" RD-A149 578 REPORT ON ADA (TRADEMARK) PROGRAM LIBRARIES WORKSHOP 174
LD RT MONTEREY CAL.. CU> SRI INTERNATIONAL HENLIJ PARK
. A GOGUEN ET AL. B3 NOY 83 N@9@14-33-M-00
UNCLASSIFIED /G 9/2

A RRARALI

o

:f:l'f ™

FEEFEEE

14

r

Fr
==

N
O
=
A
o

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANDARDS-1963-A

REPORT ON ADA*
PROGRAM LIBRARIES
WORKSHOP

Naval Postgraduate School
Monterey, California
November 1-3, 1983

By: Joseph A. Goguen and Karl N. Levitt

Computer Science Laboratory
Computer Science and Technology Division

AD-A149 570

Prepared for:

Brian Scharr
Ada Joint Program Office

Contract No. NOOO14-83-M-0088

SRI Project 6186

DTIC

*Ada is a registered trademark of the U.S. Government, Ada Joint Program Office.

SRI International -

333 Ravenswood Avenue
Menlo Park, California 94025-3493
Telephone: (415) 326-6200

me FILE COPY

Cable: SRI INTL MPK DISTRIBUTION STATEMENT A
TWX: 910-373-2046 Approved for public release;
Telex: 334 486 Distribution Unlimited

84 12 20 018

...........
..................
...
............
..............

e
ey

OIS

-~

T T T T — OO I R S A A Ry Mgtk
- - - - - CER I S
e e

UNCLASSIFIED :

SECUM TY CL assIFIZATION OF THis PAGE hen Dars Rnroved s e e WY
] \

REPORT DOCUMENTATION PAGE . BEF G oL BTG FORM NN S

T REPORT NuuBL® 12 GOVY ACCESSION NO.1 3 RECIPIENT'S CATALOG NUMBER RPN 1

NOOO14-~83-M-0088 4[1, 414 9 5770 et

' 3 TYPE OF REPORTY & PERIOD COVERED ! .|','A'. o ' U jj

4 VIVLE tand Subtitie.

Report on Ada Program Library Workshop |

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(e) 8. CONTRACYT DR GRANT NUMBER/)

Joseph A. Goguen N00014~83~-M~0088 -
Karl N. Levitt

9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::g‘:.‘A:OERLKt:s:‘TTN’U.MODJE:Rc: TAaSK
SRI International SRR 2
333 Ravenswood Avenue ECU6186 R SRS

Menlo Park, CA 94025

12. REPORT DATE

). CONTROLLING OF FICE WAME AND ADDRESS _ . ol s T
Office of Naval Research Nove 1-3, 1983 - []
800 N. Quincy Street Code: 614A:DAW 13 NUMBER OF PAGES L e
Arlington, VA 22217 T

14 MONITORING AGENCY NAME & ADDRESS/ 1! different trom Conirelling Oltice) 1S SECURITY CLASS. fo! this report) B
Ada Joint Program Office Unclassified KRR s
Room 3D-139 ‘ .o .
The Pentagon e QESEASLfCATION DOWNGRADING L . o

Washington, DC 20301-3081

¢ DISTRIBUTION STATEMENT (of thfs Repor(;

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entared in Block 20, i1 different iromn Report)

Unclassfied

8. SUPPLEMENTARY NOTES
The workshop was organized by SRI International for the AJPO at facilities
made available by the Naval Postgraduate School at Monterey, California.

1. KEY WORDS (Continue on reverse sige Il necossary and Idontity by bleck number)

Program Libraries, Reusable Software, Ada Libraries, Program design for
Reusability, Programming Environments

20. APSTRACY rCentinue an reverss eide If necessery and identily by bleck aumber)

- The goal of the Ala Program Libraries Workshop was to explore concepts,
problems and approaches relevant to an on~line libraxy syst for creating,
documenting and maintaining Ada systems, The term “library*’was interpreted
in a broad sense, as potentially incuding document, specifications, designs,
in addition to compiled Ada code.

The Workshop included both prepared presentations (of which there were
twelve) -rd group discussion among all workshop participants; these activities

#ORM
DD o 1473 E01TioM OF 1 WOV 66 18 OBsOLETE UNCLASSIFIED (over)
SN 0102- LK 0)4- 4601 SECURITY CLABSIFICATION OF THIS PAGE (Whon Date Bntered,

- e e .
. dtet et
. Lot

. S R Y I

+

NP R A

Ty e N AL AR gl
R R .
PR ' Ve e

Q‘T

SECUMTY CLASMTICATION DF YIS PAGE (Whan Dara Rateved

20. Abstract

(con't)

dominated the first day and a half.

Accession For

NTIS GRA&I w—y

Availability Codes

Dist

H g?ll

DTIC TAB 0
Unannounced O
Justification 1
By
| Distribution/ |

R R
Avail and/or
Special

Each working group was proposed by a workshop
participant, who would also serve as chairman and later prepare a brief report of
the working group results for inclusion in this document.

AN

/0 0102 L 914- 8000

UNCLASSIFTED

RO S T T AU/ AN ACA

U

-

REPORT ON ADA*
PROGRAM LIBRARIES
WORKSHOP

Naval Postgraduate School
Monterey, California
November 1-3, 1983

@i

By: Joseph A. Goguen and Karl N. Levitt

Computer Science Laboratory
Computer Science and Technology Division

Prepared for:

Brian Scharr
Ada Joint Program Office

Contract No. NOOO14-83-M-0088

SRI Project 6186

*Ada Is a registered trademark of the U.S. Government, Ada Joint Program Office.

Approved:

Karl Levitt, Acting Director
Computer Science Laboratory

Donalid L. Nieison, Acting Director
Computer Science and Technology Division

S Infermart

CREAEN N PEIT SN

i

Table of Contents
0 Forward 1
1 Introduction 2
1.1 Goals and Organization of the Workshop 2
1.2 Executive Summary 3
1.2.1 Why Libraries? 3
1.2.2 What Next? 4
1.2.3 Research Recommendations 5
1.2.4 Policy and Non-Technical Issues 5
1.3 Summary of Working Group Conclusions 6
4 1.3.1 Library Documentation 6
1.3.2 Methodology 8
4 1.3.3 Library Searching 9
; 1.3.4 Applications 10
2 LIL: A Library Interconnection Language for Ada 12
2.1 Introduction 12
2.2 Issues and Approaches 14
2.3 Library Content 16
2.4 Program Composition 18
2.4.1 Packages and the Using Hierarchy 22
2.4.2 Theories 24
2.4.3 Generic Entities 25
2.4.4 Views 27
2.4.5 Instantiation 29
2.4.6 Package Stubs 31
2.4.7 Environments 35
2.4.8 Transformations 36
2.4.9 Control Abstractions 40
2.5 Library Organization 41
2.5.1 Truth Management 41
2.5.2 Organization by Semantics 42
2.5.3 System Families 43
2.5.4 Cataloguing 44
2.6 User Interface and Management Issues 44
2.7 Acknowledgements 46
2.8 References 46
3 Prepared Lectures 52
3.1 Why DoD Needs Software Environments 52
3.1.1 Discussion 53
3.2 Conceptual Architecture for a Software Engineering Environment 53
3.2.1 Discussion 53
3.3 An Overview of Ada Libraries 54

3.3.1 Discussion 54
3.4 LIL: A Library Interconnection Languge for Ada Programs 55
3.4.1 Discussion 55

PR ACWAIN A A

Ty g - - Ty T
RO SR ARSI A0 X S RN AR NSRS LA

ve

3.5 DCP Approach to Ada Libraries
3.5.1 Discussion
3.6 Flexibility vs. Efficiency for Reusable Components
3.6.1 Discussion
3.7 Mapping Clear Specifications to Ada Packages
3.7.1 Discussion
3.8 General Requirements for an Elementary Math Functions Library
3.8.1 Discussion
3.9 Knowledge Based Tools for Data Type Implementation
3.9.1 Discussion
3.10 Library Organization and User Interfaces
3.10.1 Discussion
3.11 Version Control in Program Libraries
3.11.1 Discussion
3.12 Using ANNA for Specifying and Documenting Ada Packages
3.12.1 Discussion
4 Reports of the Working Groups
4.1 Library Documentation
4.1.1 Participants
4.1.2 Initial Questions
4.1.3 Initial Working Group Discussions
4.1.4 Assumptions
4.1.5 Scenarios
4.1.6 Documentation
4.1.7 Policy and Non-Technical Issues
4.2 Methodology
4.2.1 Introduction
4.2.2 Issues
4.2.3 Initial Questions
4.2.4 Preliminary Report
4.2.5 Final Report
4.3 Library Searching
4.3.1 Introduction
4.3.2 Initial Questions
4.3.3 Library Objects
4.3.14 Basis for Searching
4.3.5 Catalogue Information Structuring
4.3.6 Characterization of Ada Library Users
4.3.7 Tools Supporting Searching
4.3.8 Impact on Software Engineering Methodology
4.4 Applications
4.4.1 Initial Questions
4.4.2 The Issue of Incentives
4.4.3 Impediments and Potential Disadvantages to Reusability
4.4.4 General Approaches to Application-Oriented Reusability
4.4.5 Initial Candidate Applications

4.4.6 Discussion

I. Schedule of Workshop
II. Names and Addresses of Participants
Il. An Example of LIL
IV. Slides from Prepared Lectures
IV.1 Conceptual Architecture for a Software Engineering Environment
IV.2 An Overview of Ada Libraries
IV.3 LIL: A Library Interconnection Languge for Ada Programs
IV.4 DCP Approach to Ada Libraries
IV.5 Flexibility vs. Efficiency for Reusable Components
IV.6 Mapping Clear Specifications to Ada Packages
IV.7 General Requirements for an Elementary Math Function Library
IV.8 Knowledge Based Tools for Data Type Implementation
IV.9 Library Organization and User Interfaces
IV.10 Version Control in Program Libraries
IV.11 Using ANNA for Specifying and Documenting Ada Packages

84
85
86
91
04
95
96
97
98
99
100
101
102
103
104
105

.
R}
.

R RIS

i

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:

iv

List of Figures

Taxonomy of Library Entities
The View NATD :: POSET => NATURAL
Some Software Components
A Vertical Composition
A Horizontal Composition
A Realization of SORT [NATURAL] with LIST [NATURAL]
Theories Involved in a Generic Package
A LIL Environment
Hyperprogramming Taxonomy
Organization of Library Entities for a Package

18
28
32
33
34
34
35
36
36
43

R B

0 Forward

by Brian Schaar and Jack Kramer

The Ada program approaches two critical aspects of the ever increasing costs of fielding and
maintaining Department of Defense (DoD) Mission Critical Computer Systems (MCCS). The
first aspect, of course, is the language standardization effort itself. The second aspect is the
improvement, availability, and use of Ada Programming Support Environments (APSEs)

throughout the MCCS life cycle.

Software reusability has been an important aspect of the program from the start. There was an
explicit requirement in the Ada language requirements document, STEELMAN, for an *easily
accessible library of generic definitions and separately translated units®. In the section on
design goals, the ANSI/MIL-STD-1815A-1983, Military Standard Ada Programming Language,
recognizes that *like many human activities, the development of programs is becoming even
more decentralized and distributed. Consequently, the ability to assemble a program from

independently produced software components has been a central idea in this design.*

There needs to be both a short term approach to providing a library of reusable components as
well as a long term approach which is integrated into the DoD APSEs of the future. The long
term approach must become central to the concept of reusable software and the way we
construct software in the future. The future library system must be an integral part of the way
we do business. It must not only be a place for storage of software components but must assist
in the capture of information about components, assist the potential user in locating the proper

software components, and help the user to integrate and test them as a part of the new system.

In order to better understand the idea of a library of software components and the re-utilization
of these components, a workshop on Ada Program Libraries was held at the Naval
Postgraduate School, Monterey, California, November 1-3, 1983. The scope of the workshop
included concepts, problems and approaches relevant to an on-line library system for creating,

documenting and maintaining Ada systems.

. -ERs . .,

1 Introduction

This first section begins with a brief description of the goals and organization of the workshop,
followed by an executive summary of the results of the workshop, and more detailed summaries

of the conclusions of the four working groups.

1.1 Goals and Organization of the Workshop

The goal of the Ada Program Libraries Workshop was to explore concepts, problems and
approaches relevant to an on-line library system for creating, documenting and maintaining
Ada systems. The term *library® was interpreted in a broad sense, as potentially including
documentation, specifications, designs, requirements, historical information, uncompiled source
code, test cases, etc., in addition to compiled Ada code. This effort resulted from an unsolicited
proposal to the Ada Joint Program Office by SRI International, entitled *Workshop on Ada
Library Principles.® There were two major deliverables associated with the contract. The first
was for SRI to prepare a "strawman® approach to Ada libraries and present it to the workshop,
to provide a context for discussions. The talks by Levitt, Goguen and Meseguer, together with
the paper "LIL: A Library Interconnection Language for Ada® by Goguen, fulfilled this
requirement; the talks of Levitt, Goguen and Meseguer are summarized in Sections 3.3, 3.4 and
3.10, respectively, and the paper by Goguen appears as Section 2. The second deliverable was

this report.

The workshop was organized by Joseph Goguen of SRI International for AJPO at facilities
made available by the Naval Postgraduate School at Monterey California. Brian Schaar and
Jack Kramer made numerous valuable suggestions about the organization of the workshop; and
David Hsiao and Gordon Bradley of NPGS provided help with local arrangements. We very
much wish to thank these, and numerous others, especially the workshop participants (who are

listed in Appendix 1I) for their aid in making the workshop so interesting,.

The workshop included both prepared presentations (of which there were twelve) and group
discussions among all workshop participants; these activities dominated the first day and a half.
In addition, seven working groups were proposed, to meet in parallel sessions and later present
their conclusions to the workshop as a whole. FEach working group was proposed by a
workshop participant, who would also serve as chairman and later prepare a brief report of the

working group results for inclusion in this document. The working groups proposed were on:

........

*

-‘l'? . r'.(': Yy

e

Sl S

P

Library Documentation; Methodology; Library Searching; Applications; Tasking; Expert
Systems; and Short Term Solutions. Only the first four of these attracted a sufficient number
of participants; their reports are given in Section 4, and summarized in Sections 1.3.1-1.3.4

below. The workshop schedule in given in Appendix L.

1.2 Executive Summary

This subsection presents a brief summary of the most important conclusions and
recommendations of the workshop. These conclusions are largely extracted from the
deliberations of the four working groups (see Section 4 for their full reports, and Section 1.3 for
summaries). Like the working groups themselves, these conclusions were also influenced by the
twelve formal lectures that were presented (see Section 3 for summaries) and the SRI

*strawman® approach (see Section 2).

1.2.1 Why Libraries?

The basic purpose of an Ada Program Library is to reduce the cost and tc increase the

reliability of Ada system programming by reusing existing Ada code to the maximum possible
extent. This is in contrast to the currently visionary goal of automatic programming, and to
the currently usual practice of starting each new project from scratch. There was essentially
universal agreement in the workshop that it should be possible to construct an Ada program
library systems that would have significant economic benefit, and that this avenue should

therefore be explored.

The program library associated with an Ada compiler contains only fully compiled program
units, and is therefore of limited usefulness for program development. In order to obtain a
more significant degree of reusability, a much more comprehensive library system is needed.
Such a system should store source code, documentation, test cases, etc., as well as compiled
code; moreover, it should also provide facilities for cataloguing and retrieving Ada programs,

and for assisting the user as he combines library units and newly created programs. Some kind

of on-line card catalog will be necessary, as well as a librarian.

c e
S et
.

o

af st .

............................

1.2.2 What Next?

We first address the short term situation. It was felt that existing database technology could be
harnessed to yield largely ®passive* but still very useful systems in which components are
catalogued after their documentation has been captured. It would be important to instrument
such systems so that we can learn how to do better, as well as to have (as mentioned above) an
on-line card catalog and a librarian. The quality of the documentation also would be a critical

factor.

Long-term solutions should be more active, supporting the creation of documentation along
with the creation of library components; much of the documentation (such as writer, date,
version, size, and results of executing test data) could be generated automatically. Special
support for combining and modifying library components should be provided, incuding version
and configuration management. More innovative forms of documentation, such as graphic
displays, data type animations, and computer generated audio explanations, might be provided
for library components. Knowledge-based systems might provide advice on what components
are best for a particular situation, and on how to construct members of a particular system
family. (The last two features will require that some form of semantic specification is stored
with library components, e.g., ANNA or LIL.) The goal is to make reusability as easy and

natural as possible. These systems should also aim at integration into APSE’s.

It would be very interesting to undertake some experiments in Ada programming methodology,
to see what works and what doesn't. Some application areas suggested for such experiments are
operating systems, database systems, protocols, compilers, and message systems. Because these
application areas are well-understood, it should be possible to compare the quality of a system
produced with library components with one produced with newly created components.
Methodological issues that could be tested in connection with libraries include the systematic
use of parameterization, of design and specification languages, of knowledge-based search (i.e.,
semantic indexing), of animations and displays. Other approaches supporting the reuse of
software could also be tried, either separately or in combination with libraries and/or with each
other. These include Very High Level Languages (VHLLs), application generators, knowledge-

based systems, and system families.

1

. B
e
S Ry
ST
RS RRS
ST
) 1

. -~ -

'y

o e
T T
et e e

Pt
o RPN

1.2.3 Research Recommendations

For the short term, passive library systems should be constructed and instrumented. The
information collected from early sites should be carefully analyzed and evaluated. Experiments
should be carried out on these systems, exploring the value of various methodological
approaches. Networking issues must also be considered; because the Ada community is already

distributed, Ada libraries will clearly also be distributed.

Longer term research goals should center on developing a methodology especially suited to the
reuse of Ada software components, and tools to support that methodology. Possibilities include
the use of: specification and design languages; system families; knowledge-based systems;
parameterization, vertical and horizontal structure, theories and views (as described in the LIL
paper); the reuse of designs and requirements; and integration with configuration and version

management (see Tichy’s talk).

It should be noted that the Ada program library associated with a compiler does not permit
reuse of packages that have been developed in a top-down manner, because of limitations to
Ada’s separate statement. In order to overcome such limitations, one must have a level of
description above Ada in which to express interconnections of Ada program units. Such an
approach might also be useful for configuration and version management, component

documentation, and library searching.

1.2.4 Policy and Non-Technical Issues

It seem likely that issues such as incentive, personnel, user confidence, quality control and
ownership will have at least as much impact on the success of the library concept as technical
issues. Particular suggestions included rewarding DoD contractors for adding to the library and
for using components in it, as well as for use of their components by others. Strong policies will
be needed regarding the quality of documentation, and tools might be provided to help enforce
them. Methods will be needed for dissemenating documentation (®advertising components"),
for validating the quality of components, and for educating personnel in the effective use of

library Ada systems.

1.3 Summary of Working Group Conclusions

This subsection presents summaries of the conclusions reached by each of the four working

groups formed by the Ada Program Libraries Workshop.

1.3.1 Library Documentation

The deliberations of the ®Library Documentation® working group were in fact somewhat
broader than its title might suggest. Its conclusions are summarized here under three main

headings: Scenarios, Documentation, and Non-technical Policy Issues.

1. Scenarios. The working group developed short term and long term scenarios for how a
software component library might be constructed and operated. Both scenarios must
provide cataloguing, updating and retrieving capabilities; and careful attention must be
paid to the transition from the short term to the long term solution library system.

a. Short Term.

, e The short term will be "passive® with emphasis on retrieving and searching.
Components will be registered with the system ®after the fact® of
development. Components will be catalogued after their documentation has
been captured.

¢ For a component to be useful it must be well documented. Quality is much
more important than quantity.

e A ®card catalog® will be critical. It was felt that existing database technology
could be used. A hierarchical schema could provide easy ability to add, delete
and update the catalog. Most importantly, the retrieval language could be
simple and oriented toward its use.

e We must instrument the system now in order to learn how to build future
systems.

e A librarian would be required. It is critical that a follow up debriefing system
be implemented with the initial system.

b. Long Term.
¢ The long term system must be an active part of the user's everyday work e
environment. Where possible, the system should automatically construct the
necessary documentation and appropriate cataloging information when a

component is registered. It should take minimal user effort to add a

- component to the library.

e Reusability must become an integral part of our future system development
methodologies and also must become central to our software engineering
environments. Reusability must be natural, not just something forced by
management.

' »
At
etet
AR A F_ b

’ e Information and presentation mechanisms ®higher® than code will be i
k mandatory for quick user understanding of a component and how it might fit s
into his system. .-1

E e The system should know something about the user, the available components, .Z
and the application area in order to help the user find the best component for : 1
his needs. There probably should be some sort of working set kept for each R

user and application area. *

e A wide physical and organizational dispersion of potential users will require j

some form of automatic feedback mechanism. The feedback mechanism 1

should be part of the user’s environment and be capable of automatically ”";"';

forwarding information to the branch and central libraries when appropriate. . N 1

2. Documentation. The working group spent some time trying to understand what - *I
documentation should be captured and how to capture it. - '

a. There will be differences between what can be expected from documentation -. 3

captured as part of a software engineering environment and documentation that
must be captured off-line after the component is developed.

b. We must allow for unconventional documentation facilities (e.g., video or sound) but
there must always be some minimal documentation available on all types of output
devices. There may also be multiple representations of the properties of a
component (e.g., Ada, ANNA, LIL, English), but these must be kept consistent.

c. In general, components will be part of a larger whole. Therefore we will need

proper configuration management of the context information as well as of i
components and their associated documentation. There may be many different RS
bodies associated with a particular Ada package specification. RN
d. There is a strong possibility that the system and the user will be subject to -
information overload. Therefore, the system must provide only what is necessary at .)
each step of use. The system should also be able to generate information to reduce
redundancies, and to address the consistency problem that redundant information
causes over time. o
e. Feedback is critical to the system. We must find out what is useful documentation -.
for the many varied uses to which the system will be put, how to best present the L ‘
information, and where critical information was missing. There are differences ;
between local and global information feedback requirements. oy
3. Policy and Non-Technical Issucs. The working group spent part of the last day talking _.
about some of the issues which must be addressed if a software component library is to be
successful. These issues were of a nontechnical nature, but the group felt they may have \
at least as much impact on the success of such a system as the technical issues.
R

.
.........................

.........
T et e et~.....-.....-..'.‘.n.'.........._.._

"y R e e R LB M el NN SUERSG Sash A At e R TV STw—w s oY e T

a. Pump priming will be necessary. We might require use of the library as part of
DoD contracts. Contractors could then be rated on their reuse of components from -
the library and their contribution to the library as the contract proceeds; B
contractors could be rewarded for their reuse and contributions. These rewards
need not cease at delivery of the user system, but could continue for some period o

& afterwards. S
b. User confidence in the product is critical. Several mechanisms should be available ®

such as software acceptance tools, user experience ratings, a *Good Housekeeping®

seal of approval, and software reviews. Degrees of validation of a component along S
with statistics on critical path and flow analysis should be available insofar as they o]
1

apply to components. Standard tools should be available to apply to components
when they are registered with the library system.

c. Proprietary issues must also be addressed. An appropriate and effective mechanism

for providing economic incentives and royalties would be the best way to encourage "o o
library use and insertion. Solutions to this problem must address issues such as the ' ‘
levels of documentation to be provided and the various products to be provided for S
different fees.

d. The issue of warranty should be addressed. .

e. The question of who can and who should operate a library and its various branches : 4..‘
must be addressed. : i_'-:l:

1.3.2 Methodology _ﬂ_____
The Methodology Working Group reached the following main conclusions: ".,.'.
1. We should experiment with standard programming paradigms using the Ada language, 'i':
including: o

a. Generic components with a fixed set of data type classes. This will be a low-risk .
domain-specific approach to reusability.

b. Inheritance with limited subclassing. A generic package may implement a
parameterized object (as in object-oriented programming). Another package may :
inherit its capabilities using the with clause to override or add data types or .)
operations. e

c. Nested generics. Outer levels of generic packages may be useful for transformating '~ o
information between the interior of a component and its outer local environment. ‘
Some such mechanism is necessary to incorporate generally reusable components _..
with Ada's linear elaboration. (See also the suggestions for LIL in Section 2.) ('j:'_ o

d. Domain independent components. \

2. We should develop standard formalisms for describing components. “ -

a. This is necessary for cataloging and retrieving.

b. The package specification + formalized comments may contain sufficient
information (e.g., ANNA).

c. Formal (mathematical) specification of components may be used if automated tools
can be provided.

3. We should provide user support via automated tools:

a. Check compliance to standard form. Check for sufficiency of information. Such
tools would perform many quality assurance functions as well as aid in document
preparation.

b. Process information for ease of retrieval (storage, search, display). The structure of
the library will depend upon the knowledge representation techniques chosen and
upon the ability to aquire and codify that knowledge.

c¢. Knowledge-based retrieval capability. An intelligent library management system
will be supported by knowledge-based techniques. In fact, until a formal
specification of library components is developed, such techniques will be the only

ones available to provide automated assistance.

1.3.3 Library Searching

The Library Searching Working Group concentrated on what kinds of information would be
needed to support searching and how this searching might be accomplished. The model
adopted consisted of a catalogue or encyclopedia that contains descriptions of the program
objects stored in the library. This catalogue could be implemented as a database against which
queries can be made to retrieve descriptions of objects. Most of the discussion centered on
searching for Ada packages. Although many existing libraries contain Ada subprograms, these

were not considered as appropriate units for reuse.

Information in the catalogue must be structured to reflect the way the catalogue is used, and
may use many different hierarchies of information to search for objects. For example, in
searching for packages one might define a theory (in the sense of LIL) and then search for a
package specification (and thus, a package body) that matches the theory. Within the library,
there can be many package specs for each theory and there can also be many package bodies

for each package spec.

The Library Search Working Group also considered the impact of software component

reusability on software engineering methodology. It was recognized that building systems from

...... A AT AU el B - W T T L O A e

.........
.....

.......................

reusable components placed a greater emphasis on being able to specify the function and design
of a system, so that its parts could be obtained from the library and assembled into programs;
the need to support the reuse of designs that are similar to what we want but must be modified
before they can be used was also identified. It was felt that the concepts needed to support
programming for reusability are new concepts not embedded in most current programming

practice, so that considerable training might be needed to effectively use Ada libraries.

The working group felt that each site should have a librarian whose job would be to maintain
the Ada library, add new items to the library, and to support library searching. The librarian
position would be a senior position requiring substantial expertise; perhaps a strong background

in reading formal specifications would be an asset.

1.3.4 Applications

The Applications Working Group reached the following main conclusions:
e There are a number of promising techniques to reusability, each of which will have its
role. Among these techniques are:

1. Component libraries, which will be useful at low levels in a system design or as an
interface in connecting larger subsystems.

2. System Families, which will be useful when the application is well-understood, and it
is possible to design a very general system and instantiate it for particular
applications.

3. Very-High Level Languages (VHLL), which should be useful in developing
prototypes or in developing systems in specialized areas (e.g., theorem proving,
report generation).

4. Application Generators, which can be viewed as manipulating large components that
are user-programmable.

5. Knowledge-Based Systems, which can be used to develop systems describable in
terms of rules operating on large databases. It is likely that the product will have
suboptimal performance and be useful primarily as a prototype. Also an expert in
the application is essential in order to make effective use of a knowledge-based
system.

e The issue of incentives is vital to making reusability a viable, cost-effective technique.

DoD will have to *prime the pump® by establishing the organizational structure that will

allow resuable products to be developed, to be advertised, to be maintained, to be

evaluated, and to be used.

11

e It will be necessary to conduct several studies in order to evaluate the feasibility of
reusability. We declared several candidate applications as most likely to be successful:
operating systems, communication protocols, database systems, navigation systems,
message systems, and C3 systems. In addition, a study is recommended to define a large

collection of lower-level resuable components, each of which is as general as possible.

o e "e

St e et K
e ot B U S PR T Y S A e N N Lt e .
PRI WAL W A WA P PPN P R PP PO YRR, o)

S ——— ——

L aun 2 4

12

2 LIL: A Library Interconnection Language for Ada
by Joseph A. Goguen, SRI International
Abstract

This paper discusses problems, concepts and approaches relevant to an on-line library
system supporting the creation, documentation and maintenance of Ada software
systems. The ultimate goal of research in this area is to make Ada programming
significantly easier, more reliable, and more cost effective by using previously written
Ada code and previously accumulated programming experience to the maximum
possible extent. The main suggestions made in this paper are as follows: systematic
(but limited) use of semantics, by explicitly attaching theories (which may be
informal) to program units by means of views (a new concept defined in this paper),
use of library entities and a library interconnection language (called LIL) to assemble
programs out of existing code; maximal use of generic library entities, to make them
as reusable as possible; support for different levels of formality in both documentation
and validation; and finally, facilitation of program understanding by animating
abstract data types and module interfaces.

2.1 Introduction

We envision a library system to be used while building and modifying Ada programs. Because
it is unrealistic to expect that all of a user's needs will be met exactly by existing library
entities, it is necessary to provide help in retrieving and utilizing the entities that best fit
current needs, and in modifying an entity to meet a user’s needs. This implies that powerful
cataloging and retrieval services should be provided. To insure effective use of the library, it is
also necessary to provide help in combining library entities. This will require powerful
techniques for appropriately instantiating, enriching, restricting and combining entities, as well
as methodological guidelines to ensure the proper use of such techniques. Generic (also called
*parameterized®) entities are one of the most important ingredients in these techniques. Basic
methodological issues include the need for enforcing consistency of data representation and of

control flow, when library entities are combined.

An Ada library system should be part of the Ada Program Support Environment (APSE) [DoD
80|, [Buxton & Druffel 81]. Ada facilities that support abstraction, including packages,

subprograms, generics and controls on exporting types, provide a good basis for both software

) 13

composition and for library organization. We believe that recent work on program specification
and design, provides a good notation and set of techniques for structuring the use of such a
library system. In particular, making (limited) use of semantics seems both valuable and
N feasible at this time. This would be useful for ensuring that interfaces really match (since Ada
‘ itself provides only syntactic information about interfaces). Another semantic issue is utilizing
. program design information and development history. Techniques from artificial intelligence

2 might also be useful, for example automatic indexing and cataloging

and information science
schemes, methods for fast search and retrieval, voice technology, and expert systems to advise

users on the selection and application of library components.

%
It should be noted that we interpret the library concept broadly, so as not to exclude any
information that usefully might be stored and retrieved in the context of a large Ada
i development project; some would no doubt prefer a term like *Ada programming environment

database® for this concept, since *Ada program library® has been defined as the current
collection of compiled units. Possible library entities (in our broad sense) include program
units, documentation, specifications, requirements, transformations, design histories, and project
status information such as summaries and projections of cost. Although'Ada has features that
make it particularly suitable for such a library system, the ideas presented here are applicable
to the design of programming environments for other languages, and also for language

- independent environments.

To integrate a diverse collection of library entities, it is important to have precise descriptions
for each kind of entity, expressed in a common formalism; otherwise there can be no assurance
.- that the representations and assumptions used in the various components and tools will be
compatible. For example, [Cohen & Jackson 83] argue strongly that the European Esprit
project should be firmly based upon a formal ground. {Goguen 83] gives a more formal account
of the language design principles that we use; see also [Goguen & Meseguer 84a, Goguen &

Meseguer 84b}.

b

. l‘) « . . »

-~ “This is the area that applies techniques like Shannon’s theory of information to determine optimal ways of
: organizing information. Some results are briefly discussed in Section 2.5.4,

D

14

2.2 Issues and Approaches

We believe that a better understanding of certain basic issues is needed in order to provide an
adequate basis for an Ada library system. Without such a basis, there is serious danger of
building library systems that are inconsistent, hard to use, and hard to modifys. These general

issues include the following:

1. What should be in a library? Possibilities beyond just compiled Ada program units
include the corresponding uncompiled Ada texts (especially the interface information
provided by the specification parts of generics), version and configuration information,
requirements, specifications, documentation, transformations, histories and management
information.

2 What techniques for program composition take maximum advantage of the features of
Ada and of the library concept? Candidates include instantiating, enriching and
restricting entities.

3. How to construct families of related programs? (Would program transformations and
expert systems be useful in this regard?)

4. What documentation and specification techniques produce intuitively clear and
mechanizable descriptions of a program’s functional behavior and external interface?

5. How to best identify the librarv entities that are most relevant to a user’s needs? What
cataloging services (e.g., taxonomies) and reference services (e.g., search strategies) should
be provided?

6. How to integrate libraries into an APSE (e.g., with module test, linkage and
interpretation facilities)?

7. How to best present information to users? Possibilities include multi-media support (e.g.,
graphics and natural language) for various modes of system use, including program

composition, retrieval (e.g., clever use of menus and icons), documentation and

modification. R

8 What about management issues, such as policies for investment, quality control, and AAORIN
distributing and encouraging documentation? - _::3

9. What experiments could be performed to test the viability of various approaches to these . e
? - A

problems? B :1
These issues divide into four major categories and are treated in the four following sections: ';'.-'*t-‘.::fw
T

4 g8

. ® 1

: ;LA ".-:.1

. =

3Theﬂe dangers are much less acute for libraries in semantic domains that are already very well understood,

such as numerical algorithms.

15

Section 2.3 addresses the basic issue of what to put into a library; Section 2.4 considers
programming methodology, to optimize the use of Ada and of the library; Section 2.5 considers

library organization; Section 2.6 discusses user interface and management issues.

This paper suggests some ideas for dealing with the problems listed above. The main ones are
I enumerated below, with descriptions that are not intended to be self-contained; further details

are given later.
1. Systematic (but limited) use of semanties; in particular, explicitly providing theories
N (which are just sets of axioms) attached to program units via views (see Section 2.4.4 for
I this term).

2. A variety of different methods for program construction, so that the process of
programming will consist, as much as possible, in the application of these methods, rather
than in just writing code; we call this hyperprogramming“.

. Maximal use of generic (i.e., parameterized) library entities. This is intended to make

A
w

them as reusable as possible.
4. Support different levels of formality in axioms, and degrees and kinds of validation (such
_ as informal arguments, testing, and formal proofs); this should support a practical user
. interface and also aid in pinpointing weakspots during debugging (see Section 2.5.1 for an
| explanation of this).
5. Facilitation of program understanding by animating abstract data types, and otherwise
illustrating and explaining behavior at module interfaces (see Section 2.6 for further
. explanation).

It should be observed that because this paper focusses on libraries, the main issue that it
addresses is reusability. This means that while broad issues of programming methodology are
= discussed, many more detailed issues are ignored. Issues having some relevance to reusability
“a but ignored in this paper include some difficult ones, such as tasking and exceptions, as well as

some relatively simple ones, like the Ada modes in, out and in out.

R 4Programming-in-the—lnrge refers to manipulations at the module level rather than the code level. The term

" hyperprogramming is intended to reflect an integration of programming-in-the-large with programmiu. ,-in-the-
" small.
=
-\ . l\ - . - -\ NV et o
PRI Y e T e SrN

16

2.3 Library Content

What should be stored in a library? For example, it seems clear that complete compiled
operating systems should not be stored; but it would be useful to store elements out of which a
variety of different (but related) operating systems could be constructed. And it would be
useful to store design (e.g., configuration) information for constructing particular operating
systems. At the other extreme, a library should not bother to store individual program
statements. However, it does make sense to store Ada packages, both as Ada source code and

as compiled machine code.

Much recent research (some of it is cited below) supports the position that it isn’t enough to
store code: some of the knowledge that went into constructing the code should also be stored,
particularly for large systems. For example, one should have not just the components of some
operating system, but also explicit information about how to put those component together to
construct the system. Information on which versions of those components to use is also needed
in large system development efforts. Moreover, the same components (or different versions of
them) can be used to put together slightly different operating systems. This kind of
information about configurations and versions can be expressed in a module interconnection
language (abbreviated *MIL® below; see [Prieto-Diaz & Neighbors 82] for a good survey of this
field) and should be part of a library support system.

Ada itself provides some support for this with the specification part of a package or
subprogram, and with with and separate clauses. However, these often tie units that ought to
be more reusable to contexts that are far too specific. Another consideration is that it is often
desirable to document what each part is supposed to do; this information might consist of
formal specifications (i.e., sets of axioms) and/or less formal descriptions. The latter might be
related to system requirements, which could also be stored in the library. Unless such
knowledge of design objectives and decisions is stored with the code, it will not be available at
later stages of the software life cycle; note that much of the cost of system maintenance is due

to the difficulty of understanding existing code.

Ada’s package construct is an especially nice way to modularize code. But formal
specifications, documentation, designs and requirements should also be modularized, since they

too will be difficult or impossible to understand if presented monolithically, especially for large

L -
bt

systems. We suggest that constructs similar to the Ada package should also be used for this
purpose. Then a module interconnection statement could be used to assemble not only the final

code, but also complete documentation and specifications for it.

Another general remark is that whatever is put into a library should be as widely applicable as
possible. Ada generics provide a powerful mechanism for this at the code level, and we believe
that similar mechanisms should be provided for specifications, designs, requirements, and

documentation.

An elegant way to unify many of the above considerations is to view the process of
programming as one of transforming a high level specification into lower level executable
code [Burstall & Darlington 77], [Cheatham 83], [Scherlis & Scott 83|, [Green et al. 81], [Feather
82), |Balzer 81}, [Standish 83], [Goguen & Burstall 80]. The design history is then available as a
sequence of transformations that can be applied to get the final system. Supporting this view of
programming in an Ada environment would require the library to store both transformations
and design histories. The latter could then be manipulated to construct other related systems,
and in particular to reconstrnct a given system after bugs have been corrected in its
specification, or other modifications introduced. This should be especially useful during the

maintenance phase of the software life cycle.

We will use the term entity to refer to anything that is stored in the library in a systematic
way. Entities so far mentioned in this paper include program, subprogram, package,
specification unit, documentation unit, requirement unit, transformation, and transformation

sequence.

Figure 1 gives a tentative taxonomy of entities that might be stored in an Ada library system.
The three main categories are: concrete, abstract, and managerial. Of course, having a place in
this taxonomy does not mean that an entity should necessarily be included in a library. Notice
that managerial information ‘can be derived from abstract information, assuming that
appropriate data is available from abstract entitics, such as number of lines, date of completion,

number of man-hours expended, performance and testing results, etc.

“’” e
P
R

St et .
et et . e e T
VIR TS N W I G LIPNIPGIL S Y

- - — v A arn e 0 pn s uh atee are peniiRe en e s e Sre b as ae
T — CEME A A e R i A B SR A IS S I A~ SR A LI NI AT AT

18

ENTITY
CONCRETE ABSTRACT MANAGERIAL
MiL CODE HORIZONTAL REQUIREMENTS PROJECT
COMMANDS TRANSFORMATION AND VERTICAL STATUS
PROGRAM DESIGN ACCOUNTING
PACKAGE ASSERTION HISTORY DOCUMENTATION
SUBPROGRAM SPECIFICATION

FIGURE 1 TAXONOMY OF LIBRARY ENTITIES

2.4 Program Composition

In brief, our approach to program composition is to provide a module interconnection language
based upon a generalization of Ada’s specification part for program units, enriched with
commands for interconnecting components to form systems. This language, which we call LIL®
(for Library Interconnection Language), addresses certain important problems that cannot be
handled by a simple Ada compilers. It is only natural that Ada does not address these issues,
since they arise at design time rather than at compile time, and require a *design database.®
These issues include the following:
1. Narrowing the interfaces of generics; for example, permitting the interface to demand
particular user-defined types (such as STACK);
2. Allowing more flexible binding of compilation units (for example, composing two generics
to get a third};
3. Allowing interactive version and configuration management;
4. Integrating hierarchical (which we call "vertical*) design methodology (as in abstract or
virtual machines [Parnas 72a]) with the "horizontal® structuring capabilities of a module

interconnection language; see Section 2.4.6.

|4
“This paper is in effect a preliminary design document for LIL; the language has not been implemented, nor

even designed in detail at this time.

6
However, we do not discuss all desirable features of a module interconnection language here. Instead, we

emphasize features relating to program structure.

19

Of course, the main point, already addressed by an Ada compiler’s library of compiled program
units, is to avoid the time and confusion involved in recompiling every program unit of a large
system every time components are changed or added, either during the construction phase or
later during the maintenance phase; one wants separate, independent, incremental compilation.
Thus, LIL packages and make clauses are (respectively) intended to designate and to
manipulate compiled Ada units. It is our intention to do this with much greater power and
flexibility than pure Ada can, and thus to support a much more powerful and flexible
programming methodology. One key is that more than one Ada body can correspond to a
given LIL package; these are its versions. For example, a generic list package LIST[X] might
have three different bodies, LIST.1, LIST.HACK, and LIST.EFFICIENT. One could even go a
listle further, and allow versions in multiple programming languages. For example, one might
have LIST.1.ADA and LIST.1.PASCAL. Of course, for an Ada library system, the default will
be .ADA. LIL syntax is close to Ada syntax (but a little more abstract), and LIL statements can
easily be translated into pure Ada for input to a compiler. It will be seen that Ada provides

amazingly appropriate support for all this.

Some popular high level paradigms for program construction include top-down (from
requirements), bottom-up (from selected library modules), transformation from an initial
prototype or high level specification, instantiation of a existing generic program component,
*data driven® programming in the sense of [Jackson 75] (which is really a systematic use of
data abstraction), and dataflow [De Marco 78]. It is our intention to support all of these

paradigms by providing high level specifications and very general parameterization mechanisms.

Among the many different specific techniques that might be useful under various circumstances

for constructing new entities from old ones, are the following:
1. Set a constant (such as the maximum depth of a stack);
. Substitute one entity for a "stub® or parameter in another;
. Sew together two (possibly large) entities along a common interface;
. Instantiate the parameters of a generic entity;

. Enrich an existing entity with some new features;

(= 2L I - U

. Hide (abstract, or encapsulate) some features of an existing entity; this could include both
data abstraction and control abstraction;

-3

. *Slice® an entity, to eliminate some unwanted functionality;

8. Implement one abstract entity using features provided by others (this leads to the notion

of a vertical hierarchy of entities); and

20

9. Assemble existing entities over a skeleton. This skeleton might be either fixed or flexible;
for example, it might be determined heuristically by an expert system. See Section 2.6.

The first four of these techniques each involve parameterization, a notion that is becoming well
understood and to a considerable extent incorporated into modern programming and
specification languages (e.g., Ada generics, and work of [Burstall & Goguen 77] on
parameterized specifications in Clear). In fact, the first three parameterization methods can be

seen as special cases of the fourth.

It is useful to distinguish between horizontal and vertical modes of composition: the latter
has to do with the top-down and/or bottom-up hierarchy of levels of abstract machines; while
the former has to do with modularization at a given level of detail; this is discussed in terms of
an example in Section 2.4.6. A unified treatment of the modes of construction listed above is
suggested by [Goguen & Burstall 80|, using generic modular transformations that handle data
representations and their associated operations, as well as more conventional transformations of
program constructs such as recursion. The Ada package can be seen in this light as a method
for realizing a given functionality if certain other functionality is provided (again see Section
2.4.6); notice that semantic specifications are needed in order to say exactly what functionalities

are involved here.

There has been much previous inspiring work on module interconnection languages. The
INTERCOL system [Tichy 79, Tichy 80] was specifically designed for Ada, and has also
influenced the internnectinn part of Gandalf environment [Habermann & Perry 81]. In
comparison with LIL, INTERCOL and Gandalf lack the ability to specify (formally or
informally) the semantics of packages, and also fail to distinguish between vertical and
horizontal modes of composition. However, they do allow for module revisions and derived

versions, and have experimental implementations.

Three concepts that go beyond Ada generic packages and still seem ripe for near term
implementation are theories, views and interconnection commands. Theories are used to
declare properties required of an actual parameter for it to be meaningfully substituted for the
formal parameter of a given generic entity. Views are used to express that a given entity

satisfies a given theory in a particular way (this is necessary because it is possible for some

PP AR A b

. e VLN

R T — T —— o ™ Kol -t sl SIS S

21 e .

entities to satisfy some theories in more than one distinct way). Interconnection commands
are used to express how a system is to be built out of its components; these include , -
instantiating a generic entity, using a particular view to produce a new entity. This approach
to parameterization is inspired by the Clear specification language7, and is applied in [Goguen

83] to the OBJ programming language. A related topic is transformations, which can modify

entities by adding, deleting, or renaming functionality, and can themselves be parameterized.

Before embarking on the technicalities of the following subsections, it seems a good idea to ::11 :fif

contextualize them with the following points, some of which are only explained in detail later: -
1. We deliberately use a syntax for LIL that is closer to mathematics than Ada is. e
2. The ordinary user of such a library system would probably not see LIL entities in the
forms given below, which have been chosen to facilitate discussion of their basic

properties. Rather, the user interface would hopefully involve natural language and/or

interactive graphics. See Section 2.6. o .
3. Many features of Ada are not covered in the discussion below. In some cases, this is oy
merely to simplify the discussion; for example, we discuss only functions, but procedures
present no serious difficulties, and are illustrated in the example in Appendix 1I%. In ___

other cases, further research would be needed to provide an adequate treatment;
exceptions, access types, and tasking fall into this category.

4. We do not anticipate that most development projects will use of large or complex formal
theories; rather, they would rely upon informal documentation and informal arguments
about program properties. However, some applications might demand such a high

standard of reliability as to warrant the effort of full mathematical verification. The

approach suggested here would support both formal and informal specification and
verification in an integrated manner, allowing whatever mixture seems most appropriate
to the application. -
5. Although the outlines of the project seem clear enough, and some parts, particularly LIL,
could be implemented without much further research, there are other areas, such as
transformations, that would require substantial further thought to provide an adequate

foundation.

‘In particular, the notion of view was developed in collaboration with R. M. Burstall for use in Clear, although
it has not yet been published in that connecticn. Clear’s approach was in turn inspired by some ideas in general -.

system theory [Goguen T1].

8ee [Goguen 82] and [Goguen & Meseguer 82a] for further examples and foundations.

2.4.1 Packages and the Using Hierarchy

The most important entity in LIL is the package, a generalization of the specification part of
an Ada package’. There are two main ways that a LIL package differs from an Ada
specification part: (1) axioms can be given for the operations that it declares; and (2) it is
associated with (zero or more) versions, which are Ada packages that realize the behavior it
describes. Thus, both semantic specification and version control are supported. Some
additional capabilities of generic packages are discussed in the next subsection. The main point

is that LIL packages help the library keep track of already compiled Ada code.

We wish to emphasize that the axioms in LIL packages do not have to be formal; they can be
semiformal mathematics, or even informal natural language (see Section 2.5.1). It is also
unnecessary to formally verify the axioms against code. We believe that to impose such a
requirement would render a library system impractical except for a few applications requiring
especially high reliability. However, we do propose a "truth management® system that will
track the degree to which various assertions have been verified (again, see Section 2.5.1 for

details); such a system would be useful for both testing and debugging.

New entities are often defined using others already defined, and possibly already compiled. We
wish to carefully distinguish using entities from the process of instantiating generic entities, as
well as from the vertical (hierarchical) development process in which an entity needs others in

order to realize a given behavior (see Sections 2.4.3 and 2.4.6 respectively).

Because LIL’s notion of horizontal hierarchy differs slightly from that of the Ada use clause, we
introduce a slightly different notation, the using clause!®. This is illustrated in the following
example:

package COMPLEX FUNCTIONS

using MATH FUNCTIONS is
types COMPLEX

9LIL does not distinguish between specification and body parts of packages, because it does not provide

executable code as such; that is given in Ada.

"’yg imports Ada packages, whereas using imports (partial) descriptions. While an Ada function or procedure,

once written, cannot be modified, a description can be modified, for example by adding new axioms.

%

PRt . v o T - e L e g g ey e TR W e W e
LN IPAE A I 4 R A B R Y e e e e AR

23

functions
*+ : COMPLEX COMPLEX -> COMPLEX

.....

-~ #% agrees with real exponentiation for real arguments
-~ E #* IsR = COS(R) + I+SIN(R)

.....

end COMPLEX FUNCTIONS

This package has a using clause that imports another package to provide the standard real
mathematical functions; both the axioms and the associated Ada code can use these functions.
Notice that this package has one axiom that is stated informally, and another that is stated
formally but without formal declarations for its variables and constants; also note that these
axioms will not hold exactly for any Ada code intended to realize it, because of roundoff error!!
. The package STANDARD is considered to have been imported into every package with a using

clause; all its operations are thus freely available.

Information hiding, as advocated by Parnas and others, can be accomplished by hide-types
and hide-ops clauses; these render the mentioned types and ops invisible in any entities using
the given package, even if the mentioned types and ops had been imported from another entity.
The using and hide clauses lead to an acyclic graph expressing inclusions of the corresponding

syntactic interfaces and sets of axioms of entities.

We conclude this subsection by noting another difference from Ada package specification parts:
representations are not stated in LIL packages. The Ada code corresponding to the
COMPLEX FUNCTIONS package presumably represents the COMPLEX type as a record of two real
types, and the Ada compiler surely needs to know this. But this information is hidden in LIL;
in fact, it is not needed for describing which Ada units are to be interconnected, which is the

primary purpose of LIL.

e M- Bt fie SV B e R Jan Sais e

®
R
RS
::. ':1
LI

|
;’.7 1

LY

2.4.2 Theories

Another basic entity of LIL is the theory, which expresses properties of entities or entity -
interfaces, but does not have any actual Ada code associated to it; its purpose is purely to

2 In general, theories can be structured in the same ways as programs; the

express propertiesl
difference is that program units define executable structure, while theory units define not

necessarily executable properties. In particular, theories can use other theories, can use data

abstractions, can be parameterized, and can even have views (see Section 2.4.4 for this term).

Our first example is the trivial theory, TRIV, having just a single type ELT about which nothing -

is asserted.

theory TRIV is
types ELT

end TRIV .o
For another example, the theory of partially ordered sets has a single type designated ELT plus '
a binary infix relation < that is reflexive, transitive and anti-symmetric. This theory is useful in
describing the ordering among security classifcations (as associated with classified documents) or .-_.--.

in describing the interface of a sorting package, that is, in specifying the semantic requirement

that the elements to be sorted have a suitable ordering relation.

theory POSET is
types ELT
functions < : ELT ELT -> BOOLEAN
vars E1 E2 E3 : ELT

axioms
(E1 < E1)
(E1 < E3 if E1 < E2 AND E2 < E3) RO
(E1 = E2 if E1 < E2 AND E2 < E1) j
end POSET

Finally. the theory of monoids. This will serve as a parameter requirement theory for a

generalized iterator that can yield sums, products and other operations over lists (see Section

l“BMnro’- technically, the axioms in a LIL package are to be interpreted *initially," i.e, in a standard model, while

those in a LIL theory need not be so interpreted.

...........

..............................

25

theory MONOID fis

types M

functions * : M M -> M (assoc, id: I)
end MONOID

Here assoc indicates that the function # is infix and associative, i.e., satisfies the equation
(M1 * M2) * M3 = M1 * (M2 » M3)

and id: I indicates that it has an identity I. We mention again that theories can be defined
and used even if not all their axioms are formal. Also note that hide-types and hide-ops can
be used in LIL theories as well as in packages; moreover, hidden can be given as an attribute of

an operation with the effect of hiding it.

2.4.3 Generic Entities

Ada lacks the ability to define semantic restrictions in the specification part of a generic; this is
appropriate since an Ada could not use such information anyway. However, we wish to provide
this information in the library system to increase reliability and to aid with problems of
program understanding, retrieval and composition. The requirements that actual parameters of
a generic entity should satisfy for the instantiated entity to behave as desired are given in
theories. Of course, these theories must be defined before the entity can be instantiated.
Again, we use a syntax closer to mathematics than Ada’s syntax, to help distinguish these more
abstract entities from the corresponding pure Ada entities!3. To illustrate, here is a LIL generic
list package:
generic package LIST[ELT :: TRIV] is
types LIST
functions
: LIST LIST -> LIST (assoc, id: NIL)
EMPTY : LIST -> BOOLEAN
HEAD : LIST -> LIST
TAIL : LIST -> LIST
vars E : ELT; L : LIST

axioms
HEADCE . L) =1L

13Of course, this is not essential, and a notation closer to pure Ada could be accomodated without any
difficulty.

26

TAIL(E . L) = E

end LIST
The attributes assoc and id of *.* implicitly give some further equations, namely the

associative law and two identity laws.

A major difference between this and the specification part of an Ada generic package is that all
the parameters are collected together in one entity, called the requirement theory, enclosed
in [...] after the package name, LIST here, telling not only what types, functions and
procedures are needed, but also what properties they must satisfy. In this case, the formal
parameter ELT must satisfy TRIV, i.e, no axioms. For a sorting package given later, the
parameter must have a binary relation that is a partial ordering, i.e., it must satisfy the theory
POSET. Here is an example of a parameterized theory, the theory of vector spaces over a field
F.
generic theory VECTOR-SP[F :: FIELD] is
types V

functions
+ : VV -> V (assoc, comm, id: 0)

* : FV->Y
vars F F1 F2 : F;
vvive : Vv
axioms

((F1 + F2)* V = (F1 * V)+(F2 * V))

((F1 * F2)* V = (F1 *(F2 * V)))

(F* (V1 +V2) = (F * V1) + (F *» V2))
end VECTOR-SP

More generally, entities can have several parameters, indicated in the form
(X :: TH1; Y :: TH2]

and theories (with their corresponding formal parameters) can involve more than one type.

One can also write a package using the instantiation of a generic. The instantiation of generic
entities is discussed in Section 2.4.5. The semantics of generie packages can be deseribed by the -

methods of Clear, as discussed by [Litvinchouk & Matsumoto 83].

2.4.4 Views
3 The purpose of a view is to explicitly show how a given entity satisfies a given theory. For
example, if SORT is a generic package for sorting LISTs of its parameter type {which must
satisfy POSET), writing SORT [NATURAL] to define a package for sorting LISTs of NATURALs may
be ambiguous, because there are many different order relations that could be used on the
' natural numbers. The most obvious is the usual *less-than-or-equal®, but ®"divides® and
*greater-than-or-equal® are other possibilities. Thus, a view of NATURAL as a POSET, which we
_ write POSET => NATURAL, indicates just which order is to be used; the three choices of order
B mentioned above correspond to three different views. Note that NATURAL here denotes the LIL
package, not the Ada type NATURAL in the Ada STANDARD package, which is here regarded as a

version that realizes the LIL package.

More precisely, a view of an entity A as a theory T consists of a mapping from the types of T to

the types of A, and a mapping from the opera.tions14 of T to the operations of A preserving arity
(which is the list of argument types), value type (if any), and operation attributes such as
assoc, comm and id: (if any), such that every axiom in T is satisfied by A. Such a mapping of
types can be expressed in the form

types (T1 => Ti1)
(T2 => T21)

and the mapping of operations in the form

ops (OP1 => OP11)
(0P2 => 0P21)

Thus, each mapping consists of two sets of pairs in what Ada calls *"named parameter
notation.® Together they are called a view body. The syntax for defining a view adds to this
names for the source and target entities, and a name for the view. For example,

view NATD :: POSET => NATURAL is

types (ELT => NATURAL)
ops (< => DIVIDES)

14\ e use the word operatlons to refer to cither functions of procedures.

L

B hAKMCAEAOAE

28

end NATD
defines a view called NATD of NATURAL as a POSET. We use the double colon :: to emphasize

that this concept is at a higher level of abstraction than that of just operations.

INC

< DIVIDES
—_—
BOOLEAN BOOLEAN
POSET NATURAL

FIGURE 2 THE VIEW NATD:POSET = NATURAL

Each package and theory has a default view as TRIV using its first type (or the first type of the
first entity that it is built upon if it doesn’t have a first type itself, and so on backward
recursively); this type is called the principal type of the entity. A default view is the one
that is used unless another is explicitly provided instead. For example, if we were to write out
the default view of NATURAL as a POSET, it would be
view NATV :: POSET => NATURAL is
types (ELT => NATURAL)
ops (£ => <)
end NATV
Thus, when there is just one type in the source theory T and the types line of a view is
omitted, it is assumed that the type of the theory is paired with the principal type of the target.
Moreover, pairs of the form (T => T) can be omitted from any view. There is a similar default
convention for ops, namely correspondences of the form (OP => OP) can be omitted. For

example, if the default view of NATURAL as a MONOID (according to these conventions) were

written out in full, it would be

29

view NATs :: MONOID => NATURAL is
types (M => NATURAL)
ops (* =>)
(I =>1)
end NAT#
assuming that the LII. package for NATURAL tells us that 1 is an identity for *, and then using
the convention that a default view should preserve the id: attribute. The following is a non-
default view of NATURAL as a MONOID.
view NAT+ :: MONOID => NATURAL is
ops (» => +)
(I =>0)
end NAT+

where (I => 0) could also be omitted by perservation of the id: attribute.

Finally, a view that involves a parameter:

generic view LISTM :: MONOID => LIST[X :: TRIV] is

ops (* => .)
(I => NIL)
end LISTM

A further generalization of the default rule permits omitting an operation pair of the form (OP
=> OP1) if the arity and type of OP1 equal the translations (under the types mapping) of those
of OP, and if OP1 is the only operation (in its entity) having that particular arity and type.

A similar concept is used in Clu [Liskov et al. 79], where it is called a "binding.* However, Clu
bindings do not involve attributes or axioms, and provide a much weaker notion of default

binding.

2.4.5 Instantiation

To actually use generic entities, it is necessary to instantiate their parameters with actual
entities. This subsection shows how to do this with the make command, that uses a view to
bind an actual to a formal. This is the command that makes LIL a module interconnection
language for Ada, permitting more than one version to correspond to a given specificaton part
(thus supporting ®version management®), and permitting more than one way of organizing a

given collection of program parts to co-exist in the library (thus supporting ®configuration

management®).

30

For example, SORT[X :: POSET] can be instantiated using the view NATD from Section 2.4.4 by
make SORT-NATD is SORT[NATD] end
to get a package that sorts lists of NATURALs by the divisibility relation.

If the name of an entity is used instead of a view, the default view (if there is one) from the
requirement theory of the parameterized entity to the named entity will be used for the
binding. For example,

make NATLIST is LIST[NATURAL] end

uses the default view TRIV => NATURAL to instantiate the parameterized entity LIST with the
actual parameter NATURAL. Similarly, we might have
make REAL-LIST is LIST[REAL] end
where REAL is the field of real numbers, using a default view TRIV => REAL; also
make REAL-VSP is VECTOR-SP[REAL] end
uses a default view FIELD => REAL, and
make REAL-VSP-LIST is LIST[VECTOR-SP[REAL]] end

uses two nested default views.

An example involving a default view between theories is given in Section 2.4.6: LIST[X] is
introduced into SORT[X :: POSET] by a using clause, and takes the default view TRIV =>
POSET to ensure that X fits in LIST if it fits in SORT.

Here is an example that has some interesting instantiations:

generic package ITERATE(M :: MONOID]
using LIST([M] is
ops ITERATE : LIST -> N
vars E : M ; L : LIST
axioms
(ITERATE(NIL) = I)
(ITERATE(E . L) = E » ITERATE(L))
end ITER

using the default view TRIV => MONOID. We now use this entity in two other examples:
make SIGMA is ITERATE(NAT+] end

sums a list of numbers, i.e., computes ¥ L = E::'I'Li where L=L,.. L , while

31 ®

YR U

make PI is ITERATE[NAT*] end

PP

multiplies a list of numbers, i.e., computes I L = Hé:'l'Li (noting that 3(NIL) = 0 and II(NIL) -

A o
i = 1). We think that these are impressively concise and clear ways to get these functions.]
. 4
P
Ef-_j" 2.4.6 Package Stubs '.:'.'
Ada supports top-down program development through the use of body stubs. An Ada library . .

system should support the further capability of reusing subunits, which is prevented by Ada’s
separate clause. Even in bottom-up development, Ada requires that a new program unit refer

to something already compiled and in the library through a with clause; unfortunately, this

significantly limits the reusability of the new program unit. This subsection suggests a more
general notion of stub, based on the concept of view introduced previously, that overcomes

these limitations. This notion is another part of our Ada library interconnection language LIL.

A capability missing from Ada, but that would sometimes be very useful, is to compose generic
entities. For example, in Ada one cannot compose a generic LIST[X] with another QUEUE[Y] to
get something corresponding to LIST[QUEUE[Y]]. One can form something corresponding tol®
LIST(QUEUE(INTEGER)), although even this cannot be done in one step, but requires at least

two. LIL supports the composition of arbitrary generics.

We noted above that the Ada package concept embodies the structural relationship of realizing

e —— 'S s e aay o o
P T T T A A

. A I Lt e
. B s . . »
PR R U} L

one abstract machine (hereafter abbreviated *AM*") with one (or more) others; this can be seen

as a promise that a new behavior can be realized if certain other behaviors are provided. This

relationship expresses the most important and characteristic vertical activity. LIL indicates

" ARt
AR

interface requirements that need to be satisfied by a lower level AM with a needs clause. For °

example, here is a generic sorting package that needs a generic list package LISTP.

generic package SORT[X :: POSET] RN

3

s

; needs LISTP :: LIST(X] is
functions L

SORT : LIST -> LIST
SORTED : LIST LIST -> BOOLEAN

15

We use parentheses in this expression, rather than square brackets, because it is a putative -- although not a

real — Ada expression.

32
vars L : LIST
axioms
SORTED (SORT(L)) = TRUE
3 end SORT
- Let us try to better understand vertical and horizontal structure in terms of this example. The
i components to be used are shown in Figure 3.
g SORT
NATURAL POSET
LIST

' LiIST |

TRIV

FIGURE 3 SOME SOFTWARE COMPONENTS

We will begin with the vertical structure. The needs clause in the generic SORT says that
before a generic sorting function can really be supplied, we need to supply a generic Ada

package LISTP that is a version of the LIL package LIST[X]; the fact that X is both the formal

. Lo ettt
@ e

. S S
et

parameter of SORT and of LIST(X] indicates that the version is instantiated with the same X as » ;{:’_J:
SORT([X]. The advantage of this approach is that a generic Ada body for LIST[X] can now be ljj':j‘_ltjf_::
reused, which would be impossible with the Ada separate clause. To actually get a version of 3
LIST for use in SORT, one gives a mcdule interconnection command indicating which version to _.
use when compiling. LIL’s syntax for this is NS

. ','. e
i Bed s

make SORT[X] needs LISTP => LIST.HACK end

P:, 33

where LIST.HACK is a paricular generic body for the LIL generic package LISTIX], i.e., a
particular version of the LIST[X] capability. See Figure 4. The entity following the :: in a
needs clause is generally a LIL packagew, as in the example above. Any actual horizontal
parameters for the main package (SORT in this example) will also be supplied to the package
version in the needs clause (here, LIST.HACK). This automatic management of the interactions
of horizontal and vertical structure is one of the most novel features of LIL, and can greatly

simplify the programmer’s task in some cases.

SORT

LIST

LIST

POSET

> TRIV

FIGURE 4 A VERTICAL COMPOSITION

The horizontal component of this example appears in the formal parameter X, which is required

to satisfy the POSET theory. See Figure 5 for their horizontal composition.

A make command can accomplish both the vertical and the horizontal instantiation of SORT at

once:
make SORT-NATD is SORT[NATD] needs LISTP => LIST.HACK end

See Figure 6.

16lt could also be a LIL theory, but this case is not discussed in this note.

T

7
- SORT e
NATURAL POSET I
LIST g
. @
FIGURE 5 A HORIZONTAL COMPOSITION SR
SRR
Y

SORT
POSET
LIST
‘ LIST I
NATURAL POSET
TRIV

FIGURE 6 A REALIZATION OF SORT{NATURAL] WITH LIST{NATURAL]

Some appreciation of what is involved in a semantics for these constructs given with the

methods of Clear can perhaps be gleaned from Figure 7, showing how the requirements theory

of a generic package must be a subtheory of the AM that is realized by that package, and may

35

also be a subtheory of the stubs for the AMs that go into realizing it. Here IN1 and IN2 are the
requirement theories for the lower level AMs; these are included in the body theory of the
package. In addition, there is a theory of the behavior that is actually exported by the
package; this AM may not be identical with the body theory because of some information

hiding.

ouT

|

PARAM f=m=——g»| BODY

/ \

IN1 IN2

FIGURE 7 THEORIES INVOLVED IN A GENERIC PACKAGE

2.4.7 Environments

In a programming language, each statement, indeed each symbol, is interpreted in an
*environment,® which consists of the currently defined symbols and their current values (e.g.,
in a symbol table). Similarly, in LIL, there is an "environment® consisting of the currently
defined entity names and their values; but there is also further information (not found in the
*environments® of programming languages), namely relationships among these entities. More
specifically, the inclusions of one theory or package in another, and also views, should be part
of a LIL environment. These constitute, at any point in the processing of a LIL text, a diagram
which the user might want to see displayed. For exa~ . . Figure 8 shows such a generalized
environment for some of the pakcages, theories and views in the examples given in this paper.
Views are drawn with solid arrow heads; the other arrows are inclusions of the kind shown in

Figure 2.

i
g
2
3
B

!

R A L) Lty

M e o MM e men SRC I M s aset et e iaei e aah SE el b e S abd S St AL AETA SNSRI AT

36
NATURAL $————uoou—TR|V —————pp BOOLEAN - e o m
/ \ / E
MONOID POSET LIST S
ITER SORT

FIGURE 8 A LIL ENVIRONMENT

e
2.4.8 Transformations
The word "transformation® has been used both very loosely and in a wide variety of different ,
more specific ways. Recall that *hyperprogramming® is our term for the methodology being)

sketched here. Figure 9 gives a tree for the taxonomy of activities that are involved in
hyperprogramming. We hope that this classification scheme will aid in understanding and

organizing various ideas already in the literature.

HYPERPROGRAMMING

HORIZONTAL TRANSFORMATIONS -
o
ASSERTING STRUCTURING AGGREGATING VERTICAL STRUCTURAL -
VIEWS / \Eomwcfcooa
COMBINE INSTANTIATE ENRICH ABSTRACT CODE
MACHINES\ / \
REALIZE ABSTRACT COMPOSE CODE ASSERT
OPTIMIZING AXIOMS

FIGURE 9 HYPERPROGRAMMING TAXONOMY

r‘ v v — v e W ¥ W~ ¥~ —w— v~~~ v~ v~ - --*.viw_v;v..-}
) B
3 P
- y

37 o

Let us begin with activities that are not transformations. These all fall under the *horizontal® s
classification and consist of activities that introduce structure into a specification, design or . |]

program; the inverse activity of unstructuring, or aggregating parts into wholes, is also .;
considered horizontal (aggregation is sometimes needed before applying an optimizing \
transformation that involves more than one part), as is the activity of asserting a view, i.e.,
asserting that an entity satisfies some theory. -.]
|
It should be noted that these structuring operations do not involve any commitment to either » 1
9 top-down or bottom-up development. Components can be put together (this does not mean _- o
h aggregated) to form a structured whole; or an unstructured part can be broken into parts. *
' However, it is often more natural to use the idiom of top-down development.]
: |
The activity of instantiating a generic has already been considered. It is important enough . {
among horizontal activities to be called *horizontal composition® [Goguen & Burstall 80]. The .' ‘
reason for this importance is simply that the more generic entities are, the more they can be Lo .
reused. S
Perhaps the most basic horizontal activity is to combine two (or more) entities, which just o
means to consider them together. (For example, one might wish to have both STACK[X] and i
ARRAY[X]; the combination of these two is might then be written C[X] = STACK[X] + _,___,_:
ARRAY[X].) A particular point that must be handled carefully in this regard is that of shared ,"',]

subentities. These may arise implicitly through use of built-in entities (such as INTEGER and
BOOLEAN) or explicitly by a using clause. For example, if both STACK[X] and ARRAY [X] involve

BOOLEAN, we want to be sure that C[X] involves only one copy of BOOLEAN rather than two.
Similarly, the formal parameter X (and its implicit requirement thcory TRIV) are used in both
STACK[X] and ARRAY[X], and we want that C[X], as the notation suggests, also has formal

parameter X with requirement theory TRIV.

Two further horizontal activities are enrich and derive. The first of these adds some new

functionality to an existing entity, while the second derives it from existing functionality. The
activities discussed above are all part of the Clear specification language, and have been given a ' . o
formal semantics in [Burstall & Goguen 80]. Since specifications give semantics for code, these

formalisms can a'so be applied to programs. Indeed, it is our contention that the best way to

38

manipulate code is to manipulate the corresponding specifications, or even the corresponding

informal documentation.

The purpose of all the above activities is to provide structure (i.e., design information) at a
given level of abstraction. Activities that introduce concrete detail (called *commitments*
by [Scherlis & Scott 83]) are discussed under our second major heading, that of transformations
per se. We subdivide transformations further into two subcategories, those that preserve
semantics and those that may not. Those transformations that preserve semantics we will call
vertical activities, and we further divide these into two classes, corresponding to programming-

in-the-large and programming-in-the-small.

Semantics-preserving transformations that manipulate modules (as opposed to statements or
even lower level program phrases) are programming-in-the-large. Perhaps it is time to say in
more detail what it is that activities at this level of granularity actually do: They manipulate
entire abstract machines (AMs) in roughly the sense of [Parnas 72a, Parnas 72b). We can
distingish three different kinds of activity involving abstract machines: The first of these
corresponds almost exactly to the Ada package concept; it is a way of realizing a given behavior
(i.e., AM) provided that certain other AMs are given. This is the most basic and important
vertical activity, that of expressing a structural and algorithmic relationship between one level
of abstraction and the next (either up or down). It is also of course the basic support for top-
down programming in Ada; but the composability of such steps is very limited in pure Ada. A
very special case of this is hiding some information, i.e., of abstracting the way that a
particular behavior is realized by preventing implementation details from being visible outside

the package.

It must be noted that Ada lacks the capability for specifying more than the syntax of the Ii; Vo
behaviors involved here. It should also be noted that any given vertical level may have non- "
trivial horizontal structure, that is, a given AM may be a (horizontal) composite of several

simpler AMs. (See the example in Appendix IIl.)

Vertical layers of abstraction can be combined by vertical composition. This is simply the
compounding of abstract realizations: if level n-1 realizes level n, and level n realizes level n+1,

then level n-1 realizes level n+1. In terms of Ada packages, this is just the idea that supplying

T _.-‘_‘~.\-
Ao e

39

all the stubs in a package means that you can actually execute the program now. It is a basic

intuition of software engineering that this should be true independently of the horizontal

D 7 REREMCME

structure existing at the various levels (a special case of this is the *double law® of {Goguen &
Burstall 80] and [Goguen & Meseguer 82a).

Among the semantics-preserving transformations on the code level (i.e., programming-in-the-
small), there are two interesting subcategories of activity: (1) optimizing code; and (2) asserting
axioms. The first subcategory has received considerable attention in the literature. It includes
transformations that replace recursion by iteration, that eliminate unused variables, that insure
common subexpressions are evaluated only once, etc. The early work of [Burstall & Darlington

77] is relevant, and the work of [Rich & Waters 83} also falls largely in this category.

- The second subcategory includes work on program verification in which assertions about the
state of the environment are inserted between (or possibly even inside of) statements; the best
known approach is that of Hoare. The Anna language [Krieg-Bruckner & Luckham 80]
embodies this approach for use with Ada. It should be noted that, although such an approach
can be used to make assertions about the functions and procedures in an Ada package, it is
conceptually quite different from the method of views and theories discussed above, which
= operates at the package level rather than at the operation and statement levell?.

Our final category is that of transformations that do not preserve meaning. This includes all
ordinary programming, which is just adding to or modifying other code (noting that a new
project starts from the empty program). Modern structural editors make this a bit more
elegant by preventing syntax errors, but the fact remains that these activities take no account
of semantics at all. Of course, a programmer trying to debug a program is actually {rying to
changr its semantics. But wouldn’t it be better if he could get some help in understanding
what it is supposed to do and how it is supposed to do it? In fact, providing sufficient semantic
information to the programmer makes debugging the process of trying to find where, in the

process of program production, semantics was not actually preserved.

'_;". 17To be very technical about it, the assertion language approach views Ada as an “institution® in the sense
- of |Goguen & Burstall 84).

One very simple kind of transformation uses a view-body, i.e., a type mapping and an operation
mapping, to create a new entity from an old one, with the old syntax modified as indicated in
view-body; new types and operations can also be declared, and old ones can be hidden. We call
this the IMAGE command; it can greatly increase the reusability of entities. Among possible
modifications are: to enrich an entity, by adding to its functionality; to restrict an entity, by
eliminating some of its functionality; and to rename parts of the interface of an entity. These
support a number of useful (data type based) program transformations. This feature has been
implemented at the command level of the OBJ programming language {Goguen, Meseguer &
Plaisted 82].

We now consider how transformations relate to the horizontal hierarchy and to views. It is
often desirable for transformations to include using clauses; indeed, this may be necessary in
order to prevent the creation of new copies of packages that are not included in such a clause.
If an old entity M has a view V :: T => M, then the image entity, say M1, should inherit a view
Vi :: T => M1, except possibly if some functionality has been deleted or modified in
constructing M1. Functionality can be deleted by hide-types and hide-ops clauses, much as

for LIL package specifications.

It should be noted that transformations, like Ada packages, can be parameterized, instantiated,

enriched, derived and combined. In fact, the whole range of horizontal activities can be applied

to vertical entities. Moreover, it is clearly essential to provide some horizontal structure for
program transformation activities, that is, some local context, if program transformations are to

be used as an effective way of encoding design information.

2.4.9 Control Abstractions

The general idea of ®control abstraction® is perhaps less familiar than that of data abstraction,

but has many applications. An abstract control structure is a parameterized entity that
describes some kind of control flow to be executed over instances of an actual parameter entity.
For example, a generalized iterator is a paramaterized entity that can be instantiated with any
data structure having elements suitable for iterating over; suitable data structures include lists,
sets, trees, stacks and queues. Many of the loops that arise in programming can usefully be

seen as instances of this concept. Another example would be a generic backtrack programming

module, that could be instantiated with any data structure having suitable notions of "next®

41

elements to try, and of the success of a try. Still another is the notion of "pattern-driven
demons® found in many Al programming ianguages (originally in Hewitt’s Planner language,
and more recently in Prolog). Many other references could also be given, for example, to the
languages Clu, SETL and ECL.

2.5 Library Organization

We now discuss library management issues. One suggestion is to use a hierarchical
classification scheme (in the same sense that the Dewey decimal system is hierarchical), but
with complex indices at different levels of detail and formality, ranging from keywords to

formal axioms.

At the highest level, keywords might be organized by application domain, with specific library
entities obtained by lower level key words. Examples of such domains are operating systems,
relational data bases and compilers. For example, in the domain of operating systems, one
might have modules for such functions as scheduling, spooling and checking capabilities. This
calls for an acyclic graph organization, with as much sublibrary sharing as possible. For
example, numerical routines and basic data types will be needed in of the many more

specialized sublibraries.

The lowest levels of the classification hierarchy might contain descriptions of program
properties in forms more readable by machines than by users. This would support a very

limited analysis capability to search for entities that have relevant properties.

2.5.1 Truth Management

The axioms in a LIL package can be formal statements in a formal language, such as first order
logic, or statements in informal mathematics, or sentences in ordinary English. Thus,
validating a view (this means showing that the target entity of the view really satisfies the
axioms given in the source entity) can be done in various ways, having various associated
degrees of certainty. For example, an informal argument may have been given, a test suite may
have been successfully run, an informal argument may have survived a formal presentation

(*walkthrough®), or a proof checker may have accepted a formal proof.

The most important use of this information would be during debugging. Once a bug is found,

..

- .- . . - . . . - CYRY - - . - . . . - . - . B TR A A R T L

.....................

..
..................

A R et S e S e It Tt S S A T e e e T I R I I e T

.
..........
.......

we suggest using critical path analysis and related techniques to find the weakest link in the
argument (implicitly constructed along with the design) that there is no such bug. This will be
E the best place to look for something that needs to be changed; it may also be possible for the

system to suggest what changes should be made.

. 2.5.2 Organization by Semantics

Library organization is a difficult problem. We suggest that LIL packages be used to index the
information needed for retrieving appropriate entities from the library. LIL provides version
management by permitting more than one Ada package body to be attached to a given LIL
package. However, these package bodies need some further information attached to them for
choosing among their body. Figure 10 shows how the library entities involved in two versions

of a LIL package might be organized.

Another use of organizing a library by semantics and having available a library interconnection
language, is that it should be possible to automatically build documentation for new entities
that have been constructed from old ones, by using the documentation already given for the old
entities. In fact, the first step of constructing a large system might be to structure its
requirements, so that an appropriate interconnection statement would assemble the system
requirements from the requirements for its components (of course, some system requirements
could not be broken down in this way, since they apply only at the highest level, e.g., total

system performance). Later steps would break these components down further.

Another potentially very valuable benefit of semantic organization (i.e., of LIL) is to provide a
rapid prototyping capability by simply executing the axioms in LIL packages. This will be
possible if all the axioms are given in an appropriate logical formalism, and if there are enough

of them. For example, work done with OBJ [Goguen, Meseguer & Plaisted 82, Goguen &

Mescguer 82b] shows that equational logic can provide such a capability; and
. Prolog [Colmerauer, Kanoui & van Caneghem 79] shows that it can be done with so-called Horn
{

clause logic.

) 43

NAME, KE YWORDS
l FUNCTIONAL SPEC
INTERFACE SPEC
DOCUMENTATION
EXAMPLES, TEST CASES

= 7N\

VERSION 1 VERSION 2

PERFORMANCE INF. PERFORMANCE INF.
WRITER; DATE WRITER; DATE
ETC. ETC.

L

. !

o ADA CODE ADA CODE

- [

INTERMEDIATE INTERMEDIATE

COMPILED FORM COMPILED FORM
COMPILED FORM COMPILED FORM

FIGURE 10 ORGANIZATION OF LIBRARY ENTITIES FOR A PACKAGE

.

»

: 2.5.3 System Families

: The technique of *skeletons® (mentioned as point 9. at the beginning of Section 2.4) if properly
» developed, might provide a very general and flexible approach to software families [Parnas 76|,

permitting the system in effect to provide a *first draft* implementation (see also [Cooprider

79]). The intention here is that an expert system might embody some of the knowledge of the

et et

RSCER . . KRR NN
S e T o -, et . PR LA -

R K

- - - . - . . - . - hd Y . MY . - - . . .,
AR AN A AT P - - . S A -
Lt e e TN T G N e e e e T - s s

Ada programming community on how to compose programs in some particular application
domain. Such an expert system could be updated as experience with a given domain grows,

H and as library entities applicable to that domain accumulate. This would permit contructing

individual family members by combining library entities with the aid of the expert system.

. v, o ve
.

2.5.4 Cataloguing

! Current techniques from information science and relational databases should also be relevant to

b
L
[
'
r»

the basic design of a library system. For example, there are results that help choose the
optimal number of levels, and the optimal number of classifications at each level, for a given
structure (e.g., Huffman coding, human factors experiments, and work of [Resnikoff 80} on
library organization); one idea is to help the user to play "twenty questions® as well as possible.
Relevant work on user interfaces to databases includes Query-By-Example and system R. One

should also consider more experimental ideas, such as automatic indexing and classification

schemes, for their possible relevance to Ada libraries.

' Notice that the proposed design lends itself to a distributed implementation, so that users at
% multiple sites could share results. This could be achieved by having all indices available at all

sites, but not necessarily all programs at all sites. (This is like having an inter-library loan
system, with a system-wide catalogue at each library.) At the expense of greater retrieval time,

h it i1s also possible to avoid having all of the catalogue at each site.

2.6 User Interface and Management Issues

The user interface to the library should provide features not available directly in Ada, such as

high resolution graphical, and possibly even audio, output of relevant information and
structures. Choices could be presented to a user interactively with pop-up multimedia menus
(these might involve icons that are suggestive pictures, words and/or phrases), with (optional)
descriptions (that might be audio and/or visual) of the meanings of these choices available at
various levels of detail. This would permit users at various levels of skill and experience to use
the system, and to learn better how to use it as they do so. One can also imagine having

computer generated sound movies that explain how a given system or component works.

It would seem worthwhile not only to enforce aspects of good programming style, but also to

reinforce, encourage and teach it with built-in on-line system features. One thinks, for example,

N T Ty " ‘,_‘-._E'“.VV‘U"'V..‘.vv""‘v'“rr"—“.>r_v"ﬁ'fi—‘rvvv"'f'*‘ Rl ,

45

of the powerful reinforcement techniques in video games. It would appear that a great deal
could be done to support interactive learning about Ada, about the library system and about its
methodology, while users are actually using them. There could be, for example, an on-line

explanation capability derived from the expert systems already mentioned.

In the area of visual interfaces, an interesting possibility is to animate packages or other AMs
in a system, that is, to generate a "cartoon® sequence of iconic representations for the abstract
data types (ADTs) involved, such that changes in the display correspond to changes in the state

of the AM. This is not so difficult as it might sound at first, since default iconic representations
t can be automatically generated from suitable equational specifications for the ADTs, and these
might well already be in LIL packages for these types. These default icons consist of boxes

containing data items, strung together in lines, or in trees. For many familiar data types, this

gives the usual graphical representation. Among these are lists, queues, stacks, arrays and
trees. For others, it does not, and some additional work would be required to get the usual
representation. However, it should never be necessary to write complex display programs, but
only to supply particular iconic representations for ADT constructors, since the way that they
are to be put together is available from the algebraic representation. Going a little further, it
should also be possible to automatically generate an audio commentary to accompany such a
display sequence. The value of such animations for program understanding and debugging

would certainly be immense.

Recent research on how people actually describe programs [Burstall & Weiner 80] might be
utilized to make program documentation and the library elassification scheme easier for users to
understand and to use. This research shows that a number of different descriptive structures
are used for different purposes, and that these are regularly embedded within one another in
specific ways. The structures used include the following: explanations, e.g., for describing
data structures; plans, e.g., for describing high level organization; stories, e.g., for giving
historical information about program development; and (what have been technically called)
pseudo-narratives, in which program entities participate in a story-like structure as

*characters.® While simple stylized formats will be adequate for small library entities, higher

level schemes like those discovered by Burstall and Weiner will be needed to organize the -
- documentation of larger assemblies of library entities. We propose that these descriptions be

interactively system prompted, and include such features as interface syntax, input constraints,

. 46

. exceptions, side effects, output properties, design decisions (e.g., space-time trade-offs) and

performance.

It may seem anticlimactic to conclude a fairly technical paper with a discussion « * management

issues. However, experience makes it clear that unless such issues are handled properly, it will

be difficult or impossible to effectively use software development tools.

It appears that each successive generation of software development tool has been significantly
more expensive than the previous one. Compilers are much more complex than assemblers; and

an Ada environment is an extraordinarily complex and expensive thing. However, these tools

are still much less expensive than corresponding hardware tools, such as fabrication lines.
Thus, it seems very strange that there is such great reluctance to invest significant amounts of
money into research and development for software tools. This is especially true in view of the
fact that more and more of the cost of real systems now lies in their software rather than their
hardware. It should be noted that Japanese "software factories® have been reported to achieve
remarkable rates of reusability, from 60% to 809%. Thus, it seems that unless these
management policies change, both in government and industry, the United States may fall

behind other countries in the important area of software productivity.

2.7 Acknowledgements

I would like to thank Drs. Ole Oest, Jose Meseguer, and Karl Levitt for their very valuable

comments on drafts of this paper. Professor Rod Burstall is particularly thanked for his careful '._:_l_':-jjf':j
reading of a late draft. L ‘
o

2.8 References :
(Balzer 81] Balzer, R.
Transformational Immplementation: An Example. IR

IEEE Transactions on Software Engineering SE-7(1):3-14, 1981. -9

[Burstall & Darlington 77]
Burstall, R. M. and Darlington, J.
A Transformation System for Developing Recursive Programs.
JACM 24(1):44-67, 1977. -

P . o —— - e 4 - T - ———

47

[Burstall & Goguen 77|
Burstall, R. M. and Goguen, J. A.
Putting Theories together to Make Specifications.
Proceedings, Fifth International Joint Con ference on Artificial Intelligence
5:1045-1058, 1977.

[Burstall & Goguen 80|
Burstall, R. M., and Goguen, J. A.
The Semantics of Clear, a Specification Language.
[In Proceedings of the 1979 Copenhagen Winter School on Abstract Software
. Speci fication, , pages 292-332. Springer-Verlag, 1980.
Lecture Notes in Computer Science, Volume 86.

n [Burstall & Weiner 80]

Burstall, R. M. and Weiner, J. L.

Making Programs more Readable.

1980.

Proceedings, International Symposium on Programming, Paris, April.

[Buxton & Druffel 81]
Buxton, J. N. and Druffel, L. E.
Requirements for an Ada Programming Support Environment: Rationale for
STONEMAN.
In Hunke, H. (editor), Software Engineerin Environments, , pages 319-330.
North-Holland, 1981.

[Cheatham 83] Cheatham, T.
Reusability through Program Transformation.
In Biggerstaff, T. and Cheatham, T. (editors), Proceedings, W.rkshop on
Reusability in Programming, , pages 122-128. ITT, 1983.

[Cohen & Jackson 83]
Cohen, B. and M. L. Jackson.
A Critical Appraisal of Formal Software Development Theories, Methods S
and Tools. °
Technical Report, Standard Telecommunication Laboratories, Harlow, '
England, June, 1983.
ESPRIT Preparatory Study.

[Colmerauer, Kanoui & van Caneghem 79] S
Colmerauer, A., Kanoui, H. and van Caneghem, M.
Etude et Realisation d'un Systeme Prolog.
Technical Report, Groupe d'Intelligence Artificielle, U E.R. de Luminy,
Universite d'Aix-Marseille I, 1979.

[Cooprider 79)

[De Marco 78]
[DoD 80}

E [Feather 82]

[Goguen 71]

[Goguen 82]

[Goguen 83]

Cooprider, L. W.

The Representation of Families of Software Systems.

Technical Report, Carnegie-Mellon University, Computer Science Department,
1979.

Ph. D. Thesis.

De Marco, T.
Structured Analysis and System Speci fication.
Yourdon, 1978.

United States Department of Defense.
Requirements for Ada Programming Support Environments.
February, 1980

Feather, M.
A System for Assisting Program Transformation.
ACM Transactions on Programming Languages and Systems 4(1):1-20, 1982.

Goguen, J.

Mathematical Foundations of Hierarchically Organized Systems.

In E. Attinger (editor), Global Systems Dynamics, , pages 112-128. S.
Karger, 1971.

Goguen, J. A.

Ordinary Specification of Some Construction in Plane Geometry.

In J. Staunstrup (editor), Proceedings, Workshop on Program Speci fication, ,
pages 31-46. Springer-Verlag, 1982.

Lecture Notes in Computer Science, Volume 134.

Goguen, J. A.

Parameterized Programming.

In Biggerstaff, T. and Cheatham, T. (editors), Proceedings, Workshop on
Reusability in Programming, , pages 138-150. ITT, 1983.

To appear in IEEFE Transactions of Software Engineering.

[Goguen & Burstall 80)

Goguen, J. A., and Burstall, R. M.

CAT, a System for the Structured Elaboration of Correct Programs from
Structured Speci fications.

Technical Report, SRI, International; Computer Science Lab, 1980.

[Goguen & Burstall 84)

Goguen, J. A. and Burstall, R. M.

Introducing Institutions.

In E. Clarke and D. Kozen (editor), Proceedings, Logics of Programming
Workshop, , pages 221-256. Springer-Verlag, 1984.

Lecture Notes in Computer Science, volume 164.

bk

R A A S e
PR Gl
s 's ‘e e ot th Adadothnk

e AN AN S A 4w 4
A AT

PP

p——

T

49

[Goguen & Meseguer 82a)
Goguen, J. A. and Meseguer, J.
Universal Realization, Persistent Interconnection and Implementation of
Abstract Modules.
In Proceedings, 9th International Colloguium on Automata, Languages and
Programming, . Springer-Verlag, 1982.
Lecture Notes in Computer Science.

[Goguen & Meseguer 82b)
Goguen, J. and Meseguer, J.
Rapid Prototyping in the OBJ Executable Specification Language.
So ftware Engineering Notes 7(5):75-84, 1982.
Proceedings of Rapid Prototyping Workshop.

[Goguen & Meseguer 84a]
Goguen, J. and Meseguer, J.
Equality, Types and Generics for Logic Programming.
Technical Report Technical Report CSLI-84-5, Center for the Study of Logic
and Information, Stanford University, March, 1984.
Also to appear in 1984 Logic Programming Symposium, Upsala, Sweden.

[Goguen & Meseguer 84b)]
Goguen, J. A. and Meseguer, J.
An Initiality Primer.
7, 1984.
To appear.

[Goguen, Mesegucr & Plaisted 82]
Goguen, J. A., Meseguer, J., and Plaisted, D.
Programming with Parameterized Abtract Objects in OBJ.
In D. Ferrari, M. Bolognani and J. Goguen (editors), Theory and Practice of
So ftware Technology, , pages 163-193. North-Holland, 1982.

[Green et al. 81} Green, C. et al..
Research on Knowledge-Based Programming and Algorithm Design.
Technical Report, Kestrel Institute, 1981.

[Habermann & Perry 81|
Habermann, A. N. and Perry, D. E.
System Composition and Verion Control for an Ada.
In Hunke, H. (editor), Sofltware Engineerin Environments, , pages 331-343.
North-Holland, 1981.

[Jackson 75] Jackson, M. A.
Principles of Program Design.
Academic Press, 1975.

SH e M S SVe e S A e -y — T —— T T————— AJnE Shu kil Sunt by N Aes S S St

50

[Krieg-Bruckner & Luckham 80]
Krieg-Bruckner, B. and Luckham, D.
Anna: Towards a Language for Annotating Ada Programs.
SIGPLAN Notices 15(11):128-138, November, 1980.

[Liskov et al. 79] Liskov, B. H.,, Moss, E., Schaffert, C., Scheifler, B., and Snyder, A.
CLU Re ference Manual.
Technical Report, MIT, Lab for Computer Science, 1979.

[Litvinchouk & Matsumoto 83]
Litvinchouk, S. D. and Matsumoto, A. S.
Design of Ada Systems Providing Reusable Components.
In Biggerstaff, T. and Cheatham, T. (editors), Proceedings, Workshop on
Reusability in Programming, , pages 198-206. ITT, 1983.

[Parnas 72a) Parnas, D. L.
On the Criteria to be Used in Decomposing Systems into Modules.

Cominunications of the Association for Computing Machinery 15, 1972.

[Parnas 72b] Parnas, D. L.
A Technique for Software Module Specification.

Communications of the Association for Computing Machinery 15, 1972.

[Parnas 76] Parnas, D. L.
On the Design and Development of Software Families.
IEEFE Transactions on Software Engineering SE-2(1):1-9, 1976.

[Prieto-Diaz & Neighbors 82
Prieto-Diaz, R. and Neighbors, J.
Module Interconnection Languages: A Survey.
Technical Report, University of California at Irvine, August, 1982.
ICS Technical Report 189.

[Resnikoff 80] Resnikoff, Howard.
Optimnal Hierarchical File Organization.
Technical Report, National Science Foundation, 1980.

[Rich & Waters 83]
Rich, C. and Waters, R. C.
Formalizing Reusable Software Components.
In Biggerstaff, T. and Cheatham, T. (editors), Proceedings, Workshop on
Reusability in Programming, | pages 152-159. ITT, 1983.

[Scherlis & Scott 83]
Scherlis, W. and Scott, D.
First Steps Towards Inferential Programming.
In Mason, R. E. A. (editor), In formation Processing 83, , pages 199-212.
Elsevier, North-Holland, 1983.

RN

e

e

° .

1

K

4

i

]

9 1

o

e

IEIR |

oL

RS
®

R ¥

o .
ol L Vv
LT R 4
B T . T
« e e - L
P ARV PP ISP SNAPLIRI PSR TNTERPADEr I R DL DU

T T T I ———— T T W o

51 ®

[Standish 83] Standish, T.
Software Reuse. , -
In Biggerstaff, T. and Cheatham, T. {(editors), Proceedings, Workshop on P
Reusability in Programming, , pages 45-49. ITT, 1983.

[Tichy 79] Tichy, W. F.
Software Development Control Based on Module Interconnection. el
In Proceedings, Fourth International Con ference on Software Engineering, , S
pages 29-41. IEEE, 1979. L4

[Tichy 80] Tichy, W. F.
| | So ftware Development Control Based on System Structure Description.

' Technical Report, Carnegie-Mellon University, Computer Science Department,
b 1980. ®
Ph. D. Thesis.

T T

.....................

52

3 Prepared Lectures

The following subsections contain summaries of the talks given in the workshop, in the order
that they were given (see Appendix I). After each summary is a digest of the discussion that
followed that talk. The slides from the talks that were available and reproducible are given in

Appendix IV.

3.1 Why DoD Needs Software Environments
by Brian Schaar, AJPO and Jack Kramer, IDA

Brian Schaar first considered goals as they existed five to ten years ago. Congress was
interested in why DoD weapons systems cost so much, and why these costs were continually
escalating. It seemed that greater utilization of general purpose digital computers, as opposed
to special purpose computers, would save money. In 1975, a Higher Order Software Working
Group (HOLWG) was convened to consider language and environments. This lead to Ada. In
1984, Ada will be required in DoD systems; this is the first time that DoD has required a single
higher order language. AJPO will be concerned with supporting the transition, and will give

increasing support to work on Ada education.

Jack Kramer then discussed prospects for the STARS program, and indicated the important
role that Larry Druffel had played in both Ada and STARS. Even in the early HOWLG, there
was skepticism that Ada alone would be a solution to the reusability problem; it was recognized
that enviornments would be needed, including catalogues for libraries, and help to users in
deciding which package is best. We still do not fully know what an environment is. But we
feel the need for a software components industry, providing for example a basis for a rapid
prototype that can later be modified. The hardware industry is relatively more successful,
because it has standard interface conventions, catalogues of components and understandable
specifications. Specification is more of a problem in software; and design for modifiability is an
even greater problem. For example, testing should be integrated into environments and used

throughout the lifecycle.

Brian Schaar then discussed various related projects, such as ALS (Ada Language System),
CAIS (Common APSE Interface Set), AIE (Ada Integrated Environment), KIT/KITIA (KAPSE
Interface Team/KAPSE Interface Team Industry and Academia) efforts.

3.1.1 Discussion

Tichy: Will free Ada compilers be available? It will be hard to use Ada if it is expensive.
Schaar: We are working on this.
Cohen: It is the intention that all government supported software tools would be provided as

GFE (goverment furnished equipment).

Dempsey: What is happening with CAIS? KIT is seeking to integrate the Army and Air Force
interfaces, and has produced a document, CAIS 1.1, containing guidelines for tool writers and
identifying important interface problems.

Kramer: The goal of KIT is to identify a minimum set of tools, and to ensure that they can be

moved from host to host.

3.2 Conceptual Architecture for a Software Engineering Environment

by Samuel T. Redwine, Jr., IDA

This lecture presented the results of an initial planning effort for the Joint Services Software
Engineering (SEE) Environment Effort, and was described as having a preliminary character.
The primary components of the architecture were presented in a three-dimensional diagram.
The three dimensions of the diagram represented: the components of the environments; the
linguistic entities used in the environment; and various factors in the context in which the

environment is used. Among some specific points made, the use of standard metagrammars was

recommended for capturing dynamic typing. A number of database concerns were also isolated,
including: interaction with the rest of the SEE; what its contents and structure should be; how

to describe the contents and structure; and standardization. o

3.2.1 Discussion

Cohen: [s a universal transiater practical for CAIS? Is CAIS an intermediate language?

Redwine & Kramer: Portability of software tools is a major goal of CAIS.

Rudmik: T am worried about standards. UNCOL, meant to be a standard intermediate

language, failed. We should not try to standardize where there is not enough understanding.

Redwine: It is not clear when methodology technology will be ready. Trial use military
standards might be useful, and we should also consider International Standards.

Kramer: DIANA is now aceepted (or almost).

Redwine: It is important to have standardization in mind early.

3.3 An Overview of Ada Libraries

by Karl N. Levitt, SRI International

This talk was primarily an introduction to the SRI "strawman® approach to Ada Libraries.
Technical details are treated in the talks by Goguen and Meseguer. The present talk
considered three main topics: (1) ou: overall goals for a theory and practice of reusability; (2)
available technology for Ada Libraries; and (3) needed new technology. Following a general
motivation for reusability, features of Ada that support reusability were reviewed, and it was
concluded that the Ada parameter mechanisms are a good basis, but there remains the question
of how to put modulc: together, how to capture design issues more easily than is possible just
with Ada, and how to document modules and systems. SRI's approach to these issues is
considered in the paper and lecture by Goguen. It is emphasized that reusable code is not the
complete answer; {or example, generic designs and requirements capture decisions not
conveniently statable in Ada. A major concern is how to document so that useful components
can be identified and retrieved. Existing documentation technology was reviewed, and it was
concluded that a standard database management system would be of considerable use as a first
cut. However, it appears that more dynamic forms of documentation are needed for easier
understandability and modifiability. Towards improved documentation methods, ongoing work
at SRI on a system called PegaSys was described. PegaSys describes system structure (also
called *form®) using graphical methods in three ways: pictorial representations can be refined
to yield more detailed forms; pictorial representations are linked formally to Ada code so that
they are assured to have computational meaning; and execution results can be graphically
displayed. PegaSys might be of great value in tracking changes to a system, since it identifies
those system components that are impacted by changes to a single component. Similar methods

are proposed for use in LIL, as described in the lecture by Meseguer.

3.3.1 Discussion

Cohen: How can you couple reusability to the software lifecycle?

Levitt: There is meaningful reusability at all stages of the lifecycle.

Livtintchouk: What is the form calculus?

55

Levitt: The form calculus can be used to describe objects and how they interconnect. The form

calculus is used in the PegaSys visual programming environment being developed by Mark

Moriconi et al at SRI. Standard relations are ®"call-by-value,* *datafoow,® etc., and new

relations are derivable from the standard relations.

3.4 LIL: A Library Interconnection Languge for Ada Programs

rp— R
. AR A
. DU A

by Joseph A. Goguen, SRI International

The substance of Goguen'’s talk is included in his paper prepared for this workshop and given in

Section 2 of this report. The following is an abstract for that paper:

This paper discusses prcblems, concepts and approaches relevant to an on-line library system
supporting the creation, documentation and maintenance of Ada software systems. The
ultimate goal of research in this area is to make Ada programming significantly easier, more
reliable, and more cost effective by using previously written Ada code and previously
accumulated programming experience to the maximum possible extent. The main suggestions
made in this paper are as follows: systematic (but limited) use of semantics, by explicitly
attaching theories (which may be informal) to program units by means of views (a new concept
defined in this paper); use of library entities and a library interconnection language (called LIL)

to assemble programs out of existing code; maximal use of generic library entities, to make

them as reusable as possible; support for different levels of formality in both documentation and o 3
validation; and finally, facilitation of program understanding by animating abstract data types

and module interfaces.

3.4.1 Discussion o 1

Redwine: How does this relate to programming in the large?

Goguen: Programming in the large is the assembly of modules into larger programs, and
typically involves many people and long lifetimes; programming in the small is concerned with -0 1
writing the modules. The LIL language is specifically designed for programming in the large 1
with components that are written in Ada. An environment based on LIL could automatically
generate requirements documentation and management information from local documentation

and the system design, as expressed in LIL.

’ 56

Myers: Is LIL oriented to the package level, or to the system level?
g Goguen: The entities that stored in the LIL database cover a very broad range, and LIL
operations manipulate both packages and higher level descriptions; the purpose of these
manipulations, of course, is to create systems. For example, LIL can "slice® a package to
reduce its functionality, and at the same time, automatically slice the corresponding
. documentation. More generally, the operations of instantiation, enrichment and restriction are

applicable to all kinds of library entities.

Dempsey: This raises the question of what should be stored in the database. There are some
entities that should be treated separately.

Goguen: Yes. We need to be able to create relatively small views of a potentially very large
database. It is obvious that code should be stored in the database, both in compiled and raw
form. At the higher levels of information, having more of a struetural or management function,
it is less clear what should be stored and how it should be manipulated. Although LIL makes

some concrete proposals, these issues need further research.

I’ :mpsey: How do you deal with different kinds and levels of abstraction?

Goguen: One of the wonderful things about Ada is that it clearly distinguishes between vertical
and horizontal abstraction. Horizontal abstraction has to do with parameterized modules, while
vertical abstraction has to do with step-wise refinement. However, this power cannot be
sufficiently exploited in Ada programming methodology, due to limitations of the Ada compiled

program library concept. A good library interconnection language could solve this problem.

Rudmik: Is LIL really a good language from the user’s point of view?

Goguen: The syntax chosen for LIL in the paper I wrote for this workshop is intentionally
relatively close to mathematics, as well as to Ada. However, we have ideas for a much more
natural user interface, involving menus, graphics, animations and so on; the user need not see

LIL in the internal form described here. Meseguer will discuss aspects of this in his talk.

Levitt: Could you summarize some of the limitations of Ada that LIL helps to overcome?
Goguen: Ada’s separate statement prevents reusing compiled code for stubs in more than one

package; LIL has no such limitation, and instead relies on partially compiled code. Also, if F(X)

and G(Y) are generics, Ada provides no way to compose them to get a new generic G(F(X));

57

instead, one must first apply F to an actual A, and then one can get G(F(A)). LIL permits fully

general composition of generics, both horizontally and veritically.

Litvintchouk: At what point do we go from LIL to Ada?

Goguen: One can think of LIL’s modules as being like parameterized library cards; one can fill
in parameters, and get various books; then one can combine these books to get still larger
books. However, what is actually being put together is partially (or, when possible, fully)
compiled Ada code. LIL is used to express system organization, rather than executable code per
se.

Litvintchouk: It seems to be an advantage that this approach checks consistency between
levels.

Goguen: Yes, the "theories® associated with interfaces in LIL permit one to declare both
semantic and syntactic requirements for consistency. However, the semantic requirements can
be expressed at a variety of levels of precision, from just English to some formal specification
language. Then, when an actual is to be substituted into a generic, it can be made clear what
properties that actual must have for things to work correctly. LIL uses the "view® concept as a
*bridge® between the actual and the requirement theory of the generic, to say just how the
requirement is actually satisfied. For exawnple, with a SORTING generic, one should require
that there is a partial ordering relation on the actual. But if we choose the naturals as actual,
there is more than one such partial ordering available; suppose that we want to use
*divisibility® as our ordering; then the view should express this, and perhaps also give an

argument (formal or informal) for why it really is an ordering relation.

Babcock: Can all Ada code be stored in compiled form? Does LIL code compile into real code?
For example, what if a stub is to be used in another package?

Goguen: LIL stores intermediate code, that is compiled when the parameters are availalble.
Babeock: Could DIANA deal with the intermediate forms required by LIL?

Goguen: That's a good question. I think that something like DIANA would be sufficient, but it
will take more research to find out in detail exactly what is needed. It appears that generic

addresses are needed, which I understand DIANA does not provide.

58

3.6 DCP Approach to Ada Libraries
b by Andres Rudmik, GTE

5 This lecture summarized aspects of the DCP (Distributed Software Engineering Control
Process) project at GTE Network Systems R&D in Phoenix, including the project goals and

approach, and emphasizing the use of Ada libraries to support software reusability. Among the

goals were that the DCP should be distributed and portable, should support centralized control
of development, reduce software costs and improve software quality, support use of Ada for
design and implementation, and should integrate software development tools. The approach
involves using a relational database supporting configuration management, change tracking,
program libraries, and document generation. Reusability is to be achieved by using Ada

libraries and a *DCP Encyclopedia® which functions as a library catalog. It is necessary to

have a reusability methodology, involving the specification, design, implementation,

documentation and testing phases. Documentation is especially important.

3.5.1 Discussion

Tichy: What happens to old packages?

Rudmik: Configuration management keeps track of who uses what; notifies users of all
changes; we are not building in a lot of rules just now.

Tichy: You need to build in options now, if not rules.

Levitt: What is your experience with DCP?
Rudmik: The project is only 9 months old. We are now using DCP to build DCP, and trying to

demonstrate there are no performance degredation; also, we are trying to use Ada as a

command language.

Litvintchouk: We should not be deluded by the success of the developers using DCP, since they Z-ji'.-‘_‘"}'_.-_ -3
know it, and are highly motivated to succeed. Perhaps you should try an experiment with two T
. @
groups, package writers and package users.]
R
Witte: Have you looked at menu-type access? Lo 1
Rudmik: We are looking at that. e

N
et .
PP
MO DTG G R W'y

59

3.6 Flexibility vs. Efficiency for Reusable Components

h by Allen S. Matsumoto, ITT

This lecture was concerned with the trade-off between flexibility and efficiency for reusable
" components, and more specifically, with the attempt to define reusability and generality. It was
- noted that a more general Ada package would involve fewer restrictions and therefore permit

more instantiations; i.e., it would be more flexible. On the other hand, a more specific package
would have more decisions already made, taking into account greater knowledge of context, and
then permitting greater efficiency in that context. This was illustrated with various packages
for sorting arrays, showing that early design choices, which may even have been made at

specification time, can undesirably limit later implementation options. A tentative definition of

generality (and thus of reusability) was offered in terms of the complexity of the graph of

theories used in the specification of the package.

3.6.1 Discussion

Witte: How do you measure quality of design decisions; for example, formats, size of objects,
and distribution of data?

Litvintchouk: It is hard to define *"best® or even "better,® because of the tradeoff between
efficiency and reusability.

Kramer: One should maintain semantic equivalence throughout the life history of a design, so
that one can backup and reconsider decisions.

Matsumoto: The complexity of the graph relates to how close one is to the base language.

Redwine: Another issue is how humans intuitively view complexity; what someone is used to is
important.
Matsumoto: Sometimes a user sublimely ignores an issue, such as properties needed for the

ordering relation on the elements to be sorted.

Cohen: When developing a secure system, it is convenient to view the system as having two
parts: the trusted part that must be correct to assure security, and the rest of the system, that
has no bearing on security. then, one wants to minimize the amount of code in the trusted
part. This gives a different loss function.

Matsumoto: ®Shortest® is not necessarily "best ®

..............................

..................................

A il s aodh et suME SNL em e g

60

3.7 Mapping Clear Specifications to Ada Packages

Al e

by Steven Litvintchouk, Raytheon

The goal of the work presented in this lecture was the systematic development of Ada packages
on skeletons which parallel the development of specifications written in the Clear specification

language of Burstall & Goguen. The approach is to first develop system specifications in Clear,

L A s e d
e Ve 8
et alT o

and then to drive the Ada design from this specification. This should facilitate the design
process and also the reusability of Ada components. The use of features from Clesr is intended
to supplement the largely syntactic package interfaces provided by the Ada language itself.
The mapping from Clear to Ada is natural and relatively simple, because of similarities in the

way the two languages handle structure.

3.7.1 Discussion

Goguen: What are your more specific plans for this project?

Litvintchouk: In the next year, we hope to use dynamic logic in Clear, so as to be able to
handle tasking. We believe that this is better than temporal logic for specifying Ada programs,

because it is based on nondeterminism.

3.8 General Requirements for an Elementary Math Functions Library

by Bruno Witte, NOSC

This lecture discussed a draft document outlining requirements that should be satisfied by an

Ada library of elementary mathematical functions. For example, functions that are likely to be

Y
Y
"
T o

used together should be packaged together. Separately for each elementary function, there . R

should be accuracy tests of various kinds, such as with random arguments, range reductions,

single-precision, separate test packages. Reference should be given to publications documenting

the supporting mathematical theory for an algorithm.

3.8.1 Discussion R
Babcock: Sometimes we want to have bodies written in assembly code in order to get :ﬁill-.i;-lzl
efficiency. This 1s more difficult to do in Ada than in FORTAN; also, it is harder to tap o "-.';-4

.0
hardware hacks in Ada. 3
Z-xj: j:;’
Goguen: It would be nice if documentation standards for other kinds of software were as well e .j'.:
AR
S
-
-7y

...

’
.
ta'a

61

developed as they are for numerical software. In particular, the close links to the theories

provided by numerical analysis strikes me as worthy of immitation by other areas of software.

3.9 Knowledge Based Tools for Data Type Implementation
by Gordon Kotik, Kestrel Institute

This lecture discussed aspects of Kestrel’'s CHI environment that are relevant to data types,
including a theory of data type implementation and a tool for implementing data types. The
relevance to Ada libraries was also considered. CHI is a knowledge based programming
environment having a programming language called *V*, a database for representing V objects,
and tools for reading, printing, structurally editing, and compiling (into Lisp) V objects. V is a
wide-spectrum, very high level language for specifying, writing, and improving programs; it has
program transformation rules, high level data types (sets, sequences, mappings, relations,
products, unions, ...) and logic constructs. Programs and knowledge are expressed as rules in
the CHI database; multiple contexts are maintained in a tree structure. V programs are
compiled by successive rule applications. The data type facility of CHI is intended to cope with
the fact that there may be a variety of different implementations with widely disparate
efficiency characteristics, depending on usage patterns. The solution is to have an "efficiency
expert* to estimate the resource requirements of V programs; such an expert can be used to

guide the search for an appropriate implementation through a sequence of refinements.

3.9.1 Discussion

Mathis: What is the difference between having lots of generics and having rules?

Kotik: Perhaps having lots of generics is like storing good chess moves for each position, while
having rules would help you deduce desirable positions.

Matsumoto: One can use a sequence of generics, reflecting a sequence of design decisions.
Perhaps rules and generics are the same?

Kotik: Ada is clumsy with its parameterization mechanism, Eompared with what transformation
rules can do.

Goguen: Vertical structure can provide a lot of the flexibility of rules. Gordon's rule system is
probably equivalent to having a library of generics that is managed by an expert system, over a
module (or library) interconnection languge. Also, note thut the problem of finding the ®best

implementation® is unsolvabl> {in the sense of recursive function theory) cven if it is clear what
p \

cost function should be appiicd.

SR

]
RN
R
oLy
S, f"
° .

T
.; ') ..‘.“
LA
ey
R
.: s ,‘.' 9
"3

L
x

» 62

3.10 Library Organization and User Interfaces

by J. Meseguer, SRI International

In order to maximize reusability and provide good programming support, an Ada library
environment should be organized to reflect the different levels at which users will interact with

the library. Also, relationships between different levels, such as design and code, shounld be

- S

explicitly represented to facilitate "navigation® across levels; this is important to facilitate both

program understanding and effective methods of library search.

This talk proposed a semantic-based library organization oriented towards maximal reusability
not only of code, but also of designs. Thus, besides packages, designs (expressed in LIL),

theories, specifications, views, horizontal and vertical structure, and managerial information

should be stored. The organization suggested is that of a nested hierarchy consisting of three

main levels:
1. Application domain hierarchy.
2. Module interconnection language hierarchical structure.

3. Ada package hierarchy (subdivided into specification and body sublevels).
Semantic relations between levels are also stored. Between levels 1 and 2 there are hierarchy
preserving relations linking theories to application domains; between levels 2 and 3 one has
views connecting LIL theories to Ada packages. Traveling across levels is guided by semantic

relations, that also facilitate automatic or semiautomatic cataloguing and retrieval.

The user interface should exploit the graphical representation potential available in the nested
hierarchy of levels. A multimedia interface, combining vext, graphics, kinesthetics, and speech
would be appropiate. Animation of specifications and programs could be provided by the

interface to facilitate program understanding and testing. This possibility would be directly

available if package specifications are written in an executable equational specification language -:Z:i"-'-:'_:'.:

like OBJ.

3.10.1 Discussion

Rudmik: How long would it take to implement a graphical editing system like the one you
have described?

Goguen: Using the graphics capabilities already available in a Symbolics Lisp machine, or a

Dolphin, perhaps something like four man years.

}4
2o
63 o 1
o
3.11 Version Control in Program Libraries i
by Walter Tichy, Purdue 4 '.;
The development database is central for any programming enviroment, as it supports -
documentation, editing, execution and project management. Version control is an important ‘
technique for maintaining the consistency of this database. Documents are named, separately '.‘j
{ identifiable collections of information, and may be either source documents or derived I
' documents. The latter can be fully automatically generated from the former. Attributes of
! source documents include author, data/time, phase, and type/language; attributes of derived 3)
F documents include the source documents and generation process used, and the date/time of . i
’ generation. A revision is a source document created by manually revising an existing 4
document, and a revision group is a set of revisions related to one another by manual -_'-_.'q
revision. To update a revision group, one must checkout all revisions to be modified, enter an ® "
edit/make/test-debug cycle for each, and then checkin the modified revisions. Temporary S 3
fixes, experimental modifications, update conflicts and parallel developments can all lead to
branching of revision numbers. A configuration is a collection of related but individual ______‘
documents or other configurations; examples include link configuration, test configuration, and ‘.”“‘j
program+documentation+manual. A configuration description is a collection of names of ‘_‘
component documents of a confuguration, possibly only partially resolved, and can be used for
automatic generation of derived documents. Some incremental techniques for efficiently :.'—"f
implementing databases of revisions and confugurations were presented. I:,:?
3.11.1 Discussion
Cohen: Is only one version active at a time? .
Tichy: No, every tip node of a revision group graph is an active version. L Ajt
Dempsey: How do you differentiate between checkin/checkout and just grabbing a copy? 1'
Would some Al-like rules be useful here? : ad -1

Tichy: We do have a ®"copy* operation; also, the user can indicate a plan associated with

checkout.

Dempsey: What makes global regeneration so expensive?

Tichy: It is becavse you have to recompile.

Mathis: Why no! store text on a side branch instead of regenerating? AT
) g g N

64

Tichy: Each delta is about 89, and these add up.
Goguen: When (1.08)N is large enough, it will be cheaper to merge.

Schill: Stonebreaker is using C to get user definable datatypes for Ingress.
Rudmik: Database technology will give us even more performance than configuration

management systems.

3.12 Using ANNA for Specifying and Documenting Ada Packages
by Friedrich von Henke, Stanford University

ANNA is an annotation language for Ada currently being developed at Stanford by the author,
B. Krieg-Bruckner, D. Luckham and O. Owe. This lecture presented basic ideas underlying

the ANNA design, and an overview of ANNA features useful for package specification and
documentation. ANNA extends Ada with formal comments to express additional properties
of packagrs, leaving Ada untouched; thus, an ANNA program is still a legal Ada program. A
major goal of ANNA has been to provide precise (formalized) documentation, as a basis for
processing by machines, e.g., formal verification; however, it can also be used as a basis for less
formal validation. Ada concepts and syntax are used as far as possible. ANNA virtual text is
used to introduce specification concepts, auxiliary functions, packages and semantic constraints
for generics. An ANNA program is consistent if the constraints imposed by the annotations

are satisfied by Ada text.

3.12.1 Discussion

Witte: Why would a human being bother to write ANNA annotations? Also, how to
annotations differ from just comments?

von Henke: ANNA annotations can be formally checked, since they are subject to Ada syntax
rules.

Cohen: For some applications, we necd trusted processes, and ANNA can be used in specifying

and verifying properties desired of trusted software.

Kotik: Could you use ANNA for the balanced binary tree example that I presented?
von Henke: Yes, it can specify the behavior of a package that would maintain a balanced

binary trec.

taes v ar an g an o

I

i AR I SRR I i R S S

65

Goguen: Wouldn't you need modal logic for exceptions? Also, what about tasking in ANNA?
von Henke: Yes, you need “strong logic® or modal logic for exceptions. ANNA does not

currently support tasking.

Litvintchouk: ANNA is semantically equivalent to theories, as in Clear or LIL, but they are
sflattened out® in ANNA, so you lose a lot of the information and simplicity of a hierarchical
structure.

von Henke: Requirements on generics in ANNA are like "theories,* but not reusable, they

must be placed "in-line® each time.

Redwine: What about the EEC (European Economic Community) criticisms of ANNA?
von Henke: These were based on an earlier version; our language is now in better shape, we

have a new manual, and their criticisms are no longer valid.

Dempsey: Can you compile ANNA into runtime checks?
von Henke: Yes, for many constructs of ANNA.
Kotik: I don’t think that you can compile all ANNA features into Ada; for example, what

about existential quantifiers?

Levitt: Why have two languages? For example, why have both Ada code and ANNA specs for
a stack?
von Henke: ANNA has much greater expressive power than Ada, so the specs should be easier

to understand.

Redwine: What about specifications? Why haven't they caught on?

von Henke: Specifications are being used in industry.

Levitt: Specifications are used mainly for security applications at present.

Goguen: Informal specifications, in contrast with formal specifications, are really very widely
used; we should use computer technology to permit handling informal specifications in a more
uniform and less burdensome way.

Redwine: Isn't this write-only notation?

Goguen: Techniques like those described by Meseguer for LIL will let the user see an animation
of the action of a program, generated d'rectly from the spec; the user doesn’t have to read the

math itself to get the borefit of its content.

[)

H
.', € et S ‘. ..
‘a'anod 2 A ek daritels’

|
.
¢ %'
P O

‘s
wta’a’e

Pe—— - o
L RN AR
e s el e .

..............

Cohen: ANNA is justified by its use in WIS.
Kramer: Customers are worried about the trustworthiness of code; they want it to be verified if

possible.

4 Reports of the Working Groups
Participants of the Ada Program Libraries Workshop spent their last day and a half in Working

Groups focussed on special topics of particular interest. Seven working groups were originally
proposed. FEach working group chair was asked to prepare a list of at least five *initial
questions® to introduce the area of interest to be covered by the working group to the whole
workshop so people could choose which working group they wanted to attend. Four working
groups were actually formed, and their reports are given in four subsections below. Each report

includes its list of initial questions.

4.1 Library Documentation

This subsection contains the report of the Library Documentation Working Group, written by

its chairman, Jack Kramer of IDA.

4.1.1 Participants
The following participated in the working group discussions; an ARPANET address is given for

each.
e Jack Kramer, IDA - kramer@usc-eclb
e Joseph Goguen, SRI - goguen@sri-csl
e Dave Babcock, ROLM - babcock@usc-eclb
e Beverly Kedzierski, Kestrel - kedzierski@kestrel
e Friedrich W. von Henke, Stanford - fwh@su-ai
e Steve Litvintchouk, Raython - brunix!rayssd!sdl@ucb-vax
e Bruno Witte, NOSC - bwitte@usc-eclb

4.1.2 Initial Questions

The following questions were presented for the Library Documentation working group.
1. What is a component?
e A component could be anything from a complete database management system to a
single Ada statement. The most commonly thought of component is the Ada
package, but is this really the only definition of a component? Would a particular

algorithm coded in Ada not also be a useful component?

............

......................................

..
.....................

~ A Mt P B i Sl Vit Bt S B St D CMAER AT AR I — b it ates e ot

67

® Does a component have to be only Ada code? Why couldn't it be a design, or a set
of requirements? Does a component include the documentation for it, or is the
documentation a component by itself?

2. Are components flat or layered?

e Can some components be constructed from other components or do each of the

parts and the whole need to have all of the same documentation?
3. What information is necessary?

e What kind of documentation needs to be provided for each component? Source
code if the component is code. What about test data, design parameters and
choices, the requirements the component is to satisfy, critical performance
requirements and design decisions?

4. What information is required to help the user (meta)?

e There can be a lot of information which would be useful to a user both in selecting a
particular component, but also in using it after it has been selected. How might this
component best be integrated into a new system? Where might algorithms be
altered without effecting the component structurally? Where and how should this
component be tested as part of a larger system? Why was this component
constructed instead of using some other component? Some idea of why the designer
thinks this component is better than all the rest. How it was tested, were any
formal techniques used?

5. Life cycle of components and their associated documentation?

o We are fairly careful about identifying the life cycle and documentation

requirements for DoD systems. Are not the same reasons applicable to the software

and documentation of components in a library? Are we going to have to worry

about versions of components and tracking users and saving old versions, etc?
6. User confidence in the product? What tests?

e Should the documentation include a detailed discussion of what kind of testing, how . _ B
it was done, the tests themselves, the test results, and a statement by the designer of 1
the completeness of the testing? Will there be some sort of standard testing format :
and requirements so that a ®"consumer survey® type of organization will be able to -.4

consistently judge components?

‘.
ek

4.1.3 Initial Working Group Discussions

1. Initial dis-ussions centered around the questions above, and then began to focus on certain
issues. Generally, it was agreed that a library mechanism needed to address both the near
term and the long term solutions. It was also agreed that the software industry was much

more a "cottage industrv® at present than the more formalized and controlled hardware

68 o

components industry. There are some good reasons to believe that there will always be a
large number of ®"cottage® inputs to a software components library. This will probably
influence the requirements for documentation and the tools for capturing it. o
2. There is a requirement for documentation to be somehow attached to the code. This

might take the form of a LIL-like capability in some cases. There are also going to be

different problems associated with documentation for existing systems verses what we can
expect to have in the future library system.

3. It was felt that existing library systems provide a good starting place for determining a
software components library system. Can we have branch libraries and interlibrary loans?
How should components be charged for? Is there a central registrar like the Library of
Congress? Who is going to do the cataloging? Will we need specialists in the early years?
On this question the feeling was that we probably would. There would be a lot of pump
priming required, and assistance in helping initial users. This was both to make sure the

system wasn't harder to use than the benefit accrued to the user, but equally as -

k important, to learn how the system is actually used and what needs to be improved and
tools developed.

4. It was also felt that there would initially, and probably always, be a requirement to rate

*reusability® of components. This would be a long term learning experience. We would
need to "have® a library in order to really understand what to do in the future. In order
for this to be effective though, we would need to learn from use patterns why certain

components were selected, were they useful, and what information would have helped in

finding the correct component. Can we construct cataloging criteria by monitoring the =
search requests and by interacting with the user? This will be an important aspect of the
*librarian’s® job. We may need to contractually encourage our DoD contracting
community to use the system and feed it.

5. Cataloging must be automated and at a low cost to the inputer if the system is to be
successful. The library system must also have adequate ability to collect royalties or in

some way encourage the construction and input of components.

4.1.4 Assumptions

After several false starts, the working group agreed that we needed to understand the

assumptions that a software components library would be working under. This would influence
e both the mechanics and the documentation required. :
‘ 1. We need a short term solution which can be transitioned to the long term. o
2. The short term library system will be passive, but the long term system must be Active.

3. Libraries will be disjoint but cooperating.

| U A i s A A O A e U G DA N e G LA e Rl -aten Uk el e an il SN aEl el aomk st ounih Sl SEND DL BG Mol i BANA Lnth SIS AT

N . . - I . P e e Mot LT e

69

4. Ada is the implementation language for the software stored.

5. Different user needs must be satisfied. Different users will have different degrees of
sophistication with respect to the use of the library, computer science technology and the
application area.

6. The library must always deal with incomplete information. We need to be able to change
both the data in the library system and the system itself.

7. The mechanisms must provide solutions to access, issue control, and schema problems.
Not all people should be permitted to see all things in the library.

8. Software is a cottage industry, users have a diverse background, feedback will be hard to
capture, and not all users of the library will have equal equipment with which to access
the library. Information required to make the library useful will be hard to capture for

the initial inputs to the library because the designers of the components will not be
"experts* in documentation.
?-_ 4.1.5 Scenarios

The working group then developed some alternate scenarios for how a software component

library might be constructed and operated.

1. There would be differences between the short term and long term solutions, but both
solutions must provide cataloguing, updating and retrieving capabilities. Careful
attention must be paid to the transition from the short term to the long term library
system solution.

2. Short Term.

e The short term will be "passive® with emphasis on retrieving and searching.
Components will be registered with the system “after the fact® of development.
Documentation will have to be captured and then the component will be catalogued.

e For a component to be useful it must be well documented. Quality is much more
important than quantity. There should be standards for the quality and quantity of
the documentation required for each component.

e The *card catalog® will be critical. It was felt that existing database technology
could be used. A hierarchical schema could provide an easy ability to add, delete
and update the catalog. Most importantly, the retrieval language could be simple
and oriented towards its use.

e A simple Ada system could be constructed to meet short term needs.

e Instrumentation tools are important right from the start. We must instrument the
system now to be able to learn how to build the system for the future.

e A librarian would be required. It is critical that a follow up debriefing system be

..
................................
..................

......

| S A 2 o a0 —— —_— e o p—— —— L Reun awa e o v LG amn aid o4 s ave g

70

implemented with the initial system. This could be as simple as recording the name
of a retriever and having the librarian call *N* months afterward.

e A mechanism such as the *Animal® program available on Apple and other systems
should be implemented to determine and capture what differentiates between
components from the user’s point of view. The proper classification schema for
components could thus be learned as we go.

3. Long Term.

e The long term system must be an active part of the user’s everyday work
environment. Where possible the ®system® should automatically construct the
necessary documentation and appropriate cataloging information when a component
is registered. It should take minimal user effort to add a component to the library.

e Reusability must become an integral part of our future system development
methodologies and also must become central to our software engineering
environments. Reusability must be natural and not something that is forced by
management.

e Information and presentation mechanisms *higher® than code will be mandatory for
quick user understanding of a component and how it might fit into his system.

e The system should know something about the user, available components, and the
application area in order to help the user find the best component for his needs.
There probably should be some sort of working set kept for each user and
application area.

e A wide physical and organizational dispersion of potential users will require some
form of automatic feedback mechanism. The feedback mechanism should be part of
the user’'s environment and be capable of automatically forwarding information to

the branch and central libraries where appropriate.

4.1.6 Documentation

The working group then spent some time trying to understand what documentation should be
captured and how it might might be captured.

1. There will be differences between what can be expected from documentation captured as
part of a software engineering environment and that which must be captured off line after
the component is developed.

2. We must allow for unconventional documentation facilities, video or sound, but there
must be ~ome minimal documentation which is alwayvs available on all types of deviees.
For thar see must assume a relatively unsophisticated hardware capability, such as hard
copy terminal. There may also be multiple representations of the properties of a

component (Ada, ANNA, LIL), but these must be kept consistent,

n documentation of a component can easily be integrated into the documentation of the

L

& providing only what is necessary at each step of use. The system should also be able to

——

71

3. Our understanding of what to ask for in the way of documentation is uneven. We better
understand the documentation requirements for an algorithm than we do a "design®.

4. Some components will be part of a larger whole. For these we will need proper
configuration management of the context information as well as the component and its
associated documentation. There may be many different "bodies® associated with a
particular Ada package specification.

5. All documentation must be *"useful®. It must be required, meaningful and designed to
become part of a whole. If possible the documentation scheme should be uniform across
both the short term and long term library systems. It should also be a goal that the

new system being constructed by the user.
6. There is a strong possibility that the system and user will be subject to information

overload. This means that the system must be designed with careful attention to

generate information where possible to reduce redundancies and the consistency problem
that redundant information causes over time. Some information will need to be archived
based on usage and some should be discarded because it can be regenerated.

7. Feedback is absolutely critical to the system. We must find out what is useful
documentation for the many varied uses to which it will be put, how to best present the
information, and where critical information was missing. There are difference between

local and global information feedback requirements.

4.1.7 Policy and Non-Technical Issues

The working group spent part of the last day talking about some of the issues which must be
addressed if a software component library is to be successful. These issues were of a
nontechnical nature, but the group felt they may have at least as much impact on the success of
such a system as the technical issues.

1. Pump priming will be necessary. We might require the use of the library as part of DoD
contracts. Contractors could then be rated as to the reuse of components from the library
and contribution to the library as the contract proceeds. The contractor could be
rewarded for reuse and contributions. This rewarding need not cease at delivery of the
user system, but could continue for some period afterwards. In addition, the direct

procurement of *useful® components will probably be necessary.

| &4

. User confidence in the product is critical. Several mechanisms should be available such as
software acceptance tools, user experience ratings, a “Good Housekeeping® scal of

approval, and software reviews. Degrees of validation of a component along with

S T et T e e T T St T T P T TR St S Y
IR NS SR S S AP S Sl S PP P SR AP W PR A PR W Y TP WY g e

72

statistics on critical path and flow analysis should be available as they apply to
components. Standard tools should be available for application to components when they
are registered with the library system.

3. Proprietary issues must also be addressed. The working group felt that an appropriate
and effective mechanism for providing economic incentives and royalties would be the
best way to encourage library use and insertion. The solution to this problem must
address issues such as the levels of documentation to be provided and the various products
to be provided for different fees.

4. The issue of warranty must be addressed.

5. The question of who can and who should operate the library and various branches must
be addressed.

4.2 Methodology

This subsection contains the report of the methodology working group, written by its chairman

Allen S. Matsumoto of ITT Programming Technology Center.

4.2.1 Introduction

The group on methodology was formed to consider the basic notions underlying library

components, specifically, reusable Ada components. This group was composed of:
e Allen Matsumoto, ITT Programming
e Gordon Bradley, Naval Postgraduate School
e Paul Cohen, Defense Communication Engineering Center - pcohen@usc-eclb
e Gordon Kotik, Kestrel Institute - kotik kestrel

4.2.2 Issues

Our basic position was that an understanding of the notion of reusability is necessary to "solve®
the problems of structuring, searching and using component libraries. Analyzing the current
knowledge of reusable components is a first step toward designing a component library.
However, any libraries which are built in the near term will necessarily be incompletely

designed. and should bo <onstructed to he extensible onee more is learned about reusuability.

Libraries designed for adaptability must try to foresce which types of requirements are likely to
change to allow for such changes. This will be possible only after the currently promising
approaches to reusability are adentified. Careful consideration of candidate approaches will

enable the building of hibraries which can accomodate results from researeh in these areas.

. B R AP PR AT B
AR L R - - B

.
.

.
P
3
3

o4 73

We believe it is now possible to define a research program to xperiment with approaches to
h reusability. Concurrently, libraries of reusble components can be constructed which will be
!

useful in the ear term and which can be extended (at least in some directions) as reusability

research progresses.

_ 4.2.3 Initial Questions

The following list of questions was presented for consideration by the subgroup. These
illustrate the types of questions which must be addressed in setting up component libraries and
{ in defining further research into reusability.
h e Which program construction paradigms support reusability?

o Parameterization

| o Inheritance

o Specialization
o Transformation/tailoring
e When are these paradigms most easily/powerfully used during development?
e How can we describe (specify) how to include a component in a system?
o Parameter semantics
o Which actual parameters
o Is modification required?
e What is the effect of using (reusing) a component?
o Function of the component
o New types and operations provided
e How much generality for generic components?
o How to describe (measure) generality
o Relate more general and more specific implementations

o Differentiate more and less general implementations

4.2.4 Preliminary Report

The initial subgroup discussion resulted in agreement on severai points. We agreed that the

problems of reusability can be factored into meaningful subproblems. We also felt that some

definite approaches appear promising for attacking several of these.

The preliminary report contained the following comments:
1. Reuse requires understanding

a. effect of component

- 3
-
A
-
b. interface of componeni with system -

74 °

c. how to modify component
d. effect of modifying component
2. General vs. Specific
a. More specific components S
1. easier to understand :

u. more rigid

iil. ease of reuse vs. value of reuse
b. More parameters vs. more generality
i. independence of parameters

1. aggregation (structuring) of parameters

3. Programming techniques
a. Parameterization
1. fixed capability
1. semantics? =
Inheritance *
1. reusable chjects
n. adding capability .
b. Transformation .
i. How much? _ "‘
ii. Is editing reuse?
4. Multi-directional choices, e.g., between early inefficient prototypes vs. efficient (late)
implementation, and between very general vs. a very specific implementations. ?'-4-*.‘-.4'-';
4.2.5 Final Report
The subgroup’s final report contained the following specific recommendation: :
1. Experiment with Ada implementation of standard paradigms.

a. Generic components with a fixed set of data type classes. This will be a low risk

domain specific approach to reusability. The goal of such experiments is to gain

experience with Ada generic packages, more than to extend knowledgze about

rensuability, °

b. Inheritance with limited subclassing. A generic package may implement a
parameterized object (as in object-oriented programming). Another package may e
inherit its capabilities using the *with® clause and override or add data types or e
operations, | °

c. Nested generies. Quter levels of generie packages may be useful for transformating R
information between the interior of the component and the outer local environment. :4'.:'-3:-:.’::
Some such mechanism is necessary to incorporate generally reusable components e
with Ada’s hinear elaboration. ®

[]

o
(]

75

d. Domain independent components.

2. Develop standard formalisms for describing components.

a. Necessary for cataloging and retrieving.

b. The package specification + formalized comments may contain sufficient
information (e.g., ANNA).

c¢. Formal (mathematical) specification of components may be used if automated tools
can be provided.

3. User support via automated tools.

a. Check compliance to standard form. Check for sufficiency of information. Such
tools would perform many quality assurance functions as well as aid in document
preparation.

b. Process information for ease of retrieval (storage, search, display). The structure of
the library will depend upon the knowledge representation techniques chosen and
upon the ability to aquire and codify that knowledge.

¢. Knowledge-based retrieval capability. An intelligent library management system
will be supported by knowledge-based techniques. In fact, until a formal
specification of library components is developed, such techniques will be the only

ones available to provide automated assistance.

4.3 Librar; Searching
This subsection contains the report of the Library Searching Working Group, written by its
chaiman, Andres Rudmik of GTE Network System R&D. Other participants in this working

group included:
e Tom Brown, Kestrel - brown@kestrel
e Mary Ferthofar, IBM FSD
e Timothy Gill, Wang

o Jose Meseguer, SRI - meseguer@sri-ai

4.3.1 Introduction

This subsecticn summaries the discussions of the subgroup on Ada library searching. We have
takeu a broader perspective in considering the reusability of all program. related objects. We
concerntrated our attention on what kinds of information would be needed to support searching

and how this searching might be accomplished.

The model that we adopted consisted of a catalogue or encyclopedia that contains descriptions

LS
PPN S LA

76

of the program objects stored in the library. This catalogue could be implemented as a
database against which queries can be made to retrieve descriptions of objects. Most of our -]

discussion centered on searching for Ada packages.

There are two kinds of retrievals that should be considered. First, one may search for program
units that exactly provide the desired function or second, one could search for program units

that satisfy certain constraints and that can be adapted for the function at hand.

4.3.2 Initial Questions

n The following are the questions initially posed for the library search working group: @
: 1. What items should be in the library?
. What kinds of information can be used as a basis for library searching?

. How to structure information on which searching is based?

2
3
4. How would different Ada library users search the library? Non-Ada user?
5. What tools can be developed to support searching?

6

. Where does this fit into the Software Engineering Methodology?

4.3.3 Library Objects

We tried to identify what items would be stored in a library. The following is a list of the

items identified:

e Packages: Each package would have a unique spec but there could be many package

bodies for a given package spec.

o Designs: There could be several levels of program design. The design could include

descriptions expressed in a module interconnection language.

e Formal specifications expressed as theories. These specifications could be embedded or

separate. -

e Command procedures used to run programs.

e Design histories recording the design steps.

e Note that Ada subprograms were not considered as appropriate units for reuse. Although

many existing libraries contain subprograms.

e Program units in other languages must be considered (i.e. Fortran, COBOL).

e Test plans associated with program unit. Each unit which is a candidate for reusability

should be separately testable. The test plans also include all necessary test drivers.

e Performance information: This may be needed to assist in the selection of the package

bodies.

e Test data on which the program was tested.

R A SR S A AT NI T N W R PR it il A Al A A At AP Sl el il A i AR AT ey

e Managerial information.
e Configuration information.
e Program skeletons that can be used to build new packages.

4.3.4 Basis for Searching

Next we examined the kinds of information that could be used as a basis for searching.

o Package classification -- can be used to further refine packages into categories with well
defined properties. The advantage of this approach is that categorization can be used to
partition the set of packages into a smaller more managable set.

e Keywords -- can be used to partition the objects by application, function, date, author,
the implementation language.

e Summary descriptions -- brief descriptions of the object.

e Detailed description -- provide a complete but informal description of the object.

o Package specifications -- these can also be examined.

e Formal specification -- e.g., ANNA, LIL.

e By generality -- How general is the package?

o Selection of package bodies -- Since there can be many bodies for a given package
specifiction, the search for package bodies will typically be based on implementation or
environmental issues such as:

1. performance (space/time)

2. complexity of implementation

3. host dependencies

4. data dependencies
e Production position -- status of object ie. development, test, or production
e Cost

e Access rights -- are we allowed to use it?

The following senario describes how an Ada Library might be used. First, one would specify

the desired function and query the database to find the candidate set of items that will support

this function. Typically this set will contain several alternatives. The choice of alternative will
depend on more global contraints based on the contexts in which the item is to be used, the
data that it operates on, how well it fits into the current program design, the target host
environment, level of confidence (validation), internal efficiency, and even issues such as royalty

fees to the original designers.

As described above, the choice of library items will be made in two contexts.

o The identification of the library object will typically be done in some local context based
on function rather than application. This selection process will produce a set of candidate
items.

e The choice of a specific item will typically be based on the context in which the item is to
be used. The selection of the specific item will require a good understanding of the
application and the environment of the application.

4.3.5 Catalogue Information Structuring

The information in the catalogue must be structured to reflect the way in which the catalogue
is used. Within the catalogue there may be many hierarchies of information that can be used

to search for objects. For example, in searching for packages one may
e Define a theory and then search for a package specification that matches the theory.
Within the library, there can be many package specs for each theory. The choice of
package spec may be based on generality of the package as an example.

e Similarly, there may be many package bodies for each package spec.

The important concept is that the catalogue should allow the user to go from the abstract to

the specific or from the specific to the abstract.

4.3.6 Characterization of Ada Library Users

We classified the Ada library user in two ways:

e By user task: Depending on what the user was doing, the library would be used to provide
different kinds of information and perhaps support different kinds of queries. Some
examples of how the user tasks might be catagorized are:

1. Application users - searching for programs, job control programs etc.
2. Managers - needs information on packages developers, royalties, and other costs.
3. System specifiers - developing and using formal specifications.
4. Designers - developing and searching for package/program designs.
5. Implementers - developing and searching for package bodies.
6. Maintainers - being able to locate all program documentation.
o By level of user expertise: Need various kinds of query support depending on user

background, training, and experience.

79

4.3.7 Tools Supporting Searching

The tools that support searching could range from database query languages to sophisticated
knowledge based interactive query systems supported by graphics capabilities. Some of the

obvious methods that might be used are:
e Ad-hoc queries.

e Interactive queries: menus, navigator, etc.

o Interactive rule based derivation of specifications - supported by synthesis and verification

techniques (whatever that means).

i In practice, there will be several Ada libraries, using different database management systems,
- running on different hosts and even using different ways to document and classify the library

items. There will be a need to standardize on a common subset of item descriptors that will be

common to all Ada Libraries. On the other hand it is important to recognize that there will be
a great deal of evolution in the library systems as we continue to develop better ways to

document and retrieve the library items.

4.3.8 Impact on Software Engineering Methodology

Finally, we examined what impact the notion of software component reusability would have on
software engineering methodology. First, we recognized that building systems from reusable
components placed a greater emphasis on being able to specify the function and design of a
system, so that its parts could be obtained from the library and assembled into programs. This
concept may be thought of as programming in the large or *hyper-programming®, a new term
referring to the concept of program development through composition of smaller components

(usually Ada packages).

We also identified the need to support the reuse of designs that are similar to what we want but

must be modified before they can be used.

S e
R
PRI

e
L PRI

We felt that the concepts needed to support programming for reusability are new concepts and

not embedded in most current programming practice. Considerable training would be needed

to support the development of reusable components and more training will be required to

effectively use Ada libraries. ;.,.‘._ .

We felt that each site shoumd Fave a Librarian whose job would be to maintain the Ada library,

. S [
P A AL AR Jelel,

L. LY.t).
FIRIPE P RALP SP 3 A0 B GNP LT

80 e
. j‘ 7
- add new items to the library, and to support library searching. The librarian position would be T
:. a senior position requiring substantial expertise and perhaps a strong background in reading , }f‘
t formal specification would be an asset. The effectiveness of a programming department will be ;
tﬁ, largely dependent on how well the Ada library is utilized.
i 4.4 Applications S
{ This subsection contains the report of the Applications Working Group, chaired by Samuel 2
3 Redwine. The report was written by Karl Levitt, and the working group consisted of: "
! e Gordon Bradley, Naval Postgraduate School :
t e Paul Cohen, Defense Communications Engineering Center -- pcohen@usc-eclb : . 4
3 e James Dempsey, GTE R&D S
E o Mary Farthofer, IBM FSD ;
e William Johnson, Naval Postgraduate School

e Steve Leung, ESL/TRW

o Karl Levitt, SRI International -- levitt@sri-csl

e Carol Morgan, AJPO -- morgan@usc-eclb

e Samuel Redwine, Mitre Corporation - redwine@mitre
e Bruno Witte, NOSC -- bwitte@usc-eclb

4.4.1 Initial Questions

The initial questions posed for consideration by the working group were: 7_‘:',-‘:.{-::':

1. What are the available technologies? -0

e Component Libraries

e Program Composers

e Very-High-Level (Application-Oriented) Languages
e Application Generators - 9
¢ Knowledge-Based Systems ‘

2. What are criteria for determining if an application area is ready for reusability?

3. What are approaches for matching a reusability technique with an application?
4. Does the supporting software engineering environment have to be application-specific?
5. What investment strategies will facilitate the introduction of reusability?
6. Are there special problems with the suitability of Ada for application areas?
o

4.4.2 The Issue of Incentives

It is clear that in the long run, reusability must be cost effective if it is to be a viable approach
- to system development. However, in the short term it may be necessary for DoD to induce
‘ contractors into making reusability a part of their projects. A similar approach is now being
taken with Ada itself; for example contractors are most likely increasing their bids for jobs that
require Ada -- either as an implementation language or as a PDL -- in order to cover the time
required to learn Ada. The question we discussed is how DoD can prime the pump to get

resuability quickly into the market place. Among the approaches are:
e AJPO, STARS and other agencies fund the initial creation of libraries and supporting
environments, fund the initial documentation and maintenance of entities, and establish
cleari ighouses that would eventually be self-supporting.

e DoD agencies identify specific systems as strong candidates for reusability. Initially, these

efforts would try to be concerned with creating systems that could be reusable; subsequent
efforts would be mandated to use the previously constructed entities.

o If DoD is to have a chance of transferring responsibility for the library to the private
sector, the royalty system must be carefully worked out. One obvious approach is to give
royalties for contributions that are used. The question is how what to charge? In the
long run, "best sellers* will survive -- as in any other venture.

e Allow contributors to retain proprietary rights. Again this is obvious.

e Remind contributors that by contributing to the library, they will get free validation.

This incentive is likely to important while the clientele is being built up.

4.4.3 Impediments and Potential Disadvantages to Reusability

It is feared that the program managers for large systems will always take a short-term view,
rejecting the long-term benefits of reusability. Also, it should be noted that these managers

often do not last for very long periods.

4.4.4 General Approaches to Application-Oriented Reusability
We spent considerable time in reviewing the available approaches to reusability that seem to . |
have promise in the short term. In identifying approaches, we treated reusability as a technique

for reducing the amount of work required of a developer as compared with the conventional

manner of his creating high level code from scratch. Our emphasis was on techniques at the
level of implementation, in part keeping with the Ada theme of the workshop. Consequently,

we did not discuss in detail approaches based on reusability of designs or of requirements.

'
. v
AP B
. e, T N
LIPS RTINS VPRI WL S

Among the approaches we discussed were:

‘a'ala a4

.................................

....................

................
......

e Component Libraries. This is perhaps the most obvious approach, and the most similar to
the practice of reusability in hardware -- at least at the lev~l of integrated circuits.
Components in Ada are likely to be packages, and as discussed extensively in Goguen's
paper for the workshop, generality is achieved through the use of generics. However,
there are other approaches to making components reusable, even beyond as intended by

their developers. For example, a preprocessor could transform data from a particular

application into a form acceptable as input to the component, and a postprocessor could

transform the data output of the component back into the required form. Clearly,

efficiency considerations could preclude the use of this technique for critical inner loops.

e System Families. A system family is a description of a system from which a number of
specific implementations (family members) can be realized. To make the concept more
concrete, the realization is to take place by specific instantiations of the family, for
example, assigning a value to a constant, or eliminating certain operations. With such
relatively straightforward instantiations, the system family can be viewed itself as being
an implementation or very close to an implementation, but a family member is a sub-
implementation that is better suited (i.e., with respect to performance) than the system
family for a particular application. An Ada package with generies could be viewed as a
system family, but a more interesting family is likely to ~onsist of many packages, e.g., an
operating system family.

e Very-High-Level Languages (VHLL). A VHLL is usually a language providing very
jowerful constructs that are oriented to a particular domain or application. Prolog might
be consider a VHLL, supporting backtracking and Horn-clause deduction as one might use
in developing a mechanical theorem prover. Of course, the output of a Prolog compiler
could be assembly code, but any language can be the target. Usually, no manipulation of
the object code is possible, but if the cbject language is a reasonably high level language
(c.g., Ada), then the object code might be optimizabe beyond that achievable by the
Prolog compiler. Spread Sheets and Report Generators are other examples of VHLLs, as
are view languages for a relational database. It is often assumed that hand-crafted object
code is superior to mechanically compiled code from a VHLL. However, this need not be
universally true. For example, an optimizer for a particular construct of a VHLL could be
designed to produce very efficient code. Furthermore, special purpose hardware could

lead to even more efficiency. For example, one construct in Prolog is concerned with the

unification of terms. This task is well-suited to special purpose hardware -- and easily

I

allocated to such hardware when it arises in the execution of the program.)

&

e Application Generators. These differ from VHLLs in a number of ways. First, the user is

more involved in making decisions that impact the efficiency of the object code. In this

PP A A
P ’u '. 'l '. .
A wd d L d s L

..................

83

sense, the application generator is more of an environment than just a VHLL. An
example of a application generator is a parser generator, which will produce a parser from
the production rules of a language. Although, a parser can be generated from any
grammar in a particular form (e.g., LALR-1), some kinds of productions will lead to more
efficient parsers. A compiler-compiler is a more complex example of an application
generator where extensive user interaction is required, particularly in the code generation
phase.

¢ Knowledge-Based Systems (KBS). A KBS is an approach to system design that requires
still more user interaction than an application generator. In its most general form, the
user input consists of a database and rules to transform the databAse, the output of the
KBS being an executable program. What is particularly attactive about the approach is
user’s ability to produce a more comprehensive generator by adding more rules or making
the existing rules more general. The research on program synthesis and transformation is
in this spirit, although the goals are ambitious: the generation of efficient programs
inuependent of application. More short-term work is concerned with more limited
domains, e.g., searching particular spaces, or planning.

e Combination of Methods. It is likely that no single method will suffice when the goal is a
significant-size program, hence the need for combining the available methods. As in SRI's
*strawman® approach (see the paper by Goguen), we envisioned three levels in a system,
each with its own kind of reusability. At the lowest level, there would be component
reusability, where the identifiable components would be common data types (such as lists,
queues, etc.), common data transformers (such as digital filters) or simply common
functions (such as mathematical packages). At the next higher level there would be more
complex packages (such a statistical package or a linear programming package), which
could be viewed as employing the system families approach to reusability. An operating
system family would be another good example for this level. At the highest level would

be the application interface. Application generators or knowledge-based systems would be

most useful here.

4.4.5 Initial Candidate Applications

A e e)

We devoted considerable discussion to identifying candidate applications that would lead to a]
large class of reusable entities and would determine the feasibility of applying reusability to real

applications. The applications should not be so complex that excessive effort is required to just

carry out the development. On the other hand, toy efforts will not be convincing. The list of .e

applications we came up is the following, although the interests of the working group members

clearly influenced the choices: communications systems (e.g., protocols such as TCP), direction

...
...
...

..
......................

84

finder, navigation, avionics, simulation, and decision support. The interfaces required by these

applications would be the ®highest level* in our hierarchical approach. At the intermediate

level, we strongly recommended consideration of an operating system family together with a

collection of instantiations for producing family members.

bi 4.4.6 Discussion

Johnson: Mary, could you explain to us what were the problems that IBM Federal Systems had
e with reusability?

Farthofer: There are some cost-benefit tradeoffs associated with reusability. It is hard to reuse
: parts that were made with obsolete technology [Editor’s note: e.g., Fortran|, or parts that were
not originally intended to be reused. New products should take advantage of new technology.

] Also, if problems show up late in the lifecycle, they can be very expensive to correct; we would

have discovered these problems earlier if we had not tried to reuse these old components.

Reuse has to be supported.

. NP EPIR [

A

T O A e e e e e e e e e R S M
p_f 85
I. Schedule of Workshop

Tuesday, November 1

9:00-9:30 Schaar & Kramer *Why DoD Needs S/W Environments®

9:30-10:00 Redwine ®"Conceptual Architecture for a S/W Engineering Environment*®

10:00-10:30 Break

10:30-12:00 Levitt *An Overview of Ada Libraries®

12:00-1:30 Lunch

2:00-2:30 Goguen "LIL: A Library Interconnection Language for Ada Programs*

2:30-3:00 Break

3:30-4:00 Rudmik *DCP Approach to Ada Libraries®

4:00-4:30 Matsumoto *Flexibility vs. Efficiency for Reusable Components*

5:00-5:30 Discussion

5:00-5:30 Litvintchouk *Mapping Clear Specifications to Ada Packages®

5:30-6:00 Witte *General Requirements for an Elementary Math Functions
Libraries®

Wednesday, November 2

9:00-9:30 Kotik "Knowledge Based Tools for Data Type Implementation*

9:30-10:00 Meseguer *Library Organization and User Interfaces"

10:00-10:30 Break

10:30-11:00 Tichy *Version Control in Program Libraries*

11:00-11:30 von Henke *Using ANNA for Specifying and Documenting Ada
Packages*

11:30-1:30 Lunch

1:30-3:00 Working Group Meetings

3:00-3:30 Working Group Reports

Thursday, November 3

9:00-10:00 Working Group Meetings
10:00-10:30 Break

10:30-12:30 Working Group Reports
12:30-1:30 Lunch

1:30-3:00 Discussion

available.

Charles Arnold

Naval Underwater System Center
New London, CT 06320

(203) 447-4319

David J. Babcock

ROLM Corp. - MSC Division
Manager, Software Development
M/S 150

One River Oaks Place

San Jose, California 95134

(408) 942-7702
babcock@usc-eclb

Gordon Bradley

Naval Postgraduate School
Computer Science Department
Monterey, CA 93940

Tom Brown

Kestrel Institute
1801 Page Mill Road
Palo Alto, CA 94304
(415) 494-2233
brown@kestrel

Paul M. Cohen

Defense Communication Engineering Center
Code R620

1860 Wichle Avenue

Reston, VA 22090

(703) 437-2176

pcohen@usc-eclb

James B. Dempsey
GTE R&D

2500 W. Utopia Road
Phoenix, Arizona 85027
(602) 582-7532

.................

II. Names and Addresses of Participants

This appendix gives the names and addresses of participants, with their Arpanet addresses, if

87

Mary Forthofer

IBM FSD

MC 70

1322 Space Park Drive
Houston, Texas 77058
(713) 333-3300

Timothy Gill

Wang Institute of Graduate Studies
Tyngsboro, MA 01879

(617) 649-9731

Joseph A. Goguen

SRI International

Computer Science Laboratory
333 Ravenswood Avenue
Menlo Park, CA 94025

(415) 859-5454

goguen@sri-cs]

LCDR W. C. Johnson
SMC 1509

Naval Postgraduate School
Monterey, CA 93940

(408) 372-1602

Beverly 1. Kedzierski
Kestrel Institute
1801 Page Mill Road
Palo Alto, CA 94304
(415) 494-2233 x2132
kedzierski@kestrel

Gordon Kotik
Kestrel Institute
1801 Page Mill Road
Palo Alto, CA 94304
(415) 494-2233
kotik@kestrel

Jack Kramer

Institute for Defense Analysis
1801 N. Beauregard Street
Alexandria, VA 22311

(703) 845-2263
kramer@usc-eclb

......................

...

.......................................

........

...........

88 o

Steve Leung

ESL/TRW, MS 302 ‘®
495 Java Drive S
Sunnyvale, CA 94086

(408) 738-2888 x5372

Karl N. Levitt o
SRI International

Computer Science Laboratory

333 Ravenswood Avenue

Menlo Park, CA 94025 ‘
(415) 859-4172 ‘o
levittQsri-csl :

Steve Litvintchouk

Raytheon Company

P. O. Box 360 o
Portsmouth, RI 02871 o
(101) 847-8000 x-1018

brunix'rayssd!sdlQueb-vax

Bob Mathis "o
Institute for Defense Analysis -

1801 N. Beauregard Street
Alexandria, VA 22311 T
{703) 845-2263 \
kramer ®usc-eclb "o

Allen S. Matsumoto

I'TT Programming

1000 Oronoque Lane

Stratford, (T 06497 o
(203) 375-0280 x501

Jose Meseguer

SRI International

Computer Science Lab °
333 Ravenswood Avenue ‘
Menlo Park. CA 94025

(415) 859-3011

niesegiuer Asri-ai

..
..

AD-A149 579 REPORT ON RDH (TRRDEHHRK) PROGRAM LIBRARIES WORKSHOP 2/
ELD AT MONTEREY CAL.. SRI INTERNATIONAL HENLO PARK
CR J R GOGUEN ET AL. 03 NDV 83 No@ei14-83-M-080
UNCLHSSIFIED /G 9/2

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

o
FEECERE I
i
B

—
[£¢
F
Te
=
MM
o

Carol Morgan

AJPO

Room 3D139 (400AN), Pentagon
Washington, DC 20301

(202) 694-0210

morgan@usc-eclb

Gilbert Myers

Naval Ocean Systems Center
Code 8322

San Diego, CA 92152

(619) 225-7401
myersQusc-eclb

Samuel T. Redwine, Jr.
Mitre Corporation

1820 Dolly Madison Blvd.
McLean, VA 22102

(703) 827-6080
redwine@mitre

Andres Rudmik

GTE R&D

2500 W. Utopia Road
Phoenix, Arizona 85027
(602) 582-7518

Brian Schaar

Ada Joint Program Office
3D139 (400AN) Pentagon
Washington, DC 20301
(202) 694-0280
schaar@usc-eclb

John Schill

Naval Ocean Systems Center
Code 8322

San Diego, CA 92152

(619) 225-2264

schill@isia

. - » — e s e o0 o e _

R ——— A S A S A DAL R LAY S N N S b L i
.
T

90

Roger Smeaton

Naval Ocean Systems Center
Code 8321

San Diego, CA 92152

(619) 225-2083
smeaton@nosc-tecr

Walter Tichy

Purdue University

Department of Computer Science
West Lafayette, IND. 47907 T
(317) 494-1998 ' P —
tichy@purdue ' .

Friedrick W. Von Henke RS
Stanford University e e
Computer Science Laboratory
Stanford, California 94040
current address: SRI International L
333 Ravenswood Avenue T
Menlo Park CA 94025 AR
(415) 859-2560
vonhenke@sri-csl

Bruno Witte

NOSC

Code 8315

San Diego, CA 92152
(619) 225-7945
bwitte@usc-eclb

III. An Example of LIL

This appendix gives a somewhat longer example in LIL, a generic resource manager. Most of

the work on this example was done by Dr. Jose Meseguer.

theory TRIV is
types ELT
end TRIV

theory POSET is
types ELT
functions < : ELT ELT -> BOOLEAN
vars E1 E2 E3 : ELT
axioms
(E1 < E1)
(E1 < E3 if E1 < E2 AND E2 < E3)
(E1 = E2 if E1 < E2 AND E2 < E1)
end POSET

theory EQV is
types ELT
functions == : ELT ELT -> BOOLEAN
vars E1 E2 E3 : ELT
axioms
(E1 == E1)
(E1 == E3 if E1 E2 AND E2 == E3)
(E1 == E2 if E2 E1)
end EQV

-- for any POSET, there is a natural way to define an equality;
-- that is the content of the following, which involves a derived operation:

view EQ :: EQV => POSET Iis
vars E1 E2 : ELT
ops (E1 == => E1 < E1 AND E2 ¢ E1)

~- now an example of top-down reusable development, RESOURCE using
== TABLE, which has pot yet been defined

generic package RESOURCE[ACCESSOR :: EQV; X :: TRIV] is
using TABLEP :: TABLE([ACCESSOR, X] is
functions
ACC-0K : ACCESSOR -> BOOLEAN
procedures
WRITE : ACCESSOR X
READ : ACCESSOR -> X

exceptions
WRONG-ACC

vars A : ACCESSOR: X : X

axioms
WRITE(A.X)
WRITE(A,X)

PUT(A,X) if ACC-OK(A)
WRONG-ACC if NOT ACC-OK(A)

end RESOURCE

generic package TABLE(ENTRY :: EQV; X :: TRIV] is
state TABLE initially EMPTY
procedures
PUT : ENTRY X
LOOKUP : ENTRY -> X
vars E : ENTRY. X : X
axioms
PUT(E,.X); LOOKUP(E) = X

end TABLE

generic package SEC-MEMORY-ACCESSOR[LEVEL :: POSET)
needs MEMORYP :: MEMORY is
types S-MEM-ACCESSOR is
record

. 93
CELL : CELL; -~ cell is part of the MEMORY package
Q ACCESSING-LEVEL : LEVEL;
. ACCESSED-LEVEL : LEVEL;
- end record
functions
B S-MEM-ACC-OK : S-MEM-ACCESSOR -> BOOLEAN
- vars SMA : S-MEM-ACCESSOR
i:: axioms
s ACC-OK(SMA) = S-MEM-ACC-OK (SMA)
. end SEC-MEM-ACCESSOR
make SECURE-MEM-MANAGER-O[LEVEL :: POSET; X :: TRIV] is

RESOURCE [SEC-MEM-ACCESSOR [LEVEL], X] needs TABLEP => TABLE.HASH1
; end SECURE-MEM-MANAGER-0
¥ make SECURE-MEM-MANAGER[LEVEL :: POSET; X :: TRIV]
' using SEC-MEM-TABLE = TABLE[IDENTIFIER, PAIR[CELL,LEVEL]] (hidden)
; using SECURE-MEM-MANAGER-O[LEVEL, X] (hidden) is

procedures

REQUEST-WRITE : IDENTIFIER X LEVEL
REQUEST-READ : IDENTIFIER LEVEL -> X

end SECURE-MEM-MANAGER

T e ——

L a0 s el e anen aras b e e
P BRI AN

Slides from Prepared Lectures

This appendix reproduces the slides used in the prepared lectures that were presented to the

workshop, when these are available and reproducible.

95

IV.1 Conceptual Architecture for a Software Engineering Environment

SaMueL T. REDWINE, JR,

Vvt o W VT T

.

“ .

Pt A

¢86T AON T
*J[f3UIMpay 'l [ONWDS

ANIWNOYIANT ONIYIINIONIT FUVMLLOS
v 404
FYNLIILIHIYY TYNLdIINOD

.. . . &
. .--..\I-I- -‘-0- . N] v

P W N

- e e it et s g « - - P - s K -
Eatdb et AN IS LR ICPERRAG SRR-. B »-..-..ﬁL

SNID1S [DIJ[JJO ON @
SaYI31aNS Aupujwyiadd S,39931Yd4y 03 snobolbuy @
340JJ3 JuswuoJdjAul

o::om_:mcu 9JDM3JOS 3ITAJ3S JUTOr JO Bujuudld IDJIIUI PIV @

SNLVLIS/NOILVAILOW

« e e
.

Application Dependent

Methodology Dependent
Technical and Management

SEE Core

Virtuol Operating System

(CAIS 1,0 & 2.0)

General Document

User

Interface |(Processes)

Tools

- - o o -

Database

SOFTWARE ENGINEERING ENVIRONMENT ARCHITECTURE SKETCH :ifif

FIGURE 1 2 4

Sam Redwine T
6 Oct 83 el

IS

APL PR SRR

ap0) 924n0S 960N6UDT
pa3ua]JQ-uoy1Dd] [ddy

UOTIDI[47128dS 40

A31112D4 uof3fuTded
94N3JNJ31S/3U33U0)

6uUf3J0day/AlNbu] 3

3JUDUIIUTDY 3SDGDID]
$19NpoJd

}40M PO0ISJ3pUN [[oM

SI0WJ04 BUDYIX3
SOPON 9114

asDqn3bg

101D43u39
Uo[31Dd] [day

6uU]140day JuawabDUDY (S3

1438 004 WaH

uotIowolny 3d1440

WaISAS *16l SS330.d

J9AJ3SqQ SS8204d
S9PON S$S920.4

(S95532044) S[00]

Jaddoy AD1dsid
101DJ3U39 WDI60.44
ADTdS|Q dn SPDaH

§J31ydotg 1Qvs

WeISAS JUaWSHDUDY
9dDJJalu] Jos

SIDUTWJIaL [ONIJTA

2JDJJ3lu] Jasq

mmqmz<xu HLIM SNOISN3WIQ-OML

Juapuadag
uoj 302} [ddy

Juspuadag
AB0OT0poYI3W

940) 33§

SO [DNIJTA

v e .

(S)JDUDI9-DI3Y PJOPUDIS -
i sa9dA] ,AJIDIUSWDTI, P4DPUDIS @

$91Nq1J413Y pud diysuofin[ay p4opubis @

(S3usuwRJINSDIWY SYYLS pJDPUDIS -)

DIDQ JUSWBBDUDY -

UOJIDIUBWNI0Q J03DJadQ/J43SHy -

. $189] -
g apo) -
SU6|Sag 9JDM}IJ0S -

SUOTIDIT4123dS/SIUBWAIFNDAY SJDMIJOS -

[9A97 SWRISAS -

(S32Np0oJd XJOM) SodAL Painidniis @

1USWI6DUDY AWDN Pub ‘U0IDJING]JUO) 7SSV @

RNLINYLS

"~

Lt S e Sugn s
P N .

-y

SO« 4

UoTINGT4IS[Q/BUTSNOY3IDM/60[DID) SJDMIJO0S @ ”mwm
£1033110/A10U013910 @

SUOTIDION Bufujiaq 40) JOUMDI9 - o
6UjdA] JJWDUAQ - o

A3]1710D4 UOFITUTIDG 94NIONJIS/IUBIUOY) @
buryoay)y A3jabau] -

sotydoJg - bu131J0day/A11nbu] -
[9A9] MO] - abupy) -
[9A97 UBIH - A1ju3 -

(WSISAS JUAIBOUDY
930jJ433u] J43sn 03 A132947@ 1J3uU0)) 3duDUdUIDW DIDT @

+3PNTIU] suoflaund/ssiuauoduio)

340) 33S/3svaviva

.,. . o .".... L w. .

940) 33S SNSJ3A 9J49H Suojiduny SWAd JO ydnW MOH @

apn[ou] sanss]

SOATITWT4d SWEd IsOW v -
. AJDJ1Q]] wDab604d JO 49pPDOT doiylsjoog 3Isp9 Iy -
; (1D]3JDd) WAISAS JUAWABDUDY 3sDqpind @
m SUOTID]IUDISU] 33S USIM}I3E SPIDPUDIS IDULIO4 ABUDYIX3 @
) S313111q0dD) 3pON 3114 @

X apn{oul SUOJ32und/sIULOALO) wm«

SO WNLYIA/ISYEVLYA S

(1SI) $303dsy [DIATJL U] ATUQ J94JTQ TTIM DIDQ JO SIUNOUY
36407 asnDIag 96D401S JO 3SN [NJOISDM JO SISTX3 Ja6UDQ

(1S1) ST1aA97 palibla@ pup 3sJDO) Yiod 1D 3SDQDIDG
JO SMAJA JDII) uDIUIDY 01 3[QY 3q 01 SPIIdN J3s()

(1SI) SS9204d 31DM1}0S j0
3JNIDN 9ATIDJ3] PUD DJJWDUAQ 3yl 1J9]J3Y IsSny ISDDID]

STSATDUY SS3URIA[AWO) pup AJUDISISUO) -

SJf4l8W -
aJupualuiny DIDg -

S3737111904 AA[IDJ3UIY puD [DUOTIFUTISQ JO JAMO4 PUD WIOJ
pasn siapoy 3sbqpibg

:apnou]

34027 33S/3svdvivd

SaNSS|

Spigen, e,

uoyIPZipJOpuUDIS 31pjJdoJady

S3J]A43S (9A[1DJ3U39) PIID[AY
pup A3111204 u0}1d1JIsad 84NdNJ 1$/71Ul3u0)

94N30NJ43S/SIUIUOD
33S JO JOpUIDWRY YIIM UOTIODIBIU]

SN,

19pN[OU] SUJ3IUO) 3SDADIDG O

Lot

S
0
a\ ." .\

aspQDIng 404 IX3IUC) 40 3dAL 3UQ SOA19 34N1233 1Yy 335 @

-
.

s
L

.
A

IV.2 An Overview of Ada Libraries

KARL LEVITT

I S D PR I DU R TP T PP SRRy

-

]

PR

AN

OVERVIEW OF ADA LIBRARITES

TOWARDS A “THEORY” AND “PRACTICE” OF
REUSABILITY

AVAILABLE TECHNOLOGY

NEEDED NEW TECHNOLOGY

Karl Levitt
Joe Goguen
Jose Meseguer

SRI INTERNATIONAL

WHY REUSABILITY

- REDUCED COST

- ALLOW LARGER SYSTEMS TO BE BUILT f;_
(PARKINSON'S LAW)

- BETTER RELIABILITY
- REAL ENCOURAGEMENT FOR CRACK SYSTEM BUILDERS

- PROVIDE JOBS FOR UNEMPLOYED MATHEMATICIANS
(FORMAL SPECIFICATION AND VERIFICATION?)

. .

NS
DS
“"® ..
RN
RO
S,

LR VRN
RRRRES
LR Y
Q...~..
- DS
CRR SRR

...
B T T o T Tt . Tt T A T S o R PP R R i S N R A

...

..................................

QUESTIONS TO BE DISCUSSED

- WHAT SHOULD BE IN A LIBRARY?

PROGRAM UNITS, DESIGNS, DOCUMENTATION....
- HOW CAN LIBRARY ENTITIES BE COMPOSED?

MODULE INTERCONNECTION LANGUAGE...

o I s o
KRR '.’,','-'-"
. ; PRI

i; - HOW TO RETRIEVE LIBRARY ENTITIES?

, CATALOGING, SEARCHING, ...

- IS THE ABSTRACTION MECHANISM PROVIDED BY ADA ADEQUATE?
NECESSARY BUT NOT SUFFICIENT

- WHAT ABOUT ADA + APSEs ?
NOT QUITE

- HOW WILL USERS UNDERSTAND LIBRARY ENTITIES?

= INFORMAL DOCUMENTATION, SPECS, ANIMATION, ...

HOW TO COUPLE REUSABILITY WITH THE LIFECYCLE?

REQUIREMENTS + DESIGN METHODOLOGIES

- WHAT ABOUT MANAGEMENT ISSUES?
INVESTMENT, QUALITY CONTROL, ENCOURAGEMENT
? - WHAT EXPERIMENTS SHOULD BE CONDUCTED?
; OPERATING SYSTEMS, DATABASE SYSTEMS, PROCESS CONTROL
R

IS THE CURRENT TECHNOLOGY ADEQUATE?

. STANDISH -- YES
. WORKSHOP -- 7?2

: FUNCTRAL

. ‘ DESIGN \

3 ' "o

' DETA“,E\)

: : DESI6 N '\

: : N

' THOLCHERTAT 2N

REQUIREMENTS - - . \\\
MODELS : : : Q\\\)

- FAMILIES § 5 VAL A TN
| PROJECT : : .

HANAGEMENT DESIGN - § §
, METHODOLOGIES ~ PACKAGES : :
" MODULES :
¥ PACKAGE BODIES

SPECS
FORMAL TRANSFORMATIONS

CODE SKELETONS
VERIFICATION

I

...................................
..
...

. e,

A e |
PR L e g
PRI R N L Y PG R e

WAAT ADA PRIVIDES

« PACRAGEY = SPECIFICATIVN ¢+ BaADY
« SEPARATE CAMPILATION

« PRWATE DATA TYPER)

« RELIARLE RANB) AND DVERLDADING

« QENERILY AND PARANGCTCRIPATION

WhAkT APSEs WLl ATD

- BASIKE Toasll

« VERSION CONTRVL

WRAT ELSE TS NSEDED

| “TRUE® REUSABILITY

~ RESTRICTIONS OR PARAKETER THSTANTIATAN
" CLERRTR SEPARATION OF DESICN AND
s . THPLERSATATIN

= GUIDELINEY OR WRAT SHOuLD BE /N

LISRARY .

i DOCUNENTATAN AND RS TRIEVAL

L
S ST e
DA

SRNAN
St e i

. P A .-
lall e AU

=Y

Constructing New Entities From Old

. Set a constant (such as the maximum depth of a stack);
2. Substitute one entity for a ®studb® or parameter in another;

F 3. Sew together two (possidly 1large) entities along a common
interface;

4. Instantiate the parameters of a generic eantity;

5. Enrich an existing entity with some new features;

6. Hide (abstract, or encapsulate) some features of an existing
entity; this could include both data abstraction and control

abstraction;

7. ®Slice® an entity, to eliminate some unwanted functionality;

8. Implement one abstract entity using features provided by others
; (this leads to the notion of a vertical hierarchy of emtities);
and

. Assemble existing entities over a skeleton. This skeletonm might O
be either fixed or flexidle. for example, it might de determined i
heuristically by an expert systen. - ® 1

AN
R

RS
et b b

L‘ .

HYPERPROGRAMNING

g

_DESI‘N + THOLEMENTAT/AN

= SELECT PACKAGR - SBLECT ¢R PradULCR
SPECS PALRAGE B ODIES

, - ASSENBLE THTERFACE)
.« VALIDATE CO HPOAITION

HYPERPROGRANIING

LA N B

!‘.. IR
P . e S -
[-
- = i
i. RV
- oo
R V.ot
A DR
. PP
. PENCRS
-

HORIPoNTAL TRARD PARVATUNG

I /X

VIERS STROCTURING ACCREGATNG Y ERNCAL EDI\THRG

/ \ AB> WMRINE cova ._:__'[-[;f_;‘-,
COUHEBING TASTANTIATE / \ D
-9

REALI?E caMPdE OPTUINM -

[Rt e ———

HORIZONTAL AND VERTICAL DECONPASItioN -,

. T — S

NXg

- TRTERPMC L)
. Culie RIKATION)

b

TUTEGER o
REAL o
S TRINGS -
PARTIALY .
SETY

S ECyniry
LEvEL)

SPEC mumh:‘-“"
concerns!

- .‘-...-‘,...

- B

-PRYSKKAL S ToRAGE)

ANNOTATION

: VRT. HEN SS STCONDARY ITNRACE ©:

" xg FLE DiRECTORIE MURA HENSRY WAPANG
TC TNTCRPMARI ChkN

- HP ogmpu P @%Celie)

L 98 Paces o
PR PAGE NWAPPING B
Z-.',:H\‘ WAIN HPoRY |

...
...
...

..

WAOREING CoDE FRok ENTITIES

THKEODR\EL

|
DEMNICH &

l

DESN 2

IHee 1

Q&

~3 ITnw

o
TueLn

DESICNI

'S¢t
- PReaNETeRS

PL-‘ E“T'”ﬂ IN A Desun/tnntntmmu-ii

L I1BRARY

S PALRAGE D SPRCIFICATISA PART & =
‘ DoCoHENTATNN *
THPCEWENTATION V BRUWNS -

CTHELRIBS NON -T X PLENENTED ENTITIFS -
: HANLY FeR EXRPLAUATION ...

GGN!‘?\C RESTRICTIZN] eN GENFERICS ,M
ENTTIEY .

L VIEw D How All EATITY SATIFIE A
- THEARY

g e

CTHSTANTIATION THSFANTIATE PARAKETELS
MITR ERTITIES Ao

E-E';-??M!A5f SNy HAaRIZeNTAL - DESICN
VERTICAL -~ CodDE >

TQANLFs!nMNM) RIFANTAL - COHBINE, ENRICH, -

VERTICAL ~ ABSTRALY nAGINE
CORRELTANTS) mﬂmu&'

4 m&ﬂu ABSTEATIAN TTERATIRN OUER SETY,

,;EZ:ODG SKCLETOND UNINTERPRETED FuNCT/ONJ

:

? EXANPLE

LD?VELM- A RESOURCE MNANAGTR OF :.'.'
. SEWRE DATA. |

)
WRTE ! THSERT AN ENTRY THTe A TAWLE;
.» ALBMED OneY TF Sty & Sk, |

READ: RETURN ENTRY FRWR TATLE,
Allvwed oNeY TF Sl ¢ SL

‘NOTES: :
i), A SECUPET RESGECE NANACSR T3 76 - °
SPECIRLITED Pl A LIBRARY EATITY

2, BETTER To PRVDLCE TN A STRISS
j OF STeEPS FROk A CENSRAL
O ——

R € JouyRceE PANAGER

DESICN THUPLEUENTATION

ﬁEQuwuwu PoseT

View (€a-» POAET)

l

o SECRTY LEVUSLS
) 1’ H ASMING

SECORE - HEWORY- ACKEI R / |
1\ \(C [{48 > L (u“,) ;.'.-;'_1'.;,

C AIDDEN RER)

RESWPCLE (CENERIC EXCEPTIONS)

T

TABLE (TA®INITE)

- THELRY |
- PMRAGS sPFC .
- PMXAGE BoDY

N I L
CRO R

. P

) " . !".’ ".

'.'. o PO S "v". th A' A.""'- e
BT UL SIS AN G S A N S AP ST

..
..

" e .
..........

..............................
..................................

.........................

| .
[V‘T.--' |
A Generic Secure Resource Manager in LIL F :
SR
_ theory TRIV is K A
2 types ELT L d
o end TRIV
t theory POSET ia . e
! types ELT o
functions ¢ : ELT ELT -> BOOLEAN o
vars E1 E2 E3 : ELT L
axioms .' »
(E1 < E1) T
(E1 < E3 if E1 < E2 AND E2 ¢ E3)
(E1 = E2 if E1 < E2 AND E2 < E1)
end POSET

theory EQV is
types ELT
functions == : ELT ELT -> BOOLEAN
vars E1 E2 E3 : ELT
axioms
(E1 == E1)
(E1 == E3 If El
(E1 == E2 if E2
end EQV

E2 AND E2 == E3)
= E1)

-= for asy POSET, there is a natural way to define an equality:

view EQ :: EQV => POSET e R
vare £1 B2 : RLT
ops (E1 == E2 => E1 ¢ E1 AND E2 ¢ E1)

end EQ

......................................

B
.........

......

-~ now a top-down reusable development, RESOURCE using
-~ TABLE, 3ot yet been defined

generic package RESOURCE[ACCESSOR :: EQV; X :: TRIV] is
using TABLEP :: TABLE[ACCESSOR. X] is
functions
ACC-0K : ACCESSOR -> BOOLEAN
procedures
WRITE : ACCESSOR X
READ : ACCESSOR -> X

exceptions
WRONG-ACC

vars A : ACCESSOR; X : X

axioms
WRITE(A.X) = PUT(A.X) if ACC-0K(A)
WRITE(A.X) = WRONG-ACC if NOT ACC-OK(A)

end RESOURCE

generic package TABLE([ENTRY :: EQV; X :: TRIV] is
state TABLE initially EMPTY
procedures
PUT : ENTRY X
LOOKUP : ENTRY -> X
vars E : ENTRY; X : X
axioms
PUT(E.X); LOOKUP(E) = X

a0

end TABLE

generic package SEC-MEMORY-ACCESSOR([LEVEL :: POSET]
needs MEMORYP :: MEMORY is
types S-MEM-ACCESSOR is

record
CELL : CELL; -- cell is part of the MEMORY package
ACCESSING-LEVEL : LEVEL;
ACCESSED-LEVEL : LEVEL;

end record

functions
; S-MEM-ACC-0K : S-MEM-ACCESSOR -> BOOLEAN
- vars SMA : S-MEM-ACCESSOR
[axioms

ACC-0K(SMA) = S-MEM-ACC-0K(SMA)
end SEC-MEM-ACCESSOR

make SECURE-MEM-MANAGER-O[LEVEL :: POSET; X :: TRIV] Is
RESOURCE [SEC-MEM-ACCESSOR [LEVEL], X] needs TABLEP => TABLE.HASH1
end SECURE-MEM-MANAGER-0

make SECURE-MEM-MANAGER [LEVEL :: POSET. X :: TRIV]
using SEC-MEM-TABLE = TABLE[IDENTIFIER, PAIR[CELL,LEVEL]] (hidden)
using SECURE-MEM-MANAGER-O[LEVEL, X] (hidden) is
procedures
REQUEST-WRITE : IDENTIFIER X LEVEL
REQUEST-READ : IDENTIFIER LEVEL -> X

end SECURE-MEM-MANAGER

............. D R Tt NPT :
............. e T e T et e e e T T T T e e e e .
- - .' \-~.\'. ------------- ‘~'
......... T T T e Ten T e e e e e T S et T e e T e e St et a s % .0 St
.L'.k(L l&ﬂ: CS AR N A A AR S S .‘i ok I‘l I.l l'. I'- P P I PRI N SR IR DA >Y 20 Y vy ~ o '\"

USING VISUALIZATION TO OOCYHENT o
AND UNOERSTAND LIBEBATY ENTITIFY |

G DESICN LEVEL WHAT SYSTEMH DOED

TMPLENEHTATIOG W .
LEVEL How SYSTER T& STROCTEFRD

X

.. e -
LA A
e T
S
DR S
P T R S

ULNE A}&mﬁm DATA
STRUCTORED

@
= .

US E CONCRETE TDATA
STRUCTUPEED

SHaw RELATIONIMIV Amm(. :
PRecert ENTITIED

......

.......

IR SR S
..................

L L

fa Je v e 4 S e e A A 0 0y DA Sl Bn gn SR Ang S e St e P ————— ——r— e

ASSTRALT DATA
STRUCTURE)D

— T uLsER TEAT
DAT R

COIRRETE DATA
STRRTLRED

ANABSTRALT TARLE ¢ TABLE: WakD » Bl

. S
. - - Ll
:: -n . *° ..i'.':"-
“ AR
. .-.'_'-.
P

S oA Foo

kee

LY

' Ajoar [Foo |
- ra 3
ACOWRETE ARRAY: ARRAT! TATEGFR » WORD

© ReP: TAseE (waed)
| -

d1¢: Aeear(i)e woeo

..............................

....................................

....................

97

IV.3 LIL: A Library Interconnection Languge for Ada Programs

JosePH A, GOGUEN

A At et e e el ittt ettt ettt et

L -‘A~-'A‘A'“‘_'_A'_-'_-

. .
PGPSR B]

L.

LIL:
A Library Interconnection Language
for Ada

J. A. Goguen

SRI International

PSP
alatals s Al

'''''''''''

W Y W WA WPUE WRE WA S S il S

Plagiarize! Plagiarize!

Let Do one else’s work evade

Your eyes!

-- Tom Lehrer

Parameterize! Parameterize!

Let no one else’s code evade

Your eyes!

!
O
L.

[e
- LIL is a Module Interconnection Language for Ada.]
» In particular, it respects the general structure of Ada, o ﬁ
’ T
including ' 1
* use clauses, -
L

* generics, -
- + separate compilation. R
- R .4
Note that the Ada separate clause supports top-down —

program development and is different from Ada generics. R

However, this feature prevents the reuse of the stub package. s

Issues oo

. What should be in a library? Beyond compiled Ada code are:
corresponding uncompiled Ada texts, version and configuration
information, requirements, specifications, documentation, . ®

transformations, histories and management information.

. What program composition techniques take maximum advantage of *:""
Ada and the library concept? E.g., instantiating, enriching and ;@

restricting entities.

. How to construct families of related programs? (Would .
transformations and expert systems help?) -9
. What documentation and specification techniques yield clear yet §7Efi:
mechanizable program descriptions? e
[

. How to find library entities most relevant to a user needs?
What cataloging eervices (e.g., taxonomies) and reference

gervices (e.g., search strategies)?

. How to integrate libraries into an APSE? (e.g., with module

test, linkage and interpretation facilities) S

- ———

. How to best present information to users? What
media (e.g., graphics and natural language)

composition, retrieval (e.g., clever use of menus and iconms),
documentation and modification?

. What about management issues?

about multi-

for program

E.g.. policies for investment,
quality control, and distributing and emcouraging documentation?

. What experiments could be performed to test the viability of

various approaches to these problems?

ST et N .

Pttt o
R TN
PO RE PPN dhnd

S O —

S e T T T T R N .Y ‘.‘.~.!-¢l — F_-..-_- S T D ——

............. LAV awe ave sves e o
- ™ S

Y

Main Ideas

. Systematic (but limited) use of semanties; in particular,

explicitly providing theories (which are just sets of axioms)

attached to program units via views.

. A variety of different methods for program comstruction, so that

the process of programming will consist, as much as possible, in
the application of these methods, rather than in just writing
code; we call this hyperprogramming

. Maximal use of generic (i.e., parameterized) library entities.

This is intended to make them as reusable as possible.

. Support different levels of formality in axioms, and degrees and

kinds of validation (such as informal arguments, testing, and
formal proofs); this should support a practical user interface
and also aid in pinpointing weak spots during debugging.

. Facilitation of program understanding by animating abstract

data types, and otherwise illustrating and explaining behavior

at module interfaces.

~2

Constructing New Entities From Old

. Set a constant (such as the maximum depth of a stack);
. Substitute one entity for a "stud” or parameter in another;

. Sew together two (possibly large) entities along a common
intertace;

. Instantiate the parameters of a generic enmtity;

. Enrich an existing entity with some new features:

. Hide (abstract, or encapsulate) some features of an existing
entity; this could include both data abstraction and control
abstraction;

. "Slice" an entity, to eliminate some unwanted functionality:

. Implement one abstract entity using features provided by others
(this leads to the notion of a vertical hierarchy of entities);
and

. Assemble existing entities over a skeleton. This skeleton might

be either fixed or flexible; for example, it might be determined
heuristically by an expert system.

£

Some LIL Design Decisions

Vo4 o4

yorerr

1. LIL syntax is closer to mathematics than Ada is.

2. The ordinary user of such a library system should not see LIL

entities as shown here; the user interface should involve

natural language and/or interactive graphics.

3. Several features of Ada are not treated.

a. Some are omitted to simplify the discussion; for example,

we discuss only <functions, but procedures present no

gserious difficulties

b. Others would require further research to provide an

adequate treatment; e.g., exceptions and tasking.

4. Most development projects will never use large or complex formal

theories, but would rely on informal documentation and informal

arguments about program properties. We wish to support both

formal and informal epecification and verification in an

integrated manner, allowing whatever mixture seems most

appropriate to the application.

5. LIL could be implemented without eignificaat further research;

but other areas, such as transformations, would require

substantial further thought to provide an adequate foundation.

............................

The LIL Package

package COMPLEX FUNCTIONS
using MATH FUNCTIONS is
types COMPLEX

functions
*+ : COMPLEX COMPLEX -> COMPLEX

axioms
-~ agrees with real exponeantiation for real arguments

-- E #+ I*R = COS(R) + I*SIN(R)

.....

end COMPLEX FUNCTIONS

A LIL package can have zero or more corresponding Ada bodies.

[y

2. Axioms need notbe completely formal.

3. Types and Operations can be hidden.

MR A I I A I i A R I SR i g e g g e a0 o

Theories

theory TRIV is
‘ types ELT
end TRIV

theory POSET is

types ELT

functions < : ELT ELT -> BOOLEAN

vars Et E2 E3 : ELT

axioms
,i et
: (E1

(E1

end POSET

E1)
E3 if E1 < E2 AND E2 < E3)
E2 if E1 < E2 AND E2 < E1)

0 iAa I

This describes the interface of a sorting package, including that the

elements to be sorted have a suitable ordering relationm.

theory MONOID is

types M

functions * : M M -> M (assoc, id: I)
end MONOID

Here assoc indicates that the function * is infix and associative,

i.e., satisfies the equation

(M1 = M2) * M3 = M1 = (M2 s M3)

and id: I indicates that it has an identity I.

r Sdant T —r———

Generics

generic package LIST[ELT :: TRIV] is
types LIST
functions
I . : LIST LIST -> LIST (assoc, id: NIL)
' EMPTY : LIST -> BOOLEAN
: HEAD : LIST -> LIST
. TAIL : LIST -> LIST
vars E : ELT; L : LIST
axioms
_ HEAD(E . L) =L
~ TAIL(E . L) = E
end LIST

_ The attributes assoc and id of *.® implicitly give some further
i squations, namely the associative law and two identity laws.

All parameters are collected together in the requirement theory, telling
. what types, functions and procedures are needed, and what properties they
[] must satisfy.

...

.. Tt e T T T e e e e e e e

e e e T e T e e T A L S N N L LR
.......................... X K ERER e PR . e e
LR DA T S SR DAL SNSRI IS SR ST SRLIAL AL I A IR, AN, <y PR gl VUL WD ONON a

-

my

.....

Here is a parameterized theory, vector spaces over a field F.

generic theory VECTOR-SP(F :: FIELD] is
types V
functions
+ : VV ->V (assoc, comm, id: 0)
* . FV->Y
vars F F1 F2 : F;
vVvivs: V¥
axioms
((F1 + F2)» V = (F1 * V)+(F2 * V))
((F1 » F2)* V = (F1 *(F2 * V)))
(F* (VI +V2) = (F V1) + (F * V2))
end VECTOR-SP

........

" 3
S
._-‘;j
-y
-y

1

1
-

| &

I

Views

view NATD :: POSET => NATURAL is
types (ELT => NATURAL)
ops (< => DIVIDES)

end NADT

A default view is the one that is used unless another is explicitly

provided instead.

view NATV :: POSET => NATURAL is
types (ELT => NATURAL)
ops (< =>)

end NATV

view NAT+ :: MONOID => NATURAL is
ops (* => +)
(I =>0)
end NAT+

0

.

IVIDES
S — < DIVID
~ e

POSET NATURAL

THE VIEW NATD:POSET = NATURAL

T ——

Instantiation

SORT([X :: POSET] can be instantiated using the view NATD by
make SORT-NATD is SORT[NATD] end
to get a package that sorts lists of NATURALs by the divisibility

relation.

make NATLIST is LIST[NATURAL] end
uses the default view TRIV => NATURAL to instantiate the parameterized
entity LIST with the actual parameter NATURAL.

make REAL-LIST is LIST[REAL] end
where REAL is the field of real numbers, uses a default view
TRIV => REAL.

make REAL-VSP is VECTOR-SP(REAL] end
uses a default view FIELD => REAL, and

make REAL-VSP-LIST is LIST[VECTOR-SP[REAL]] end

uses two nested default views.

Here is an example with some interesting instantiations:

generic package ITERATE(M ::
using LIST[M] is
ops ITERATE : LIST -> M

MONOID)

vars E : M ; L : LIST
axioms
(ITERATE(NIL) = I)
(ITERATE(E . L) = E * ITERATE(L))
end ITER

Using the default view TRIV => MONOID.
make SIGMA is ITERATE(NAT+] end

sums a list of numbers. L -

make PI is ITERATE(NAT*] end

multiplies & list of numbers.

Z N
T NL

H n
- O

Package Stubs

generic package SORT(X :: POSET]
needs LISTP :: LIST(X] is
functions
SORT : LIST -> LIST
SORTED : LIST LIST -> BOOLEAN
vars L : LIST
axioms
SORTED (SORT(L)) = TRUE

end SORT

The needs clause says: to provide a generic sorting function, we need a
generic Ada package LISTP that is a version of the LIL package LIST([X].

That X is both the formal parameter of SORT and of LISTIX] indicates
that the version is instantiated with the same X as SORTIX].

The advantage of this approach is that a generic Ada body for
LIST[X] can now be reused, which would be impossible with the Ada

separate clause.

To actually get a version of LIST for use in SORT, one gives a
module interconnection command indicating which version to use when
compiling.

make SORT[X] needs LISTP => LIST.HACK end

where LIST.HACK is a paricular generic body for the LIL generic package
LIST(X].

Any actual horizontal parameters for the main package (SORT in this
example) will also t» supplied to the package version in the needs
clause (here, LIST.HACK).

This automatic management of the interactions of horizontal and vertical
structure is one of the most novel features of LIL, and can greatly
simplify the programmer’s task in some cases.

The horizontal component of this example appears in the formal parameter
X. which is required to satisfy the POSET theory.

A make command can accomplish both the vertical and the horizontal
ingtantiation of SORT at once:

make SORT-NATD is SORT[NATD] needs LISTP => LIST.HACK end

NNt ana gl ane aul SheL s gen g o g |

SORT

POSET

LIST

‘ LIST \
POSET

TRIV

A VERTICAL COMPQOSITION

SORT
POSET e
LisT

.lr-u-:*
[
LIST -V
NATURAL POSET ‘ RS

REREERER
[N
R
TRIV ST
. 1
®

3
t A REALIZATION OF SORT(NATURAL] WITH LIST{NATURAL]

U PP SR S W Y

NATURAL

POSET

LIST

TRIV

SOME SOFTWARE COMPONENTS

NATURAL

SORT
POSET
LIST

A HORIZONTAL COMPOSITION

1
y e .
PR U Sy

o
-

'. et .
e e
TS

The following figure shows that the requirements theory is a subtheory of
the AM realized by that package, and may also be a subtheory of the stubs
for the AMs that go into realizing it.

Here IN1 and IN2 are the requirement theories for the lower level
AMs; these are included in the body theory of the package.

In addition, there is a theory of the behavior that is actually exported
by the package; this AM may not be identical with the body theory
because of some information hiding.

. ¥ N

LIL Environments

A LIL environment consists of the currently defined entity names and their

values, plus the relationships of inclusion among these entities,
and their views.

NATURAL -

TRIV -—& BOOLEAN

MONOID POSET \ /

LIST

N>

ITER SORT

Hyperprogramming Taxonomy

HYPERPROGRAMMING

HORIZONTAL TRANSFORMATIONS
ASSERTING STRUCTURING AGGREGATING VERTICAL STRUCTURAL
VIEWS / \Dmuc (CODE)
COMBINE INSTANTIATE ENRICH ABSTRACT CODE
- MA/CHINES\ /
REALIZE ~ ABSTRACT COMPOSE CODE ASSERT

OPTIMIZING AXIOMS

AN St ik S vt e e b e e et

— Ar --‘,r'1
.

Y

Organization of Library Entities for a Package

. v Y7 Y

|- NAME,K KEYWORDS
FUNCTIONAL SPEC
INTERFACE SPEC
DOCUMENTATION
EXAMPLES, TEST CASES

VERSION 1 VERSION 2
PERFORMANCE INF. PERFORMANCE INF.
WRITER; DATE WRITER; DATE
ETC. ETC.

1} \J
ADA CODE ADA CODE
INTERMEDIATE INTERMEDIATE
COMPILED FORM COMPILED FORM

1

1

COMPILED FORM

COMPILED FORM

“ s
-t

- - - -
LR W X

e m -
o e e

T

Taxonomy of Library Entities

ENTITY
CONCRETE ABSTRACT MANAGERIAL
MiL COO0E HORIZONTAL REQUIREMENTS PROJECT
COMMANDS TRANSFORMATION AND__VERT!CAL STATUS
PROGRAM DESIGN ACCOUNTING
r / \
PACKAGE ASSERTION HISTORY I DOCUMENTATION

SUBPROGRAM SPECIFICATION

(1) Declarations

(a) Packages

(b) Theories

(c) Views

(2) Commands

The Components of LIL

generalize the spec part of Ada packages
by including:

semantics;

versions;

vertical & horizontal parameterization.

purely semantic, do not have bodies

tells how an entity satisfies a theory

tell how to put entities together to form
systems; both vertical and horizontal
instantiation can be used

o T

Organize by Semantics

. e cataloging & retrieval
e understanding

e animation

e symbolic execution

e rapid prototyping

e version control

A Generic Secure Resource Manager in LIL

theory TRIV is
types ELT
end TRIV

theory POSET is
types ELT
functions < : ELT ELT -> BOOLEAN
vars E1 E2 E3 : ELT

E1)

<
(E1 < E3 if E1 < E2 AND E2 < E3)
= E2 if E1 < E2 AND E2 < E1)

theory EQV is

types ELT ‘
functions == : ELT ELT -> BOOLEAN
vars E1 E2 E3 : ELT
axioms

(E1 == E1)

(E1 == E3 if E1 == E2 AND E2 == E3)
(E1 == E2 if E2 == E1)
end EQV

-- for any POSET, there is a natural way to define an equality;

view EQ :: EQV => POSET is

vars E1 E2 : ELT

ops (E1 == E2 => E1 < E1 AND E2 ¢ E1)
end EQ

-- now a top-down reusable development, RESOURCE using
-- TABLE, not yet been defined

generic package RESOURCE[ACCESSOR :: EQV; X :: TRIV] is
using TABLEP :: TABLE([ACCESSOR, X] is
functions
ACC-0K : ACCESSOR -> BOOLEAN
procedures
WRITE : ACCESSOR X
READ : ACCESSOR -> X

exceptions
WRONG-ACC

vars A : ACCESSOR; X : X

axioms
WRITE(A,X) = PUT(A,X) if ACC-O0K(A)
WRITE(A.X) WRONG-ACC if NOT ACC-0K(A)

end RESOURCE

generic package TABLE[ENTRY :: EQV; X :: TRIV] is
state TABLE initially EMPTY
procedures
PUT : ENTRY X
LOOKUP : ENTRY -> X
vars E : ENTRY; X : X
axioms
PUT(E,X) . LOOKUP(E) = X

end TABLE

generic package SEC-MEMORY-ACCESSOR[LEVEL :: POSET]
needs MEMORYP :: MEMORY is
types S-MEM-ACCESSOR is
record
CELL : CELL; -- cell is part of the MEMORY package
ACCESSING-LEVEL : LEVEL;
ACCESSED-LEVEL : LEVEL;
end record
functions
S-MEM-ACC-0K : S-MEM-ACCESSOR -> BOQLEAN
vars SMA : S-MEM-ACCESSOR
axioms
ACC-0K(SMA) = S-MEM-ACC-O0K(SMA)

end SEC-MEM-ACCESSOR

make SECURE-MEM-MANAGER-O[LEVEL :: POSET; X :: TRIV] is
RESQURCE [(SEC-MEM-ACCESSOR [LEVEL], X] needs TABLEP => TABLE.HASH1
end SECURE-MEM-MANAGER-0

make SECURE-MEM-MANAGER([LEVEL :: POSET; X :: TRIV]
using SEC-MEM-TABLE = TABLE [IDENTIFIER, PAIR[CELL,LEVEL]] (hidden)
using SECURE-MEM-MANAGER-O(LEVEL, X] (hidden) is
procedures e
REQUEST-WRITE : IDENTIFIER X LEVEL e
REQUEST-READ : IDENTIFIER LEVEL -> X

end SECURE-MEM-MANAGER

4

®
1
R

®
L

..

...........................

f’ ?(Oa(amm :my;@:r_@- Lange

;

. .
P

AP

 Anaak Ahem ko an 'P"‘W-’

..'.-. N T

entned ot He sdewendt Alwel.

Tor Ranga programd, A ic esdtnhiol o

?odﬂum G %J\' . .

........................
..
.............................

....................

- Reustilih
L Jeode

. o hpecs
. 4 M‘qptv‘cm‘to

.J}me
.oj&omm

° 4 ‘bfmﬂr h\d‘fﬂw

QiR

" dlp in e e
. ﬁ cofologing

. by Joc Y

. wodnle whinface lP‘“’f"a"': e

08
IV.4 DCP Approach to Ada Libraries

| ANDRES RupMIk

N g e -
CH IR S ST G CIPLIP A S W)

- "

dOd

SS3004d 10HLINOD ONIHIINIONT 3HVYM140S a3aLNaidLsIa

Q.i"a'-.. .‘-‘._ . ..
-, CEREE LA e T e T - > L -
LGP P S AL PR

.........
...............
.
.........
P

...............
..................
.........................

.......
.......
FEE L R

.........................
.............

S3HvHAIT VYAV HOd 140ddNS 404 -
ALMIEVSN3H 3HVML40S vdVv O1 HOVOHddV d40d -
103rodd 404 -

M3IINLINO 2

5 'S1001L INJNJO13AIA FHVMLHJ0S 40 NOILVHOILNI

dOVNONY NOLLVLININTdNI
ANV NOSIS3A V SV vav 4O 3ISN IHL 1HO0ddNS

ALMIGVSN3H -
NOILVINOLNY -

ALNVNO
JHVM140S 3IAOHdWI ANV S1S0OO FHVMLI40S 30NA3H

'FHVML40S F19v1iHOd 40 ININDOT1FIAIA 3HL 1HOddNS
"IN3IINJOT1IAIA 40 TOHINOD d3IZINVHLIND
'd0d 31av1iHOd ANV d3iNgidisid

% e ¥
.......
..................

...........
.................

.........................

.............................

..
..

......
........

......

INIWdOT3IA3A d3LNgH1SIa -
S3AHvHET INVHOOHd -
AHOLD3HId INJHVJASNVHL 1SOH -
ALNIFGVSN3Y - VIA3dOTOAONI -
NOILVHINTD NOILVINIWNNDOA -
ONDIOVHL FONVHO -
ININTOVNVIAN NOLLVHNOIINOD -
ONILHOddNS 3Svav.iva 1VNOILv13d

HOVOYddV

JOVNONVT ANVINNOD vav -
S1001 NOILVININTIdNI ANV NOIS3A vdVv -

JOVNONYT NOILVININTdNI VAV - 5
IDVNONVT NOISIA VAV - i
ININNOHIANT VAV INHOSINN

.INOD HOVOHddY 3

‘SNOILVOINddV A8 3SN3H HOA
S3OVHILINI TVNLHIA d0d 40 ALNIGVIIVAVY -

SAHVANVLS ANV ADO1I0dOHL3IW NOIS3Ia -
NOLLVININITdNI vadv -
ALNIGV1H0d NOILVOIddV

SIFOV4HILINI TVNLHIA - -
NOILVININTTdNI vaVv -
A1NIEV1HOd 400

d,INOD HOVOHddV

........

S3HvHEI vdv 40 3ISN 40d -
S3lHVHEN vav 40 1HOddNS AHO1034H1Id 400 -
ANDO0TVIVI AHvHE —- VIA3dO1OAONI 400 -
ALMIGvSN3d HO4 SONIININNO0A -
ALNIGYSN3Y HO4 ONINOISIA -
ALMIgvSN3d 404 ADOTOAOHLIN -
S3HvHAN vav Nl 1Nd O1L LVHM -

S3HvHEI1 vav/ALMIgavsSnad vav Ol HOVOHddV d40d

g ALNIGVYSN3Y ONILHOd4dNS 1dd vdv -

w. ALNIGYSN3IY HO4d M3INIH -

‘NOIS3Ad d3ILN3™-HO 123ra0 -
‘NOIS3A 4V INAON -

ALNIGVSN3d HOd4 NOIS3IA -

SNOILONNA JAILINIHG AJID3dS -
SNOILONNG 40 NOILVZINVYH3INTD -
‘ALNIBVSN3d HOd NOILVOIFID3AdS W3LSAS -

T UL
LIPS . b b

‘SFIOVIHOVd ANV SINVHOOUd 3IHVMLH0S
3189vSN3d 30NA0Hd Ol 1HO443 SNOIDNIIOSNOD Vv T
40 1INS3H VvV SV d3IoNAOHd SI FJHVYML40S 31gvsnad .

ALMNIFGVSN3d 404 ADOTOAOHLIN

.. .

L R e -7,
n et . et .

IO I D PP PR PN UL

d34diND3Y ONINIVHL -

'SININOJINOD 4

318vSN3d HLIM d3LvIOOSSY SNvV1d 1S31 -

JF18V1LS3L ATINIANI43ANI
389 LSNIN SININOJWOD F1dvsSn3ay -

ALNIEVYSN3H ONILHOddNS ONILS3IL -

ALNIBVSN3Y HO0d M3IINFH -
NOLLVINIWINdNI 3ZNVHINTD -
S3HNLV34 JH3INID vav 3Isn -

ALMIEVYSN3IY HO4 INIWITHNIE -

d,INOD ALMIGYSN3H HO4 AD0OT0AOHLIN

e T, e e e |

Dalhomdl® oo o

. A-_._:_"‘,:-.._..-\ .-'v-".-'.‘f LR .:A. R T T T R _-_.~.:_

I D T
oy PRSI W SR TP WP The thy

PR R
’)

_ IDVHOVA WVHDOHd INOINN- - e
JOVMOVd OL HVINIS - |
% TIATT INVHOOH

‘SNOILdIOX3 -

j 'SNOILdIHOS3A
ANV SNOILVIIJIO3dS FOV4H3LINI -

‘MOT4 viva -

‘NOILdIHOS3d d3lviid -

NOILJIHOSIA AHVINNAS -

NOILVOINddV A9 NOILVOIJISSVTIO QHOMAIN -

NOILOVHLSEV A8 NOILVOIHISSVIO IDVIOVd -
13A3T IOVIAHOV

R i R I N
e e T e T e T T LT e N
AT A WL W PP AP . . b

RN S A T ST R
R T SR
L S SO S il W T U S T T ST W W A

< \-' e

ST
Sralt
“
ot A a

ALNIGvSN3d HO4 SNILININND0Jd

.....

d3HINO3Y ONINIVHL -

'SIN3INOJINOD
319vSN3d HLIM d31VvIOOSSY SNV1d 1S3L -

318V1S3L ATLNIANId3IANI
38 1SN SIN3INOdJNOD FN1avsSNad -

ALNIEVYSN3H ONILHOAANS ONILS3IL -

ALNIGVYSN3Y HOd M3IINIH -
NOILVININTIdAL 3ZNYHINTD -
S3HNLVI4 D”HINIO vav Isn -

ALNIEVSN3H HOd4 INIWITdNIT -

d,INOD ALMgvSN3d HO04 AD0T0AO0OH13N

e e et e . -
. - . - - . - - . - - LT Y. MR - ~ - . - .
-'4_‘_.~_,-_.'_~'.~'.".'..'-'_-.'.".'.‘.'.’.'.‘.-.‘.'.'.
WL S N T VI TV T O R R R LA S R AR K.

FOVIOVL INVHOO0Hd INOINN

FOVHIOVd OL HVIINIS

13ATT INVHOOHd

"‘SNOILd3OX3

'SNOILJIHOS3d
ANV SNOILVDIJIO3dS 30V4H3LNI

‘MO14d v1ivd

‘NOILJIHOS3d a3vi3d

NOILJIHOSIA AHVININNS

'NOILVOINddV A8 NOLLVIIFISSVIO QHOMADA
NOILOVHLSEY Ad NOILYIIHISSVTIO IOVIOV

13ATT FOVIOVd

ALNIgvSN3d HO4 SNILLN3IWND0d

'SADVIOVd 40 ONIHVHS S1HOddNS
ONDIOVHL IONVHO

W3LSASENS AHINONI

31va-01l-dN ANV 1IN3JLSISNOD -
S1N3IWNO0A H3iHIO -

1ad vav WOH4 @310vdlX3 -
NOILVY1N3INND0Ad WWVHO0Hd

'S103rg0 Advda NO IND S3AINOHd
S3IYONI -- 3SVEv1ivd TVNOILVI3H 3ISN

ANO0TIVIVI AdvHdal -- VIA3dO1OAONS

d0d

. e S T S e T
B A PP AT

e i
,, NVHDOHd __MH_MJ
i IIOANI OL @3SN IUNAIO0Hd ANVINNOD ‘9
] FINAOW avOo1 FavINOIX3 G
4
_ FOVHOVd
. NVHDOHd HLIM Q3LVIDOSSY SISNVID HLIM
A8 QININHILIA SIOVIOVA ONINIVINFH '+
NVHO0Hd OL MOINA FOVHOVd INVHOOHd '€
NVHOOHd OL Q3aSSvd i
SINIANDYY DNINIH3A D3dS IDVHIOVA 2 2
I4NA300Hd NIVIN - A0S 'L A
INVHOOHd i
NOILYINHOSNI 39V30Vd
ANV NVHOOHd YAV 40 NOILVZINVOHO 3SVav.iva L

‘A31vIld3d ATaISSOd ANV d3ingdidisia -

- 'S3NVN TVIIO0T ONISN
S103rg0 AHvddn SS300V SH3ISN 404 TV -

ANVN TVIISAHd
AN3IAN3d3Aa 1SOH V Ol dVIAN SINVN VIIDO0T -

SINVN TVvIIO0T SNIVINIVIN VIA3dO1OAONT -

S3-WVHAIT vadv 40 1HOddNS AHO01234dld 400

LRI T e I .
A NP ol Call A G AP

'JHNA3004Hd
ANVIWINOD INOHd 3DVXOVd FOV4HILINI H31JNVHVYd
WVHO0Hd VAV 40 NOILONYLSNOD JILVINOINY

HI1dNOD VAV A9 d3HINO3H AHvHAN
NVHOOHd VAV S10NHLSNOD ATIVOILVINOLINY d0d

FOVIOVd LVHL 40 NOISHIA M3N V 40
NOILV3HO JH1 S3AdNI 3DVHIOVd 40 NOILVIIJIAOW

W31LSAS 3HL NI S1SIX3
3OVAOVd FHL 40 AdOD INO ATNO L1VHL S3IdAI
TILS WVHOO0Hd H3HIONVY NI 39VXOvd 40 3ISN3Y

‘NOILLISOd IN3JINJO13AIA
NIAID V LV FOVIOVd VAV NV 40 JONVLSNI
INO ANO S| 3H3HL 1VHL S3NdiNI WO d0d

S3digvdal vav 40 3sn

A

¥ S S W W e

'
s
f
E]
.
N
‘s e
.
)
.
¥
.
i
f
f
S
.
.
.
e
e
e
P
f
.
.
ot
'
A
a
.-
.
)
e
.
-
.
s
'
‘
'
«
r
v
e
"
R
.
i
'
.

d0d

- A-‘ -.V".- 0-. - .'. n.. --‘ -._ L. .‘~ .. .
N e T T T e T T T T T e e Y T e e e e
LU SRS WAL S PP AP W S WP Walll Wl Yol Sk Tl W W T L. S

e

99
IV.5 Flexibility vs. Efficiency for Reusable Components

ALLEN S, MAaTsumoTO

ot SR v'v AR AN
.

FLEYIBILITY VS, EFFlCiIENLY

FoR ReEUSABLE (ompownEWTS

Mor€E GEwERAL -
FEWER RESTRICTIONS 0N SYSTEM

MORE POSSIBLE INSTANVTIATIONS
=> FLEXIBILITY
MoRE SPEC\FILC:

MoRE DELISIONS ALREADY MADE

GREATER KNOWLEDHE oOF CoNTEXT

=> EFFICIENLY

e o
VLY s

C, ERPIAN A
i SIPY ST PSS SN Y

LR oo dn i o e

SontT
5| REAL - ArgAY 5«9&,1'5[).&1:4!"..M.m.!>

REAL_ARRAY

INTEwEe. Arnay | SORT
— -> EM'E&El ARRAY k""ﬂ-rufﬂrﬂ.ﬁmu 1’

Fi,. {. Sptci-Fic Sort Compon&nrs

generic _

}
\
' , rSok'l‘
€S ARLAY R SORTED-ELEM-MAARAY
t > 7 ':':zw; =
L - _\
ELEM = ELEM =5
real-rype INTEGeR,
| gour SorT
—, [REnL - ——-) —_— INTELER - "_3
ARNAY ARRAY

e

Fn’_,.l. Instanhatims of Generie
Sort Component

generic

type LLEMINTIYPLE is privale,
with functlion LESS { A, B. CLEMINT-IYTPL)
return BOOLEAN;

package SORT_ELEMENT-ARRAY is

type ELEMENT_ARRAY is array (integer range <>)
of ELEMENT_TYPE;

function SORT (A: in ELEMENT_ARRAY)
return ELEMENT_ARRAY;

end SORT_ELEMENT_ARRAY;

m an: ', e —— MOV i A Bae Jegh B o d S Ay S Se Ao aves SR SN Jaus S ot SARE SN Mameeanode g m RO
d - . S R . R 2 oo -
.

ﬁ'w v"

generic
type ELEMENT_TYPE is private;
with function LESS (A, B: ELEMENT_TYPE)
return BOOLEAN;
type INDEX is (<>);
package SORT_ELEMENT_ARRAY is

type ELEMENT_ARRAY is array (INDEX range <>)
of ELEMENT_IYPE;

function SORT (A: in ELEMENT_ARRAY)
return ELEMENT_ARRAY;

end SORT_ELEMENT_ARRAY;

R A SRt S St St it St i el

generic
= type ELEMENT_TYPE is private:
withk function LESS (A, B: ELEMENT_TYPE) _‘
P return BOOLEAN;
? type INDEX is (<>);

type LIST is limited private;
with procedure CREATE (HEADER: out LIST);
with procedure INSERT (HEADER: in out LIST, A
PLACE: INDEX, -
ITEM: ELEMENT_ITYPE); .
with procedure GET (HEADER: in out LIST, |
PLACE: INDEX,
ITEM: out ELEMENT_IYPE),

package SORT_LIST is
function SORT (L: in LIST) return LIST;
end SORT_LIST,;

STt
(NP GPR I GEPY W SO T) -

generic

type ELEMENT_TYPE is private;
with function LESS (A, B: ELEMENT_TYPE)
return BOOLEAN;

LJEE B mn e ae o an on g an 4

type LIST is limited private;

with procedure CREATE (HEADER: out LIST);

with procedure APPEND (HEADER: in out LIST, R

ITEM: ELEMENT_TYPE); °

with procedure GET_FIRST (HEADER: in out LIST, |
ITEM: out ELEMENT_TYPE);

with procedure GET_NEXT (HEADER: in out LIST, L
ITEM: in ELEMENT_TYPE) o
NEXT: out ELEMENT_TYPE); ' :

package SORT_LIST is

function SORT (L: in LIST) return LIST; s
end SORT_LIST; 3

generic

type ELEMENT_TYPE is private;
with function LESS (A, B: ELEMENT_TYPE)
return BOOLEAN;

type LIST is limited private;
with procedure CONS (A, B: ELEMENT_TYPE,
- HEADER: out LIST);
with procedure CONS (A: ELEMENT_TYPE,
B: LIST,
HEADER: out LIST);
with procedure CONS (A, B: LIST,
HEADER: out LIST);

with procedure GET_FIRST (HEADER: in out LIST,
ITEM: out ELEMENT_TYPE);
with procedure GET_REST (HEADER: in out LIST,
REST: out LIST);
package SORT_LIST is
function SORT (L: in LIST) return LIST;

end SORT_LIST;

"AD-A149 570 REPORT ON ADA (TRADEMARK) PROGRAM LIBRARIES WORKSHOP 376 .
LD AT MONTEREY CAL.. <U> SRI INTERNATIONAL HENLO PARK
J A GOGUEN ET AL. B3 NOV 83 N@@@14-83-N-@

UNCLASSIFIED /G 9/2

Y- T—— T — At e e dee S o gy
T UL TP S P C—i SRR A NOAADANNE
- P N e A e A e e e e e o e - s . mae - - - tmatota
.
.

2.8 2.5 _
o £

— [k

li2s flis pie

"'O
FEECERE I

R INCAR
. .
v

o——

—

m—

—
——
.
—
Er
F
3

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

AL
At
e’
AR

..
A A

T, v

.
e

rumen-mua

JTMVBEXED - LIST

ORIERED
ELEM

RN AR Na g N e ERE AU A SN E AR ERE LA NN A N A R NN A A RS O AR R S A AR

INDOYED - ARRAY)

1

TODEYED - c.asr]

Lisr INDEY

| T

ODRIERED

. .‘_'.._‘.'_ ‘e .»_'.._'
I A T]
RS \\“-_‘..."-_ . --.c

IWDEXED .LIST

LINKED-LIST

e |
LIST o
> E‘Len-ryeé'

o]

SolRT

- LIWKEY ST
: — oF \—
: ELEN TyPE

%on

R oF
—>(s
gme:; 4

-

sSoLr

—> | ARRAY OF >
ELEM!T;PG'

. ELEM.TYRG Wit o DER
» STRUCTURF wa_gwumwf

‘ \

Tsom

 SteyLTue s |
oF :,

ELEM_TYPE |

P
{ s

™

3

1S

P.

2R "o LA M] . -,
oo

-
LU
-——

.
4 %

S

B !
, ,

T

AT _ I A
]
‘®
4

i
4 VAN
/.'-"'-"'r ':": ",l".v |
IR AN
S RN

, :j:{j.j. RN
i\

[
DRI

Sl e
‘.l r r

P Lradh s
P S T S

(R A K IR/ A A A e

A A it YL AT A A A A A At A AU RSCRSINCE SO ICh MR S M A A S

FLEXIBILTY
IS DESIRABLE DuRiN& DESI&GN

EFFlIClENLY

1S IMPORTANT IN |MPLEMENTATION

CAN WE EWNCOURALGE)
FLEXIBILITY FoR DESI&N
WITHOVT PREVENTING
EFFICIENT IMPLEMENTATION ?

..
........................

..
...

....................................
. P TR T i i A Tl A AP N P T R N N P P A A N W A A N A A S S A A W R PR)

@ 100
IV.8 Mapping Clear Specifications to Ada Packages

a Steven D. LITVINTCHOUK

"4

’ 4

4
-
L.
3
S

L O DL P T WU SV VA VA S S S, CUNPUL G P I W ST SR DRE PN P P R SV S S B Sl AT ST T S S T S T Wi il W ST G Wt ,-5-_._,1

MAPPING CLEAR SPECIFICATIONS TO ADA PACKAGES

STEVEN D, LITVINTCHOUK
RAYTHEON COMPANY

}

F: GOAL: SYSTEMATIC DEVELOPMENT OF ADA PACKAGE
' SKELETONS WHICH PARALLEL DEVELOPMENT
OF CLEAR SPECIFICATIONS

PURPOSE : FIRST DEVELGP SPECIFICATIGNS IN CLEAR;
THEN "DRIVE” ADA DESIGN BY SPECTIFICATION

-- FACILITATE BESIGN

- FACILITATE MANAGEMENT OF REUSABLE
ADA COMPONENTS

CLEAR AND ADA -- BASIC FEATURES
CLEAR SPECIFICATION LANGUAGE

-- RIGOROUS SEMANTIC DEFINITION BASED UPON FORMAL ALGEBRA
-- FORMAL SPECIFICATION OF SOFTWARE
-- SPECIFICATIONS BUILT IN MODULAR, STRUCTURED MANNER

ADA PROGRAMMING LANGUAGE

-- NO WIDELY ACCEPTED FORMAL SEMANTIC DEFINITION

ADA PACKAGE: MODULE PROVIDING A COLLECTION OF RELATED FEATURES
-- GENERIC PACKAGES CAN IMPLEMENT PARAMETERIZED ABSTRACT DATA TYPES
BUT PACKAGE INTERFACES ARE MOSTLY SYNTACTIC |

..
..
...
..
..
...

..............

Toe .
..............

nnnnnnn

l.l "“7
B AN 3
AP Lttt et
K R S]
AN DR EAPA St R
r St e RN A
LY R, .
| e A
P A PP AR
s R a v g? [LRI . .
LA et et t 2,
PR P N
Bodnd RPN O sy o

[
-)
. R,
. . e
. R I e]
s, '8 L I
LT [UL
. L R A
R et
B
P . “Tele s
N . s LA FIN
o d) e A

4
h)
WP}

.........
o, -
.......
W

CONSTANT (NONPARAMETERIZED) THEQRIES

CONST X = THEQRY « + « ENDTH

DISCUSSION
-- CANONICAL VS. LOOSE THEORIES
-~ THE DATA OPTION
-~ "INSTITUTIONS"

EXAMPLE

coMST BooL =
JHEQRY

DATA SORIS BOOL
OPNS TRUE, FALSE : BOOL
NOT : BOOL -> BOOL
EQNS NOT (TRUE) = FALSE
NoT (noT (P)) =p

Y

R

Soend

RARER

s AN

. ,':.'.

P *

T~ L_ Iy

- RS

3 SRS

~ RS

'\. b.\ -.‘ .1
" RSy
-~ ~

SN S RN LIV

PRIR NG .-_"-"'."\'.~_-‘. . L
MR IR IO I IS WAL
A A S AT A e

MAPPING TO ADA: DISCUSSION

SIGNATURE IN VISIBLE PART OF PACKAGE SPECIFICATION
REPRESENTATION TYPE IN PRIVATE PART

IMPLEMENTATION OF FUNCTIONS IN PACKAGE BODY

CHOICE OF IMPLEMENTATIONS

PACKAGE BOOL_PACKAGE 1s

TYPE BOOL 1S LIMITED PRIVATE;

FuncTioN TRUE (X: BOOL) rReTurN BOOL;
FUNCTION FALSE (X: BOOL) RETURN BOOL;
FUNCTION “noT” (X: BOOL) RETURN BOOL;

-- "NOT” 1S AN ADA RESERVED WORD
FUNCTION EQUAL (X, Y: BOOL) ReTURN BOOL;

-- BECAUSE OF THE DATA OPTION
PRIVATE

TYyPE BOOL 18 « . . -~ CHOSEN IMPLEMENTATION OF BOOL
eEND BOOL_PACKAGE;

PACKAGE BODY BOOL_PACKAGE 1s
‘ -~ IMPLEMENTATION OF FUNCTIONS
FuncTionN TRUE (X: BOOL) ReTURN BOOL s . . .
FUNCTION FALSE (X: BOOL) ReTurN BOOL 1s . . .
FUNCTION ”"MOT” (X: BOOL) RETURN BOOL s . . .
FUNCTION EQUAL (X, Y: BOOL) ReTurN BOOL 1s . . .

END BOOL_PACKAGE;

IR
LA

AR
) et "r *
P NN NN
A ORI
"))
.. s "2 s

o

o e e P I

r_', ABAD AP DA P WS T T TR TR ETRETNT R P A St S AU AR A et Sl e St RS A deie. e Sit et S S e
Cata -]

COMBINING THEORIES | ‘f;:i;

X+Y CREATES "UNION” OF THEORIES X AND Y

DISCUSSION S

CLEAR SUBTHEORIES ARE SHARED (YOU GET ONLY ONE COPY) ot

SO ARE ADA LIBRARY UNITS (FORTUNATELY) R

P
1
]
¥
 J

“BASE” OF A THEORY: RECORDS DEPENDENCE ON ALL GLOBAL SUBTHEORIES

'
]

ENVIRONMENT MUST KEEP TRACK OF THIS INFORMATION Do

A e o o am
|
)
v
A

USE ADA CONTEXT SPECIFICATION ("WITH”) CLAUSE
TO RECORD SAME KIND OF INFORMATION

-~ “LOCAL" SUBTHEORIES ARE ALSO POSSIBLE T
(WITH {BASE_OF_X! U {BASE_OF_Y};] :..;_.:
PACKAGE X_PLUS_Y 1s e

[PACKAGE X_PACKAGE 1s.... --1F X LOCAL BRI
END X_PACKAGE;] e]
[PACKAGE Y_PACKAGE 1s.... --1F Y LOCAL]
END X_PLUS_Y; —. }
t‘.v:'l'.-j:-"_l

o

ENRICHMENTS OF THEORIES

ENRICH E BY X ENDEN
-- ADDS NEW CAPABILITIES AS SPECIFIED BY X, TO EXISTING THEORY, E

EXAMPLE

CONST BooLoPNS =

ENRICH BooL BY
OPNS AND, OR, --> : BOOL, BOOL -> BOOL

EQNS P AND TRUE = P
P AND FALSE = FALSE
P OR TRUE = TRUE
P OR FALSE = P
P -->@ = NoT (P AND NOT (@))
ENDEN

wiTH BOOL PACKAGE;
PACKAGE BOOLOFPNS_PACKAGE 1s

FUNCTION “AND” (X, Y: BOOL) rReTurn BOOL:
FUNCTION "orR" (X, Y: BOOL) ReTurN BOOL;
FUNcTIon IMPL (X, Y: BOOL) ReTurN BOOL;

eND BOOLOPNS_PACKAGE;
PACKAGE BODY BOOLOPNS_PACKAGE 1s

FUNCTION “anND” (X, Y: BOOL) ReTurN BOOL 1s
BEGIN -~ POSSIBLE IMPLEMENTATION OF “AND”
1IF Y = TRUE THEN
RETURN X;
ELSE
RETURN FALSE;
END 1F;
END “AND";

RETURN BOOL 15 . . .

FUNCTION "OR” (X, Y:)
) RETURN BOOL 1s . . .

BO
FUNCTION IMPL (X, Y: BO
END BOOLOPNS_PACKAGE;

........

- o

o)
«
.‘.._1
S
-
RSA
N
.~-.-1

~ <
S
* 3

‘I
-
1‘..\.~..
[.
e .
o. .-h .~ -
v ST
-~
S
N
o ,‘-s
T
Y .
.- “n -
BRCAN
R
AR S
...
-a® .
Pt
R
» .I A}
'.\-

ANOTHER ENRICHED THEORY

> CONST NaAT =
9, ENRICH BooL BY
o DATA SORTS NAT
oPNs B NAT

SUCC : NAT -> NAT

+ NAT, NAT =-> NAT
EGNSs B+ M =M

succ (N) + M = succ (N + M)

WITH BOOL_PACKAGE;
PACKAGE NAT_PACKAGE 1s

~ TYPE NAT IS LIMITED PRIVATE:
FUNCTION ZERO RETURN NAT;
FUNCTION SUCC (x: NAT) RETURN NAT;
FUNCTION “+" (X: NAT) RETURN NAT;
o PRIVATE
TYPE NAT 1s . . .

i END NAT_PACKAGE;

-, \.‘
AR
o

<. SR

. u.' »-_".

.. Ny

- > -

- IR

SN

. ey

~

1 .

~-
= 1
o e
L
R |
YNC 1

s
[
»
»
. _ 2 L R) - .
L) .
A B ettt
¢ S . L P
. RECARN el e
. R 'P * . L

A AN I I et A M SR SARARACREAE N SR SR S SR 0 S O GEEAE

DERIVING ONE THEORY FROM ANOTHER

MD[MEIJEZJ ---]EB_QMFBlm: D-->Fm

SELECTS A SUBSET OF THEORY F

RENAMED AS SPECIFIED BY M (CALLED A SIGNATURE MORPHISM)
TO YIELD A THEORY WITH SIGNATURE D

(CAN ALSO USE E{, E5, + + « AS SUBTHEORIES)

EXAMPLE

CONST NATORD -

ENRICH NAT BY
oPNS 1, 2, 3, 4, 5 : NAT

<= 1 NAT, NAT -> BOCL
EQNS v
ENDEN

CONST SECURITY =
DERIVE SORTS LEVEL
OPNS UNCLASSIFIED, CONFIDENTIAL,
SECRET, TOP_SECRET : LEVEL

ENDDE

<=, == : LEVEL, LEVEL -> BOOL s

USING BooL -
ERCM NATORD -
BY LEVEL 1S NAT, -
UNCLASSIFIED IS @, .
CONFIDENTIAL]S 1, - .{1

SECRET 1s 2, -9
TOP_SECRET 5 3 : ;5

2

]

wiITH NATORD_PACKAGE, NAT_PACKAGE, BOOL_PACKAGE:
PACKAGE SECURITY_PACKAGE IS

TYyPe LEVEL IS LIMITED PRIVATE;
FUNCTION UNCLASSIFIED rReTurRN LEVEL;
FUNCTION CONFIDENTIAL ReTurN LEVEL;
FUNCTION SECRET ReTurN LEVEL;
FUNCTION TOP_SECRET ReTURN LEVEL;

FUNCTION "<=" (X, Y: LEVEL) ReTurn BOOL;

FUNCTION EQUAL (X, Y: LEVEL) ReTurn BOOL;
PRIVATE

TYPE LEVEL 1s New NAT;

END SECURITY_PACKAGE;

PACKAGE BODY SECURITY_PACKAGE 1s

FUNCTION UNCLASSIFIED ReTURN LEVEL 1s

BEGIN
RETURN LEVEL(ZERQ);
END;

END SECURITY_PACKAGE;

THEORY PROCEDURES (PARAMETERIZED THEORIES)

PROCEDURE P (FMLl: REQTy, o) =T
WHERE REQT : REQUIREMENT FOR FML,
TO APPLY PROCEDURE:
P (ACTl [Mll, ved)

WHERE M[: REQT, --> ACT, (FITTING MORPHISM)

ACTS LIKE TEXTUAL SUBSTITUTION INTO T:

J -- ACTUAL PARAMETERS FOR FORMAL PARAMETERS

' -- SORTS/0PERATORS OF ACTUAL PARAMETERS FOR
THOSE OF REQUIREMENTS -

DISCUSSION

ADA GENERICS CAN ACCEPT SIGNATURES OF ABSTRACT
UATA TYPES AS ARGUMENTS

-- BUT SHARING OF SUBTHEORIES ¥AY RESULT IN POSSIBLE
“ALIASING” INVOLVING ACTUAL PARAMETERS AND
SUBTHEORIES IN T, ADA GENERICS PROHIBIT SUCh ALIASING

| -- CAN PLACE RESTRICTIONS ON DEFINITION AND APPLICATION QF

. CLEAR PROCEDURES TO PRCHIBIT ALIASING (PERHAPS

3 REQUIRING THAT SUBTHEORIES OF PROCEDURE BE “RESPZCTED”) R
’ -- CONTROLLING “PROLIFERATION” OF THECRY APPLICATIONS WITH ._f,.‘

IDENTICAL ACTUAL PARAMETERS CONFLICTS WITH ALA RULES
FOR MULTIPLE GENERIC INSTANTIATIONS

. @
[4

. L et
WAL & vl

EXAMPLE: THEORY OF TOTALLY ORDERED LISTS OF ELEMENTS ;Eﬁéiﬁ
CONST TRIV = : .
THEORY SORTS ELEM =2

ENDTH e

...........
.........
........................

L JRA

. "_I'.'_"'.".'.ﬂ

MEIA ORDERED-ELEMENTS =
ENRICH BooLoPNS BY

SORTS ELT
OPNS ==, <= ! ELT, ELT -> BOOL
EQNS A==A = TRUE

A== = ==

A==B aND B==C --> A==C = TRUE
A<=A = TRUE

A<= AND B <= A --> A==B = TRUE
A<=B aND B <= (C --> A<=(TRUE
A<=B AND B <= A = TRUE

ENDEN

PROCEDURE ORDERED-LIST (X: ORDERED-ELEMENTS) =
ENRICH LisT (X[ELEM IS ELT]) + BOOLOPNS BY
OPNS ORDER: LIST =-> LIST
ORDERED: LIST -> BOOL
EQNS ORDER(NIL) = NIL

. -- AXIOMATICS OF ORDER & ORDERED

ENDEN

To APPLY TO THEORY NATORD,
YIELDING ORDERED LISTS OF NATURAL NUMBERS:

ORDERED-LIST(NATORDIELT IS NAT, <= S <=, == s ==])

Ld
-

i, T R S AN

I I DR

wITH BOOL_PACKAGE, BOOLOPNS_PACKAGE, LIST_PACKAGE;
GENERIC

TYPE ELT IS LIMITED PRIVATE:
WITH FUNcTION EQUAL (A, B: ELT) RETURN BOOL 15 <>;
WITH FUNCTION “<=" (A, B: ELT) RETURN BOOL IS <>;

PACKAGE ORDERED_LIST_PACKAGE 1s

PACKAGE NEW_LIST_PACKAGE 1s New LIST_PACKAGE (ELEM => ELT);

-- NOTE IMPLEMENTATION OF
use NEW_LIST_PACKAGE; -- APPLICATION OF LIST THEORY!

FUNCTION ORDER (L: LIST) rRetvurn LIST;
FUNCTION ORDERED (L: LIST) RETURN BOOL;

enp ORDERED_LIST_PACKAGE;

TO APPLY (INSTANTIATE) NATORD_PACKAGE:

NEw ORDERED_LIST_PACKAGE (ELT => NAT_PACKAGE.NAT,
EQUAL => NAT_PACKAGE,EQUAL,
“<=f => NATORD_PACKAGE " <=";

/

!
PR ‘ . . .
I INIILRS G SN A,

........
.................

.........

COPIES OF THEORIES

copy E [ysING Fl' Fz' « + «] ENDCO

MAKES NEW COPY OF E,
WITH SHARABLE SUBTHEORIES Fl, Foo v v

APPROACH TO ADA IMPLEMENTATION:
REPLACE EACH ADA PACKAGE BY INSTANTIATION OF
EQUIVALENT GENERIC PACKAGE OF NO ARGUMENTS

INSTEAD OF CREATING PACKAGE E_PACKAGE AS:

PACKAGE E_PACKAGE IS

{TYPES/FUNCTIONS OF E}
END E_PACKAGE;

CREATE IT AS INSTANTIATION OF GENERIC PACKAGE OF
NO ARGUMENTS:

GENERIC
PACKAGE E_TEMPLATE;

{TYPES/FUNCTIONS OF E}

eNnD E_TEMPLATE;
wiTH E_TEMPLATE;
PACKAGE E_PACKAGE 1s NEw E_TCMPLATE;

%~ MORE COPIES

PACKAGE E1 _PACKAGE 1s New E_TEMPLATE;
PACKAGE EZ_PACKAGE 15 New E_TEMPLATE;

. -
'''''''''''''''''''''''

.

.......

FOR THE FUTURE.....
FIX REMAINING PROBLEMS, INCLUDING:
-- "ALIASING" INVOLVING PROCEDURE PARAMETERS AND BASE
-- " PROLIFERATION"” OF IDENTICAL PROCEDURE APPLICATIONS
FORMALIZE AND VERIFY CORRECTNESS OF THIS PROCESS
INVESTIGATE ROBUSTNESS FOR OTHER “INSTITUTIONS”
DEVELOP ADA OPTIMIZATIONS FOR USEFUL CASES
DRAW UP REQUIREMENTS FOR SUPPORT ENVIRCNMENT

APPLY RESEARCH ON AUTOMATED GENERATION OF ABSTRACT DATA TYPES

i: IN CONCLUSION, ..

hi e IT IS FEASIBLE TO DO ADA DESIGNS WHICH PARALLEL
THE STRUCTURE OF CLEAR SPECIFICATIONS

BUT REQUIRES:

-- SOME RESTRICTION ON USE OF CLEAR

-- SIGNIFICANT ENVIRONMENT SUPPORT

.
-
-c‘ - .
ool
- -
.. LTt e et e e - . . - . T P N P SRR
..
...
SR LRI P T I I R RSERA L P T o T
DRSS G R R e T T T e I A A T A A e e APIC L o
S i A T B P I A I P T R P P LT M T S R S P PRI R I
Sl de‘L’A“L'k'._';'L:m{‘ " LT o 2 W VA WP AT L WP Y A ry ‘

IV.7 General Requirements for an Elementary Math Function Library

vvvvv ——

101

Bruno WITTE

PTG WAV IR W RN W R

it

ala

GENERAL REQUIREMENTS FOR AN ELEMENTARY MATH FUNCTIONS LIBRARY

{Bruno Witte, NOSC)

San Diego, CA, 10/24’83

(a) Structure.
(b) Angles.

{c) Names. A
(d) Exception handling. R
(e) References. L
(f) Generic packages. Sl
(g) Accuracy tests. »
(h) Verifications and demos. S
(i) Documentation. RS

L§
]

a. STRUCTURE. The library of functions and facilities shall be parti- -
tioned into Ada packages in such a manner that the following observa- » ..
tions are taken into account:

1. Functions used together. Functions which are likely to be
used together, or are generated together, should be packaged
together.

2., Overloading of library units. Names of library units cannot
be overloaded. Thus, if unpackaged functions were to become
library units, their names could not be overloaded.

3. Advantage of overloading. Many function names were purposely SR,
overloaded to avoid overloading people’s memories. ivw-

4. Suboptimal compilers. When an Ada package consists of sever-
al functions, and a user needs only one of them, an ideal
compiler will give him only that one. However, such optimi-
zing compilers may be years away. Meanwhile, compilers and)
loaders are likely to burden programs with unnecessary func-— !_
tions by supplying entire packages named in WITH clauses, -
even when only a fraction of the package contents is needed. :

5. Minimum package sizes. It follows that users who object to ,;
having their programs burdened at execution time with func- C
tions they do not need, should be helped in some other way ® .

for the time being. For example, if a math functions libra- s“;}
ry were structured so packages contain only one, or a few)

functions (or other components), this would be helpful to }i{ﬂ
such users. el

6. Number of WITH clauses. However, to follow this advice in | I
(5) by placing only one function into most packages, would

cause a user to write more WITH and USE clauses. :iﬁ%

7. Package of packages. But, then again, users can themselves
place several smaller packages into a larger one to get a
more readable and a better structured program, and to reduce
the number of WITH and USE clauses.

8. Package sizes. Another factor influences the program struc-
ture in Ada: When lowest-level packages or compilation units
are too large, they tend to become “unwieldy" from the point
of view of the programmer who has to write or maintain thenm. AN
"Unwieldy"” means a combination of lesser readability, clum- DR
sier compiling and program development, more chain reactions RO
when changes or corrections are made, etc.

9. Summary. The upshot seems to be that the library should be .
implemented in terms of a hierarchy of packages, with each L
of the lowest-level packages including only functions which SRR
most users will want to use together. An illustration is y?ﬁ;}
given below. Ry

Il1lustration of a hierarchy of package trees
for the functions of a math library.

Package Functions and/or Procedures Other packages named
Name included in package in a WITH clause
PKG_SGRT SERT
PKG_CBRT CBRT S
PKG_LOGS NAT_LOG T
COM_LOG wo
BIN_LOG "o
PKG_TRIG SIN
cos
TAN :
PKG_COTAN COTAN ..
PKG_ARCSIN_ARCCOS ARCSIN o
ARCCOS e
PKG_ARCTAN ARCTAN =y
°
PKG_E_EXP EXP PKG_LOGS D

PKG_GEN_EXP »a PKG_E_EXP
PKG_LOGS

PKG6_HYPERBOL ICS

PKG_INV_HYPERBOLICS

PKG_POLAR_CARTESIAN

SINH
COSH
TANH

INV_SINH
INV_COSH
INV_TANH

POLAR (X)

.......

POLAR (X1,X2)

POLAR (RHO,PHI)
CARTESIAN (R)
CARTESIAN (X1,X2)
CARTESIAN (RHO,PHI)

ARSC1SSA
ARSCISSA
ARSCISSA
ORDINATE
DRDINATE
ORDINATE

33
(R)
(RHO, PHI)
(X)
(R)
(RHO, PHI)

PKG_SQRT
PKG_ARCTAN
PKG_TRIG

RADIUS (X) K
RADIUS (R) -
RADIUS (X1,X2)
ANGLE (X)
ANGLE (R)
ANGLE (X1,X2)

PKG_CARTESIAN_COMPLEX CARTESIAN (X1,X2)

POLAR (X1,X2)

REAL_PART (W)

IMAG_PART (W)

CONJUGATE (W)

RADIUS <(U)

ANGLE (U)

POLAR (W)

+y =y ®, /

GET (W)

PUT (W)

PKG_S@RT
PKG_ARCTAN

PKG_POLAR_COMPLEX POLAR (RHO, PHI) PKG_TRIG T
CARTESIAN (RMO,PHI) e
CONJUGATE (S) T
CARTESIAN (S) ORI
REAL_PART (S)
IMAG_PART (S)
RADIUS (S)
ANGLE (S)

*y =y %y, /
GET (S)

PUT (S)
PKG_FULL _COMPLEX PKG_CARTESIAN_COMPLEX
PKG_POLAR_COMPLEX

PKG_COMPLEX_SQRT PKG_FULL _COMPLEX

EQRT (W)
8SQRT (8)

................................

.............

PKG_COMPLEX _LOG NAT_LOG PKG_FULL_COMPLEX

NAT_LOB (S) PKE_L OGS

PKG_COMPLEX_EXP EXP () PKG_POLAR_COMPLEX
EXP (8) PKEB_TRIG

PKG_COMPLEX_TRIG SIN (W) PKG_FULL _COMPLEX
SIN (S) PKB8_HYPERBOLICS
cos W PKG_TRIB
cos (s)

TAN (W)
TAN (S)

PKG_COMPLEX_INV_TRIG ARCSIN (U) PKG_FULL _COMPLEX
ARCSIN (S) PKG_ARCSIN_ARCCOS
ARCCOS (W 'PKG_ARCTAN
ARCCOS (85) PKG_LOGS
ARCTAN (W) PKG_SaGRT
ARCTAN (8)

PKG_COMPLEX_HYPERBOLICS SINH (W) PKG_FULL_COMPLEX
SINH (S) PKG_HYPERBOL ICS
COSH (W) PKG_TRIG
COSH (8)
TANH (W)
TANH (S)

PKG_COMPLEX_INV_HYPER INV_SINH (U) PKG_COMPLEX_INV_TRIG
INV_SINH (S)
INV_COSH (W)
INV_COSH (S)
INV_TANH (W)
INV_TANH (S)

PKG_GEN_COMPLEX_EXP Usay PKG_FULL_COMPLEX
SaaT PKG_COMPLEX _LOG

. ba ANGLES. Before explicitly or implicitly referring to angles in
the context of trigonometric functions, coordinate transformations, or
complex arithmetic, the user shall have the option to decide whether he
wants angles in degrees or in radians.

C. NAMES. Names of packages, functions, procedures, and constants,
which are used in the code, shall be as given.

d. EXCEPTION HANDLING. For most functions and procedures there shall
be "catch-all"™ exception traps and handlers which report their function
or procedure name to the calling program, raise the exception, and do
nothing else (no printing, no value assignments, etc.). The calling
programs must decide what to do, among options such as [al printing
that there is trouble in function XY2, b} halting program execution,
(c] re-executing the calling routine (for expl., recursively) with di¢-

P p—_— T - T AT Y A s T

ferent parameter values, ([d] choosing a substitute routine, and resum-
ing execution, (el sounding an alarm at the control center, or (f] re-
raising the exception, etc. When the calling program is itself part of
one of the library packages, then the developer shall decide on the
action to be taken by the exception handler in the calling program. 1f,
in a specific case, a decision is made to re-raise the exception, then
the name of the calling program, too, shall be reported back to the pa-
rent routine, in addition to the name of the subprogram where the prob-
lem started; etc.

e. REFERENCES. All literature references shall be by author’s last
name, vyear of publication, and a letter when several publications are
listed for the same author and year. For example, "Wilkinson (1959b)"
would refer to the second of the following fictitious entries in a list
of references:

Wilkinson,J.H. (193%a), “Error Analysis of Floating-point Computation”,
Numer .Math., vol.2, pp.319-340. k

Wilkinson,J.H. (1959b), "The Evaluation of Zeros of Ill-conditioned Po-
lynomials", Numer.Math., vol.1, pp.150-1466, 167-180.

f. GENERIC PACKAGES. Most functions shall be declared inside gene-
ric packages, with statements like

generic type REAL is digits <>}

package XXX_XXX is
function ANY (X:REAL) return REALS
function ETC (X:REAL) return REALS

g. ACCURACY TESTS. There shall be separate tests of the "single-pre-
cision" and the double-precision evaluations, as well as tests of the
single—-precision results by comparing them with double-precision ones.
There shall be random argument accuracy tests as well as tests with se-
lected specific arguments (near the extremes of the function domains,
near the zeros of the functions, near zero—arguments, etc.). The diffe-
rent kinds of tests are labelled Tests [A], Tests [(B]l, Tests [Cl, etc.,
and each of thecse kinds of tests shall satisfy its own set of require-
ments as illustrated further below for Tests [A].

Tests [A): random arguments,
with range reductions,
separate test packages,
no double-precision tests.

Tests [(Bl: random arguments
no range reductions,
separate test packages,
no double-precision tests.

e Mar o~ v are vy aeal g oo s i U st AL oA MR AR E U

Tests [C]l: random arguments,
one integrated test program,
only double-precision tests.

Tests [D]: random arguments,
one integrated test program,
no double-precision tests,
but double—-precision comparisons.

Tests [E]1: selected arguments,
separate test packages,
single— and double-precision tests.

Tests [A)

Tests of type [A) do not apply to double-precision functions. They use
random arguments, and check how well certain identities are satisfied.

1. Tests [A] shall be in the form of separate test packages for each
function.

2. Packages for Tests [A] shall become available to the users in the
same way as function approximations, so that users tan repeat the
tests, either with the given functions or with their own.

3. Each Test [Al package shall display the results in the form shown
in paragraph (10) below.

4. The Test [A] packages shall be prepared with the same care
and in the same style, and with the same level of documentation,
as is required for the function approximations themselves.

5. Tests [A]l shall be random argument accuracy tests, to check how
well certain functional identities are satisfied.

6. Random arguments in the Tests [A) shall for most functions have a
logarithmic distribution, in intervals for which the functions e
are defined. ?

7. Each Test [A]l shall use a repeatable sequence of 100,000 random
arguments, with seed N=i.

8. For each Test [A) the required number of significant decimals, K,
shall be FLOAT’DIGITS.

- -.' .."’ '-.A !“.-" .
- .-. -.' ~ " \. - -
AR A N

9. For each random argument accuracy Test [A), the contractor shall
compute the following quantities:

1) R = ABS(E), absolute value of the relative
error E, for each argument}

! [21 MAX_R = maximum R, see (133

£33 X_MAX_R = argument associated with MAX_R, see (2];
[4] AVG_R = average value of R, see [1]}

£51 MIN_DIG

—COM_LOG(MAX_R) = minimum number of
correct decimal digits obtained with
any argument in the test, see [(2]1;

L&61 AVG_DIG = -COM_LOG(AVG_R) = average number of
correct decimal digits obtained with
the arguments in the test, see [4];

; [71 MAX_MISS K-MIN_DIG if K> MIN_DIG
H = 0 if K<=MIN_DIG

maximum number of significant decimal
digits missing on required K decimal
digits, see (8) and (513

X £81 AVG_MISS K-AVG_DIG if K> AVG_DIG
= Q0 if K<=AVG_DIG
average number of significant decimal
H digits missing on required K decimal
) digits, see (8) and [&4]5

Cr e T
, I MR
. P
. AT AL
PV SRS T Y LI

A

.
s

athadh,

A

g

- - -t et . - - » - L] - > h = .
. et At . LA Y AT PR A et e At AT T et . -
N TN T T e A T T A R AR NG
AL PRV PAE W P LR UL AR WAL WAL WAT R o PR R R WA AL L R L e SO

10. Table arrangement illustration for results of tests of type [A].

i All numerical values are fictitious. However, they indicate what

results may be expected, i.e., some unavoidable inaccuracies when

. users’ DIGITS specifications correspond to maximum machine accu-
. racy, and K is set to this DIGITS value.

S

i { Type [A) random argument accuracy test of: SERT !
» ! Location of test site: ‘ XYZ Co., City, State '
! Computer: DEC-360 '
! Date: 10/5 83 ;
» ! Number of arguments: 100, 000 !
[! argument distribution: logarithmic !
{ argument range: 0..9.876543210E465 H
! relative error: E = [SORT(X#%2)-X1/X H
B H K MIN_DIG AVG_DIG MAX_MISS AVG_MISS X_MAX_R :
1] [
» 1
¢! 10 8.9 9.5 1.1 0.5 1.222333444E-55 H
? [}
1] 1]

K -~ FLDOAT’DIGITS = maximum number of significant
decimal digits availablej

MIN_DIG —= minimum number of significant figures actually
returned for any of the random arguments;

[4
E
i i AVG_DIG -— average number of significant figures actually
13
1

returned for all random arguments;
E: MAX_MISS -- K-MIN_DIG (if positive), Q0 (otherwise)s
:i AVG_MISS -—- K-AVG_DIG (if positive), 0 (otherwise)s
B

X_MAX_R -— argument causing the maximum relative error.

»

h. VERIFICATIONS AND DEMOS

(1) Mathematical constants.

(2) Coordinate transformations.
() Complex arithmetic and 1/0.
(3) Complex functions.

(3) Double-precision.

(6) Scalar operations.

(7) Array operations.

(8) Linked lists.,

(%) Random numbers.

(10) Exception handling.

M e e ame e, Svente s e -

i. DOCUMENTATION.

(1) Electronic transmittals.

(2) Package hierarchy overview.
3 Summaries of Ada packages.
(4) Source code listings.

{3) Output listings.

{6) Test evaluations,

(7) General comments.

i (8) References.

1. Electronic transmittals. The entire documentation shall be
stored in the form of files on hard or floppy disks of the
preparer’s computer, and shall be transmitted electronically

. to a dedicated special directory on an ARPANET host compu-
I ter, to be designated by the Ada Joint Program Office. Each
. section of the reports which starts on a new page shall cor-
respond to a different disk file on the preparer’s computer,
and vice versa, and the transmittals of these files shall be

by uploading from the preparer’s (micro-) computer(s) to the
ARPANET host.

2. Package hierarchy overview. In a file of its own, there

shall be an overview of the hierarchical package structure

of the Ada packages and subprograms in this library, in the

style illustrated in (a.9).
3. Summaries of Ada packages. For each individual Ada package,
there shall be a separate abstract in English prose, stating
such items as domains of input variables of subprograms in
the package, range of output values of the subprograms,
approximation methods, range reduction procedures, exception
handling, generic aspects, literature references, etc.
There shall be one such summary for each package listed in
the above overview (2) under the heading "Package Name", and
the summaries shall be in the same order as in this listing,
each in a file by itself, and none exceeding the equivalent
of an ordinary typewritten text page.

crr ey
S A

-0 e D

4,

Source code

listings.

(4.1)
(4.2)
(4.3)
4.4

Source
Source
Source
Source

code
code
code
code

of
of
of
of

Ada packages.
verifications.
accuracy tests,
timing program.

!~ (4.95) Source code of random number tests.

4.1 SBource code of Ada packages. For each package in the over-

view (2), there shall be a separate file with its Ada source

.1- code.

!ﬁ 4.2 Source code of verifications. For each verification pro-

jf gram in (h), there shall be a separate source code file.

I_"f'if :
;.v—'

e fe e e e Lt
ot At e e " .
R A

Lo NN

P Wl W

Lot et g . . i e aey 2o

4.3 Source code of accuracy tests. For each individual accura-
cy testing program (devised according to section (g)), there
shall be a separate source code file.

4.4 Source code of timing programs. There shall be a separate
file with the timing program source code.

4.5 Source code of randoa number tests. There shall be a sep-
arate source code file for each of the five test programs
for evaluating the UNIFORM_RANDOM number generator.

5. Output listings.

(5.1) Two parallel sets.
(5.2) Verification outputs.
(5.3) Accuracy test outputs,
(5.4) Timing test outputs.

5.1 Two paralle]l sets. There shall be two parallel sets of files
of output listings for the outputs described below in (5.2),
(5.3) and (5.4), one set obtained with runs on one computer,
the other with runs on another computer, and the two compu-—
ters shall be by different manufacturers. Each output list-
ing shall identify the computer, its location and the date

i of the run; and each set shall contain all of the following

output files., See (5.2, 5.3, and S5.4).

5.2 Verification outputs. There shall be separate files for each
of the following output listings:

I —== the output listing of the verifications program for the
mathematical constantss

== the output listing of the verifications program for the
coordinate transformationss

-— the output listing of the verifications program for the
complex arithmetic and 1/03

—~— the output listing of the verifications program for the
evaluation of elementary functions of complex arguments

== the output listing of the verifications program for the
double-precision capabilitiess

iy -= the output listing of the verifications program for the
’ various _calar operationss

-~ two output listings from the two verification programs
for array operationss

: == two output listings from the two verification programs
. for operations on linked listss

J'i-.A
P P

5.3

5.4

6.

e e S IR i i N N S e e e A AL el St aed et gel ot st e At S AT SR TR TSN AE O AP S A

- N

-- ten frequency plots obtained with the program for veri-
fying the performance of random number generators$ each
of these plots shall be considered a separate output
listing.

— the five program outputs for verifying exception hand-
ling shall all be in the same output listing.

Accuracy test outputs. There shall be files with the out-
puts of the accuracy testing programs of section (g), (see
also (4.3)). Thus, there shall be 62 (or more) ocutput tab-
ulations of the test results, and each shall be a separate
output listing, as follows:

-~ twenty tabulations for Tests [A), i.e., one for each of
the elementary functions;

-— twenty tabulations for Tests [Bl, i.e., the repeats of
Tests [A] for primary ranges;

-— one tabulation for all Tests [Cl, the accuracy tests of
the double-precision function evaluationss

—— one tabulation for all Tests [D], the accuracy tests of
the single—-precision function evaluations, by comparing
with double-precision resultss

—— twenty (or more) tabulations for Tests [E] with delibe—
rately chosen arguments.

Timing test outputs. There shall be files with the output
listings of the timing tests.

Test evaluations.

(6.1) Accuracy test evaluations.
(6.2) Timing test evaluations.
(6.3) Random number test evaluations.

6.1

6.2

Accuracy test evaluations. Separately for each elementary
function there shall be a summary of the results of the ac-
curacy tests, a cursory comparison with results of corre-
sponding tests in FORTRAN, as well as comments on such items
as the extra loss of accuracy due to range reductions (Tests
LA) versus Tests (Bl), the adequacy of tests which rely on
identities rather than double-precision comparisons (Tests
€Al versus Tests [D]), any accuracy loss at the endpoints of
the domain (Tests [EJ), e’c. Each summary shall begin on a
new page, and none shall exceed one page.

Timing test evaluations. There shall be a summary of the
timing test results, and a cursory comparison with results
of corresponding FORTRAN tests. All twenty functions shall
be discussed in the same summary, starting on a new page.

q

Random number test evaluations. There shall be a summary
of the results of the tests of the generator of uniformly
distributed random numbers, including comparisons with cor-
responding FORTRAN results on the same equipment, and in-
cluding statements (for each of the tests) telling whether
Ada results are better (more random; or worse (less random)
than FORTRAN results.

General comments. There shall be some brief comments on pro-—
gramming approaches, and on difficulties encountered during
the implementation of this library, and the developer shall
feel free to make suggestions for other programmers of large
Ada software systems.

References. There shall be a collection of all references in
this part of the documentation, compiled in the manner as is
described in (e).

-

T—— CaRcamaraan D ” P— P — B e s e aoe oo o

® 102 *
IV.8 Knowledge Based Tools for Data Type Implementation
h GorDoN KoT1k *

9
|]
4
*
. \
*
...... . L e . *
............ s
PAPR WPV ey 2 P) WY 3 o P n L W W R W & Ao a A

@ Knowledge Based Tools For

b Data Type Implementation

by

Gordon Kotik

of

»
e
e
LT
T
A

Computer and Information Science Dept. L
University of Californfa , Santa Cruz

and

e e et
R
o aaa ahadid ek ah

Kestrel Inst{tute o]
1891 Page M{i11 Road =

Palo Alto, CA 94394 S

HEESIRRAL INSPPTUTE

[. What does a data type user want?

II. How can a programming environment help?

A. CHI, a Knowledge Based
Programming Environment

B. A Theory Of Data Type Implementation

C. A Tool For Implementing Data Types

[IlI. Relevance To ADA Libraries

KESTREL INSTITUTE

R
S
S
L

I. Expressive Power

I]1. Efficient Implementation

III. Correctness

KESTREL INSTITUTE

.....................
..
...
...
.......................................
...
P U T e AL IPAC A S SR SIS S T IR I S T S U IR S I) PEPECI R PR A T I S TRt S
T T T e e T e e e T e e T e T T T e T e T e T T T T T e T T e R e e e et e e e e et

-- Standard Low Level Types

- Integers

- Booleans

- Floating Point
- Characters

-- High Level Type Constructors

- Sets S
- Sequences

- Mappings

- Relations

- Product Types

-~ Powerful Operators ®

- Set Constructors

- Reduction operators e
- Relational operators e
- Quantifiers

-~ User Defined Types T i

- Data Abstraction
- Hidden Implementations

RN A pfele, ., '.v-',v'_ TR R,
/‘_/,_/__/_‘-,_',",.'; e T

KESTREL INSTITUTE »\:

(x Itn 2..Max I¥Vy in 2..(x = 1) [~(ylx)])

“ Business Programming:

" type Employee = record
Fname, Lname : string;
Salary : iInteger

end;

var Employees : set of Employee;
TotalWages : integer;
IsBossOf : relation on Employee x Employee;

ilbegin

TotalWages <- ,
Reduce(x in Employee, x.Salary, +); B

Overpaid <-
C E {in Employees |
(3B in Employees [IsBossOf(B,E) &
E.Salary > B.Salaryl)

. o, LR
. R
PR DTV I WLY BT [T Y

j :]
-.end iéj
s ; KESTREL INSTITUTE S
I A

..................................

-- Default implementations are not good enough

-- Data type implementations should be chosen
according to

- Context of use (operation frequencies)

- User defineable cost function

e
. T A AR
WP ¥ U Y g 55

KESTREL INSTITI'TF 2.

» .. 20 4 A".‘Z'

..................
..
..
..
...

. . RPN AL S M e . S
. T T e T e N A RS S R .
- P S T A AP AL S N -

DATA TYPE IMPLEMENTATION

I. CHI: A Knowledge Based
Programming Environment

II. A Theory Of Data Type Implementation

IIl. Data Structure Implementation in CHI

AR '
Cgr S
L ,“. Y

IV. An Example: Derfvation of a Hash Table
Implementation For Sets

W

KESTREL INSTITUTE

CHI

A Programming Language "V"

A database for representing V objects

Tools for
- Reading and Printing V obJjects
- A structure-based editor for V

- Compiling V into Lisp

KESTREL INSTITUTE

........

...............

o -- Includes standard low level data types
N and control constructs

-- Very high level constructs

- Program transformation rules

High level data types

’ Sets

h - Sequences

E{ - Mappings

e - Relations

ﬁi - Products
- Unifons

- Logic constructs

KESTREL INSTITUTE

..................................
...

.............................
...............

- i ke el I S R A T SR P Y

-- Instances of V constructs are represented
in the CHI Database as sets of assertions

-~ Programs, Knowledge (expressed as rules)

-- Unitform Representation Of All Assertions
as (Property, Object, Value) triples

. v oS T, WY Y T e T

-- Stored and computed properties

A

-- Maintains multiple contexts in a
tree structure

'
‘l.l."""', . c. - ‘. .
LI I I A ’ . .
2 2 20 d o e b -

KESTREL INST!TUTE

-- V Rules Are Source to Source
Program Transformations

;_ ~- Rules operate on the database
a -~ Rules have form

P -> Q

ﬁf where P and Q are predicates on the

o state of the database, and are s
> interpreted as é;ﬂ
i “"if P {s true in the current state

- of the database, then make Q true iﬁc

i in the next state of the database” g;f
o -
P' . .k. =
ey KESTREL INSTITUTE -
MK ‘)
e - '_:;

DATA TYPE IMPLEMENTATION IN CHI

GOAL: Intelligent selection of implementations
for high-level V data types

PROBLEM:

1. High Level types in V have many
distinct implementations.

2. Distinct implementations have widely
disparate efficiency characteristics.

3. Many different usage patterns.

KESTREL INSTITUTE

........
......................

1. A system which generates a broad class
of data type implementations.

.

2. An "efficlency expert", which estimates
the resource requirements of V programs.

+-3. A control structure for searching the
o space of alternatative implementations,
guided by the efficiency expert.

Vo oL -

KESTREL INSTITUTE

K

<
. 4‘_‘._'.3
'
L]

1

DATA TYPE IMPLEMENTATIONS

IDEA: Complex data type implementations
embody the results of a sequence of
independent implementation decisions.

DESIGN PLAN:

1. Factor knowledge about data structure
fimplementation into a small set of
general, orthogonal representational
techniques ("data type refinements").

"Set of X" can be represented by
"mapping from X to boolean"

“Mapping from I to Y" can be represented by

"Array(I) of Y¥", {f I is an integer subrange.

2. Derive distinct data type implementations
by composing data type refinements.

“"Set of 1..190"
=> "Mapping from 1..199 to boolean"

=> "Array(l..109) of boolean"

“KESTREL INSTITIITE

..............
......
.....................
...............................

For data types

X = (X-Vals,X-0Ops)

E Y = (Y-Vals,Y-0ps)

a refinement

[: X -> Y

of type X to type Y 1s a pair
I = (Abs,Trans)

where:

Abs: Y-Vals -> X-Vals (abstraction function)

Trans: Relation on Terms x Terms
(translates relation)

e I
PSS X

KESTREL INSTITUTE

POEP6 VD ‘OLTV OTVd

. .'~fv‘.'."_'~'«' hd '.l~'A'.'I T —."—'I—'I-_ - . T v

Lo
. ..
O

) }
. k'_. ".-".. '. .]

r . AU
o o
A tatadte el he e atatatl el

COMPOSING DATA TYPE REFINEMENTS

v Sl
ete Tl

t

. .
0

T

AR

-""-"'s‘l‘a A
e e
PP

. o
. e el

For refinements

I: A -> 8 , (Abs-1, Trans-1)

P—t
i

AL
PP LY BFRSE

J: B -> C , J (Abs-J, Trans-J)

" - “v",“ ” '
]
.l

T I roeo ..
SN S .
‘ Sttt - BECEN
W . - . X
ML . o

I,

]
<
o

the refinement K

R .
A
T

sl a PR BRI P

K: A ->C , K (Abs-K, Trans-K)

obtained by composing J and I, is defined by S

Abs-K = Abs-]1 o Abs-~J

Trans-K = Trans-J o Trans-1

KESTREL INSTITUTE .

IMPLEMENTATION OF DATA TYPE REFINEMENTS

- G S S O e GNP G WD S D G G D D G R P WS T G WD YD WS A G S SE G W S WD GIP M GNP G . e

A refinement

I: X ->Y , 1 = (Abs~-1, Trans-1)

Is implemented as

(1) AV rule which specifies choice of
refinement [, and

(2) A set of (term rewriting) V rules
which specify the legal translations
of X-Terms into Y-Terms.

-- Each rule Iin (2) induces a relatfon on
Terms x Terms.

-- The translates relation Trans-I {s then
the union (over these rules) of the
induced relations.

KESTREL INSTITUTE

T R T T e T T % Pl TR T T T ST ETAT T T e
A RN L R L AR

AP
e

Ok N SRR
"I D ' .
.

o
sl el e

]

i LT
P U T

LTt L et e
¢ L PR BT
ST O I S VLS TN s

b ”
—h

St
e

e

EA)
SN A b b .aaa 4 _a

~T ..

..................

-- Abstraction Function: Abs(Seq) = Range(Seq)

-- Rule which chooses the refinement:

rule Set-Rep-As-Sequence params{(*)
*:*set of X' -> *.Impl='Set-Rep-As-Seq
& *.Rep-As=Seqlype
& Seqlype:*sequence of X'

~-- Some rules which translate operations:

rule Set-Rep-As-Sequence-Member-Test params{*)
*:'Y in S' & S.Type.Impl='Set-Rep-As-Seq
& S.Rep-Var=Repv =D
*:*Ex I [I in l..s1ze(S) & (Repv(I)=Y)]'

rule Set-Rep-As-Sequence-Size params{(*)
*:*size(S)' & S Type.Impl='Set-Rep-As-Seq
& S.Rep-Var=Repv -> *:‘s{ize(Repv)'

KESTREL INSTITUITF

....................................
...
...

..

...........

PR SR)

.t
........

-Gy U G P CE G WD GV G G D Cm Em b B G I WD M) G TP G GE) P WD G W S S ey

var S : set of integer; x in S S
e] ‘

Choose a characteristic
function implementation

S1 : mapping from integer to boolean; Sl(x) e

-4 ——> False 5
; O —>» Trve AN
R 3 ——> False o
2 2 —> False =

105 ———> Trwe

KESTREL INSTITUTE

.........................
......................................

4 S1 : mapping from integer to boolean; Sl(x)

for characteristic

‘l Choose a hashed ifmpl.
function

k > function Hash (1 : {integer) : HashlndexType;

S2 : mapping from HashlndexType to
mapping from {nteger to boolean;

; S2(Hash(x))(x)

g

to be 4..198; choose

l Choose HashlndexType
a hash function

function Hash ({1 : {integer) : HashlndexType;
begin return{({ mod 141) end;

S2 : mapping from #..1808 to
mapping from integer to boolean;

SZ(Hash(x))(x)

KESTREL INSTITUTE S
Tl

...........
.........

-t

..............

mapping from 9..109 to
mapping from integer to boolean;

S2(Hash({x))(x)

L

Represent the top-level
mapping as an array

array(9..100) of
mapping from integer to boolean;

(ELT S3 Hash(X))(x)

SRR

0 —7 Tcve

T/I 1 —> False
—ijﬁ 1 -3" FQ\SQ

2 —.') False

0 —> False =
’

: 105 —» Trve =

aat ol

Has [100

w
W

..‘
. o . .
ala's A

...

................
..........................
...

...

?,_
[
X
X
rl
'.
I.
/
X
’l
L.,
P
A
2
.
&
P .
»
P .
b\
.
P, <
-
p
¥
L
X
¥
p ¢
X
p -
p .
o
P
’l"-“
Ans
¢
s
7/
’
1
3
L.

i

)

S3 : array(@..199) of

mapping from integer to boolean;

(ELT S3 Hash(X))(x)
 —— R

Represent the range type
of the array as sets

S4 : array(Q..190) of set of fnteger;

X {n (ELT S4 Hash(x))
R

g St e _— v " MR T W T T ., - - T
o

S4 : array(f..100) of set of {nteger;

x in (ELT S4 Hash(x))

M

Choose a sequential
representation for
the set type

SS : array(@..189) of sequence of {integer;

Ex y [y in 1..size(ELT S5 Hash(x))
& (ELT SS Hash(x))(y)=x]

M

-- The sequence type can now be refined into
linked l1ists or trees or....

KESTREL INSTITUTE

R AN

LT . .
oty e R
L s A P W |

...
..............................
.........
.............

ADA DATA TYPE LIBRARIES

ADA users should have high level types

High level types necessitate the use
of many distinct target implementations

Storing a large library of hand-coded
data type implementations 1s not the
best way

- Implicit, informal derivations

- Tremendous redundancy

A better method is to have a computed
library

- Generate ADA packages for high level

data types based on efficiency
analysis and resource constraints

KESTREL INSTITUTE

M

L A SR B

v

v v v

IV.9 Library Organization and User Interfaces

103

Jose MESEGUER

|
’
4
)
<
4
4
]
RN
E |
]
»
’
. -
E
7 e
- -
]
1
r
E |
)
4
’ 4
' L
1
-

Y N e ———— -

GOAL:| MAXIMIZE REysagiLT

l PROBGLEMS l

L Vard To ot rograscnery

To docurvend then, werk

2 Teo v wBuctined, fpoalp

(eq. 30.000 Live, of FORTRAY)

mdd?wmhm/"”%

— o PACKAGE _wes't becauge gt ',‘ ;;:‘-_:z:-fzrz.é

SUCCESS of o LIBRARY depsuds ow ro-' .[

emouph [INFORIATION Jeristd B Miset

- o PAca:Ace w WM Aﬂle_

T ———— g . SR e

- Eadi i A i

ORCANIZATION
MAIVN TDBA:[l. 8y GwiTh+OF))

 SEMANTICS .

e., 1o exploit o) Mmuckh a4

rvomn Gl thy dementic wmfo.

\

e wountie N%,;w’uwa ocvz ﬂ

\a“

W

Tm/»)e oduracrtage of @wwt '-w"‘”"“

4 Mewar 01'““""”;, docubwent) e

enadively) o
2. gLk , L"T‘w‘?f W‘I‘My | ki “"“"“"g

Lo Ja At mn i an g o e SN Sk A Sus A aied At i

Adpin, goal : o waniruite Twebisty

bt alpo :{ ~ DESIGWS

~ VIEWS + TRANSFORHATIYs 1

= DESIGWS (g os’ WM
m LIL 1-o%ouwgfabm(wﬂd

— THEORIES, 57&":!(477“,5 Vigws (‘HDO« /)%)

— PACKACES (,,,0 Gereric mes

. \row.om a'dn..(s

= SEMANTIC RELATIONS KPS BETWESH .

DI FFERENT (,Eve:(_,s OF A&S?RACT/W
HORI20MTAL + VE RTICAL STRUCTURS (provded

L"—) very \.MWM ‘““M"‘;;\"fmg e

ji-i".--j'.:l'_lw

- M NA@E@’_{"L INPDRMAT/DA/({%QTMJ

W HAT TO STORE IN THE (JG. *

imdw& oo 9‘

Taxonomy of Library Entities

eatity

T~

concroto adbestract managerial

AN /N /1N

progm code horiz & design reqs accatg proj

cnmy ‘\m- vert / \ \ status

PXg subpgm asserta bMistory spec doc

...

...

........

A I
. ',‘v'v . -'
et e e

[

L
''''''''''' \~~\--
L WL St a e S g o g

JeLte e e e e lTe o e T e T A At QT LT LT LT e e T Lt e T e e S N e e e e e T e T N U
a

-

" HAVE : MEST@ H'Emka;mm Snwwm

..........

Py

CATALOGING + RETREVAL

@) datn, (atock, file, path-)
(©) fumctipn (00mt, stanch, velliplicdio +
(©) appliontion dewass (05, D8,M0mE

(9 oltan, (date, anthon, apritemaitior

kKEYWORDS

..
@ ..
LR

@+© dw& S THEDRIES, Views, Macrge ;« ‘E{:

© obtnivable by iferabive. abatract pao-
T dudkioy o Miafogque with himardey of
Vot Agplows Toalal to appl down.

@ arailoble ndle padage brdies sotlay dec. o

AlL THE ABOVE INFORMATION RERECTS THE

NESTED MHIERARCHIGAL STMRUCTURE + PRVDES

?:’;:-b P RETRIEWAL ¢ nderacting wenu-Arivenm QW";. o ik
.,:;f" - / L e e T
Ay Iaun, balpivg Hu poopr. vefiue heamenior fomisi

CYRERRRRNL 3

NAVIGATING

THE (Ligrary BY

USER INTERFAC

= Morted hownci ol atnching $fhon?

le-ﬂl M 9} Wm&mw

fodung, Flat u,, o w””mt:w =
= LIL #paating cor

W«M.u-a. + v icad nenaes " .

_:‘ = W'M* MULTIMEOIA L Toud 1-u1~l.q mmﬂic
' . ANIMATIDA/ fn mm~3+ f""‘?

e . Sves GEn Sves it S Jten el SNL A MM I T e nen e A Sri dvons Snen Srth ae yas S ir At Jr-h St Suit B J A Riete e bcihe Sgn St

ANIMATION

Provids + PACCAGES Wi W“'Q
oSoplasic Apecibioliguy & Lo OCJ
1. o o Ju—uom Tn’t&'?'-t-\"\[“é(
oty Gafor e crte i
wattem, . s
L. Com Sumacve dropmedin @ty e
Wwd'.j Teso 6‘3 eliiew'-
matiog He neecl o peooan
“DM C,QL" ’t-O ;d%rhd w M.

B Com wndnaovd Yoo bulinsion
of stessfiakina and bodiey %
By obrowing the eong dipaani-;

LT L T T R A L e e e T ‘..f"j

................
....................

.‘ 104 °
r IV.10 Version Control in Program Libraries
r WALTER TicHY ¢

L g —. P T——————— P A A o s - Sy e o o T — Ty —~ _,.1
.

VN scon Coutrol .

v y

?roed ro.w Librories

W&/‘tr 7-0.6&7

Tevdue Un u'vws«.'ly

..
..
................................

T he Dtvdc)pm,wf" D@afvu Bene wd

r'r.v.Vﬂ e
LI -
®

Hie contrd dobe sbtructure for

by PTOG "’v“‘\“’ékj L PO i Wt t, o

\C

e E“ Eue cutisa 7m'. Pyt ® s
o . . v "'M Senviies Sevuteen ot
2 f" stehiv, plesais, ... :
, e el projeh
co bt ‘mw‘""‘l fae ervory troake

| A , _ *
DCVb/o’lmw Dt BM‘

) (?"’ﬁ"m L6 reT 4)

e bl i LLe,

ﬁe) (‘b V‘GVHG"‘\
: Veisw Cowbrol Couwcept

“ " Funcbous

Ih\,p/c, bw.bw"ﬂ"v'&'w “CCAM’ Kwer

Docuwument :

A wnevacd sepcwa.M:, vhlembfictle collection

h ¥ v forume fon . .

Sousrte Docu.ment Dery ced bxmw?

W\Wu.a.“r‘ §& A I Y | (Ma Moma}cw”’

i«nmu

hosbory adbribuh ; hextbry abmbute; .-
-M“‘" _ -
= dade /fnae :::““‘. M “
(= documeunb el) = gemernhAvu prucest :‘

- W":“ °
odoan - bulon: -
Stode alirbute
phore othbule ® -
"N" /hnauc(e

B

Iecm.’sc:om \ " S0U. 17 ¢ dacwmout"

ot wen created by mmd/b

mvv‘idﬁ 6n e.xb'd-b'u-s document

Peviicou g rowyp ! A <ot o

revscow, Hut evolved frows ca

sy v i Wemuad 1200 oW,

re--0 2,2 132,
: f f
.l

(.3.¢0.1 2. | l‘xl

2

{

. . e e,
'l 'l 'n '- "."' L .

Lt o et

LR WO LD G W BRI T 4 ek " N "

Itlv.l'.v'—_,‘f,l"",. P —— A SNSRI T T e e

L(,,mt. of « Keviicow Gmufo

chedicud oll reviiiows o be
mod. ool

"""'v" -—“ '-‘ :-’.' .-" ".
-

F.—.v
>
0o

- .
" u‘uc.o/x.uw. CA&'&QQJ reVLL Cows

(Lry vie.: ese vqwkd)

..............................

= Pevdsionm grouns

- “--ﬁ-\\.

e ce |
é-u-%c
.edhon

...

..
.............................
..........................

................................
I3 D o

(76 G vws o bim s choing

i \LQ‘J'A.V.@ ‘.'a.')\'b G.'tw

F‘ 2. (Ap dile cou.. f’/.?d'

q‘. Tur:u”c/./ aﬁcudap w et

..............................
..................
.........

.......
.....

: collechiow of reloted , but uobiveluad . - :
E
h_ AdoecwwvmensS or OMM Y @-oww‘. ¢ 57
P Examplen:. lowk wou fau ru Ron

teod m&vs GO Ho—h
PrVY ram + ocumenm b gen 4 mianmuwal

Coun fgurn o De:emphon

Lo 6} weuwen 9 cuwrqu)
,aav..'blra Mo‘dl«a vea olued

Cl = (7’/.3,)&«.3 D! !a-nJAJ’ _
N Prspec (1)) T2 obody (1.8)]
Pain(3.»)

) o
Dec (&Jem.‘) i

Tt (1.%) i

Ry (0 Ly

(0’\0" ‘/“'.rv‘k \

AR MRS

Co .. 6.."(;/"&.‘-1)&... s erip o o
(AMD ~ wodle) ; "<

..................................

Con (%v. b-ca.ﬁbh Des crup R ow,

cwn be colleckedl cuks Nevition Giroups,

Seleckvon frov Reviiion Growps .

- Dtv y’opmM nw‘c

(vre o'ed reviionn wone ,wwd"(o) o

— GClibed Cedeclioe Nude

(Y&EVLL Uy uwbbw’
HVULOOW o€)
dale) cun o i ¢ b le

— Tulevcchve Modde

........................... . A e —

Ankvndic Genviaton o

De~veah Do vl ity ;

cet

Do vvetion rule ;

b docunemt "ﬂ‘“ - docuse cn t "1,'&
precersan

(coree ov Jbtv&,-v:.‘) (o ued) -
(M’;w'-wn' v etowmic) (W‘,‘, o wfouve .

Regererhon ophii:
B T g S g™ it pgann,,
- erp et conwand -—
= venceliude resen e o hoy (owc s ey)

- 3" bel rL LM il (Frecus chive)

o

= Updh of Ledcd-vut rernicon

Reqentimbion cvenmb He

...
..
...
..
.t T AT L T T T e e A e e e A e T e e e e e e e e e T e

(I P) N et e TRt e T T T T S e e T T s T L T T T T
.......................

cv e v : T -

Tecdhuiguen

————

— Diflerence Techuiyuwes fov

(.
Bevvicon ¢ rowps

R‘ P r;suM.‘Mo'

F‘.‘ WM‘OM
54 ladit vens doun

werpad badowmt
ulten

ovikiiow . merpedl

‘0’ ww

Co or b o “1 N ”UWW.M |

4_° u,.oi PRV - Cew..mat\. < P "H; .

) .
F K f T edat seapt ST

; no E T 2 .

| 4." A D
3 D {a E =
¥ b =3 o

i f-!ﬁ«_}

A}
)

\0\\‘
S em———

Blo L Moy

W,
P

et sevpt SBT -.

T pp—————

Using « DBPS o
cwaple mewt Hee DDEB

‘ J Yy NN 4-...‘,3 2\
54;9:4\./)113 &*LJ : w.,p!@mw b o
Y
— by -lrael querven
- 6LLAS Lowbvul
- w"f"‘-;u CM-\&*\
- thhle b rue
- diibrbo o (?)

s oL L""I“‘ .

Slow (0oen < WM)

Do, §4z'u0“u.rdu1 ex h—omd‘o
'C:""’JWN .

Not e ke wscble
(NeA swibelele G lorvg shrowgn .)

.....................

..
..
..............................
T e T T T T T TP R

b

2 Lorquseenr (EQuBL & C) .

| A RERAu A aa Sran e oun Jeaaoes i ae R R g R N N T ——_— T R———— T Ty L e 4

L

. +ufure Fles ca v o

<

IR e pe P T

T v ple vacnt DPO wil ooin,

()4\ "60‘ -0 M M pu‘lt Sy J—og. . ' |

— postivshe fachiveie 5 _?
plecenr /0 o

= Sy ndh v e e pmv'b‘ded J

- LA ﬁ(wﬁhdw!’) J} W'{“““"VW:

S “gﬁbﬁ- v"’u‘&é& < 4'3") “Cf’a'o\. .

PN

..

...

...
........

-
P Ty

. WOV ey

Flescavib

Iw\.plgm.u“\‘ DDO wika Py

objeccA-ormenvted [Lle sppten..,

ll Y sscvete fatovie
replawer /0

—ctyn 0y T RVIIC U AP P mw-u‘du(

.

s “. ‘l&‘z .le‘wa-é“; N’ T .‘C/"'.B .

...........................

..

-~ - R l" PN

)
A
- Ao A A 4

= Al fleabilily A ko dasyongn T

d o]

DI W TR SRS YRl S0 IR0 S0 RS

——

REPORT ON ADA (TRADEMARK) PROGRAM LIBRARIES WORKSHOP
HELD RT MONTEREY CAL.. (U> SRI INTERNRTIONRL HENLO PARK
A GOGUEN ET AL. 83 NOY 83 Nesei4-83-M

UNCLHSSIFIED F/G 9/2

END
Fumgo
one

0-A149 570 44 .

o

FEFEEE [

FEEE

==
N
o

5!"»'
£

m
it s

)
(33

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

105

IV.11 Using ANNA for Specifying and Documenting Ada Packages

FRIEDRICH W. vON HENKE

s i

Lo PR
coea B2 'alala

a‘,‘.“s AVNMA Lor S-pecfrﬁc'ks Quol ’Documeu“t'ka ...
Aola pﬁ.c(‘maes .~

Frednch L/. vou Heuke
S.-‘au.pOfJ uuc'v-eﬁg,'(-& -3

AVNA - Auncladed Adg
au aunofafien la«.&u.a.sc .{'» AoLa(‘
Currendly lea'\«a oleveloped of Saw Jorol
il B Un'eg~ Grdclener
D. Luclebiand

®. Oue ‘:.:

o. e e e e
e PR
A AN
R L. N
P AR SR
u tataa e e e 1

A

(o

'y

C‘) Lo si'c l't‘z(COtS' ouu(%\'uQ «46 Auu& Ole S'aln .!-

aud everew

(2) Auwa feotfures usel(for pockage specfrcadion,

o wol oloc U € 4@-‘-‘014

. P [o'
- . P - - - -
- P LI - . R TN « e’
- ., . ay . cq vy e e = w DR e .. » .
... D T IS T B R I I L e LU S S S T T P N - e TN R ot ery LY Y .

..........................
...
..
..........................
...................................

(A4

Avna s o Lkvubiﬁv‘\'.\.\ (Ow (&r Ao(q
- eac.‘euo(s ‘-o(a. lﬂ ‘ﬂuu.l&‘-‘mr‘.
- lraves Aea vudoucled '
an Auna program s sbl o lga(Ada joroq e m
= Quuo-‘a%‘éus Wmay €xpress:!
resda‘edirors , clois / S‘pee"ﬁe&{‘&s\‘:'

requiremends ¢ .('umaL'ch Coemey, J-s-,
S
“olocu.me.u‘o"o—u

- Qat ue-‘a-‘\‘eus Nua,g £-0u.\ (ou - Lev-e.(Cs‘lalemeu'l-s ’ P
d!l‘e c"-s) "O L c.sL~(aey-g((’3."““‘5' c‘“%“l h“'L('h""-:.‘_

DA

e

Ceoals

- pmv\'ole 'olfc.‘:g CfquL'ual) o(ecum&u‘-t"‘\‘o-u

Lurn‘x #r pfﬂttfh'ua ‘3 maclu‘ue:
- exlewd Ada expreselsli4y

- pmh‘dc C.muuu‘ls'c) rped£°o¢.¢.‘.~. ef packags
t‘uo(cpe'aolets‘(-_-l ol pacleage Loolh

- rrew'olg um'fom auol -g"‘-’uﬁ &ﬂmew& .@4‘
a’,,.l“ca-(-’au af cumend :pec‘.'f’eus(‘ou Jecl. wiques
4o Ada

- pmh‘ole basis L«\ Cforw.al) venr' ’eq"o-\.\ aue
Class formal) validadion

- el aun Q'uew,.'l do dtvc(o,. new :pec.":‘cml-‘ok
-‘ul-m‘qu.e:

-
o
B
Kl

-
..
[}

.
<.
. -
Y
¢

-
.

‘.
“
W
..
W
.
K
-
a7
.
.
-
o~
K
o
.‘%~
s
LS
™
-

.......................

i ' Auva bhas Leen o(es.‘:ueel “Jo ge i Adla

-~ u:a'u.& Aola co-uee,owls as fes's @o raul-cnc o \:
sewmandi'cs as fc..r as pe:rc“(g .
Av Aola jorog M mamen slionlh ued Liave Lo 5
learn Qul- aveothenr l.auaua‘e. .
- lastc cewcept: exlews Ada ¢y Jorwal Conamewds,
. mrlcgo(43 s‘pec.‘ql Commea.c‘ o(¢(.'wo"¢'~$'.‘
—-— vedual Ada QLQ'(‘
. "—-—l {erma.(Qnuol&l\‘&us
Virdual Texd
= -r» de@w‘#‘m 0(' -s‘pec.":‘cwl“o“ Cmce,o’l':. au.m'("qnl :
.F‘uc‘u’m / paoLcQ.Qas / @WPMJQ¢|'N: ‘
-9
: - Jelloss Aoda rules C..,NL Very wi'uen excep-‘s'w:) :_

Expressions {n Auwodadlous ""
S mple exdeu slon ef Adla Cexprescions ! "_
. "':'\' \

~ condbroval Crxporesmons b '

(.(X &£ 11 "‘Lem 9 e(:e X de(t'r ~

- pnres'J\‘aual opuaulo-r-g
A-—> R Ac—> [

= quuu‘f‘C‘e*S
Jor all X: NATURAL =>
exsé Y:NATURAL »> Y ¢ sarT(x) & Y4l

- W‘O‘L'Qc'efs fo devode (wibal and .C‘uq‘ velues op O(q'ec""
n X * Y

oud (X Zz lu X)/

-— “JQ"(f of COMPOJ'-"‘C o“‘ec‘: QRJ PGCQQQQ -r'lﬁ.-‘tr
..-.4 STACL ' IMmiTIAL EP(AS'HCX); F’U.SH(Y‘); Pop(z)] =

l Avmnlcut\'m.s
: - -fgwtar e(ore -(o +Lwl o,[‘-JQ
- Sewand'es o(er.‘suec(co Huat L agrees

Ao(q &mau-‘a‘c:

: * fu many (usdauces olemved Lo Adla
l . aﬂem,.wﬁs -lo le NQL‘J"I\'C
, eq. alleur @,- parﬂt\'a“n clefued expresc'ons

. Ouuo-‘anl.‘ous (4&\:-9 a Scope e.('o.'.p(.'eaﬁ‘o-n

e auweladyars Q,gumk'zg 4le Acla covcepd o
dype coustralut:
lw ’.ucu(‘ o Quunoladhion, ceut-‘v-en'ug cerdain valuwen 't

cerdain programn slades)

o Au Auua prog rane s Ccu:.'elcxel CO‘AS'A'sJew‘- t'[e Adaq

g deud s coussdend WL Hie Guuo““&ar. Ge. ¢ al
“ cousdhmints ‘mporseedl ‘g He aunneladons are s\-‘«‘r.g‘co(.

Tar L,

LAr

. '- .. »

I ool s of Auuelatons !

. .S‘u.b/gpe auue-‘tJ\‘&u:
l. sublype SMALL s INTEGER vaunge (.. , !‘_:'::-
Suldype Sttall s luTEGEQ,' ;
- Ulere X:small => (¢ X ¢ (é,-

-Jwape INTERVAL s recesrd
Lg, U . UUTEGE'(Z; \

euel fcceao(;

— = vkere T: inTERVAL => L. L ¢ J.ue;

h o ol,'oa‘ auuo-lo-‘co-u: Cc'n declarad ve pen‘r) ;
‘ --| ¥ < fc\(; :

doademend aunododions _
- accerdions (nwe S‘su‘-‘«' ag o‘.'ec‘ Quug-‘a-{cm.‘.) X

[
- “vonownds over a scope

-~ 4. oevered (4, 1.7);
'.-' \JL.'(¢ 74 74 loo'e

".[:= 'JH)

! :'/:'.‘

eud (0o,o/‘ \

.........
.......................................

..

° ‘u‘pmanm anunofalioms
- Quu‘o«“&us o poramehrs Ct.hpu4' (e-u."-puL
Condhorers) a
- resuld auuol-a"-‘e-\qs R
funchon SarT(X: MaTuRAL) redun. NATURAL ; \
- [rebim. YV NMATURAL = Yeu 2 € X & (Y"”“vlii"&'

- auwoladion o.[' Ckcap‘,'-‘&h pmp&ao"&u

o P“"l“"ie th0~tﬁ"u'&u$
' - Oy 'ewmsS
i - alclaet package stades

- pac&as fuvanauds

* aunuolatow of exceph'on meaan'l“m

VRN
AR Y
A)

€
- u€-‘<“.’ ralse £ => slade = i siavlel‘

l - “s'tl-r&us : S, L“ﬁun nax => Pradse OUEEZF(_OU)

e conbect anuolafionse
il P
co | Gwcled do @A, P.E; - ‘restnkenof o

| - et o
i p&cl«ﬁ&z [+ B S wet 1 °

° auuo‘»ﬁ-‘\'&ur o£ genens uncts \

- au.ﬂlwm'u-‘g O 'guen'c ponme‘crr ’”'

“u
“a
-
X
SN

e cumently we {M”UJ\'CS Jor dealing Wil faslecng _Q,

- Yenpludes o anncdalions u tusdauces of unlt

PR

o atademed dade dypes:

fpe &'{'cl-‘c'ou owe Docu uew(&l\‘e\-\ of Paclul.ae.s

exdewol poc(«o%z rpeo.'ﬁcvl.‘m (He ‘wsréle port .)
so {lad ¢ condalns all tle clesired rufovimafiion,
(4lad s wed expressea! (u +le Aoa Yext)

o sewaudles ol ru‘onaNM-"r'
al',mar&m ouuol&-‘\’ws
pac'to‘g oxi'Ovas

e cousdraints o .rul,omanwu perame lers:
l'hru‘ {e\a."-pu"' ouwecladiounr o.[-ﬂb"or‘aﬂmf

. p.a‘«*p_ slale (pmpu"l'%(Couodveanfa).‘
ol/e ol auuo'ét"‘m
““"I”’af“““ duuoluv‘;'wr

* use of 3("‘“(oL"cc-l»::
~ ul'L oue, ave a.c-luq(,(‘ used :

Coa-‘-u-l- au uo“a‘\‘eus

~ Lows are tleq accessedd / ool Lreol
el ecd auvwo fadlows

paekd.:& oxg’onr S

° Qrcerlu‘ou: :
whieh wag Le pnp“«‘-cd
wudes Lhad Condihons LU on excepbionn Le pvopo-:csu o
Llat couclibions (ou slade) Leled Ule., an excephion 'f . '3‘4
porepoe go deol N
} prepcsgml\'oa.\ aunoteaditous ‘

i i.eneh'c)
+ype (TEM ¢ pn'va#e;
MAXSI2E: POSIT! ve;

l‘ paclkage STAck s
' Ovee Flow, UNDERFLOW exce,rln'o-u}

-= fuuelw"u LeneTd Iﬁlum NA.T(ARAL)

B $uncbon =" (7T sTACK'T YPE) reduna GooLcAn,
procedure Pusu (£ lTEM),'
wler

STAC LENGTH = MAXSIZE =5 var'se OVER FlLoOU
vai'se OVERFLOLI =5 STACK = (u STA-C-L(;

praceolw Por (E: ouf tTEM)I-
wlere
STACK . LENGTH = O => vralse uubb‘leLou/-

rai'te UNMNDERELOL = STAck = (w STACK ;

ax'ows
Lor aldl < STACU:"TYPG) X.¥Y: (TEM =5
S [rusux); por(y)] = s,
S L Pusux)]. Por'our. = = X,

s PusH(X)], LEmCTH « SLLEWETH + l,
S Crortx)]. LErvGETH = g.u:;vc'ru-()

S‘Tdcw‘aucﬂAL. LENVGTH = 0;

cuol s‘rAcx,-

dor all S STACK'TYPE =5 0 ¢ S LEMVGTH & MAXSLZE

........

LU Shen Sunh e ase Aas snen spie - w _w -

;1 \/(rlun ' r)o&‘-tn*m
3 e P‘cl“Q“"‘S oocumendador Coucz,,g‘.:
wirda el Lual-\‘ava/prto&'cc.kr,

“predieale acladrachions’
b:pe&'."ft-‘-’h.\ tleor'es “

recusabilidy, pre-olefuchon, use of Ulranes ac fou
regulas 'oe.c(-um’,gs

A-uu.-la-r’u‘&l.. °£ Ceuwen'e UuH».:
-~ euweladions (v Hle Llody are Lewplodes L avvele-
‘_ +eowr of eack ‘wrdawce

CG'».’l‘r Jo AJ& Jck'l-.)
-~ auuclalions of Qe uen'e Panma{en o sbral. uslan-~
Hladtow

- g-ato«l o'c "‘L\Aﬂh pmMehﬂf ‘

g,u\.cn'c
dope (TERL ¢ ,cn'vvul-(

dype (ADEX ¢ é<~>)"

‘l‘rapg Rous ¢ Qum: [NU'DEK range ()) of (TEM'.

Pacﬁca.g_f_ PERza s

fonchon Suar(A: Rov; I,7: (WDEK) redum ROU .
where
refum A[1=>A03); T=>4a)7;
funcdiion PerrauTATion (A, Row) vedna l?ooLEA—AJ’-
“'—"! Q.K¢‘9M-\.
- Je~ al A‘E’-.rZou; T,7:(wDEK =S

- PermutTatrion (A, 4) |

— PeErmuTATON (A) =5 PerwmuTaATon (B,A),

- PermuTaTion (A 2) and PERMuTATON (B, C)
~> PerrucTasion (A, C),

PERMUTAT(ON, (S'ume (AT,])) A) ;
’:.t.vL PEQM/‘

Ml A T 8 T At S

b

qeuer\'c
dype ITEM s private;
Wil Lanedion V=" (XX (TEM) redun BoolEAN (s <P
$ype (MDEK s (<>),-
43,.1. Rou s amay (ivpEX rauge <>) ol tTEM;
== Yo Y, < TEM =>
~- X<~ x
- X< and Ye=Xk => K=Y,
| X=V acd V¥ =2 —> Xc¢e=g,

pacl«z&g SORTING IS

; . P \
— Pt s s lo 'S nel PE[_;&J__ / ‘WEKI row }/
- Tle {3/

famedion ORDERED (R:ROL) redums BuolEAN:

whe~e
rede o foral I, 7: R'RANGE =

I< J = ACI)<=4(J),'

pmceo«(.w-c SoOrT (2: ta @wd IZOLJ);

uheve o
l ot (orvERED(R) awd PERMUTATLCW (r. i '&n,'

ewdd SORTINEG '

PreL'm{uanJ Relerewce Mavnual s almost t'om,olelec!

Avna Fowtendd s unde development

av'pumah'c semeawdces

C(aeclm'u: ‘mplemendadion:
Trawformaton of aunocdadiens iudo (rutiumc) eLceLu'u.&

code

e,x-leu:.'w/mool.‘ﬁ'u-(\’au e.(' Aunea for Q”L'oa-lﬂo-\. Jo
“‘earl'er :Jagg: ‘tn +le L.'.[g cgele‘ :
Tewarsds an Adea PODL

PR

AN AN

S
.--‘.. ‘.‘

-\ -\J
A AN

“,
-
-

. . s ege -
e e . . . e
S e ~ AP R

T e Rl A Ath Sw ou o 2 -———T
TR DT ...-...— ;
S ’ RPN .

ey e e O 2 e

Sl Sl S el S
13
v

<

r~. .

v..,

S

3

3

r.

r.._ D

: | To) C
g o0 L]
= M _

) AN

L, 1

= -
'

]

g

.-“ ‘e roew . . . LN PREAT ' [N A

OO R « ROy B B (B e D

