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Abstract.

<

~ This report describes the” results from,;three*experimental studies designed
to examine the aerothermal characteristics of regions of three-dimensional shock
wave/boundary layer interaction in hxgh-speed flow over non-adiabatic surfaces. The

objective: 6f these studies wassto explore “the basic mechanisms associated with three-"

dimensioraf boundary layer separation in high-speed flows with special emphasis on the
large heat transfer rates and gradients developed in the separation and reattachment

regions of these flows, ,~We also wished >to obtain detailed sets of experimental

measurements with which to extend the simple semi-empirical prediction methods to

the hypersonic/cooled wall regime where no previous data existed, as well as provide
measurements which we hope to compare later with solutions to the Navier-Stokes
equations. " These studies were conducted at Mach Il for Reynolds number of up to %7 ¥
-40%108 in Calspan's 96-Inch Shock Tunnel. In the first study we examined the effects

of crossflow on the scale and properties of attached and separated regions induced over _jﬂ
a flate plate at the base of skewed/oblique shocks. Analysis of the detailed heat _ Ll
transfer and pressure measurements together with fiow visualizations demonstrated that, -
for sweep cngles of up to 459, crossflow had little effect on the size or characteristics
of the interaction regions. Ir; the second study the swept-shock was induced normal to
the flat plate boundary layer by a shock generator mounted perpendicular to the flat
plate. This contrasts with the findings of Settles et al, whose measurements indicate

that the size of the interaction over a swept wedge increases with increased sweep.

Measurements of the distribution of heat transfer and pressure were made on three

streamwise rays for a range of locations and incidences of the shock generator. Our
. ¥ corner flow measurements demonstrated that, in highly-cooled hypersonic flows, the

4 pressure rise to induce incipient separation is significantly larger than predicted by the
;_ semi-empirical methods. P‘\Aeasurements of the plateau and peak pressure as well as
& the maximum heating were correlated with earlier measurements at lower speeds and ‘:'Z:
t were in good agreement with simple prediction techniques. In the third investigation
t a preliminary study was made of the flow field and distribution of properties in the _%3
: turbulent interaction over a cone-flare compression surface at zero degrees and small - o

angles of incidence. The very large models (L=10 ft) constructed for these studies
resulted in interaction regions of sufficient thickness to allow probing of the separating
sublayer. Measurements of the distribution of properties through the turbulent

1@

interaction regions were made for local .lach numbers from 8 to 12, for Reynolds -
numbers from 10%106 to 80#106. The interaction regions, particularly those on the
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leeside of the configuration, were influenced by angle of attack; however, further study
is required to determine to what extent crossflow, as opposed to local inviscid flow

I conditions, are responsible for such etffects.
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I. Background

The large aerothermal loads and severe flow distortions which are generated
in three-dimensional regions of shock-wave/turbulent boundary layer interaction are of
serious concern to the designers of hypersonic vehicles. In such interactions, which
can occur at fin/wing-body junctions, engine inlets, and between aerodynamic
components, heating levels as much as five times those generated in stagnation regions
can be developed. The size and distribution of properties through these regions are
not easily predicted, even with the most sophisticated computational techniques. It is
generally recognized that the calculation of a three-dimensional region of turbulent
separated flow induced by shock-wave/boundary layer interaction represents one of the
most severe tests for the numerical prediction techniques. The difficulty in modeling
these flows results, in part, from the very large pressure and heat transfer gradients
which are generated in both the streamwise and transverse planes through the interaction
regions. In particular, the modeling of turbulence and the selection of the grid geometry
in such regions is not a simple matter.

During the past two decades, significant efforts have been devoted to the
experimental and theoretical study of attached and separated flows in regions of
viscous/inviscid interaction. Initially, the major objective of these programs was to
generate physical insight into the basic fluid mechanical mechanisms involved in such
interaction regiors enabling relatively simple analytical models to be constructed. More
recently, with the development of large computers on which to solve the Navier-Stokes
equations, the emphasis has switched to modeling the macroscopic features of the flow,

namely, turbulence.

Early investigations of shock wave/boundary layer interaction were centered
around studies of two-dimensional interaction regions, principally because the conceptual
modeling of two-dimensional boundary layer separation is clearly simpler than its three-
dimensional counterpart. Initial emphasis was placed on understanding the mechanism
upstream in the boundary layer, and the mutual and self-sustaining interaction between
the viscous and inviscid flow that, at least in laminar flows, is a key mechanism in
separation and reattachment regions. Following the fundamental studies of Howarthl,
Oswatitsch? and Lighthill:", Crocco & Lees* developed the first technique to calculate
the separation of a laminar boundary layer using a "free interaction model" to describe
the self-induced interaction between the viscous and inviscid flow. Glick’ and Bray et

1
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alé further refined this model, however, by adding the moment-of-momentum equation.
Honda’ and later Lees and Reeve‘,s8 removed the empiricism of the earlier formulations
to obtain integral solutions which successfully described the general features of regions
of shock wave/laminar boundary interaction observed in experiments in supersonic flows
over adiabatic walls. Later Holden? added the integral form of the energy equation
to those of mass, momentum, and moment-of-momentum employed by Honda to describe
separated interaction regions with heat transfer. In high Mach number flows, Holdenl0
also found it necessary to add the normal momentum equation to account for the
normal pressure gradient through the boundary layer in the separation and reattachment
regions. While laminar interaction problems have yielded to relatively simple prediction
techniques, efforts to employ similar methods to describe shock wave/turbulent boundary
layer interactions in high-speed flows have met with limited success. This we believe
is because the basic interaction mechanisms in the separation of laminar and turbulent
boundary layers are fundamentally different. Employing conventional boundary layer
techniques to describe turbulent boundary layer separation in high-speed flows may be

a serious error.

Many of the conceptual problems associated with the use of the boundary
layer equations to describe separated regions induced by shock wave/turbulent boundary
layer interaction are circumvented by the direct solution of the Navier-Stokes equations.
However, in their place we find the equally thorny problem of specifying a detailed
model of turbulence for flows with exceedingly large streamwise pressure gradients.
Despite the lack of success in developing credible turbulence models for two-dimensional
interaction regions, or perhaps because of it, three-dimensional turbulent interaction

regions have become the focus of attention of the Navier-Stokes solvers.

The axial corner flow or swept-shock interaction has been one of the
principal configurations selected to investigate three-dimensional regions of shock
wave/boundary layer interaction. The swept-shock, which is generated by a wedge or
fin mounted perpendicular to a flat plate, impinges normalily onto the flat plate boundary
layer. The initial studies in this area by Stalker 1 and Stanbrook!Z? were followed by
the more detailed investigations of McCabe13, Peake and Rainbird“‘, Oskam et alld,
Cousteix and Houdeville!®, Dolling and Bogdonoffn’ls, Dolling and Murphyw, and
Dollingzo. The latter extensive series of studies were conducted at Mach 3 under
adiabatic wall conditions. While incipient separation is relatively easy to define for

two-dimensional turbulent interactions, this concept has generated considerable
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controversy in three-dimensional flows. While McCabel3 suggests that separation should
be defined on the basis of converging streamlines, Stanbrook!2Z and others have used
criteria based on the inflection points in the pressure distribution. The occurrence of
separation was correlated in simple terms by Korkegiu, who found that in low Mach
number flow, deflection angle & wi for incipient separation varies as the inverse of
the upstream Mach number, i.e., gwi = 0.3/M, , while for 2<M < 3.4 Korkegi suggests
that pi/p is independent of Mach number. Goldberg's22 measurements at Mach 6 do
not agree with the Korkegi correlation.

Studies with the emphasis on the heating in swept-shock interaction regions

have been conducted by Neumann and Burke23, Goldbergzz, Tokenza, and Scuderi?d,
Figure 1 shows typical distributions of heat transfer and pressure along a streamwise
cut through the interaction region together with nomenclature which is in conventional

use. While the heat transfer and pressure distributions exhibit a uniform and monotonic

-
increase through attached interaction regions, when the flow separates, distinctive. i :11
plateau regions are formed in the heat transfer and pressure distributions, as depicted .
in Figure 1. As noted above, at low Mach numbers (M = 2+4) and for adiabatic surfaces, g g
a large body of data exists on the mean characteristics of swept-shock interactions. j
Strangely, this body of 3D data has been found to be in better overall agreement with L

the Hung and MacCormackZG, Horstmann?/, Shang and Hankeyzs, Settles and
Horstmann2? solutions to the Navier-Stokes equations than the relatively less complex
two-dimensional flow separation over a flat plate/wedge. These results are not as
sensitive to the turbulence model and suggest that the gross features of the flows are

controlled principally by inviscid effects.

Another approach to exploring flow separation in regions of three-
dimensional shock wave/boundary layer interaction is to begin with a two-dimensional
or axisymmetric interaction and sweep this interaction (or introduce angle of attack
for the axisymmetric case) to progressively introduce crossflow into the interaction
region. Experimental studies of this type have been conducted by Ericsson, Reding and
Guenther3°, Settles and Perkins3l, and Settles and Teng32. Settles, who studied the
interaction region over swept and unswept flat plate/wedge configurations in an adiabatic
Mach 3 airf'ow, found that introducing crossflow increased the scale of the separated
interaction region. Considerable effort was expended in this latter study to determine
the Reynolds number scaling, and the length from the upstream tip of the wedge for
the flow to become quasi-two-dimensional. However, the effect of changing the

3
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overall spanwise scale of the model on the scale of the interaction was not examined

explicitly. The measurements of surface and pitot pressure through the interaction

regions were in good agreement with solutions to the Navier-Stokes equations obtained
by Horstman27; however, some key features of the flow were poorly predicted. It is

known that agreement with pressure data is not the most definitive of tests.

Current developments in both computer speed and the design of "fast -
solvers" for the Navier Stokes equations has led to changes in the requirements for
experimental studies, both in the configurations selected for study and the detailed
measurements to be made. In general we are less restricted in the selection of a

"simple model configuration" as long as the particular boundary conditions are well-

defined. However, the measurements made in these studies must be more strongly
oriented toward aiding in the selection of the specific mesh geometry and model of
turbulence to be used in the numerical description of these flows. An intrinsic problem

which faces the experimentalist studying turbulent boundary layer separation in

J'A

hypersonic flow is that the wall layer, within which separation first occurs and the
properties of which are required to define the characteristics of both the attached and
separated boundary layer, is very thin--typically five percent of the boundary layer

o .-

thickness, making the accurate probing of this layer difficult. Thus, to obtain the
required resolution, measurements must be made on very large models or on tunnel cel
walls, with miniature but robust instrumentation. As in our earlier studies of two- and N
three-dimensional shock/boundary layer interaction, we believe that it is useful to
perform an experiment in which crossflow can be progressively introduced beginning ®
with a configuration over which the flow is two-dimensional, or axisymmetric. However,
as mentioned above, because the measurements made in such a study would be compared
with solutions to the Navier-Stokes equations, we can select a model configuration over
which the three-dimensional interaction regions are relatively complex, providing the
boundary conditions are well defined. Based on these considerations we selected the
large cone/flare configuration as the basic model to be used in the third phase of this

preliminary study of three-dimensional turbulent viscous/inviscid interaction regions.

-

The three experimental studies described in this paper were designed to
explore the fundamental aerothermal characteristics of attached and separated regions y
of three-dimensional shock wave/turbulent boundary layer interaction in the high Mach

o number, high Reynolds number flow regime, where little or no data existed. The two

e .A..L..J.#&ﬁ'

{ aerodynamic configurations selected for study, the impingement of a swept-shock
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generated by a vertical fin onto a flat plate boundary layer, and the interaction between
an oblique-skewed-shock and a turbulent boundary layer together provide basic
information with which to characterize the heating and pressure distributions in shock-
induced 3D interaction regions. In the following sections we first discuss the objective
of each study and describe the test conditions, models and instrumentation used in the
experimental program. The measurements made in the experimental program are

described and discussed, and then the conclusions from this study presented.

II. Program Objectives L)

The objective of these studies was to examine the characteristics of ‘ol
attached and separated flow in shock induced 2D and 3D turbulent interaction regions
by performing experimental studies in which the geometric configuration of the models ]
were varied, progressively changing the flow from 2D to 3D. We sought to provide '
information on the quantitative differences between the characteristics of two- and .:a
three-dimensional viscous interaction regions, and in particular, examine whether
crossflow exerts a strong influence in these flows. An important objective of the
current studies was to provide information with which to construct and verify simple
prediction techniques, as well as evaluate the turbulence models used in the Navier- »

Stokes codes.

Two sets of models were used in the swept wing and skewed interaction J

m studies: a model (shown schematically in Figure 2a) which generates the interaction R
£ between a swept-oblique and a flat plate boundary layer, and a model (shown .
schematically in Figure 2b) which generates a swept-normal-shock. In both studies,
- the model configurations were varied to obtain both two- and three-dimensional flow
*,Q fields. The model design, the instrumentation, and the test conditions chosen for these -

- studies are described in the following section.

. IllI. Experimental Conditions, Models and Instrumentation
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Test Conditions and Model Configurations

The experimental studies were conducted in the 96-Inch Shock Tunnel at

i Calspan, at a Mach number of 11 for Reynolds numbers up to 50 x 106, resulting in .1
R

Re 's just upstream of the interactions of 2 x 106 and hence fully turbulent regions J*
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of shock wave boundary layer interaction. Shock tunnels are in essence blowdown
tunnels in which a reservoir of high-pressure, high-temperature air is generated by
reflecting a normal shock wave from the end wall of the driven section of the tunnel.
The siug of high-temperature compressed air is then expanded through the required
nozzle to obtain the desired condition in the test section, for run times between 5 and
20 milliseconds. These run times are orders of magnitude larger than required to
establish the flow over the model, and yet are of insufficient duration for destruction
of the highly sensitive model instrumentation by the large aerodynamic and heating
loads encountered in the tunnel. Table | gives an example of typical test conditions.
In the skewed-shock interaction studies, the principal variables were the angle of the
shock generator relative to the flat plate and the sweep angle of its leading edge.
The position of the leading edge of the shock generator was varied to place the line
of shock impingement at the same axial station for each configuration examined. In
the sharp-fin-induced, swept-shock boundary layer interaction studies, we varied the
incidence of the fin relative to the freestream to change the strength of the inter: tion,
and translated the fin across the plate to place the major rays of instrumentation at

various stations along the swept-shock.

Heat Transfer Instrumentation

The extremely large heat transfer rates and gradients which are generated
in the reattachment regions of shock wave/turbulent boundary interaction in hypersonic
flows over cooled walls makes it essential that accurate heat transfer measurements
be obtained in experimental studies of these flows. Our earlier studies have demonstrated
that heat transfer measurements can also be used as an accurate indication of the
occurrence of flow separation and the scale of the separated region. Because of the
severe heat transfer gradients developed in these flows, to avoid distortion resulting
from transverse heat conduction, it is essential to obtain finely resolved measurements
on models constructed with surfaces of poor thermal conductivity. The use of miniature
thin film heat transfer instrumentation based on a pyrex substrate, coupled with the
relatively small rise in surface temperatures inherent in shock tunnel studies, makes
the thin film heat transfer instrumentation almost ideal for this type of study. The
high frequency of -thin film instrumentation also provides the opportunity to obtain
definitive information on the unsteady characteristics of turbulent interaction regions.
In these studies we employed platinum thin film gages mounted on pyrex strips such
that spatial resolutions of 0.050 inch were obtained in key areas of the flow. Three
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Table 1

TYPICAL TEST CONDITIONS
™, 3.279€+00
Po psia 1.747E+04
Hy  ft%/sec? 1.792€+07
Ty °R 2.694E+03
Mo, 1.133€+01
Uy ft/sec 5.876E+03
Tee °R 1.119E+02
P oo psia 2.054€-01
Qoo psia 1.847E+01
RHO_, slugs/ft3 1.541E-04
Mu _  slugs/ft-sec 9.410E-08
Re/ft oo 9.628E+06
PITOT psia 3.422E+01
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streamwise rows of instrumentation were installed along and to either side of the

centerline of the 24 inches wide flat plate.

Pressure Instrumentation

We used both flush mounted and orifice pressure gages in these studies
to obtain measurements of the mean and fluctuating pressure levels through the
interaction regions. Calspan piezoelectric pressure gages were connected to a series
of closely spaced orifices to obtain the mean pressure distribution along the plate,
while the larger, high frequency, PCB quartz transducers were flush mounted beneath

a thin, insulating skin to the surface of the plate in key areas of the flow.

Finite Span Effects

Measurements were made to investigate the quasi-two-dimensional nature
of the swept/separated interactions, in studies where the shock generator was transiated

laterally across the flat plate, to obtain configurations in which the edge of the shock

generator was as close as 6 inches from the centerline of the flat plate. For this

o
latter configuration, and for the configuration with the shock generator mounted @
symmetrically above the flat plate, both the centerline heat transfer and the pressure

measurements indicated that the flow was independent of the position of the edge of

the shock generator, exhibiting two-dimensional and quasi-two-dimensional

characteristics respectively for unswept and swept incident shocks.

IV. Results and Discussion

Skewed-Oblique-Shock/Turbulent Boundary Layer

Interaction Studies

In these studies we examined the effect of crossflow on the size and ]
l." properties of regions of shock-wave/ turbulent boundary layer interaction induced by . e
- the impingement of a skewed-oblique-shock onto a highly-cooled turbulent boundary
! layer in high Reynolds number hypersonic flow. The skewed-incident shocks were gen-
5 erated by a shock generator mounted above the flat plate as shown in Figure 3. The
()

leading edge of the shock generator was swept at angles of 0, 15, 30 and 45 degrees -
from the normal to the freestream flow and rotated about its axis to keep the angle in :
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the streamwise plane perpendicular to the flat plate constant. In this way, the strength
of the interaction (the overall pressure rise) was held constant and any changes in the

size or distribution of properties within the interaction region would reflect the effects

of crossflow. It should be observed that to perform studies in hypersonic flow, in
which the fully turbulent interaction regions are well defined and uninfluenced by the
expansion fan from the trailing edge of the shock generator, the careful design of very 4
large models, the loads on which are on the order of tons, is required. Likewise, the ) .“,
positioning of the incident shocks over the highly instrumented sections of the model
and the selection of the gains for the instrumentation, whose outputs varied by three

orders of magnitude across the inch-long interaction regions, also represented a challenge.

Discussion of Results. The studies of crossflow effects on the size and

properties of the interaction region induced by a swept-oblique-incident on a turbulent

1
boundary layer over a flat plate were conducted for two strengths of incident shock, .J
the first (95& = 12.5°) to generate a separated condition close to incipient separation, j
and the second (%6= 159) to generate a well-separated flow. Distributions of heat *
transfer and pressure through the interaction regions, as well as schlieren photographs
of the unswept or two-dimensional flow condition for each of these shock strengths ,
are shown in Figures 4 and 5. While the pressure distribution through the weaker
interaction shows little evidence of a plateau region, it is clear from the well defined
plateau in the heat transfer distribution that a small recirculation region is present.

Our earlier studies in which heat transfer, skin friction and pressure measurements

were made have confirmed that, in these flows, heat transfer measurements are one
of the most sensitive methods for detecting incipient separation. It is clear from the
well defined plateau regions in the distributions of pressure and heat transfer, as well
as the well defined separation shock in the schlieren photograph, that a well separated

region, extending two inches in length, is induced beneath the stronger incident shock.

LEASA AL 20t S CIMCEN il

We anticipated, based on an analogy with the earlier studies of Settles

e

while keeping the interaction strength constant, would result in an increase in the
streamwise extent of the separated region. In our initial studies, we swept the leading
edge by relatively small angles (5°); however, it soon became evident that much larger
sweep angles were required to induce significant crossflow effects. Consequently the

sweep angle was increased in 15° increments to a maximum of 45°. It is clear from

.
L with flat plate/swept wedge configurations at Mach 3, that sweeping the incident shock, - .j
)
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the measurements made of the distribution of heat transfer and pressure beneath the
well separated flow induced by the 15© shock generator swept at angles of 0, 15, 30 and
45 degrees (shown in Figures 6 and 7) that the induced crossflow has little effect on
the size and characteristics of the interaction regions. If there is a perceptible effect,
it is a decrease in the length of the separated region with increased crossflow. We
selected the condition close to incipient separation ( ng= 12.59) for study because
we believed that this configuration would be one of the most sensitive to crossilow.
However, as shown in Figures 8 and 9, sweeping the oblique-shock has little effect on
the size or distribution of surface properties through the interaction region. Again,
we would assess that any small effect which may have occurred would be in the
direction of decreased separation length with increased crossflow. Our measurements
across the center span of the model clearly indicated that in Settles terms the interaction
was cylindrical (quasi-two-dimensional) for all configurations studied. The significant
differences between Settles?? measurements of the variation of interaction length with
sweep angle and those obtained in the current study are shown in Figure 10. While
Settles finds an almost threefoid increase in separation length at sweep angles of 40°,
we find a 10% reduction in this length. In Figures 11 and 12 we compare measurements
of plateau pressure and heating made in this study with those obtained in earlier work.

Again, we observe little effect of sweep angle on plateau pressure or heating.

Sharp-Fin-Induced 3D Corner Interaction

In the corner flow, unlike the flow configuration examined above, the
swept-shock generated by the inclined fin impinges on the turbulent boundary layer in
a plane perpendicular to the flat plate. The basic mechanism of pressure rise through
the interaction is therefore controlled principally by the component of freestream Mach
number normal to this shock (Mg, sinf@). A highly simplified visualization of the
viscous/inviscid interaction with flow separation is sketched in Figure 13. Here, we
consider the flow in the plane normal to the plane of the shock to be similar to that
in transonic flow. When flow separation occurs, a three-dimensional vortex is formed,
the pressure in which is relatively constant at the "two-dimensional" plateau level, as
we will show later. The streamwise distribution of heat transfer in this region is also
found to be. relatively constant, and indeed we and others using skin friction and oil
flow measurements have correlated the first appearance of a plateau region in the heat
transfer with a significant change in the flow structure which is linked with flow
separation. In fact, Token2# has shown that the McCabel3 criteria, based on an
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examination of surface oil streaks in the neighborhood of flow separation, are less

s
)

sensitive methods for detecting flow separation than observations based on changes in

'
.
Al S A

the heat transfer distribution with increased interaction strength. In the current studies, -

e

we have used the incipient formation of a plateau in the heat transfer distribution,

2

together with a marked increase in the fluctuation levels in the output of the thin

film instrumentation, as marking the onset of flow separation.

Fars

Discussion of Results. The model used in the swept-shock/turbulent

] '
o : . r.' T
. ' . .
A'J‘A_él‘ N

boundary layer study is shown in Figure 14. A #4-foot-long flat plate with a span of 2

feet was instrumented along three streamwise rays with heat transfer and pressure

‘
|
,__rnL_g“.

gages. We did not use skin friction gages in these studies because of the lengthy

procedure which would be required to align the sensitive axis of the gage with local
i flow direction in the three-dimensional regions, and because we could use the thin film
instrumentation to detect flow separation. The sharp fin was translated both normal

e and parallel to flow direction to place the major rays of instrumentation at different

BR._JV

spanwise stations along the swept shock. Again, the high Mach numbers at which these

studies were conducted mandated the use of large, highly stressed models.

The majority of experimental studies in this segment of the program were

W_JU
! A

conducted at a Mach number of 11.2 and a Reynolds number, based on the distance to

e A

the beginning of the interaction, of 50 x106. For such conditions (a typical set of

freestream parameters is listed in Table 1), the boundary layer is fully turbulent (Red‘ =

2 x 106) upstream of the interaction. Measurements of the distributions of heat

+
i
-\

transfer and pressure were obtained on a series of ray's along the line of shock
impingement for shock generator angles from 4 to 12.5 degrees. Here, we will discuss
only the distributions obtained far from the tip of the fin, where the length of interaction
ahead of the incident shock is invariant with distance along the shock (i.e., the cylindrical .j
regime). Typical distributions of heat transfer and pressure a’"ng streamwise rays are
shown in Figures 15 to 21 for shock generator angles of 5, 6.5, 7.5, 10 and 12.5 degrees.

The heat transfer and pressure distributions for the interactions with the larger overall

rise to a region of relatively constant heat transfer and pressure adjacent to the fin.
~ We observe the incipient formation of the plateau region and the accompanying increase

in the fluctuation level exhibited in the output of the thin film gages at a fin angle

]

]

i

pressure rise (& = 7.5°) exhibit well-defined plateau regions followed by a recompression _®
1

.

®

3

¢ of 6.5°. Thus, as shown in Figure 22, our measurements indicate that in hypersonic -

flow over highly-cooled walls, the turbulent boundary layer is more tenacious in resisting -

28 K
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Figure 14

CORNER-INTERACTION MODEL
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Figure 15 STREAMWISE DISTRIBUTION OF HEAT TRANSFER AND PRESSURE
THROUGH SWEPT-SHOCK INTERACTION ( o = 59)
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boundary layer separation than predicted by the methods derived by McCabe!3 and
Korkegi2l. Our measurements of the peak pressure ratio through the interaction and

the plateau pressure rise are in better agreement with calculations based on an inviscid

flow model in the 2D theory of Reshotko and Tucker33 than the correlations of Scudari?2?
as shown in Figure 23. However, we find that the ray on which peak heating is located
is in reasonable agreement with the studies at lower Mach numbers by Token, as shown
in Figure 24. As in our earlier studies of two-dimensional separated interaction regions .j
(Figure 25), the peak heating can be related to the overall pressure rise by a simple Y
power law relationship as shown in Figure 26. Figure 27 shows that the maximum T
pressure rise through the interaction region can be calculated with good accuracy from

inviscid flow relationships. While there appears to be merit for the development of

‘“'u

simple prediction methods in describing the flow in terms of the normal flow Mach
number, this is clearly a gross oversimplification and it should be noted that the plateau
pressure measurements obtained in the current study were relatively independent of
M, Sin g.

.A_u

Studies of Shock Wave-Turbulent/Boundary Layer Interaction at a Cone/Flare Junction

In this segment of the study we set out to examine the characteristics

e @

of fully turbulent attached and separated interaction regions over cone/flare

configurations in hypersonic high Reynolds number flows. In the initial phase of the

L.

study reported here the emphasis was on obtaining surface and flow visualisation

measurements in preparation for a subsequent detailed probing of these flows. Finally

T
. :

we intended to obtain detailed flow field and surface heat transfer, skin friction and

-
Aadhnd,

pressure measurements with which to perform comparisons with numerical solutions to

the Navier-Stokes codes, with the object of investigating the modelling of turbulence

.
|

in strong pressure gradients and separated flow at hypersonic speeds. One important . @,

objective of this current phase of the study was to determine the largest Mach number

for which a fully turbulent corner interaction region could be developed over the ._lj }

""vrflrf"

cone/flare model in our experimental facilities because of our interest in obtaining J
measurements of direct relevance to the design and performance of maneuverable re- .

entry vehicles.

A major problem in performing detailed flow field surveys of turbulent ' 1

WY W Ty

boundary layers and regions of shock wave/turbulent boundary layer interaction in high

Reynolds number hypersonic flow is that the wall layer, which contains the principal

37
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information on the structure of the turbulent boundary layer and the mechanisms
involved with boundary layer separation, is of the order of 10% of the boundary layer
thickness. Thus practically large boundary layers (1 inch) are required to obtain a
definitive number of data points from the wall layer. Because of the basic insensitivity
of turbulent boundary layer growth to Reynolds number, it is necessary to use large
models or perform tests on tunnel walls to obtain these thick boundary layers. Tests
on tunnel walls are particularly unattractive in hypersonic flow because of significant
turbulent non-equilibrium effects generated in the boundary layer by the strong nozzle
expansion. While employing large flat plate models is the most effective way of
generating thick bourd.ry layers, experimental studies of separated two-dimensional
interaction regions on models of finite span with thick boundary layers nearly always
fall victim to ill-defined boundary conditions. We therefore elected to perform our
studies using a large slender cone/flare model. A cone angle of 6° was selected to
provide local Mach numbers and Reynolds numbers typical of those on maneuvering re-
entry vehicles. The cone length (11 ft.), and the positioning within the tunnel was
selected on the basis of simple calculations of the maximum length of cone over which
uniform flow could be established within the further constraints of tunnel blockage and
the loading of the model support. Therefore, an important objective of this initial
study was to establish whether these calculations were correct. A schematic diagram
of the sharp cone model shown installed in the 96 Inch Shock Tunnel is shown in Figure
28. Earlier we have obtained pressure and heat transfer measurements on this model
capped with a spherical nosetip as shown in Figure 29. A comparison between the
pressure measurements made on this model, on a much smaller mode. of identical shape,
and calculations based on the NSWC blunted cone code is shown in Figure 30. It can
be seen that the pressure measurements on the large slender cone, which are a sensitive
indicator of flow quality, are in excellent agreement with both theory and earlier

measurements.

The studies of the flow over the sharp cone model and the turbulent
interaction regions on the cone/flare configurations were conducted in the Calspan 96-
Inch Shock Tunnel at Mach numbers of 11, 13 and 16 for Reynolds numbers from 30 x
106 to 80 x 106. The nominal test conditions at which the studies were conducted
are listed in Table 2. The large cone/flare model, which is shown installed in the test
section of the 96-Inch Tunne! in Figure 31, was fitted with flares with angles of 30 and
36 degrees relative to the surface of the basic cone. Distributions of heat transfer

and pressure as well as schlierer. photographs were obtained for each model configuration

42
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Table 2

TEST CONDITIONS FOR THE CONE/FLARE STUDY

FT/SEC

PSIA
PSIA
RHO
Mu
RE/FT
PITOT PSIA

3.345E+00
7.216E+03
1.825E+07
2.717E+03
1.096E+03
5.922E+03
1.214E+02
9.172E-02
7.721E+00
6.340E-05
1.021E-07
3.680E+06
1.431E+01

3.633E+00
1.760E+04
2.147E+07
3.104€E+03
1.301E+01
6.458E+03
1.026E+02
7.345E-02
8.712E+00
6.038E-05
8.634E-08
4.544E+06
1.619E+01

4.200E+00
1.705E+04
2.795E+07
3.875E+03
1.543E+01
7.404E+03
9.574E+01
1.860E-02
3.104E+00
1.631E-05
8.054E-08
1.499E+06
5.798E+00
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and test condition. The distributions of heat transfer and pressure in attached and
separated flow over the cone/flare model with flare angles of 30 and 36 degrees
respectively, are shown in Figures 32, 34, 36 and 33, 35 respectively. Shown in Figures
32a to 35a are comparisons between the measured pressures and calculations based on
simple inviscid flow theory. The good agreement between the pressure measurement
on the cone and flare, and theory for both attached and separated interactions, in a
regime where pressure measurements are very sensitive to flow uniformity, gives us a
high degree of confidence in our selection of the mode! scale and positioning. For the
flow over the 36° flare configuration it is clear from the well-defined plateau region
in both the heat transfer and pressure distribution on the cone just upstream of the

flare that .a well-separated flow is induced. The schlieren photographs of the flows

over this latter configuration, shown in Figures 33a and 35a, clearly indicate the
presence of a separation shock followed by a straight shear layer bounding constant
pressure separated region. In contrast, in the attached flow over the 30° flare the
shock emanates almost directly from the cone-flare junction. The measurements of

pressure and heat transfer on the flare for both model configurations exhibit two levels;

. -
)N

1

the first, just downstream of the interaction, corresponds to a locally two-dimensional R

compression; further downstream, the pressure and heat transfer rates approach those

)

for a conical surface. The pressure levels computed from inviscid flow considerations °

are shown for reference in Figures 32a and 33a. A similar set of measurements are

shown for the Mach 13 test condition in Figures 34a and 35a. Again we observe a
well separated flow over the model with the 36° flare, and it is of interest to note ‘
‘.J that the scale of interaction region at the higher Mach number does not differ .
significantly from that at Mach 1l. The measurements incipient separation and the
heat transfer and pressure in the plateau and peak heating regions are compared ‘ith

those made in the earlier two-dimensional studies in Figures 37 to 40. The good

agreement between these sets of data, which reflects in part the locally two-dimensional

3,
s

character of the interaction at the cone/flare junction, gives us additional confidence

g f'v‘.r‘r*‘rr r_'“.”rrr
'
stk _ad

g
.
e '

in our design of this experiment, Later we plan to compare the surface measurements

with Navier-Stokes solutions; however, based on the success of these experiments, our

"
A2 s alaa e

| next objective is to obtain detailed flow field measurements in both attached and b
' separated flows over the configurations studied here. 3
! .
L 4
 ® L
= 48

L
' .
- A._';‘_._. -




Bt A S & A R L S . DA L B i T R i e e A Ty B R i A T S ‘b“-]’

3 RUN 8

(+]
SrLare 0

M, 110

..‘ .t ~'.~”'v' '..,
N WA

Re/FT 3.65 x 106

INVISCID FLOW oy
THEORY

. . :
R .t . o
PP IR 7V ISR

" ‘.” .. .-.

P/q

T TRy
o
o
H |
_.'A

o) 00900

|

-t L

-l 1 | L. 1
109 182 184 106 1@8 11 tie

DISTANCE FROM NOSETIP - INCHES
Figure 32a DISTRIBUTION OF PRESSURE IN ATTACHED FLOW OVER THE
LARGE 6° CONE/30° FLARE CONFIGURATION
49

.al

!
L
98

. ot .t P e

, . . " ’ . - . . " e . . -
A , ,‘.' o T, [ .-'- .
AN FRRONN JERASAS
a wa'a'a a a W e a a-A A -

I

,ﬁ
4 ’ . * ’ . '
RO

. e tie e el e,
Lol T T S S S S B
L-‘j.':.x-j--'-;.'; - N S S A S T A T L UL A I R S It




5.3 % D An it S A S A A AL At Ral A R GG N A L A I A AT B AL AR Al sl et L AR A i T P A e e e
. L

] RUN 8
(] ~

! SfpLaRe 0 .

M 110 .

oo T

Re/FT 3.65 x 105 L

VAN DRIEST .

THEORY i .1‘
L1 b
r

o Og
CH 170 oo

.81 ¢

.001 + g UCU O, o
g

000l oo ez 194 106 g8 118 11z .
DISTANCE FROM NOSETIP - INCHES -

Figure 32b DISTRIBUTION OF HEAT TRANSFER IN ATTACHED FLOW OVER
THE LARGE 6° CONE/30° FLARE CONFIGURATION e

. e e e e - L .
- R, W ) PUINS WR P WL, W V|




«
t
S
3 RUN a
t 8 pLare 36° ;
_ M, 1.0 :
Re/FT 3.76 x 10° .
INVISCID FLOW L
THEORY .1‘
19 ¢ ) %
} g
! B
L N
-
—_0 O o Q \.'-._ .
4
1 -~ -
P-sq . !«
L
r o 1
c9 o - %
P ° -
] y
o .

‘ }—p © ) Q
I R
e r
. :
: . Bl A i 1 1 1 1L 1 N . 4
» 98 198 192 184 1@6 198 11@ 112 Py

-
Ei DISTANCE FROM NOSETIP - INCHES .o
'—l Figure 33a DISTRIBUTION OF PRESSURE IN SEPARATED FLOW OVER THE s K
g LARGE 6° CONE/36° FLARE CONFIGURATION L
: 51

-9




L
- o
r RUN 4 b |
L 0
. SeLare 36
L= 1.0
; Re/FT 3.76 x 10°
: VAN DRIEST " ol
THEORY i
S
A or
% . o
f o-San g S
. U0g g ]
| a O g AN
.01 f -
o
¢ B
; . ) .l
N
b
; J
T - —o
o 4

.881 + o

t

-
r m e = 4o g
- . o . PR . P
. -. P A
. - s ’ ) ..
. JUNRPIR_ JEBE

|
L : L
@08l ga——Tpg T3z 165 196 198 Tig Ti3
DISTANCE FROM NOSETIP - INCHES

Figure 33b DISTRIBUTION OF HEAT TRANSFER IN SEPARATED FLOW OVER THE
LARGE 6° CONE/36° FLARE CONFIGURATION

52

e oo g a0 g S0
P

Pl st g
" a

.......




[ ’ RUN 7 'J
o
SeLare ]
M_ 12.9 b
Re/FT 4.00 x 108
= INVISCID FLOW -
THEORY -9
19 + 1
O
4
.
5o ° ° o o O0—
1 &+
-
- Psq o °
4 1
!
-
[ . 1 ~ - o
h R
a3 .
. x
. (o) oo
3 b fo) oo )
—— O (o] -~
.. S
L‘ - _‘1
. IR
' | A
{ -} . L . 1 1 L n 1 i :
3 S8 10@ 192 184 1@6 1@8 118 1.2 e
{ DISTANCE FROM NOSETIP - INCHES .
Figure 34a DISTRIBUTION OF PRESSURE IN ATTACHED FLOW OVER THE SR
L LARGE 6° CONE/30° FLARE CONFIGURATION o
b ‘ o
- 53 . T
e
s P!
| "




- R TR TUT " .- R
e T TN T TR T T TN TS RIS B e e e T . -

[y

R T P AP S S S Y

RUN 7

(+]
Sprare 30

M, 129

Re/FT 4.00 x 108

VAN DRIEST
THEORY

.
—

O
I

[\\]
-

e T T e T S T S e ey

L 1 L
008l gg—Tgp 197 194 106 1d8 Tig 113

DISTANCE FROM NOSETIP - INCHES

Figure 34b DISTRIBUTION OF HEAT TRANSFER IN ATTACHED FLOW OVER
THE LARGE 6° CONE/30° FLARE CONFIGURATION j:;
54 (




s are atlh ol SREESIIE ades sl g ek oS ath s S SR E A oA AT A ML A e e L e 2 R D A Y

f RUN 6

(¢]
SeLaRe 36
M 13.1

Re/FT 5.09 x 10°

— = INVISCID FLOW
THEORY

19

. P

. ), R ,
Sty

)A. Lalaly -

[o]
(o]

P/q

L 1 1 L i . 1 A L
98 1@ 102 @24 1@6 188 1@ ll2
DISTANCE FROM NOSETIP - INCHES
Figure 35a DISTRIBUTION OF PRESSURE IN SEPARATED FLOW OVER THE
LARGE 6° CONE/36° FLARE CONFIGURATION
55

.91




Lam a4 RORERAUSALINE 4 —lm" ;T
", PR
e

MR L
-

i~y TvvTw v

“““““““

.0aa1

A0 e 2 i SN A ARE R A -~ Al i A Se A Al Tedi el LA A aRA SN AV R Rl DA

RUN 6

(o]
SrLape 36
™ 13.1

Re/FT 5.09 x 108

VAN DRIEST
THEORY

[ et A0 8 Sutitits Al St Aenst ot oo e |

]

; 30 ' D
CH ' o

.a1

R e e e

.8a1 r a8,

— ey

i L

i L L ) - - . I
180 1a2 184 198 1a8 11 lia
DISTANCE FROM NOSETIP - INCHES

of

9

Figure 35b DISTRIBUTION OF HEAT TRANSFER IN SEPARATED FLOW OVER

THE LARGE 6° CONE/36° FLARE CONFIGURATION
56

T T W S TS T T T A AT R TS -'-.T

. e , Lo
S S
. R A o B
' - 1 .‘.' ’,. . l‘
" A.!A—;I'A'A:AAJ" ' f T I M

- -

.
O _JOu

"o

.
o,

.‘A e

' L — I‘.J..LA B

‘mxals lecd

]
¢ s

PRI
Sttt

!
' e e .
U 0" . .
PN S S \ iy WL,




T - T T T T T T W TN T W W, WY T a4
Bast o o A H g S A M e S i s MR p R ST Y- .t

- e
-—
o

i . [ RUN 9

(+]
S LaRe 30
M 15.4

Re/FT 1.50 x 108 ]
= INVISCID FLOW - ?

- THEORY

S
-
o]
» [P
DR
4 '.'.'.',‘¢ .
&‘,|.o:>‘- e

Psq e

B an an an e g a-ansy (e gu sn e N
’

L - - - e 1 L R b
. 98 189 1@2 104 106 1@9 11 12 %

DISTANCE FROM NOSETIP - INCHES : f,:_\‘,:-.’!
Figure 36a DISTRIBUTION OF PRESSURE IN ATTACHED FLOW OVER \}
{

THE LARGE 6° CONE/30° FLARE CONFIGURATION
57 '

|
1

P . PSLA DAL Tt » . . - et T R \-..‘..-'.-.!',. _~‘.'.~' s AR SO TR

R T R TR, S PSP . ) PN SO 1 S N ST S SO N A » PO PO s |




el it et din B bt et St A B S i T o T L e i e T N

RUN 9 ' 4 d
. o
SfLare 30

M, 15.4

Re/FT 1.50 x 106 .J
—

VAN DRIEST -
THEORY -

o

T

.201 D

B S Srins I e,

g e e
1

» ' Al
. ‘e (. ', M ,“ " i, l‘.' I
LR s ,'d LT Y
-__'u_.v;'f'J. LIRSS 5 P

198 102 194 106 128 118 112
DISTANCE FROM NOSETIP - INCHES

5 Figure 36b DISTRIBUTION OF HEAT TRANSFER IN ATTACHED FLOW OVER

THE LARGE 6° CONE/30° FLARE CONFIGURATION

L aans s BER s ne s f
- e e

. 00019'-8(

a4

.......
......

————
.*,"

p

s

7



AN nd . 1i.q q. - 5 i.u_.«......... P 4.11 Qe .. -14.11.._ DA ™ AT .Hi.J‘J.a.q.T.W‘q 4" ARRACAE M . M
LN . R : . . K - . . AR b [PIREE AR . - B
e . Ll e e PR . Y ’ L. -

. H . . ot e L . .

.......

u

.
NOILVHVdJ3S LNIIMIONI GIINANI OL I1ONV I9Q3IM L€ 8anbig
3 © A
: Toy
L NOP OOP mc—. QO-. H_
e e LR I LA D | L LA B A 9

oL O
. 6z =W
) v
: —_————— L13HSIYY ANV QIvdS 27777 B
3 r / - L

, 07 — ¢ ——

— e e c—

h. [~ . 18t
[ . 0¢ )

f- — — / O ~_
: N $33¥930 ' D

v. ﬁl / o
v : ,|||\|I|Mm.ﬂ N - zz -
. l\l‘l\l‘l_\ / ...,...

59

[ INWOHL ANV OMsoY AGQNLS 1N3S3IY
N P O 1 | P 1 | T P 1

vE

haadl e Sl Wl Sl i

T

' ot B S ol v, et M. ST Sty L,
. L . . . o
PSR W : ..Pk-.rﬁL? <l it AR bbb A . PO I B




SYM | Mg SOURCE
v 11.3 | PRESENT STUDY 0°
(] 15°
a 30°
30 g Y as°
(o) 6.5 | HOLDEN
O 7.9
O 8.6
a 11.4
20 |~ < | 130 y
SOLID SYM — SHOCK INDUCED INTERACTION
OPEN SYM — WEDGE INDUCED INTERACTION
TODISCO & REEVES THEORY
10 =
9 =3
8 —
7 o

V)

RESHOTO &
TUCKER THEORY

1 ! | L I i ]
2 4 6 8 10 12 14
M -]
Figure 38 CORRELATION OF PLATEAU PRESSURE MEASUREMENTS ON 6° CONE/36° FLARE
CONFIGURATION WITH EARLIER MEASUREMENTS




' sYM | ™
8- I-I_O 6.5
a 7.9
7 < 8.6
v 113 |
e el 13,0
SOLID SYM — SHOCK INDUCED INTERACTION
OPEN SYM — WEDGE INDUCED INTERACTION
5 o

CHpLATEAU
3
HO

Cy p 5/8
PLATEAU _ (PPLATEAU
C P
Ho ‘ o
1 | | l | L 1 11
1 2 3 4 5 6 7 8 9 10
PpLATEAU

Po

Figure 39 CORRELATION OF PLATEAU HEATING AND PRESSURE MEASUREMENT ON
CONE/FLARE CONFIGURATION WITH EARLIER MEASUREMENTS

..............................................
..........................

..............

NP ey
A P et
. T [ .
‘. . . e L e,
JrUPAT ORISR T Sy ... LN

Cd
et




p . S, . ey g YT v . .-
T . caaapusos 0f OANSMIRSEEMAY YNDNREATROENE 1A o T
. . L : . s ta . e : « LA ) . P
> . : Liute . ' LT H . A A AT DI T EE

3 W » f . .
.’ et o . R [

~ [N I [

SLNIWIHNSVIW HIITHVI HLIM NOILYHNOIINOD
34V 14/3NOD NO LNIWIHNSYIW IUNSSIHd '8 ONILYVIH MV3Id 40 NOILYVIIHHOD O ainbiy

3 cm\x<_>.._
g0t 2ot ot t
R | LI Hrrrer v 1 LI trrer v

YT TR T

| % %

8°0 ’x<s. ] XYWy

11111

JHVYI4/INOD | VSt oL
34Vv14/3NO0D | OEL
gamaxs | gt

143MS | €°LL
MJOHS N

.0

- W S,

A1

|

et

oot

1% 2 A AR e T "R AR L A S S N

Te LW

.....

e
« %

. : oo N . .F. Lt v, W »: B
.o _ , Vo o .
- ) RSP I P N Fe Iy Sl NP T




Conclusions

Experimental studies have been conducted to examine the characteristics

of two- and three-dimensional flows induced by (i) skewed-oblique-shock/turbulent _ )
boundary layer interaction, and (ii) the three-dimensional viscous/inviscid interaction in |
the corner formed between a flat plate and a vertical fin, and (iii) the viscous/inviscid
interaction at a cone/flare junction. Both studies were conducted at Mach 11 for

A

Reynolds numbers of up to 50 x 106, under highly-cooled wall conditions. Detailed
distributions of heat transfer and pressure as well as schlieren photographs were obtained
for a range of model configurations to examine both attached and separated flows.
The principal objective of the skewed interaction studies was to determine the effects

R
NIV AR

of crossflow on the size and proper ies of separated interaction regions. Keeping the
strength of the interaction constant, we varied the degree of crossflow by skewing the
oblique shock between 0 and 45 degrees to the flat plate's leading edge. These studies
demonstrated that crossflow has little effect on the scale and properties of the separated

interaction regions, which contrasts with the findings of Settles, et al., who in an

L .
'L.'L’A.L__._A_

analogous study at Mach 3 on adiabatic surfaces, found a sizeable increase in the scale NS

of the interaction with increased crossflow. We also found the plateau pressure and

' P
[N
L J :
W o

the heat transfer in the plateau and reattachment regions to be unatfected by crossflow.
Our measurements in corner flows demonstrated that a significantly larger shock
generator angle is required to separate the turbulent boundary layer in a swept-shock
interaction than would be predicted from the correlations of McCabe or Korkegi, based .
on measurements in supersonic flows over adiabatic walls. While the shock generator ...
angle to induce incipient separation was significantly larger than would be predicted '
from earlier studies, the salient features of the separated interaction regions, the

{
*
|
plateau pressure, the location and magnitude of the peak pressure and heating were in 1
good agreement with simple scaling laws developed from the full data base. We did, - '1
however, observe that the plateau pressure did not vary significantly with the normal 3

component of Mach number M, sin & . -";"--.:'1
-
1

] In the preliminary studies of the shock wave/turbulent boundary layer -
. interaction at a cone/flare junction we obtained detailed measurements of the distribution *
of heat transfer and pressure through both attached and separated interaction regions oo
at Reynolds numbers up to 80 x 106 based on the length ahead of the interaction. The
. general characteristics of these interaction regions, the pressure rise to induce incipient Lo

separation, and the pressure and heating in the plateau and reattachment regions were e
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in general agreement with the semi-empirical prediction methods based on our earlier
measurements at lower Reynolds number in two- and three-dimensional flows. Most
importantly these experiments have verified the use of the very large cone/flare model
as well as provided information on gross size and structure of the interaction regions
which is invaluable in the design of subsequent studies to examine the structure of this
flowfield in detail.
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