shear layer including thickness effects is necessary. Indeed,
.
- Bartel and McAvoy recommend a thorough mathematical description_of the un-
s
n, steady pressure distribution in the shear layer. Thus, the author proposed
[Kelly (1982)] an investigation of open cavity flows including shear layer .
¢ :
- P U T T e
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thickness effects. This report is to present the results of this investi-
gation.

The author decided that the work of Tam and Block was a significant con-
tribution to the analysis of the shear layer spanning an open cavity. Their
results are valid for a wide range of Mach numbers and length to depth ratios.
In addition, their work was the first to include shear layer thickness
effects. They analyzed a shear layer with a constant momentum thickness,
but noted thi.: due to entrainment the thickness of the shear layer increases
in the downstream direction. They also used their shear layer instability
analysis to predict excitation frequencies from an equation derived assuming
a thin vortex sheet. These equations are summarized in the next section.

From his prelimnary research the author realized that a mathematical
investigation of the shear layer including all desired effects would be very
involved and would exceed the scope of the project. Thus, it was decided to
focus on a specific aspect of the shear layer based upon Tam's analysis. The
author recognized that there are two major drawbacks to the work of Tam and
Block: (1) The shear layer thickness was assumed constant across the
length of the cavity and, (2) The eigenvalue relation they use should be
modified to include thickness effects. Actually, the modification of their

eigenvalue relation depends upon reanalyzing the flow above and below the

el

shear layer assuming a shear layer of finite thickness. Thus, it was decided

Dy o
]

to modify the work of Tam and Block to handle a shear layer whose thickness

increases in the downstream direction. ’

——
".. Ve

Section II presents a statement of the problem under consideration as

- m m_a.a. s

well as an overview of the work of Tam and Block.

‘w

p———
-~ .

¢ Section IIl presents the mathematical analysis of a compressible inviscid

a a

shear layer whose thickness increases in the downstream direction. The
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analysis is based upon non-parallel stability theory using the method of
multiple scales.

Section IV presents a scheme for numerical implementation of the
analysis in Section III.

Section V discusses the method and presents recommendations for

further study.
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I[I. Problem Formulation

The objective of the research is to provide a mathematical formulation
of the shear layer over an open cavity including thickress effects. A side
objective is to evaluate the feasibility of using a mathematical analysis of
the shear layer in a finite element formulation to analyze the flow in all
regions around the cavity.

A literature survey indicated that the only study including shear layer

thickness effects was made by Tam and Block (1978). They first analyzed a
thin shear layer and obtained a frequency-wave number relationship. This re-

lationship was used to predict, from a condition derived from a trailing edge

4
. , . . . ®

boundary condition, the discrete shear layer oscillation frequencies. They i

then analyzed a shear layer of finite thickness in the same manner. Their

assumptions were:

1. The flow is inviscid.

2. No mean flow exists within the cavity.

F 3.  The shear layer is of constant momentum thickness.
5 4. The mean flow in the shear layer is parallel.

5. A feedback mechanism occurs due to the deflection of the shear

layer into the cavity. Reflected waves excite the shear layer.

Y Yvovivwy

Tam and Block were able to predict, with favorable comparison to experimental

data, discrete oscillation frequencies. The author decided that a first step

toward a thorough mathematical analysis of the shear layer would be to improve
the analysis of Tam and Block by eliminating assumptions (3) and (4). Indeed

the shear layer thickness increases downstream due to entrainment. Thus a

shear layer whose thickness increases downstream was analyzed using the work

:
i

oY VY vy

of Tam and Block as a guide. The essential features of their work is presented

below. The current research is described in Section III.
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- The flow around the cavity is divided into three regions: (1) The flow
’ inside the cavity; (2) The flow outside the cavity; and, (3) The shear layer

between these two regions. The equations governing the flow inside and out-

side the cavities are

] T R 2 _
—2(ﬁ+Uwax)p+-Vp+-0 (2.1)
a
+
oV - 9V ap
+ +

CIN ( 3T u_ Py ) = - 5}1 (2.2)
LU (2.3)
— = =~ Vp = N
a? st .

i
P_ 5t == ?Y_ (24) .

Where a + subscript refers to quantities outside the cavity and a - subscript i
refers to quantities inside the cavity. !

The boundary conditions at y = 0 are

(54U )n=v (2.5)

3
ot +

%% =v_+As (x-g)e Tut (2.6)
- -iwt
p, = P_ +Bs(x-ge (2.7)

Where n is the displacement of the shear layer, A and B are constants and ¢

is the point where the shear layer is excited. Tam and Block use a periodic
lTine source at the trailing edge to simulate the trailing edge interaction
process. They calculated the pressure field inside and outside of the cavity
due to the line source and the resulting loading on the shear layer due to

the differences in pressure and velocity above and below the shéﬁr layer. They
are then able to obtain a relationship between the shear layer deflection at

the trailing edge and the source strength. The pressure attains a maximum
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value when the shear layer deflection is most negative. Using this they
derive a condition which defines the shear layer frequencies. That is

Phase y = 2mn n=1,2,3,...

N

where
BB 4 s
v = ;—“—BT e /L or(e)e TKge (2.8)
3k
where
- L-¢
flg) = 1) po gy 1o w(3) [ lee g
0 a_ 0 a, 1.2
(1-M%) (1) [ w
e % +HD LA () ]
a
(1) r w 2 2,1/2 W 2D
+H [ = ((L-g)" +4D7) " ] -
o a_ a_B_ ((L-g)2+402)1/2
. 1 1
X H [ e ((reg)? + a02)1/2 )
t;:'. B
. 1 241
8, = [k - L (w-U_k)?1'/2
3 K
[ 2 ]
- 8= [k - w /af] /2
- 2 2
Tj a=op,a, (8 +8)(k" -8.8)
ﬁ: The frequency-wave number analysis is determined from hydrodynamic stability
SN theory. Equation (2.8) is then used to determine the discrete frequencies.
z’ Simply stated, the problem at hand is to develop a technique to predict
= ’
& the discrete shear layer oscillation frequencies for a shear layer whose
gf thickness varies with x. The analysis is based upon hydrodynamic stability
;? theory. A weakly non-parallel mean flow is perturbed. The method of multiple
a8
X scales is used to predict an eigenvalue problem which governs the wave number
L
F—
g
<
e e et ee e T s e s
| ST I A S S S S e s e e LT ', s et e A At A el a
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frequency relationship. The wave number is a function of x, k(x). The
eigenvalue problem is solved numerically by finite-difference methods. Thus

a numerical relationship between k(L) and w is determined. Equation (2.8)

: is used to determine the discrete shear layer oscillation frequencies. The
L method provides a correction to the technique of Tam and Block to account for !

? varying shear layer thickness effects. A discussion follows the analysis to
indicate modifications that should be made to the procedure.

N o
L The assumptions made in the analysis are: ?

(1) The flow is inviscid.
(2) The flow is two-dimensional. é
(3) No mean flow exists in the cavity.

(4) Equation (2.8) is valid for this problem.

(5) The specific heat is constant across the thickness of the shear

layer.
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[I1. Shear Layer Modelling 13
The shear layer spanning the cavity is modelled by a two dimensional -
inviscid compressible layer which grows in the downstream direction. The
stability characteristics of the shear layer are considered when it is ex-
cited by a reflected wave of frequency w.
The equations governing a two dimensional compressible inviscid flow
are:
Mass
3 4, M 4 3, 3V 3,
st TP ax U TPyt Vgt 0 (3.1) _
4
x-Momentum .
u 9 Uy 4 3p _ i
e (at tu X v ay) + X 0 (3.2) ﬁ
>
y~Momen tum j
i
v v vy 4 3P _
o (GxrugxtVay) Yoy =0 (3.3) R
Entropy Production ]
o
3s 3s 3S _
a_t-+uax+vay—0 (3.4)
Thermodynamics Relation for an Ideal Gas \
2 |
do=al do + 22 s (3.5) -
cp .
The mean flow is assumed to be a steady two-dimensional flow. Z
Thus, the mean flow quantities (U, V, P, R, S) satisfy g
]
U, 3R, paV AR :
Rox *Usx tRay*Vgy =0 (3.6) ;
U v | AP _ - K
RU =t RV 5}'+ i 0 (3.7) !%
!:i
).'2
oV 3V , 3P :
v CA I L N
RV T RV 3y + 3y 0 (3.8) q
.
N
..... . . S e
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The flow variables in the shear layer are assumed to be the mean

flow component plus a perturbation quantity. Thus

u(x, y, t) = U{x, y) +ulx, y, t)
v(X, ¥s t) = V(x, y) + v(x, y, t)
o(xs ¥ t) = R(x, ¥) +0(x, y, t)
p(xs ¥y, t) = P(x, ¥) +p(x, y, t)

s(x, y, t) = S(x, y) +s(x, y, t)

Where a quantity with a tilde is a perturbation quantity and is assumed

to be small in comparison with the mean flow quantities.

(3.15) are substituted into equations (3.1 )- (3.5).

(3.10) are used to subtract out the basic state. The resulting equations

are linearized by neglecting all terms which are nonlinear in the pertur-

bation quantities. The resulting equations are:

Mass
+V %§.+ v %§.= 0
x-Momen tum
R—gE+RU§—l;:-+RG%)UT+p u%+kv§;’7+kv

WMTETRT AT TS T g TR T T e T e T - T e

Equations (3.11) -
Equations (3.6) -

14

(3.9)

(3.10)

(3.12)

(3.13)

(3.14)

(3.15)

.E
o
e
(3.16)
(3.17) g
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RV +rUZ+pri sy epyany

3t X ax P Y ax
- ay 3y

Entropy Generation

-~ -~

ot ay v ay

Thermodynamics Relation

¢ ~ -

- - 2 p.,.s
p=Ra (5+=)

) R Cp

()

3s 3s , ~ 3S 3s , ~ aS
LU= +y= Y22y ==
U X u ™ v 0

ay

aV

oy

e e T W T W S W e Y (NN R T T T T AR TRT. T e
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(3.18)

(3.19)

(3.20)
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Equations (3.16) - (3.20) form a set of five equations for the five
unknown perturbation quantities. Note that the mean flow is non-parallel.
Thus the coefficients in the differential equations (3.16) - (3.20) are
functions of both spatial variables, x and y. Standard parallel stability
theory would suggest assuming

- i(kx - wt)

u = uly)e (3.21)

where k is the wave number, w is the excitation frequency and G(y) is the
amplitude function. However, an assumption of the form (3.21) is not appro-
priate in this problem as the coefficients are dependent on x.

Instead, an approximation to the solution of (3.16) - (3.20) is obtained
by following the work of Saric and Nayfeh (1975). The non-parallel effects are
assumed to be weak and can be represented by a small parameter e. That is,
whenever x appears in the mean flow quantities it appears in combination with
e as ex. In addition the non-parallel component of velocity V must be of
order ¢ while all other mean flow quantities are of order 1. Thus it is

consistent to introduce a slow scale defined by

x1 = ex (3.22)

Then all mean flow quantities are written as functions of x1 and y. Substitu-

tion of (3.22) into (3.6) - (3.9) yields

U, 3Ry, gV, y 3R,

e(R axl +U axl) + R 5y +V 5y 0 (3.23)
au aP U _
e(U W* W) + RV Wy 0 (3.24)
1 1

W, oy 2V, 2P -
eRU axl + RV 2y + 3y 0 (3.25)

3 S

_ sy 3.,
el axl +V 2y 0 (3.26)

16

Lo e
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From equations (3.23) - (3.26) it is indeed apparant that

U=0(1), R=0(1), V=0(c), % 0(e), S = 0(1)

Thus it is also convenient to expand the mean flow quantities in power

series in €. To this end

U(x ,y) = U (x ,y) + el (x ,y)+ ... (3.27)
1 0 1 1 1

V(X ,_Y) = gV (X ,,Y) + ... (3.28)
1 1 1

R(x ,¥) = R (x ,y) + eR (x ,y) + ... (3.29)
1 0 1 0 1

P(x ,y) =P (x )+ ¢eP (x,y)+... (3.30)
1 0 1 1 1

S(x ,y) =S (x ,y) + &S (x ,y) +... (3.31)
1 0 1 1 1

The method of multiple scales [Nayfeh (1982)] is used to modify the assumed

forms of the perturbation quantities from those of standard stability theory.

To this end let

a(xl,y,t) = a(xl,y) e0(x15t) (3.32)
;(xl,y,t) = b(x .y) efe(x1,t) (3.33)
-
~ ie(xlyt)
g (xl,y,t) = c(xl,y) € (3.34)
L‘\
t"' p(xl,y,t) = d(xl,y) eo(x1,t) (3.35)
o §(x1,y,t) = flx »y) eto(x1:t) (3.36)
- where
9
F" a_e = - w -
- a
( '
§ )
b 1
o
-
4
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or

-y

8 = k(xl) - wt (3.37)

It is noted that both the amplitude and the wave number are assumed to be
functions of the slow scale xl. It is also noted that the chain rule can

be used to express derivatives with respect to x as

I ] S

or

= e 3_+ k(X ) 9_ (3-38)

@ [
>

For example

~

u _ _ 3 ie 3 ie _r da_ , . 4,10
= =¢ [a(xl,y)e ]+ k(xl) T [a(xl,y)e J=Tleg—+ ikale

X X
1 1 R
and EI
:
au_ ]
ax X .
1 "3
C
; It is also convenient to expand the amplitude functions in power series of i
I e. Thus 5
. a{x ,y) = a (x ,y) +ea (x,y)+ 3.39 .
r (x oy) = a (x »y) +ea (x .¥) (3.39) i|
E b(x ,y) = b (x ,y) + eb (x_ ,y) + (3.40) 3
. 1 0 1 11 -
S
' c(x 5y) = c (x ,y) +ec (x ,y) + (3.41)
~ 1 0 1 1 1

<+

k] = ;] + d ]
d(xl y) do(x1 y) + ¢ 1(xl y)

<+

(3.43)

f(xl,y)

»
3
]
(3.42) :
1
"4

f . + ef (x ,
o(x1 y) + ¢ 1( , y)

R L . S AL A A AL L)
A o .

IR P
d®
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Equations (3.39) - (3.43) are substituted into equations (3.31) - (3.36).
The resulting equations are substituted into equations (3.16) - (3.20) making
use of equation (3.28). Coefficients of like powers of ¢ are collected in

each equation and set equal to zero independently. The results are summarized

below
Order ¢0:
Mass
BRO abo
kU - c +b —+ iR ka +R — =10 3.44
i @) o 9Y 1 ao 0 9y ( )
x-Momentum
an
i(kU -w)Ra +Rb — + ikd =0 (3.45)
0 00 0 0 oY 0
y-Momentum
ad
j(kU -w)R b + L= (3.46)
0 00 9y
Entropy
) S0
i(ku -m)f +b —=20 (3.47)
0 o 9y
Thermodynamic Relation
o fo
d =R a% ( R + . ) (3.48)
o 0 T Tp
Order ¢
Mass
aR0 ab1
i(kU - +b — + ikR + R —
i Uo w)cl 1 3y oa1 0 9y
oR 3C ac
0 0 0
=-a —=-U —=-ikclU -V — 3.49
0 X, o 3X, 01 1 3y ( )
U dd ab aV >
0 0 0 1
- — -R — - R 1ka -R —-¢c —
co 3X1 0 93X, 1 3y 0 9y
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x-Momentum )
U, |
j(kU -wu)Ra +Rb — + {kd = 3.50 ]
( 0 @) 01 01 3y 1 ( ) ]
3a g
jeRa -RU — -RU ika - Ra y
10 0 0 9% 10 o0 00
au au da
0 0 . 0
—=-clU —-RUijka -RV —
ax 0 0 93X, o0 o 013y
aU1 an BUO ad0
-Rb —-Rb —2-cv 2.2 .
00 9y 1 093y 01 3y BXI y
]
y-Momentum i
3d, 3b, .
i(kU0 -w)Rb + — = iR b -RU — (3.51) ’
0 01 9y 10 00 3X1 ]
N
abo aV1 I
-RUikb -RUikb - RV —-Rb —
01 o0 10 0 01 3y 0o 0 9y 1
h
Entropy ]
aSO afo
i(kU -w)f +b —=-U — - U ikf 3.52
( 0 w) 1 1 3y 0 3%, 10 ( )
3S of 3S
- a _.__Q._v ,_0_ __1
03)( 13y 03_)’

Thermodynamic relation

R f R.f
‘ d = a2(c + 21410 3.53
=@ (c1 < o ) (3.53)
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Equations (3.44)-(3.48) represent a set of equations to solve for the

zeroth order perturbation amplitudes a,,bq,Cq,dps and fo. The boundary condi-

g tions in the y direction are simply that the flow quantities must be bounded '
- as y -~ = ., The equations can be written in the following form .
~ ‘J
F (L] Cop] = (0] (3.54) Y
: where 1
o —_ -
. b =1 2
bo
- Co
- dq
! o
_

-y
. IR, o X :
[L])= i Rg W‘ + RO ﬁ7 1(ka - %) 0 0 i

. 20, . :

i(kUp -w})Rg R, 5y 0 ik 0 2
. . 3 .
3 0 i(kUg - o) 0 & 0 j

354 .

}: 0 ‘87- 0 0 1(ka-m)
- Roa2
3 0 0 -a2 1 - T
: p
- -
Y
¥
.
23
: L
. B
P' .
., N 4
" ”
- * 4
: =
b 1
- ]
{ NN TN

- ‘o. '.‘V - . - - . . 0 » - -
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One notes that the operations involved in [Lj are simply multiplications
by known functions and differentiations with respect to y. Thus it is
possible to consider equation (3.54) at a given spanwise location independent
of every other spanwise location. This is a result of the weakly non-parallel
approximation. Arbitrary functions of xj will be involved in the solution of

equation (3.54). Indeed it is convenient to write

6o = Alxy) [50("1’3/)] (3.55)

where A(xl) is at this level, an arbitrary function of x. However, since -j

differentiations in [L] are with respect to y only 1

1]

(L1, 1 = [LXALS, D = ALLICG,] e

Thus equation (3.54) yields

(L] o, (x )] (3.56)

[[]
o

Equation (3.56) is a homogeneous system of equations to solve for the
components of [@o(x],y)]. The matrix [L] is a matrix of linear operators that
acts on the components of a five dimensional vector whose components are
functions of y and transforms it into a new five dimensional vector. Thus the

vector spaceq) is defined as all five dimensional vectors whose components are

complex functions of a real variable y whose range is from -« to +«., An

inner product can be defined on this vector space according to

(Cul, [v]) = {‘”l:ufmdy (3.57)
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for all [ul, (vl 51). The bar in equation (3.57) denotes a complex conjugate.

e

For a given excitation frequency w it is desired to find the amplitudes

L ad

of each variable as well as the spatial wave function k(x]). Equation (3.5)

is a homogeneous system to solve for these amplitudes at each spatial

location with the local value of k(xl) as a parameter. However this system
will have a non-trivial solution only for certain values of k(x]). The values
of k(xl) for which this non-trivial solution occurs can be determined
numerically.

Equations (3.49)-(3.55) represent a set of equations to solve for the
first order perturbation amplitudes aj, by, ¢y dy, e}, and fj. These

equations can be written in the form

[L][(p’(xla.Y)] = [g(x19.Y)] (3058) S
1
where B
- "
[4’ (X s .Y)] = a N
1 1 1
b
1
4
s d
g 1
' f
g 1
- —_—
- and
i; — —
Fa [g(x] » ¥)1 = 9, (x, ,y)
*L gz(x] sY)
;‘ 9, (x,5y)
g
s g, (x)¥) |
{ 9. (x,.y) ®
‘ ]
\ - - 5
< :3
E S
» .
i :
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(3.59)

BUO

Y135y

(3.60)

(3.61)

(3.62)

(3.63)

C e . L - e
o e L . *“_ S oA e o
et AR O e e
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The operator [L] in equation (3.58) is the same operator that appears in

BN WSSURDROSEN ) W

equation (3.54). Equation (3.58) is a non-homogeneous system, whereas
equation (3.54) is a homogeneous system. Furthermore non-trivial solutions of
equation (3.54) exist. Thus the Fredholm Alternative implies that a solution

to equation (3.58) exists if and only if the non-homogeneous terms satisfy a

:
Jd
\
g

solvability condition. In particular one can show that the non-homogeneous

terms must be orthogonal to all non-trivial solutions of the corresponding
adjoint problem.
The adjoint of an operator (L] with respect to a given inner product is
the operator [L*] that
([LICud,Cv]) = (Cul,CL*10v]) (3.64)
for all [u],[v] e=({L]). Equation (3.64) applied to the inner product given

in equation (3.57) becomes

(Lt viey = [ulT(LAIv]) dy

Let
(vl = |7, vl = |y, !
u2 v2 i
u3 v3 4
u4 v4 \
Ug v5 ;
be arbitrary elements of‘Ql Then using the definition of [L] from equation !

(3.55) the left hand side of (3.65) becomes

Lo m e a

Sk A & & 0 oNENS . -
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f_m ([L][U]) [V]dy = f_m{[lRou'I + V U2
au, )
+ RO F + 'I(kUO - m)u3] V-l + [1(kU0 - w) ROU.I
3Ug I .
+ R0 3y u, + ikud] Vo + [1(kUO - w) Uy
du, - 354 _
+F)]V3+[W—u2+1(kuo-w) ug 1V,
2 Rya” ,
+ [-a ug + u, - T Ug ] v5} dy (3.66)
Integrating by parts and rearranging terms in equation (3.66) yields
LD [y = 57, (DiRge,
. _ aRO .
+ 1(ka - w)Rovzju] + [Ey_ v,
3 - g _ -
"oy (Rov]) *+ Ry sz + 1(kU0 - w) V3
S, . . _ 2.
. aV3 _
+ [lkv2 - V+ Ve ] Uy
(3.67)
""""""""" ORI P
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- The right hand side of equation (3.67) can be written in the same form as

the right hand side of equation (3.65) with

. - r . it ) -
. [L*] = -iR, i(ku, )R 0 0 0
- 3R 3(R ) U 3S
- 0 ) (kU - _o
i 5y_ 3y RO 3y 1(ka w)Ro 3y 0
i (k 2
-1(|<U0 - w) 0 0 0 -a
T )
0 -ik - E? 0 1
( _ Roa2
0 0 0 -i(kUp-w) - ——
- p
L Let [@;] be the solution to
- ~
: [L*1le5] = O (3.69)

subject to the requirement that all components of [;;] are bounded as y t o,
The Fredholm Alternative states that for a solution of equation (3.58) to

exist [g] must be orthogonal to [;;]. That is

r ([g).[65]) = 0
: or ) (3.70)
7 [g1 [e*1dy = 0
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i Equation (3.70) becomes, upon substitution of all appropriate quantities,
5 - - 9R ac, . 3¢,
P: A(X]) = f_w {[-30 E - UO 5;']— - 1kC0U.| - V-I :y—
3U 3a ab 3V {
e 0 _p 0 _ sipa g 0 _ 2 1qox '
- % axy Ry 3%, TkRyay - Ry 3y 0 3y ] 4 é
n 4
. 33, .
+ [mR]ao - ROUO a_x]' - R]U01ka0 :
3U aU 22 -
<%0 e M v ey o |
" Ro%o 3x, ™ 0% 3x, " "o’ ~ Ro¥i 5y ]
. aU .ol . U, ad. . 1
1. _0_ _0_7017¢p* 3
- RObO Ay RlbO ay V1 3% X, ] by :
- %y . o
+ [iwR,by - RyU, ol RyU;ikb, - R,Ugikby
ab aV of
0 _pp 1 qx v —9 _ulikf
“RViay “RePozy 16t LY v, 1k
3S 5f 35 R, f
~ 33 Mo~ 1o Ko
RETRRERE 14 o fotdy
+ 9B e - Raa,+ (-RUa
dx] - 070 070’70 0700
: AV Rub Y usa i (3.71)
do) b0 ROUObOCO UOdeO ldy =0

=4
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Equation (3.71) can be written as

uy () %é; - Tuy(x)) A (x;) = 0 (3.72)

where ](x]) and 2(x]) can be determined by comparing equation (3.72) to

equation (3.71). The solution of equation (3.72) is

. Uz(x])
s u ix]’ dx] +1'v(x.|)

A(x]) = A0 e Aoe (3.73)

where AO is an arbitrary constant of integration. The solution for the zeroth

order perturbation quantities can be written as

) i (k - wt)

u(x;»y) = Aoel( xq) ol ) - "0(x;,y) (3.74)
+

) i (K(x,) + - wt)b

V(x;,y) = A0e1( Oq) () - ut) 0(xyy) (3.75)

. i(k{xy)+v(xy) - wt)c
p(x;5y) = Ase ] ] 0(xy2¥) (3.76)
N
5 + ... 4
- {
(- :j
S ) i(k(x;) +v(x,) - wt)d ‘i
b p(xysy) = A.e 1 1 0(x;,) (3.77) !
. ‘ 0 )
» Y.L 3
o ]
b L}
o . T(k(xy) +v(xy) - wt)f N
: s(xpy) = Age V! 0(xpy) . (3.78) 3
% +
.
-
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i The sum i
i x(x]) = k(x1) + v (x]) (3.79) fj
E - represents a corrected value for the wave number to include the effects y

of the shear layer thickness increasing downstream. The value of A(L)
is dependent upon the frequency at which the shear layer is excieted.
For a giveh w the procedure described in the next section can be used to
calculate A(L). A numerically defined function Q (w) = A(L) for a given
w is defined. This function can then be used in equation (2.8) as a

correction to the k(w) used by Tam and Block.
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IV. NUMERICAL SOLUTION OF SHEAR LAYER EQUATION

The use of the theory described in Section III depends upon accurate
numerical evaluation of (a) the eigenvalue k(xl); (b) the eigenfunction
[&0(x1)]; (c) the adjoint eigenfunction [¢3(x1)]; and, (d) the wave function
correction “(Xl)' Each of these quantities must be evaluated at each spatial
location along the length of the cavity. This section details the numerical

solution for each of these quantities.

First the determination of the eigenvalue k(xl) and the eigenfunction
[$O(x1,y)] is considered. These quantities are obtained by solving equation b
(3.54) with appropriate boundary conditions at each spatial location such that -
a non-trivial solution is obtained. A1l mean flow quantities are assumed to q
be known before the solution begins. The system, when written in matrix form,

leads to a very complicated numerical solution. It is convenient to manipu-

. '.."L IR |

late the component equations of equation (3.54) such that a single equation

is obtained in terms of one variable. The component equations of equation

(3.54) are
. . . 3R . ab,
i(kUg-w)c, + by y iRoka, + R - 0 (4.1)
. . . 3, .
1(kU0-m)Roa0 + Rob TR ikd =0 (4.2)
_ . a&o
1(kU0-m)R0b0 ke 0 (4.3)
. e ~ 3 SO
(kU-w)fy + by === 0 (4.4)
¢ f
i = 2,0, 0
A dg = Rya; ( R, ¥ Cp ) (4.5)

ad
A
I T T (4.6)

DAY ..1.$
L PR

'. _ m
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= !
Ii Equation (4.6) is substituted into equation (4.2) and 50 is obtained as ]
1 : [
0 R, (kU -w) 0" K-w 3y 3y - ‘ ]
Equation (4.6) is substituted into equation (4.4) to yield -
) 3S  ad
1 0 0 1
f =- (4.8)
0 _y2 23y 3y
RO(kUO w)
Equation (4.8) is substituted into equation (4.5) to yield
-~ do 1 3 S0 ad0 ;
T2t 2 ) 3 (4.9) 3
a Cp(kU -w) Y y
° '
Equations (4.6), (4.7), and (4.9) are substituted into equation (4.1) to )
yield the following differential equation for ao f
25 - 2 F-
¥4 - kﬁk zUo + ﬁl ;EQ ) ;ﬂﬂ + (k2 -(EEQ;SE—)& =0 (4.10) !
av oW 0o Y y a 0 ]
A central finite difference method is used to solve equation (4.10) :
for the eigenvalue k(xl) and the function ao(xl,y) at discrete values of x,.
The range in the y direction is discretized from -H<y<H where H is sufficiently )
large. Convergence tests are made to check the value of H. Central finite i
difference formulas are used to approximate the derivatives and a system of E
equations is derived for the values of ao at the discrete points. The :
system is tridiagonal thus the Thomas algorithm [Carnahan, Luthur, and Wilkes X
(19)] is used. Let Ay be the distance between points in the y direction and ﬁ
define. ;
- - . j
doz = do (x‘, - H + 2ay) (4.11) ‘
A recurrence relation of the form
J
(4.12) )




is assumed where additional recurrence relations are derived, in terms of
differential equation coefficients, for G2 and Hz' The evaluation of the
G's and H's occurs in a forward manner, ¢ = 0, ..., N. Then the al's are

evaluated recursively in a backward fashion ¢ = N, ..., 0 using a = 0.

N+1
However the G's and H's are in terms of the unknown eigenvalue k, for which
an initial guess must be made. The correct solution is the value of k for
which the differential equation and its boundary conditions has a non-trivial
solution. Values of G0 and H0 are arbitrarily selected and the process
begins. The value of 800 is checked against zero. If it is not close enough
to zero then the guess for k must be changed. A Newton-Raphson iteration is
used to iterate the values of k.

The remaining perturbation amplitudes are determined using equations
(4.6) - (4.9) and numerical differentiation.

The next step is to obtain the solution of the adjoint problem given the

eigenvalue k. The equations defining the components of the adjoint vector are

obtained from equation (3.68) as

; -iRga* - i(kU -w)R b* = 0 (4.13)

. Ry 3, . 3,

o * = * —— * - 3 - * —_— d* =

E a* 2y (Roa ) + R, 5y b 1(kUO w)c* + 3y d 0 (4.14)

- ~i(kU-u)a* - a2f* = 0 (4.15) ;
4 4
% ~ikb* - g_;_t +fx =0 (4.16) ]
P ” .
3 - Roa =
3 i (KU ~w)d* - f* =0 (4.17)
¥ 0 Cp "
g 3
e Equation (4.17) is used to solve for f* in terms of d* as . R
F_ . o4
: 10y (kU -u) *
h Fx = . —— d* (4.18) g
[ 4
3 4
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Equations (4.15) and (4.18) are used to obtain

ax =

d* (4.19)

c3¥;1

Equations (4.13) and (4.19) are used to obtain

b = —Cp g (4.20)
Ro(ka-w)
Equations (4.16), (4.18), and (4.20) are used to obtain

aC* iCp Iy kU -
3y R

r
[}
>
'
(=}
—
[«8
»*

(4.21)

Equation (4.14) is divided by (EUo-w) and differentiated with respect to y.
Equations (4.19) - (4.21) are substituted into the resulting equation to

yield the following differential equation for d*

- 2 - 2
o2t (k) Mo gaar 2 kMo,
ay2  (kug-w) ¥ T oy? (kU -w)® Y
P (kU-w)?
+ R_ - _.____R 2 ] d* = 0 (4.22)
0 a
0

Equation (4.22) can be solved by a central finite difference technique once
k is known. Then equations (4.18) - (4.20) are used to solve for a*, b*, and
f*. Equation (4.21) along with a numerical integration scheme is used to
solve for c*.

The process outlined above is continued at discrete intervals over the
entire length of the cavity.

Numerical integrations in the y direction at each Xy lTocation are per-
formed to calculate “1(x1) and “2(x1) as defined from equation (3.71). A

numerical integration in the Xy direction is then performed to calculate v(xl).
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V. DISCUSSION
A theory has been presented for the analysis of a shear layer over an
open cavity. The shear layer is of a finite thickness which increases

downstream. The analysis is based upon non-parallel stability theory using

the method of multiple scales. The theory is used to predict a wave number
for a given excitation frequency. The wave number-frequency relationship is :;
then used to predict the discrete shear layer excitation frequencies using ‘
equations developed by Tam and Block (1978). ’

A numerical scheme for implementing the theory has also been presented. |

Numerical calculations have not been completed, but are under consideration,

and will be available in papers published from this work. The wave numbers é

obtained will be corrections to the wave numbers obtained by Tam and Block and

will be compared with their results. .
ij'

The analysis presented is not intended as an ultimate analysis of the
shear layer over an open cavity. The author recognizes that several problems

exist with the analysis and many questions remain. The ultimate goal is to

attain a complete mathematical analysis of the shear layer over an open
cavity.

One question concerning the analysis presented regards the mean flow.

Tam and Block (1978) note that the mean flow in the shear layer has never been
measured such that the results are useful for calculation purposes. Indeed
they use a standard hyperbolic tangent velocity profile in the shear layer.

é} The mean flow assumed in the described research is a two dimensional

‘ non-parallel mean flow. The non-parallelism is due to the fact that the shear
g layer grows downstream due to entrainment. However, the rate‘of growth of the
g shear layer thickness is related to the amplitude of the cavity oscillation

2 and is not predicted by the analysis. It is believed that a thorough analysis
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of the problem will yield this information. Preliminary ideas are presented
below.

The stability characteristics of the shear layer are only required over
a finite distance (0 < x <L, 0 < x]< £ L), Thus the mean flow variables can

be expanded in a Taylor Series in x] about x] = 0. To this end

2,
Ug(xy0¥) = Ug(0,y) + x, 3;T(O.y) e (5.1)

or
Uo(x] sy) = Al (y) + X]Az(y) (5.2)

The nonlinear terms have been truncated in equation (5.2). The other mean

flow variables can be written as

Ry (x15y) = By(y) + x;B,(y) (5.3)
So{xysy) = Coly) + x,Cr(y) (5.4)
Vi (xy5y) = Dy(y) + x;D,(y) (5.5)
Uy (x1.y) = Ejy) + x1E5(y) (5.6) é
Ry (x75¥) = Fy(y) + x/F,(y) (5.7)
S, (x12%) = 6 (y) + x,G,(y) (5.8) :
Equations (5.2) - (5.8) are substituted into equations (3.27) - (3.30) and the ?
resulting equations substituted into equations (3.23) - (3.26). ?
A simpler version of the mean flow analysis is to assume a hyperbolic 3
[

tangent velocity profile whose thickness varies with x]. To this end
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U(x],y) = Umtanh(l + ?%7?% (5.9)
where
G(X]) = ‘30 + X]e] (5.\0)

The result of the method described is the shear layer stability
characteristics for a given frequency (i.e., a frequency-wavenumber
relationship. This relationship is then used to predict the discrete shear
layer frequencies. The author feels that the method and technique are good
but several modifications should be considered before the method is applied
for design analysis. The eigenvalue prediction equation (2.8) derived by
Tam and Block is based upon a vortex sheet between parallel streams, This
prediction equation should be modified to include shear layer thickness
effects, and the effect of shear layer growth. This will involve a more
detailed mathematical analysis of both the matching between the shear layer
and the external flow and the fluid behavior at the trailing edge of the
cavity. The entire fluid mechanics problem must be considered with the flow
field divided into three regions. The non-parallelism of the shear layer flow
will have some effects on the external flows which are not included in the
eigenvalue prediciton equation. Additionally, this equation is based upon
the deflection of the shear layer at the trailing edge of the cavity. This
concept must be extended to handle shear layer thickness effects.

The boundary condition at the trailing edge must be considered. The
shear layer, while being excited by a wave of frequency - may either reattach
at some point part the trailing edge of the cavity or deflect into the cavity
at the trailing edge. When the latter occurs due to entrainment waves are

reflected back into the cavity and excite the shear layer. Thus a feedback
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process is born. The analysis of this process is heavily dependent upon the
boundary condition at the trailing edge. An analysis of the shear layer with

this effect should be performed. Perhaps it will be discovered that a

AP IUARRY, &

multiple deck like analysis is necessary where higher decks are needed due to

the trailing edge behavior. Thus a complete asymptotic analysis of the shear

layer should be performed.

t 4 2_a 1 LA A v
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Some investigators have attempted to solve for the flow variables around
an open cavity using finite element techniques. It has been suggested [Wolfe
(1982)] that a mathematical analysis of the shear layer could be used in a
finite element formulation of the problem to predict the pressure inside the
cavity. This analysis is the first step toward such a goal. A further step
in this process is to conduct an analysis of the shear layer with this goal in

mind. That is, the flow variables outside the shear layer will be solved for

by a finite element technique while the variables in the shear layer will be
provided by an analytical formulation. However, these flow regions are

intimately connected due to the trailing edge interaction process. It is

possible to use the current shear layer formulation at a discrete frequency.
However, the amplitude of the shear layer variables is not currently known and
must be solved for as part of the finite element routine.

In summary, the research presented is just a first step toward
understanding the shear layer over an open cavity. Much remains to be done,
but it is believed that future work is manageable and will lead to great

benefits to reducing sound pressure levels in cavities.
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