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-; NOMENCLATURE

c = measure of non-parallelism

Independent Coordinates

t = time

x = horizontal spatial coordinate

y = vertical spatial coordinate

x I = Ex

Mean Flow Variables

U(x1 , y) = Uo(x I , y) + CUl(xi, y) = component of velocity

V(xl, y) = cV1 (x1 , y) = y component of velocity

P(xl, y) = Po(xl) + c P,(xl, y) = pressure

R(xI , y) = Ro(x l , y) + c Rl(x I , y) = density

a(x 1, y) = speed of sound

Cp = specific heat

Perturbation Variables

u(x I , y, t) =(a 0 (x I , y) + ca1 (xI , y))e i e = x component of velocity

v(x I , y, t) (b0 (xI , y) + cb1 (x I , y))eie = y component of velocity

p(x I , y, t) =(c (XI , y) + Ec (xI, y))e
i0  density

p(x , y, t) (do(x I , y) + cd I (xl, y))ev = pressure

4 s(x i , y, t) (fo(xl, y) + cf, (xl, y))e io = entropy
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Perturbation Variables (Cont'd)

o = k(xI) -Wt

: frequency

k(x,) = wave function

Others

[£L] = matrix operator

= adjoint matrix operator

H( ) = Hankel function

, intermediate functions of k

= vector of perturbation components

= shear layer deflection

U(X1), v(xi)= intermediate functions of x

( ) *= adjoint function

( ) = perturbation quantity

C ) = perturbation amplitude

( )T : matrix transpose

( )+ = variable for flow outside cavity

C )_ = variable for flow inside cavity

L = cavity length

D = cavity depth
M - free stream Mach number

I
. . . - . . ° .. ... 

. ***. .**
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I. INTRODUCTION

The problem of a compressible flow over an open cavity is one of great

practical importance. Examples of such flows are those over aircraft wheel

wells and weapons bays. Bartel and McAvoy (1981) experimentally measured

sound pressure levels as high as 170 dB in a weapons bay environment. Levels

this high can lead to structural failure and will cause extreme personal

discomfort. Thus. methods of reducing sound pressure levels demand immediate

attention. The first step in this reduction is to obtain a useful analytical

model of the compressible flhw over an open cavity.

Open cavity flows have been investigated analytically and experimentally.

However, many analytical models have severe limitations on their range of

application or do not match experimental data. Some of the best analytical

models are, in fact, semi-empirical.

Karamcheti (1955) pe.formed one of the first experimental investigations

on a simulated weapons bay. He obtained discrete frequency radiation for both

subsonic and supersonic mean flows. This result has been verified by other

investigators including Gibson (1958), Spee (1966), East (1966), and Smith

and Shaw (1974), among others.

The first significant analtyical study of open cavity flows was that of

Plumblee,Gibson, and Lassiter (1962). They identified acoustic resonances

of the cavity and speculated that the observed discrete frequencies are

identical to the resonant cavity frequencies. They also suggested that the

driving mechanism of cavity oscillations is the turbulent shear layer spanning --

the cavity. Their result is in conflict with the experimental observations of

Karamcheti (1955) and Rossiter (1964) whose experiments indicate that larger

pressure oscillations are obtained for laminar boundary layers.

Based upon his own experimental observations, Rossiter (1964) proposed
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a vortex shedding model to explain the generation of cavity tones. He was

then able to derive a semi-empirical formula for the tone frequencies. In

addition to Rossiter, Smith and Shaw (1974) and Bartel and McAvoy (1981)

have developed semi-empirical models of open cavity flows based upon their

experimental observations. These models do reflect the data obtained by the

respective investigators, but are limited in application. For example, the

validity of Rossiter's model appears to be limited to the Mach number range

0.4 < M < 1.2.

Analytical efforts at modelling open cavity flows have increased within

the past 15 years. Covert (1970) classified cavities as shallow or deep

depending upon their length to depth ratio. He argued that vorticity tends

to excite the modes in the direction of the greatest physical dimension.

Bilanin and Covert (1973) developed an analytical model of a shallow

cavity using an acoustic monopole to model the trailing edge behavior. Their

model is based upon a feedback mechanism first proposed by Rossiter (1964)

where the pressure field of the monopole drives the shear layer. The cavity

floor influences the shear layer by changing the amplification rate of the shear

layer motion and thus, changing the excitation frequency. The model predicts

excitation frequencies for M > I. Block (1976) extended the work of Bilanin

and Covert to include effects of length to depth ratio.

The appropriate trailing edge behavior has created some controversy.

Heller and Bliss (1975) analyzed the wave motion of a thin shear layer over

a boundary. They superimposed solutions for waves moving between a shear

layer and solid boundary to approximate an oscillating cavity. They modelled

the trailing edge behavior with a moving piston to simulate an pntrainment

process. Heller and Bliss argue that while the feedback mechanism model of

Bilanin and Covert will predict excitation frequencies it will not predict

-
: : . . . .. .. . . . . . . . * , ; * ; . . :* , , f :
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whether they will occur. They believe that an entrainment model is superior

as mass addition and subtraction must occur at the trailing edge as the shear

layer deflects. Results from their model compare favorably with results from

their water table tests, but they are unable to predict discrete frequencies.

Heller and Bliss also examined methods of oscillation suppression using vortex

spoilers.

Tam and Block (1978), in a study directed toward open wheel well noise,

analyzed the open cavity problem using a feedback model significantly differ-

ent from that of Bilanin and Covert. However, their model is consistent with

the water table observations of Heller and Bliss. The work of Tam and Block

is important because it was, until this study, the only analytical cavity

study to include shear layer thickness effects. They used a mean velocity

profile for the shear layer the same as that of a two-dimensional free turbu-

lent mixing layer near he trailing edge of a thin flat plate and assumed the

shear layer to be of constant momentum thickness. Their results compare well

with the experimental data of Rossiter. Tam and Block also show that shear

layer instabilities could be the origin of acoustic energy which produces

cavity resonances.

The above survey of literature led the author to believe that a unified

analytical theory of open cavity flows is lacking. Some theories apply only

over certain ranges of significant parameters while others ignore shear layer

thickness effects which have been found to be extremely important. In view of

the work of Tam and Block the author also decided that a more detailed

analysis of the shear layer including thickness effects is necessary. Indeed,

Bartel and McAvoy recommend a thorough mathematical description of the un-

steady pressure distribution in the shear layer. Thus, the author proposed

[Kelly (1982)] an investigation of open cavity flows including shear layer
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thickness effects. This report is to present the results of this investi-

gation.

The author decided that the work of Tam and Block was a significant con-

tribution to the analysis of the shear layer spanning an open cavity. Their

results are valid for a wide range of Mach numbers and length to depth ratios.

In addition, their work was the first to include shear layer thickness

effects. They analyzed a shear layer with a constant momentum thickness,

but noted tl- due to entrainment the thickness of the shear layer increases

in the downstream direction. They also used their shear layer instability

analysis to predict excitation frequencies from an equation derived assuming

*a thin vortex sheet. These equations are summarized in the next section.

From his prelimnary research the author realized that a mathematical

investigation of the shear layer including all desired effects would be very

involved and would exceed the scope of the project. Thus, it was decided to

focus on a specific aspect of the shear layer based upon Tam's analysis. The

author recognized that there are two major drawbacks to the work of Tam and

Block: (1) The shear layer thickness was assumed constant across the

length of the cavity and, (2) The eigenvalue relation they use should be

modified to include thickness effects. Actually, the modification of their

eigenvalue relation depends upon reanalyzing the flow above and below the

shear layer assuming a shear layer of finite thickness. Thus, it was decided

to modify the work of Tam and Block to handle a shear layer whose thickness

increases in the downstream direction.

Section II presents a statement of the problem under consideration as

well as an overview of the work of Tam and Block.

* Section III presents the mathematical analysis of a compressible inviscid

shear layer whose thickness increases in the downstream direction. The

• - - . .'.i --- -, . .- , • " ' " - " -" " " ". ' " " -
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analysis is based upon non-parallel stability theory using the method of

multiple scales.

Section IV presents a scheme for numerical implementation of the

analysis in Section 11I.

Section V discusses the method and presents recommendations for

further study.



II. Problem Formulation

The objective of the research is to provide a mathematical formulation

of the shear layer over an open cavity including thickness effects. A side

objective is to evaluate the feasibility of using a mathematical analysis of

the shear layer in a finite element formulation to analyze the flow in all

regions around the cavity.

A literature survey indicated that the only study including shear layer

thickness effects was made by Tam and Block (1978). They first analyzed a

thin shear layer and obtained a frequency-wave number relationship. This re-

lationship was used to predict, from a condition derived from a trailing edge

boundary condition, the discrete shear layer oscillation frequencies. They

then analyzed a shear layer of finite thickness in the same manner. Their

assumptions were:

1. The flow is inviscid.

2. No mean flow exists within the cavity.

3. The shear layer is of constant momentum thickness.

4. The mean flow in the shear layer is parallel.

5. A feedback mechanism occurs due to the deflection of the shear

layer into the cavity. Reflected waves excite the shear layer.

Tam and Block were able to predict, with favorable comparison to experimental

data, discrete oscillation frequencies. The author decided that a first step

toward a thorough mathematical analysis of the shear layer would be to improve

the analysis of Tam and Block by eliminating assumptions (3) and (4). Indeed

the shear layer thickness increases downstream due to entrainment. Thus a

shear layer whose thickness increases downstream was analyzed using the work

of Tam and Block as a guide. The essential features of their work is presented

below. The current research is described in Section Ill.
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The flow around the cavity is divided into three regions: (1) The flow

inside the cavity; (2) The flow outside the cavity; and, (3) The shear layer

between these two regions. The equations governing the flow inside and out-

side the cavities are

.2-(- +U- ) pU.v 2p+ 0 (2.1)

av - a 4 (22
a+

a* av ap

P -+ U (2.2)

- (2.5)

P +; A x- )e1t (2.6)

a t By

Where a + subscript refers to quantities outside the cavity and a subscript

refers to quantities inside the cavity.

The boundary conditions at y on0 are

" ( + u. ) n = v+ (2.5)

n=v + A 6 (x- )e - iwt  (2.6)
at

p+ =p_ + B 6 (x-E)e - iwt  (2.7)

Where n is the displacement of the shear layer, A and B are constants and

is the point where the shear layer is excited. Tam and Block use a periodic

line source at the trailing edge to simulate the trailing edge interaction

process. They calculated the pressure field inside and outside of the cavity

due to the line source and the resulting loading on the shear layer due to

the differences in pressure and velocity above and below the shear layer. They

are then able to obtain a relationship between the shear layer deflection at

the trailing edge and the source strength. The pressure attains a maximum

.,.I . . . . ". ••. , , . .: . - , '. .,: . , , ;,,:,. . ,*- =,



value when the shear layer deflection is most negative. Using this they

derive a condition which defines the shear layer frequencies. That is

Phase p 2wn n 1,2,3,...

where

1 i kL L -ik d(2.8e 2f f() do (2.8)

k

where

f(&) H() [ (L-) ] - Ho) [
0 a- 0 a+ 1-M2

i WM ( L - &)

0 a

+ H (i)- 2 4D__ 2a ((L- ) + 402)1/2 ] aB ((L-&)2+4D2)1/ 2

H(1) [ a-" ((L-&) 2 + 4D2)1/2 ]I a-

8+ =[k2 -1 (WU k)2]l/2
2

a+

2[k 21/2= [k_ w /a]

2 k2

A p a+ (a- + 8+ )(k - 8+8 )
+ +

The frequency-wave number analysis is determined from hydrodynamic stability

theory. Equation (2.8) is then used to determine the discrete frequencies.

Simply stated, the problem at hand is to develop a technique to predict

the discrete shear layer oscillation frequencies for a shear layer whose

thickness varies with x. The analysis is based upon hydrodynamic. stability

theory. A weakly non-parallel mean flow is perturbed. The method of multiple

scales is used to predict an eigenvalue problem which governs the wave number
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frequency relationship. The wave number is a function of x, k(x). The

eigenvalue problem is solved numerically by finite-difference methods. Thus

a numerical relationship between k(L) and w is determined. Equation (2.8)

is used to determine the discrete shear layer oscillation frequencies. The

method provides a correction to the technique of Tam and Block to account for

varying shear layer thickness effects. A discussion follows the analysis to

indicate modifications that should be made to the procedure.

The assumptions made in the analysis are:

(1) The flow is inviscid.

(2) The flow is two-dimensional.

(3) No mean flow exists in the cavity.

(4) Equation (2.8) is valid for this problem.

(5) The specific heat is constant across the thickness of the shear

layer.

II

'"-'."•4 .' " r . -," ", , , '" " -" ,' . " "-.. .'' .. " . -" " ". .'*," .. "" - '' !



III. Shear Layer Modelling 13

The shear layer spanning the cavity is modelled by a two dimensional

inviscid compressible layer which grows in the downstream direction. The

stability characteristics of the shear layer are considered when it is ex-

cited by a reflected wave of frequency w.

The equations governing a two dimensional compressible inviscid flow

are:

Mass

ap + 0 2u p v+ V - 0 (3.1)
at ax ax ay ay

x-Momentum

4 p ( 2  u au a~_=0(3.2)
P ( U+ ULU-+ v.! ) +2k O(32

at axv~- +22 0

y-Momen tum

av av a ), + = 0 (3.3)
at ax ay9 ay

Entropy Production

as + u as +Vas (34u - +v = 0 (3.4)
at ax ay

*Thermodynamics Relation for an Ideal Gas

i dp = a2 dp + pa2  ds (3.5)c
p

The mean flow is assumed to be a steady two-dimensional flow.

Thus, the mean flow quantities (U, V, P, R, S) satisfy

R T + U T- + R - + V - 0 (3.6)

R aU +RV V+ aP 0 (3.7)
ax aV aP

aV R V -+ P 0 (3.8)
a x R ay ay

. "" '. ' - .. " -. " • S . •" . ,. . . ."- " " " . - . " " '.. S -, -. "" 5-" ."' -" ." ".5.*..'.*.'. 5.
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U - + V T- = 0(3.9)

dP a2 d R + Ra-d S (3.10)
Cp

The flow variables in the shear layer are assumed to be the mean

flow component plus a perturbation quantity. Thus

u(x, y, t) = U(x, y) + u(x, y, t) (3.11)

v(x, y, t) = V(x, y) + v(x, y, t) (3.12)

p(x, y, t) = R(x, y) + p(x, y, t) (3.13)

p(x, y, t) : P(x, y) + (x, y, t) (3.14)

s(x, y, t) = S(x, y) + s(x, y, t) (3.15)

Where a quantity with a tilde is a perturbation quantity and is assumed

to be small in comparison with the mean flow quantities. Equations (3.11) -

(3.15) are substituted into equations (3.1 )- (3.5). Equations (3.6) -

(3.10) are used to subtract out the basic state. The resulting equations

are linearized by neglecting all terms which are nonlinear in the pertur-

bation quantities. The resulting equations are:

Mass

Bp + R au + L-a + U ap + u aR + R av aV
at ax ax ax ax P

a R 0 LR (3.16)
ay a Y

x-Momentum

R l- + R U - + R 3U + p U!- + R V !- + R v- Uat ax ax p ax ay ay

+ p V aU + .= 0 (3.17)ay- ax
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y- Momentum

Ra2v + v R - aV + P-U2V + R V 2- RV aV

at ax ax ax ay ay

+ -v YL + aP o (3.18)" ay ay

Entropy Generation

as+ + V + a s 0 (3.19)
-t ax uax y aY

Thermodynamics Relation

p 2

p =R a (P. + S(3.20)
R Cp

e.

4o
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Equations (3.16) (3.20) form a set of five equations for the five

unknown perturbation quantities. Note that the mean flow is non-parallel.

Thus the coefficients in the differential equations (3.16) - (3.20) are

functions of both spatial variables,x and y. Standard parallel stability

theory would suggest assuming

u = u(y)e i(kx - wt) (3.21)

where k is the wave number, w is the excitation frequency and u(y) is the

amplitude function. However, an assumption of the form (3.21) is not appro-

priate in this problem as the coefficients are dependent on x.

Instead, an approximation to the solution of (3.16) - (3.20) is obtained

by following the work of Saric and Nayfeh 0975). The non-parallel effects are

assumed to be weak and can be represented by a small parameter c. That is,

whenever x appears in the mean flow quantities it appears in combination with

c as Ex. In addition the non-parallel component of velocity V must be of

order c while all other mean flow quantities are of order 1. Thus it is

consistent to introduce a slow scale defined by

x = Ex (3.22)1

Then all mean flow quantities are written as functions of x and y. Substitu-
1

tion of (3.22) into (3.6) - (3.9) yields

c(R - + U !-) + R YI + V -0 (3.23)

(U A -+ L--) + RV - = 0 (3.24)
1 1
ax a a

cRU 2V + RV -V + P = 0 (3.25)
ax ay ay

aS

CU - + V- 0 (3.26)
a ! a
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From equations (3.23) (3.26) it is indeed apparant that

U = 0(l), R = 0(1), V = 0(E), O , S = 0

Thus it is also convenient to expand the mean flow quantities in power

series in E. To this end

U(x ,y) = U (x ,y) + EU (xly) + ... (3.27)
1 0 11

V(x ,y) = ev (x ,y) + ... (3.28)
1 11i

R(x ,y) = R (x ,y) + cR (x ,y) +... (3.29)
1 0 1 0 1

P(x ,y) = P (x) + EP (x ,y) + ... (3.30)
1 0 1 1 1

S(x ,y) = S (x ,y) + ES (x ,y) + .. (3.31)
1 0 1 1 1

The method of multiple scales [Nayfeh (1982)] is used to modify the assumed

forms of the perturbation quantities from those of standard stability theory.

To this end let

u(x ,y,t) = a(x ,y) ei0(x1't) (3.32)
1 1

v(x,y,t) = b(x ,y) elO(x 1
't) (3.33)

1 1

(x ,y,t) = c(x ,y) eie(xilt) (3.34)
1 1

p(x ,y,t) = d(x ,y) e i (xit) (3.35)1 1

s(x ,y,t) = f(x ,y) elO (xl t) (3.36)

where

at

ae-

x -k(x)

8X I.
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or

O : k(x ) - wt (3.37)
1

It is noted that both the amplitude and the wave number are assumed to be

functions of the slow scale x . It is also noted that the chain rule can1

be used to express derivatives with respect to x as

dx

ax ax dx ae ax
1

or

a a + k(x ) a (3.38)
ax ax 1 e

For example

au ao ie i0=e a1- = E - [a(x ,y)e + k(x ) - [a(x y)e =  + ika]eax ax ax 11 1

and

aU aU
ax ax

It is also convenient to expand the amplitude functions in power series of

E. Thus

a(x ,y) a ) + ca (x ,y) + ... (3.39)
1 01 11

b(x ,y) = b (x ,y) + cb (x ,y) + ... (3.40)
1 0 11

c(x ,y) c (x ,y) + cc (x ,y) + ... (3.41)
1 0 11

d(x ,y) = d (x ,y) + cd (x ,y) + ... (3.42)1 0 1, 11

f(x ,y) =f (x ,y) + Ef (x ,y) + ... (3.43)

p. 1 01-11



19

Equations (3.39) - (3.43) are substituted into equations (3.31) - (3.36).

The resulting equations are substituted into equations (3.16) - (3.20) making

use of equation (3.28). Coefficients of like powers of e are collected in

each equation and set equal to zero independently. The results are summarized

below

Order E°:

Mass
aRo  abo

i(kU -w)c + b - + iR ka + R - 0 (3.44)
0 0 0 ay 0 0 0 ay

x-Momentum au 0
i(kU -w)R a + R b + ikd = 0 (3.45)

0 0 0 0 0 a-Y-

y-Momentum
ad

i(kU -w)R b -+ -- = 0 (3.46)o o o ay

Entropy

aS
i(kU -w)f + b y 0 (3.47)

0 0 0 y

Thermodynamic Relation
co fo

d R a 2 
(-- 

+ Cp) (3.48)

0 p

Order cl:

Mass
aR ab1

i(kU -w)c + b 0 ikR a + R
0 1 1 ay 0 1 0 ay

3Ro  ac ac
- -a U - ikc U - V (3.49)

0 ax1  o ax, 0 1 1 ay

aUO  R aao  R ikao R ab o  3VI
- o  o a- - -c

0 ax 0 ax1  1 0 1 ay 0 ay I

I Ij
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x.-Momentum
aUo

i(kU -w)R a + R b + Ikd (3.50)
0 0 1 0 1 ay 1

aao

iwR a - R U - - R U ika - R a
1 0 0 0 axl 1 0 0 0 0

aU aUo  aao
- c U R U ika - R v

ax 0 0 ax1  0 0 0 0 1 ay

aU1  aU aU0  ad0

-R b - R b --- c V x o
0 0 ay 1 0 ay 0 1 ay ax

1

y-Momentum
adI  abo

i(kU -w)R b + i- iR b - R U b0  (3.51)
0 0 1 ay 1 0 0 0 ax1

abo  aV1

-R U ikb - R U ikb -R V -- R b

01 0 1 0 0 0 1 ay 0 0 ay

Entropy

as afo
i(kU -w)f + b - 1 = - U - U ikf (3.52)

0 1 1 ay 0 ax1  1 0

aS af aS00-a - V -n-b -

0 ax 1 ay 0 ay
1

Thermodynamic relation

R f Rlf
d =a 2(c + 01 + 1- ) (3.53)

1 1 cp cp

I.

...:.: ._..: .. '- -,.. ...... .. .. .. . .. . .. . .. .. .. . ., . ... .. a.... -,. ......-
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Equations (3.44)-(3.48) represent a set of equations to solve for the

zeroth order perturbation amplitudes a0,b0,c0,d0, and fo. The boundary condi-

* tions in the y direction are simply that the flow quantities must be bounded

* as y -+ .The equations can be written in the following form

[L] [ 0] [ 0] (3.54)

where

[[0 1 a0
Co

and EL] is a matrix of linear operators given by

[L=i R0  R i(kU0  0 0

i(kU0 -WI)R0  R0  0 i k 00 0ay

0 i(ktJ0-w) 0 a 0

Raa
as 

0

o 0 -a2  p

.~~~~~~~~~~ 
p,... 

. ,-...*- *
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One notes that the operations involved in [Lj are simply multiplications

by known functions and differentiations with respect to y. Thus it is

possible to consider equation (3.54) at a given spanwise location independent

of every other spanwise location. This is a result of the weakly non-parallel

approximation. Arbitrary functions of xI will be involved in the solution of

equation (3.54). Indeed it is convenient to write

[ o] = A(xl) [0o(xly)] (3.55)

where A(x1 ) is at this level, an arbitrary function of x. However, since

differentiations in [LI are with respect to y only

[L][ 0] = [L]{A[o]} =A[L][ o]

Thus equation (3.54) yields

ILI [p0 (x y)] = 0 (3.56)

Equation (3.56) is a homogeneous system of equations to solve for the

components of [ 0 (X.y)]. The matrix [L] is a matrix of linear operators that

acts on the components of a five dimensional vector whose components are

!. functions of y and transforms it into a new five dimensional vector. Thus the

vector spaceV is defined as all five dimensional vectors whose components are

complex functions of a real variable y whose range is from --- to + . An

inner product can be defined on this vector space according to

([u], Iv)) = fW[u] [v]dy (3.57)

"--"
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for all [u], [v] ' The bar in equation (3.57) denotes a complex conjugate.

For a given excitation frequency w it is desired to find the amplitudes

of each variable as well as the spatial wave function k(x ). Equation (3.5)1

is a homogeneous system to solve for these amplitudes at each spatial

location with the local value of k(xl) as a parameter. However this system

will have a non-trivial solution only for certain values of k(x ). The values

of k(xI) for which this non-trivial solution occurs can be determined

numerically.

Equations (3.49)-(3.55) represent a set of equations to solve for the

first order perturbation amplitudes al, bI , cl, dl, el, and fl. These

equations can be written in the form

[L][,(xl,y)] : [g(xl,y)] (3.58)

where

(X , y)] = a1

bb1

c

d
1

and

[g(x , Y)] - g (X ,y)

g (x ,Y)

2 1g (x ,Y)

3 1

g (x ,Y)5 1
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where

IROc aco
ax~ 1 0R a01

ac a
g2x1 y =-Ra 0  c R0 0 -RU iR1 - 0 x1  1 0

-R u10  au1 3.9
1Ra D--- -c0  -- R

92(xly) -iw a 0 R 0u 0 ax1  0 Uoika 0
au

0  au0010ax 0 a oa1y 0 0 V

ad0  (3.60)
ax1

g(x1 ,y) =iwR~bo R0 1 _--- _ R Uw 0k

Db0  av1
-R U ikb0  R0 v - 0 - R b 1~- (3.61)

af0  as
g4(1,) -U~-~-- U ikf0 -a 0
9(' y U ax 1 1 a

4-V -0 - b 1 (3.62)

laDy 0ayK9 5(x19y) R1 f (3.63)
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The operator IL] in equation (3.58) is the same operator that appears in

equation (3.54). Equation (3.58) is a non-homogeneous system, whereas

equation (3.54) is a homogeneous system. Furthermore non-trivial solutions of

equation (3.54) exist. Thus the Fredholm Alternative implies that a solution

to equation (3.58) exists if and only if the non-homogeneous terms satisfy a

solvability condition. In particular one can show that the non-homogeneous

terms must be orthogonal to all non-trivial solutions of the corresponding

adjoint problem.

The adjoint of an operator [L] with respect to a given inner product is

the operator [L*] that

([L][u],[v]) = (ul,[L*][v]) (3.64)

for all [u],Ev] E([L]). Equation (3.64) applied to the inner product given

in equation (3.57) becomes

' ([L][u][v]dy = [ [u]T([L*][v])dy

Let

Eu] u 1- [ vi -

u 2 V 2

u v2

4 v4

5 v5

4 be arbitrary elements of°d. Then using the definition of EL] from equation

(3.55) the left hand side of (3.65) becomes

U
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f-00 ([L][u])T [v]dy = -f{ [iR 0u1 + ay 2

Du2

y0 ay 0 i(kU0 - W)u3] V + [i(kU0 - w) R0u1
a U0

+ R0 a u2 + iku4] v2 + [i(kU0 - W) u2

au4  as
a v3 

+  u2 + i(kU0 - 5) Us ] v4

+ + -R 0a2

+ [-a u3 + u4 cp u5 ] v5} dy (3.66)

Integrating by parts and rearranging terms in equation (3.66) yields

T [R
fO_,([L][u]) [-]dy :_ {[iR 0v1

a
+ i(kUo - w)RoV2 lu + £ -V

@ BU0a (RoV) + RO - v + i(kU- w) v3
ay a'O1 0 ~I ? i 0  V3

aS 
- 2-

+ 0  4 ]u2 + [i(kUo -W) V1 -a v5  u3

+ 4ikv2 - u-y"+ v5 ] u4

- Ra2

R0a
+ [i(kU )5 ] u 5 } dy (3.67)

004-"
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The right hand side of equation (3.67) can be written in the same form as

the right hand side of equation (3.65) with

[L*] -iR0  -i(kU 0 -)R °  0 0 0

aR 0 a(Ro ) aUo  aSo
~ 0 R - -i(RUi OwR 0

ay ay o ay o o ay

-i(kU - W) 0 0 0 -a2

0 -iR -a 0 1

Ro2

0 0 0 -i(kUoW) - Ra

Let [ *] be the solution to
0

= 0 (3.69)

subject to the requirement that all components of are bounded as y +

*The Fredholm Alternative states that for a solution of equation (3.58) to

exist [g] must be orthogonal to [€*]. That is

=00

or (3.70)

[g] [ ]*dy = 0

e
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Equation (3.70) becomes, upon substitution of all appropriate quantities,

ac ac0R0  c0  0ko1 v
A(xl) ro. {[-a 0 - - - - ik " y

ax1  Ox, IU aV1

Ai0 aa aA 0  aV I
-c -x1 -RO kRlao - R1 @y Co y ] a1

O 1  0 01 x̂aa+ i~rla o - RoUo - - RUikao

0 U0  0 ik0

R Ra 0 R V
S0ax c0U0 a 00 0 0 ay

IKDa1  R 2 .-'U v U0  ad0  b
0 00y 1 RI0 ay 0 1 ax ax 1

abo
+ [iwRl o - R0U0 ax Rui 0 - R1U0 ik60

SrV ab R0b - c* + -U - Ulikf

0oo 00ay 0 0 ax 1  0

as aff
-a 2  v "0 aS s R]f -a0 xI  Vl ay 0  -]do p f0 }dy

dxq1  -0 U0c0 -R a0)a + (-RoU a

d0) b0 - RoU 0 b0c0 U0f0d0 ] dy 0 (3.71)

00

7. -

[r
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Equation (3.71) can be written as

dA (x 0 (3.72)PI (xI ) idx I (1 (xl

where l(xl) and 2 (x ) can be determined by comparing equation (3.72) to

equation (3.71). The solution of equation (3.72) is

+if 12( dx1  +iv(x

A(xl ) = A0 e A 0 e (3.73)

where A0 is an arbitrary constant of integration. The solution for the zeroth

order perturbation quantities can be written as

i(k(x I ) + v(xI ) - wt)a0O(xl,Y)
u(xl,y) = Aoe (3.74)

v~x~y)= A0 ei(k(xI ) + v(xI ) - wt)bO(xl1,Y) (.5
V(xl,y) = A0e (3.75)

;- i(k(Xl) + v(xI ) - wt)CO(x ,9y)P(xlY) A A0e (3.77)

+.

i(k(x I) + v(xI) -Wt)fO(x
s(xly) = A e 1,y) (3.78)

1' 0•
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The sum

(Xl)= k(x1) + v (x1 ) (3.79)

represents a corrected value for the wave number to include the effects

of the shear layer thickness increasing downstream. The value of X(L)

is dependent upon the frequency at which the shear layer is excieted.

- For a given w the procedure described in the next section can be used to

calculate X(L). A numerically defined function Q (w) = A(L) for a given

w is defined. This function can then be used in equation (2.8) as a

correction to the k(w) used by Tam and Block.

.L
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IV. NUMERICAL SOLUTION OF SHEAR LAYER EQUATION

The use of the theory described in Section III depends upon accurate

numerical evaluation of (a) the eigenvalue k(x ); (b) the eigenfunction

[0 (x )]; (c) the adjoint eigenfunction [¢o(xl)]; and, (d) the wave function

correction v(x1 ). Each of these quantities must be evaluated at each spatial

location along the length of the cavity. This section details the numerical

solution for each of these quantities.

First the determination of the eigenvalue k(x ) and the eigenfunction

[ 0 (xiy)] is considered. These quantities are obtained by solving equation

(3.54) with appropriate boundary conditions at each spatial location such that

a non-trivial solution is obtained. All mean flow quantities are assumed to

be known before the solution begins. The system, when written in matrix form,

leads to a very complicated numerical solution. It is convenient to manipu-

late the component equations of equation (3.54) such that a single equation

is obtained in terms of one variable. The component equations of equation

(3.54) are

DR0  ab
i(kUoW)co + bo + iRokao + R 0  0 (4.1)

aUo
i(kUo- )R0a0 + Rb0  -- + ikd = 0 (4.2)

ad
i(kU -W)dR b -. 0 (4.3)

o 0 0 ay

A a S
i(kU W)f + b 0(4.4)

o- 0 
.y 

O

do a co + c f (4.5)
o 0 1  R

p

Equation (4.3) is solved for 0 to yield

," ad
," 0 (4.6)

o (kUo-W) ay
........................................ ..........0.
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Equation (4.6) is substituted into equation (4.2) and ao is obtained as

a 1 . [ik + a 0  ad (4.7)
a(kUo-) [ 0  kUo- ay ay

Equation (4.6) is substituted into equation (4.4) to yield

aSo ad0  (4.8)
0 R0(kUo-)

2  ay ay

Equation (4.8) is substituted into equation (4.5) to yield

^ d a S0  ado
o + 1 (4.9)

0 a2  Cp(kU 0-W)2  Dy ay

Equations (4.6), (4.7), and (4.9) are substituted into equation (4.1) to

yield the following differential equation for

2 aL d(Uw 2
ad0  2k auk0 2  =0 OW

+ o.r) ado + (k )do 0 (4.10)
2 kUo-W ay R ay ay a 2a" 0 a

A central finite difference method is used to solve equation (4.10)

for the eigenvalue k(xI) and the function do(xl,y) at discrete values of x1 .

The range in the y direction is discretized from -Hfy<H where H is sufficiently

large. Convergence tests are made to check the value of H. Central finite

difference formulas are used to approximate the derivatives and a system of

equations is derived for the values of d0 at the discrete points. The

system is tridiagonal thus the Thomas algorithm (Carnahan, Luthur, and Wilkes

(19)] is used. Let Ay be the distance between points in the y direction and

define.

at Idot do (xI , - H + nAy) (4.11)

A recurrence relation of the form

do{ =G{ + H do (4.12)
' . t I -.

S. *~ -. ~*W
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is assumed where additional recurrence relations are derived, in terms of

differential equation coefficients, for G and H . The evaluation of the

G's and H's occurs in a forward manner, Z = 0, ..., N. Then the d's are
9..

evaluated recursively in a backward fashion z = N, ..., 0 using dN+l =  .

However the G's and H's are in terms of the unknown eigenvalue k, for which

an initial guess must be made. The correct solution is the value of k for

which the differential equation and its boundary conditions has a non-trivial

solution. Values of G and H are arbitrarily selected and the process
0 0

begins. The value of d is checked against zero. If it is not close enough

to zero then the guess for k must be changed. A Newton-Raphson iteration is

used to iterate the values of k.

The remaining perturbation amplitudes are determined using equations

(4.6) - (4.9) and numerical differentiation.

The next step is to obtain the solution of the adjoint problem given the

eigenvalue k. The equations defining the components of the adjoint vector are

obtained from equation (3.68) as

-iR a* - i(kU -w)R b* : 0 (4.13)
00 0

aR as
a* -i - - (Roa*) + R o  b* - i(kUo-w)c* + -y0 d* 0 (4.14)ay ay 0 0 ay 0 a.

-i(kU ow)a* - a2f* = 0 (4.15)
0

-ikb* - ac+ f* = 0 (4.16)

y

Ri(kU0 w)d* - C f* - 0 (4.17)-i(Uo-~d0 Cp

Equation (4.17) is used to solve for f* in terms of d* as

f* - ICp(kU0 'w) d* (4.18)

R a2

0
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Equations (4.15) and (4.18) are used to obtain

a* =R d* (4.19)
R0

Equations (4.13) and (4.19) are used to obtain

b* = C d* (4.20)L.'. Ro(kUoW)

Equations (4.16), (4.18), and (4.20) are used to obtain

ac* iCp k W 0-w
- 2 ] d* (4.21)

aY kU0-W a2

Equation (4.14) is divided by (kUo-w) and differentiated with respect to y.

Equations (4.19) - (4.21) are substituted into the resulting equation to

yield the following differential equation for d*

a2d* [(k+l) auo ad* 32Uo 2k 3U° 2

3y2 (kUoW) ay ay 3y2  (U - W) 2 a3

0 2

(y2 

(W)2

+ Ra 2  ] d* 0 (4.22)

0

Equation (4.22) can be solved by a central finite difference technique once

k is known. Then equations (4.18) - (4.20) are used to solve for a*, b*, and

f*. Equation (4.21) along with a numerical integration scheme is used to

solve for c*.

The process outlined above is continued at discrete intervals over the

entire length of the cavity.

Numerical integrations in the y direction at each x location are per-

formed to calculate Pi(x 1 ) and P2 (Xl) as defined from equation (3.71). A

numerical integration in the x direction is then performed to calculate v(x 1 ).
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V. DISCUSSION

A theory has been presented for the analysis of a shear layer over an

open cavity. The shear layer is of a finite thickness which increases

downstream. The analysis is based upon non-parallel stability theory using

the method of multiple scales. The theory is used to predict a wave number

for a given excitation frequency. The wave number-frequency relationship is

then used to predict the discrete shear layer excitation frequencies using

equations developed by Tam and Block (1978).

A numerical scheme for implementing the theory has also been presented.

Numerical calculations have not been completed, but are under consideration,

and will be available in papers published from this work. The wave numbers

obtained will be corrections to the wave numbers obtained by Tam and Block and

will be compared with their results.

The analysis presented is not intended as an ultimate analysis of the

shear layer over an open cavity. The author recognizes that several problems

exist with the analysis and many questions remain. The ultimate goal is to

attain a complete mathematical analysis of the shear layer over an open

cavity.

One question concerning the analysis presented regards the mean flow.

Tam and Block (1978) note that the mean flow in the shear layer has never been

measured such that the results are useful for calculation purposes. Indeed

they use a standard hyperbolic tangent velocity profile in the shear layer.

The mean flow assumed in the described research is a two dimensional

non-parallel mean flow. The non-parallelism is due to the fact that the shear

layer grows downstream due to entrainment. However, the rate of growth of the

shear layer thickness is related to the amplitude of the cavity oscillation

and is not predicted by the analysis. It is believed that a thorough analysis

'" ":'- .',? "IL',LT. ,.T" T .. LL" IT .. .. .Z.. . L TL ... .".*-'- . ... * ," . . . .- ... ... • -. L ', . T - .



36

of the problem will yield this information. Preliminary ideas are presented

below.

The stability characteristics of the shear layer are only required over

a finite distance (0 < x < L, 0 < x < E L). Thus the mean flow variables can

be expanded in a Taylor Series in x about x = 0. To this end1 1

Uo

Uo(x l ,y) = Uo(O,y) + x1 - (O,y) + . • • (5.1)

or

Uo(x l y) = A,(y) + xA 2 (Y) (5.2)

The nonlinear terms have been truncated in equation (5.2). The other mean

flow variables can be written as

Ro(x l y) = B1 (y) + xlB 2 (Y) (5.3)

SO(x l ,y) = CO(Y) + xlC 2 (Y) (5.4)

Vl (x l ,y) = Dl (y) + xiD2 (Y) (5.5)

U,(x l y) = El (y) + xE 2 (Y) (5.6)

Rl (x l y) = Fl (y) + xiF2 (Y) (5.7)

Sl (x1,y) = G,(y) + xG 2 (Y) (5.8)

Equations (5.2) - (5.8) are substituted into equations (3.27) - (3.30) and the

resulting equations substituted into equations (3.23) - (3.26).

A simpler version of the mean flow analysis is to assume a hyperbolic

tangent velocity profile whose thickness varies with x To this end

*l

Ii

P" -" ." ' " ." ." " ...I ' . . ' " ° ' -' , ' .i ..T ...' ...- -" . , ,1 """. " ~ ""' 4 - ' . . _ " o '" . " - ; . .:.m,,.. , , . . . . .:-',*.Z--Z-
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U(x ,Y) U tanh(l +(5.9

where

l= 0 + (5.10)

The result of the method described is the shear layer stability

characteristics for a given frequency (i.e., a frequency-wavenumber

relationship. This relationship is then used to predict the discrete shear

layer frequencies. The author feels that the method and technique are good

but several modifications should be considered before the method is applied

for design analysis. The eigenvalue prediction equation (2.8) derived by

Tam and Block is based upon a vortex sheet between parallel streams. This

prediction equation should be modified to include shear layer thickness

effects, and the effect of shear layer growth. This will involve a more

detailed mathematical analysis of both the matching between the shear layer

and the external flow and the fluid behavior at the trailing edge of the

cavity. The entire fluid mechanics problem must be considered with the flow

field divided into three regions. The non-parallelism of the shear layer flow

will have some effects on the external flows which are not included in the

eigenvalue prediciton equation. Additionally, this equation is based upon

the deflection of the shear layer at the trailing edge of the cavity. This

concept must be extended to handle shear layer thickness effects.

The boundary condition at the trailing edge must be considered. The

shear layer, while being excited by a wave of frequency - may either reattach

at some point part the trailing edge of the cavity or deflect into the cavity

at the trailing edge. When the latter occurs due to entrainment waves are

reflected back into the cavity and excite the shear layer. Thus a feedback

, . .- ,- . . , " . - .. _: , _ _ . / • . ... , ,, . ,.. . . . ., . . -: 'L - .-
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process is born. The analysis of this process is heavily dependent upon the

boundary condition at the trailing edge. An analysis of the shear layer with

this effect should be performed. Perhaps it will be discovered that a

multiple deck like analysis is necessary where higher decks are needed due to

the trailing edge behavior. Thus a complete asymptotic analysis of the shear

layer should be performed.

Some investigators have attempted to solve for the flow variables around

an open cavity using finite element techniques. It has been suggested [Wolfe

(1982)] that a mathematical analysis of the shear layer could be used in a

finite element formulation of the problem to predict the pressure inside the

cavity. This analysis is the first step toward such a goal. A further step

in this process is to conduct an analysis of the shear layer with this goal in

mind. That is, the flow variables outside the shear layer will be solved for

by a finite element technique while the variables in the shear layer will be

provided by an analytical formulation. However, these flow regions are

intimately connected due to the trailing edge interaction process. It is

possible to use the current shear layer formulation at a discrete frequency.

However, the amplitude of the shear layer variables is not currently known and

must be solved for as part of the finite element routine.

In summary, the research presented is just a first step toward

understanding the shear layer over an open cavity. Much remains to be done,

but it is believed that future work is manageable and will lead to great

benefits to reducing sound pressure levels in cavities.
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