MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1967 A
Scientific
Annual Report
Electric and Magnetic Properties of Intercalated Graphite
Grant No. AFOSR 82-0286
Grant Period 12 Months Starting 82 Sept. 30
Project Task 2306/C3
November 15, 1984

By George O. Zimmerman
Principal Investigator
Physics Department
Boston University
Boston, MA 02215

Made to
Dr. M. Swerdlow
Building 410
Bolling AFB, DC 20332

85 01 14 056
GRAPHITE INTERCALATED COMPOUNDS PROVED TO BE A PARTICULARLY FERTILE SYSTEM ON WHICH TO STUDY PHASE TRANSITIONS. IN THE CASE OF FeCl₄⁻ INTERCALATED GRAPHITE AS WELL AS OTHER MAGNETIC INTERCALANTS, THE ROLE OF DIMENSIONALITY AS WELL AS THE IN-PLANE DENSITIES AND DEFECTS PLAY AN EXTREMELY IMPORTANT ROLE, AND ADD TO THE VARIETY OF CRITICAL PHENOMENA TO BE OBSERVED. THE INVESTIGATION SO FAR HAS YIELDED MANY INTERESTING RESULTS ON WELL CHARACTERIZED SAMPLES. WE HAVE STUDIED THE MAGNET PROPERTIES OF OUR SAMPLES AS A FUNCTION OF DEFECTS.
ABSTRACT

Graphite intercalated compounds proved to be a particularly fertile system on which to study phase transitions. In the case of FeCl$_3$ intercalated graphite as well as other magnetic intercalants, the role of dimensionality as well as the in-plane densities and defects play an extremely important role, and add to the variety of critical phenomena to be observed. The investigation so far has yielded many interesting results on well characterized samples. We have studied the magnet properties of our samples as a function of defects, probed by the Mössbauer technique, in-plane densities of the intercalant, and stage. Scientifically, the interest is in the nature of these transitions and their comparison to the various models such as the x-y model, the Potts model and various other models, such as a spin glass, which predict anomalies in two dimensional systems which in the lower stages might become three dimensional in character.

PROGRESS REPORT

As this investigation has shown, characterization is particularly important because samples prepared under identical conditions may have completely different structures and characteristics although their x-ray spectra were the same. In the compounds most thoroughly investigated by this group, FeCl$_3$ intercalated graphite, this investigation found that samples prepared under the same conditions may have different chemical compositions, FeCl$_2$ as well as FeCl$_3$. This was revealed by Mössbauer characterization. It is expected that in this investigation there will be enough correspondence between effects detectable by the Mössbauer effect, like the chemical composition and in-plane density, the number of vacancies related to the in-plane density, and others and the magnetic and electrical properties of the material so that the magnetic and electric properties themselves could be used to characterize a material. This would be particularly desirable for intercalants containing no...
isotopes suitable for Mössbauer analysis.

During the investigation of FeCl$_3$ intercalated graphite at this laboratory, several important discoveries were made about the electric and magnetic properties of these substances. It was found that in well characterized FeCl$_3$ samples there was a magnetic susceptibility maximum indicating a magnetic transition at 6.5 K in stage one and at 1.72 K in stage two4. At higher temperatures the magnetic susceptibility of these samples obeyed the Curie-Weiss law with the theta indicating an antiferromagnetic interaction within the layers and a ferromagnetic one between layers in stage one and antiferromagnetic interactions both within and between layers in stage two. Figure 1 shows the susceptibilities as a function of temperature while Figure 2 shows the inverse susceptibility and the Curie-Weiss law. Table 1 lists the various parameters for the transitions.

![Figure 1.](image1.png)
Figure 1. Susceptibility (x) versus temperature (T), plotted on a semi-logarithmic scale, for the stage 1 and 2 compounds. The measuring field was fixed both parallel (a-axis) and perpendicular (c-axis) to the basal plane. Notice the small amount of stage 1 (undetectable in the x-ray diffractograms) which can be detected in the stage 2 curve.

![Figure 2.](image2.png)
Figure 2. Inverse susceptibility (x^{-1}) versus temperature (T) for the curves shown in Figure 1. The solid lines represent least squares fits to the data.
TABLE 1 This table lists the magnetic properties of the compounds.

<table>
<thead>
<tr>
<th>STAGE</th>
<th>DIRECTION</th>
<th>TRANSITION TEMPERATURE</th>
<th>SUSCEPTIBILITY MAX</th>
<th>CURIE CONSTANT (ARBITRARY UNITS)</th>
<th>NEAREST NEIGHBORS TO IRON VACANCIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a-axis</td>
<td>4.3</td>
<td>6.5</td>
<td>-3.8</td>
<td>222</td>
</tr>
<tr>
<td>1</td>
<td>c-axis</td>
<td>4.3</td>
<td>6.5</td>
<td>+3.8</td>
<td>132</td>
</tr>
<tr>
<td>2</td>
<td>a-axis</td>
<td>1.3</td>
<td>1.72</td>
<td>-7.6</td>
<td>242</td>
</tr>
<tr>
<td>2</td>
<td>c-axis</td>
<td>1.3</td>
<td>1.72</td>
<td>-33.0</td>
<td>575</td>
</tr>
</tbody>
</table>

Possibly a more important discovery was that of a susceptibility maximum which occurs in FeCl₃ intercalated graphite at 1.7 K. That maximum occurs in each stage at the same temperature but its size becomes significantly greater with stage. Figure 3 shows this maximum in stage 1, 2, 4 and 6. The size of this maximum depends sensitively on the applied magnetic field. Figure 4 shows a trace of this maximum as a function of the liquid helium bath pressure, which is
a monotonic function of temperature, in zero (higher peak) and the earth's magnetic field applied along the a-axis for a stage 6 sample.

Figure 5 shows the maximum in different magnetic fields applied along the c-axis while Figure 6 shows the field dependence along the a-axis.
The notations near the various traces indicate the current through the field coils with one ampere corresponding to 7 gauss. One notes that a field applied along the a-axis is much more effective in suppressing the maximum than a field along the c-axis. The measuring field was always along the a-axis. Figures 7 and 8 show the field dependence of...
the susceptibility at various temperatures above and below the maximum, with the field applied along the a-axis. Here the magnetic field is in units of current through the field coils (IA=7 gauss) and the numbers correspond to the susceptibility at zero field which could be correlated with the temperature of that particular isothermal sweep. Similar phenomena were found in NiCl₂ and CoCl₂ intercalated graphite. By measuring the in-phase and out of phase components of the susceptibility, one can infer that there is a resistivity maximum at the maximum in susceptibility. The in and out of phase (quad) susceptibilities of stage 6 are shown in Figure 9 while Figure 10 shows the conductivity as deduced from the phase shift.
It was also shown that the size of the susceptibility maximum can be correlated, within a stage 2 sample, with the number of vacancies in that sample $^{(5)}$ as measured by the Mössbauer effect. This was shown for samples which have 7%, 9%, and 11% of their iron sites as nearest neighbors to iron vacancies. The susceptibilities as well as the Mössbauer spectra are shown in Figures 11 and 12. This, along with
the power dependence of the susceptibility peak, corrected for the shape factor, at temperatures above the maximum, argues strongly that the maximum is an indication of a spin glass transition. Figure 13 shows the log
of the susceptibility plotted against the log of the reduced temperature (T/T_c-1) for zero applied field. It was also shown\(^{(9)}\) that the in-plane density of FeCl$_3$ decreases with the stage which may explain the variation of the size of the susceptibility maximum with stage. The in-plane density dependence on staging is corroborated by the theoretical investigation of the structure of graphite intercalated systems by Millman and Kirzcnov\(^{(10)}\) at Boston University.
PUBLICATIONS which were partially supported by this grant are:

PERSONS ASSOCIATED WITH THIS GRANT:

G.O. Zimmerman, Principal Investigator, Professor
C. Nicolini, Research Associate
S.E. Millman, Research Assistant, Graduate Student, Ph.D. 1982 (Boston University)
D. Solenberger, Graduate Student
D. Gata, Graduate Student

* Work partially supported by a precursor to this grant, AFOSR subcontract F49620-81-C-0006, resulted in the following publications.
REFERENCES

7a) K. Binder, Journal de Physique 39, Colloque Supplement C-6, 1527 (1978).
END

FILMED

2-85

DTIC