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- layer pumping are modified heuristically for situations where the layer(s) no
longer covers the entire wall. Also, due to the very steep free surface contour
in the latter stages of spin-up, it was f£iund advantageous to develop the free
surface equations in an axial, rather than radial, coordinate frame. This model
and the resulting computer code are the subject of an earlier interim report End
a subsequent paper submitted for journal, publication. Accordingly, only a summary
of this phase and its results is presented here.

Yo experimental or numerical data were available against which to compare
the simplified model's .preictions for cases where the free surface intersects
one or both endwalls. Accordingly, in the second phase of the program a more
refined numerical model was developed, based on the full nonlinear Navier-Stbkes
equations. This is a finite difference code in which the primitive variable
equations are solved in, conservative form. The development of the governing
equations, and the semi-implicit predictor-corrector scheme used to solve them,
are presented in some details, U'Afortunate.y, no converged solutions have been
obtained- as yet; the possible reasons for this are discussed.
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FOREWORD

This is a final report documenting the results of a three-year theoret;cal program

"Numerical Models for Fluid Behavior During Spin-Up in Liuiid-Filled Shells," sponsored

by the U.S. Army Research Office under Contract No. DAAG29-31-C-0007. The program

is under the technical supervision of Dr. Robert E. Singleton. Recognition is due Dr.

Raymond S. ,Sedney and Mr. Nathan Gerber of the Launch and' Flight Division, U.S.

Army Ballistic Research Laboratory, who through their technical discussions with the

author have had a significant impact on the course of this work. The implicit computer

code which they provided, and which served as the starting point, for the simplified

model developed here, is also, gratefully acknowledged. Finally, the author wishes to

thank his colleague, Dr. William 3I Rae, for his advice and encouragenient.
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I. INTRODUCTION

The goal of the theoretical program described here was to obtain a clearer

understanding of the fluid dynamics of liqi',d-filled shells for those cases where the.

fluid only partially fills its cavity. Problems can arise during the flight of such.

projectiles when there is a strong coupling between the perturbed motion of the rapidly

spinning shell casing F .d the attendant wave motion excited in. the fluid. In addition,

unlike a solid filler which always rotates with the same angular velocity as the casing,

the liquid filler will rotate at a reduced angular velocity over much of the trajectory.

The result is a net transfer of angular momentum from casing to fluid, which in itself

can be destabilizing.1

The model problem most often studied by investigators is the axisymmetric spin-

up of fluid in a right circular cylinder of radius R (see Fig. 1). We seek to represent

the evolution with time of the fluid motion, particularly the azimuthal velocity, as it

asymptotically approaches solid-body rotation. Such a calculation is necessary as input

for the prediction of the spin decay of liquid-filled projectiles. 2 ,3 It can also serve as

the base flow about which to. carry. out a perturbation analysis of the eigenfrequencies

of the fluid.4 ,0 The' latter are of critical importance to the question of the stability

of the fluid-shell system.1

A review of previous work on this problem has been given in Refs. 6 and 7 and

will not be repeated here. The principal conclusion drawn from these studies is that,

1. Engirneering Design Handbook. Liquid-Filled Projectile Design, AMC Pamphlet
No. 706-165, U.S. Army Materiel Command, Washington, D.C., April 1969.

2. Kitchens, C.W., Jr., Gerber, N. and Sedney, R., "Spin decay of Liquid Filled
Projectiles," 3. of Spacecraft, Vol. 15, No. 6, 348-354, December 1978.

3. -Kitchens, C.W., Jr. and Gerber, N., Prediction of Spin Decay of Liquid Filled
Projectiles, BRL Report 1996,. Aberdeen Proving Ground,- Md., July 1977.

4. Kitchens,'C.W., Jr., Gerber, N., and Sedney, R., Oscillatio.ns of a Liquid in a
Rotating Cylinder:' Part I. Solid-Body. Rotation ARBRL-TR-02081, Aberdeen
Proving Ground, Md., June 1978.

S. Sedney, R. and Gerber,' N.,Oscillations of a Liquid in a Rotating Cylinder: Part
I. Spin-Up, ARBRL-TR-02489, Aberdeen Proving Ground, Md., May 1983.

6. Homicz, G.F., Numerical Model for Fluid Spin-Up in a Partially-Filled Cylinder,
Calspan Report No. 6856-A-I, May 1982, prepared for U.S. Army Research Office
as' interim report on Contract DAAG29-31-C-0007.

7. 'Homicz, G. F. and Gerber, N., "Numerical Model for Fluid Spin-Up from Rest in
a Partially-Filled Cylinder," submitted to ASME Transactions, 3. of Fluids
Engineering.
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STAGE 3

Figure 1 CYLINDRICA~L GEOMETRY AND POSSIBLE FLUID CONFIGURATIONS DURING
SPIN-UP



at large Reynolds number, the dominant spin-up mechanism is a secondary flow driven

by the viscous endwall Ekman layers. This secondary flow redistributes the angular

momentum acquired in the Ekman layers over the remaining interior "core" flow, which

is relatively inviscid. The characteristic spin-up-time, ts, has been found to scale as

Of/A) Re'1`):' (see Nomenclature for a list of symbol definitions). 8 For large Re, this

is much shorter than the time one would expect based so'ely on viscous diffusion from

the sidewall, tD, which scales as Re

The great majority of previous investigations dealt with the case where the fluid

cavity is completely filled; in practice, however, the shells are often only partially

filled. Field data 9 show that the probability of a projectile experiencing an erratic

flight is a strong function of its fill ratio, i.e., the percentage of the cavity volume

occupied by fluid. Thus there is an important need to understand the influence of the

interior free surface on the spin-up process. Gerber1 0 has shown that the final form.

of this surface, after solid-body rotation is achieved, is a parabola whose shape is

determined by the fill ratio and the Froude number, F = (AR)2 /gH. Goller and Ranov 1 !

studied how the surface contour evolves in time and its influence on spin-up. They

employed a simplified model which extended the partly phenomenological analysis of

Wedemeyer 12 for the filled case. Their analysis indicated that the free surface motion

acts to retard the spin-up process. Numerical results for both the azimuthal velocity

field and the surface contour were obtained as functions of time, and the latter exhibited

good agreement with their experimental data. The problem with applying their analysis

to actual configurations is that Goller and Ranov assumed the free surface did not

intersect either of the endwalls. This Is a rathe" restrictive assumption, as shown by

the analysis of Gerber,10

Accordingly, the goal of the first phase of the present investigation was to

extend the simplified Wedemeyer-Goller-Ranov model to situations where the free

L. Greenspan, H.P., The Theory of Rotating Fluids. Cambridge University Press,
London, 1968.

9. Mark, A., Measurements of Anular Momentum Transfer In LIquid-Filled
Projectiles ARBRL-TR-2029, Aberdeen ProvingLGround, Md., November 1977.

10. GeberN, "Properties of Rigidly Rotating Liquids In Closed Partlally Filled
Cylinders," ASME Transactions, 3. of Applied Mechanics, Vol. 97, 734-735, 1973.

11. Goller, H. and Ranov, T., "Unsteady Rotating Flow in a Cylinder with a Free
Surface," ASME Trinsactions, 3. of Basic Engineering, Vol. 90D, No. #, 443-434,
December 1968.

12. Wedemeyer, E.H., "The Unsteady Flow Within a Spinning Cylinder," 3. of Fluid
Mechanics, Vol. 20 Pt. 3, 383-399, 1964.

3
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surface may intersect one or both endwalls. This portion of the work is discussed in

Section 2. Unfortunately, there appear to be no data for such flows, either experimental

or numerical, against which to compare the simplified model's predictions. So in the

second phase of the investigation we undertook the development of a more refined

model, based on the full Navier-Stokes equations, which removes the principal

approximations of the earlier analysis. The form of the equations and the finite

difference algorithm used to solve them are described in Section 3. Section 4 summarizes

the conclusions drawn from the investigation and s-ggests where further work is needed.

A;
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2. SIMPLIFIED MODEL

This model has' been the subject of an earlier interim report. 6  Since its
preparation, a few improverments have hien male, and the revised model and its results
are the subject of a manuscript submitted for joiwnal publication. 7 Hence only a, brief

summary of the principal approximations and equations will be given here.

2.1 Principkl Assumptions and Ecniations

We wish to predict the spin-up of fluid in a cylinder of radius R and height H
(see Fig. J) which at t = 0 impulsively begins to spin with constant angular velocity,
A, about its axis. The fluid Ls incompressible and characterized by its density, p
and kinematic viscosity,4 . Its initial level %viien at rest is denoted by L. The velocity
components in the (r, O, z) coordinates are (u,v,w) respectively. Time is here normalized
byf:-1 , velocities byAR, and the radial and axial dimensions by R and H, respectively.

As noted earlier, the present model builds on the previous investigations of
Wedemeyer1 2, and Goller and Ranov 11. In the fully filled case, Wedemeyer argued that
in the limit of large Re the flow could be conceptually divided into two regions: the
viscous flow in the endwall Ekman layers. and the so-called "core" flow away from the
endwalls where viscous effects are much less important. In this limit, the u and w
velocity components are much smaller than the azimuthal component, v, so that most
terms in the Navier-Stokes equations involving u and w are neglected. This leads to

a simplified model in which u, v and the pressure p are functions of only r and t, the
so-called "columnar" flow approximation. The momentum equation governing v (rt) in

the core flow, reduces to,

•, (327 Pt.'= p•• ,zr• 1
*- -t -• r , r " (

>(•)

subject to the Initial and boundary conditions,

?.r, o) A 0 0 4 ' (1a)
V 0 t ,.o (2b)
'zr(,,t)- 1 C 0 '(2c)



The free surface contour is denoted by ZF5 (r, t). Following Golier and Ranov., I its

evolution is governed by an equation which balances the centipetal and gravitational

force components tangential to the surface:

dr r (3)

Equation (1) is solved using a Crank-Nicholson type implicit finite-difference

scheme on a uniform radial grid. Equation (3) is then integrated numerically, using a

Simpson's rule quadrature, to update the surface contour. Note that Eq. (1) is still

nonlinear owing to the presence in the convective term of u, which is itself a function

of v. Hence an iterative process is required at each time step to get a consistent

solution; the details can be fotind in Ref. 6.

The relation between u and v is the missing link needet; to dose the above

system. For the filed case, Wedemeyer 12 derived such a relation by arguing that
whatever outward radial mass flux is generated in the endwalU Ekman layers must be

balanced at each radial station by an equal but opposite inward flux in the core flow.

The flux ni the Ekman layers is known to develop on a time scale very much faster

than the spin-up time. Hence its magnitude can be predicted at each instant by

assuming that it responds in a quasi-steady manner to changes in the azimuthal velocity

of the core flow above it. Since the columnar nature of the flow dictates that the

compensating radially inward flux in the core flow be spread uniformly in the axial

direction, this gives the needed relation between u and v. It is this inward flux that

is responsible for distributing the angular momentum acquired in the endwall layers

over the remaining fluid.

The preceding argument gives the contribution to u.In the core flow caused by

Ekman layer pumping. GoIler and Ranovl' reasoned that, in'the partially filled case,

this would be opposed'by an outward flux In the core-ow14-thg the fact that fluid is.

being flung out toward the. sidewall and away from the centerline. Specifically, the

time rate of change of fluid volume between the centerline and the cylindrical surface

at any radius r must, equal the flux of fluid across 'the surface. Again the columnar

approximation requires that this be spread uniformly in the axial direction. The result

is an expression for the. positive contribution to u created by the free surface motion.

To the extent that it opposes the negative contribution driven by the Ekman layers,

the spin-up process is' retarded.

6
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The specific form of the equations for u (v) may be found in Ref. 6 and 7. For

flows in which the free surface does not intersect either endwall, the model is essentially

the same as Goller and Ranov's. The principal difference is the use here of an implicit,

as opposed to their explicit, time-marching algorithm; this was done to allow the use

of increased time steps, and hence shorter running times.

The present model departs from that of Goller and Ranov in cases where one

or both of the endwalls are intersected by the free surface. 01 particular interest is

the question of how best to describe the z:rface contour after both endwalls are

intersected. Now both limits of integration in applying Eq. (3) (ro and rH in Fig. 1)
become functions of time and the surface contour is very steep; this complicates the

accurate integration of Eq. (3) with respect to r. Boah difficulties can be overcome

by switching to a description of' the surface as RFS (z, t), and reinterpreting Eq. (3)

with z, rather than r, as the independent variable of integration. With this frame of

reference, the contour has a shallow slope and lies between constant limits of integration.

The price one pays is that an integral equation must be inverted to obtain RFS (z, t),

but this turns out to be amenable to a simple relaxation solution which usually converges

in a few iterations. For detuils, the reader is referred to Refs. 6 and 7.

Another distinguishing feature of the present model is that, once the free surface

has intesected an endwal, 'the Ekman layer there no longer completely wets the surface.

To the author's knowledge, there have been no published investigations into the structure

of the layer which forms in such a case. Accordingly, heuristic reasoning was used to

suggest simple analytical modifications to the Wedeineyer expressions which reflect the

expected reduced mass flux, and still remain within the columnar flow approximation.

These. expression were quoted in Ref. 6 as Eq. (19) for UTEL and Eq. (25) for UBEL,

which represent te contributions to u in the core flow from the top and -bottom Ekman

layers, respectively.

2.2 Modiflcati ns To oristinal Model

Subsequent to the preparation of Ref. 6, modifications were made to the analysis

tobetter reflect the physical phenomena. One of these changes has to do with the
heuristic modelin of the Ekman layer pumping from a partially wetted 3urface, ,a just
described above. The expression now used for the -contribution to u from the layer on

the top endwal 1

k.-L Z! !6&7



rt. o 4 r r (4a)

u~, H R•) r K- 0, r. r aa)r• r-t -4 r 4- 1 (4b)

which replaces Eq. (19) of Ref. 6. Here rH(t),is the radius at which the top wall is

intersected by the free surface, and KT and IT are adjustable constants. The quantity
f (W3) represents the dimensionless mass flux integral appearing in ,the Wedemeyerl 2

model, as a function of the local angular velocity, 4) = v/r (see Eq. (10) of Ref. 6).

,This expression satisfies the following constraints. u remains continuous acros3

r = rH; the contribution from UTEL vanishes at both r = rH and 1, as it should; the

influence of the top endwall Ekman layer will increase as rH I decreases, which is

intuitively satisfying; and the columnar nature of the flow is maintained. It also reduces

to the form of the original Wedemeyer model in the fully filled limit, rH, = 0; this

last point was not tr .e of Eq. (19) in Ref. 6. Practically speaking, however, this

change had a negligible influence on the numerical results for the -conditions studied here.

An expression analogous to Eq. (4) above was used for uBEL, and satisfies similar

criteria (Eq. (25) of Ref. 6). Certainly other analytical forms can be found which
would satisfy these constraints. But in the absence of any experimef-tal data to serve as

a guide, it was decided to employ as simple a form as possible.

Another modification to the original model concerns the appropriate boundary

condition to apply to Eq. (1) once a portion of the bottom wall is exposed. After this
occurs, one cannot expect Eq. (2b) to apply, as there is no longer any' fluid at the axis.

At the contact line, r = ro in Fig. 1, one is faced with the apparently conflicting

* requirements that there be no slip at the solid surface, but that the contact line

nevertheless, be allowed to move. The resolution of this paradox- is still an active area

of research, see e.g., Ref. 13, but beyond the scope of the present investigation. In

our simplified model we initially chose to use a no-slip condition, viz. v(ro) 2 ro (Ref.

6). This produced a discontinuous change in angular velocity near the origin as the

free surface passed through this point. An argument can also bemade that one has

no right to impose a. no-sip condition on the (relatively) Iwiscid core flow described

13. Plsmen,. L.M. and Nir, A., "Mction of a Contact Line," Physics of Fluids, Vol.
23, No. 1, 3-7, 3anuary 1982.1

8i
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by Eq. (1), where the terms needed to define the Ekman layer structure have already

been eliminated.

-Accordingly, an alternative! boundary condition or v(ro) is now used, one based

on the kinematic condition that a particle on the free surface must remain there. It

is most easily derived by taking the integral of Eq. (3) from ro to some general positon

r, differentiating the result with respect to time, and then evaluating it at r " ro(t).

The boundary condition one obtains is:

-. (()

which replaces Eq. (20) of Ref. 6.

2.3 Results

After changing the analysis as described in Section 2.2, the numerical results

presented in Ref. 6 were rerun with the modified code. These include cases for a range

of Froude number, Reynolds number, and fill ratio. The revised ;.esults are presented

in Ref. 7. A representative sample case is displayed here in Fig. 2. This is referred to-

as Case 3 in Ref. 6 and 7 and corresponds to Re = 1.172 x l0-, F = 3.5, H/R = 3.0, and

L/H = 0.6. The azimuthal velocity profiles vs. radius are shown in Fig. 2a. The first

nine profiles are for dimensionless times t = 400 to 3600 in increments of 400. The
last profile, for ts = 4745, integrates to a total angular momentum about the axis

greater than 99% of its final value, at which point the calculation was stopped. The

fluid then is for all practical purposes in solid-body rotation. The last five profiles in

Fig. 2a end abruptly on the left end at the' point r = ro(t), where the free surface has

intersected the bottom wall. Since there is no fluid to the left of this point, v 'is

undefined there.

This is more clearly seen in Fig. 2b, which shows the free surface profiles for

the same times, The asymptotic nature of the approach -to solid-body rotation is

evident in both figures from the closer spacing of the profiles later in the calculation.

Note also that the surface contours become quite steep, and thus warrant the extra
effort spent in switching from a radial to an axial grid for the surface Integrals when

both endwalls are intersected.

Pik U. " 6 V..
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A semi-logarithmic plot of the dimensionless angular momentum deficit,
I-LZ(t./LZ(@), vs. Re-1/ 2t is presented for Case 3 in Fig. 3. The reason for scaling
the time axis in this way is because linearized analysis indicates that the dimensionless
spin-up time scales as Rel/ 2 (Ref. 8). For comparison purposes, the results from Cases
4 and 5 (Ref. 7) are also presented on this plot; these cases differ from Czse 3 only in
the values chosen for Re, which are indicated on the figure. For each case two flagged
symbols are shown. The first of these represents the instant at which the free surface
first hits the top wall; the second, the instant at which it intersects the bottom wall.

The most noteworthy feature of Fig. 3 is that up to the instant where the bottom
wall is intercepted, the data in each case lie on a straight line. This is consistent with

the finding of linearized theory for the fully filled case that the time dependence of
the spin-up process is a simple exponene.al. What is surprising is the degree to which
this remains true, here, where nonlinearities and a free surface are 'both present. After
the bottom endwail is intercepted, however, the nun.rical data *n Fig. 3 follow a line

with a reduced slope, indicating a slower rate of spin-up.

The fact that the surface hitting the top wall apparently has little effect on
-he rate of spin-up .can be explained by noting that the radial extent of the fluid at the
top wall in Fig. 2b is relatively thin; moreover, the fluid in this region has already
acquired a significant fraction of its final angular velocity. Hence its contribution to
the Ek-•an pumping rQm'ains small compared with that from the bottom layer, which

still completely covers the wall. Once the bottom wall is intercepted in the final
stage, however, the strength of the bottom Ekman layer pumping is progressively reduced
as the wall is exposed, and a slower spin-up rate results. Thus, it is the bottom Ekman
layer which is the dominant driving force behind the secondary flow responsible for

spin-up.

As noted in Section '2.2, Cases 3-5 had originally been run (Ref. 6) with a no-
slip condition on v(ro), whereas the results reported here and in Ref. 7 used Eq. (3).

A comparison of the two sets of results shows that the latter lowers the velocit,
profiles' '.n the immediate vicinity of ro, and increases the spin-up time by 3%, 5% and

19% for Cases 3-3, respectively. Referring again to Fig. 3, the only qualitative change
of any note was that, with the no-slip condition, Case 5 had previously exhibited no
kink as the bottom wall was intersected. This was interpreted as meaning the Reynolds
number in this case was low enough for viscous diffusion from the sidewall to dominate

11
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over Ekman layer pumping. With the revised results all that can be said is that the
change in rate of spin-up at the second transition decreases with decreasing Re in Fig.
3. Finally, it is interesting to note that the angular momentum ratios at the times
at which transitions occur are nearly independent of Re.

Additional numerical- results and discussion may be found in Refs. 6 and 7.

13
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3. NAVIER-STOKES MODEL

The simplified model described in the preceding section is predicated orn the
following principal approximations: conceptual division of the flow into the viscous
endwall Ekman layers, and the relatively inviscid "core" flow; the assumption of columnar

flow in the core; and the quasi-steady treatment of the Ekman layer pumping. Each
of these becomes more questionable as the Reynolds number is lowered. Moreover,

the cnly experimental data available to validate the simplified: model's predictions are
those in Ref. il, which pertain only to situations where the free surface intersects

neither of the endwalls.

Hence the goal of the second phase of the present. program, described below,

was to develop a more refined numerical model based on the full Navier-Stokes equations.

Such a model would relax all the above assumptions, and serve to validate over what
range of parameters the simplified model could be trusted.

3.1 Governing Equations

The flow it) principle is governed by the continuity equation,

I7 a (6)

and the Navier-Stokes equations,

+..Z .( Zi) - - k -RJ'VxvxIY (7)

where the time t is again normalized byAW1, the velocities.by.D.R, and the pressure by
p(AR)2 . In contrast to the simplified.model, however, all. lengths are here normalized

by the cylinder radius, R. In dimensionless coordinates then, the -cyrinder maps to the
region 0 'r A 1, 0 , z A H/R,

The convective term in Eq. (7) has been written in conservative form using the

Identity

, .14
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while the viscous term was transformed using

7 7 xV~(7x z~) 4- V (7.t~)

The second term in each identity vanishe's as requi Ired by Eq. (6), andi the result

is Eq. (7). In this form the finite difference analog of the convective terms conserves

momentum. The reason for transforming the viscous terms in this way will become

apparent shortly.

Equations (6) and (7) comprise four scalar equations for the unknowns u, v, w and

p. An additional relation is needed to predict the unknown free surface contour. As
before, we describe the free surface by G = z - ZFS (r, t) = 0. The kinematic condition

that a fluid particle on the surface must remain there then requires that 14

D Ar (8)

at the sutface,,G =0.

When written out in cylindrical coordiantes, Eqs. (6) - (8) become

1 2(*") .. A.'. 0 (6)
r .0r

t L~ r r 13 Tr

~' ~ ~ --(7a)

-0 I -T

0 i L4 2r)

Ot or 3. i

+ e r Pr L ge Th/

14. Batchelor, G..K., An Introduction to Fluid Dynamics, Cambridge University Press,
1967.
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14fFS(8)

where, e.g., WFS represents the axial velocity component at a point on the free surface.

The only assumptions that ha. e been made in writing the above equations are that the

flow remains axisymmetric and laminar.

To uniquely define the problem, initial and boundary conditions for Eqs. (6)'- (8)

are needed. They are most easily discussed below in connection with the: finite difference

form of the equations.

3.2 Coordinate Transformations

In order to better resolve the viscous Eknman layers on the endwalls and the

Stewartson layer at the sidewall, a coordinate stretcding is employed. We use the

same transformation successfully used by Kitchens 13 for the filled case. The radial

coordinate r is transformed to P where

0 Iejb6 (9a)

The inverse transformation is

r - b [ '.;f ] [ f" (9b)

13. Kitchens, C.W., 3r., "Navier-Stokes Solutions for Spin-Up I a FiLled Cylinder,"
AIAA 3', Vol. 18, No. 8, 929-934, August 1980.
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Similarly, the axial coordinate is transformed according to

2R

'2 R. . • E• (10a)"'
C - +

whose inverse is given by,

The above transformations map the cylinder imnto the unit square! 0 & 6o A , 0 A !A in

the (p, ) computational plane. The cor.-ants b and c (1i) are input parameters used L

to adjust the grid spacing;, as b and c approach unity from above, progressively more
points will be clustered near the side- and endwalls in the physical (r, z) plane,

respectively.

Upon application of the above tranrformatlons, Eqs. (6)$8) become, -in the

computational plane:.

0 (1)

LL r (r'a) + rX 4 ",r) ,011).

Rp IA (12a)

* ''LLO R.0 r 44 u-(W Z

zr,*

,17,
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(r, ' u-'. U) 14)_1
-= (- - (120)

+R-, r-O1 r uy g

i-i
-AF 4.ps P5/0r O.FS)IO (13)

where subscripts are'used to denote differentiation.

313 Computational Grid

The above equations are differenced on a uniform rectangular grid in the

computational (p, ' ) plane. Initially an attempt was made to use a conventional grid,
i.e. one in which the velocity components and pressure are all defined at the same

grid locations. But it was found that this leads to an inconsistency between the

difference forms of the velocity and pressure equations. This will be mentionved again

below in connection with the form of those equations.

The differencing scheme now used employs a so-called "staggered" or interlocking

grid, which was first proposed by Welch, et al. 16 in connection with' the Marker-and-
Cell (MAC) method. Although the explicit MAC -method Is not used here, for.

incompressible flows the staggered grid arrangement still has clear advantages. This

arrangement is shown in Fig. C The letters j and k are used as indices in the radial

and axial coordinates, respectively. The pressure p, is defined at the center of each

grid cell, pj, k, I.e. where integral values of j and k intersect., The radial and azimuthal

velocities are defined at the center of the cell's vertical faces, at (j ± 1/2, k; and
the axial velocity Is defined at the, center of the horizontal faces, at (j, k + 1/2)..

16. Welch, 3.4. Harlow, F.E., Shannon, 3.P. and Daly, B.3., The MAC Method: A
CommInf Technivu for Solving Viscous, Incompressible, Transient Fluid-Flow
Problems Involving Free Surfaces Los Alamo. Scientific Laboratory Report LA-
"92., March 1966.
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The grid is numbered in such a way that the cylinder axis and the sidewall lie

along j = 3/2 and j = N3 - 1/2, respectively; N3 is the chosen number of radial grid

cells. The relation between jp and j is thus Q = (j - 3/2)hp , where AP = 1/(NJ-2).

Analogously, the bottom and top endwalls lie along k = 3/2 and k NK - 1/2, respectively,

with NK the number of axial cells. Thus f = (k - 3/2)AT , where Al = 1/(NK-2).

3.4 Difference Equations For Velocities

The algorithm used to solve the equations is an adaptation of the semi-implicit

Predictor-Corrector Multiple-Iteration (PCMI) method. This method was first proposed

by Rubin and Lin17 for solving steady, three-dimensional boundary layer problems.

Kitchem1I used it to study the spin-up problem in a filed cylinder, which is believed

to be the method's first application to the full, unsteady Navier-Stokes equations.

Because of the absence of a free surface, Kitchens was able to more easily formulate

his equations in terms of the stream function-vorticity variables. The present study

is thus believed to be the first time the PCMI scheme has been applied to the primitive

variable formulation of the Navier-Stokes equations, with a free surface present.

The basic idea of the PCMI scheme is rather simple. We will use a uniform

-time step, At, and a superscript i to denote the time. level such that t = iAt. At

the beginning of the step to time (i + 1), all flow variables at level i will be known.

The first "predictor" part of the calculation consists of extrapolating all flow variables

to level (i + 1) using information from the three previous levels=

y ,r 3Y- 3Y' Y' (14)

which is accurate to order (At)3. Here Y Is a generic symbol for u, v or w,, and

spatial indices, have been dropped for, simplicity. For the first two time steps,

extrapolations of order At and (At)2 are used, respectively. Equrjon (14) provides

starting values for each of the variables. This Is followed by an Iterative process In

which solution of the Navier-Stokes equations serves to "correctO the initial guess.

17. Rubin, S. G. and Lin, T. C, "A Numerical Method for Three-ODmenslonal Viscous
Flows Application to the Hypersonic Leading Edge," 3. of Computational Physics,.
Vol. 9, 339-364, 1972.

20

,.P 110 P Z

P *1%



The time derivative in Eq. (12) is approximated at level (i + 1) by second-order

* backward differences,

'/; =(3Y it-4Y i+ y _I- a/,Zd

For consistency, the spatial derivatives on the right side of Eq. (12) must also be

evaluated at 0+1), hence the implicit nature of the scheme. For example, let

denote the (n + 1) iterate tothe desired U..*'/, i The viscous and

pressure gradient terms are then approximated by second-order centered differences.

Derivatives in the p coordinate are treated implicitly, ie. in terms of (n + 1) iterate'

values. Derivatives in the I direction use these values as they become available, with

(n) iterate values used where they are not, as the grid is swept from bottom to top.

For example, the viscous terms in Eq. (12a) are approximated by

(Ar

,,,/ , +, F?"• ' ':* . ?•"••t

C4 (14 . _.I) LA4" j.

The nonlinear convective terms in the equations are differenced using a hy rid

of centered and upwind schemes, as suggested by Hirt, et al.18  As an example, the

* radial convection term In Eq. (12a) becomes

IL Hirt,. C.W, Nichols, B.D. and Romero,, N.C.v SOLA A Numerical Solu on
Algorithm for Transient Fluid Flows, Los Alamos Scientific Laboratory Re
LA-5852, April 1975.
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where at is an adjustable input parameter between zero and one. For cc r 0, centered

differencing is recovered, while ac = I yields full upwind or "donor-ceill differencing.1 9

Such a scheme is stable and conservative, yet reduces the formal truncation error to

first-order; as pointed out in Refs. 19 and 20, it may still produce results comparable

in accuracy to those of a second-order centered scheme. Note that the convective

velocity is evaluated from the previous iterate, so that the algebraic equations are

rendered linear. The above form calls for values of u and w which are not defined in

the grid system of Fig. 4. For such quantities, simple averages are taken, e.g.,

This scheme leads to a tridiagonal system of equations for each of the velocity

components along a given k row. Because of their length, the full system is given in,

the Appendix. For each k, the equations are easily solved, using a standard algorithm

for inverting tridiagonal systems. 1 9 The initial conditions at t = 0 are u = v = w =

0 everywhere. The grid is swept by first correcting the values adjacent to the endwall,

k = 2, and, proceeding one row at a time up to the free surface.

At the cylinder axis, the following boundary conditions are imposed:

' (a).

19. Roache, P.J., Computational Fluid Dynamics Hermosa Publishers, Albuquerque,
N.M., 1976.

20. Spalding, D. B., "A Novel Finite Difference Formulation for Differential.
Expressions Involving both First and Second Derivatives," International '3ournal
for Numerical Methods in Engineering, Vol. 4, 5-3159, 1972.

22

. "l -( . .

•-



At the bottom wall, a no-slip condition is enforced:

1~*?.(16)

And at the sidewall, the following obtain:

(17)

where 21L denotes the cylinder's angular velocity normalized by its final value. For

ideally impulsive spin-up, I.- 1 for t > 0. The code allows for a "ramped" imposition

of this boundary condition, ie.,

-
% t

.. •..' ' T €• • M,,"(18)

where typically tMp = 10. Equations (15) - (17) are accurate to second order.

Finally, there is the question of what boundary conditions are appropriate at the

free surface. Let KT () denote the topmost cell in the j-column which contains fluid.

Following Hirt, et al. 18 if KT .() does not exceed KT (jQl) the azimuthal and radial
- velocities at (j. 1/2, KT),'. along with all other interior cell values to their right, are

corrected via the Navier-Stokes equations as described above; otherwise, they are set

equal to the values in the cell immediately below. In either case, the axial velocity in

the surface cells Is chosen so as to satisfy the difference approximation to Eq. (II),' i.e.,

23



This specification assures that the divergence in cell (j, KT) vanishes (see Eq. (20) below).

The above -boundary conditions apply to situations in which neither endwall is

intersected by the surface, and will require some modification for cases in which this

is not so.

The semi-implicit PCMI method described above was chosen over simpler explicit

schemes, e.g. the MAC method, 1 6 for several reasons. Since radial variations are

treated implicitly, the allowable &t depends only on the axial, and not the radial, grid

spacing (Refs. 15, 17). Axial gradients in the core flow tend to be much smaller (recall

the columnar flow approximation in Section 2), and so will allow larger grid spacings

and time steps. Indeed, this is the reason for treating the radial and axial variations

implicitly and explicitly, respectively. The PCMI method has also been proven capable

of handling the strong nonlinear coupling between the equations, as demonstrated by

its success for the filled cylinder problem.15 Finally, the iterative structure of the

scheme provides a convenient framework for correcting, the free surface contour at

each step. The overall iterative process will be discussed in Section 3.7.

3.5 Difference Equation For Pressure

The time derivative of p does not appear in Eqs. (U0)-(13). Hence they cannot

be used to .march the pressure field forward in time in the same manner as the velocity

field. Instead, the pressure field is adjusted at each time step so as to enforce the

incompressibility condition expressed by Eq. (11). Let D = v-* , and Dj,k denote its

value at the point (j, k) in Fig. 4. Using centered differences,

(20)

÷ A ( ,~ ~'j. = O
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The equation for p is obtained by taking the same linear combination of Eqs. (A-i) and

(A-3) as appears in Eq. (20). One can see by inspection that the terms involving time

derivatives will lead to:

ae~t'(21)

which is a second-order accurate approximation to -i`

Those terms involving p combine to yield

.+ IL

"which is a second-order approximation to the Laplacian,.

OrP a~

centered at (j, k). The terms which result from the'convection terms in the momentum

equations are too lengthy to quote here in thek original form. However, they are

easily recognized as the difference approximation to the continuum term, V.(V.fl)at

(jk). This brings up another important point which differentiates the present scheme

from the MAC method. One .cn easily show, using tensor' notation and the Einstein'

summation convention,, that

,.(v. ) _ 0

4) &V: -• a•,
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The last two terms vanish for the continuum equations, as, per* Eq.; (6). In the explicit

MAC method, all three terms are essentially included in the pressure equation in

difference form. But because they get evaluated at the previous time step, for

which dV, = 0 is already satisfied to some prescribed accuracy, the contribution

from the last two terms on the right is made vanishingly small - as it should be.

In the present implicit formulation these terms are now evaluated at the new

time. However, ) ,J in general will not be small during the iteration process prior

to convergence, and so the presence of the last two terms on th. rifht can be

destabilizing. For this reason, and to be consistent with setting = 0 in the

time derivative (see below), we omit the last two terms on the right from the pressure

equation. Thus the cylindrical coordinate representation of # • is all that remains

of the convective terms. The full difference equation for p is qucted in the Appendix

as Eq. (A-4).

By making the above term-by-term identifications, we see that the substitution

of Eqs. (A-1) and (A-3) into Eq. (20) yields exactly the same difference equation as

would be obtainid by first taking the divergence Of Eq. (7),

7t ~ .( -

and then applying the difference approximations.' At first reading, this statement might

appear obvious. 1154c in fact, as discussed by Weldc, et al.,16 the staggered grid

arrangement of FR8. 4 appears to be the only one for which this statement is true. In

particular, it is not true for a conventional grid arrangement, for which the two

approaches produce entirely different results. It was because of just this inconsistency

that the conventional grid was abandoned here in favor of the staggered grid (cf.

Section 3.3).

Another noteworthy feature of Eq. (A-4) is the complete absence of any viscous

terms, which turn out to be self-cancelling. This is the reason for having expressed

the viscous terms in the form used in Eq. (7). Since the divergence of the curl of

any vector field is identically zero, a considerable simplification of the pressure equation

results.

26
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Equation (A-4) recognizes that while D is supposed to vanish throughout the flow

at all time steps, because we can never solve the equations exactly some small but

finite divergence will be present in the solutions at times i and (i-1). However, the

pressure field is now to be determined in such a way as to make the divergence vanish

at time (0+1). This is reflected in Eq. (A-#) by setting only the term from

expression (21) to zero, while the values at i and (i-1) are found from the velocity field

at those times. In this way, any growth in the divergence field is self-limiting, and

the solution remains stable.16

Equation (A-4) represents a Poisson equation foe the pressure with the source

term on the right a function of the latest iterate to the velocities at Q+ 1). It is

solved here using a standard point SOR method, traversing the grid starting at the

-lower left corner (Q = 2, k = 2), passing from left to right across each row, and sweeping

from the bottom row up to the free surface. The initial condition is just the hydrostatic

pressure distribution,

F 174
the starting value for which is given by

The boundary conditions at the axis and solid boundaries are obtained by

specializing the appropriate normal momentum difference, equation to that boundary,

and employing Eqs. (15) - (17). Hence at the centerline,

*(22)
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At the bottom wall,

(23)

At the sidewall.

where again .IA has been used rather than its final value of unity to' allow for the
ramped imposition of the sidewall boundary condition, Cf. Eq. (18). The above represent
Neumann-type boundary conditions on the solution; they are incorporated directly into

the relaxation equations at the points immediately adjacent to the boundary as described
by Roache19 , pp. 183-18,+.

The pressure in the surfachcell at (j, KT(j)) is found not from Eq. (A-l), but

rather from the boundary condition that the presure at the free surfacbe ea constant,
say ipn. This boundary condition neglects the effectshof surface tension, whidc are

small for the surface radii of curvature of interest here.14 Also neglected are viscous

stresses at the surface; their influence has been shown by experience to be significant

only when Re•10. 2 , Referring to Fig. 3, we denote by h the distance the free surface

lies above the pressure node. at KT, expressed In the transformed Y coordinate. Then

a linear interpolation between the surface and the node at KT-I yields

/ .~

21. Hirt, C.W. and Shannon, 3.P., "Free-Surface Stress Conditions for Incompressible-
Flow Calculations," 3. of Computational Physics, Vol. 2, No. *, 4034-$l1, 1968.
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Figur, 5 PRESSURE BOUNYDARY CONDM~ON AT THE FREE SURFACE
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Similarly, if the value at KT+I should be needed,

,Kr, = 2 -PKr, (25b)

Hence only in interior cells is the pressure adjusted to satisfy Eq. (20); in surface cells

this function is served by the velocity boundary conditions, Eq. (19), with Eq. (25a) used

to determine the pressure.

3.6 Difference Equation For Surface Contour

The continuous function ZFS (,, t) in Eq. (13) is discretized by defining it at

integral values of j, i.e. denotes ZFS at A j and t =i t. Second-order
ISj.=

backward differences are again used for the time derivative. The convective term on

the right is approximated using a hybrid of upwind and centered differences analogous

to that used in the momentum equations.18  The result is

3Z '4 ' #ze, ,.1 , Ipf ' v14 i.., - .

1 (26)
- ,81 u.,,-•L ;,;.../•,(,,•,%• ;; i' ,j".+i

where is an input parameter analogous to DC values, of X. 0 and I produce purely

centered and upwind differencing, respectively. Zf represents the (n+l) iterate to

the contour zI+ I, and wnl I the free surface axial velocity at p ., z = Zs. found
iSF

by linear interpolation of the (n+l) velocity iterate. Eq. (26) represents a linear,

tridiagonal system for the unknown Zin, and so can be inverted using the same efficient
.I

algorithm as for the momentum equations. The initial condition is ZFSj.a L/R at t = 0

for all j.

Since Eq. (13) Is of first order in the radial coordinate, only-a single boundary

condition is required. But the values of ZFS'at the centerline and the sidewall are

.30
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not known a priori. So instead, a global boundary condition is employed, based on the

fact that total fluid volume is conserjmd. At each instant this requires, in dimensionless

form,

= V. (27)

The above .summation is a trapezoidal rule approximation to the voluwme integral, in

terms of the transformed variable p . The constant Vo is easily determined at the

start when all the ZFSj_ equal the initial fill level. To see how this condition is

enforced, we note that the last step in the tridiagonal solution algorithm19 for the
zn+!FSj is the application, of the following linear recursion between neighboring values:

ZF5-1 .#F- (28)

El. and Fj. represent coefficients derived from Eq. (26) which. depend on the surface

velocities and p, but not on tbe Zn+lFSj-

From Eq. (2S) we see that once the fluid level at j NJ is given any value the

remainder of the contour is uniquely determined. So also is the summation in Eq. (27),

which in general would not equal Vo. However, since Eq. (28) is linear in ZF 5 one

can easily substitute it into Eq. (27) and solve analytically for the value at j. = NJ, in

terms of Vo and other constants, all of which are already known. In this way, the

needed boundary condition on the surface contour is determined so as to automatically

satisfy conservation of fluid volume without the need for additional iteration.

3.7 Overall Computational Cycle

Here we outline the principal steps involved in advancing -the solution through

one time cycle using .the results of the preceding sections.

1. It Is assumed that 'the solution at time levels 1, 1.-, and 1-2 is known,

either from' the initial conditions, or because we have marched the

calculation that far.

31



2. A prediction is made for each of the velocity components, the pressure,

and the surface contour using the extrapolation in Eq. (14). This can be

viewed as the zeroth iterate to the solution at i+ 1.

3. The velocity field is corrected, i.e. the (n+l) st iterate is obtained from

the solution of Eqs. (A-I) to (A-3), as described in Section 3.4.

4. The (n+l)st iterate to the velocity field is used -to interpolate for the

radial and axial velocity components at the surface, and then Eq. (26) is

solved for the (n+l)st iterate to Zi+lFsj:

5. The boundary conditions on velocity and pressure across the new iterate

to the free surface are updated using Eqs. (19) and (25).

6. Equation (A-4) is solved using point SOR to obtain the (n+l)st iterate to

the pressure field at time (i+1). This actually represents an inner iteration

nested inside the outer iteration loop for the velocity field. The pressure

solution is considered to have converged when

( i.1 (29)

where APjk is the change in pressure at (j, k) from one pressure iteration

to the next. C rp and L-ap are, respectively, the relative and absolute

convergence criteria applied to the pressure solution; typical values used

are Grp 10-4 and Cap = 0 ___

7. The pressure boundary condition across the free surface is updated using

Eq. (25).
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S. The convergence of the velocity field is assessed by testing whether

LL :4 (30)

with analogous tests applied to the v and w components as well. E rv

and Cay are the relative and absolute convergence criteria applied to the

velocity field; typical values used are Err = '10-3 and Eav = 10-G. If Eq.

(30) is not satisfied, return to Step 3 above for another iteration cycle.

9. Once Eq. (30) is, satisfird, the (n+l)st iterate is accepted as the n'ev

solution at (i0+). The variable arrays are updated accordingly, and the
divergence at'the center of each cell is calculated and stored. If desired,

printout of selected portions of zhe solution is made at this stage.

10. If a predetermined stop time or a steady-state condition ha-, been reached,

the calculation is halted. Otherwise, control returns to Step 2 for

advancement through the next time cycle.

3.8 Results

The co•iditions chosen for initial study were H/R z 3.0, Re = 103, F z 0.6,

LIH = 0.8, and PFS z 0. For these conditions the flow remains in Stage I (Figure 1) aU

the way to solid-body rotation, ie., neither endwall is intersected. N3 = 22 and NK=

32 grid ce s were used in the radial and axial directions, respectively, and the grid,

stretching rameters in Eqs. (9) and (10) were b = c = 1.032. These choices put the
grid lines ong k * 2 and j.='NJ-l at a distance 6.003 x 10-3 and 2.9 x 10-3 away from

the endwa and sidewall, respectively. The parameters .' and p were both zero,

correspond g to centerem differences.

Usl various values of at, we unfortunately have not been able to run such a

case to conpletion. Typically the calculation proceeds satisfactorily for a short time,

but with a progressively slower convergence of the inner relaxation for the pressure

field; the tter eventually fails to converge by the maximum allowed iteration cycle

(ordinarily ). Since the pressure field is determined in such a way as to enforce the

continuity :quation, diagnostics were added to the program to test whether Eq. (20) is
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being accurately satisfied. These include evaluation of the largest absolute value of

the divergence over the whole flow, where it occurred, and the root mean square value

over all the grid cells. Also evaluated is the overall mass flux integral, which in

dimensionless form can be approximated by

y r

V - Vr \ r ( IIdzA, 11 4j Ur .

Satisfaction of Eq. (20) thus assures local continuity while the magnitude of n; is a

measure of global volume conservation.

With a relatively large time stap of 0., when convergence breaks down the

maximum absolute divergence and its r.m.s. value are approximately 8 x 10-; and 6 x
I0- 3, respectively, and &i is about -5 x '10"4. These figures are unacceptably large;

for comparison, the original MAC code (Ref. 16, p. 86) required that the maximum

divergence should not exceed 3.3 x 10-3. With a much smaller time step of 0.01, the

maximum and r.m.s. values when convergence breaks down are 2 x 10-4 and 3 x 10-4,

respectively, with Ai about' I x 10-5. While tnese values are more acceptable, the

troublesome fact is that they appear to be steadily rising, rather than hiving levelled

off. Evidently a source distribution is somehow being numerically introdiuced into the

solution. Presumably the convergence criteria used in Eq. (29) will bear directly on

the magnitu'ie of ICD• A'. But the criteria cited in Section 3.7 are if a-nything even

more stringent than the C rp = 2 x 10-4 of the MAC code (Ref. 16, p. 90).,

The possibility of latent algebraic or FORTRAN errors is always present, but at

this point must be viewed as remote. More likely is the possibility that. the present

semi-implicit method may be susceptible to instabilities not present in an explicit

scheme (Roache 1 9, p. 195). A review of the pertinent literature shows that Pracht 2 2

22. Pracht, W.E., " A Numerical Method for Calculating Transient Creep Flows," 3.
of Computational Physics, Vol. 7, 46-60, '971.
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and Aziz and Hellums 23 were the first to apply implicit methods to the full Navier-

Stokes equations. Pracht's interest was primarily in low Reynolds number flows, Re A 1,

for which the usual stability restriction on A t for an explicit treatment of the viscous Z"

terms is prohibitively small. He was able to successfully calculate such flows with a

larger At by treating just the diffusion and pressure gradient terms implicitly; convective

terms were still evaluated at the previous time. Our interest here is primarily in

higher Re, and an implicit treatment of all spatial derivatives. The first such attempt

"was that of Aziz and HelhrnsB3 , who applied an Alternating-Direction-Implicit (ADI)

scheme. 'They found that while this scheme worked well with a stream function-.

vorticity formulation of the equations, when cast in terms of primitive variables the

equations required prohibitively small steps in order to satisfy continuity. They attributed

this to the highly nonlinear cojpling between the pressure and momentum equations.

Thus for confined flows the studies by Aziz and Hellums 23 and Kitchens 1" indicate

the stream function-vorticity formulation as the method of choice, -since it allows

satisfaction of the continuity equation ab initio. In the present problem the presence

of the free surface does not easily admit such an approach, however. Further, hindsight

suggests that the primitive variable approach taken in Ref. 23 may have been flawed

in two respects. The first is that a conventional, as opposed to a staggered, grid was

employed; as noted in Sections 3.3 and 3.5, this leads to an inconsistency between the

momentum and pressure equations. More Importantly, the a D/ at term in the pressure

equation needed to stabilize the growth of the divergence field was omitted.

"More recently, Shadday, et a12 4 have studied the steady' flow in a rapidly rotating

cylinder with a differentially rotating endcap as the asymptotic solution to the full 4'.

transient equations. First order time differencing was used. To eliminate an otherwise

severe restriction on A t, they found it advantageous to treat the coriolis and pressure

gradient terms implicitly. The remaining spatial derivatives were treated explicitly on

a staggered grid, and the aD/ýt term was retained in the pressure equation.
,1,

23. Aziz, K. and Hellums, 3.D", "Numerical Solution of the Three-Dimensional
Equations of Motion for Laminar Natural Convectiont" Physics of Fluids, Vol. 10,
No. 2, 314-324, 1967.

24. Shadday, M.A., Ribando, R.3. and Kauzlarich, 3.3, "Flow of an Incompressible
Fluid in a Partially Filled, Rapidly Rotating Cylinder with a Differentially Rotating
Endcap," 3. of Fluid Mechanics, Vol. 130, 203-218,1983.
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The only successful attempts at using an implicit treatment for all spatial

derivatives in the primitive variable equations appear to be those in Refs. 25-27. Hodge,

et al. 25 employed first-order accurate backward differences for the time derivative.

Spatial derikatives were all approximated to second order, with three-point "upwind"

differences used for the convection terms. A point SOR method was used to iterate

both the velocity and pressure equations at each time step. Hegna 26 later extended

this scheme to incompressible turbulent flows. Despite the implicit nature of the

algorithm, a time step At < 0.001 was found necessary to adequately follow the

transient solution, resulting in CPU times of 2-4 hours (CDC Cyber 750).

Moitra 27 applied a similar scheme to the three-dimensional incompressible

equati'ons. He improved the time accuracy by employing second-order three-point

backward time differencing in the momentum equations (as done here in Section 3.4);

centered, differences were used for all spatial derivatives, which were treated implicitly.

Inexplicably however, only first-order accurate differencing was applied to the 0/at

term in the Poisson equation for t;e pressure. This produces an inconsistency between

the momentum and pressure equations, in addition to that introduced by his use of a

conventional, rather than staggered, grid. Perhaps for these reasons, his solutions were

found susceptible to "unusually high magnitudes of the divergence." To dampen this

behavior, he introduces a. spatially varying artificial viscosity proportional to the

magnitude of the local divergence. To what degree this contaminates the numerical

results remains an open question.

References 23-27 did not have a free surface, with the exception of Ref. 24;

even then, Shadday, et al. assumed the free surface boundary conditions could be applied

along a surface of constant radius, independent of time. Hence none of the above had

the complication of a moving surface boundary condition to contend with. For example,

this is what prevents us from using a more efficient direct-solver or spectral mLthod

25. Hodge, 3.K., Stone, A.L. and Miller, T.E., "Numerical Solution for.Airfoils near
Stall in Optimized Boundary-Fitted Curvilinear Coordinates," AIAA 3., Vol. 17,
No. 5, 458-464, May 1979..

26. Hegna, H.A., "The Numerical Solution of Incompressible Turbulent Flow over
Airfoils, AIAA Paper 81-0047, 19th Aerospace Sciences Meeting, 1981.

27. Moitra, A., An Implicit Solution of the Three-Dimensional Navier-Stokes Equations
for an Airfoil Spanninz a Wind Tunnel. Ph.D. Thesis, Dept. of Aerospace
Engineering, Mississippi State University, 1982.
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for inverting the Poisson equation for pressure; such methods are readily adaptable only

to flows with relatively simple, stationary boundaries.

The present relaxation procedure for the pressure attempts to enforce the

continuity equation by feeding back into the solution values of the divergence at time

levels (i) and (i - 1). Divergence values based on the new velocities at (i + 1) do not

appear because they are a priori assumed to, be zero, in the spirit of the MAC method

(cf. Section 3.5). Alternative methods have been proposed which use information about

the divergence at time (1 + I). For example, Hirt et al.18 compute the divergence in

each cell based on the latest velocities. Then the pressure at the cell center is changed

by an amount proportional to minus the divergence. Hence a positive (negative) value

of D will produce a negative (positive) increment in p which acts to drive D toward

zero. This recipe is followed from cell to cell in the flow; a constant of proportionality

greater than one is often introduced to overrelax the 'solution. Such a procedure can

be shown to be analogous to solving a Poisson equation for the pressure. It has the

dual advantages over Eq. (A-4) of having a much simpler right hand side, and its direct

use of the current divergence, as opposed to that at previous times. Whether it could

successfully be incorporated with the present line relaxation for the velocity field will

require further analysis.

To summarize, we have not yet been successful in our application of the PCMI

algorithm to spin-up in a partially-filled cylinder. Our review of the pertinent literature

has turned up several examples of the successful application of other implicit methods

to the incompressible Navier-Stokes equations. 2 4 -27  The differencing scheme of

Moitra*27 most closely parallels that used here, although significant differences remain

in the grids used and the methods employed to solve the algebraic equations.

Interestingly,' his results also tended to exhibit unacceptably large values for the

divergence of the velocity field. We are still in hopes that this instability can be

removed without resorting to the explicit introduction of artificial viscosity used by

Moitra, as the latter may unduly contaminate the results.

In any event, we have found no a priori reason to doubt the validity of the

present approach. Nevertheless, the connected difficulties of slow convergence of, the

pressure Iterations and the inaccurate satisfaction of the continuity equation need to

be addressed. In the future we hope to study whether a pressure correction scheme

based on the latest divergence iterates could successfully overcome these problems.
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4. CONCLUSIONS

Initially a simplified numerical model was developed for the axisymmetric spin-

up of fluid in a partially-filled cylindrical cavity. The analysis represents an extension

of the earlier treatments kby Wedemeyer,1 2 and Goller and Ranov, 1 1 to those cases
where the liquid free surface may intersect one or both endwalls. Earlier estimates of

the Ekman layer pumping of the secondary flow are modified heuristically for situations

where the layer no longer covers the entire wall. Also, due to the very steep free

surface contour in the latter stages of spin-up, it was found advantageous to develop

the free surf ace equations in an axial, rather than radial, coordinate frame.

A computer program was used to solve the governing nonlinear equations using

a straightforward finite-difference algorithm. The code predicts both the azimuthal

velocity distribution with, radius, and the free surface contour, as functions of time.

The results exhibit good agreement with the time-resolved experimental data for the

surface contour taken by Goiler and Ranov. Their data were taken only for situations
where the free surface did not touch the endwalls. At present, there are no quantitative

data against which the simplified analysis can be compared for cases where one or

both endwalls are intersected.

Nevertheless, tb.., following qualitative conclusions have been drawn from the
theory. Plotting the fluid angular momentum deficit vs. Re-4 / 2 t appears to correlate

the numerical data reasonably well.. Such' plots indicate that the angular momentum

transfer follows a simple exponential behavior in time. 'For Re in the range 103 - 10-,
the growth rate appears uniform up to the point where the bottom endwall is intersected.

After this, exponential behavior is still exhibited, but at a reduced rate, reflecting the

diminishing influence of the bottom Ekman layer which is primarily responsible for the

secondary flow. The magnitude of the reduction in spin-up rate diminishes with

decreasing Reynolds number.

To validate the simplified model in a quantitative sense, It is desireable that its,
predictions be compared with suitably designed laboratory experiments and/or more

refined numerical calculations. As an attempt to generate the latter, the second phase
of this' program 'was devoted to developing a numerical model based on the full,

axisymmetric Navier-Stokes equations. In an effort to avoid the severe time step
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restrictions characteristic of explicit algorithms, the semi-implicit Predictor-Corrector

Multiple-Iteration (PCMI) finite difference scheme was applied to the equations in

primitive variable form. Unfortunately, we have thus far only been able to march

the calculation for a short time before its convergence breaks down. This seems to

be related to an unacceptably large growth in the divergence of the velocity field,

which should vanish.

Our review of the relevant literature has turned up several examples of the

successful application of other implicit methods to the incompressible Navier-Stokes
equations. 24- 27 'But each differs in sufficient detail from the present scheme so as not

to offer much guidance on how to resolve the difficulties. One complication we face

which has not been previously addressed by other implicit methods is the presence of

a moving free surface. In any event, we have found no a priori reason to doubt the

ultimate applicability of the PCMI method to this problem. Nevertheless, the connected

difficulties of slow convergence of the pressure iterations and the inaccurate satisfaction

of the continuity equation need to be addressed. In the future we hope to study whether

* a pressure correction scheme based on the latest divergence iterates could successfully

overcome these problems.
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NOMENCLATURE

b,c grid stretching parameters in Eqs. (9) and (10)

D divergence of the velocity field

F Froude number, (fLR)2/gH

g axial acceleration ( = gravity in a laboratory frame)

H height of cylinder

i ,time index

j radial grid index

k axial grid index

L initial fluid level before .spin-up

Lz dimensionless fluid angular momentum about the cylinder's axis

N3, NK number of radial, axial grid cells, respectively

p dimensionless pressure, pip (J.R)2

PFS dimensionless free surface pressure

"7, Q, i dimensional cylindrical coordinates

R radius of cylinder

r jr/R
ro, rH dimensionless radii at which endwalls are intersected (Figure 1)

RFS radial coordinate description of the free surface during Stage 3

Re Reynolds number, f.R 2/4

t At

ts dimensionless spin-up, time

u,v,w dimensionless velocities in the (r, 0, z) directions, respectively, normalized

by JAR

z 1/H in simplified model; Z/R in Navie Stokes code.

ZFS axial coordinate description of the fr surface during Stages I and 2b

o£.. A' parameters used to adjust degree of up ind di~ferencing,'Eqs. (26), (A-I)-

(A-3)

6,., 6, relative and absolute error criteria use in Eqs. (20) and (30).

kinematic Viscosity

.p density

. ', p axial, radial coordinates in the comput tional plane

.12 final angular velocity of, -cylinder, rad. sec.

A dimensionless angular velocity of cylir er, normalized by IL
dimensionless local fluid angular veloci y, v/r u /•

(') indicates a dimensional variable
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APPENDIX

We quote here the full difference equations for the velocity components and

pressure, which are somewhat lengthly to include in the main text. The differencing

procedure fee the u, v, and w equations is described in Section 3.4, and the results are:

u equation
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(A-I)

U (7 ( A.

In writing Eq. (A-I), updated values have been used as soon as they become
available. Since the grid is swept from bottom to top, this means using the (n+&)

iterate for velocities in cells centered on row k and below; above this line, values from

the (n)th iterate are used. This scheme also saves considerable storage, since the (n+l)

and (n)th iterates need not be stored simultaneously; i.e., a single array is used with

the former replacing the latter as soon as it is calculated.

v equation
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The above' equations are tridiagonal in' the (n+l) iterate values on each row k.

The difference equation for the pressure is obtained ,from a linear combination

of Eq. (A-1).and (A-3), as described in Section 3,.. The full result is, for . =0, 0

4,01's'(dl.- i,1) " ( *1a l*

- 14~ii2t-) ft. r ]
+ 4 (4 Uri,,, ., , . _ ,

ri (i

A-0.

A-' " . ' , . . . , , . . ,. . . .

~~~ ( U * _ (A -4 ) ,,, - " ." - " ,, " . " . - ' " " " • •w • • " . • . . o • m • "



Terms involving Di+! have already been set to zero to satisfy the incompressibility
condition at the new time, while recognizing that DI and Di-I will in general carry

small residual values.
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