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of the dynamics of fluid spin-up in a partially-filled cylindrical cavity. The
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longer covers the entire wall. Also, due to the very steep free surface contour
in the latter stages of spin-up, it was found advantageous to develop tha free
surface equations in an axial, rather than radial, coordinate frame. This model
and the resulting computer code are the subject of an earlier interim report and

3 subsequent paper submitted for journal publication. Accordingly, only a summary
of this phase and its results is presented here. ‘

Fo eiperinental or rumerical data were available against which to compare
the simplified model's preuictions for cases where the free surface intersects
one or both endwalls. Accordingly, in the second phase of the program a more

equations. This is a finite difference code in which the primitive variable
equations are solved in' conservative form. The development of the governing
equations, and the semi-implicit predictor-corrector scheme used to solve them,
are pressnted in some detaily. Unfortunately, no converged solutions have been
obtained as yet; the possiblo reasons for this are discussed.
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FOREWORD

This is a final report documenting the results of a three-year theoretical progrém
"Numerical Models for Fluid Behavior During Spin-Up in Liquid-Filled Shells," sponsored
by the U.S. Army Research Office under Contract No. DAAG29-81-C-0007. The program
is under the technical supervision of Dr. .Robe_:?t E. Singleton. Recognition is due Dr.
Raymond S. Sedney and Mr. Nathan Gerber of the Launch and Flight Division, U.S.
Army Ballistic Research Laboratory, who through their technical discussions with the
author have had a sxgmfxcant impact on the course of this work. The implicit computer
code which they provided, and which served as the starting pomt for the simplified
model developed here, is also gratefully acknow|edged. Fmally, the author wishes to
thank his colleague, Dr. Villiam J. Rae, for his advice and encourageraent.
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1. INTRODUCTION

The goal of the theoretical program described here was to obtain a clearer
understanding of the fluid dynamics of licjv.id—ﬁlled shells for those cases where the
fluid only partially fills its cavity. Problems can arise during the flight of such
projectiles when there is a strong coupling between the perturbed motion of the rapidly
spinning shell casing = d the attendant wave motion excited in. the fluid. In addition,
unlike a solid filler which always rotates with the same angular velocity as the casing,
the liquid filler will rotate at a reduced angular velocity over much of the trajectory.
The result is a net transfer of angular momentum from casing to fluid, which in itself -

can be destabilizing.l

The model problem most oftén studied by investigators is the aﬂsymhetric spin-
up of fluid in a right circular cylinder of radius R (see Fig. 1). We seek to represent
the evolution with time of the fluid motion, particularly the azimuthal velocity, as it
asymptotically approaches solid-body rotation. Such a calculation is necessary as input
for the prediction of the spin decay of liquid-filled projectiles.z’3 It can also serve as
the base flow about which to carry out a perturbation ana'lysis of the eigenfrequencies
of the fluid.#s7 The' latter are of critical importance to the ques;tion of the stability
of the fluid-shell system.l ' ' ‘

A review of previous work on this problem has been given in Refs. 6 and 7 and
will not be repeated here. The principal conclusion drawn from these studies is that,

L. Engineering Design Handbook. Liquid-Filled Projectile Design, AMC Pamphlet
No. 706-165, U.S. Army Materiel Command, Washington, D.C., April 1969,
-2 Kitchens, C.W., Jr., Gerber, N. and Sedney, R., "Spin decay of Liquid Filled
Projectiles,” J. of Spacecraft, Vol. 15, No. 6, 348-354, December 1978.
3 -Kitchens, C.W., Jr. and Gerber, N., Prediction. of Spin_Decay of Liquid Fnlled
' Projectiles, BRL Report 1996, Aberdeen Proving Ground, Md., July 1977.
4. . Kitchens, C.W., Jr., Gerber, N.,, and Sedney, R., Oscillations of a Liquid in a
" Rotating Cylinder:- Part I. _Solid-Body Rotation, ARBRL-TR-OZOSI, Aberdeen
, Proving Ground, Md., June 1973. .
5. . Sedney, R. and Gerber, N.,Oscillations of a Liquid in a Rotating Cxlmder- Part
- I.__Spin-Up, ARBRL-TR-02489, Aberdeen Proving Ground, Md., May 1983,
6 omicz, G.F., Numerical Model for Fluid Spin-Up in a Partially-Filled Cylinder,

Calspan Report No. 6856-A-1, May 1982, prepared for U.S. Army Research Office
. . as interim report on Contract DAAG29-31-C-00C07. :
7. ‘Homic2, G. F. and Gerber, N., "Numerical Model for Fluid Spin-Up from Rest in
‘a Partia'ly-Filled Cylinder,* submitted to ASME Transactxons, J. of Fluids
Engineering. :
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at large Reynolds number, the dominant spin-up mechanism is a secondary flow driven
by the viscous endwall Ekman layers. This secondary flow redistributes the angular
momentum acquired in the Ekman layers over the rernaining interior "core" flow, which
is relatively inviscid. The cﬁaracteristic spin-up ‘time, tg, has been found to scale as

@/R) Re’® o' (see Nomenclature for a list of symbol definitions).3 For large Re, this -

is much shorter than the time one would expect based so'ely on vxscous diffusion from
the sidewall, tp, which scales as Re "' .

The great majority of previous mvestxganons dealt with the case where the flmd
cavity is completely filled; in practice, however, the shells are often only partially
filled. Field data? show that the probability of a projectile experiencing an erratic
flight is a strong function of its fill ratio, i.e., the percentage of the cavity volume
occupied by fluid. Thus there is an important need to understand the influence of the

interior free surface on the spin-up process. GerberlO has shown that the final form

of this' surface, after solid-body rotation is achieved, is a parabola whose shape is
- determined by the fill ratio and the Froude number, F = (nR)zlgH. Goller and Ranovl1!
studied how the surface contour evolves in time and ns influence on spin-up. They
employed a simplified model which extended the partly phenomeno.ognml analysis of
Vledemeyer 12 for the filled case. Their analysis indicated that the free s\rface motion
acts to retard the spin-up process. Numerical results for both the azimuthal velocity
field and the surface contour were obtained as functions of time, and the latter exhibited
good agreement with their experimental data. The problem with applying their analysis
to actual configurations is that Goller and Ranov assumed the free su-face did not
intersect either of the endwalls. This is a rathe- restrictive asumpuon, as shown by
the analysis of Gerber,10

Accordingly, the goal of the first phase of the present 'investigation was to
extend the simplified Wedemeyer-Goller-Ranov model to situations where the free

8.  Greenspan, H.P.,, The Theory of Rotating Fluids, Cambridge Uriversity Press,

. ' London, 1968.
9. Mark, A., Measurements of Angular Momentum Transfer in Ligxd-Fllled
gr_c‘ectila ARBRL-TR-2029, Aﬁng Proving . Ground, Md., November 1977.
10. er

" Cylinders," ASME Transactions, J. of Applied Mechanics, Yol. 97, 734-735, 1973.

11." Goller, H. and Ranov, T., "Unsteady Rotating Flow in a Cylinder with a Free

Surface,” ASME Transactions, J. of Basic Engineering, Vol. 90D, No. 4, 445—454,
December 1968,

"12. Wedemeyer, E.H., "The Unsteady Flow Within a Spinning Cylinder,* 3. of Fluid
Mechaucs, Vol. 20 Pt. 3, 383-399, 1964, B

.3

ber, N., "Properties of Rigidly Rotatlng Liquids in Closed Partlaily Filled
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surface may intersect one or both endwalls. This portion of the work is discussed in
Section 2. Unfortunately, there appear to be no data for such flows,l either experimental
or numerical, zzainst which to compare the simplified model's predictions. So in the
second phase of the investigation we undertook the development of a more refined
model, based on the full Navier-Siokes equations, which removes the principal
approximations of the earlier analysis. The form of the equations and the finite
difference algorithm used to solve them are described in Section 3. Section 4 summarizes
the conclusions drawn from the investigation and s.ggests where further work is needed.
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2. SIMPLIFIEED MODEL

This model has been the subject of an earlier inte}im repcx't.6 Since its »

preparation, a few improveraents have heen made, ard the revised model and its results
are the subject of a manuscript submitted for 'journal publication.” Hence only 2 brief
sunmmary of the principal approximations and equations will be given here.

2.1 Principai Assumptions and Ecuations ,

We wis.‘i td predict the spin-up of fluid in a cylinder of radius R and height H-

(see Fig. . 1) which at t = 0 impulsively begins to spin with constant angular velocity,
[, about its axis. The flui¢ is mcompressnble ‘and characterized by its density, P ’
and kmemanc vxscos;ty,J . Its initial level wien at rest is denoted by L. The velocity
components in the (r, ®, 2) coordinates are (u,v,w) respectively. Time is here normalized
by.r.‘l, velocities by SAR, and the radial and axial dimeansions by R and H, respectively.

As noted earlier, the present model builds on the previous mvestxgatxons of

’ Wedemeyerlz, and Goller and Ranovll, In the fully filled case, Wedemeyer argued that

in the limit of large Re the flow could be conceptually divided into two regions: the
viscous flow in the endwall Ekman layers. and the so-called "core" flow away from the

endwalls where viscous effects are much less important. In this 'limit, the u and w -

velocity components are much smaller than the azimuthal component, v, so that most
terms in the Navier-S‘toka equations involving u and w are neglected. This leads to
a simplified model in which u, v and the pressure p are functions of only r and t, the
so-called "columnar” flow approximation. The momentum equation governing v (r,t) in
the core flow reduces to, o |

N N R A I R
G R SEe )]

subject ‘to the initial and boundary conditions,
r(r,0) =0 0% rs 4 (22)
w(0,t) =0 t >0 S (2b)

v(1,t) =1 St >0 - . (20

P .-
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The free surface contour is denoted by Zps (r, t) Following Goller and Ranov,11 its
evolution is governed by an equation which balances the centipetal and gravitational
force components tangential to the surface:

= F.’.’_z
dr r

3 . .
Equation (1) is solved using a Crank-Nicholson type implicit finite-difference _ »
scheme on a uniform radial grid. Equation (3) is then integrated numerically, using a S
Simpson's rule quadrature, to update the surface contowr. Note that Eq. (1) is still . - -}
nonlinear owing to the presence in the convective term of u, which is itseif a function '
of v. Hence an iterative process is requu'ed at each time step to get a consistent -
solution; the details can be found in Ret. 6. | . P

| The relation between u and v is the rnissing link needec to close the above - J
system. For the filled case, Wedemeyer!2 derived such a relation by arguing that .
whatever outward radial mass flux is generated in the endwall Ekman layers must be
balanced at each radial staticn by an equal but opposite inward flux in the core flow. .

The flux in the Ekman layers is known to develop on a time scale very much faster

than the spin-up time. Hence its magnitude can be predicted at each instant by

assuming that it responds in a quasi-steadv manner to changes in the aznmuthal velocity

of the core flow above it. Since the columnar nature of the flow dictates that the
compensating radially inward flux in the core flow be spread uniformly in the axial
direction, this gives the needed relation between u and v. It is this inward flux that

is responsible for distributing the angular momentum acquired in the endwall layers

over the remaining fluid.

The preceding argument gives the contribution to u in the core fl_'my'caused by
Ekman layer pumping. Goller and Ranovll reasoned that, in'the partially filled case,
this would be opposed by an outward flux in the core’ ‘owing 2 the fact that fluid is’
being flung out toward the sidewall and away from the centerline. Speciﬁally, the
time rate of change of fldid volume between the centerline and the ;ylindrical surface
~at any radius r must. equal the flux of fluid across the surface. Again the ‘columnar
approximation requires that this be spi'ead uniformly in the axial direction. The result
is an expression for the positive contribution to u created by the free surface motion.
To the extent that it opposes the negative contribution driven by the Ekman layers,
the spin-up process is retarded. S :

........ e e
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The specific form of the equations for u {v) may be found in Ref. 6 and 7. For
flows in which the free surface does not intersect either endwall, the model is essentially
the same as Goller and Ranov's. The principal difference is the use here of an implicit,

. as opposed to their explicif, time-marching algorithm; this was done to 'allow the use
of increased time steps, and hence shorter running times.

The present model departs from that of Goller and Ranov in cases where one -
or both of the endwalls are intersected by the free surface. Of particular interest is
the question of how best to describe the v'rface contour after both endwalls are
intersected. Now both limits of integration in applying Eq. (3) (ry and ry in Fig. 1)
become functions of time and the surface contour is very steep; this complicates the
accurate integration of Eq. (3) with respect to r. Bo.h difficulties can be overcome
by sw:tchmg to a dscnpuon of the surface as Rpg (2, t), and reinterpreting Eq. (3)
with z, rather than r, as the independent variable of integration. With this frame of
reference, the contour has a shallow slope ard lies between constant limits of integration.
The price one pays is that an integral equation must be inverted to obtain Rpg (2, t),
but this turns out to be amenable to a simple relaxation solution which usually converges
in a few iterations. For detalls, the reader is referred to Refs. 6 and 7. -

Another distinguishing feature of the present model is that, once the free surface
has intesected an endwall, the Ekman layer there no longer completely wets the surface.
To the author's knowledge, there have been no published investigations into the structure
of the layer which forms in such a case. Accordingly, heuristic reasoning was used to
suggest simple analytical modifications to the Wedemeyer expressions which reflect’ the
expected reduced mass flux, and still remain thhm the columnar flow approximation.
These . expressions| were quoted in Ref. 6 as Eq. (19) for UTEL and Eq. (25) for Upgp,
which represent the contributions to u in the core flow from the top and bottom Ekman

layers, respectively.

22 Modifications To Original Model

" Subsaquent|to the preparation of Ref. 6, modifications were made to the analysis
to .better reflect [the physical pheromena. One of these changes has to do with the N
heuristic modeling of the Ekman layer pumping from a partially wetted surface, as just 3
described above. | The expression now used for the ‘contribution to u from the layer on &
the top endwall ir: ' ' '

A Y » s S LN L
.,.._'\.,}:: .'q - ,’:r','\\.s ‘\" 'u AT S % ) h\.":;g%n\::t‘ \:' X TI\“‘\". N 3,
AL A .-},(!‘,’ f, K '- _. LS A -.!. i - 5, Y LN d u,




L,.,TE‘_ ‘= 0 0o € re<r, (#a_)

w z - h’g-t (R/H) rk, (ﬁ"l",,/f‘)x'rf(w) re$ rst (4b)

TEb

which replaces Eq. (19) of Ref. 6. Here ry(t) is the radius at which the top wall is
imaseded by the free suriace, and KT and XT are adjustable constants. The quantity
f (W) represents the dimensionless mass flux integral appearing in .the Wedemeyerl2?
model, as a function of the local angular velocity, @ = v/r (see Eq. (10) of Ref. 6).

.This expression satisfies the following constraints: u remains continuous across
= ry; the contribution from urg; vanishes at both r = = Iy and 1, as it should; the ‘
influence of the top endwall Ekman layer will increase as ryy decreases, which is
intuitively satisfying; and the columnar nature of the flow is maintained. It also reduces
to the form of the original Wedemeyer model in the fully filled limit, ry = 0; this
last point was not tr.ie of Eq. (19) in Ref. 6. Practically speaking, however, this ,
change had a negligible influence on the numerical results for the -conditions studied here. N

- An expression analogous to Eq. (4) above was used for upgL» and satisfies similar
criteria (Eq. (25) of Ref. 6). Certainly other analytical forms can be found which B
would saiisfy these constraims. But in the absence of any experimeiiial data to serve as -
a guide, it was decided to employ as simple a form as possible. | :

Another modification to the original model concerns the appropriate boundary
condition to apply to Eq. (1) once a portion of the bottom wall is expoSed. After this
occurs, one cannot expect Eq. (2b) to apply, as there is no longer any fluid at the axis.
At the contact line, r = ry in Fig. 1, one is faced with the apparently conflicting
. requirements that there be no slip at the solid surface, but that the contact line -
nevertheless be allowed to move. The resolution of this paradoa’ is still an active area

. of research, see e.g., Ref, 13, but beyond the scope of the present investigation. In
our simplified model we xmtiauy chose to use a no-slip condition, viz. v(ry) = ry (Ref. o \
6). This produced a discontinuous change in-angular velocity near the origin as the [~ -
free surface passed through this point. An argument can also be made that one has

™ right to Impose a no-slip cordition on the (relatively) inviscid core flow described

13.  Pismen, L.M. and Nir, A., "Motion ot a Comact Line,” Physia of Fluids, Vol.

25, No. 1, 3-7, January 1982, _ _ . , ..
]
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by Eq. (1), where the terms needed to define the Ekman layer structure have already
been eliminated.

-Accordingly, an alternative boundary condition or v(ry) is now used, .one based
on the kinematic condition that a particle on the free surface must remain there. It
is most easily derived by taking the integral of Eq. (3) from ry to some general positon
r, differentiating the result with respect to time, and then evaluating it at r = ro(t).
The boundary condition one obtains is: :

[ r,,;;z,,,(,,,w/m:]'fz ~ )
Fdr,/dt L
‘whidi replaces Eq. (20) of Ref. 6.

vr,) =

o

2.3 Results

After changing the aﬁalysis as described in Section 2.2, the *'numerical results
presented in Ref. 6 were rerun with the modified code. These include cases for a range
of Froude number, Reynolds number, and fill ratio. The revised -esuits are presented
in Ref. 7. A reptesentative sample case is displayed here in Fig. 2. This is referred to
as Case 3 in Ref. 6 and 7 and corresponds to Re = 1.172 x 10%, F = 3.5, H/R = 3.0, and
L/H = 0.6.  The azimuthal velocity profiles vs. radius are shown in Fig. 2a. The first
nine profiles are for dimensionless times t = 400 to 3600 in increments of 400. The
last profile, for tg = 4745, integrates to a total angular momentum about the axis
greater than 99% of its final value, at which point the calculation was stopped. The
fiuid then is for all practical purposes in solid-body rotation. The last five profiles in
Fxg. 2a end.abruptly on the left end at the point r = ro(t), where the free surface has
intersected the bottom wall. * Since there is no fluid to the left of thls point, v is .

' undefined there.

This is more clearly seen in Fig. 2b, which shows the free surface profiles for -
the same times. The asymptotic nature of the approach to solid-body rotation is
evident in both figures from he closer spacing of the profiles later in the calculation.
Note also that the surface contours become quite steep, and thus warrant the extra

effort spent in switching from a redial to an axial grid for the surface integrals when '

both endwalls are intersected.
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A ‘semi-logarithmic plot of the dimensionless angular momentum deficit,
1-Lz(t¥Lz(%), vs. Re-1/2t is presented for Case 3 in Fig. 3. The reason for scaling
the tlme axis in this way is because linearized amlysxs indicates that the dimensionless
spm-up time scales as Rel/2 (Ref. 8). For comparison purposes, the results from Cases
4 and 5 (Ref. 7) are also presented on this plot; these cases differ from Case 3 only in
the values chosen for Re, which are indicated on the figure. For each case two fiagged
sﬁmbols are shown. The first of these represents the instant at which the free surface

first hits the top wall; the second, the instant at which it intersects the bottom wall.

The most noteworthy feature of Fig. 3 is that up to the instant where the bottom
wall is intercepted, the data in each case lie on a straight line. This is consistent with
the ﬁnding of linearized theory for the fuily filled case that the time dependence of

the spm-up process is a simple exponen',al. What is surpnsmg is the degree to which -~

"this remains true here, where nonlinearities and a free surface are 'both present. After

the bottom endwall is intercepted, however, the numerical data in Fig. 3 follow a line

with a reduced slope, indicating a slower rate of spin-up.

The fact that the surface hitting the top wall apparently has little effect on
*he rate .of spin-up can be explained by noting that the radial extent of the fluid at the
top wall in Fig. 2b is relatively thin; moreover, the fluid in this region has already

apcpired a significant fraction of its final angular velocity. Hence its contribution. to
the Ekman pumping rcmains small compared with that from the bottom layer, which

still completely covers the wall. Once the bottom wall is intercepted in the final ;
stage, however, the strength of the bottom Ekman layer pumping is progressively reduced ; '

as the wall is exposed, and a slower spin-up rate results. Thus, it is the bottom Elfman

" layer Whld\ is the dommant driving force behind the secondary flow respon51ble for

spm-q:.

" As noted in Secnon 2.2, Cases 3-5 had origmally been run (Ref. 6) with : a no-
‘slip condition on v(ro)g whereas the results reported here and in Ref. 7 used Eq. (5).

A comparison of the two sets of results shows that the latter lowers the velocity
+ profiles n the immediate vicinity of fo» and increases the spin-up time by 3%, 5% and

19% for Cases 3.5, respectively. Retemng again to Fig. 3, the only qualitative change
of any note was that, with the no-slip condition, Case 5 had previously exhibited no
kink as the bottom wall was mtersected. This was mterpreted as meaning the Reynolds
mumber in this case was low enough for viscous diffusion from the sidewail to dominate

1
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over Ekman layer pumping. With the revised results all that can e said is that the
change in rate of spin-up at the second transition decreases \vxth decreasing Re in Fig. -
3. Fmally, it is interesting to note that the angular momentum ratios at the times L
at which transitions occur are nearly mdependent of Re. |, ;

Additional numerical' results and discussion may be found in'Refs. 6 and 7.




3. NAVIER-STOKES MODEL -

The simplified model described in the preceding section is predicated or the
following principal approximations: conceptual division of the flow into the viscous
endwall Ekman layers, and the relatively inviscid "core" flow; the las_&urhption of columnar
flow in the core; and the quasi-steady treatment of the Ekman layer pumping. Each
of these becomes more questionable as the Reynolds number is lowered. Moreover,
the cnly experimental data available to validate the sunphﬁed model's predictions are
those in Ref., il, which pertain only to situations where the free surface mtersects
neither of the end(valls. ’ '

| Hence the goal of the second phase of the present program, described below,

was to develop a more reﬁnéd numerical model based on the '_ffull Navier-Stokes equations.
Such a model would relax all the above assumptions, and serve to validate over what
range of parameters the simplified model could be trusted.

3.1 Governing Equations

The flow in principle is governed by the oontinuitj’ equation,

v - r =0 o (6)
and the Navier-Stokes equations,
'-z-tl.-l-V'(???‘;) .--V-p-_-F"E-l:-?e"_V"V*?? M

where the time t is again normalized l:vy.n."l the velocities by iR, and the pressure by
P(nR)z. In contrast to the simplified model, however, all lengths are here normalized ~ -
by the cylinder radius, R. In dimensionlesl coordinates then. the cyhnder maps to ‘the
regxonOtrbl,Oiz & H/R. ,

_ The corwecnve term in Eq. (7) has been written in conservative form using the
identxty :

P eVE = V(FH) - F(O-T)




while the viscous term was transformed using - _
viH = -Vx(vxD) + 7(V.T) - - X

The second term in each identity vanishes as required by Eq. (6), and the result

~ is Eq. (7). In this form the finite difference analog of the convective terms conserves

momentum. The reason for transforming the viscous terms in this ‘way will become
apparent shortly. ' '

Equations (6) and (7) comprise four scalar equations for the unknowns u, v, w and
pP- An additional relation is needed to predict the unknown free surface contour. As
before, we describe the free surface by G = z - VZFS {r, t) = 0. The kinematic condition

that a fluid particle on the surface must remain there then requires that 13 - g %
oG - 36 + 1‘3’ VG = 0 (8)
Dt at ' v

at the surface, G = 0. ‘ _ ' } !

When written out in cylindrical coordiantes, Egs. (6) - (8) become | ' ’ X
1 a(ru) - + dw 2 © ' ;-
r " ar 22 _ .
&.-r;&u_'z-fﬂmw]..’_f i
at Lr  ar r 7z ir . ;
-1 3 [ 2u A ?w] - - -~ (7a) .
tRe 37 [92 - Tl | . -
' ' ' wr ) B
3_{___[2(1’«&) *‘u:r . ?faz, ] _ . | . | .
8 | ’(rv) 2%y | S 3
-1 ) A ro . o
+ Re {'27 [r ar ] * 32‘} S
fe, [, 1 teuw] 32 gk '
at iz roor z H (7¢)
-t 8 duws - u K
+ Re r ir [ ar F )]
" 14, Batchelor, GK., An lntroductlon to Fluid Dmmlcs, Cambridge Unlversxty Press, -
' 1967. , o ¥
‘ IS . : : _ o
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where, e.g., WEs represents the axial velocity component at a pdint on the free surface.
The only assurrptions that ha' e been made in writing the above equations are that the
flow remains axisymmetric and laminar. :

" To uﬁiq.ne‘ly define the problem, initial and boundary conditions for Egs. (6) - (8)
are needed. They are most easily discussed below in connection with the finite difference
form of the equations. '

3.2 Coordinate Transformations

In order to better resolve the viscous Ekman layers on the endwalls and the
Stewartson layer at the sidewall, a coordinate stretdhing is employed. We use the - <
same transformation successfully used by Kitchens 15 for the:filled case. The radial '
coordinate r is transformed to [ 4 where

o = b+r)/ (b+: ' . :? , | (9a)

The inverse transformatxon is . . ‘ ' v
Y bn ] / bﬂ "
r '.- b [ b-r . (9b)

13. Kitchens, C.W., Jr., "Navier-Stokes Solutions for Spin-Up i+ a Filled Cylinder,"
. AIAA J,, Vol. 18, No. 8, 929-934, August 1980. b '
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Similarly, the axial coordinate is transformed according to

_ -1_4.‘_,_!”‘ ¢ 7’1_2—’ C+I
§ = 2 2 . __51_ (C-i (10a)

whose inverse is given by,

H zg'v ‘25-1
2 = (L) e-n [(:*_‘;) _ ]/[, & ] o

The above transtoimatiom map the cylinder into the unit smxar§ 0s p 4 i,04%41in
the (p, § ) computational plane. The corsiants b and c (21) are input parameters used
to adjust the grid spacing; as b and c approach unity from above, progressively more

points will be clustered near the side- and endwalls in the physcal (r, 2) plane,

respectively. : o
Upon applicatif:n of the above transformations, Egs. . (6)-(8) become, 'in the

computational plane:

rlp.(ra), +.;' wp u @ ‘ an

- [r" ,o,h(ru"), - r"z;'+ PN (7 _“’);] ~Pr P,

! ;! [gp u'l "',0" wﬂ]; B : | . | (122)

ft . - [r"pr (f“-?f)’ + I'"uv"i +;"(wv)t] ‘.
'l'-.R‘.-.g'A[pr (r"'ﬂr (rv'),)’ + ;'(;‘ U;)’] v

(12b)
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| . | | = H\?
Wy - rp, Faw), s 5wy - § - (FE)
+ R rp, l." (prw,- 3, “s‘)]f

| (Zﬁs)t = Wi T U f, (Zs's)ﬂ : | (13)

where subscripts are used to denote differentiation.

3.3  Computational Grid

The above equations are differenced on a uniform rectangular grid in the
computational (9, ) plane. Initially an attempt was made to use a conventional grid,
i.e. one in which the velocity components and pressure are all defined at the same
grid locations.  But it was found that this leads to an inconsistency between the
difference forms of the velocity and pressure equations. This will be mentmned again
below in connection with the form of those equations.

The differencing scheme now used eniploys a so-called "staggered” or interlocking
grid, which was first proposed by Welch, et al.16 in connection with the Marker-and-

Cell  (MAC) method. Although the exphcxt MAC -method is not used here, for.

incompressible flows the staggered grid arrangement still has clear advantages. This
" arrangement is shown in Fig. 8. The letters j and k are used as indices in the radial
and axial coordinates, respectively. The pressure p is defined at the center of each
* grid cell, pj, | i-e. where integral values of j and k intersect.’ The radial and azimuthal
- velocities are defined at the .center of the cell's vertical faces, at (j + 1/2, k) and
the axial velocxty is oeﬁned at the. center of the horizontal faces, at (i, k & 1/2).

16." - Welch, 1.E., Harlow, F.E., Shannon, J.P. and Daly, B.J., The MAC Method: A

Com#i% Technig%e_ for Solving Viscous, Incomgessiblef Transient Fluid-Flow
roblems Involving Free aces, Los Alamos dcientific atory Report LA-

25, March 1966.
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The grid is numbered in such a way that the cylinder axis and the sidewall lie
along j = 3/2 and j = NJ - 1/2, respectively; NJ is the chosen mimber of radial grid
cells. The relation between p and j is thus P = (j - 3/2)AP , where AP: = 1/(NJ-2).
Analogously, the bottom and top endwalls lie along k = 3/2 and k = NK ~ I/2, respectively,
with NK the number of axial cells. Thus § = (& - 3/2) A} , where &Y = 1/(NK-2).

3.4 Difference Equations For Velocities

‘l'be algorithm used to solve the equations is an adaptation of the semi-implicit

‘Predictor-Corrector Multiple-Iteration (PCMI) method. This method was first. proposed

by Rubin and Linl7 for solving steady, three-dimensional boundary layer problems.
Kitchens1J used it to study the spin-up problem in a filsd cylinder, which is believed
to be the method's first application to the full, unsteady Navier-Stokes equations.
Because of the absence of a free surface, Kitchens was able to more easily formulate
his equations in terms of the stream function-vorticity variables. The present study
is thus believed to be the first time fhe PCMI scheme has been applied to the: primitive
variable formulation of the Navier-Stokes equations, with a free surface present.

The basic i.dea‘ot the PCMI scheme is rather simple. We will use a uniform

time step, at, and a superscript i to denote the time. leval such that t = iAt. At

the beginning of the step to time (i + 1), all flow variables at level i will be known.
The first "predictor” part of the calculation consists of extrapolating all flow variables
to level (i + 1) using information from the three previous leveis: :

Iy

Y e sy sy Tyt (14)

which is accurate to order (4t)3. Here Y is a generic symbol for u, v or w, and
spatial indices' have been dropped for' simplicity. For the first two time steps,
extrapclations of order at and (At)2 are used, respectively. Equi’lon (14) provides
starting values for each of the variables. This is followed by an iterative process in .
which solution of the Navier-Stoka equatlom serves to "correct” the initial guess. '

" 17.  Rubin, S. G. and Lin, T. C.. "A Numerical Method for Three-Dimensional Viscous
Flows Application to the Hypersonic Leadlng Edgo-," J. of Computational Physics,.
Vol. 9, 339.364, 1972. ‘




The time derivative in Eq. (12) is approximated at level (i + 1) by second-order

'backv_iard differences,
'y:n . (3)/"*’.. fY‘..p Y‘.‘-')/ 2 At

For consistency, the spatial derivatives on the right side of Eq. (12) must also be
evaluated at (i+1), hence the xmphcxt nature of the scheme. For example, let
;:,:_ & denote the (n + 1) iterate to the desired W i+ ,,a 4 . - The viscous and
pressure gradient terms are then approximated by second-order centered differences.
Derivatives in the P coordinate are treated implicitly, i.e. in terms of (n + 1) iterate’
values. Denvatxva in the § dsrecnon use these values as they become available, with
(n) iterate values used where they are not, as the grid is swept from bottom to top.
For example, the viscous terms in Eq. (12a) are approximated by

[o” ;‘f‘ (Faug=1, “’f’)]‘:{ &

(5 .
% Re Azg) [( ) J_( 14;,‘91 1& i) -A—‘;)J.*" “’iu,&ol‘-‘ ‘J’-'£+t)

(&) e e (B) Gy ;;;,J]
. Z Voo

The nonlinear convective terms in the equations are differenced using a hybrid

of centered and upwmd schemes, as suggested by Hirt, et al.ls (As an example, the

radial convection term in Eq. (12a) becomes

18. Hirt, C.W., Nichols, B.D. and Romero, N.C., SOLA - A Numerical Solg%___ion '
Algorithm for Transient Fluid Flows, Los Alamos Scientific Laboratory Report.

1A-5852, Apru 1975.
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where o¢ is an adjustable input parameter between zero and one. For e = 0, centered
differencing is recovered, while o = | yields full .upwind or "donor-cell” differenc:lng.l9
Such a scheme is stable and conservative, yet reduces the formal truncation error to
first-order; as pointed out in Refs. 19 and 20, it may still produce results comparable
in eccuracy to those of a second-order centered scheme, Note t"lat. the convective
velocity lS evaluated from the prevxous iterate, so that the algebraic equations are
rendered linear. The above form calls for values of u and w which are not defined in
‘ the grid system of Fig. 4. For’ such quantities, simple averages are taken, 8.8y

u'f'ﬂ't‘ = é‘.(u'—;'- » 14-- »k)

This scheme leads to a tridiagonal system of equations for each of the velocity
components along a given k row. Because of their length, the full system is given in.
the Appendix. For each k, the equations are easily solved. using a standard algorithm l
for inverting tridiagonal systems.!? The initial conditions at t = Oare u=v = w =
0 everywhere. The grid is swept by first correcting the values adjacent to the endwall,
k = 2, and proceedmg one row at a time up to the free surface.

At the cylmder axis, the followmg boundary condmons ate unposed:

a-& W T

ts) .
1,*4-{ * wzl‘**{

19. Roache, P.J., Computational Fluid Dynamics, Hermosa Publlshers, Albuquerque, , )
. 'N.Mn 19760 ' ) 4
20. Spalc;mg, D. B., "A Novel Fxmte Difference Formulation for Differential .
. Expressions Involving both First and Second. Derivativcs," International Journal _ : 3
for Numencal Methods in Engmeermg, Vol, &, 551-559, 1972. . .
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At the bottom wall, a no-slip condition is enforced:

u’{rli:n = -'u'., 4--5, 2
Vjet,1 = 287, et TYyetz | (16)
w;.‘% = 0 .
And at the ,side&an, the following obtain:
Lys-z, & =
Ino-gik 2 (17)

War kere -wNT-',&*‘L :

where 1 denotes the cylinder's angulak' velocity normalized by its final value. For
ideally impulsive spin-up, fA=1fort>0. The code allows for a f'ramped" imposition
of this boundary condition, i.e.,

L = t/t,.,. t £t

b

- &3 B (13)

where typically. tMP = 10. Equations (15) - (17) are accurate to second order.

Fxnplly, there is the question of ilhat boundary conditions are appropriate at the
free surface. Let KT () denote the topmost cell in the j-column which contains fluid.
Following Hirt, et al.13 if KT §) does not exceed KT ()-1) the azimuthal and radial

—velocities at (. + 1/2, KT), along with all other interior cell values to their right, are -
corrected via the Navier-Stokes equations as described above; otherwise, they are s=t '
equal to the values in the cell immediately below. In either case, the axial velocity in

the surface cells is chosen so as o satisfy the dxﬁerence approxxmauon to Eq. (11), i.e.,

w{'“_"»t,' 4*‘“ (A§)m 1( ) Tjet Lieger” rz 1'1-"”)

{19)

23

M ¢
5 { . ~ -

o S
L )




This specification assures that the divergence in cell (j, KT) vanishes (see Eq. (20) below).

The above boundary conditions apply to situations in which neither endwall is
intersected by the surface, and ‘will require some modification for cases in which this
is not so. ' T

The semi-implicit PCMI method described above was chosen over simpler explicit
schemes, e.g. the MAC method,16 for several reasons. Since radial variations are
treated implicitly, the éndwable At depends only on the axial, and not the radial, grid
spacing (Refs. 15; 17). Axial gradients in the core flow tend tc be much smaller (recall
the columnar flow approximation in Section 2), and so will allow larger grid spacings
and time steps. Indeed, this is the reason' for treating the radial and axial variations
implicitly and explicitly, respectively. The PCMI method has also been proven capable
of handling the strong nonlinear coupling between the equations, as demonstrated by
its success for the filled cylinder problem.ls Finally, the iterative structure of the
scheme provides a conv_exﬂiént framework for correcting _the free surface contour at
each step. The overall iterative process will be discussed in Section 3.7.

3.5 Difference Equation For Pressure

The time derivative of p does not appear in Egs. (11)-(13). Hence they cannot
be used to march the pressure field forward in time in the same manner as the velocity
field. Instead, the pressure field is adjusted at each time step so as to enforce the
incompressibility. condition expressed by Eq. (11). Let D = v- ¥, and Dj,k denote its
value at the point (j, k) in Fig. 4. Using centered differences,

EL Aﬂ),' (Fjot %jag ™ s %i-nt)

(20

+ (%)& (w%, ;E.*{‘w;:*"‘i) =0 | |
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The equation for p is obtained by taking the same linear combination of Egs. (A-1) and
(A-3) as appears in Eq. (20). One can see by inspection that the terms involving time
derivatives will lead to: - '

Lt L ?

30!‘—40 _i*
2Aat

(21)

2D c*?

at

which is a second-order accurate approximation to

Those terms involving p combine to yield

Pr ' ﬁ L+t u-: - Pr i1 _ tM }
—A—;’)i I:"”’-q’é A:’ {+4 (fi"'»* 1'*) ( ) ('P -'i

) (&) s ;:;)( i)

which is a secdnd-order approxxmation to the Laplacian,

9 ip 2%
—;-"air‘- Py +I?EE - /ar(r/or"’p) +§, (f Pf)f

centered at (j, k). The terms which result from the ‘convection terms in the momentum
equations are too lengthy to quote here in their original form. However, they are
easily recognized as the difference approximation to the comtinuum term, ¥ (v-9®)at
(j)k). This brings up another important point which differentiates the present scheme
from the MAC methed. One can eas:ly show, using tensor notation and the Einstein
summation convention,. that

ve(v-p¥) = 2 (V,-‘U")'
. bx‘_- 3&5




The last two terms vanish for the continuum equatiom; as per Eq: (6). In the explicit
MAC method, all three terms are essentially included in the pressure equation in i
. 'difference form. But because they get evaluated at the previous time step, for g
which Dj. 4 = 0 s already satisfied to some prescribed accuracy, the contribution
from the last two terms on the right is made vanishingly small - as it should be.

In tﬁe present implicit formulation these terms are now evaluated at the new
time. However, D},k in general will not be small during the iteration process prior
to convergence, and so the presence of the last two terms on th ri_ht can be
destabilizing. For this reason, and to be consistent with setting D; 5 * =0 in the
time derivative (see below), we omit the last two terms on the right from the pressure
equation. Thus the cylindrical coordinaté representation ot : Y :: is all that remains
of the convective terms. The full difference equation for p xs ted in the Appendix

as Eq. (A-b). ’ A ' v f

By making the above term-by-term identifications, we see that the substitution
. of Egs. (A-1) and (A-3) into Eq. (20) yields exactly the same difference equation as
~ would be obtained by first taking the divergence of Eq. (7), - . . : -

sz = -2_D. - V-(V'a’i.f)
e ‘

~ and then appiying the difference approximations. At first reading, this statement might
appear obvious. Su¢ in fact, as discussed by Welch, et al.,!6 the staggered grid '
arrangement of Fig. 4 appears to be the only one for which this statement is true. In
particular, it is not true for a conventional grid arrangement,' for which the two

approacha produce entirely different results. It was because of just this inconsistengy 3 |
- that the conventxonal grid was abandoned here in favor of the staggered. grid (cf. K -
Section 3.3) ;

Another noteworthy feature of Eq. (A-#) is the complete absence of any viscous 7
terms, which turn out to be self-cancelling., This is the reason for having expressed

the viscous terms in the form used in Eq. (7). Since the divergence of the curl of .
©any vector field is identically zero, a considerab!e simplification of the pressure equatxon -
results. ‘ '
26
1
e T e e e T e T L e S A T g e f"J-f'- N
T N R e e AT O SRR k.:i B B A A I




Equation (A-4) recognizes that while D is supposed to vanish throughout the flow
at all time steps, because we. can never solve the equations exactly some 'small but
finite divergence will be present in the solutions at times i and (i-1). However, the

pressure ﬁeld is now to be determined in such a way as to make the dlvergence vanish
at time (i+1). This is reflected in Eq. (A-4) by setting only the D * “term from
expression (21) to zero, while the values at i and (i-1) are found from the velocity field
at those times. In this way, any growth in the divergence field is self-hmmng, and
the solution remains stable.15

Equation (A-4) represents a Poisson equation for the pfessuré'with the source
term on the right a function of the latest iterate to the velocities at (i+1). It is
solved here using a standard point SOR method, traversing the grid starting at the
lower left corner (j = 2, k = 2), passing from left to right across each row, and sweeping

from the bottom row up to the free surface. The initial condition is just the hydrostatic g "
pressure distribution, ' ' ' .
' -1 =
' . o - o Z: F H] :f-
| ‘PJ""' . f:’-i’f[(dg’,",. 7 A
the starting value for whidaisgivenby - . : ' : _
' - ' R
o ; - H E ‘ , g
7°i,xr = Pus + (2 ") 4? L | R
| KT - i | . 3

. The boundary conditions’ at the axis and solid boundaries are obtained by
specializing the appropriate normal momentum difference equation to that boundary,
and employing Egs. (15) - (17). Hence at the centerline, o

- ' .
P,k Pz, % . L (22)
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At the bottom wall,

P = Pzt [(—Z—ﬂ—) F‘%]-

(23)
+ Zﬁedr‘.” &)

At the sidewall,
' pr ! A 2
4 =P, .+ (__. 0
Nz, R NI-1, b AP/ g s
: (24)
2 R . ——;' [ -w
+ e A€>t “’~1.1,-k +4 NT-1,%-%

where again fL has been used rather than its final value of unity to allow for the
ramped imposition of the sidewall boundary condition, cf. Eq. (18). The above represent
Neumann-type boundary conditions on the solution; they are incorporated directly into
the relaxation equations at the points immediately ad)acent to the boundary as described
by Roachel?, pp. 183-186.

The pressure in the surface cell at (j, KT(j)) is found not from Eq. (A-4), but
rather from the boundary condition that the pressure at the free surface be a constant,
say pps. This boundary condition neglects the effects of surface tension, which are
small for the surface radii of curvature of interest here.l® Also neglected are viscous
stresses at the surface; their influence has been shown by. experience to be significant
only when Re£10.2! Referring to Fig. 5, we denote by h the distance the free surface
lies above the pressure node at KT, expressed in the transformed ¥ coordinate. Then
a linear interpolation between the surface and the node at K‘l'-l yieids

R S ! | L
‘f°1,kr‘ - (‘PFJ + .A—g ‘P,‘,k‘f-1)/(1 +z§) . '. . l(zsa)

21. ' Hirt, C.W. and Shannon, J.P., "Free-Surface Stress Conditions for Incompressible-
. Flow Calculations," J. of Computational Physics, Vol. 2, No. 4, 403-411, 1963.
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Similarly, if the value at KT+1 should be needed,

1°",KT+1 = 2*’:’,/(" - P;',kf-T (25b)

Hence only in interior cells is the pressure adjusted to satisfy Eq. (20); in surface cells
this function is served by the velocity coundary conditions, Eq. (19), with Eq. (253) used
to deterraine the pressure. ' '

3.6 Difference Equation For Surface Contour

The continuous function Zpg ( P t) in Eq. (13) is discretized by defining it at
integral values of j, i.e. ZFS denotes Zps at p = Pj and t = i at. Second-order
backward differences are again used for the time derivative. The convective term on
the right is approximated using a hybrid of upwind and centered differences analogous
to that used in the momentum equanons.18 The result is -

Nt

(26)

ner At ner nst net
- ,3 l “-ﬂs,- “-Fs,u-a-l ( Fs,n F’; * zF’;’-’ )]

where p is an input parameter analogous to cl; values. of p 0 and l produce purely

centered and upwmd differencing, respectively. Z%l represents the (n+l) iterate to -
the contour ZF , and wi+l the free surface axial velocity at p = f y2Z = ZFS found

FS;j
by linear mterpolatxon of’the (n+1) velocity iterate, Eq. (26) represents a linear,

trxdlagonal system for the unknown Z0 +1, and s0 can be inverted using the same efficient
FS g

algorxthm as for the momentum equatx{)ns. The initial condmon is Z;.-s, = L/R at t 0

‘Since Eq. (13) is of tirst order in the radial ceerdlnate, only .a single boundary -

condition is required. But the values of Zpg at the centerline and the sidewall are

- 30
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not known a priori. So instead, a global bcundary condition is employed, based on-the
fact that total fluid volume is conserv=d. At each instant this requires, in dimensionless

. form,

=' Y,
AZ r’ rsy (_,e/ ap = ‘ @

The, above .summation is a trapezoxdal rule approximation to the volume integral, in
terms of the transformed vanable /) The constant V, is easily determined at the
start when all. the Zgg; equal the initial fill level. To see how this condmon is

- enforced, we note that the last step in the trxdxagonal solution algorithm19 for the

Z"+1F5, is the application of the following linear recursion between neighboring values:

n#+t "*’. ) . ‘ . ' . !
Zoo; " Ei Zps.u*hy - . (28)
E, and Fj. represent coefficients derived from Eq. (26) whnch _depend on the surface
velocmes and F but not on the Z"‘+1;=5l

From Eq. (23} we see that once the fluid level at 'j:= NJ is given any value the
remainder of the contour is uniquely determined. So also is the summation in Eq. 27),
which in general would not equal V,. However, since Eq. (28) is linear in Zps one
can easily substitute it into Eq. (27) and solve analytically for the value at j. = NJ, in

- terms of V, and other constants, all of which are already known. In this way, the

needed boundary condition on the surface contour is determined so as to automatically
satxsfy conservation of fluid volume without the need for additional iteration.

[l

3.7 Overall Comwtational Cycle

. Here we, outline d\e _principal steps mvolved in advancmg the solution through -
one time cycle using the results of the preceding sections.

l_. "It is assumed that the solution at time levels i, iol, and j«2 is known, B
' either from the 'initial condxtions, or because we have marched the
~ calculation that far.




......

3.

3.

7.

A prediction is made for each of the velocity components, the pressure,
and the surface contour using the extrapolatiori in Eq. (14). This can be
viewed as the zeroth iterate to the solution at i+l.

The velocity field is corrected, i.e. the (n+l) st iterate is obtained from
the solution of Egs. (A-1) to (A-3), as described in Section 3.4.

The (n+1)st iterate to the velocity field is used to interpolate for the
radial and axial velocity components at the surface, and then Eq. (26) is
solved for the (n+l)st iterate to Zi+lgg;.

The boundary conditions on velocity and pressure across the new iterate

to the free surface are updated using Egs. (19) and (25). -

- Equation (A-4) is solved using point SOR to obtain the (n+1)st iterate to

the pressure field at time (i+1). This actually represents an inner iteration
nested inside the outer iteration loop for the velocity field. The pressure
solution is considered to have converged when ' ' '

( lM;d) L, o
Erpw l‘f’::'* e-»f nax , . (29)

1. %

where 4 pji is the change in pressure at (i,' k) from one pressure iteration

to the next. € rp and Gap are, respectively, the relative and absolute
convergence criteria applied to the pressure solution; typu:al values us-d

are €. 2 10-4 and’ €ap = 10°6

3

The pressure boundary condition.across the free sudace is updated using

Eq. (25).
32
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3. The convergence of the velocity field is assessed by testing whether

W7 g - ol |
(u';.r"-& gy, Fe ) < ]
r'zr lu':;“ l*ed-"' Hﬂx (30)
7% '

with analogous tests applied to the v and w components as well. €.y
and €,, are the relative and absolute convergence criteria applied to the
velocity field; typical values used are €,y = '10~3 and €,, = 10~9. If Eq.
(30) is not satisfied, return to Step 3 above for another iteration cycle.

9.  Once Eq. (30) is satistied, the (n+l)st iterate is accepted as the new
solution at (i+1). The variable arrays are updated accordingly, and the
divergence at the center of each cell is calculated and stored. If desired,
printout of selected portions of :he solution is made at this stage.

10. If a predetermined stop time or a steady-state condition hz: been reached,
the calculation is halted. Otherwise, control returns to Step 2 for
advancement through the next time cycle. -

3.8 Results

The couditions Mn for initiai study were H/R = 3.0, Re = 103, F = 0.6,
L/H = 0.8, and ppg = 0. For these conditions the flow remains in Stage 1 (Figure 1) all
the way to solid-body rotation, i.e., neither endwall is intersected. NJ = 22 and NK =
32 grid cells vere used in the radial and axial directions, respectively, and the grid.
.stretching parameters in Eqgs. (9) and (10) were b = c = 1.032. These choices put the
- grid lines along k = 2 and j.='NJ-1 at a distance 6.003 x 10~3 and 2.9 x 10-3 away from
the endwa aqd sidewall, respectively. The parameters o¢ and B were both zero,
corresponding to centered differences. : ' ' '

“case to ¢ pletion. Typically the calculation proceeds satisfactorily for a short time,

but with a| progressively slewer convergence of the inner relaxation for the pressure

field; the latter eventually fails to converge by the maximum allowed 'i_teratlon cycle
(ordinarily #0). Since the pressure field is determined in such a way as to enforce the
~ continuity equation, diagnostics were added to the program to test whether Eq. (20) is
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being accurately satisfied. . These include evaluation of the largest absolute value of
the divérgence over the whole flow, where it occurred, and the root mean square value
over all the grid cells. Also evaluated is the overall mass flux integral, which in
dimensjonless form can be approximated by

m -f(v-z‘f')d’r = znf/(tr v)rdrdz
=ersz(v-‘5“-)rr' Zedpdg.

~ 'a" y'’
~ acm D?*rt ap (Ag’/

‘Satisfaction of Eq. (20) thus assures local continuity while the magnitude of m is a
measure of global volume conservation.

-With a relatively' large time step of 0.5, when convergence breaks down the
maximum absolute divergence and its r.n.s. value are approximately 8 x {0-< and 6 x
10-3, respectively, and th is about -5 x '10~%. These figures are unacceptably large;
for comparison, the original MAC code (Ref. 16, p. 86) required that the maximum
divergence should not exceed 3.5 x 103, With a much smaller time step of 0.01, the
maximum and r.n.s. values when convergence breaks down are 2 x 10-3 and 3 x 10-4,
respectively, with m about 1 x 10-5. While these values are more acceptable, the
troublesome fact is that they appear to be steadily rising, rather than having levelled
off. Evidently a source distribution is somehow being numerically introcduced into the
solution. Presumably the convergence criteria used in Eq. (29) will bear directly on
the magmt-...ie of ID’ *l But the criteria cited in Section 3.7 are if ar.ythin; cven
more stringent than the €rp=2x 10-% of the MAC code (Ref. 16, p. 90)

| The possibility of latent algebraic or FORTRAN errors is always present, but st -
this point must be viewed as remote. More likely is the possibility that the present
semi-implicit method may be susceptible to instabilities not present in an explicit
" scheme (Roachel?, p. 193). A review of the pertinent literature shows that Pracht22

22. 'Pr'acht, W.E., " A Numerical Method for Calculating Transient Creep Flows," J.
of Computatxonal Phys:cs, Vol. 7, 1;6-60, .971. : S

------




and Aziz and Hellums23 were the first to apply implicit methods to the full Navier-
Stokes equations. Pracht's interest was primarily in low Reynolds number flows, Re £ 1,
for which the usual stability restriction on At for an explicit treatment of the viscous
terms is prohibitively small. He was able to successfully calculate such flows with a
larger At by treating just the diffusion and pressure gradiem'terrds implicitly; convective
terms were still evaluated at the prévious time. Ouwr interest here is primarily in
higher Re, and an implicit treatment of all spatial derivatives. The first such attempt
was that of Aziz and Hellums23, who applied an Alternating-Direction-Implicit (ADI)

scheme. ' They found that while this scheme worked well with a stream function-.

vorticity formulation of the equations, when cast in terms lof primitive variables the
equations required prohibitively small steps in order to satisfy continuity. They attributed
this to the highly nonlinear ccupling between the pressure and momentum equations.

Thus for confined flows the studies by Aziz and Hellums23 and Kitchens!3 indicate
the stream function-vorticity formula'tion.as the method of choice, -since it allows

satisfaction of the continuity equation ab initio. In the "prsent problem the presence

of the free surface does not easily admit such an approach, however. Further, hmdsxght
suggests that the primitive variable approad\ taken in Ref. 23 may have been flawed

" in two espects. The first is that a conventxonal, as opposed to a staggered, grid was

employed; as noted in Sections 3.3 and 3.5, this leads to an inconsistency between the
'momentum and pressure equations. More importantly, the 3D/ 2t term in the pressure
equation needed to stabnhze the growth of the divergence field was omxtted.

More recently, Shadday, et al2* have studied the steady flow in a rapidly rotating
cylinder with a differentially rotating endap as the asymptotxc solution to the full
‘transient equatnons. First order time dnfferencmg was used. To eliminate an otherwise
severe restriction on 4 t, they found it advantggems to treat the coriolis and pressure
gradieni terms implicitly. The remaxmng spatial' derivatives were treated explicitly on
a staggered grid, and the 30/3t term was retained in the pressure equation.

23.  Aziz, K. and Hellums, J.D.," "Numerical Solution of the Three-Dimensional

Equations of Motion for Laminar Natural Convection," Physics of Flmds, Vol. 10,
No. 2, 314-324, 1967.

24, Shadday, M.A., Ribando, R.J. and Kauzlanda, 3J. "Flow of an lnoompressnble ‘

Fluid in a Partially Filled, Rapidly Rotating Cylinder with a anfetentxauy Rotatmg

Endcap, J. of Fluid Mechamt:, Vol. 130, 203-218,1983.
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The or;aly successful attémpts at using an implicit treatment for all spatial
derivatives in the primitive variable equations appear to be those in Refs. 25-27. Hodge,
" et al.25 employed first-order accurate backward differences for the time derivative.
Spatial derivatives were all approximated to second order, with three-point "upwind"
differences used for the convection terms. A point SOR method was used to iterate
both the velocity and pressure equations at each time step. Hegna26 later extended
this scheme to incompressible turbulent flows. Despite the implicit nature of the
algorithm, a time step At < 0.001 was found necessary to adequately follow the
transient solution, i'esulting in CPU times of 2-4 hours (CDC Cyber 750).

MoitraZ? applied a similar scheme to the three-dimensional incompressible
equati'éns. He improved the time accuracy by employing second-order three-point
backward time differencing in the momentumequations (as done here in Section 3.4);
centered differences were used for all spatial derivatives, which were treated implicitly.
Inexplicably however, only first-order accurate differencing was applied to the 30/t
term in the Poisson equation for the pressure. This produces an inconsistency between
the momentum and pressure equations, in addition to that introduced by his use of a
_conventional, rather than stagéered, grid. Perhaps for these reasons, his solutions were
found suséeptible to "unusually high magnitudes of the divergence® To dampen this
behavior, he introduces a spatially varying artificial viscosity proportional to the
magn'itude of the local divergence. To what degree this contaminates the numerical
results remains an open quéstion. '

References 23-27 did not have 5 free surface, with the exception of Ref. 24;
even then, Shadday, et al. assumed the free surface boundary conditions could be applied
along a surface of constant radius, independent of time. Hence none of the above had
. the complication of a moving surface boundary condition to contend with. For example, '
this is what prevents us from using a more efficient direct-solver or spectral method . -

25, ,Hodge, J.K., Stone, A.L. and Miller, T.E., "Numerical Solution for Airfoils near

.. Stall in Optimized Boundary-Fitted Curvilinear Coordinates,” AIAA J. Vol. 17,
NO. 5, 458-4“, May 19790

26. Hegna, H.A., "The Numerical Solution of Incompressible - Turbulent Flow over
Airfoils, AIAA Paper 81-0047, 19th Aerospace Sciences Meeting, 1981. A

27. Moitra, A., An Implicit Solution of the Three-Dimensional Navier-Stokes Equations

. for_an_Airfoil Spanning a Wind Tunnel, Ph.D. Thesis, Dept. of Aerospace

Engmeermg, stmssxppx State Umversxty, 1982.




for inverting the Poisson equation for pressure; such methods are readily adaptable only
to flows with relatively simple, stationary boundaries.

The present relaxation procedure for the pressure attempts to enforce the

continuity equation by feedmg back into the solution values of the dxvergence at time
levels (i) and (i - 1). Divergence values based on the new velocities at (i + 1) do not

appear because they are a priori assumed to be zero, in the spirit of the MAC method .

(cf. Section 3.5). Alternative methods have been proposed which use information about
the divergence at time (i + 1). For example, Hirt et al.18 compute the divergence in
each cell based on the latest velocities. Then the pressure at the cell center is changed
by an amount proportional to minus the divergence. Hence a positive (negative) value

of D will produce a negative (positive) increment in p which acts to drive D toward

zero. This recipe is followed from cell to celi in the flow; a constant of proportionality
greater than one is often introduced to overrelax the ‘solution. Such a procedure can
be shown to be analogous to solving a Poisson equation for the pressure. It has the
dual advantages over Eq. (A-4) of having a much simpler right hand side, and its direct

use of the current divergence, as opposed to that at previous times. Whether it could

successfully be incorporated with the present line relaxation for the velocity field will
require further analysis.

To summarize, we have not yet been successful in our apphcatxon of the PCMI
algorithm to spin-up m a partxally-ﬁlled cylinder. Our review of the pertinent literature
has turned up several examples of the successful apphcation of other xmphcxt methods
to the mcompressxble Navier-Stokes equations. 2"‘27 The differencing scheme of
Moxtra\ﬂ most closely parallels that used here, although significant differenees remain

in the grids used and the methods employed to solve the algebraic equations..
Interestingly, ' his results also tended to exhibit unacceptably large values for the

divergence of the velocity. field. We are still in hopes that this instability can be

removed without resortmg to the explicit introduction of artificial viscosity used by
Moitra, as the latter ma) unduly contaminate the results.

In any event, we have found no a priori reason to doubt the vahdity of the

present approach. Nevertheless, the connected difficulties of slow convergence of ' the
pressure iterations and the inaccurate satisfaction of the continuity equation need to
be addressed. In the future we hope to study whether a pressure' correction scheme
‘based on the latest divergence iterates could successfully overcome these problems.




4. CONCLUSIONS

Initially a simplified numerical model was developed for the axisymmetric Spin-
up of fluid in a partially-filled cylindrical cavity. The analysis represents an extension
of the earlier treatments hy Wedemeyer,12 and Goller and Ranov,ll to those cases
where the liquid free surface may intersect one or both endwalls. Earlier estimates of
the Ekman layer pumpmg of the secondary flow are modified heuristically for situations
where the layer no longer covers the entire wall. Also, due to the very steep free -
surface contour in the latter stages of spin-up, it was found advantageous to develop
the free surface equations in an axial, rather than radial, coordinate frame.

A computer program was used to solve the governing nonlinear equations using
a straightforward finite-difference algorithm. The code predicts both the azimuthal
velocity distribution with- radius, and the free surface contour, as functions of time.
The results exhibit good agreement with the time-resolved experimental data for the
surface cohtm_r taken by Goller and Ranov. Their data were taken only for situations
where the free surface did not touch the endwalls. At present, there are ro quantitative
data against which the simplified analysis can be compared for cases where one or
both endwalls are intersected.

Nevertheless, th.: following qualitatiye conclusions have been drawn from the
theory. Plotting the fluid angular momentum deficit vs. Re</2 t appears to correlate
the numerical data reasonably well. Such plots indicate that the angular momentum
transfer follows a simple exponential behavior in time. 'For Re in the range .10 - 105,
the growth rate appears uniform up to the point where the bottom endwall is intersected..
After this, exponential behavior is still exhibited, but at a reduced rate, reflecting the -
diminishing influence of the bottom Ekman layer which is pnmanly responsible for the
secondary flow. The magnitude of the reduction in .spin-up rate dxmxmshe with
.. decreasing Reynolds number. ‘

To validate the simpliﬁed model in a quantitative sense, it is desireable that its'
' 'predictmm be compared with suxtably designed laboratory experiments and/or more
refined numerical calculations. As an attempt to generate the Jatter, the second phase -
of this' program ‘'was devoted to developing a numerical model based on'the full,
axisymmetric Navier-Stokes -eqiations. In an effort to avoid the severe time ‘step




restrictions characteristic of explicit algorithms, the semi-implicit Predictor-Corrector

h Multiple-Iteration (PCMI)l finite difference scheme was applied to the equations in

primitive variable form. Unfortunately, we have thus far only been able to march
the calculation for a short time before its convergence breaks down. This seems to

be related to an unacceptably large growth in the divergence of the velocity field,
which should vanish. '

Our review of the relevant literature has turned up several examples of the
successful application of other implicit methods to the incompressible Navier-Stokes

~ equations.24-27 ' But each differs in sufficient detail from the present scheme so as not

to offer much guidance on how to resolve the difficulties.’ One complication we face
which has not been previously addressed by other implicit methods is the presence of
a moving free surface. In any event, we have found no a priori reason to doubt the
ultimate applicability of the PCMI method to this problem. Nevertheless, the connect'ed
difficulties of slow convergence of the pressure iterations and the inaccurate satisfaction
of the continuity equation need to be addfessed. In the future we hope to study whether

.a pressure correction scheme based on the latest divergence iterates could successfully
‘overcoms these problems. : '
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NOMENCLATURE

grid stretching parameters in Eqgs. (9) and (10)

b,c
D divergence of the velocity field
F Froude number, (R)2/gH
g axial acceleration ( = gravity in a laboratory frame)
H height of cylinder ' ‘
i ‘ time index
j radial grid index
k axial grid index
L ~ initial fluid level before spin-up
Lz dimensionless fluid angular momentum about the cylinder's axis
_ NJ, NK number of radial, axial grid Iqells, respectively
P dimensionless pressure, p/p (AR)2 |
PFS dimensionless free surface pressure
TS Z dimensional cylindrical coordinates
R' radius of cylinder
r . T/R .
fos TH . dimensionless radii at which endwalls are intersected (Figure 1)
Rfs radial coordinate description of the free surface during Stage 3
Re Reynolds number, NLR2)y
t at
ts dimensionless spin-up, time
u,v,w dimensionless velocities in the (r, ] z) directions, respectively, normahzed
by AR '
-z Z/H in simplifisd model; Z/R in Navie Sfokes code.
ZFs axial coordinaté description of the free surface during Stages 1 and 2
o, p parameters used to adjust degree of upwind differencing, Eqgs. (26), (A-1)-
" (A-3) |
€.,€a relative and absolute error crxtena used in Eqs. (2%) and (30).
oy ‘kmematxc vxscosxty
y ‘ densnty
;‘ Ny axial, radial coordinates in ‘the compu tional plane
el ~ final angular velocity of: Cylmder, rad./sec.
i - dimensionless angular velocity of cylinder, normalized by L.
w dimensionless local fluid angular velocity, v/r = @/a
O indicates a dimensional variable ' '
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APPENDIX . | | :

We quote ‘here‘ the full difference equations for the velocity components and
pressure, which are somewhat lengthly to include in the main text. The differencing
procedure fce the u, v, and w equations is described in Section 3.4, and the results are:
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In writing Eq. (A-1), updated values have been used as soon as they become |
available. Since the grid is swept from bottom to top, this means using the (n+!)
iterate for velocities in cells centered on row k and below; above this line, values from
the (n)th iterate are used. This scheme also saves considerable storage, since the (n+1)
and (n)th iterates need not be stored simuitaneously; i.e., a single array is used with
the former replacing the latter as soon as it is calculated.
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The above equations are tridiagona! in the (n+1) iterate values on each row k.

1

The difference eqhtion for the pressure is obtained.from 'a linear combination
of Eq. (A-1) and (A-3), as described in Section 3.5. The full result is, for o = 0,
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Terms involving Di+! have already been set to zero to satisfy the incompressibility
condition st the new time, while recognizing that D! and Di-l will in general carry
small residual values.
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