
7 7D-A149 570 REPORT ON ADA (TRADEMRK)
PROGRAM LIBRRIES WORKSHOP

114.
HELD AT MONTEREY CAL..(U) SRI INTERNATIONAL MENLO PARK
CA J A GOGUEN ET AL. 83 NOV 83 N088i4-83-M-088U CLASSIFIEEFG 92 N

L4.! I*O m 128 *5

3=2_ 12.21111 40 .10

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAUJ Of STANDARDS 1963-A

*1

0

PROGRAM LIBRARIES
WORKSHOP

0..

Naval Postgraduate School
Ln Monterey, California

November 1-3,91983

* By: Joseph A. Goguen and Karl N. Levitt
Computer Science Laboratory
Computer Science and Technology Division

Prepared for: LSA
Brian Scharr
Ada Joint Program Office

Contract No. NOOl 4-83-M-0088

SRI Project 6186

DTIC
&ELECTE

JAN 2 198E5

LLJ *~Ada is a registered trademark of the U.S. Government, Ada JonDrga Office.

SRI International
333 Ravenswood Avenue
Menlo Park, California 94025-3493
Telephone: (415) 326-6200 DSRBTO TTMN
Cable: SRI INTL MPK VITMTO TTMN
TWX: 910-373-2046 Appesved for public zeleas.I
Telex: 334 486 Disribution Unlimiled

84 12 20 018

.... JZA&SIFIED-:. -

SACU111Stv CL&%%IF rCA I $*No T4416 PAGE M~ho. Does Entre.d --

REPORT DOCUMENTATION PAGE BEOR CONSTMG T1OY4

I ftpOt muuEE&8 12 GOVT ACCESSION NOCI 3 RECIPIEN r1 CATALOG NUMDER

N00014-83-M-0088 9 4(y 5-14 TITLE t~e subestiv. TYPE OF REPORT 6 PERIOD COVERED

Report on Ada Program Library WorkshopI-

6. PERFORMING ORtG. REPORT Nu"GER

111UNOIO . CONTRACT OR GRANT NUSR6.% -*-

Joseph A. Goguen N00014-83-M-0088-
Karl N. Levitt

3 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGR4AM ELEMENT. PROJECT, TASK * *.
AREA 6 WORK UNIT NUMSERS

SRI International
333 Ravenswood Avenue ECU6186
Menlo Park, CA 94025

!I CONTROL-LING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office of Naval Research Nv -,18
800 N. Quincy Street Code: 614A:DAW 13 NUMBER OF PAGES

Arlington VA 22217 ______________

7* MONITORING AGENCY NAME A ADORESSVI diffeent from Comweolii Oif'?.) 1S SECURITY CLASS. (at this eport)

Ada Joint Program Office Unclassified
Room 3D3-139 _______________

IS& DIECLASSIFICATION. DOWNGRADINGThe Pentagon SCHEDULE L 0 6
Washington, DC 20301-3081 ______________

It OISTRIDUTuOI, ST&A'EET (of this Report)

Approved for public release; distribution unlimited

17. DIST RINUT 1% ST ATEmENT (of the abstract entered in, Stock 20. If differentI hOw Report)

Unclassfied

IS. SUPPLEMENTARY NOTES S

The workshop was organized by SRI International for the AJPO at facilities*...-.......
made available by the Naval Postgraduate School at Monterey, California. * : .*

IS KEY WORDS (ContInue an revere side fi a.6... and Identify by Slh nmb"')

Program Libraries, Reusable Software, Ada Libraries, Program design for
Reusability, Programming Environments

20. ASTRACT O'CoItiwD an reverse side Of n...wp00 And 1111901111 &Y baseS AM1&IA*

~-The Soal of the Aea Program Libraries Workshop was to explore concepts,
problems and approaches relevant to an on-line libray syst eig for creating,
documenting and maintaining Ada systems. The term 'librar was interpreted
in a broad sense, as potentially incuding document, specifications, designs,
in addition to compiled Ada code.

The Workshop included both prepared presentations (of which there were 1 * . *
twelve) -,.rd group discussion among all workshop participants; these activities

00 1 0 1473 RSITsou or I NovO S s SOLETE UNLSIID(ovr
S 'N 0102 Z. IA- 66 501 SECURITY CLASSIICATION Of THIS PAGE (When DdM& 6001"~d

UNeLASSIFMw
SCWV LAWaFIC*?e~n o Vis ike fWi.. em &Ao .

20. Abstract (can't)

dominated the first day and a half. Each working group was proposed by a workshop
participant, who would also serve as chairman and later prepare a brief report of
the working group results for inclusion in this document.

Accession For

NTIS GEM!
DTIC TAB C1
unannounced '9
Justification

Distribution/
Availability Codes9

Aail and/or

Dist Special

*

UNCL9S ,21

"CWMTV~~ ~ ~ ~ ~ 0LWIAO FVNSpg(d e

_ ':-.-: .
"

REPORT ON ADA*
PROGRAM LIBRARIES
WORKSHOP S

Naval Postgraduate School
Monterey, California
November 1-3, 1983

By: Joseph A. Goguen and Karl N. Levitt

Computer Science Laboratory
Computer Science and Technology Division .

Prepared for:

Brian Scharr
Ada Joint Program Office S

Contract No. NO001 4-83-M-0088

SRI Project 6186

*Ada Is a regiatered trademark of the U.S. Government, Ada Joint Program Office.

Approved:

Karl Levitt, Acting Director
Computer Science Laboratory

Donald L. Nielson, Acting Director
Computer Science and Technology Division .

................. ..

. . .o .°

..

d°"

.°°...'°

ft

o.°%1°..
'

.s,-. . o

Table of Contents

0OForward
I Introduction 2

1.1 Goals and Organization of the Workshop 2
1.2 Executive Summary 3 *

1.2.1 Why Libraries? 3
1.2.2 What Next? 4
1.2.3 Research Recommendations 5
1.2.4 Policy and Non-Technical Issues 5

1.3 Summary of Working Group Conclusions 8
1.3.1 Library Documentation 6
1.3.2 Methodology 8 .
1.3.3 Library Searching 9
1.3.4 Applications 10

2 LIL: A Library Interconnection Language for Ada 12
2.1 Introduction 12
2.2 Issues and Approaches 14
2.3 Library Content 16
2.4 Program Composition 1

2.4.1 Packages and the Using Hierarchy 22
2.4.2 Theories 24
2.4.3 Generic Entities 25
2.4.4 Views 27 .-

2.4.5 Instantiation 29 %
2.4.6 Package Stubs 31
2.4.7 Environments 35
2.4.8 Transformations 36
2.4.3 Control Abstractions 40

2.5 Library Organization 41
2.5.1 Truth Management 41
2.5.2 Organization by Semantics 42
2.5.3 System Families 43
2.5.4 Cataloguing 44

2.6 User Interface and Management Issues 44
2.7 Acknowledgements 46
2.8 References 46

3 Prepared Lectures 52
3.1 Why DoD Needs Software Environments 52

3.1.1 Discussion 53
3.2 Conceptual Architecture for a Software Engineering Environment 53 ..

3.2.1 Discussion 53
3.3 An Overview of Ada Libraries 54

3.3.1 Discussion 54
3.4 LIL: A Library Interconnection Languge for Ada Programs 55

3.4.1 Discussion 55

N. -7.""--A-

°%... ' .

2.6 serIntefac an Mangemnt ssue 44ii:1 [!ii~ii0

-..... .• °o . o • .° . • ° -. .. °.

ii S

3.5 DCP Approach to Ada Libraries 58
3.5.1 Discussion 58

3.6 Flexibility vs. Efficiency for Reusable Components 59
3.6.1 Discussion 59

3.7 Mapping Clear Specifications to Ada Packages 60
3.7.1 Discussion 60

3.8 General Requirements for an Elementary Math Functions Library 60
3.8.1 Discussion 60 ,

3.9 Knowledge Based Tools for Data Type Implementation 61
3.9.1 Discussion 61

3.10 Library Organization and User Interfaces 62
3.10.1 Discussion 62

3.11 Version Control in Program Libraries 63
3.11.1 Discussion 63

3.12 Using ANNA for Specifying and Documenting Ada Packages 64
3.12.1 Discussion 64

4 Reports of the Working Groups 66
4.1 Library Documentation 66 O

4.1.1 Participants 66
4.1.2 Initial Questions 66
4.1.3 Initial Working Group Discussions 67
4.1.4 Assumptions 68
4.1.5 Scenarios 69
4.1.6 Documentation 70
4.1.7 Policy and Non-Technical Issues 71

4.2 Methodology 72
4.2.1 Introduction 72
4.2.2 Issues 72
4.2.3 Initial Questions 73
4.2.4 Preliminary Report 73
4.2.5 Final Report 74

4.3 Library Searching 75
4.3.1 Introduction 75 0
4.3.2 Initial Questions 76
4.3.3 Library Objects 76
4.3.A Basis for Searching 77
4.3.5 Catalogue Information Structuring 78
4.3.6 Characterization of Ada Library Users 78 .
4.3.7 Tools Supporting Searching 79
4.3.8 Impact on Software Engineering Methodology 79

4.4 Applications 80
4.4.1 Initial Questions 80
4.4.2 The Issue of Incentives 81 0
4.4.3 Impediments and Potential Disadvantages to Reusability 81
4.4.4 General Approaches to Application-Oriented Reusability 81 " "
4.4.5 Initial Candidate Applications 83

..-.° *.°=.%* .'.% "

- - - - - .b °°
-

4.4.6 Discussion 84
I. Schedule of Workshop 85
U1. Names and Addresses of Participants 86 P
M. An Example of LIL 91
IV. Slides from Prepared Lectures 94

IV. 1 Conceptual Architecture for a Software Engineering Environment 95
IV.2 An Overview of Ada Libraries 96
IV.3 LIL: A Library Interconnection Languge for Ada Programs 97 0

IV.4 DCP Approach to Ada Libraries 98
IV.5 Flexibility vs. Efficiency for Reusable Components 99
IV.6 Mapping Clear Specifications to Ada Packages 100
IV.7 General Requirements for an Elementary Math Function Library 101
IV.8 Knowledge Based Tools for Data Type Implementation 102
IV.9 Library Organization and User Interfaces 103
IV.10 Version Control in Program Libraries 104
IV.II Using ANNA for Specifying and Documenting Ada Packages 105

p

.. -.---- -.. . ..

.L.

L . f

~~-~~~*K -'7 -. 7 * n --. -

iv

List of Figures

IFigure 1: Taxonomy of Library Entities 18
Figure 2: The View NATD POSET => NATURAL 28
Figure 3: Some Software Components 32
Figure 4: A Vertical Composition 33
Figure 5: A Horizontal Composition 34

IFigure 6: A Realization of SORT [NATURAL] with LIST [NATURAL] 34
Figure 7: Theories Involved in a Generic Package 35
Figure 8: A LII Environment 36
Figure 9: Hyperprogramming Taxonomy 36
Figure 10: Organization of Library Entities for a Package 43

;A.

0 Forward

by Brian Schaar and Jack Kramer

The Ada program approaches two critical aspects of the ever increasing costs of fielding and

maintaining Department of Defense (DoD) Mission Critical Computer Systems (MCCS). The

first aspect, of course, is the language standardization effort itself. The second aspect is the

improvement, availability, and use of Ada Programming Support Environments (APSEs)
throughout the MCCS life cycle.

*Software reusability has been an important aspect of the program from the start. There was an

explicit requirement in the Ada language requirements document, STEELMAN, for an "easily

accessible library of generic definitions and separately translated units'. In the section on

design goals, the ANSI/M1L-STD-1815A-1983, Military Standard Ada Programming Language, P

recognizes that "like many human activities, the development of programs is becoming even

more decentralized and distributed. Consequently, the ability to assemble a program from

independently produced software components has been a central idea in this design."

There needs to be both a short term approach to providing a library of reusable components as

well as a long term approach which is integrated into the DoD APSEs of the future. The long

term approach must become central to the concept of reusable software and the way we

construct software in the future. The future library system must be an integral part of the way

we do business. It must not only be a place for storage of software components but must assist

in the capture of information about components, assist the potential user in locating the proper

software components, and help the user to integrate and test them as a part of the new system.

In order to better understand the idea of a library of software components and the re-utilization

of these components, a workshop on Ada Program Libraries was held at the Naval

Postgraduate School, Monterey, California, November 1-3, 1983. The scope of the workshop

included concepts, problems and approaches relevant to an on-line library system for creating,

documenting and maintaining Ada systems.

5.:' 1 -1 '
o.o.," .

% io o. "a % % . o m- .
o

•. PJ " b ,
°

• "- "
o °

h "
o

.
°

. - °- -... ". ."....,..-.-.-..-. ,.-. . -. ° -.,..- --•.

p.O

2 0

1 Introduction

This first section begins with a brief description of the goals and organization of the workshop,

followed by an executive summary of the results of the workshop, and more detailed summaries

* of the conclusions of the four working groups.

1.1 Goals and Organization of the Workshop •

The goal of the Ada Program Libraries Workshop was to explore concepts, problems and

approaches relevant to an on-line library system for creating, documenting and maintaining

Ada systems. The term 'library' was interpreted in a broad sense, as potentially including -0

documentation, specifications, designs, requirements, historical information, uncompiled source

code, test cases, etc., in addition to compiled Ada code. This effort resulted from an unsolicited
proposal to the Ada Joint Program Office by SRI International, entitled mWorkshop on Ada

Library Principles.' There were two major deliverables associated with the contract. The first

was for SRI to prepare a 'strawman' approach to Ada libraries and present it to the workshop, -

to provide a context for discussions. The talks by Levitt, Goguen and Meseguer, together with

the paper 'LIL: A Library Interconnection Language for Ada' by Goguen, fulfilled this

requirement; the talks of Levitt, Goguen and Meseguer are summarized in Sections 3.3, 3.4 and

3.10, respectively, and the paper by Goguen appears as Section 2. The second deliverable was

this report.

The workshop was organized by Joseph Goguen of SRI International for AJPO at facilities

made available by the Naval Postgraduate School at Monterey California. Brian Schaar and

Jack Kramer made numerous valuable suggestions about the organization of the workshop; and

David Hsiao and Gordon Bradley of NPGS provided help with local arrangements. We very

much wish to thank these, and numerous others, especially the workshop participants (who are

listed in Appendix 11) for their aid in making the workshop so interesting.

The workshop included both prepared presentations (of which there were twelve) and group

discussions among all workshop participants; these activities dominated the first day and a half.

In addition, seven working groups were proposed, to meet in parallel sessions and later present
ko

their conclusions to the workshop as a whole. Each working group was proposed by a

workshop participant, who would also serve as chairman and later prepare a brief report of the

working group results for inclusion in this document. The working groups proposed were on:

':. -.-.-..-..-... "..-..-......-".. .".....'..-:I°
,. "'''. " .- ... ' '..;'... . . ",-.. '. "...." '''.'. . " .' .. '.'-.".-.".". .:"." :'.' ": .. .", :' : . ., . :

3

Library Documentation; Methodology; Library Searching; Applications; Tasking; Expert

Systems; and Short Term Solutions. Only the first four of these attracted a sufficient number

of participants; their reports are given in Section 4, and summarized in Sections 1.3.1-1.3.4

below. The workshop schedule in given in Appendix I.

1.2 Executive Summary

This subsection presents a brief summary of the most important conclusions and

recommendations of the workshop. These conclusions are largely extracted from the

deliberations of the four working groups (see Section 4 for their full reports, and Section 1.3 for

summaries). Like the working groups themselves, these conclusions were also influenced by the

twelve formal lectures that were presented (see Section 3 for summaries) and the SRI
Nstrawman" approach (see Section 2).

1.2.1 Why Libraries? 9

The basic purpose of an Ada Program Library is to reduce the cost and tc increase the

reliability of Ada system programming by reusing existing Ada code to the maximum possible

extent. This is in contrast to the currently visionary goal of automatic programming, and to

the currently usual practice of starting each new project from scratch. There was essentially

universal agreement in the workshop that it should be possible to construct an Ada program

library systems that would have significant economic benefit, and that this avenue should

therefore be explored.

The program library associated with an Ada compiler contains only fully compiled program

units, and is therefore of limited usefulness for program development. In order to obtain a

more significant degree of reusability, a much more comprehensive library system is needed.

Such a system should store source code, documentation, test cases, etc., as well as compiled

code; moreover, it should also provide facilities for cataloguing and retrieving Ada programs, -

and for assisting the user as he combines library units and newly created programs. Some kind

of on-line card catalog will be necessary, as well as a librarian.

. . . .*.,~ .-

4 0

1.2.2 What Next?

We first address the short term situation. It was felt that existing database technology could be -

harnessed to yield largely mpassiven but still very useful systems in which components are

catalogued after their documentation has been captured. It would be important to instrument . -

such systems so that we can learn how to do better, as well as to have (as mentioned above) an

on-line card catalog and a librarian. The quality of the documentation also would be a critical S

factor.

Long-term solutions should be more active, supporting the creation of documentation along

with the creation of library components; much of the documentation (such as writer, date,

version, size, and results of executing test data) could be generated automatically. Special

support for combining and modifying library components should be provided, incuding version

and configuration management. More innovative forms of documentation, such as graphic

displays, data type animations, and computer generated audio explanations, might be provided

for library components. Knowledge-based systems might provide advice on what components

are best for a particular situation, and on how to construct members of a particular system

family. (The last two features will require that some form of semantic specification is stored

with library components, e.g., ANNA or LIL.) The goal is to make reusability as easy and

natural as possible. These systems should also aim at integration into APSE's.

It would be very interesting to undertake some experimcmts in Ada programming methodology,

to see what works and what doesn't. Some application areas suggested for such experiments are

operating systems, database systems, protocols, compilers, and message systems. Because these

application areas are well-understood, it should be possible to compare the quality of a system

produced with library components with one produced with newly created components. ..-

Methodological issues that could be tested in connection with libraries include the systematic
use of parameterization, of design and specification languages, of knowledge-based search (i.e.,

semantic indexing), of animations and displays. Other approaches supporting the reuse of

software could also be tried, either separately or in combination with libraries and/or with each
other. These include Very High Level Languages (\IILLs), application generators, knowledge-

bxsed systems, and system families.

" S '

..................... ~..-...

56

1.2.3 Research Recommendations

For the short term, passive library systems should be constructed and instrumented. The

information collected from early sites should be carefully analyzed and evaluated. Experiments

should be carried out on these systems, exploring the value of various methodological

approaches. Networking issues must also be considered; because the Ada community is already

distributed, Ada libraries will clearly also be distributed. .

Longer term research goals should center on developing a methodology especially suited to the

reuse of Ada software components, and tools to support that methodology. Possibilities include

the use of: specification and design languages; system families; knowledge-based systems;

parameterization, vertical and horizontal structure, theories and views (as described in the LIL

paper); the reuse of designs and requirements; and integration with configuration and version

management (see Tichy's talk).

It should be noted that the Ada program library associated with a compiler does not permit

reuse of packages that have been developed in a top-down manner, because of limitations to

Ada's separate statement. In order to overcome such limitations, one must have a level of

description above Ada in which to express interconnections of Ada program units. Such an

approach might also be useful for configuration and version management, component

documentation, and library searching.

1.2.4 Policy and Non-Technical Issues

It seem likely that issues such as incentive, personnel, user confidence, quality control and

ownership will have at least as much impact on the success of the library concept as technical

issues. Particular suggestions included rewarding DoD contractors for adding to the library and

for using components in it, as well as for use of their components by others. Strong policies will". -

be needed regarding the quality of documentation, and tools might be provided to help enforce

them. Methods will be needed for dissemenating documentation ("advertising componentso),

for validating the quality of components, and for educating personnel in the effective use of

library Ada systems.

- o -.

. - , - • -U -. - . -U-. -*.--..-L.-...- ..- ,_-..... . h . . - . y .. -..-.

S6 0,.

1.3 Summary of Working Group Conclusions

This subsection presents summaries of the conclusions reached by each of the four working

!. groups formed by the Ada Program Libraries Workshop.

1.3.1 Library Documentation

The deliberations of the OLibrary Documentation' working group were in fact somewhat

*. broader than its title might suggest. Its conclusions are summarized here under three main

headings: Scenarios, Documentation, and Non-technical Policy Issues.
1. Scenarios. The working group developed short term and long term scenarios for how a

software component library might be constructed and operated. Both scenarios must S

- provide cataloguing, updating and retrieving capabilities; and careful attention must be

paid to the transition from the short term to the long term solution library system.

a. Short Term.

* The short term will be "passivem with emphasis on retrieving and searching.

Components will be registered with the system "after the fact" of

development. Components will be catalogued after their documentation has . -

been captured.

* For a component to be useful it must be well documented. Quality is much .

more important than quantity.

- A 'card catalogo will be critical. It was felt that existing database technology
could be used. A hierarchical schema could provide easy ability to add, delete

and update the catalog. Most importantly, the retrieval language could be

simple and oriented toward its use.
e We must instrument the system now in order to learn how to build future

systems. S
. A librarian would be required. It is critical that a follow up debriefing system

be implemented with the initial system.

b. Long Term..

. The long term system must be an active part of the user's everyday work
environment. Where possible, the system should automatically construct the

necessary documentation and appropriate cataloging information when a

component is registered. It should take minimal user effort to add a

component to the library.

@ Reusability must become an integral part of our future system development

methodologies and also must become central to our software engineering
environments. Reusability must be natural, not just something forced by
management.

[• . .. '. .

%'-~~~~~~~~~~~~~~.° .-. •-.o.-.-............. -......-...... *.• °...o..
.,.-*.: '. ,.* ,. ,,,- ,. ,. .,, ,.. ,, ' % Y U %* ,, ..U ,.. .- .-.''* '''.'... . .""-"- '" -. " ". '".* '' ,,-:-.. . , .*

7 S
.1

information and presentation mechanisms "higher" than code will be

mandatory for quick user understanding of a component and how it might fit

into his system.

e The system should know something about the user, the available components,

and the application area in order to help the user find the best component for .'-.

his needs. There probably should be some sort of working set kept for each

user and application area. *1

* A wide physical and organizational dispersion of potential users will require -.

some form of automatic feedback mechanism. The feedback mechanism

should be part of the user's environment and be capable of automatically

forwarding information to the branch and central libraries when appropriate.

2. Documentation. The working group spent some time trying to understand what

documentation should be captured and how to capture it.

a. There will be differences between what can be expected from documentation

captured as part of a software engineering environment and documentation that

must be captured off-line after the component is developed. . -.

b. We must allow for unconventional documentation facilities (e.g., video or sound) but

there must always be some minimal documentation available on all types of output

devices. There may also be multiple representations of the properties of a

component (e.g., Ada, ANNA, LIL, English), but these must be kept consistent.

c. In general, components will be part of a larger whole. Therefore we will need

proper configuration management of the context information as well as of

components and their associated documentation. There may be many different

bodies associated with a particular Ada package specification. .- '

d. There is a strong possibility that the system and the user will be subject to

information overload. Therefore, the system must provide only what is necessary at

each step of use. The system should also be able to generate information to reduce

redundancies, and to address the consistency problem that redundant information

causes over time.

e. Feedback is critical to the system. We must find out what is useful documentation

for the many varied uses to which the system will be put, how to best present the

information, and where critical information was missing. There are differences

between local and global information feedback requirements.

3. Policy and Non-Technical Issues. The working group spent part of the last day talking

about some of the issues which must be addressed if a software component library is to be

successful. These issues were of a nontechnical nature, but the group felt they may have
at least as much impact on the success of such a system as the technical issues.

7

8

a. Pump priming will be necessary. We might require use of the library as part of

DoD contracts. Contractors could then be rated on their reuse of components from -

the library and their contribution to the library as the contract proceeds;

contractors could be rewarded for their reuse and contributions. These rewards '-* *

need not cease at delivery of the user system, but could continue for some period

afterwards.

b. User confidence in the product is critical. Several mechanisms should be available

such as software acceptance tools, user experience ratings, a 8Good Hlousekeepingm

seal of approval, and software reviews. Degrees of validation of a component along

with statistics on critical path and flow analysis should be available insofar as they

apply to components. Standard tools should be available to apply to components

when they are registered with the library system.

c. Proprietary issues must also be addressed. An appropriate and effective mechanism

for providing economic incentives and royalties would be the best way to encourage

library use and insertion. Solutions to this problem must address issues such as the

levels of documentation to be provided and the various products to be provided for

different fees.

d. The issue of warranty should be addressed.

e. The (question of who can and who should operate a library and its various branches

nust be a(lressed.

1.3.2 Methodology

The Nethodology \Vorking Group reached the following main conclusions:

1. We should experiment with standard programming paradigms using the Ada language,

including:

a. Generic components with a fixed set of data type classes. This will be a low-risk

domain-specific approach to reusability.

b. Inheritance with limiteI subclassing. A generic package may implement a

parameterized object (as in object-oriented programming). Another package may

inherit its capabilities using the with clause to override or add data types or

operat ions.

c. Nested generics. Outer levels of generic packages may be useful for transformating

information between the interior of a component and its outer local environment.

Some such mechanism is necessary to incorporate generally reusable components

with Ada's linear elaboration. (See also the suggestions for LIL in Section 2.)

d. Domain independent components.

2. We should develop standard formalisms for describing components.

. . ..

-."'•.7 " : . ': '. ': o" ." "" ". ."

Oo- • •.% o

a. This is necessary for cataloging and retrieving.

b. The package specification + formalized comments may contain sufficient

information (e.g., ANNA). 0

c. Formal (mathematical) specification of components may be used if automated tools

can be provided.

3. We should provide user support via automated tools:.-

a. Check compliance to standard form. Check for sufficiency of information. Such

tools would perform many quality assurance functions as well as aid in document

preparation.

b. Process information for ease of retrieval (storage, search, display). The structure of

the library will depend upon the knowledge representation techniques chosen and

upon the ability to aquire and codify that knowledge.

c. Knowledge-based retrieval capability. An intelligent library management system

will be supported by knowledge-based techniques. In fact, until a formal

specification of library components is developed, such techniques will be the only -

ones available to provide automated assistance.

1.3.3 Library Searching

The Library Searching Working Group concentrated on what kinds of information would be

needed to support searching and how this searching might be accomplished. The model

adopted consisted of a catalogue or encyclopedia that contains descriptions of the program

objects stored in the library. This catalogue could be implemented as a database against which

queries can be made to retrieve descriptions of objects. Most of the discussion centered on

searching for Ada packages. Although many existing libraries contain Ada subprograms, these

were not considered as appropriate units for reuse.

Information in the catalogue must be structured to reflect the way the catalogue is used, and

may use many different hierarchies of information to search for objects. For example, in

searching for packages one might define a theory (in the sense of LIL) and then search for a

package specification (and thus, a package body) that matches the theory. Within the library,

there can be many package specs for each theory and there can also be many package bodies

for each package spec.

The Library Search Working Group also considered the impact of software component

reusability on software engineering methodology. It was recognized that building systems from .;.

A °.-" .

:.'......-...... :...., ~~~~~~~~~....................-,,-.... .,•..... '::

•. .. ,..

10 ' .

reusable components placed a greater emphasis on being able to specify the function and design ""

of a system, so that its parts could be obtained from the library and assembled into programs;

the need to support the reuse of designs that are similar to what we want but must be modified

before they can be used was also identified. It was felt that the concepts needed to support .-

programming for reusability are new concepts not embedded in most current programming

practice, so that considerable training might be needed to effectively use Ada libraries. •

The working group felt that each site should have a librarian whose job would be to maintain

the Ada library, add new items to the library, and to support library searching. The librarian -

position would be a senior position requiring substantial expertise; perhaps a strong background

in reading formal specifications would be an asset.

1.3.4 Applications

The Applications Working Group reached the following main conclusions:

* There are a number of promising techniques to reusability, each of which will have its

role. Among these techniques are:

1. Component libraries, which will be useful at low levels in a system design or as an

interface in connecting larger subsystems.

2. System Families, which will be useful when the application is well-understood, and it

is possible to design a very general system and instantiate it for particular "

applications.

3. Very-ttigh Level Languages (VHLL), which should be useful in developing

prototypes or in developing systems in specialized areas (e.g., theorem proving, .

report generation).

4. Application Generators, which can be viewed as manipulating large components that

are user-programmable.

5. Knowledge-Based Systems, which can be used to develop systems describable in

terms of rules operating on large databases. It is likely that the product will have

suboptimal performance and be useful primarily as a prototype. Also an expert in

the application is essential in order to make effective use of a knowledge-based

system.

e The issue of incentives is vital to making reusability a viable, cost-effective technique. ::":.

DoD will have to Oprime the pumpe by establishing the organizational structure that will _

allow resuable products to be developed, to be advertised, to be maintained, to be

evaluated, and to be used.

:.-- ... S..- '-.% •, . .° ° . .q "- "- '. o. . .. -"-"= ° • ° - -. °. .* '* . o* - .*% .%.- °., " • .*-. - ".-. ".-° . " " % .

• ""° ". ""'o d"°° .° .'"" ." °- °""o• °"°" qt '.°'"'° "Q°" """' "' ." °" °""°. ° ' - .° o°' " '".".". 'o".."..".".". .".. '.°.o', . °• %-° • . ° o ° ". ' . "- ° o . . % ". • . = ° , % °.° .*° " .,% % ". .o " .%. % h. % ."% " " , " t

11 Sl

" It will be necessary to conduct several studies in order to evaluate the feasibility of

reusability. We declared several candidate applications as most likely to be successful:

operating systems, communication protocols, database systems, navigation systems, O

message systems, and C3 systems. In addition, a study is recommended to define a large

collection of lower-level resuable components, each of which is as general as possible.

%

-S

i0

0 :-:

0

SO

• S ..

.-- =

..
...

.. ~~~~~~-i

12

2 LIL: A Library Interconnection Language for Ada

by Joseph A. Goguen, SRI International

Abstract

This paper discusses problems, concepts and approaches relevant to an on-line library

system supporting the creation, documentation and maintenance of Ada software .0

systems. The ultimate goal of research in this area is to make Ada programming

significantly easier, more reliable, and more cost effective by using previously written .2.

Ada code and previously accumulated programming experience to the maximum

possible extent. The main suggestions made in this paper are as follows: systematic

(but limited) use of semantics, by explicitly attaching theories (which may be

informal) to program units by means of views (a new concept defined in this paper);

use of library entities and a library interconnection language (called LIL) to assemble

programs out of existing code; maximal use of generic library entities, to make them

as reusable as possible; support for different levels of formality in both documentation

and validation; and finally, facilitation of program understanding by animating

abstract data types and module interfaces.

2.1 Introduction

We envision a library system to be used while building and modifying Ada programs. Because .. ."

it is unrealistic to expect that all of a user's needs will be met exactly by existing library

entities, it is necessary to provide help in retrieving and utilizing the entities that best fit

current needs, and in modifying an entity to meet a user's needs. This implies that powerful

cataloging and retrieval services should be provided. To insure effective use of the library, it is

also necessary to provide help in combining library entities. This will require powerful

techniques for appropriately intantiating, enriching, restricting and combining entities, as well

as methodological guidelines to ensure the proper use of such techniques. Generic (also called

parameterized °) entities are one of the most important ingredients in these techniques. Basic .-''. -

methodological issues include the need for enforcing consistency of data representation and of

control flow, when library entities are combined.

An Ada library system should be part of the Ada Program Support Environment (APSE) [DoD
* 801, [Buxton &z Druffel 811. Ada facilities that support abstraction, including packages, : .-

I subprograms, generics and controls on exporting types, provide a good basis for both software.'-:-:-:, ..

00

* " o *

A ar

I[..-.- -. -. .",","-"-. ,,, .: . ','"....... -, .• •. ,,-'.' ."- .. ' . ..- ' . " '. ."."s" -" ' -
[' '"• "-" "",""""""":""" """""" .:'' , - -""'' - .-, "'' ' '. ,,f . ..-.,....,- . .d•., . .%..

S . . .- E- . E .- .1 : I . -E-: IEUE - •EU I ~~I f - - . - .U%.I ." q - I . - . -fL . • . - . -. ,- .- .- .- - "71-. .. ". -

13

composition and for library organization. We believe that recent work on program specification

and design, provides a good notation and set of techniques for structuring the use of such a

library system. In particular, making (limited) use of semantics seems both valuable and -

feasible at this time. This would be useful for ensuring that interfaces really match (since Ada

itself provides only syntactic information about interfaces). Another semantic issue is utilizing

program design information and development history. Techniques from artificial intelligence

and information science 2 might also be useful, for example automatic indexing and cataloging

schemes, methods for fast search and retrieval, voice technology, and expert systems to advise

users on the selection and application of library components.

It should be noted that we interpret the library concept broadly, so as not to exclude any

information that usefully might be stored and retrieved in the context of a large Ada

development project; some would no doubt prefer a term like "Ada programming environment j

databasem for this concept, since mAda program librarym has been defined as the current -

collection of compiled units. Possible library entities (in our broad sense) include program

units, documentation, specifications, requirements, transformations, design histories, and project

status information such as summaries and projections of cost. Although Ada has features that

make it particularly suitable for such a library system, the ideas presented here are applicable .-

to the design of programming environments for other languages, and also for language - -

independent environments.

To integrate a diverse collection of library entities, it is important to have precise descriptions

for each kind of entity, expressed in a common formalism; otherwise there can be no assurance

that the representations and assumptions used in the various components and tools will be o

compatible. For example, [Cohen k Jackson 83] argue strongly that the European Esprit

project should be firmly based upon a formal ground. (Goguen 831 gives a more formal account

of the language design principles that we use; see also [Goguen & Meseguer 84a, Goguen & o

Meseguer 84b1.

2This is the area that applies techniques like Shannon's theory of information to determine optimal ways of

organizing information. Some results are briefly discussed in Section 2.5.4

. . -.-

" • .*

14 6

2.2 Issues and Approaches

We believe that a better understanding of certain basic issues is needed in order to provide an .

adequate basis for an Ada library system. Without such a basis, there is serious danger of :-

building library systems that are inconsistent, hard to use, and hard to modify 3. These general

issues include the following:

1. What should be in a library? Possibilities beyond just compiled Ada program units

include the corresponding uncompiled Ada texts (especially the interface information

provided by the specification parts of generics), version and configuration information,

requirements, specifications, documentation, transformations, histories and management

information. ,

2 What techniques for program composition take maximum advantage of the features of

Ada and of the library concept? Candidates include instantiating, enriching and

restricting entities.

3. How to construct families of related programs? (Would program transformations and

expert systems be useful in this regard?)

4. What documentation and specification techniques produce intuitively clear and

mechanizable descriptions of a program's functional behavior and external interface?

5. How to best identify the librar,. entities that are most relevant to a user's needs? What 0

- cataloging services (e.g., taxonomies) and reference services (e.g., search strategies) should

be provided?

B. How to integrate libraries into an APSE (e.g., with module test, linkage and

interpretation facilities)?

7. flow to best present information to users? Possibilities include multi-media support (e.g.,
graphics and natural language) for various modes of system use, including program

composition, retrieval (e.g., clever use of menus and icons), documentation and

modification.

8. What about management issues, such as policies for investment, quality control, and

distributing and encouraging documentation?

9. What experiments could be performed to test the viability of various approaches to these

problems?

These issues divide into four major categories and are treated in the four following sections:

3 Theqe dangers are much less acute for libraries in semantic domains that are already very well understood,

such a-, numerical algorithms.
.9 ,

.-- ..
[---.-"--'-.-.-..-".'.-'.~-'"'',"-""":,,-".-".-"".-'...""-,''" ''-'"-" ":-.:.--'. -.. '-. --- '"

7., -. 7 -7.;

15 .

Section 2.3 addresses the basic issue of what to put into a library; Section 2.4 considers

programming methodology, to optimize the use of Ada and of the library; Section 2.5 considers

library organization; Section 2.6 discusses user interface and management issues. 0

This paper suggests some ideas for dealing with the problems listed above. The main ones are

enumerated below, with descriptions that are not intended to be self-contained; further details

are given later.
1. Systematic (but limited) use of semantics; in particular, explicitly providing theories

(which are just sets of axioms) attached to program units via views (see Section 2.4.4 for

this term). S

2. A variety of different methods for program construction, so that the process of

programming will consist, as much as possible, in the application of these methods, rather

than in just writing code; we call this hyperprogramming4.

L 3. Maximal use of generic (i.e., parameterized) library entities. This is intended to make .
them as reusable as possible.

4. Support different levels of formality in axioms, and degrees and kinds of validation (such

as informal arguments, testing, and formal proofs); this should support a practical user

interface and also aid in pinpointing weakspots during debugging (see Section 2.5.1 for an

explanation of this).

5. Facilitation of program understanding by animating abstract data types, and otherwise

illustrating and explaining behavior at module interfaces (see Section 2.6 for further ?''

I explanation).

It should be observed that because this paper focusses on libraries, the main issue that it

addresses is reusability. This means that while broad issues of programming methodology are

discussed, many more detailed issues are ignored. Issues having some relevance to reusability

but ignored in this paper include some difficult ones, such as tasking and exceptions, as well as

some relatively simple ones, like the Ada modes In, out and in out.

4 Prograniming-in-the-large refers to manipulations at the module level rather than the code level. The term

hyperprogrammlng is intended to reflect an integration of programming-in-the-large with programmi,,-in-the-

small.

•.. . '** .o Q o.*., .. .,.* . . o% *. * , ...

.. ,. _ -,-~ -,.',' . .' . .. ,*:-.,, : , ". . .' . • .. . , '

P16 0

2.3 Library Content

What should be stored in a library? For example, it seems clear that complete compiled _

operating systems should not be stored; but it would be useful to store elements out of which a

variety of different (but related) operating systems could be constructed. And it would be

useful to store design (e.g., configuration) information for constructing particular operating

systems. At the other extreme, a library should not bother to store individual program 0

statements. However, it does make sense to store Ada packages, both as Ada source code and

as compiled machine code.

Much recent research (some of it is cited below) supports the position that it isn't enough to

store code: some of the knowledge that went into constructing the code should also be stored,

particularly for large systems. For example, one should have not just the components of some

operating system, but also explicit information about how to put those component together to

construct the system. Information on which versions of those components to use is also needed

in large system development efforts. Moreover, the same components (or different versions of

them) can be used to put together slightly different operating systems. This kind of

information about configurations and versions can be expressed in a module interconnection

language (abbreviated OMILO below; see [Prieto-Diaz & Neighbors 82] for a good survey of this..

field) and should be part of a library support system.

Ada itself provides some support for this with the specification part of a package or

subprogram, and with with and separate clauses. However, these often tie units that ought to

be more reusable to contexts that are far too specific. Another consideration is that it is often

desirable to document what each part is supposed to do; this information might consist of -,

formal specifications (i.e., sets of axioms) and/or less formal descriptions. The latter might be

related to system requirements, which could also be stored in the library. Unless such

knowledge of design objectives and decisions is stored with the code, it will not be available at

later stages of the software life cycle; note that much of the cost of system maintenance is due
to the difficulty of understanding existing code. -

Ada's package construct is an especially nice way to modularize code. But formal _

specifications, documentation, designs and requirements should also be modularized, since they

too will be difficult or impossible to understand if presented monolithically, especially for large 1.1-

.t.... o .fo la.....-........ "..... .-..........

p: 17 7.

systems. We suggest that constructs similar to the Ada package should also be used for this

purpose. Then a module interconnection statement could be used to assemble not only the final

code, but also complete documentation and specifications for it. .

* Another general remark is that whatever is put into a library should be as widely applicable as

possible. Ada generics provide a powerful mechanism for this at the code level, and we believe

that similar mechanisms should be provided for specifications, designs, requirements, and

documentation.

An elegant way to unify many of the above considerations is to view the process of

programming as one of transforming a high level specification into lower level executable

code (Burstall &' Darlington 77], (Cheatham 83], [Scherlis & Scott 83], [Green et al. 81], [Feather

82), IBalzer 81), [Standish 831, (Goguen & Burstall 80J. The design history is then available as a

sequence of transformations that can be applied to get the final system. Supporting this view of

programming in an Ada environment would require the library to store both transformations

and design histories. The latter could then be manipulated to construct other related systems, -

and in particular to reconstr'ct a given system after bugs have been corrected in its

specification, or other modifications introduced. This should be especially useful during the

maintenance phase of the software life cycle.

We will use the term entity to refer to anything that is stored in the library in a systematic

way. Entities so far mentioned in this paper include program, subprogram, package,

specification unit, documentation unit, requirement unit, transformation, and transformation

sequence. •

Figure I gives a tentative taxonomy of entities that might be stored in an Ada library system.

The three main categories are: concrete, abstract, and managerial. Of course, having a place in

this taxonomy does not mean that an entity should necessarily be included in a library. Notice -

that managerial information can be derived from abstract information, assuming that

appropriate data is available from abstract entities, such as number of lines, date of completion,

number of man-hours expended, performance and testing results, etc.

. * *. . ~. , •. "]

18
ENTITY

CONCRETE ABSTRACT MANAGERIAL

MIL CODE HORIZONTAL REQUIREMENTS PROJECT

COMMANDS TRANSFORMATION AND VERTICAL STATUS

PROGRAM DESIGN ACCOUNTING

PACKAGE ASSERTION HISTORY DOCUMENTATION 0

SUBPROGRAM SPECIFICATION

FIGURE 1 TAXONOMY OF LIBRARY ENTITIES

2.4 Program Composition

In brief, our approach to program composition is to provide a module interconnection language

based upon a generalization of Ada's specification part for program units, enriched with

commands for interconnecting components to form systems. This language, which we call LIL5

(for Library Interconnection Language), addresses certain important problems that cannot be
6

handled by a simple Ada compiler . It is only natural that Ada does not address these issues,

since they arise at design time rather than at compile time, and require a *design database.*

These issues include the following:

1. Narrowing the interfaces of generics; for example, permitting the interface to demand

particular user-defined types (such as STACK);

2. Allowing more flexible binding of compilation units (for example, composing two generics

to get a third);

3. Allowing interactive version and configuration management;

4. Integrating hierarchical (which we call mverticale) design methodology (as in abstract or

virtual machines [Parnas 72a]) with the "horizontal" structuring capabilities of a module

interconnection language; see Section 2.4.6.

)This paper is in effect a preliminary design document for 1; the language has not been implemented, nor

even designed in det.il at this time.

* 6
However, we do not discuss all desirable features of a module interconnection language here. Instead, we

empha,,ize features relating to program structure.

.............." .'.'.,.....,.....'.. '..,',,
• o • ° . • ". • "m. "

Of course, the main point, already addressed by an Ada compiler's library of compiled program

units, is to avoid the time and confusion involved in recompiling every program unit of a large

system every time components are changed or added, either during the construction phase or

later during the maintenance phase; one wants separate, independent, incremental compilation.

• Thus, LIL packages and make clauses are (respectively) intended to designate and to

manipulate compiled Ada units. It is our intention to do this with much greater power and 0

flexibility than pure Ada can, and thus to support a much more powerful and flexible

programming methodology. One key is that more than one Ada body can correspond to a

given LIL package; these are its versions. For example, a generic list package LIST[X] might

have three different bodies, LIST. 1, LIST.HACK, and LIST.EFFICIENT. One could even go a

little further, and allow versions in multiple programming languages. For example, one might

have LIST. 1. ADA and LIST. 1.PASCAL. Of course, for an Ada library system, the default will

be .ADA. LIL syntax is close to Ada syntax (but a little more abstract), and LIL statements can P

easily be translated into pure Ada for input to a compiler. It will be seen that Ada provides

amazingly appropriate support for all this.

Some popular high level paradigms for program construction include top-down (from

requirements), bottom-up (from selected library modules), transformation from an initial

prototype or high level specification, instantiation of a existing generic program component,

8data drivenO programming in the sense of [Jackson 75] (which is really a systematic use of V

data abstraction), and dataflow [De Marco 78]. It is our intention to support all of these

paradigms by providing high level specifications and very general parameterization mechanisms.

Among the many different specific techniques that might be useful under various circumstances 6

for constructing new entities from old ones, are the following:

1. Set a constant (such as the maximum depth of a stack);

2. Substitute one entity for a ustubl or parameter in another;

3. Sew together two (possibly large) entities along a common interface;

4. Instantiate the parameters of a generic entity;

5. Enrich an existing entity with some new features;

6. Hide (abstract, or encapsulate) some features of an existing entity; this could include both

data abstraction and control abstraction;

7. "Slice" an entity, to eliminate some unwanted functionality;

8. Implement one abstract entity using features provided by others (this leads to the notion

of a vertical hierarchy of entities); and

., - • . - - . , . .- . . .= . . , . . - - . • .. .

20 -

9. Assemble existing entities over a skeleton. This skeleton might be either fixed or flexible;
for example, it might be determined heuristically by an expert system. See Section 2.6.

The first four of these techniques each involve parameterization, a notion that is becoming well

understood and to a considerable extent incorporated into modern programming and

specification languages (e.g., Ada generics, and work of [Burstall & Goguen 77] on S

parameterized specifications in Clear). In fact, the first three parameterization methods can be

seen as special cases of the fourth.

It is useful to distinguish between horizontal and vertical modes of composition: the latter S

has to do with the top-down and/or bottom-up hierarchy of levels of abstract machines; while

the former has to do with modularization at a given level of detail; this is discussed in terms of

an example in Section 2.4.6. A unified treatment of the modes of construction listed above is

suggested by [Goguen & Burstall 80], using generic modular transformations that handle data

representations and their associated operations, as well as more conventional transformations of

program constructs such as recursion. The Ada package can be seen in this light as a method

for realizing a given functionality if certain other functionality is provided (again see Section •_

2.4.6); notice that semantic specifications are needed in order to say exactly what functionalities

are involved here.

There has been much previous inspiring work on module interconnection languages. The

INTERCOL system [Tichy 79, Tichy 80] was specifically designed for Ada, and has also

influenced the internnection part of Gandalf environment [Habermann & Perry 81]. In

comparison with LIL., INTERCOL and Gandalf lack the ability to specify (formally or 0

informally) the semantics of packages, and also fail to distinguish between vertical and

horizontal modes of composition. However, they do allow for module revisions and derived

versions, and have experimental implementations.

Three concepts that go beyond Ada generic packages and still seem ripe for near term

implementation are theories, views and interconnection commands. Theories are used to

declare properties required of an actual parameter for it to be meaningfully substituted for the

formal parameter of a given generic entity. Views are used to express that a given entity

satisfies a given theory in a particular way (this is necessary because it is possible for some

."..
.-i ;""_, "7""'"" " - -" " "" " " '"""'- "

"
" -" " -" " ""

• -
" " "" "- " ".-" " " " "

"
". . " - 2 , -

21 .

entities to satisfy some theories in more than one distinct way). Interconnection commands

are used to express how a system is to be built out of its components; these include

instantiating a generic entity, using a particular view to produce a new entity. This approach

to parameterization is inspired by the Clear specification language7 , and is applied in [Goguen

S 83] to the OBJ programming language. A related topic is transformations, which can modify

entities by adding, deleting, or renaming functionality, and can themselves be parameterized.

Before embarking on the technicalities of the following subsections, it seems a good idea to

contextualize them with the following points, some of which are only explained in detail later:

1. We deliberately use a syntax for LIL that is closer to mathematics than Ada is.

2. The ordinary user of such a library system would probably not see LIL entities in the
forms given below, which have been chosen to facilitate discussion of their basic

properties. Rather, the user interface would hopefully involve natural language and/or

interactive graphics. See Section 2.6. -0

3. Many features of Ada are not covered in the discussion below. In some cases, this is

merely to simplify the discussion; for example, we discuss only functions, but procedures

present no serious difficulties, and are illustrated in the example in Appendix 1118. In"-

other cases, further research would be needed to provide an adequate treatment; "i-

exceptions, access types, and tasking fall into this category.

4. We do not anticipate that most development projects will use of large or complex formal
theories; rather, they would rely upon informal documentation and informal arguments

about program properties. However, some applications might demand such a high

standard of reliability as to warrant the effort of full mathematical verification. The

approach suggested here would support both formal and informal specification and
verification in an integrated manner, allowing whatever mixture seems most appropriate

to the application. •

5. Although the outlines of the project seem clear enough, and some parts, particularly LIL,

could be implemented without much further research, there are other areas, such as

transformations, that would require substantial further thought to provide an adequate

foundation. 0

7In particular, the notion of view was developed in collaboration with R. M. Burstall for use in Clear, although

it has not yet been published in that connection. Clear's approach was in turn inspired by some ideas in general .

system theory [Goguen 71j.

See (Goguen 821 and (Goguen & Meseguer 82aj for further examples and foundations.

* - ' ,-..
wo

," . " .
-.. , .. 5* ,. .q- .- .- .-. .. , '.-,'-.*. °. °. ." . o . . .5 ". "..5 ... o. .

* 55"5-, ., -_..-.- -* * -.- -.- -_-.' -.. " .'. * 5*•' .. .-.- • " ' .-- .*. .

* . ~ ulI ~*J 11.1 11.1u~uuugyg..-...-•

22 S

2.4.1 Packages and the Using Hierarchy

The most important entity in LIL is the package, a generalization of the specification part of
.0an Ada package 9. There are two main ways that a LIL package differs from an Ada

specification part: (1) axioms can be given for the operations that it declares; and (2) it is

-- associated with (zero or more) versions, which are Ada packages that realize the behavior it

describes. Thus, both semantic specification and version control are supported. Some 0

additional capabilities of generic packages are discussed in the next subsection. The main point

is that LIL packages help the library keep track of already compiled Ada code.

We wish to emphasize that the axioms in LIL packages do not have to be formal; they can be

• i l semiformal mathematics, or even informal natural language (see Section 2.5.1). It is also -.- * i

unnecessary to formally verify the axioms against code. We believe that to impose such a

requirement would render a library system impractical except for a few applications requiring

especially high reliability. lowever, we do propose a "truth management, system that will

:* track the degree to which various assertions have been verified (again, see Section 2.5.1 for

"* details); such a system would be useful for both testing and debugging.

.. New entities are often defined using others already defined, and possibly already compiled. We
wish to carefully distinguish using entities from the process of instantiating generic entities, as

well as from the vertical (hierarchical) development process in which an entity needs others in

order to realize a given behavior (see Sections 2.4.3 and 2.4.6 respectively).

Because LIL's notion of horizontal hierarchy differs slightly from that of the Ada use clause, we

introduce a slightly different notation, the using clause 1o. This is illustrated in the following

example:

package COMPLEX FUNCTIONS

using MATH FUNCTIONS is

types COMPLEX

9 LIL does not distinguish between specification and body parts of packages, because it does not provide
executable code as such; that is given in Ada.

lOse imports Ada packages, whereas using imports (partial) descriptions. While an Ada function or procedure,
once written, cannot be modified, a description can be modified, for example by adding new axioms.

. - %% • %.. %.-..... " .° -. •...., •,°

- -,, -. ... -" -. .-. "-.-: - "", " -" - '- .. :-- . .-- . . -- ' .--

23

functions

** :COMPLEX COMPLEX -> COMPLEX
0

axioms

-- ** agrees with real exponentiation for real arguments

-- E ** I*R = COS(R) + I*SIN(R)
9

end COMPLEX FUNCTIONS

This package has a using clause that imports another package to provide the standard real

mathematical functions; both the axioms and the associated Ada code can use these functions.

Notice that this package has one axiom that is stated informally, and another that is stated

formally but without formal declarations for its variables and constants; also note that these

axioms will not hold exactly for any Ada code intended to realize it, because of roundoff error 1 I

The package STANDARD is considered to have been imported into every package with a using

clause; all its operations are thus freely available.

Information hiding, as advocated by Parnas and others, can be accomplished by hide-types

and hide-ops clauses; these render the mentioned types and ops invisible in any entities using

the given package, even if the mentioned types and ops had been imported from another entity.

The using and hide clauses lead to an acyclic graph expressing inclusions of the corresponding

syntactic interfaces and sets of axioms of entities. P

We conclude this subsection by noting another difference from Ada package specification parts:

representations are not stated in LIL packages. The Ada code corresponding to theD- "0
COMPLEX FUNCTIONS package presumably represents the COMPLEX type as a record of two real

* types, and the Ada compiler surely needs to know this. But this information is hidden in IL;.

in fact, it is not needed for describing which Ada units are to be interconnected, which is the

|_. primary purpose of LIL. .9

Somewhat different axioms could, however, take accoiint of roundoff error.

%.

• . .

24 . . .

24

2.4.2 Theories

Another basic entity of LIL is the theory, which expresses properties of entities or entity

interfaces, but does not have any actual Ada code associated to it; its purpose is purely to

express properties12. In general, theories can be structured in the same ways as programs; the

difference is that program units define executable structure, while theory units define not

necessarily executable properties. In particular, theories can use other theories, can use data 9

abstractions, can be parameterized, and can even have views (see Section 2.4.4 for this term).

Our first example is the trivial theory, TRIV, having just a single type ELT about which nothing

is asserted.

theory TRIV is

types ELT

end TRIV -S

For another example, the theory of partially ordered sets has a single type designated ELT plus

a binary infix relation < that is reflexive, transitive and anti-symmetric. This theory is useful in

describing the ordering among security classifeations (as associated with classified documents) or

in describing the interface of a sorting package, that is, in specifying the semantic requirement

that the elements to be sorted have a suitable ordering relation.

theory POSET is

types ELT

functions (ELT ELT ->BOOLEAN

vars El E2 E3 ELT

axioms

(El < El)

(El < E3 if El < E2 AND E2 < E3)

(El - E2 If El < E2 AND E2 < El)

end POSET
-]

Finally. the theory of monoids. This will serve as a parameter requirement theory for a

generalized iterator that can yield sums, products and other operations over lists (see Section

,.. .5)._

More technically, the axioms in a LIL package are to be interpreted 'initially,' i.e, in a standard model, while

those ,n a I1L theory need not be so interpreted.

. o -.

.

25

theory MONOID Is

types M

functions * M U -> M (assoc, Id: I)

end MONOID

Here assoc indicates that the function * is infix and associative, i.e., satisfies the equation

(MI * M2) * M3 = MI* (M2 * M3) 9

and id: I indicates that it has an identity I. We mention again that theories can be defined

and used even if not all their axioms are formal. Also note that hide-types and hide-ops can

be used in LIL theories as well as in packages; moreover, hidden can be given as an attribute of

an operation with the effect of hiding it.

2.4.3 Generic Entities

Ada lacks the ability to define semantic restrictions in the specification part of a generic; this is .S

appropriate since an Ada could not use such information anyway. However, we wish to provide

this information in the library system to increase reliability and to aid with problems of

program understanding, retrieval and composition. The requirements that actual parameters of

a generic entity should satisfy for the instantiated entity to behave as desired are given in 0

theories. Of course, these theories must be defined before the entity can be instantiated.

Again, we use a syntax closer to mathematics than Ada's syntax, to help distinguish these more-

abstract entities from the corresponding pure Ada entities13. To illustrate, here is a LIL generic

list package:

generic package LIST[ELT :: TRIVI Is

types LIST

functions

LIST LIST -) LIST (assoc, id: NIL)

EMPTY : LIST BOOLEAN

HEAD LIST-> LIST

TAIL • LIST -> LIST ,

vars E :ELT; L :LIST

. axioms

HEAD(E. L) L

13S

3Of course, this is not essential, and a notation closer to pure Ada could be accomodated without any

difficulty.

.

":- - - . . . - . . , + . . - . . . ,

-.° •

26

TAIL(E L) = E

end LIST 0

The attributes assoc and id of . " implicitly give some further equations, namely the

associative law and two identity laws.

A major difference between this and the specification part of an Ada generic package is that all

the parameters are collected together in one entity, called the requirement theory, enclosed

in I...1 after the package name, LIST here, telling not only what types, functions and

procedures are needed, but also what properties they must satisfy. In this case, the formal

parameter ELT must satisfy TRIV, i.e., no axioms. For a sorting package given later, the

parameter must have a binary relation that is a partial ordering, i.e., it must satisfy the theory

POSET. Here is an example of a parameterized theory, the theory of vector spaces over a field -

F.

generic theory VECTOR-SP [F FIELD] is

types V

functions

+ V V -> V (assoc, comm, id: 0)

• F V -> V

vars F F1 F2 F;

V VI V2 V

axioms

((F1 + F2)* V = (F1 * V)+(F2 * V))

((F1 * F2)* V = (F1 *(F2 * V)))

(F * (Vi + V2) = (F * VI) (F * V2)) .

end VECTOR-SP

More generally, entities can have several parameters, indicated in the form

[X THI; Y TH2]

and theories (with their corresponding formal parameters) can involve more than one type.

One can also rite a package using the instantiation of a generic. The instantiation of generic

,,ntities is lis<',,,S'd ill Section 2.4.5. The semantics of generic packages can be described by the

methods of Clear, as discussed by [Litvinchouk & Matsumoto 831.

- .
"- ..lI

° . d , ,. -. •*~~ .~** .• - ° - . .* .-° ~- ' * -. . -• , ° . •.-. .°-.°

27 S

2.4.4 Views

The purpose of a view is to explicitly show how a given entity satisfies a given theory. For

example, if SORT is a generic package for sorting LISTs of its parameter type fwhich must -

satisfy POSET), writing SORT[NATURAL] to define a package for sorting LISTs of NATURALs may

be ambiguous, because there are many different order relations that could be used on the -.

natural numbers. The most obvious is the usual mless-than-or-equal, but "divides" and S

m greater-than-or-equal are other possibilities. Thus, a view of NATURAL as a POSET, which we

write POSET => NATURAL, indicates just which order is to be used; the three choices of order

mentioned above correspond to three different views. Note that NATURAL here denotes the LIL

package, not the Ada type NATURAL in the Ada STANDARD package, which is here regarded as a

version that realizes the LIL package.

More precisely, a view of an entity A as a theory T consists of a mapping from the types of T to

the types of A, and a mapping from the operations 14 of T to the operations of A preserving arity

(which is the list of argument types), value type (if any), and operation attributes such as

assoc, comm and id: (if any), such that every axiom in T is satisfied by A. Such a mapping of

types can be expressed in the form o

types (T1 => T1l)

(T2 => T21)

and the mapping of operations in the form

ops (OPI => OPil)

(CP2 => 0P21)

Thus, each mapping consists of two sets of pairs in what Ada calls " named parameter

notation., Together they are called a view body. The syntax for defining a view adds to this

names for the source and target entities, and a name for the view. For example, 0

view NATD POSET => NATURAL is

types (ELT => NATURAL)
ops ((=> DIVIDES)

We use the word operation to refer to either fbnrtinons of procedures.

"-','-'~~~~~~~~~~~...'.'".'..'-",",-i".../,....... ,. :. . ..
-- , -. -_ -_, ~~~~~~...-..-. . -.-.-..- ,,,-.----"..,....:......-:-:=:-?.-.-,=':::_.. -'."

28

end NATD

defines a view called NATD of NATURAL as a POSET. We use the double colon to emphasize

that this concept is at a higher level of abstraction than that of just operations.

INC

ELT NAT

DIVIDES

N- BOOLEAN

POSET NATURAL

FIGURE 2 THE VIEW NATD:POSET = NATURAL

Each package and theory has a default view as TRIV using its first type (or the first type of the

first entity that it is built upon if it doesn't have a first type itself, and so on backward

recursively); this type is called the principal type of the entity. A default view is the one

that is used unless another is explicitly provided instead. For example, if we were to write out

the default view of NATURAL as a POSET, it would be

view NATV :: POSET => NATURAL is

types (ELT => NATURAL)

ops (_ => <)

end NATV

Thus, when there is just one type in the source theory T and the types line of a view is

omitted, it is assumed that the type of the theory is paired with the principal type of the target.

Moreover, pairs of the form (T => T) can be omitted from any view. There is a similar default

convention for ops, namely correspondences of the form (OP => OP) can be omitted. For

*example, if the default view of NATURAL as a MONOID (according to these conventions) were

written out in full, it would be

- " " . -- " '. [, "-'["- "- ' - . -. 2 , - [rn__ .. L [* .[-i -*- . -.

",Y '- ., . . . - . , ... - -, ..-, .- , ,---, -.- ., -. w - , .,, ..I -. . , T F.- , - - , - -. -o r i , " " =' " ""-

29 "

view NAT* :: MONOID > ATURAL Is

types (M => NATURAL)

ops (s => *)

(I => 1)
end NAT*

assuming that the LII, package for NATURAL tells us that I is an identity for *, and then using

the convention that a default view should preserve the Id: attribute. The following is a non-

default view of NATURAL as a MONOID.

view NAT+ MONOID > NATURAL Is

ops (* => *) .

(I => 0)

end NAT+

where (I => 0) could also be omitted by perservation of the id: attribute.

Finally, a view that involves a parameter:

generic view LISTM :" MONOID => LIST [X ": TRIV] is

ops (* => .) -

(I => NIL)

end LISTM

A further generalization of the default rule permits omitting an operation pair of the form (OP

=> OP) if the arity and type of OPI equal the translations (under the types mapping) of those - .

of OP, and if OPI is the only operation (in its entity) having that particular arity and type.

A similar concept is used in Clu [Liskov et al. 791, where it is called a abinding.0 However, Clu

bindings do not involve attributes or axioms, and provide a much weaker notion of default

binding.

2.4.5 Instantiation

To actually use generic entities, it is necessary to instantiate their parameters with actual

entities. This subsection shows how to do this with the make command, that uses a view to

bind an actual to a formal. This is the command that makes LIL a module interconnection

language for Ada, permitting more than one version to correspond to a given specificaton part _ 0*

(thus supporting eversion managements), and permitting more than one way of organizing a

given collection of program parts to co-exist in the library (thus supporting configuration

managements).

-N...- ~~~~~~~.........-..,........................-.......,...........-.....
:. _ _ .-. . _. _,....¢ .._j L'' ," --".-' . '."' . 2 ..- .."" '"• ''' ''' : '.."' .' ,- -2 ¢ ' _'''''¢ '.-. ." .,._,_ ._, .- ."-".

30 S

For example, SORT[D POSET] can be instantiated using the view NATD from Section 2.4.4 by

make SORT-NATD is SORT [NATD] end

to get a package that sorts lists of NATURALs by the divisibility relation.

If the name of an entity is used instead of a view, the default view (if there is one) from the -'

requirement theory of the parameterized entity to the named entity will be used for the -

binding. For example,

make NATLIST is LIST[NATURAL] end

uses the default view TRIV => NATURAL to instantiate the parameterized entity LIST with the -

actual parameter NATURAL. Similarly, we might have

make REAL-LIST Is LIST[REAL] end

where REAL is the field of real numbers, using a default view TRIV -> REAL; also

make REAL-VSP Is VECTOR-SP [REAL] end .0.

uses a default view FIELD => REAL, and

make REAL-VSP-LIST is LIST [VECTOR-SP [REAL] I end

uses two nested default views.

An example involving a default view between theories is given in Section 2.4.6: LIST[X] is

introduced into SORT[X :: POSETI by a using clause, and takes the default view TRIV ->

POSET to ensure that X fits in LIST if it fits in SORT. . ..

Here is an example that has some interesting instantiations:

generic package ITERATE "- MONOID]

using LIST[U] is 0

ops ITERATE : LIST -> .

vas E ; L :LIST

axioms

(ITERATE(NIL) = I) -

(ITERATE(E L) = E , ITERATE(L))

end ITER

using the default view TRIV => MONOID. We now use this entity in two other examples:

make SIGMA Is ITERATE[NAT+] end

sums a list of numbers, i.e., computes E L - =L where L=L,1L. while

• . =o • °.°....Oo-.,,oO °..o.-.-. °°o .°o°..o-.-.-.....•...
. . . .'.., , ,.-,................. ,.. ,.. .,_.._---,., ,:-

31

make PI is ITERATE[NAT*] end

r]' multiplies a list of numbers, i.e., computes 11 L - [i=nL (noting that E(NIL) = 0 and l(NIL)

1). We think that these are impressively concise and clear ways to get these functions.

2.4.6 Package Stubs

Ada supports top-down program development through the use of body stubs. An Ada library

system should support the further capability of reusing subunits, which is prevented by Ada's

separate clause. Even in bottom-up development, Ada requires that a new program unit refer

to something already compiled and in the library through a with clause; unfortunately, this

significantly limits the reusability of the new program unit. This subsection suggests a more

general notion of stub, based on the concept of view introduced previously, that overcomes

these limitations. This notion is another part of our Ada library interconnection language LIL.
i• .5

A capability missing from Ada, but that would sometimes be very useful, is to compose generic

entities. For example, in Ada one cannot compose a generic LIST[X] with another QUEUE[Y] to

get something corresponding to LISTLQUEUE[YJ]. One can form something corresponding to15

LIST(QUEUE (INTEGER)), although even this cannot be done in one step, but requires at least

two. LIL supports the composition of arbitrary generics.

• We noted above that the Ada package concept embodies the structural relationship of realizing
-S

- one abstract machine (hereafter abbreviated 2AM) with one (or more) others; this can be seen

as a promise that a new behavior can be realized if certain other behaviors are provided. This

relationship expresses the most important and characteristic vertical activity. LIL indicates

interface requirements that need to be satisfied by a lower level AM with a needs clause. For

example, here is a generic sorting package that needs a generic list package LISTP.

generic package SORT[X POSET]
needs LISTP LIST(X] is

functions

SORT LIST-> LIST

SORTED LIST LIST-> BOOLEAN

use parentheses in this expression, rather than square brackets, because it is a putative -although not a

real - Ada expression-

1W.

32 S

vars L LIST

axioms

SORTED(SORT(L)) = TRUE l

end SORT

Let us try to better understand vertical and horizontal structure in terms of this example. The

components to be used are shown in Figure 3.

~-

SORT•'"

NATURAL E PST" "

LIST •

FIGURE 3 SOME SOFTWARE COMPONENTS

We will begin with the vertical structure. The needs clause in the generic SORT says that

before a generic sorting function can really be supplied, we need to supply a generic Ada

package LISTP that is a version of the LIL package LIST[X]; the fact that X is both the formal

parameter of SORT and of LIST(X] indicates that the version is instantiated with the same X as

SORT[X]. The advantage of this approach is that a generic Ada body for LIST[X] can now be -

*" reused, which would be impossible with the Ada separate clause. To actually get a version of

LIST for use in SORT, one gives a module interconnection command indicating which version to

use when compiling. lIL's syntax for this is

make SORT[X] needs LISTP => LIST.HACK end

...........

._

33 Ti

where LIST.HACK is a paricular generic body for the LIL generic package LIST[X], i.e., a

particular version of the LIST[X] capability. See Figure 4. The entity following the " in a

needs clause is generally a LIL package' 6 , as in the example above. Any actual horizontal 0

parameters for the main package (SORT in this example) will also be supplied to the package

version in the needs clause (here, LIST.HACK). This automatic management of the interactions

of horizontal and vertical structure is one of the most novel features of LIL, and can greatly

simplify the programmer's task in some cases.

.O

-O
POSE

LIST_--]POSET

TRIV ."-"

FIGURE 4 A VERTICAL COMPOSITION

The horizontal component of this example appears in the formal parameter X, which is required

to satisfy the POSET theory. See Figure 5 for their horizontal composition.

A make command can accomplish both the vertical and the horizontal instantiation of SORT at

once:

make SORT-NATD is SORT[NATD] needs LISTP => LIST.HACK end

See Figure 6.

1It could also be a L11, theory, but this case is not discus-ed in this note.

.

• ., °, . - o * - . . ,.°, .. •,.- . - - - - ' . r - . , . . "-- .. • - * * **•. . . -., , . ,.'. -,

34

SORT0

NATURAL]POSET

LIST

FIGURE 5 A HORIZONTAL COMPOSITION

.l

SORT

LIST

NATURAL POSET

FIGURE 6 A REALIZATION OF SORT(NATURAL' WITH LIST[NATURAL]

LST

Some appreciation of what is involved in a semantics for these constructs given with the

* methods of Clear can perhaps be gleaned from Figure 7, showing how the requirements theory .

of a generic package must be a subtheory of the AM that is realized by that package, and may-

NATU AL OSET"-""." "

. -. .

35 6

also be a subtheory of the stubs for the AMs that go into realizing it. Here INI and IN2 are the

requirement theories for the lower level AMs; these are included in the body theory of the

package. In addition, there is a theory of the behavior that is actually exported by the "

package; this AM may not be identical with the body theory because of some information

-1hiding.

OUT

PARAM DY

FIGURE 7 THEORIES INVOLVED IN A GENERIC PACKAGE

2.4.7 Environments

In a programming language, each statement, indeed each symbol, is interpreted in an

menvironment,* which consists of the currently defined symbols and their current values (e.g.,

in a symbol table). Similarly, in LIL, there is an aenvironmento consisting of the currently

defined entity names and their values; but there is also further information (not found in the S

menvironmentso of programming languages), namely relationships among these entities. More

specifically, the inclusions of one theory or package in another, and also views, should be part

of a LWL environment. These constitute, at any point in the processing of a LIL text, a diagram

which the user might want to see displayed. For exa - Figure 8 shows such a generalized

environment for some of the pakcages, theories and views in the examples given in this paper.

Views are drawn with solid arrow heads; the other arrows are inclusions of the kind shown in "

Figure 2. _

S. - . % ,

36 0

NATURAL 4-T---,. BOOLEAN(P 0
MONOID POSET LIST

.

ITER SORT

FIGURE 8 A LIL ENVIRONMENT

2.4.8 Transformations

The word *transformation* has been used both very loosely and in a wide variety of different

more specific ways. Recall that Ohyperprogramming ° is our term for the methodology being 0

sketched here. Figure 9 gives a tree for the taxonomy of activities that are involved in

hyperprogramming. We hope that this classification scheme will aid in understanding and

organizing various ideas already in the literature. ,

HYPE RPROGRAMMING - . ""

HORIZONTAL TRANSFORMATIONS

0
ASSERTING STRUCTURING AGGREGATING VERTICAL STRUCTURAL

VIEWS EDITING (CODE)

COMBINE INSTANTIATE ENRICH ABSTRACT CODE

MACHINES

REALIZE ABSTRACT COMPOSE CODE ASSERT

OPTIMIZING AXIOMS

FIGURE 9 HYPERPROGRAMMING TAXONOMY

.-' -. ~

37 S

Let us begin with activities that are not transformations. These all fall under the Whorizontals

classification and consist of activities that introduce structure into a specification, design or

program; the inverse activity of unstructuring, or aggregating parts into wholes, is also

considered horizontal (aggregation is sometimes needed before applying an optimizing

transformation that involves more than one part), as is the activity of asserting a view, i.e.,

asserting that an entity satisfies some theory.

It should be noted that these structuring operations do not involve any commitment to either

top-down or bottom-up development. Components can be put together (this does not mean

aggregated) to form a structured whole; or an unstructured part can be broken into parts. 6

However, it is often more natural to use the idiom of top-down development.

The activity of instantiating a generic has already been considered. It is important enough
.6

among horizontal activities to be called 6horizontal compositiono [Goguen & Burstall 80]. The

reason for this importance is simply that the more generic entities are, the more they can be

reused.

Perhaps the most basic horizontal activity is to combine two (or more) entities, which just

means to consider them together. (For example, one might wish to have both STACK[X] and

ARRAY[X]; the combination of these two is might then be written C[X) = STACK[X] +

ARRAY[X].) A particular point that must be handled carefully in this regard is that of shared

subentities. These may arise implicitly through use of built-in entities (such as INTEGER and

BOOLEAN) or explicitly by a using clause. For example, if both STACK [X) and ARRAY [X] involve

BOOLEAN, we want to be sure that C[X] involves only one copy of BOOLEAN rather than two.

Similarly, the formal parameter X (and its implicit requirement thcory TRIV) are used in both

STACK[X and ARRAY[X], and we want that C[X], as the notation suggests, also has formal

parameter X with requirement theory TRIV.

Two further horizontal activities are enrich and derive. The first of these adds some new

functionality to an existing entity, while the second derives it from existing functionality. The

activities discussed above are all part of the Clear specification language, and have been given a

formal semantics in [Burstall & Goguen 80]. Since specifications give semantics for code, these

formalisms can also be applied to programs. Indeed, it is our contention that the best way to

. ~* -* - . .: = * .. • *.

38 o

manipulate code is to manipulate the corresponding specifications, or even the corresponding

informal documentation.

The purpose of all the above activities is to provide structure (i.e., design information) at a

given level of abstraction. Activities that introduce concrete detail (called "commitments"

by [Scherlis & Scott 83]) are discussed under our second major heading, that of transformations .

per se. We subdivide transformations further into two subcategories, those that preserve " -

semantics and those that may not. Those transformations that preserve semantics we will call

vertical activities, and we further divide these into two classes, corresponding to programming-

in-the-large and programming-in-the-small. "

Semantics-preserving transformations that manipulate modules (as opposed to statements or
even lower level program phrases) are programming-in-the-large. Perhaps it is time to say in

.0

more detail what it is that activities at this level of gratiularity actually do: They manipulate

entire abstract machines (AMs) in roughly the sense of [Parnas 72a, Parnas 72b]. We can

distingish three different kinds of activity involving abstract machines: The first of these

corresponds almost exactly to the Ada package concept; it is a way of realizing a given behavior

(i.e., AM) provided that certain other AMs are given. This is the most basic and important

vertical activity, that of expressing a structural and algorithmic relationship between one level .

of abstraction and the next (either up or down). It is also of course the basic support for top-

down programming in Ada; but the composability of such steps is very limited in pure Ada. A

very special case of this is hiding some information, i.e., of abstracting the way that a

particular behavior is realized by preventing implementation details from being visible outside

the package. -

- It must be noted that Ada lacks the capability for specifying more than the syntax of the
behaviors involved here. It should also be noted that any given vertical level may have non-

trivial horizontal structure, that is, a given AM may be a (horizontal) composite of several

simpler AMs. (See the example in Appendix 111.)

Vertical layers of abstraction can be combined by vertical composition. This is simply the -

compounding of abstract realizations: if level n-I realizes level n, and level n realizes level n+1,

then level n-i realizes level n+l. In terms of Ada packages, this is just the idea that supplying

pG .. " "•."° °. ., ... o."...,".°'m ° "

. ..• °. •. °. •.. . ,, .• O,.• % •. . o o % . % % , . %

39

all the stubs in a package means that you can actually execute the program now. It is a basic

intuition of software engineering that this should be true independently of the horizontal

structure existing at the various levels (a special case of this is the 8double lawo of [Goguen & ..

Burstall 80] and [Goguen & Meseguer 82a).

Among the semantics-preserving transformations on the code level (i.e., programming-in-the-

small), there are two interesting subcategories of activity: (1) optimizing code; and (2) asserting

axioms. The first subcategory has received considerable attention in the literature. It includes

transformations that replace recursion by iteration, that eliminate unused variables, that insure

common subexpressions are evaluated only once, etc. The early work of [Burstall & Darlington 6

77] is relevant, and the work of [Rich & Waters 83] also falls largely in this category.

The second subcategory includes work on program verification in which assertions about the

state of the environment are inserted between (or possibly even inside of) statements; the best

known approach is that of Hoare. The Anna language [Krieg-Bruckner & Luckham 80]

embodies this approach for use with Ada. It should be noted that, although such an approach

can be used to make assertions about the functions and procedures in an Ada package, it is

conceptually quite different from the method of views and theories discussed above, which

operates at the package level rather than at the operation and statement level17.

Our final category is that of transformations that do not preserve meaning. This includes all

ordinary programming, which is just adding to or modifying other code (noting that a new

project starts from the empty program). Modern structural editors make this a bit more

*: elegant by preventing syntax errors, but the fact remains that these activities take no account

of semantics at all. Of course, a programmer trying to debug a program is actually trying to

. changn its semantics. But wouldn't it be better if he could get some help in understanding

what it is supposed to do and how it is supposed to do it? In fact, providing sufficient semantic

information to the programmer makes debugging the process of trying to find where, in the

process of program production, semantics was not actually preserved.

17

17 To be very technical about it, the assertion language approach views Ada as an "institution, in the sense

of [Goguen & Burstall 84].

..................................- °.-
bo. " o o - • . . • • . o - • o . .. - •, . • • - . . - • ° . . o - • . _ - • • . • . .. • ... • .• .'...° • -

40 6

One very simple kind of transformation uses a view-body, i.e., a type mapping and an operation

mapping, to create a new entity from an old one, with the old syntax modified as indicated in
0

view-body; new types and operations can also be declared, and old ones can be hidden. We call

this the IMAGE command; it can greatly increase the reusability of entities. Among possible

modifications are: to enrich an entity, by adding to its functionality; to restrict an entity, by

eliminating some of its functionality; and to rename parts of the interface of an entity. These 0

support a number of useful (data type based) program transformations. This feature has been

implemented at the command level of the OBJ programming language [Goguen, Meseguer &

Plaisted 82].
S

We now consider how transformations relate to the horizontal hierarchy and to views. It is

often desirable for transformations to include using clauses; indeed, this may be necessary in

order to prevent the creation of new copies of packages that are not included in such a clause.

If an old entity M has a view V :: T => M, then the image entity, say MI, should inherit a view

VI ": T > Ml, except possibly if some functionality has been deleted or modified in

constructing MI. Functionality can be deleted by hide-types and hide-ops clauses, much as

for LIL package specifications.

It should be noted that transformations, like Ada packages, can be parameterized, instantiated,

enriched, derived and combined. In fact, the whole range of horizontal activities can be applied .

to vertical entities. Moreover, it is clearly essential to provide some horizontal structure for

program transformation activities, that is, some local context, if program transformations are to

be used as an effective way of encoding design information.

2.4.9 Control Abstractions

The general idea of *control abstraction" is perhaps less familiar than that of data abstraction,
but has many applications. An abstract control structure is a parameterized entity that

describes some kind of control flow to be executed over instances of an actual parameter entity.

For example, a generalized iterator is a paramaterized entity that can be instantiated with any

data structure having elements suitable for iterating over; suitable data structures include lists,

sets, trees, stacks and queues. Many of the loops that arise in programming can usefully be 0

seen as instances of this concept. Another example would be a generic backtrack programming

module, that could be instantiated with any data structure having suitable notions of *next"

..... ,-...°- '

• ".. a

41

elements to try, and of the success of a try. Still another is the notion of 'pattern-driven

demonso found in many Al programming languages (originally in Hewitt's Planner language,

and more recently in Prolog). Many other references could also be given, for example, to the 0

languages Clu, SETL and ECL.

2.5 Library Organization

We now discuss library management issues. One suggestion is to use a hierarchical

classification scheme (in the same sense that the Dewey decimal system is hierarchical), but

with complex indices at different levels of detail and formality, ranging from keywords to

formal axioms. 0

At the highest level, keywords might be organized by application domain, with specific library

entities obtained by lower level key words. Examples of such domains are operating systems,

relational data bases and compilers. For example, in the domain of operating systems, one

might have modules for such functions as scheduling, spooling and checking capabilities. This

calls for an acyclic graph organization, with as much sublibrary sharing as possible. For

example, numerical routines and basic data types will be needed in of the many more

specialized sublibraries.

The lowest levels of the classification hierarchy might contain descriptions of program

properties in forms more readable by machines than by users. This would support a very

limited analysis capability to search for entities that have relevant properties.

2.5.1 Truth Management

The axioms in a LIL package can be formal statements in a formal language, such as first order

logic, or statements in informal mathematics, or sentences in ordinary English. Thus,

validating a view (this means showing that the target entity of the view really satisfies the

axioms given in the source entity) can be done in various ways, having various associated 9

degrees of certainty. For example, an informal argument may have been given, a test suite may

have been successfully run, an informal argument may have survived a formal presentation

('walkthrough'), or a proof checker may have accepted a formal proof.

The most important use of this information would be during debugging. Once a bug is found,

_S

"::'"" " " % -".'i-" .""'-''""....'-"."-"'"'..-".'-..'.'""".-.-...'-''-..".-...".".."'."."."."..'"."..•'. ".'..".".. •.. ".....""." "."......".
"- "- "-..'..'-/-..'..'..'-'.-.--.-.'..'....-.....-...-....-...-."."-."-."-.......-...'.."...-.-...."...."."..-...-"...•...".'"..".... . .-.-".-"....-"...

42 .

we suggest using critical path analysis and related techniques to find the weakest link in the

argument (implicitly constructed along with the design) that there is no such bug. This will be

the best place to look for something that needs to be changed; it may also be possible for the .

system to suggest what changes should be made.

2.5.2 Organization by Semantics

Library organization is a difficult problem. We suggest that LIL packages be used to index the

information needed for retrieving appropriate entities from the library. LIL provides version ".

management by permitting more than one Ada package body to be attached to a given LIL

package. However, these package bodies need some further information attached to them for 0

choosing among their body. Figure 10 shows how the library entities involved in two versions

of a LIL package might be organized.

Another use of organizing a library by semantics and having available a library interconnection

language, is that it should be possible to automatically build documentation for new entities

that have been constructed from old ones, by using the documentation already given for the old

entities. In fact, the first step of constructing a large system might be to structure its

requirements, so that an appropriate interconnection statement would assemble the system

requirements from the requirements for its components (of course, some system requirements

could not be broken down in this way, since they apply only at the highest level, e.g., total

system performance). Later steps would break these components down further.

Another potentially very valuable benefit of semantic organization (i.e., of LIL) is to provide a

rapid prototyping capability by simply executing the axioms in LIL packages. This will be -

possible if all the axioms are given in an appropriate logical formalism, and if there are enough

of them. For example, work done with OBJ [Uoguen, Meseguer & Plaisted 82, Goguen k,

Meseguer 82b] shows that equational logic can provide such a capability; and ...

Prolog [Colmerauer, Kanoui K van ('aneghem 791 shows that it can be done with so-called Horn 0

clause logic.

. ..

"-._'. '- " '-.'. ', - '" :- '" ' , ","_. '_ ,' " , " % -' " _ _' _, -"- "-."X -'_'

43 .

NAME, KEYWORDS
FUNCTIONAL SPEC

INTERFACE SPEC
DOCUMENTATION

EXAMPLES, TEST CASES

VERSION 1 VERSION 2

PERFORMANCE INF. PERFORMANCE INF.
WRITER; DATE WRITER; DATE

ETC. ETC.

L ADA CODE ADA CODE

[INTERMEDIATE INTERMEDIA4TE
COMPILED FORM CMILE D FORM

(CMILD FORM] COMPILED FORM

FIGURE 10 ORGANIZATION OF LIBRARY ENTITIES FOR A PACKAGE

2.5.3 System Families

* The technique or Oskeletons' (mentioned as point 9. at the beginning of Section 2.4) if properly

developed, might provide a very general and flexible approach to software families IParnas 76],

permitting the system in effect to provide a ofirst drafto implementation (see also [Cooprider

719j). The intention he~re is that an expert system might embody some of the knowledge of the

..

2 .. * ,. *JJ, . --.

p. 44 0

Ada programming community on how to compose programs in some particular application

domain. Such an expert system could be updated as experience with a given domain grows,
and as library entities applicable to that domain accumulate. This would permit contructing -

individual family members by combining library entities with the aid of the expert system. "

2.5.4 Cataloguing

Current techniques from information science and relational databases should also be relevant to

the basic design of a library system. For example, there are results that help choose the

optimal number of levels, and the optimal number of classifications at each level, for a given

structure (e.g., Huffman coding, human factors experiments, and work of [Resnikoff 80] on •

* library organization); one idea is to help the user to play "twenty questionsm as well as possible.

* Relevant work on user interfaces to databases includes Query-By-Example and system R. One

should also consider more experimental ideas, such as automatic indexing and classification

schemes, for their possible relevance to Ada libraries.

Notice that the proposed design lends itself to a distributed implementation, so that users at

multiple sites could share results. This could be achieved by having all indices available at all

sites, but not necessarily all programs at all sites. (This is like having an inter-library loan

system, with a system-wide catalogue at each library.) At the expense of greater retrieval time,

it is also possible to avoid having all of the catalogue at each site.
O

2.6 User Interface and Management Issues

The user interface to the library should provide features not available directly in Ada, such as

high resolution graphical, and possibly even audio, output of relevant information and

structures. Choices could be presented to a user interactively with pop-up multimedia menus

(these might involve icons that are suggestive pictures, words and/or phrases), with (optional)

descriptions (that might be audio and/or visual) of the meanings of these choices available at

various levels of detail. This would permit users at various levels of skill and experience to use

the system, and to learn better how to use it as they do so. One can also imagine having >".-'---"

computer generated sound movies that explain how a given system or component works. .-

It would seem worthwhile not only to enforce aspects of good programming style, but also to

reinforce, encourage and teach it with built-in on-line system features. One thinks, for example,

-A.---A.:
..., .,.. ,... ,.. ' . -,.: - ,..., ,.,,..., , , ,., . -. -.. .. : . -, , , . . .: .-. ,, . . ., -. :

45 0

of the powerful reinforcement techniques in video games. It would appear that a great deal

could be done to support interactive learning about Ada, about the library system and about its

methodology, while users are actually using them. There could be, for example, an on-line --.

explanation capability derived from the expert systems already mentioned.

In the area of visual interfaces, an interesting possibility is to animate packages or other AMs .

in a system, that is, to generate a "cartoon" sequence of iconic representations for the abstract

data types (ADTs) involved, such that changes in the display correspond to changes in the state

of the AM. This is not so difficult as it might sound at first, since default iconic representations

can be automatically generated from suitable equational specifications for the ADTs, and these 0

might well already be in LIL packages for these types. These default icons consist of boxes

containing data items, strung together in lines, or in trees. For many familiar data types, this

gives the usual graphical representation. Among these are lists, queues, stacks, arrays and -

trees. For others, it does not, and some additional work would be required to get the usual

representation. lowever, it should never be necessary to write complex display programs, but

only to supply particular iconic representations for ADT constructors, since the way that they

are to be put together is available from the algebraic representation. Going a little further, it 0

should also be possible to automatically generate an audio commentary to accompany such a

display sequence. The value of such animations for program understanding and debugging -"-

would certainly be immense.

Recent research on how people actually describe programs [Burstall & Weiner 80] might be

utilized to make program documentation and the library classification scheme easier for users to

understand and to use. This research shows that a number of different descriptive structures 0

are used for different purposes, and that these are regularly embedded within one another in

specific ways. The structures used include the following: explanations, e.g., for describing

data structures; plans, e.g., for describing high level organization; stories, e.g., for giving -

historical information about program development; and (what have been technically called)

pseudo-narratives, in which program entities participate in a story-like structure as
"characters." While simple stylized formats will be adequate for small library entities, higher

level schemes like those discovered by Burstall and Weiner will be needed to organize the

documentation of larger assemblies of library entities. We propose that these descriptions be

interactively system prompted, and include such features as interface syntax, input constraints,

oo. *. • .-.-.

46 S

exceptions, side effects, output properties, design decisions (e.g., space-time trade-offs) and

performance.

It may seem anticlimactic to conclude a fairly technical paper with a discussion ' management

issues. However, experience makes it clear that unless such issues are handled properly, it will

be difficult or impossible to effectively use software development tools.

It appears that each successive generation of software development tool has been significantly

more expensive than the previous one. Compilers are much more complex than assemblers; and

an Ada environment is an extraordinarily complex and expensive thing. However, these tools

are still much less expensive than corresponding hardware tools, such as fabrication lines.

Thus, it seems very strange that there is such great reluctance to invest significant amounts of

money into research and development for software tools. This is especially true in view of the

fact that more and more of the cost of real systems now lies in their software rather than their

hardware. It should be noted that Japanese usoftware factorieso have been reported to achieve

remarkable rates of reusability, from 60% to 80%. Thus, it seems that unless these

management policies change, both in government and industry, the United States may fall

behind other countries in the important area of software productivity.

2.7 Acknowledgements

I would like to thank Drs. Ole Oest, Jose Meseguer, and Karl Levitt for their very valuable

* comments on drafts of this paper. Professor Rod Burstall is particularly thanked for his careful .-. -

reading of a late draft.

2.8 References

[Balzer 811 Balzer, R.
Transformational Implementation: An Example.
IEEE Transactions on Software Engineering SE-7(1):3-14, 1981. - S

* [Burstall & Darlington 77]
Nrstall, R. M. and Darlington, J.

A Transformation System for Developing Recursive Programs.
JACM 2.1(1):44-67, 1977.

.0 ''"

47h

[Burstall & Goguen 77]
Burstall, R. M. and Goguen, J. A.
Putting Theories together to Make Specifications.
Proceedings, Fifth International Joint Conference on Artificial Intelligence

5:1045-1058, 1977.

[Burstall & Goguen 801
Burstall, R. M., and Goguen, J. A.
The Semantics of Clear, a Specification Language.
In Proceedings of the 1979 Copenhagen Winter School on Abstract Software

Specification, , pages 292-332. Springer-Verlag, 1980.
Lecture Notes in Computer Science, Volume 86.

[Burstall & Weiner 80]
Burstall, R. M. and Weiner, J. L.
Making Programs more Readable.
1980.
Proceedings, International Symposium on Programming, Paris, April.

* [Buxton & Druffel 81]
Buxton, J. N. and Druffel, L. E.
Requirements for an Ada Programming Support Environment: Rationale for

STONEMAN.
In Hunke, H. (editor), Software Engineerin Environments, pages 319-330.

North-Holland, 1981.

[Cheatham 83] Cheatham, T.
Reusability through Program Transformation.
In Biggerstaff, T. and Cheatham, T. (editors), Proceedings, W,.rkshop on

Reusability in Programming, , pages 122-128. ITT, 1983. 0

[Cohen & Jackson 83]
Cohen, B. and M. I. Jackson.
A Critical Appraisal of Formal Software Development Theories, Methods

and Tools.
Technical Report, Standard Telecommunication Laboratories, Harlow,

England, June, 1983.
ESPRIT Preparatory Study.

[Colmerauer, Kanoui & van Caneghm 79]
Colmerauer, A., Kanoui, If. and van Caneghem, M.
Etude et Realisation d'un Systeme Prolog.
Technical Report, Groupe d'Intelligence Artificielle, U.E.R. de Luminy,

Universite d'Aix-Marseille II, 1979.

K..:.
..................................

.---.......... ...

48

ICooprider 79] Cooprider, L. W.
The Representation of Families of Software Systems.
Technical Report, Carnegie-Mellon University, Computer Science Department,

1979.

Ph. D. Thesis.

[De Marco 78] De Marco, T.
Structured Analysis and System Specification. -.

Yourdon, 1978.

[DoD 80] United States Department of Defense.
Requirements for Ada Programming Support Environments.
February, 1980

[Feather 82] Feather, M.
A System for Assisting Program Transformation.
ACAI Transactions on Programming Languages and Systems 4(1):1-20, 1982.

[Goguen 71] Goguen, J.
Mathematical Foundations of Hierarchically Organized Systems. S
In E. Attinger (editor), Global Systems Dynamics, , pages 112-128. S.

Karger, 1971.

* [Goguen 82] Goguen, J. A.
Ordinary Specification of Some Construction in Plane Geometry.
In J. Staunstrup (editor), Proceedings, Workshop on Program Specification, ,

pages 31-46. Springer-Verlag, 1982.
Lecture Notes in Computer Science, Volume 134. ..-. -

[Goguen 83] Goguen, J. A.
Parameterized Programming.
In Biggerstaff, T. and Cheatham, T. (editors), Proceedings, Workshop on

Reusability in Programming, , pages 138-150. ITT, 1983.
To appear in IEEE Transactions of Software Engineering.

[Goguen 9, Burstall 801
Goguen, J. A., and Burstall, R. M.
CAT, a System for the Structured Elaboration of Correct Programs from

Structured Specifications.
Technical Report, SRI, International; Computer Science Lab, 1980.

[Goguen & Burstall 84]
(oguen, J. A. and Burstall, R. M.
Introducing Institutions.
In E. Clarke and D. Kozen (editor), Proceedings, Logics of Programming

Workshop, , pages 221-256. Springer-Verlag, 1984.
Lecture Notes in Computer Science, volume 164.

............... ".

,,, .,... .. ,. .,...,...... ,......-....... .. ,,....................- ..,,.... ,. ... ,..,..-..- .. :,;
. •-+ o..,•. . ..o jo Q.oo . * - .- ,, . . ,o . - . • . , , + .

49 S

[Goguen & Meseguer 82a]
Goguen, J. A. and Meseguer, J.
Universal Realization, Persistent Interconnection and Implementation of

Abstract Modules.
In Proceedings, 9th International Colloquium on Automata, Languages and

Programming, . Springer-Verlag, 1982.
Lecture Notes in Computer Science.

[Goguen & Meseguer 82b] "
Goguen, J. and Meseguer, J.
Rapid Prototyping in the OBJ Executable Specification Language.
Software Engineering Notes 7(5):75-84, 1982.
Proceedings of Rapid Prototyping Workshop.

[Goguen & Meseguer 84a]
Goguen, J. and Meseguer, J.
Equality, Types and Generics for Logic Programming.
Technical Report Technical Report CSLI-84-5, Center for the Study of Logic

and Information, Stanford University, March, 1984.
Also to appear in 1984 Logic Programming Symposium, Upsala, Sweden.

[Goguen & Meseguer 84b]
Goguen, J. A. and Meseguer, J.
An Initiality Primer.
?, 1984.
To appear.

[Goguen, Meseguer & Plaisted 821
Goguen, J. A., Meseguer, J., and Plaisted, D. -

Programming with Parameterized Abtract Objects in OBJ. S

In D. Ferrari, M. Bolognani and J. Goguen (editors), Theory and Practice of
Software Technology, , pages 163-193. North-Holland, 1982.

[Green et al. 811 Green, C. et al..
Research on Knowledge-Based Programming and Algorithm Design.
Technical Report, Kestrel Institute, 1981.

[Ilabermann & Perry 811
Ilabermann, A. N. and Perry, D. E.
System Composition and Verion Control for an Ada.
In Hlunke, I. (editor), Software Engineerin Environments, , pages 331-343. 0

North-Holland, 1981.

[Jackson 751 Jackson, M. A.
Principles of Program Design.
Academic Press, 1975.

.

• . . .

I . ••• °• •,° '.

50

[Krieg-Bruckner & Luckham 80]
Krieg-Bruckner, B. and Luckham, D.
Anna: Towards a Language for Annotating Ada Programs.
SIGPLAN Notices 15(11):128-138, November, 1980.

[Liskov et al. 79] Liskov, B. H., Moss, E., Schaffert, C., Scheifler, B., and Snyder, A.-.4
CLLJ Reference Manual.
Technical Report, MIT, Lab for Computer Science, 1979.

[Litvinchouk & Matsumoto 83]
Litvinchouk, S. D. and Matsumoto, A. S.
Design of Ada Systems Providing Reusable Components.
In Biggerstaff, T. and Cheatham, T. (editors), Proceedings, Workshop on

Reusability in Programming, , pages 198-206. ITT, 1983.

[Parnas 72a] Parnas, D. L.
On the Criteria to be Used in Decomposing Systems into Modules.
Communications of the Association for Computing Machinery 15, 1972." :2

[Parnas 72b] Parnas, D. L.
A Technique for Software Module Specification.
Communications of the Association for Computing Machinery 15, 1972.

[Parnas 76] Parnas, D. L.
On the Design and Development of Software Families.
IEEE Transactions on Software Engineering SE-2(1):1-9, 1976.

[PrietoN-Diaz Nighbors 82]
IPriet,-Diaz, R. and Neighbors, J.
Module Interconnection Languages: A Survey.
Technical Report, University of California at Irvine, August, 1982.
ICS Technical Report 189.

* [Resnikoff 80] Resnikoff, Howard.
Optimal Hierarchical File Organization.
Technical Report, National Science Foundation, 1980.

[Rich K Waters 83]
Rich, C. and Waters, R. C.
Formalizing Reusable Software Components.
In Biggerstaff, T. and Cheatham, T. (editors), Proceedings, Workshop on

Reusability in Programming, , pages 152-159. ITT, 1983.

[Scherlis k Scott 83].
Scherlis, W. and Scott, D.
First Steps Towards Inferential Programming.
In Mwson, R. E. A. (editor), Information Processing 83, , pages 199-212.

Elsevier, North-Holland, 1983.

_ S
"" '.?-- -- .-" -? -? ?-."- -" :'-.?-'i-'--;.- -'. "i ":-':- i.;Y :-"i-'>'i-- " 'i" i'.'-> ? i.'. :.' • .i -i'-''.i-i"ii':i--'..--. .-.. . . .'-.% 2 >>

. ..o°.. ."°* " • -' "°°' .-" ° " " ". .° q% '-•- '.°. °• -"- """. .""t % ° """- "•"°k

-p ° o -• -. °-, . - ° , , - •. -. • , •--.•.- . . . ,

51 S

[Standish 831 Standish, T.
Software Reuse.
In Biggerstaff, T. and Cheatham, T. (editors), Proceedings, Workshop on

Reusability in Programming, , pages 45-49. ITT, 1983.

[Tichy 70] Tichy, W. F.
Software Development Control Based on Module Interconnection.
In Proceedings, Fourth International Conference on Software Engineering, ,

pages 29-41. IEEE, 1979. 5

[Tichy 80] Tichy, W. F.
Software Development Control Based on System Structure Description.
Technical Report, Carnegie-Mellon University, Computer Science Department,

1980.
Ph. D. Thesis.

r - -S

. .O

'.S

p ,

S .

i " . . .

. .

-. ,E,.:.

52

3 Prepared Lectures

The following subsections contain summaries of the talks given in the workshop, in the order

that they were given (see Appendix 1). After each summary is a digest of the discussion that

°* followed that talk. The slides from the talks that were available and reproducible are given in

" Appendix IV.

"- 3.1 Why DoD Needs Software Environments

by Brian Schaar, AJPO and Jack Kramer, IDA

Brian Schaar first considered goals as they existed five to ten years ago. Congress was

interested in why DoD weapons systems cost so much, and why these costs were continually

escalating. It seemed that greater utilization of general purpose digital computers, as opposed

to special purpose computers, would save money. In 1975, a Higher Order Software Working

Group (HOLWG) was convened to consider language and environments. This lead to Ada. In

1984, Ada will be required in DoD systems; this is the first time that DoD has required a single

higher order language. AJPO will be concerned with supporting the transition, and will give

* increasing support to work on Ada education.

-* Jack Kramer then discussed prospects for the STARS program, and indicated the important

role that Larry Druffel had played in both Ada and STARS. Even in the early HOWLG, there
was skepticism that Ada alone would be a solution to the reusability problem; it was recognized

that enviornments would be needed, including catalogues for libraries, and help to users in --

deciding which package is best. We still do not fully know what an environment is. But we

feel the need for a software components industry, providing for example a basis for a rapid

'- prototype that can later be modified. The hardware industry is relatively more successful,

because it has standard interface conventions, catalogues of components and understandable

* specifications. Specification is more of a problem in software; and design for modifiability is an

even greater problem. For example, testing should be integrated into environments and used -.

throughout the lifecycle.

Brian Schaar then discussed various related projects, such as ALS (Ada Language System),

CAIS (Common APSE Interface Set), AIE (Ada Integrated Environment), KIT/KITIA (KAPSE

Interface Team/KAPSE Interface Team Industry and Academia) efforts.

". ".°', - °° °-.-° °-•- ° ° .'• " ..-... ".."....-.....".............".........'.....'..............."" "° .°° . . .°° " . ° . .. ".. °"'.'

53 0

3.1.1 Discussion

Tichy: Will free Ada compilers be available? It will be hard to use Ada if it is expensive.

Schaar: We are working on this.

Cohen: It is the intention that all government supported software tools would be provided as

GFE (goverment furnished equipment).

Dempsey: What is happening with CAIS? KIT is seeking to integrate the Army and Air Force

interfaces, and has produced a document, CAIS 1.1, containing guidelines for tool writers and

identifying important interface problems.

Kramer: The goal of KIT is to identify a minimum set of tools, and to ensure that they can be

moved from host to host.

3.2 Conceptual Architecture for a Software Engineering Environment

by Samuel T. Redwine, Jr., IDA

This lecture presented the results of an initial planning effort for the Joint Services Software

Engineering (SEE) Environment Effort, and was described as having a preliminary character. S__

The primary components of the architecture were presented in a three-dimensional diagram.

The three dimensions of the diagram represented: the components of the environments; the

linguistic entities used in the environment; and various factors in the context in which the -

environment is used. Among some specific points made, the use of standard metagrammars was

recommended for capturing dynamic typing. A number of database concerns were also isolated,

including: interaction with the rest of the SEE; what its contents and structure should be; how

to describe the contents and structure; and standardization.

3.2.1 Discussion

" Cohen: is a universal transinter practical for CAIS? Is CAIS an intermediate language?

* Redwine & Kramer: Portability of software tools is a major goal of CAIS. S

Rudmik: I am worried about standards. UNCOL, meant to be a standard intermediate

language, failed. We should not try to standardize where there is not enough understanding.

Redwine: It is not clear when methodology technology will be ready. Trial use military

standards might be useful, and we should also consider International Standards.

Kramer: DIANA is now accept,,d (or almost).

..............................-....... .'
• o .' ."

54 6

Redwine: It is important to have standardization in mind early.

3.3 An Overview of Ada Libraries 0

by Karl N. Levitt, SRI International

This talk was primarily an introduction to the SRI nstrawman" approach to Ada Libraries.

Technical details are treated in the talks by Goguen and Meseguer. The present talk

considered three main topics: (1) out" overall goals for a theory and practice of reusability; (2)

available technology for Ada Libraries; and (3) needed new technology. Following a general

motivation for reusability, features of Ada that support reusability were reviewed, and it was

concluded that the Ada parameter mechanisms are a good basis, but there remains the question

of how to put modulr.:; together, how to capture design issues more easily than is possible just

with Ada, and how to document modules and systems. SRI's approach to these issues is

. considered in the paper and lecture by Goguen. It is emphasized that reusable code is not the

complete answer; for example, generic designs and requirements capture decisions not

conveniently statable in Ada. A major concern is how to document so that useful components

can be identified and retrieved. Existing documentation technology was reviewed, and it was

concluded that a standard database management system would be of considerable use as a first .: .-:.-

cut. However, it appears that more dynamic forms of documentation are needed for easier
understandability and modifiability. Towards improved documentation methods, ongoing work

at SRI on a system called PegaSys was described. PegaSys describes system structure (also

called mforme) using graphical methods in three ways: pictorial representations can be refined "

to yield more detailed forms; pictorial representations are linked formally to Ada code so that

they are assured to have computational meaning; and execution results can be graphically

displayed. PegaSys might be of great value in tracking changes to a system, since it identifies.

those system components that are impacted by changes to a single component. Similar methods. . -

are proposed for use in LIL, as described in the lecture by Meseguer.

3.3.1 Discussion

Cohen: How can you couple reusability to the software lifecycle? ..

Levitt: There is meaningful reusability at all stages of the lifecycle.

Livtintchouk: What is the form calculus?
• ",°'." "" 40

* . --. •...* *.-*."**.*'..*- -*".* *

. '

55 S

Levitt: The form calculus can be used to describe objects and how they interconnect. The form

calculus is used in the PegaSys visual programming environment being developed by Mark

Moriconi et al at SRI. Standard relations are Ocall-by-value,m odatafoow, etc., and new

relations are derivable from the standard relations.

3.4 LIL: A Library Interconnection Languge for Ada Programs

by Joseph A. Goguen, SRI International

The substance of Goguen's talk is included in his paper prepared for this workshop and given in

Section 2 of this report. The following is an abstract for that paper: a

This paper discusses problems, concepts and approaches relevant to an on-line library system

supporting the creation, documentation and maintenance of Ada software systems. The

ultimate goal of research in this area is to make Ada programming significantly easier, more

reliable, and more cost effective by using previously written Ada code and previously

accumulated programming experience to the maximum possible extent. The main suggestions

made in this paper are as follows: systematic (but limited) use of semantics, by explicitly _

attaching theories (which may be informal) to program units by means of views (a new concept

defined in this paper); use of library entities and a library interconnection language (called LIL)

to assemble programs out of existing code; maximal use of generic library entities, to make

them as reusable as possible; support for different levels of formality in both documentation and

validation; and finally, facilitation of program understanding by animating abstract data types

and module interfaces.

3.4.1 Discussion

Redwine: How does this relate to programming in the large?

Goguen: Programming in the large is the assembly of modules into larger programs, and

typically involves many people and long lifetimes; programming in the small is concerned with

writing the modules. The LIL language is specifically designed for programming in the large

with components that are written in Ada. An environment based on LIL could automatically

generate requirements documentation and management information from local documentation

and the system design, as expressed in LIL.

:-. : -. . ._!9

...

7 7 - .7 7

56 0

Myers: Is LIL oriented to the package level, or to the system level?

Goguen: The entities that stored in the LIL database cover a very broad range, and LIL

operations manipulate both packages and higher level descriptions; the purpose of these

manipulations, of course, is to create systems. For example, LIL can Oslicem a package to

reduce its functionality, and at the same time, automatically slice the corresponding

documentation. More generally, the operations of instantiation, enrichment and restriction are

applicable to all kinds of library entities.

Dempsey: This raises the question of what should be stored in the database. There are some

entities that should be treated separately.

Goguen: Yes. We need to be able to create relatively small views of a potentially very large

database. It is obvious that code should be stored in the database, both in compiled and raw

form. At the higher levels of information, having more of a structural or management function, .

it is less clear what should be stored and how it should be manipulated. Although LIL makes

some concrete proposals, these issues need further research.

P,.mpsey: flow do you deal with different kinds and levels of abstraction? .

Goguen: One of the wonderful things about Ada is that it clearly distinguishes between vertical

and horizontal abstraction. Horizontal abstraction has to do with parameterized modules, while .-.

vertical abstraction has to do with step-wise refinement. However, this power cannot be

sufficiently exploited in Ada programming methodology, due to limitations of the Ada compiled

program library concept.. A good library interconnection language could solve this problem.

Rudinik: Is LIL really a good language from the user's point of view? 0

Coguen: The syntax chosen for LIL in the paper I wrote for this workshop is intentionally

relatively close to mathematics, as well as to Ada. However, we have ideas for a much more --

natural user interface, involving menus, graphics, animations and so on; the user need not see

1,1[, in the internal form described here. Meseguer will discuss aspects of this in his talk.

Levitt: Could you summarize some of the limitations of Ada that LIL helps to overcome? *

(;oguen: Ada's separate statement prevents reusing compiled code for stubs in more than one •

package; 1IL has no such limitation, and instead relies on partially compiled code. Also, if F(X)

and (;(Y) are generics, Ada provides no way to compose them to get a new generic G(F(X));

- S h' N' h-
_ O .

• :' . ._ : -. : ..;.,- . .. : .: . :. -: .: -. ..- :- .: :..: ' :. .: .: '. .: :_ ..: :. -:7. - : " ;7. -: : - . : ; -; .. : ; -: -.:. ;. :. . .- . . ; .-.-, - . --... .-.

np 57 -

instead, one must first apply F to an actual A, and then one can get G(F(A)). LIL permits fully

general composition of generics, both horizontally and veritically.

Litvintchouk: At what point do we go from LIL to Ada?

Goguen: One can think of LIL's modules as being like parameterized library cards; one can fill -.

in parameters, and get various books; then one can combine these books to get still larger

books. However, what is actually being put together is partially (or, when possible, fully)

compiled Ada code. LIL is used to express system organization, rather than executable code per

se.

Litvintchouk: It seems to be an advantage that this approach checks consistency between

levels.

Goguen: Yes, the otheorieso associated with interfaces in LIL permit one to declare both

semantic and syntactic requirements for consistency. However, the semantic requirements can

be expressed at a variety of levels of precision, from just English to some formal specification

language. Then, when an actual is to be substituted into a generic, it can be made clear what

properties that actual must have for things to work correctly. LIL uses the *view, concept as a

obridgeo between the actual and the requirement theory of the generic, to say just how the

requirement is actually satisfied. For exanple, with a SORTING generic, one should require

that there is a partial ordering relation on the actual. But if we choose the naturals as actual,

there is more than one such partial ordering available; suppose that we want to use

ndivisibilityo as our ordering; then the view should express this, and perhaps also give an

argument (formal or informal) for why it really is an ordering relation.

Babcock: Can all Ada code be stored in compiled form? Does LIL code compile into real code?

For example, what if a stub is to be used in another package?

Goguen: l,11, stores intermediate code, that is compiled when the parameters are availalble.

Babcock: Could)IANA deal with the intermediate forms required by LIL?

Goguen: That's a good question. I think that something like DIANA would be sufficient, but it

will take more research to find out in detail exactly what is needed. It appears that generic

ad(dresses are needed, which I understand DIANA does not provide.

. .' . .o . . . 7.- 7....
~-------

,-' ,_- -._. .- ._ ,_ _.'-_..- ,:,_-, ..- . - .,. = ..._, a : . .-... -_._ ,_ .._... .".._..-..... ,........... ,, .-....--.,. ... "

58 6

3.5 DCP Approach to Ada Libraries

by Andres Rudmik, GTE

This lecture summarized aspects of the DCP (Distributed Software Engineering Control

Process) project at GTE Network Systems R&D in Phoenix, including the project goals and

approach, and emphasizing the use of Ada libraries to support software reusability. Among the

goals were that the DCP should be distributed and portable, should support centralized control

of development, reduce software costs and improve software quality, support use of Ada for

design and implementation, and should integrate software development tools. The approach

involves using a relational database supporting configuration management, change tracking,

program libraries, and document generation. Reusability is to be achieved by using Ada
libraries and a "DCP Encyclopediao which functions as a library catalog. It is necessary to

have a reusability methodology, involving the specification, design, implementation, S

documentation and testing phases. Documentation is especially important.

3.5.1 Discussion

Tichy: What happens to old packages? __

Rudmik: Configuration management keeps track of who uses what; notifies users of all

changes; we are not building in a lot of rules just now.

Tichy: You need to build in options now, if not rules.

ILevitt: What is your experience with DCP?

Iudmik: The project is only 9 months old. We are now using DCP to build DCP, and trying to

demonstrate there are no performance degredation; also, we are trying to use Ada as a S

command language.

,itvintchouk: \We should not be deluded by the success of the developers using DCP, since they :.i. -

know it, and are highly motivated to succeed. Perhaps you should try an experiment with two

groups, package writers and package users.

W itte: Ilave you looked at menu-tyl)e access.

Iuilndik: We are looking at that.

• .. "*.

..

59 •

3.6 Flexibility vs. Efficiency for Reusable Components

by Allen S. Matsumoto, ITT

This lecture was concerned with the trade-off between flexibility and efficiency for reusable

components, and more specifically, with the attempt to define reusability and generality. It was --.-

noted that a more general Ada package would involve fewer restrictions and therefore permit

more instantiations; i.e., it would be more flexible. On the other hand, a more specific package

would have more decisions already made, taking into account greater knowledge of context, and

then permitting greater efficiency in that context. This was illustrated with various packages

for sorting arrays, showing that early design choices, which may even have been made at

specification time, can undesirably limit later implementation options. A tentative definition of

generality (and thus of reusability) was offered in terms of the complexity of the graph of

theories used in the specification of the package.

3.6.1 Discussion

Witte: How do you measure quality of design decisions; for example, formats, size of objects,

and distribution of data?

Litvintchouk: It is hard to define *best" or even "better," because of the tradeoff between
efficiency and reusability.

Kramer: One should maintain semantic equivalence throughout the life history of a design, so

that one can backup and reconsider decisions.

Matsumoto: The complexity of the graph relates to how close one is to the base language.

Redwine: Another issue is how humans intuitively view complexity; what someone is used to is

important.

Matsumoto: Sometimes a user sublimely ignores an issue, such as properties needed for the

ordering relation on the elements to be sorted.

Cohen: When developing a secure system, it is convenient to view the system as having two

parts: the trusted part that must be correct to assure security, and the rest of the system, that

has no bearing on security, then, one wants to minimize the amount of code in the trusted

part. This gives a different loss function.

Matsumoto: "Shortestm is not necessarily mbest. m

_0

!:!!::- : :::.- :::- : - -- : :: : -:::- ,:::. ::-.-:::-. : -.: .:-. .::::. -: .--.- -- .: . ..======== = === . -. -. :. ::. -:

. ._. = = "= = =.=.=.=," .' . .' ==o _o = " ' " .=.'.'=. ," • .' . * ' .' . . .' -*,* * ,- .. _. , *.*. , .- ,•.-.- = -?°=.. -.

60

3.7 Mapping Clear Specifications to Ada Packages

by Steven Litvintchouk, Raytheon

The goal of the work presented in this lecture was the systematic development of Ada packages

on skeletons which parallel the development of specifications written in the Clear specification

language of Burstall & Goguen. The approach is to first develop system specifications in Clear,

and then to drive the Ada design from this specification. This should facilitate the design

process and also the reusability of Ada components. The use of features from Cleqr is intended

to supplement the largely syntactic package interfaces provided by the Ada language itself.

The mapping from Clear to Ada is natural and relatively simple, because of similarities in the

way the two languages handle structure.

3.7.1 Discussion

Goguen: What are your more specific plans for this project?

Litvintchouk: In the next year, we hope to use dynamic logic in Clear, so as to be able to

handle tasking. We believe that this is better than temporal logic for specifying Ada programs,

because it is based on nondeterminism.

3.8 General Requirements for an Elementary Math Functions Library

by Bruno Witte, NOSC

This lecture discussed a draft document outlining requirements that should be satisfied by an
Ada library of elementary mathematical functions. For example, functions that are likely to be

used together should be packaged together. Separately for each elementary function, there

. should be accuracy tests of various kinds, such as with random arguments, range reductions,

single-precision, separate test packages. Reference should be given to publications documenting

the supporting mathematical theory for an algorithm.

3.8.1 Discussion

S Babcock: Sometimes we want to have bodies written in assembly code in order to get

efficiency. This is more difficult to do in Ada than in FORTAN; also, it is harder to tap
S

hardware hacks in Ada.

(oguen: It would be nice if documentation standards for other kinds of software were as well

• :-..-.... ...~ ~~~. .,-.--. -........... •.....-... •-......,:"::i

• ~.*: .:. .:: .:::: .::::::::::::::::::::: :'-: .:::::::::::::: ::: : . ." : : ::i: . ===============:i:::::;- _i2

* . -.- rn

61 -.

developed as they are for numerical software. In particular, the close links to the theories

provided by numerical analysis strikes me as worthy of immitation by other areas of software.

3.9 Knowledge Based Tools for Data Type Implementation

by Gordon Kotik, Kestrel Institute

This lecture discussed aspects of Kestrel's CHI environment that are relevant to data types,

including a theory of data type implementation and a tool for implementing data types. The

* relevance to Ada libraries was also considered. CHI is a knowledge based programming

environment having a programming language called OV', a database for representing V objects, S

and tools for reading, printing, structurally editing, and compiling (into Lisp) V objects. V is a

wide-spectrum, very high level language for specifying, writing, and improving programs; it has

program transformation rules, high level data types (sets, sequences, mappings, relations,

products, unions, ...) and logic constructs. Programs and knowledge are expressed as rules in

the CHI database; multiple contexts are maintained in a tree structure. V programs are

compiled by successive rule applications. The data type facility of CHI is intended to cope with

the fact that there may be a variety of different implementations with widely disparate

efficiency characteristics, depending on usage patterns. The solution is to have an 'efficiency

expert' to estimate the resource requirements of V programs; such an expert can be used to

guide the search for an appropriate implementation through a sequence of refinements.

3.9.1 Discussion

" Mathis: What is the difference between having lots of generics and having rules?
Kotik: Perhaps having lots of generics is like storing good chess moves for each position, while

-- having rules would help you deduce desirable positions.

" ' Matsumoto: One can use a sequence of generics, reflecting a sequence of design decisions.

-.-' Perhaps rules and generics are the same?

Kotik: Ada is clumsy with its parameterization mechanism, compared with what transformation

rules can do.

Goguen: Vertical structure can provide a lot of the flexibility of rules. Gordon's rule system is

probably equivalent to having a library of generics that is managed by an expert system, over a

module (or library) interconnection languge. Also, note th~t the problem of finding the Obest

implementation" is unsolvabl? tin the suise of recursive function theory) even if it is clear what

cost function should be appiui,'i.

.. .. ' . A -

* -. .r - -.- -

* 62

3.10 Library Organization and User Interfaces

by J. Meseguer, SRI International

S-: In order to maximize reusability and provide good programming support, an Ada library

K. environment should be organized to reflect the different levels at which users will interact with

the library. Also, relationships between different levels, such as design and code, should be

explicitly represented to facilitate "navigation" across levels; this is important to facilitate both

program understanding and effective methods of library search.

This talk proposed a semantic-based library organization oriented towards maximal reusability .

not only of code, but also of designs. Thus, besides packages, designs (expressed in LIL),

theories, specifications, views, horizontal and vertical structure, and managerial information

should be stored. The organization suggested is that of a nested hierarchy consisting of three

main levels:

1. Application domain hierarchy.
2. Module interconnection language hierarchical structure.

3. Ada package hierarchy (subdivided into specification and body sublevels).

Semantic relations between levels are also stored. Between levels I and 2 there are hierarchy

preserving relations linking theories to application domains; between levels 2 and 3 one has

views connecting LIL theories to Ada packages. Traveling across levels is guided by semantic -

relations, that also facilitate automatic or semiautomatic cataloguing and retrieval.

The user interface should exploit the graphical representition potential available in the nested

_- hierarchy of levels. A multimedia interface, combining text, graphics, kinesthetics, and speech

would be appropiate. Animation of specifications and programs could be provided by the

interface to facilitate program understanding and testing. This possibility would be directly

available if package specifications are written in an executable equational specification language

like 013J.

3.10.1 Discussion

Rudmik: flow long would it take to implement a graphical editing system like the one you

have descril)ed?

Goguen: ("sing the graphics capabilities already available in a Symbolics Lisp machine, or a

I)olphin, perhaps something like four man years.

:i "'- ''Y -:- -i:"- i i":-" ." .:- .":'- i -:" -'.- : ."-'"i-i :..> : -- i-.:'i' :'-i'i'-" -"-".:::' -:- '.":::.' :- -% i - -. :::..i:S '

63

3.11 Version Control in Program Libraries

by Walter Tichy, Purdue
0

The development database is central for any programming enviroment, as it supports

documentation, editing, execution and project management. Version control is an important

technique for maintaining the consistency of this database. Documents are named, separately

identifiable collections of information, and may be either source documents or derived

documents. The latter can be fully automatically generated from the former. Attributes of

source documents include author, data/time, phase, and type/language; attributes of derived

documents include the source documents and generation process used, and the date/time of

generation. A revision is a source document created by manually revising an existing -..

document, and a revision group is a set of revisions related to one another by manual

revision. To update a revision group, one must checkout all revisions to be modified, enter an

edit/make/test-debug cycle for each, and then checkin the modified revisions. Temporary

fixes, experimental modifications, update conflicts and parallel developments can all lead to

branching of revision numbers. A configuration is a collection of related but individual

documents or other configurations; examples include link configuration, test configuration, and

program+documentation+manual. A configuration description is a collection of names of

component documents of a confuguration, possibly only partially resolved, and can be used for

automatic generation of derived documents. Some incremental techniques for efficiently .

implementing databases of revisions and confugurations were presented.

3.11.1 Discussion

Cohen: Is only one version active at a time?

Tichy: No, every tip node of a revision group graph is an active version.

Dempsey: How do you differentiate between checkin/checkout and just grabbing a copy? -

Would some Al-like rules be useful here?

Tichy: We do have a "copy" operation; also, the user can indicate a plan associated with

checkout.

Dempsey: What makes global regeneration so expensive?

Tichy: It is because you have to recompile.

Mathis: Why no, ,;t.,':e text on a side branch irstead of regenerating?

S

-- .-7 , W. I . A. -- . - ..L.- - ...L. FLiz- :- .* ,- * ..* .- . 7. -=. - .- - _

64

Tichy: Each delta is about 8%, and these add up.

Goguen: When (1.08)N is large enough, it will be cheaper to merge.

Schill: Stonebreaker is using C to get user definable datatypes for Ingress.

Rudmik: Database technology will give us even more performance than configuration

management systems. -

3.12 Using ANNA for Specifying and Documenting Ada Packages

by Friedrich von Henke, Stanford University

ANNA is an annotation language for Ada currently being developed at Stanford by the author,

B. Krieg-Bruckner, D. Luckham and 0. Owe. This lecture presented basic ideas underlying

the ANNA design, and an overview of ANNA features useful for package specification and .

documentation. ANNA extends Ada with formal comments to express additional properties

of packags, leaving Ada untouched; thus, an ANNA program is still a legal Ada program. A . .

major goal of ANNA has been to provide precise (formalized) documentation, as a basis for

processing by machines, e.g., formal verification; however, it can also be used as a basis for less

* formal validation. Ada concepts and syntax are used as far as possible. ANNA virtual text is

used to introduce specification concepts, auxiliary functions, packages and semantic constraints

for generics. An ANNA program is consistent if the constraints imposed by the annotations

are satisfied by Ada text.

3.12.1 Discussion

Witte: Why would a human being bother to write ANNA annotations? Also, how to

*- annotations differ from just comments? .

. von |lenke: ANNA annotations can be formally checked, since they are subject to Ada syntax

rules.

Cohen For some applications, we need trusted processes, and ANNA can be used in specifying - .

and verifying properties desired of trusted software.

Kotik: Could you use ANNA for the balanced binary tree example that I presented? " -

von lenke: Yes, it can specify the behavior of a package that would maintain a balanced

. binary tre(.

.................. ,....."....
-~~~~~~~.°° o " .. o . .°- . .- ° .

.' " *' •'° • . .. *,,,. •.o°. °.. .. . '. ° °. - % . '. •"-.- % ..- %.'% • .%. . . % . .•°°

65

Goguen: Wouldn't you need modal logic for exceptions? Also, what about tasking in ANNA?

von Henke: Yes, you need Ostrong logico or modal logic for exceptions. ANNA does not

currently support tasking.

Litvintchouk: ANNA is semantically equivalent to theories, as in Clear or LIL, but they are
Oflattened out" in ANNA, so you lose a lot of the information and simplicity of a hierarchical

structure.
von Henke: Requirements on generics in ANNA are like Otheories," but not reusable, they

must be placed "in-linem each time.

Redwine: What about the EEC (European Economic Community) criticisms of ANNA?

von Henke: These were based on an earlier version; our language is now in better shape, we

have a new manual, and their criticisms are no longer valid.

Dempsey: Can you compile ANNA into runtime checks?

von Henke: Yes, for many constructs of ANNA.

Kotik: I don't think that you can compile all ANNA features into Ada; for example, what

about existential quantifiers?

Levitt: Why have two languages? For example, why have both Ada code and ANNA specs for

a stack?

von Henke: ANNA has much greater expressive power than Ada, so the specs should be easier

to understand.

Redwine: What about specifications? Why haven't they caught on?

von lenke: Specifications are being used in industry.

Levitt: Specifications are used mainly for security applications at present.

Goguen: Informal specifications, in contrast with formal specifications, are really very widely 9

used; we should use computer technology to permit handling informal specifications in a more

uniform and less burdensome way.

Redwine: Isn't this write-only notation?

Goguen: Techniques like those described by Meseguer for LIL will let the user see an animation

of the action of a program, generated d-rectly from the spec; the user doesn't have to read the

math itself to get the '1-rcfil rf it c,,;tCn t.

..-.--
S°-. •...-~ . -. ,. °° • ... °~-°•• . • , , -. . . .° "-"% - .

. '"-• - u

66 S

Cohen: ANNA is justified by its use in WIS.

Kramer: Customers are worried about the trustworthiness of code; they want it to be verified if ...

possible.

4 Reports of the Working Groups

Participants of the Ada Program Libraries Workshop spent their last day and a half in Working 0

Groups focussed on special topics of particular interest. Seven working groups were originally

proposed. Each working group chair was asked to prepare a list of at least five initial

questionsm to introduce the area of interest to be covered by the working group to the whole

workshop so people could choose which working group they wanted to attend. Four working

groups were actually formed, and their reports are given in four subsections below. Each report

includes its list of initial questions.

4.1 Library Documentation

This subsection contains the report of the Library Documentation Working Group, written by

its chairman, Jack Kramer of IDA.

4.1.1 Participants

The following participated in the working group discussions; an ARPANET address is given for
each.

* Jack Kramer, IDA - kramerausc-eclb

* Joseph Goguen, SRI - goguenLsri-csl

* Dave Babcock, ROLM - babcock:usc-eclb

* Beverly Kedzierski, Kestrel - kedzierskiOkestrel

* Friedrich W. von lienke, Stanford - fwh@su-ai

e Steve Litvintchouk, Raython - brunix!rayssd!sdlcucb-vax

* Bruno Witte, NOSC - bwitte~usc-eclb

4.1.2 Initial Questions .

The following questions were presented for the Library Documentation working group.

1. What is a component?

• A component could be anything from a complete database management system to a

single Ada statement. The most commonly thought of component is the Ada

package, but is this really the only definition of a component? Would a particular

algorithm coded in Ada not also be a useful component?

.

~~~~.._.. ,--_....'_, ,_..'-- ..... '..._.'.-._,. . , _ .-.-...... .......- ;_-..... ..• .,.....,



67

Does a component have to be only Ada code? Why couldn't it be a design, or a set

of requirements? Does a component include the documentation for it, or is the

documentation a component by itself? .

2. Are components flat or layered?

* Can some components be constructed from other components or do each of the

parts and the whole need to have all of the same documentation?

3. What information is necessary? •

* What kind of documentation needs to be provided for each component? Source

code if the component is code. What about test data, design parameters and

choices, the requirements the component is to satisfy, critical performance

requirements and design decisions?

4. What information is required to help the user (meta)?

* There can be a lot of information which would be useful to a user both in selecting a

particular component, but also in using it after it has been selected. How might this

component best be integrated into a new system? Where might algorithms be

altered without effecting the component structurally? Where and how should this
component be tested as part of a larger system? Why was this component

constructed instead of using some other component? Some idea of why the designer

thinks this component is better than all the rest. How it was tested, were any

formal techniques used?

5. Life cycle of components and their associated documentation?
We are fairly careful about identifying the life cycle and documentation

requirements for DoD systems. Are not the same reasons applicable to the software
and documentation of components in a library? Are we going to have to worry

about versions of components and tracking users and saving old versions, etc?

6. User confidence in the product? What tests?

* Should the documentation include a detailed discussion of what kind of testing, how

it was done, the tests themselves, the test results, and a statement by the designer of

the completeness of the testing? Will there be some sort of standard testing format

and requirements so that a "consumer survey' type of organization will be able to

consistently judge components?

4.1.3 Initial Working Group Discussions

1. Initial disussions centered around the questions above, and then began to focus on certain

issues. Generally, it was agreed that a library mechanism needed to address both the near

term and the long trn snlutions. It was Also agreed that the software industry was much

more a cottage industrv at present than the more formalized and controlled hardware

-9

-'" . .. . . ... ...-.-. - . . ... . . . . . ...- . . . .... . . . . . . .. .... . . . . -. . -. '.:-..!

% .. . . . , '. , .- . o " - .- . . . '. ° o .- o - - ° .- o . ° " ° *. - ,% . .° . " , • ° . °



68 0

components industry. There are some good reasons to believe that there will always be a

large number of ocottageO inputs to a software components library. This will probably

influence the requirements for documentation and the tools for capturing it. 0

2. There is a requirement for documentation to be somehow attached to the code. This

might take the form of a LIL-like capability in some cases. There are also going to be

different problems associated with documentation for existing systems verses what we can

expect to have in the future library system. •

3. It was felt that existing library systems provide a good starting place for determining a

software components library system. Can we have branch libraries and interlibrary loans?

flow should components be charged for? Is there a central registrar like the Library of

Congress? Who is going to do the cataloging? Will we need specialists in the early years? '

On this question the feeling was that we probably would. There would be a lot of pump

priming required, and assistance in helping initial users. This was both to make sure the

system wasn't harder to use than the benefit accrued to the user, but equally as
important, to learn how the system is actually used and what needs to be improved and

tools developed.

4. It was also felt that there would initially, and probably always, be a requirement to rate

Oreusability, of components. This would be a long term learning experience. We would

need to "havem a library in order to really understand what to do in the future. In order

for this to be effective though, we would need to learn from use patterns why certain

components were selected, were they useful, and what information would have helped in .. - -

finding the correct component. Can we construct cataloging criteria by monitoring the -

search requests and by interacting with the user? This will be an important aspect of the

mlibrarian'so job. We may need to contractually encourage our DoD contracting

community to use the system and feed it.

5. Cataloging must be automated and at a low cost to the inputer if the system is to be

successful. The library system must also have adequate ability to collect royalties or in

some way encourage the construction and input of components.

4.1.4 Assumptions

After several false starts, the working group agreed that we needed to understand the

assumptions that a software components library would be working under. This would influence

both the mechanics and the documentation required.

1. We need a short term solution which can be transitioned to the long term.

2. The short term library system will be passive, but the long term system must be Active.

3. Libraries will be disjoint but cooperating.

.. . . . . . .



69

4. Ada is the implementation language for the software stored.

5. Different user needs must be satisfied. Different users will have different degrees of

sophistication with respect to the use of the library, computer science technology and the

application area.

6. The library must always deal with incomplete information. We need to be able to change . -.

both the data in the library system and the system itself.

7. The mechanisms must provide solutions to access, issue control, and schema problems. 0

Not all people should be permitted to see all things in the library.

8. Software is a cottage industry, users have a diverse background, feedback will be hard to

capture, and not all users of the library will have equal equipment with which to access

the library. Information required to make the library useful will be hard to capture for

the initial inputs to the library because the designers of the components will not be

mexperts" in documentation.

4.1.5 Scenarios -.

The working group then developed some alternate scenarios for how a software component

library might be constructed and operated.

1. There would be differences between the short term and long term solutions, but both

solutions must provide cataloguing, updating and retrieving capabilities. Careful

attention must be paid to the transition from the short term to the long term library

system solution.

2. Short Term.
e The short term will be "passive" with emphasis on retrieving and searching.

Components will be registered with the system wafter the facto of development.

Documentation will have to be captured and then the component will be catalogued.

• For a component to be useful it must be well documented. Quality is much more

important than quantity. There should be standards for the quality and quantity of
the documentation required for each component.

* The "card catalog" will be critical. It was felt that existing database technology

could be used. A hierarchical schema could provide an easy ability to add, delete

and update the catalog. Most importantly, the retrieval language could be simple

and oriented towards its use.

e A simple Ada system could be constructed to meet short term needs.

* Instrumentation tools are important right from the start. We must instrument the

system now to be able to learn how to build the system for the future.

e A librarian would be required. It is critical that a follow up debriefing system be

7.. ..-... .~~~~~~~~. . . . --:.:: : -::: .. - ::::::.



70

implemented with the initial system. This could be as simple as recording the name

or a retriever and having the librarian call ONM moinths afterward.

4 A mechanism such as the mAnimalm program available on Apple and other systems "

should be implemented to determine and capture what differentiates between

components from the user's point of view. The proper classification schema for

components could thus be learned as we go.

3. Long Term.

* The long term system must be an active part of the user's everyday work

environment. Where possible the "systemo should automatically construct the

necessary documentation and appropriate cataloging information when a component

is registered. It should take minimal user effort to add a component to the library. 0

e Reusability must become an integral part of our future system development

metho()logies and also must become central to our software engineering

environments. Reusability must be natural and not something that is forced by

ma11 nlagement. 6

o Information and presentation mechanisms mhigherm than code will be mandatory for

quick user understanding of a component and how it might fit into his system.

o The system should know something about the user, available components, and the

application area in order to help the user find the best component for his needs.

There probably should be some sort of working set kept for each user and

a))lication area.

o A wi(e physical and organizational dispersion of potential users will require some

fo~rm of automatic feedback mechanism. The feedback mechanism should be part of

the user's environment and be capable of automatically forwarding information to

he branch and central libraries where appropriate.

4.1.6 Documentation 0

The wirk ing group then spent some time trying to understand what documentation should be -

(apt ured and h,,w it niight inight be captured.

I. liere %%II lt differen(es between what ca in be expect ed from doctimn tation captured aS

piart ()f a s4lftare engineering en Ironnientr and that which must be captured off line after

thv c()iIl)oIw'It Is de'velop'd.

2. \\ i mnmt all,,w fo r ui)cnventional documentatim facilities, video or sound, but there

11111 ht .o,,m,' Inimual documentation whi(ch is :lw;ys av:lohv all lyps of deviVcs.

Ir t,,,Iv. ; mu~t assume a relatively unsophist.atc(r, hardware ,uch a. hard

(.( py t ermin a. There may also be multiple rel)resent at ions of the propert ies of a

c(inlm t (Ad:, NNA. I, I ), but these must be kept consistent.

... . . . . . . . . . . . .



71 0

3. Our understanding of what to ask for in the way of documentation is uneven. We better

understand the documentation requirements for an algorithm than we do a Mdesignm.

4. Some components will be part of a larger whole. For these we will need proper 0

configuration management of the context information as well as the component and its

associated documentation. There may be many different Obodieso associated with a

particular Ada package specification.

5. All documentation must be 'useful*. It must be required, meaningful and designed to

become part of a whole. If possible the documentation scheme should be uniform across

both the short term and long term library systems. It should also be a goal that the

documentation of a component can easily be integrated into the documentation of the

new system being constructed by the user.

6. There is a strong possibility that the system and user will be subject to information

overload. This means that the system must be designed with careful attention to

providing only what is necessary at each step of use. The system should also be able to

generate information where possible to reduce redundancies and the consistency problem

that redundant information causes over time. Some information will need to be archived

based on usage and some should be discarded because it can be regenerated.

7. Feedback is absolutely critical to the system. We must find out what is useful

documentation for the many varied uses to which it will be put, how to best present the

information, and where critical information was missing. There are difference between

local and global information feedback requirements.

4.1.7 Policy and Non-Technical Issues

The working group spent part of the last day talking about some of the issues which must be

addressed if a software component library is to be successful. These issues were of a

nontechnical nature, but the group felt they may have at least as much impact on the success of
such a system as the technical issues.

I. Pump priming will be necessary. We might require the use of the library as part of DoD

contracts. (ontractors could then be rated as to the reuse of components from the library

and contribution to the library as the contract proceeds. The contractor could be .

rewarded for reuse and contributions. This rewarding need not cease at delivery of the

user system, but could continue for some period afterwards. In addition, the direct

iproct'iure nt (f "usefulm (cmponents will probably be necessary.

2. I'ser c,,nfidvnc, in the proluct is critical. Several mechanisms should be available such as

software acceptance tools, user experience ratings, a *Good Hlousekeepingo seal of

apl)roval, and software reviews. Degrees of validation of a component along with

.... .... ....... ... .... ... .- ,. .

. *. . . . . . . . . ..

. . . . . . . . . . . . .. . . . . . . . . .~..-*.-..



72 0

statistics on critical path and flow analysis should be available as they apply to

components. Standard tools should be available for application to components when they

are registered with the library system.

3. Proprietary issues must also be addressed. The working group felt that an appropriate

and effective mechanism for providing economic incentives and royalties would be the

best way to encourage library use and insertion. The solution to this problem must

address issues such as the levels of documentation to be provided and the various products

to be provided for different fees.

4. The issue of warranty must be addressed.

5. The question of who can and who should operate the library and various branches must

be addressed.

4.2 Methodology

This subsection contains the report of the methodology working group, written by its chairman

Allen S. Matsumoto of ITT Programming Technology Center.

4.2.1 Introduction

The group on methodology was formed to consider the basic notions underlying library

components, specifically, reusable Ada components. This group was composed of:

" Allen Nlatsumoto, ITT Programming

" (ordon Bradley, Naval lostgraduate School

* Paul Cohen, )efense ('ommunication Engineering ('enter - pcohenlausc-eclb S

• (;,ordon K tik. Kestrel Institute- kotik-kestrel

4.2.2 Issues

Our basic position was that an understanding of the notion of reusability is necessary to "solve* 0

le prolehms of structuring, searching and using component libraries. Analyzing the current

knowledge of reusable components is a first step toward designing a component library.

IIo ,ever, any libraries which are Iuill iII the na r term will necessarily be incompletely-

higned,. and should tk ,nstructed to 1e extensihle once more is learned about reusualbility.

Llhrarie,+, desig ed,, for adlapa:fbiliy nu..t Iry to f(,rrse \hil'h lyI s ,of reulirenients are likely to

lh:ig ' tIo all,% fror su,'h clianEs. Thwill % poIile only afler the currently promising •

:lltr,:lh,'- t, reii': ilitv are i(h n- ifi,,,. ('arefhul ,.,iidera itlon of <.n(ln idate approaches will

,r11lI, lh, luillime, ,f Ilu,riri, % IiH, h ,':In :ec(uii',, ltv rc, ults from rcsearch in these areas..

• - . ".* ". .- ° .



73 S

We believe it is now possible to define a research program to xperiment with approaches to

reusability. Concurrently, libraries of reusble components can be constructed which will be .

useful in the ear term and which can be extended (at least in some directions) as reusability

research progresses.

4.2.3 Initial Questions

The following list of questions was presented for consideration by the subgroup. These

illustrate the types of questions which must be addressed in setting up component libraries and

in defining further research into reusability.

* Which program construction paradigms support reusability?

o Parameterization

o Inheritance

o Specialization

o Transformation/tailoring

* When are these paradigms most easily/powerfully used during development?

9 tlow can we describe (specify) how to include a component in a system?

o Parameter semantics

o Which actual parameters

o Is modification required?

* What is the effect of using (reusing) a component?

o Function of the component

o New types and operations provided 0

9 1low much generality for generic components?

o How to describe (measure) generality

o Relate more general and more specific implementations

o Differentiate more and less general implementations 0

4.2.4 Preliminary Report

The initial subgroup discussion resulted in agreement on severai points. We agreed that the

problems of reusability can be factored into meaningful subproblems. We also felt that some

definite approaches appear promising for attacking several of these.

The preliminary report contained the following comments:

1. Reuse requires understanding

a. effect of component

b. interface of component with system

S

: ' '" 
•

- h - t .......................*-. ...-. ,'2- -- _ .- _--L '. _ ''-. . . . .,"



74

c. how to modify component

d. effect of modifying component

2. General vs. Specific

a. More specific components

i. easier to understand

ii. more rigid

iii. ea-se of reuse vs. value of reuse0

h. More parameters vs. more generality

I . independence of parameters

11 . aggregation (structuring) of parameters

3. Programming techniques

a. Parameterization

I. fixed capability

ii. semantics?

Ineritace

i. reusable cibjects

ii . add(ing capability

b). Transformation

i. How much?

ii. Is editing reuse?

* 1. Mul, ti-directilonal choices, e.g., between early inefficient prototypes vs. efficient (late)

implementat ion, and between %ery general vs. a very specific implementations.

4.2.5 Firnl Report

Thle suibgroup's final report containedi the following specific recommetlolation*.

I. Lxperiien t with Ada Implementation of standlard paradigms.

a. Generic components with a fixed set of data type classes. This will be a low risk

(doma in specific approach to reusability. The goal of such experimients is to gain

"N:erfn(e ith Ada generic packages, more than to extend knowledge about

reiisiabilitv.

1. In herit ance with limit ed sO bclassing. A generic pack age may implement, a

paraiet erized object (as in object-oriented programming) . Anot her package may

inherit Its capabilities ing the * with * clause andl overridle or add data types or

(qlera itonds .

c. .Nest ed generics. Out er levels of generic paickages may he useful for t ransformiat ing

in forma tion bet ween the( Int erior of the corip(mnent and the outer local env iron rnent .

Some Such Invh an'Isn ik ne~cessary to i ncf~rporat e grenerally reusable components

%%ill .\'l's linw~lr elaora)t ion.

- - --- - -- - - - -



75 6

d. Domain independent components

2. Develop standard formalisms for describing components.

a. Necessary for cataloging and retrieving. S

b. The package specification + formalized comments may contain sufficient

information (e.g., ANNA).

c. Formal (mathematical) specification of components may be used if automated tools -.

can be provided. 0

3. User support via automated tools.

a. Check compliance to standard form. Check for sufficiency of information. Such

tools would perform many quality assurance functions as well as aid in document

preparation. S

b. Process information for ease of retrieval (storage, search, display). The structure of

the library will depend upon the knowledge representation techniques chosen and

upon the ability to aquire and codify that knowledge.

c. Knowledge-based retrieval capability. An intelligent library management system

will be supported by knowledge-based techniques. In fact, until a formal

specification of library components is developed, such techniques will be the only

ones available to provide automated assistance.

4.3 Library Searching

This subsection contains the report of the Library Searching Working Group, written by its - -

chaiman, Andres Rudmik of GTE Network System R&D. Other participants in this working

group included:

9 Tom Brown, Kestrel - brown(0kestrel

e Mary Forthofar, IBM FSD

* Timothy Gill, Wang S

* Jose Meseguer, SRI - meseguer(4sri-ai

4.3.1 Introduction

This subsection summaries the discussions of the subgroup on Ada library searching. We have S

takeii a broader perspective in onsidering the reusability of all progran. related objects. We " - .

concerntrated our attention on what kinds of information would be needed to support searching

anl how thi- searching might be accomplished.

The mnodel that we adopt-d consisted of a catalogue or encyclopedia that contains des'?riptions

.... •. .. .

.:. . . . . . . ......i• -i. - . ii " .... ii . . ...... "". .I i .- .. ~.-.



76 S

of the program objects stored in the library. This catalogue could be implemented as a

database against which queries can be made to retrieve descriptions of objects. Most of our

discussion centered on searching for Ada packages.

There are two kinds of retrievals that should be considered. First, one may search for program

units that exactly provide the desired function or second, one could search for program units

that satisfy certain constraints and that can be adapted for the function at hand.

4.3.2 Initial Questions

The following are the questions initially posed for the library search working group:

1. What items should be in the library?

2. What kinds of information can be used as a basis for library searching?

3. How to structure information on which searching is based?

4. flow would different Ada library users search the library? Non-Ada user? ,

5. What tools can be developed to support searching?

6. Where does this fit into the Software Engineering Methodology?

4.3.3 Library Objects

We tried to identify what items would be stored in a library. The following is a list of the

items identified:

o Packages: Each package would have a unique spec but there could be many package

bodies for a given package spec. -.0

o Designs: There could be several levels of program design. The design could include

lescriptions expressed in a module interconnection language.

o Formal specifications expressed as theories. These specifications could be embedded or

separate.

S('orinand procedures used to run programs. . -

e Design histories recording the design steps.

e Note that Ada subprograms were not considered as appropriate units for reuse. Although -""

nmny existing libraries contain subprograms.

. Program units in other languages must be considered (i.e. Fortran, COB01L).

9 Test plans associated with program unit. Each unit which is a candidate for reusability -.-. -

should be selparately testable. The test plans also include all necessary test drivers.

e lerformance information: This may be needed to assist in the selection of the package

bo(lis.

* Test data on which the program was tested.



77 0

•Managerial information.

* Configuration information.

* Program skeletons that can be used to build new packages. 0

4.3.4 Basis for Searching

Next we examined the kinds of information that could be used as a basis for searching.

* Package classification -- can be used to further refine packages into categories with well S

defined properties. The advantage of this approach is that categorization can be used to

partition the set of packages into a smaller more managable set.

o Keywords -- can be used to partition the objects by application, function, date, author,

the implementation language.

. Summary descriptions -- brief descriptions of the object.

* Detailed description -- provide a complete but informal description of the object.

* Package specifications -- these can also be examined.

* Formal specification -- e.g., ANNA, LIL. 6

9 By generality -- How general is the package?

* Selection of package bodies -- Since there can be many bodies for a given package

specifiction, the search for package bodies will typically be based on implementation or

environmental issues such as:

1. performance (space/time)

2. complexity of implementation

3. host dependencies -

4. data dependencies S

e Production position -- status of object ie. development, test, or production

• Cost

* Access rights -- are we allowed to use it?

The following senario describes how an Ada Library might be used. First, one would specify

the desired function and query the database to find the candidate set of items that will support

this function. Typically this set will contain several alternatives. The choice of alternative will

depend on more global contraints based on the contexts in which the item is to be used, the

data that it operates on, how well it fits into the current program design, the target host

environment, level of confidence (validation), internal efficiency, and even issues such as royalty
fees to the original designers.-

As described above, the choice of library items will be made in two contexts.
:: --:

. ... ... . .................................................................. . .

.L,':°,d_,'.:_ .:f_.2 :,.2.';.';.-.:'.: ._;. '." ,,7_.' _,:.-- .'.. . ... ._. .'.. . .
."
.'-.'". .'. .,.. ."... .'.. . .'.'.... . .- ".. .-.. .. "...... .-.... ".. .,..-



78 6

* The identification of the library object will typically be done in some local context based

on function rather than application. This selection process will produce a set of candidate

items.

e The choice of a specific item will typically be based on the context in which the item is to

be used. The selection of the specific item will require a good understanding of the

application and the environment of the application.
0

4.3.5 Catalogue Information Structuring

The information in the catalogue must be structured to reflect the way in which the catalogue

is used. Within the catalogue there may be many hierarchies of information that can be used

to search for objects. For example, in searching for packages one may

* Define a theory and then search for a package specification that matches the theory.

Within the library, there can be many package specs for each theory. The choice of

package spec may be based on generality of the package as an example.

" Similarly, there may be many package bodies for each package spec.

The important concept is that the catalogue should allow the user to go from the abstract to

the specific or from the specific to the abstract.

4.3.6 Characterization of Ada Library Users

We classified the Ada library user in two ways:

B fy user task: Depending on what the user was doing, the library would be used to provide * -

different kinds of information and perhaps support different kinds of queries. Some .

examples of how the user tasks might be catagorized are:

1. Application users - searching for programs, job control programs etc.

2. Managers - needs informuation on packages developers, royalties, and other costs. S

3. System specifiers - developing and using formal specifications.

.1. Designers - developing and searching for package/program designs.

5. Implementers - developing and searching for package bodies.

6. Maintainers - being able to locate all program documentation.

e By ,level of user expertise: Need various kinds of query support depending on user

I background, training, and experience.

7. ..



79 S

4.3.7 Tools Supporting Searching

The tools that support searching could range from database query languages to sophisticated

knowledge based interactive query systems supported by graphics capabilities. Some of the

obvious methods that might be used are: " '

" Ad-hoc queries.

" Interactive queries: menus, navigator, etc. -

" Interactive rule based derivation of specifications - supported by synthesis and verification

techniques (whatever that means).

In practice, there will be several Ada libraries, using different database management systems,

running on different hosts and even using different ways to document and classify the library

items. There will be a need to standardize on a common subset of item descriptors that will be

common to all Ada Libraries. On the other hand it is important to recognize that there will be

a great deal of evolution in the library systems as we continue to develop better ways to

document and retrieve the library items.

4.3.8 Impact on Software Engineering Methodology

Finally, we examined what impact the notion of software component reusability would have on

software engineering methodology. First, we recognized that building systems from reusable

components placed a greater emphasis on being able to specify the function and design of a

system, so that its parts could be obtained from the library and assembled into programs. This

concept may be thought of as programming in the large or "hyper-programming", a new term

referring to the concept of program development through composition of smaller components

(usually Ada packages).

We also identified the need to support the reuse of designs that are similar to what we want but

must be modified before they can be used.

We felt that the concepts needed to support programming for reusability are new concepts and

not embedded in most current programming practice. Considerable training would be needed

to support the development of reusable components and more training will be required to

effectively use Ada libraries. , .

We felt that each ;ite sh-iid Y 1,e a [,ibraran whose job would be to maintain the Ada library,

. . . . . . " .1::
S.. . .. . . . . . .*. •

. . . . . . .... .".. .'- ''. . .-- .- . ''- -'.. -.- -' - .-.-. . .-. i. .- ".- ... .-.. . . .-.. . . . . . . . '': ' ': -:'. :---' - . J ": .-- : -:' : -:



80 6

add new items to the library, and to support library searching. The librarian position would be

a senior position requiring substantial expertise and perhaps a strong background in reading

formal specification would be an asset. The effectiveness of a programming department will be

largely dependent on how well the Ada library is utilized.

4.4 Applications

This subsection contains the report of the Applications Working Group, chaired by Samuel

Redwine. The report was written by Karl Levitt, and the working group consisted of:

* Gordon Bradley, Naval Postgraduate School

9 Paul Cohen, Defense Communications Engineering Center -- pcohen@usc-eclb 6

* James Dempsey, GTE R&D

e Mary Farthofer, IBM FSD

* William Johnson, Naval Postgraduate School p.

* Steve Leung, ESL/TRW

• Karl Levitt, SRI International-- levitt@sri-csl

Carol Morgan, AJPO -- morgan~usc-eclb

e Samuel Redwine, Mitre Corporation - redwine~mitre

9 Bruno Witte, NOSC -- bwitteausc-eclb .

4.4.1 Initial Questions

The initial questions posed for consideration by the working group were:

I. What are the available technologies? e
* Component Libraries

* Program Composers

9 Very-hligh-Level (Application-Oriented) Languages

* Application Generators

* Knowledge-Based Systems

2. What are criteria for determining if an application area is ready for reusability?

3. What are approaches for matching a reusability technique with an application? .

-1. Does the supporting software engineering environment have to be application-specific?

5. What investment strategies will facilitate the introduction of reusability?

6. ,Nr( there special problems with the suitability of Ada for application areas?

.... . . .. . ..i- . .



[•. = , ..-

81 S

4.4.2 The Issue of Incentives

It is clear that in the long run, reusability must be cost effective if it is to be a viable approach

to system development. However, in the short term it may be necessary for DoD to induce

contractors into making reusability a part of their projects. A similar approach is now being

taken with Ada itself; for example contractors are most likely increasing their bids for jobs that

require Ada -- either as an implementation language or as a PDL -- in order to cover the time

required to learn Ada. The question we discussed is how DoD can prime the pump to get

resuability quickly into the market place. Among the approaches are:

* AJPO, STARS and other agencies fund the initial creation of libraries and supporting

environments, fund the initial documentation and maintenance of entities, and establish

cleari ighouses that would eventually be self-supporting.

* DoD agencies identify specific systems as strong candidates for reusability. Initially, these

efforts would try to be concerned with creating systems that could be reusable; subsequent

efforts would be mandated to use the previously constructed entities.

* If DoD is to have a chance of transferring responsibility for the library to the private

sector, the royalty system must be carefully worked out. One obvious approach is to give

royalties for contributions that are used. The question is how what to charge? In the

long run, 'best sellers" will survive -- as in any other venture.

* Allow contributors to retain proprietary rights. Again this is obvious.

" Remind contributors that by contributing to the library, they will get free validation.

This incentive is likely to important while the clientele is being built up.

4.4.3 Impediments and Potential Disadvantages to Reusability

It is feared that the program managers for large systems will always take a short-term view,

rejecting the long-term benefits of reusability. Also, it should be noted that these managers

-. often do not last for very long periods.

4.4.4 General Approaches to Application-Oriented Reusability

We spent considerable time in reviewing the availabU? approaches to reusability that seem to

have promise in the short term. In identifying approaches, we treated reusability as a technique

for reducing the amount of work rquired of a developer as coml)ared with the conventional

' manner of his creating high level code from scratch. Our emphasis was on techniques at the

* .- level of implementation, in part keeping with the Ada them of the workshop. Consequently,

. we did not discuss in detail approaches based on reusability ()f designs or of requirements.

Among the approaches we discussed were:

,,oo ,,0 ,,a ,*.-.. . . . . . . . . . . . . . . . ....-. .

• - •o- . .



82 6

9 Component Libraries. This is perhaps the most obvious approach, and the most similar to

the practice of reusability in hardware -- at least at the levl of integrated circuits.

Components in Ada are likely to be packages, and as discussed extensively in Goguen's

paper for the workshop, generality is achieved through the use of generics. However,

there are other approaches to making components reusable, even beyond as intended by

their developers. For example, a preprocessor could transform data from a particular

application into a form acceptable as input to the component, and a postprocessor could

transform the data output of the component back into the required form. Clearly,

efficiency considerations could preclude the use of this technique for critical inner loops.

* System Families. A system family is a description of a system from which a number of

specific implementations (family members) can be realized. To make the concept more

concrete, the realization is to take place by specific instantiations of the family, for

example, assigning a value to a constant, or eliminating certain operations. With such

relatively straightforward instantiations, the system family can be viewed itself as being

an implementation or very close to an implementation, but a family member is a sub-
implementation that is better suited (i.e., with respect to performance) than the system

family for a particular application. An Ada package with generics could be viewed as a

system family, but a more interesting family is likely to -onsist of many packages, e.g., an

operating system family.

* Very-Iligh-Level Languages (VHLL). A VHLL is usually a language providing very

I owerful constructs that are oriented to a particular domain or application. Prolog might .

be consider a V11LL, supporting backtracking and Horn-clause deduction as one might use .

in developing a mechanical theorem prover. Of course, the output of a Prolog compiler

could he assembly code, but any language can be the target. Usually, no manipulation of

the object. code is possible, but if the (,bject language is a reasonably high level language

(e.g., Ada), then the object code might be optimizabe beyond that achievable by the

Prolog compiler. Spread Sheets and Report Generators are other examples of VHILLs, as

are view languages for a relational database. It is often assumed that hand-crafted object

code is superior to mechanically compiled code from a VIILL. However, this need not be

universally true. For example, an optimizer for a particular construct of a VIILL could be

(hesigned to produce very efficient code. Furthermore, special purpose hardware could

lead to even more efficiency. For example, one construct in Prolog is concerned with the *. -

unification of terms. This task is well-suited to special purpose hairdware -- and easily

allocated to such hardware when it arises in the execution of the program.

* A)plication Generators. These differ from VIILIls in a number of ways. First, the user is

more involved in making decisions that impact the efficiency of the object code. In this

. ,' S



83 0

sense, the application generator is more of an environment than just a VILL. An

example of a application generator is a parser generator, which will produce a parser from

the production rules of a language. Although, a parser can be generated from any

grammar in a particular form (e.g., LALR-1), some kinds of productions will lead to more

efficient parsers. A compiler-compiler is a more complex example of an application

generator where extensive user interaction is required, particularly in the code generation 7 "

phase.

o Knowledge-Based Systems (KBS). A KBS is an approach to system design that requires

still more user interaction than an application generator. In its most general form, the

user input consists of a database and rules to transform the databAse, the output of the

KBS being an executable program. What is particularly attactive about the approach is

user's ability to produce a more comprehensive generator by adding more rules or making

the existing rules more general. The research on program synthesis and transformation is

in this spirit, although the goals are ambitious: the generation of efficient programs

in(.ependent of application. More short-term work is concerned with more limited

domains, e.g., searching particular spaces, or planning.

Combination of Methods. It is likely that no single method will suffice when the goal is a

significant-size program, hence the need for combining the available methods. As in SRI's
ustrawman" approach (see the paper by Goguen), we envisioned three levels in a system,

each with its own kind of reusability. At the lowest level, there would be component

reusability, where the identifiable components would be common data types (such as lists,

queues, etc.), common data transformers (such as digital filters) or simply common

functions (such as mathematical packages). At the next higher level there would be more

complex packages (such a statistical package or a linear programming package), which

could be viewed as employing the system families approach to reusability. An operating

system family would be another good example for this level. At the highest level would

be the application interface. Application generators or knowledge-based systems would be

most useful here.

4.4.5 Initial Candidate Applications

We devoted considerable discussion to identifying candidate applications that would lead to a

large class of reusable entities and would determine the feasibility of applying reusability to real

applications. The applications should not be so complex that excessive effort is required to just

carry out the development. On the other hand, toy efforts will not be convincing. The list of 0

applications we came up is the following, although the interests of the working group members

"-"" clearly influenced the choices: communications systems (e.g., protocols such as TCP), direction- . -- a . direction

. . . . . . . . . . . . . . . . . . . .-. . . . .



[ - * • .S - P - r . - " U * * L S * *. . - . - .

84 0

finder, navigation, avionics, simulation, and decision support. The interfaces required by these

applications would be the *highest levelm in our hierarchical approach. At the intermediate

level, we strongly recommended consideration of an operating system family together with a

collection of instantiations for producing family members.

4.4.6 Discussion

Johnson: Mary, could you explain to us what were the problems that IBM Federal Systems had

with reusabilit)?

Farthofer: There are some cost-benefit tradeoffs associated with reusability. It is hard to reuse

parts that were made with obsolete technology [Editor's note: e.g., Fortran], or parts that were

not originally intended to be reused. New products should take advantage of new technology.

Also, if problems show up late in the lifecycle, they can be very expensive to correct; we would

have discovered these problems earlier if we had not tried to reuse these old components.

Reuse has to be supported.

41j7
o

.- S i

-. . . . . . . ~ 4.. -. S. ... C L....L.... . . . . ...-. .



85 -

I. Schedule of Workshop

Tuesday, November 1

9:00-9:30 Schaar & Kramer 8Why DoD Needs S/W Environments-
9:30-10:00 Redwine 'Conceptual Architecture for a S/W Engineering Environment' 0

10:00-10:30 Break
10:30-12:00 Levitt *An Overview of Ada Libraries"
12:00-1:30 Lunch
2:00-2:30 Goguen "LIL: A Library Interconnection Language for Ada Programs'
2:30-3:00 Break 0
3:30-4:00 Rudmik mDCP Approach to Ada Libraries'
4:00-4:30 Matsumoto uFlexibility vs. Efficiency for Reusable Components"
5:00-5:30 Discussion
5:00-5:30 Litvintchouk 'Mapping Clear Specifications to Ada Packages"
5:30-6:00 Witte mGeneral Requirements for an Elementary Math Functions S

Libraries.

Wednesday, November 2

9:00-9:30 Kotik 'Knowledge Based Tools for Data Type Implementation.
9:30-10:00 Meseguer "Library Organization and User Interfaces'
10:00-10:30 Break
10:30-11:00 Tichy 'Version Control in Program Libraries' .0
11:00-11:30 von Henke 'Using ANNA for Specifying and Documenting Ada

Packages'
11:30-1:30 Lunch
1:30-3:00 Working Group Meetings
3:00-3:30 Working Group Reports 0

Thursday, November 3

9:00-10:00 Working Group Meetings
10:00-10:30 Break
10:30-12:30 Working Group Reports
12:30-1:30 Lunch
1:30-3:00 Discussion 0

" ." ].

.................................................................. ,.,.,.... -• ••. •
°

-
•
. .o. * ~" "."•" " , •



86 -

II. Names and Addresses of Participants

This appendix gives the names and addresses of participants, with their Arpanet addresses, if

available.

Charles Arnold
Naval Underwater System Center 0
New London, CT 06320
(203) 447-4319

David J. Babcock
ROLM Corp. - MSC Division S
Manager, Software Development
M/S 150
One River Oaks Place
San Jose, California 95134
(408) 942-7702 .
babcock4usc-eclb

Gordon Bradley
Naval Postgraduate School
Computer Science Department .
Monterey, CA 93940

Tom Brown
Kestrel Institute
1801 Page Mill Road
Palo Alto, CA 94304
(415) 494-2233
brown'@kestrel

Paul M. Cohen S
Defense Communication Engineering Center
Code R620 *.*..

1860 Wiehle Avenue
Reston, VA 22090
(703) 437-2176 0
pcohen(41use-eclb

James 1. Dempsey
(;TE H.l)"
2500 W. Utopia Road
Phoenix, Arizona 85027
(602) 582-7532

,. . . . . . . . . .. ,



870

Mary Forthofer
IBM FSD
MC 70
1322 Space Park Drive
Houston, Texas 77058
(713) 333-3300

Timothy Gill
Wang Institute of Graduate Studies
Tyngsboro, MA 01879
(617) 649-9731

Joseph A. Goguen
SRI International
Computer Science Laboratory
333 Ravenswood Avenue
Menlo Park, CA 94025
(415) 859-54154
goguen L(sri-csl

* LCDR W.V C. Johnson
* SiMC 1509

Naval Postgraduate School *

Mionterey, CA 93940
(408) 372-4602

Beverly I. Kedzierski_
Kestrel Institute -

1801 Page Mill Road
Palo Alto, CA 94304
(413) 494-2233 x2132

* kedzierskiklkestrel

Gordon Kotik
Kestrel Institute
1801 Page Mill Road
Palo Alto, CA 94304
(415) 494-22330
kotik(4kestrel

Jack Kramer
* Institute for Defense Analysis

1801 N. Beauregard Street
Alexandria, VA 22311
(70.3) 8415-2263
k ramrert usc- cl b



88

Steve Leung
ESL/TRW, MS 302
-195 Java Drive
Sunnyvale, CA 94086
(108) 738-2888 x5372

Karl N. Levitt
SRI International
Computer Science Laboratory
333 Ravenswood Avenue
Menlo Park, CA 94025
(.115-) 859-4172
]evittkOsri-esi

Steve Litvintchouk
Raytheon Company
P). 0. Box 3600
Portsmouth, RI 02871
(401) 817-8000 x-1018
brunix!rayssd!sdl qucb-vax

B ob) Ma th~is
hi ,it ute for Defense Analysis
1801 N. Beauregard Street
Alexandlria, VA 22311
(70:3) 8-15-2263
kramer (fusc-eclb .0

Allen S. Matsum-oto
ITTI Pro grammng
1000 Oronque Lane
Stratford, CT 06497
(203) 375-0280 x501

SRIl International
Comput er Science Lab)
333 Ra-vnsvwood Avenue
Mcid) Park, (A 9.1025
(.115) 859-:3011
in'segiier ' sri-al

0



RD-A149 570 REPORT ON ADR (TRADEMARK) PROGRAM LIBRARIES WORKSHOP 2/4
HELD AT MONTEREY CAL..(U) SRI INTERNATIONAL MENLO PARK
CA J A GOGUEN ET AL. 03 NOY 83 N@@@14-83-M-088

UNCLASSIFIED F/6 9/2 N



111111

11111125 IIII=! 1111.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANDARDS 1963 A

J ~



89

* Carol Morgan
AJPO

* Room 3D 139 (400AN), Pentagon
Washington, DC 20301

morgan~usc-eelb

Gilbert Myers
* Naval Ocean Systems Center

Code 8322
* San Diego, CA 92152

(619) 225-7401
* myers~use-eclb

* Samuel T. Redwine, Jr.
Mitre Corporation
1820 Dolly Madison Blvd.
McLean, VA 22102

* (703) 827-6080
redwine(Omitre

Andres Rudmik
GTE R&D
2500 W. Utopia Road
Phoenix, Arizona 85027

* (602) 582-7518

Ada Joint Program Office
Brian Sch0ar Pentagon
Washington, DC 20301
(202) 694-0280
schaar~usc-eclb

* John Schill

Naval Ocean Systems Center
Code 8322
San Diego, CA 92152
(619) 225-2264
schilkiDisia



90

Roger Smeaton
Naval Ocean Systems Center
Code 8321
San Diego, CA 92152
(619) 225-2083
smeaton~nosc-tecr .'

Walter Tichy
Purdue University
Department of Computer Science
West Lafayette, IND. 47907
(317) 494-198
tichy~purdue

Friedrick W. Von Henke
Stanford University
Computer Science Laboratory
Stanford, California 94040
current address: SRI International
333 Ravenswood Avenue
Menlo Park CA 84025
(415) 859-2560
vonhenke((1sri-csl

Bruno Witte*
NOSC
Code 8315
San Diego, CA 92152
(619) 225-7945
bwittec~use-ecib



111. An Eam ple of LIL
This appendix gives a somewhat longer example in LII, a generic resource manager. Most of

the work on this example was done by Dr. Jose Meseguer.

* theory TRIV is

types ELT

end TRIV

theory POSET Is

types ELT

*functions < ELT ELT B> OOLEAN

vars El E2 E3ELT

axioms

(El < El)

(El < E3 if El < E2 AND E2 < E3)
*(El E2if El <E2 AND E2 <El)

end POSET

theory EQV Is

types ELT

functions ELT ELT ->BOOLEAN

vars El E2 E3 ELT

axioms

(El ==El)

(El ==E3 It El ==E2 AND E2 ==E3) 0

(El ==E2 It E2 ==El)

* end EQV

-for any POSET. there is a natural way to define an equality;

-that is the content of the following. which involves a derived operation:

view EQ :: EQY => POSET In
vars El E2 :ELT

ops (El ==E2 =)El < El AND E2 <~ El)

end EQ



g2

-now an exaple of top-down reusable development. RESOURCE using

-TABLE, which has not yet been defined

generic package RESOURCE EACCESSOR EQY; X TRIVJ Is

*using TADLEP TABLE LACESSU. X1 Is

* functions

*ACC-OK ACCESSOR -)BOOLEAN

procedures

WRITE ACCESSOR X

READ ACCESSOR -)X

exceptions

URONG-ACC
vars A :ACCESSOR; X:X

* axioms
*WRITE(AX PUT(AX) If ACC-OK (A)

W RITE(A.X WRONG-ACC If NOT ACC-OK(A)

*end RESOURCE

*generic package TABLE([ENTRY EQV. X TRIVJ Is

* state TABLE Initially EMTY

- procedures

* PUT :ENTRY X

LOOKUP :ENTRY- X

vars E :ENTRY; X X

axioms
*PUT (E. X); LOOKUP (E) =X

*end TABLE

9 generic package SEC-UDIORY-ACCESSOR LLEVEL POSET]
needs MEMORY? ::MEORY Is

* types S-ME-ACCESSOR Is
* record

* * - * .* - .* . * * - * r * . . .- . . ..<*



93

CELL CELL; -- cell in part of the MORY package

2 ACCESSING0-LEME LEVEL;
ACCESSED-LEVEL LEVEL;

end record

-. functions

*S-HE-ACC-OK :S-I-ACCESSOR ->BOOL.EAN

vars SMA S-UEII-ACCESSOR

axioms

- ~.ACC-OK (SM1A) = -M-ACC-OK (SM)

- end SEC-MEM-ACCESSOR

make SECURE-MEM-MANAGER-O [LEVEL. POSET; X TRIVJ Is

RESOURCE (SEC-MEM-ACCESSORD[LVEL. XJ needs TABLE? => TABLE. HASH I
end SECURE-MEM-MANAGER-O

- make SECURE-MEM-MANAGER [LEVEL POSET; X TRIVJ

using SEC-MEM-TABLE =TABLE [IDENTIFIER, PAIR (CELL, LEVEL] I (hidden)
* using SECURE-MEM-MANAGER-O (LEVEL. X1 (hidden) is

procedures
REQUEST-WRITE IDENTIFIER X LEVEL

REQUEST-READ IDENTIFIER LEVEL -)X

*end SECURE-MEM-MANAGER



94 *

IV. Slides from Prepared Lectures

This appendix reproduces the slides used in the prepared lectures that were presented to the

workshop, when these are available and reproducible.

5,®R



95 S

1V.i Conceptual Architecture for a Software Engineering Environment

0
SAMUEL T. REDWINE, JR.

S

S

0

S

S

S

S

S

0

...................................... *. .



3r..M

-i C-

w 30

I--
U.

= -0)



L.I

aCA
F,

C//)

C 4-a L.L
CL w

I- 4--

C a

I-I



* Application Dependent

pS

Intetuac (peses)Syte

CM

W x

_ _ _ _ _ _ _ _4-_

User oolsDataase n W

FiUR 1 3 C
SOtefae (PoeGIeERNs)I tETARHTCUESEC

SaF Rd3n
6Oct8

tww- tar

. . . . . . . . .
t. 

. . . . . . . . . . . .

. . . . . . . . .. . . . . . . . .

SOFTWARE.E.G.N.ERING.E.VIRONMENT.AR.HI.ECTURE.SK.TC

.... '..... .. . . . . . . . . . . . . . . . . . . . .



. 4-J P"4-

L2 0 4- 4 - 4-

4- :2 - 40 4-
d) C/ 4-L4

) d) 0 - 0

0 CO u m ..

S4-- Vn 0

o V L-0 4JG -)
u 0- -. 408 oa C

X W 0 0col

FD CL
-4

>. C/) 41

00 cm 4-J.0
.4U C) 4--04'~ L

X.. 0) 0.0 U) - #) )0

0. 0 0 4- C (
0 4- CIO, CO 0

C),

CO4-' 4a1

V4 C L(

4-- 4- C 2C
40 E 4- C

cn CV (n)

4-' 0
(D 4- C

0 0u 0a)

4-1-
ui 4-1 l CL C

CO4)CLa



44-J
C l C

4-,4-

00
C/)O

4-J C/) I
I - 4 0 -

0 > ) 0D 4- 4-aQ
LU4- 4- Vl)

cm ) CO W Q2 (D-'"

Pi w tm M-' W 4-' *
'0 4-J 4- 4- Q) 4-J L9

0. 00 0 4-' (A 4-V 4-
0 C) V ) L. I- co

COOC6 C/



WS

>0

4)-

4- 4U
L.L

-4 cm
w~~ a .. ,-.

4) %- 4- C
C) -% 3 0 a0 -

C V)
Cm u

a ~ ~ ~ -40C4J0C -

44-1

0 D
0 -'L 4-' CC

.. ..Q .- ... . 4..)



0i

- 4
4-) 4 L.

Co CD 4

4-D Cw-

0 0

C 4-

U-~ 4-'F0C

V. L.

0 V

20> Ca



4-0-

"0 w-Z

4-0 E! >

0cr L0) P0 4

o 4-CA 4-0 -
U) CD E- c~. 0

(D 0_ 4.' (D .
W -4 C. 0 ) )

Wi CD 0a 0D 0U +J

C)4- C- 4-0

0 )L 0Q 4-4-
Cl) 4-' U

SLC C D
4)U-' 4J) 04- L)

V4- +)J U) L ~ 4D 4-0

4)~~~ 4-D *- 
4 S '

4-0 4 0 )1
0 U)0

~ 0 ~ 04

CA~ '



0 V

C' CU

1cc 4 -,

4-J 4J
"- 401

4-0 4-J

C- L- 4. C4j4. L
o 0

I-- d)

4--
o .4) -



gs

IV.2 An Overview of Ad& Libraries

KARL LEVITT



A N OV ER V IE W OF A DA L I BRA R-1E S

TOWARDS A "THEORY" AND "PRACTICE" OF

REUSABILITY

-AVAILABLE TECHNOLOGY

-NEEDED NEW TECH1NOLOGY

Karl Levitt
Joe Goguen
Jose Meseguer

SRI INTERNATIONAL

e e.



WHY REUSABILITY

- REDUCED COST

- ALLOW LARGER SYSTEMS TO BE BUILT

(PARKINSON'S LAW)

BETTER RELIABILITY
we.....,

- REAL ENCOURAGEMENT FOR CRACK SYSTEM BUILDERS

PROVIDE JOBS FOR UNEMPLOYED MATHEMATICIANS

(FORMAL SPECIFICATION AND VERIFICATION?)

....... .. . . . .. . . . . . . . . . . . . . . . . . . . . . . .

.. . - .'. o..° ..



QUESTIONS TO BE DISCUSSED

o

- WHAT SHOULD BE IN A LIBRARY?

PROGRAM UNITS, DESIGNS, DOCUMENTATION....

- HOW CAN LIBRARY ENTITIES BE COMPOSED?

MODULE INTERCONNECTION LANGUAGE... '-

- HOW TO RETRIEVE LIBRARY ENTITIES?

CATALOGING, SEARCHING,.. c

- IS THE ABSTRACTION MECHANISM PROVIDED BY ADA ADEQUATE?

NECESSARY BUT NOT SUFFICIENT

- WHAT ABOUT ADA + APSES ?

NOT QUITE

HOW WILL USERS UNDERSTAND LIBRARY ENTITIES?

INFORMAL DOCUMENTATION, SPECS, ANIMATION,

9 ,

.-0 ...

-. -,.-



- HOW TO COUPLE REUSABILITY WITH THE LIFECYCLE?

REQUIRE171ENTS + DESIGN METHODOLOGIES

- WHAT ABOUT fMANAGEMENT ISSUES?

INVESTMENT, QUALITY CONTROL, ENCOURAGEMENT

- WHAT EXPERIMENTS SHOULD BE CONDUCTED?

OPERATING SYSTEMS, DATABASE SYSTEMS, PROCESS CONTROL

- IS THE CURRENT TECHNOLOGY ADEQUATE?

STANDISH -- YES

WORKSHOP '"

.- . -o . -

- .. ...
..- aa * -. . . . .... ...

a.
o

. . . - a .. , - -,a "°.- .. °-



A TI

REUIEMNT

MODELS0

FAMILE

PROJECT '

MANGEEN
DESIG

PACKAGE

METODLOIE

* Uo a
MODULE

MODELSLEON

PROJECTFAMILIEVERIFICATION~

smile"



W~ArADA fbtVIOS

*PtIOATI VATaA 'OrYPO,

* ESU R ANSI AMD b~ItLbAbINC,

filElkifito AMD~ PAt~m~?T

W1IAtr APSfs WULL AID



WIA*Tr £EL4 vS #4921"~

%Vr*,Nmc~#o oil PARANktrIER ?KSANTIAg~TI

T Ift PC CN SArA ri N

SGU'IL4M OR W*A7 4M*Udb UF lIR



Constructing New Entities From Old

1. Set a constant (such an the mnaxium depth of a stack);

* 2. Substitute one entity f or a stabs or parameter in anotker;

3. Saw together two (possibly large) entities &long a common

interface;

*4. Instantiate the parameters of a generic entity;

5. Enrich an existing entity with some new features;

8. Hide (abstract, or encapsulate) some features of an existing-

entity; this could include both data abstraction and control

abstraction;

7. "Slice* an entity. to eliminate some unwanted functionality;

8. Implement one abstract entity using fesature provided by others

(this leads to the notion of a vertical hierarchy of entities);

and

*9. Assemble existing entities ever a skeleton. This skeleton might
be either fixed or flexible; foer example. it might be deternined
heuristically by an expert system.



KI----- PC It PROC RA

O-SELIEvV PA(KA61L -. 4sLwvClv oft 1poIckf

Stc PA~a.VLAr Coftt bT,.Is



Aly ER to 69 If~lme

Ab~ 11YC as OrR4f I AM

xv rioIt l0

7$ NUIk l



MbltivaigfAt Alhb VORTICAL 6KPght

Lsow

L 4 V" lb hP w6 OS

L 3

9114SN KA lP

VAP FALTC YtJ
V iA Ac



- . -V.. - -

-- .'.....................

S

(bbl P~a9~ EIATUT1E~

6

TtmMEbt~tJh
S
S

4 ______________ - .6

r~I~#41.

I ZftPL ± V

S

bE~I~#4~t
1~

-5-

* 0
S

6

Sli'
tAt~ * VRS

0 0

2

S

- .......
*........

.....................................



SrCPIA1%# PAR? 4%

~ AM 1Irirf S.A-renic4 A

.Tfl4sIAHrfl'. TIA.rAMTIhTC PAIAfETnIJ-

IgE'fCAL CUD

VC971C~i AS.$ Y~ikr frAotevE

cbtt& Fur &lbNAG



~VLr~A -RVSOCWCN NfARAC . oF

SCTkgf' DkWWKrAINo

ALfaulci buct 'c: SL fS

IQ ~ )mLbp~ SAIDi ItfUI &L7" fr?? r~~le

to A SfCVC eItf~bucl R~AMT MSr
3ffElgLlgrb fut A LIGIRAIy IIA .r

.SireiR er. PIU~c VC A -SIRuJ
07 ~gP~F'tr ACtMWPAL



viw(14 0o~rr

19 cot% tu dvL S

P ct.Ac;%I' Cud.



A Generic Secure Resource Manager in LIL

theory TRIV Is .0

types ELT
* end TRIV

theory POSET In .

types ELT

functions <( ELT ELT BO IOLEAN

vars El E2 £3 ELT

axioms -

(EI < El)

(El < E3 It El( E2 AND E2 <E3)

(El =E2 if El < E2 AND E2 < El)

end POSE?

theory EQY Is

types ELT

functions == ELT ELT ->BOOLEAN

vars El E2 E3 ELT

axioms

(El El)S

(El E3 If El E2 AND £2 E= 3)

end EQY

-for any POSET, there Is a natural way to define an equality;

view EQ ZIV a) P05K? Is

op. (11 mm 2 a) El 21 AND E2 < El)

*end EQ



7-i6

-now a top-down reusable development. RESOURCE using
-TABLE. sot yet been defined

generic package RESOURCE [ACCSal EQY; X TRIV] Is
using TABLE TABLECACCESS0I. X3 Is

* functions

ACC-OX ACCESSOR -)o BOWEAX
procedures

W RITE ACCESSOR, X

READ ACCESSOR -)X

exceptions

VRONG-ACC

vars A ACCESSOR; X X

axioms

URITE(AX= PUT(A.X) If ACC-OK(A)
* IWRITE(A.X = VRONG-ACC if NOT ACC-OK(A)

end RESOURCE

generic package TABLE CENTRY EQV; X TRIVJ Is
* state TABLE Initially EMP1TY

procedures

PUT ENTRY X

LOOKUP :ENTRY -)X

vars E:ENTRY; X:X

PUT(I.X); LOOKUPCK *X

end TAK



generic package SEC-MEORY-ACCESSOR (LEVL POSET]

needs MEORYP :: ORY Is
types S-ME-ACCESSOR Is

record
CELL CELL; - cell is part of the MORY package

ACCESSING-LEVEL LEVEL;

*ACCESSED-LEVEL LEVEL;

end record

functions

S-ME-ACC-OK S-ME-ACCESSOR B) OOLEAN

* vars SMA S-ME-ACCESSOR

* axioms

* ACC-OC(SMA) =S-ME-ACC-OK (SMA)

end SEC-ME-ACCESSOR

make SECURE-ME-MANAGER-O([LEVEL POSET; X TRIVJ In

RESOURCE (SEC -ME-ACCESSOR (LEVEL]. X1 needs TABLP => TABLE. HASH1I-
- end SECURE-ME-MANAGER-O

make SECURE-ME-MANAGER [LEVEL POSET; X TRIVI

using SEC-ME-TABLE = TABLE [IDENTIFIER, PAIR [CELL, LEVEL]JI (hidden)

* using SECURE-ME-MANAGER-O [LEVEL, X1 (hidden) In

* procedures

*REQUEST-WRITE IDENTIFIER X LEVEL

REQUEST-READ IDENTIFIER LEVEL -)X

* end SEC'JRE-ME-ANAQER



A~hr.4 VtUAljtfA~ O~jC~v iHEM?#F

109ADta) UNLf3fVt&! LISIA?&4 " IMTT9It

yWS CcbhItTrLT ArA -

£M4f~o r WIATh~1 Atrt

tC itMiCo Wmr T F,



ubE Itrr.1T

* J, -P



.. ... ... ..
(T ~II""I ~ 1"-shows-,. S



97

IV.3 LIL: A Library Interconnection Languge for Ada Programs

JOSEPH A. GOGUEN

0

0

0

0 
0 

. . • - - - , .. Lk - ' .A" "-



LIL:
A Library Interconnection Language

for Ada

J. A. Goguen

SRI International



Plagiarize! Plagiarize!

Let no one else's work evade0

Your eye.!

-- Tom Lehrer

Parameterize! Parameterize!

Let no one else's code evade

Your eyes!

-- LIL

-7. -N 2



LIL in a Module Interconnection Language f or Ada.

In particular, it respects the general structure of Ada,
07 4

including

*use clauses,

*generics,

*separate compilation.

Note that the Ada separate clause supports top-down

program development and is different from Ada generics.

However, this feature prevents the reuse of the stub package.

% I



6

Issues S

1. What should be in a library? Beyond compiled Ada code are:

corresponding uncompiled Ada texts, version and configuration

information, requirements, specifications, documentation, .

transformations, histories and management information.

2. What program composition techniques take maximum advantage of

Ada and the library concept? E.g., instantiating, enriching and •

restricting entities.

3. How to construct families of related programs? (Would

transformations and expert systems help?) 6

4. What documentation and specification techniques yield clear yet

mechanizable program descriptions?

5. How to find library entities most relevant to a user needs?

What cataloging services (e.g.. taxonomies) and reference

services (e.g., search strategies)?

6. How to integrate libraries into an APSE? (e.g., with module

test, linkage and interpretation facilities)

" , . ....



%7-W-71 7

7How to best present information to users? What about multi-
media (e. g. graphics and natural language) for program
composition, retrieval (e. g. , clever use of menus and icons). -

documentation and modification?

8. What about management issues? E.g., policies for investment,
quality control, and distributing and encouraging documentation? --

9. What experiments could be performed to test the viability of
various approaches to these problems?



Main Ideas

1. Systematic (but limited) use of semantics; in particular,

explicitly providing theories (which are just ets of axioms)

attached to program units via views.

2. A variety of different methods for program construction. so that
the process of programming will consist, as much as possible, in

the application of these methods, rather than in just writing

code; we call this hyperprogramming

3. Maximal use of generic (i.e., parameterized) library entities.

This is intended to make them as reusable as possible.

4. Support different levels of formality in axioms, and degrees and

kinds of validation (such as informal arguments, testing, and

formal proofs); this should support a practical user interface

and also aid in pinpointing weak spots during debugging.

6. Facilitation of program understanding by animating abstract

data types, and otherwise illustrating and explaining behavior

at module interfaces.

.................

. . . . .... -.

. . . . . . . . . . . .. .- ....-.. .. . . . . . .



Constructing New Entities From Old

1. Set a constant (such as the maximu depth of a stack);

2. Substitute one entity for a stub2 or parameter in another;

3. Sew together two (possibly large) entities along a comon

interface;

4. Instantiate the parameters of a generic entity;

5. Enrich an existing entity with some new features;

8. Hide (abstract, or encapsulate) some features of an existing

entity; this could include both data abstraction and control

abstraction;

7. "Slice" an entity, to eliminate some unwanted functionality;

8. Implement one abstract entity using features provided by others

(this leads to the notion of a vertical hierarchy of entities);

and

9. Assemble existing entities over a skeleton. This skeleton might

be either fixed or flexible; for example, it might be determined

heuristically by an expert system.

.. . . . . .. . . . . . . . . . . . . . .

. .. . . ". "



0

Some LIL Design Decisions

1. LIL syntax is closer to mathematics than Ada is.

0
2. The ordinary user of such a library system should not see LIL

entities as shown here; the user interface should involve

natural language and/or interactive graphics.

3. Several features of Ada are not treated.

a. Some are omitted to simplify the discussion; for example.

we discuss only functions, but procedures present no

serious difficulties .6

b. Others would require further research to provide an

adequate treatment; e.g., exceptions and tasking.

4. Most development projects will never use large or complex formal . -

theories, but would rely on informal documentation and informal .' . -

arguments about program properties. We wish to support both

formal and informal specification and verification in an _

integrated manner, allowing whatever mixture seems most

appropriate to the application.

5. LIL could be implemented without significant further research;

but other areas, such as transformations, would require

substantial further thought to provide an adequate foundation.

.~~~ .. .. .. " .. . .

n% . %.% %s , , . " " , ". .o • % . . - % , . , . ". . . ." . . . .. ." ". ". ° . . . " . . % " " " , " " ' ° .

"- " "- " ... -" ...." -- " - -" -" - ' -" - ' -" -" -" i T~ l l'i 'iS l - - " -" " " ' " ie "" -' ' " ' " " --" ' '" ' " " - '. '. ',



The LIL Package

package COMPLEXFUNCTIONS
using MATHFUNCTIONS is

types COMPLEX

functions
** COMPLEX COMPLEX ->COMPLEX

axioms
-agrees with real exponentiation f or real arguments

-E **I*R =COS(R) *I*SIN(R)

* end COMPLEXFUNCTIONS

1. A LIL package can have zero or more corresponding Ada, bodies.

2. Axioms need notbe completely formal.

* 3. Type. and Operation. can be hidden.



Theories

theory TRIV is

types ELT

end TRIV

theory POSET is
types ELT

functions <( ELT ELT ->BOOLEAN

vars El E2 E3 EL

axioms

(El < EI) S

(El <. E3 If El < E2 AND E2 < E3)

(El =E2 if El <E2 AND E2 <. El)

end POSET

This describes the interface of a sorting package, including that the

elements to be sorted have a suitable ordering relation.

theory MONOID is

types ML
functions M M M ) (assoc, Id: I)

end MONOID

Here assoc indicates that the function *is infix and associative.

i.e., satisfies the equation

*(MI U2) MU3 M1* (M2 M3)

*and id: I indicates that it has an identity I.



Generics

generic package LIST CELT TRIVJ Is

types LIST

functions

* LIST LIST -LIST (assoc, Id: NIL)

EMTY LIST -)BOOLEAN

HEAD LIST ->LIST

TAIL LIST -,LIST

vat's E ELT; L LIST

axioms

HEAD(E L) =L

TAILC(E .L) =E

end LIST

The attributes assoc and Id of *implicitly give some further

j equations, namely the associative law and two identity laws.

* All parameters are collected together in the requirement theory. telling

* what types, functions and procedures are needed, and what properties they

U must satisfy. .

* 7



j Here in a parameterized theory. vector spaces over a field F.

generic theory VECTOR-SP [F FIEL.D) is

types V

functions
+ V V ->V (assoc, comm, id: 0)

*:F V -)V

vars F F1 F2 F;

V VI V2 V

* axioms

((F1 + F2)* V = (F1 V)+(F2 M )

((F1 * F2)* V = (F1 *(F2 * V)))

(F * (VI + V2) =(F *Vi) + (F *V2))

end VECTOR-SP .

.. .. .



Views

view NATD POSET => NATURAL Is
types (ELT => NATURAL)

ops (< => DIVIDES)

end NADT

A default view is the one that is used unless another is explicitly

provided instead.

view NATV POSET => NATURAL i5
types (ELT => NATURAL)

ops (< => c

* end NATY

view NAT+ PJONOID => NATURAL Is

Uops (* => +)
(I => 0)

* - end NAT+

INC
0

ELT INAT

DIVIDES

BOLEN BOLEN

POSET NATURAL

THE VIEW NATD:POSET NATURAL



Instantiation

SORTCX POSET] can be instantiated using the view NATD by

make SORT-NATD is SORT CNATDI endi to get a package that sorts lists of NATURALs by the divisibility
relation.

make NATLIST is LIST [NATURAL] end

uses the default view TRIV => NATURAL to instantiate the parameterized

entity LIST with the actual parameter NATURAL.

make REAL-LIST is LIST (REAL] end

where REAL is the field of real numbers, uses a default view

TRIV => REAL.

make REAL-VSP is VECTOR-SP (REAL] end

uses a default view FIEL.D >REAL, and

make REAL-VSP-LIST is LIST [VECTOR-SP [REAL] Jend
uses two nested default views.



0

Here is an example with some interesting instantiatior;s:
0

generic package ITERATEEM MONOID]

using LISTEM C]Is
ops ITERATE LIST M)

vars EK: M; L : LIST0

axioms

(ITERATE(NIL) = ID
(ITERATE CE .L) =KE ITERATE(L)

end IME

Using the default view TRIV => MONOID.

make SIGMA in ITERATE(NAT+J end

sums a lilt of numbers. L ( 1 ~~ ri

make PI Is ITERATE(NAT*J end

multiplies a list of numbers.

r~l 0

IT NIL=



S
-. .

Package Stubs
[ ...

generic package SORT[X POSET]

needs LISTP LIST X] is
functions

SORT : LIST -> LIST

SORTED : LIST LIST -> BOOLEAN

vars L : LIST

axioms
SORTED(SORT(L)) = TRUE

end SORT

The needs clause says: to provide a generic sorting function, we need a .-

generic Ada package LISTP that is a version of the LIL package LIST[XI.

That X is both the formal parameter of SORT and of LIST [X] indicates

that the version is instantiated with the same X as SORT[X].

The advantage of this approach is that a generic Ada body for

LISTEX] can now be roused, which would be impossible with the Ada

separate clause.

To actually get a version of LIST for use in SORT, one gives a

module interconnection command indicating which version to use when

compiling.

make SORT[X] needs LISTP => LIST.HACK end

where LIST.HACK is a paricular generic body for the LIL generic package

LIST[X].

z0

*> .* * . . :- .... ****•**** * .. *.. . .
. . . . . .. . . . . . . . . . . . . . . . . . . .



*0

Any actual horizontal parameters for the main package (SORT in this

example) will alsa Ii supplied to the package version in the needs

clause (here, LIST.HACK).

This automatic management of the interactions of horizontal and vertical

structure is one of the most novel features of LIL. and can greatly

simplify the programmer's task in some cases.

The horizontal component of this example appears in the formal parameter

X. which is required to satisfy the POSET theory.

A make command can accomplish both the vertical and the horizontal

instantiation of SORT at once:

make SORT-NATD is SORT (NATD3 needs LISTP => LIST. HACK end



POSSET

A VERTICAL COMPOSITION

A REALIZATION OF ~~SORTNA RA]WTLItATA]

LISTS

NATURA POSE

- - .* . .

A REALIZATION.OF...............WITH..............

r-7... . . . . . . . . . .. . . . . . . . . .



SORT

SnS

ELS

0

A HORIZONTAL COMPOSITION



* The following figure shows that the requirements theory in a subtheory of

* the AM realized by that package, and may also be a subtheory of the stubs
* for the AM. that go into realizing it.

* Here INI and 1N2 are the requirement theories for the lower level

* AM9; these are included in the body theory of the package.

In addition, there is a theory of the behavior that is actually exported

* by the package; this AM may not be identical with the body theory

because of some information hiding.

PA RAM BD

55 0



LRL Environments

* A LIL environment consists of the currently defined entity names and their
* values, plus the relationships of inclusion among these entities,0

and their views.

NATURAL " T I -- - * BOOLEAN

MONOID POSET LIST

.........

S
ITER SORT

A



Hyperprogramming Taxonomy

HYPE RPROGR AMMING

HORIZONTAL TRANSFORMATIONS

ASSERTING STRUCTURING AGGREGATING VERTICAL STRUCTURAL
VIEWS EDITING (CODE)

COMBINE INSTANTIATE ENRICH ABSTRACT CODE
MACHINES

REALIZE ABSTRACT COMPOSE CODE ASSERT
OPTIMIZING AXIOMS

.. . . . . . . .. .



Organization of Library Entities for a Package

NAME, KEYWORDS

FUNCTIONAL SPEC
INTERFACE SPEC
DOCUMENTATION

EXAMPLES. TEST CASES

VERSION I VERSION 2

PERFORMANCE INF. PERFORMANCE INF.

WRITER; DATE WRITER; DATE
ETC. ETC.

ADA CODE ADA CODE

INTERMEDIATE INTERMEDIATE
COMPILED FORM COMPILED FORM

COMPILECFORPIBED FORM



Taxonomy of Library Entities

ENTITY

CONCRETE ABSTRATAAGRA

MIL CODE HORIZNA REQUIREMENTS PROJECTCOMMANDS TRANSFORMATION AND -VR CLSTATUS

PRORAMDESIGN 
ACCOUNTING

PACKAGE j ASSER TION HISTORY DOCUMENTATION

SU13PROGRAM SPECIFICATION 
-



The Components of LIL

(1) Declarations

(a) Packages -- generalize the spec part of Ada packages

by including:
se-Antics;

vers ions;

vertical k horizontal parameterization.

(b) Theories -- purely semantic, do not have bodies

(c) Views -- tells how an entity satisfies a theory

(2) Commands

-tell how to put entities together to form

systems; both vertical and horizontal

instantiation can be used



Organize by Semantics

o cataloging A retrieval

*understanding

* animation

e symbolic execution

e rapid prototyping

* version control



A Generic Secure Resource Manager in LIL

theory TRIV is

types EL?

end TRIV

theory POSE? is

types EL?

functions < ELT ELT -)BOOLEAN

*vars El E2E3 :ELT

* axioms

(El < El)

(El < E3 if El < E2 AND E2 < E3)

(El = E2 if El < E2 AND E2 < El)

end POSE?

theory EQV is
types ELT

functions == ELT ELT- BOOLEAN

vars El E2 E3 EL

axioms
(El = El)

(El = E3 if El ==E2 AND E2 ==E3)

(El ==E2 if E2 ==El)

end EQV

* - -- f or any POSE?, there is a natural way to define an equality;

view EQ EQV => POSE? is

vars El E2 :EL?

*ops (El =E2 => El<El AND E2<El)

end EQ



-now a top-down reusable development. RESOURCE using

-TABLE, not yet been defined

generic package RESOURCE [ACCESSOR EQV; X TRIV] is

using TABLEP ::TABLE EACCESSOR. X1 is

functions

ACC-OK :ACCESSOR ->BOOLEAN

procedures

WRITE ACCESSOR X

READ ACCESSOR ->X

exceptions

WRONG-ACC

*vars A ACCESSOR; X X

axioms

WRITE(AX= PUTCA,X) if ACC-OK(A)

WRITE(A.X) = WRONG-ACC if NOT ACC-OK(A)

* end RESOURCE

generic package TABLE ENTRY EQY. X TRIV) is

* state TABLE initially EMPTY

procedures

PUT :ENTRY X

LOOKUP ENTRY -)X

vars E:ENTRY; X.X

axioms

PUT(E.X); LOOKUP(E) =X

end TABLE



generic package SEC-MEMORY-ACCESSOR [LEVEL POSET)

needs MORYP MEMORY is

types S-MEM-ACCESSOR is

record

CELL :CELL; -- cell is part of the MEMORY package

ACCESSING-LEVEL LEVEL;

ACCESSED-LEVEL LEVEL;

end record

functions

S-MEM-ACC-OK :S-MEM-ACCESSOR ->BOOLEAN

vars SMA :S-MEM-ACCESSOR

axioms

ACC-OI((SMA) =S-MEM-ACC-OK (SMA)

end SEC-MEM-ACCESSOR

make SECLJRE-MEM-MANAGER-O [LEVEL POSET; X TRIV) is

RESOURCE [SEC-MEM-ACCESSOR [LEVEL]. X1 needs TABLEP => TABLE. HASH1

end SECURE-MEM-MANAGER-O

make SECLJRE-MM-MANAGER (LEVEL POSET; X TRIV)

using SEC-MEM-TABLE = TABLEEIDENTIFIER, PAIR[CELL.LEVEL)] (hidden)

using SECURE-MEM-MANAGER-O [LEVEL. X1 (hidden) is

procedures

REQUEST-WRITE IDENTIFIER X LEVEL

REQUEST-READ IDENTIFIER LEVEL ->X

end SECLJRE-MEM-MANAGER



pr 
o 

--
) Y A -

.

CwJ~~~~MI' it t~~ wd

As. A

tS AAM iZtr4A4k~DQ

Pro do

ofS



kPeC,

t0. i

* 4to

* ~ocokvf~r



IVA4 DCP Approach to Ada Libraries

ANDRES RUDMIK

0S



U C
0

cr

0L
0.

I-



I-
21

I.)
< Ewj

cr

uj 0 S

0- < u

- CL C

crC1 2



LL-J
CCL -

0uL 0
C U- Iw z
Vw <

w -

> )ZU)0

Z <W

CL w ow 0 <

0 :D CL
UJ<L

-JJ
< I r I L I - IJ c

W o < 02 0

0

.S.



z J

~W QH

z W
U) CC (CCE Z

W Z Z W <
o u C

<H <

< z <0 u uI

0 < I I I

cc

C-

CLS



cn0

00

00

z
LU 0-

DU

U- -J UJ

_ w
ZUWZ

w' i- -J

0o
u000

<. LL I

0
cc

CLS



u) LiJ

cc0

< L0

C) L0

Z 0

< -r

zz
w >-o -C)

p- -J J _- QW-

Z

IU U<QJ

<0 c
0 r< <c

cc

C.5

.....................................



(1)uj (1

< (D Wr
c0c

m -~m

:j- cc C/) C Q c/

0 cc
0 0 W CEL

cc LL CEOD
>- cc 0 <

0 0 zWU~-

a - C), Z E-

I) 000
0~~ w 0

0



LL6

00

WS

LLJ

wU) )
w H -

cr U)

u0 0 L- cc.a.~ < 0 H Zz z~ V
Um L =: (9,Dm

U LL Z U :
I- cr~ 0 0- 0<w

In ~c< < Z< (9 WU w0-

< 0 m CL
En< U- 0L

LLJ -mD UD CC w 0 mJ

0c U) m 0 0 I I
0r D D n<O <

0 DUL
z >O

LU S

cc < V



- . . .. . J . . . .

LUS

V))

DD

u1 ) zI U) 1- .

U) I- U)U

m ~: C /D

U) o < -

D c w Ir 0H Ll) 0
LU 0 a. 0 z(/1ILL N 0  ww
cr H- < LiiC w) c
0 < £rw
LL w W~ <xi (D9)C C

WOwz5 z
U)w ccwLu w

0S

LuJ

andw



0 C0

0 <
< 0

-J:
L/') CLS

<m <

z ZzV) (
~0

00

_ 00 0 <
m L L CL u 0

< (f) V)U CC5 Q
U) U ) 0 0 <

Z) <<-j 0 wLv <c
LUJ - LU U) < L

Q 0 0 00 COZ
0L 0 H 0_

(> -J L L < >U w L
0>-0 L

<0U w U00 0 u<U D

0 0 )0U<F

0



E~l I1E Ippw ~ -- *

mS

mm
UU)

U) < U- m -

oL U)M L

r LU V m u

-J L - 9 HLU 0 zJ2 > V)

cc LI. r U.. U) cc
0 L0 IZ 0)H

wL 09 0- l Zz

0 Z < mZ < UC

LL WU wU w wo- (9

WU U) wU Suu L
a_ cc u~~

IL I

Lu



0 C0

0<

< <~

m
00

mm <

0 .0

<<
m LL ~ ~ LL,

U)J -i 0) Lu 0) 0
cruD C 0L w < c
cc -j W) U) c-u

>ULL cr Cr0 3 O 0 wL O
(D < LL~ <0. p > tr

LL >C < uJ
(-9 -~2 < co U -J _

ZD Z0 - 0 HL <0-

LU

U I I I I 0 I
CDC



00

U)

< <H

cc I-
m < 0

CC <

< zD
'~ o0D

UU U)

w o wOO <
< )r m 0 ID

Z xO 0 z CL UU

LU0



U) <

z0
w CCZ

CL< U

<U mL wQ 9

0 0 w< zU
oL Urn w CU)

0 0 UC <U ~ r

(90C)< <d <
z9 z L w a. < I

<0 RX ) (9 <L

< <w2< >< <rLU~~~ ~~ LL - .. C-O L I
<(9 (9

z 5 <<crLc<
Ho < -w

00..L c

cyj Lb 9



I I FL - - . . -. . .

LUS

m~ cr CL

0 U)

zo < <

o no

0 -0 <
1j < _j D

crj om

aI

&mu



zU 0

< <

s)e wU <LU u cr cr cr CUU >
Z < 00

<i 0 -0 )Wr

0~- <w < c C
cUU )

LF 9 U ) _ LL r
m ~ >- 2 uLL < <z-

tO C) 00 Z L)

CL~~< <UJ < )C

o _e 
UL C)

<~ ~ 0 - iu
(<)U) 0 LEDU< U

a. <LI Z C

L U- -- .w

................... LL 
-



- -g -

IV.5 Flexibility vs. Efficiency for Reusable Components

I ALLEN S. MATSUMOTO



FLEY(OlLiry vs eriFtcteA~'ey

FoR. k.E~USABL-tE Cv~qom.'#rS .

F eLLK Rrert1cTooAs op sysrem

moite Possigwr rA13TA~JvATloAJ.C

MotF SPECIFIC: .

Moe- E-CrIOA)f A*LR~EADYMA)ie-

GrtE*Tek r.Jo UebdrE OF CDOrrr



.7

JT~rrL4AAI Saoter,

s 0 Or

11 r Are-

S pt 4i Sor Cos,%povL0



Soler

leiE'LEA=

A&A.54y n~m AJrE.,
EAO~tAAS

IL6

Fi3-2- jS

sort OANPV~ek



generic

type EEETY~ ~pi~c
with function LLSS A, B. LEMENTJXMTE)

return BOOLEAN;

package SORT-ELEMENT-ARRAY is

type ELEMENT-ARRAY is array (integer range <>)
of ELEMENTJYE;

* function SORT ( A: in ELEMENT-ARRAY)
return ELEMENL-ARRAY;

end SORLELEMENL-ARRAY;

Pm_



generic

type ELEMENTYPE is private;
with function LESS (A, B: ELEMENT__YPE)

return BOOLEAN;

type INDEX is (<>);

package SORTELEMENTARRAY is

type ELEMENT-ARRAY is array (INDEX range <>)
of ELEMENTTYPE;

function SORT ( A: in ELEMENT-ARRAY )
return ELEMENT-ARRAY;

end SORTELEMENTARRAY;
1_

77.1 ii 2 -i '

- S



S

generic

type ELEMENTYPE is private;
with function LESS (A, B: ELEMENTTYPE)

return BOOLEAN;

type INDEX is (<>);

type LIST is limited private;
with procedure CREATE (HEADER: out LIST);
with procedure INSERT ( HEADER: in out LIST,

PLACE: INDEX,
ITEM: ELEMENTYPE);

with procedure GET (HEADER: in out LIST,
PLACE: INDEX,
ITEM: out ELEMENTJTYPE);

package SORT-LIST is

function SORT ( L: in LIST) return LIST;

end SORT-LIST;

. . . . . . . .

. . . . . .. . . . . . . . . .



generic

type ELEMENTTYPE is private;
with function LESS (A, B: ELEMENTTYPE)

return BOOLEAN;

type LIST is limited private;
with procedure CREATE (HEADER: out LIST);
with procedure APPEND ( HEADER: in out LIST,

ITEM: ELEMENTYPE ); 0
with proccdure GET-FIRST ( HEADER: in out LIST,

ITEM: out ELEMENTTYPE);
with procedure GET-NEXT ( HEADER: in out LIST,

ITEM: in ELEMENT_.YPE)
NEXT: out ELEMENTJYPE);

package SORT-LIST is

function SORT ( L: in LIST) return LIST; .

end SORT-LIST;

.............. ... ..

. . . . . . . . . . . . . . . . . . . . .. . . . . . .



generic

type ELEMENT__YPE is private;
with function LESS (A, B: ELEMENTYPE) S

return BOOLEAN;

type LIST is limited private;
with procedure CONS (A, B: ELEMENTYPE,

HEADER: out LIST);
with procedure CONS (A: ELEMENTJYPE,

B: LIST,
HEADER: out LIST);

with procedure CONS ( A, B: LIST,
HEADER: out LIST);

with procedure GET-FIRST ( HEADER: in out LIST,
ITEM: out ELEMENTJYPE);

with procedure GET-REST (HEADER: in out LIST,
REST: out LIST);

package SORT-LIST is

function SORT ( L: in LIST) -eturn LIST;

end SORT-LIST;

' . . .•

, •

' °



7 AD-A149 570 REPORT ON ADA (TRADEMARK) PROGR 
AM LIBRARIES WORKSHOP 

3/i
HELD AT MONTEREY' CAL..(U) SRI INTERNATIONAL MENLO PRRK
A J A GOGUEN ET AL. 03 NOV 83 N@@014-83-M-0088B

UNCLASE D G 92

mhhhhhhhhmmm



(lii i*O 12.2

1111111332

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A



ROY

wsrJ

ID:

. . . . . . . . .. . . . . .



- ~ ~ ~ ~ ~ ~ ~ 6 A - C.-...- -2- ......

I.T~G~n.Lis

Lis0



M7 D

I.U S..



I.

N:

N

N

p.. ~.--

S

LIeJ~b-Lgs r
S

~sr
0

* OQ) E~rb

0



Lis r

CLE~



-IIs.

ffe



bELFA.brfp o)ITI4 gitbM7

C.- A#Jb OOrflA

ohm_ qwyp
4.- m



9JT

A 110A

I0 b

0 to



( i

)

I p

*
.. -

* / S

P S

U

U

I S

b S

I S

~. .p.

L
-b ~. . . .



p

h.

U

* A'7~ I' .7.

i

I

* ) I

I
K /

I

/ 0

N .1%

~0



Is IMPO&TAPJ? 1 I~'~MPLemvivrArtop.)

CA?% LJG CO(A&A~

wiTrovr PkrvCM,7~q

'F? C I CA) T 1 HPL ArkCAJ T7J M



100

1V.S Mapping Clear Specifications to Ada Packages

* STEVEN D. LITVINTCHOUK

Ile



M4APPING CLEAR SPECIFICATIONS TO ADA PACKAGES

STEVEN D. LITVINTCHOUK

RAYTHEON COMPANY

GOAL: SYSTEMATIC DEVELOPMENT OF ADA PACKAGE

SKELETONS WHIICH PARALLEL DEVELOPMENT

OF CLEAR SPECIFICATIONS

PURPOSE: 'FIRS DEVELOP SPECIFICATIONS IN CLEAR;

THEN. "DIRIVE" ADA DESIGN BY SPECIFICATION

-FACILITATE DESIGN

-FACILITATE MANAGEMENlT OF REUSABLE

ADA COMPONENTS

A



CLEAR AND ADA -- BASIC FEATURES 000

CLEAR SPECIFICATION LANGUAGE

-- RIGOROUS SEMANTIC DEFINITION BASED UPON FORMAL ALGEBRA

-- FORMAL SPECIFICATION OF SOFTWARE

-- SPECIFICATIONS BUILT IN MODULAR, STRUCTURED MANNER

*0

ADA PROGRAMMING LANGUAGE

-- 1O WIDELY ACCEPTED FORMAL SEMANTIC DEFINITION

-- ADA PACKAGE: MODULE PROVIDING A COLLECTION OF RELATED FEATURES

-- GENERIC PACKAGES CAN IMPLEMENT PARAMETERIZED ABSTRACT DATA TYPES

-- BUT PACKAGE INTERFACES ARE MOSTLY SYNTACTIC

.~~~ .' ..- . . .

......................................... ...



. ..* . . . . . . . .. . . . -

CONSTANT (NONPARAMETERI ZED) THEORI ES

CONST X THIEORY . . . i4DTHi

DISCUSSION

* -- CANONICAL VS. LOOSE THEORIES

-THE DATA OPTION

* -- "INSTITUTIONS'

EXAMPLE

DAIA SORTSi BOOL
QENS TRUE, FALSE :BOOL

NOT : BOOL ->BOOL

~tia NOT (TRUE) =FALSE
NOT (NOT Wp) =P

iENDTH



- ~ ~ ~ 9 F - .. .- ....

MAPPING TO ADA: DISCUSSION

-SIGNATURE IN VISIBLE PART OF PACKAGE SPECIFICATION

-REPRESENTATION TYPE IN PRIVATE PART

-IMPLEMENTATION OF FUNCTIONS IN PACKAGE BODY

-CHOICE OF IMPLEMENTATIONS

PACKAGE BOOL_PACKAGE is

TYPE BOOL IS LIMITED PRIVATE;
FUNCTION TRUE (X: BOOL) RETURN BOOL;
FUNCTION FALSE (X: DOOL) RETURN BOOL;
FUNCTION "NOT" (X: BOOL) RETURN BOOL;

"NOT" IS AN ADA RESERVED WORD
FUNCTION EQUAL (X, Y: BOOL) RETURN BOOL;

-BECAUSE OF THE DAIa OPTION

PRIVATE

TYPE BOOL is . . CHOSEN IMPLEMENTATION OF BOOL

END BOOLPACKAGE;

PACKAGE BODY BOOL PACKAGE is
-- IMPLEMENTATION OF FUNCTIONS

FUNCTION TRUE (X: BOOL) RETURN BOOL is . ..
FUNCTION FALSE (X: BOOL) RETURN BOOL is . ..
FUNCTION "NOT" (X: BOOL) RETURN BOOL is . ..
FUNCTION EQUAL (X, Y: BOOL) RETURN BOOL is . ..

END BOOLPACKAGE;
* -~ - -.. -



7' 7 7 -i- .

COMBINING THEORIES

X + Y CREATES "UNION" OF THEORIES X AND Y

DISCUSSION --.-. -.

-- CLEAR SUBTHEORIES ARE SHARED (YOU GET ONLY ONE COPY)

-- SO ARE ADA LIBRARY UNITS (FORTUNATELY) _

-- "BASE" OF A THEORY: RECORDS DEPENDENCE ON ALL GLOBAL SUBTHEORIES

-- ENVIRONMENT MUST KEEP TRACK OF THIS INFORMATION

-- USE ADA CONTEXT SPECIFICATION ("WITH") CLAUSE

TO RECORD SAME KIND OF INFORMATION

-- "LOCAL" SUBTHEORIES ARE ALSO POSSIBLE

(WITH (BASE OFX} U {BASEOF Y;]

PACKAGE XPLUSY is

[PACKAGE XPACKAGE is,... --IF X LOCAL

END X_PACKAGE;]
[PACKAGE YPACKAGE is.... -- IF Y LOCAL
END YPACKAGE; -

END XPLUSY;
_ -9

. ~ . % * N %..'. -.



ENRICHMENTS OF THEORIES
EN~icHE BI ENDE

-ADDS NEW CAPABILITIES AS SPECIFIED BY Xo TO EXISTING THEORY, E

EXAMPLE

~~ BOOLOPNS=
ENRICH± BOOL BY

9Mi~ AND, OR, - BOOLo BOOL ->BOOL

E ~ P AND TRUE =P

P AND FALSE =FALSE
P OR TRUE = TRUE
P OR FALSE P
P >Q =NOT (P AND NOT (Q))

E~NDEN

WITH BOOL PACKAGE;
PACKAGE BUQLQPNSPACKAGE is

FUNCTION " AND" (X,0 Y: BOOL) RETURN BOOL;
FNT o .OR .X :BO)RTR OL

FUNCTION ORP (X.4 Y: BOOL) RETURN BOOL;

END BOOLOPN~SPACKAGE;

PACKAGE BODY BOOLQPNSPACKAGE is

FUNCTION ofAND" (X, Y: BOOL) RETURN BOOL is
BEGIN -- POSSIBLE IMPLEMENTATION OF "AD

IF Y = TRUE THEN
RETURN X;-

ELSE
RETURN FALSE;

END IF;
END "AND"

FUNCTION "OR" CX, Y: BOOL) RETURN BOOL is ..
FUNCTION IMJ (X, Y: BOOL) RETURN BOOL is . ..

END BOOLQPNSPACKAGE;



.7 - %7 . -.- % -- .1 .1' -- '-

ANOTHER ENRICHED THEORY

co~sT NAT
ENICH~ BOOL L
DMIA SORTS NAT

2mII 0: NAT
SUCC :NAT ->NAT

NAT, NAT ->NAT

succ (N) M =SUCC (N +M)

WITH bOOLPACKAGE;
PACKAGE NATPACKAGE is

TYPE NAT IS LIMITED PRIVATE;

FUNCTION ZERO RETURN NAT;
FUNCTION SUCC (X: NAT) RETURN NAT;
FUNCTION " (:NAT) RETURN NAT;

* PRIVATE

TYPE NAT is . . .

END NATPACKAGE;

I m*



DERIVING ONE THEORY FROM ANOTHER

DEIED [USING El, E2, . E1 RM F DI M: D -,F E ?....?

SELECTS A SUBSET OF THEORY F
RENAMED AS SPECIFIED BY M (CALLED A SIGNATURE MORPHISM)
TO YIELD A THEORY WITH SIGNATURE D
(CAN ALSO USE E1, E2, , , , AS SUBTHEORIES)

EXAMPLE

ScoNST NATORD -

ENRICH NAT DX.
Oj 1,2, 3, 4, 5 :NAT

<= : NAT, NAT-> BOOL

EQNS , , ,

0 N S.-. SECURITY =

DERIVE SORTS LEVEL

fj. UNCLASSIFIED, CONFIDENTIAL, 

SECRET, TOPSECRET : LEVEL
LEVEL, LEVEL-> BOOL

USING BOOL

FRJ NATORD

LEVEL Iu NAT,

UNCLASSIFIED IS 0,

CONFIDENTIAL IS 1,
SECRET _I 2,

TOPSECRET I 3
E NDDE ---

.--



WITH NATORDPACKAGE, NATPACKAGE, BOOLPACKAGE;

PACKAGE SECURITYPACKAGE IS

TYPE LEVEL IS LIMITED PRIVATEj

FUNCTION UNCLASSIFIED RETURN LEVEL;
FUNCTION CONFIDENTIAL RETURN LEVEL;

FUNCTION SECRET RETURN LEVEL;
FUNCTION TOPSECRET RETURN LEVEL;

FUNCTION "<=" (X/ Y: LEVEL) RETURN BOOL;

FUNCTION EQUAL (X, Y: LEVEL) RETURN BOOL;

PRIVATE

TYPE LEVEL IS NEW NAT;

END SECURITYPACKAGE; P.

PACKAGE BODY SECURITYPACKAGE Is

FUNCTION UNCLASSIFIED RETURN LEVEL is

BEGIN
RETURN LEVEL(ZERO);

END;

II

END SECURITY-PACKAGE;

,%I-

. . . ..

.1 A



THEORY PROCEDURES (PARAMETERIZED THEORIES)

PROCEDURE P (FMLI: REQTI, ,, ) = T
WHERE REQTI: RUIREMENT FOR FML.

TO APPLY PROCEDURE:

P (ACT1 [M11, ,..) 0

WHERE M1: REQT1 -- > ACT1  (FITTING MORPHISM)

ACTS LIKE TEXTUAL SUBSTITUTION INTO T:
-- ACTUAL PARAMETERS FOR FORMAL PARAMETERS
-- SORTS/OPERATORS OF ACTUAL PARAMETERS FOR

THOSE OF REQUIREMENTS

DISCUSSION

-- ADA GENERICS CAN ACCEPT SIGNATURES OF ABSTRACT

UATA TYPES AS ARGUMENTS

-- BUT SHARIN'G OF SUBTHEORIES N'AY RESULT IN POSSIBLE
"ALIASING" INVOLVING ACTUAL PARAMETERS AND
SUBTHEORIES IN T; ADA GENERICS PROHIBIT SUCH ALIASING

-- CAN PLACE RESTRICTIONS ON DEFINITION AND APPLICATION OF

CLEAR PROCEDURES TO PROHIBIT ALIASING (PERHAPS
REQUIRING THAT SUBTHEORIES OF PROCEDURE BE "RESPECTED")

-- CONTROLLING "PROLIFERATION" OF THEORY APPLICATIONS WITH
IDENTICAL ACTUAL PARAMETERS CONFLICTS WITH ADA RULES
FOR MULTIPLE GENERIC INSTANTIATIONS

EXAMPLE: THEORY OF TOTALLY ORDERED LISTS OF ELEMENTS

CQTi TRIV =
J-ERY SORTS ELEM

|. -. ,

I. "w..'.'.EN.P-'

Ir e



UJEA ORDERED- ELEMENTS
LtABicH BoOLOPNS L

SOT ELT

Q~jj , :ELT, ELT ->BOOL

SA==A = TRUE

A==B = B==A -

A==B AND B==C - A==C =TRUE

A<=A =TRUE

A<=SAND B <= A--A==B = TRUE

A<=B AND B <= C--A<=C = TRUE

A<=B AND B <= A =TRUE

PROEDURE ORDERED-LIST WX ORDERED-ELEMENTS) =-

ENRICH 'LIST (X[ELEM IS~ ELTI) t 60OLOPNS BY

QEi.ORDER: LIST ->LIST

ORDERED: LIST ->BOOL

I ~ 1i~ORDER(NIL) =NIL0

* -- AXIOMATICS OF ORDER &ORDERED

£LINDiE

* To APPLY TO THEORY NATORD,
YIELDING ORDERED LISTS OF NATURAL NUMBERS:

ORDERED-LIST(NATORD(ELT LiNAT, <= 11 = = ~=]



WITH BOOLPACKAGE, BOOLOPNSPACKAGE, LISTPACKAGE;

GENERIC-

TYPE ELT IS LIMITED PRIVATE;

WITH FUNCTION EQUAL (A, B: ELT) RETURN BOOL is <>;

WITH FUNCTION M'" A B: ELT) RETURN BOOL IS <>;-

PACKAGE ORDEREDLISTPACKAGE is

PACKAGE NEWLISTPACKAGE IS NEW LISTPACKAGE (ELEM >ELT);

-NOTE IMPLEMENTATION OF

USE NEWLISTPACKAGE; -- APPLICATION OF LIST THEORY:

FUNCTION ORDER (Lt LIST) RETURN LIST;

FUNCTION ORDERED (L: LIST) RETURN BOOL;

END ORDEREDLISTPACKAGE;

TO APPLY (INSTANTIATE) NATORDPACKAGE:

NEW ORDEREDLISTPACKAGE (ELT => NATPACKAGENAT,#

EQUAL => NAT PACKAGE.EQUAL,

< NATORDPACKAGE."<=-"



COPIES OF THEORIES

copy E [USING F1, F2, ,.1 ,.

MAKES NEW COPY OF E,
WITH SHARABLE SUBTHEORIES F, F), , """"

APPROACH TO ADA IMPLEMENTATION:
REPLACE EACH ADA PACKAGE BY INSTANTIATION OF

EQUIVALENT GENERIC PACKAGE OF NO ARGUMENTS

INSTEAD OF CREATING PACKAGE EPACKAGE AS:

PACKAGE E PACKAGE IS

(TYPES/FUNCTIONS OF ElPLP
END EPACKAGE;

CREATE IT AS INSTANTIATION OF GENERIC PACKAGE OF
NO ARGUMENTS:

GENERIC

PACKAGE ETEMPLATE;

(TYPES/FUNCTIONS OF El

END ETEMPLATE;
WITH ETEMPLATE;

PACKAGE EPACKAGE IS NEW E_TEMPLATE;

- MORE COPIES

PACKAGE ElPACKAGE IS NEW ETEMPLATE;
PACKAGE E2_PACKAGE IS NEW ETEMPLATE;

e, p

*1

-.-.,-.,-, .. ., .-, .,. 1,,1-., ., ....,,....,....-..-.-......-....,......,-.--.-...,.-..-....-.-.,-.........,........-,...'-..-.. ; .,.'- . .--.-..-.

.-,,-.,j .,.-..-,,;.-,-~~~~~~~~~~~~..... L ,,.z.. ................-.-.....-........ •..... "-... :'L,_-, ;.'-



FOR THE FUTURE, ...

e FIX REMAINING PROBLEMS, INCLUDING:

"ALIASING" INVOLVING PROCEDURE PARAMETERS AND BASE

0

" PROLIFERATION" OF IDENTICAL PROCEDURE APPLICATIONS

* FORMALIZE AND VERIFY CORRECTNESS OF THIS PROCESS -S

* INVESTIGATE ROBUSTNESS FOR OTHER "INSTITUTIONS"
0

e DEVELOP ADA OPTIMIZATIONS FOR USEFUL CASES

* DRAW UP REQUIREMIENTS FOR SUPPORT ENVIRONMENT -

* APPLY RESEARCH ON AUTOMATED GENERATION OF ABSTRACT DATA TYPES

. . . . . . . . . . . . . . . . . . . . . . . . . . . -



IN CONCLUSION ...
S

O IT IS FEASIBLE TO DO ADA DESIGNS WHICH PARALLEL

THE STRUCTURE OF CLEAR SPECIFICATIONS

o BUT REQUIRES:

-- SOME RESTRICTION ON4 USE OF CLEAR -

-- SIGNIFICANT ENVIRONMENT SUPPORT

.......................

. . .. o.. . . . . .



101

1V.7 General Requirements for an Elementary Math Function Library

BRUNO WITTE0

0

0S



GENERAL REQUIREMENTS FOR AN ELEMENTARY MATH FUNCTIONS LIBRARY

(Bruno Witte, NOSC) S

San Diego, CA, 10/24'83

(a) Structure.
(b) Angles.
(c) Names.
(d) Exception handling.
(e) References.
(f) Generic packages.
(g) Accuracy tests.
(h) Verifications and demos.
(i) Documentation.

a. STRUCTURE. The library of functions and facilities shall be parti-
tioned into Ada packages in such a manner that the following observa-
tions are taken into account:

1. Functions used together. Functions which are likely to be
used together, or are generated together, should be packaged
together.

2. Overloading of library units. Names of library units cannot
be overloaded. Thus, if unpackaged functions were to become
library units, their names could not be overloaded.

3. Advantage of overloading. Many function names were purposely
overloaded to avoid overloading people's memories.

4. Suboptimal compilers. When an Ada package consists of sever-
al functions, and a user needs only one of them, an ideal
compiler will give him only that one. However, such optimi-
zing compilers may be years away. Meanwhile, compilers and
loaders are likely to burden programs with unnecessary func-
tions by supplying entire packages named in WITH clauses,
even when only a fraction of the package contents is needed.

5. Minimum package sizes. It follows that users who object to
having their programs burdened at execution time with func-
tions they do not need, should be helped in some other way
for the time being. For example, if a math functions libra-
ry were structured so packages contain only one, or a few , .
functions (or other components), this would be helpful to
such users.

6. Number of WITH clauses. However, to follow this advice in S
(5) by placing only one function into most packages, would
cause a user to write more WITH and USE clauses.

,.:............... . ................

. . . . . . . . . . . . . . . . . . . . . . ..-. . . .... ..--. .----. .-. .---..--.--. ..-. . . . .. '-: -- .---: ', : :- :--" , -'- i - .' "-" - '-i/ -- - . '-



* ,. . .. .

7. Package of packages. But, then again, users can themselves "
place several smaller packages into a larger one to get a
more readable and a better structured program, and to reduce
the number of WITH and USE clauses.

8. Package sizes. Another factor influences the program struc-
ture in Ada: When lowest-level packages or compilation units
are too large, they tend to become "unwieldy" from the point -
of view of the programmer who has to write or maintain them.
"Unwieldy" means a combination of lesser readability, clum-
sier compiling and program development, more chain reactions
when changes or corrections are made, etc.

9. Summary. The upshot seems to be that the library should be
implemented in terms of a hierarchy of packages, with each
of the lowest-level packages including only functions which
most users will want to use together. An illustration is
given below.

-I ----------------------------------------------I I "" "
I Illustration of a hierarchy of package trees l.:.

for the functions of a math library.
--- ------- --- -----

. Package Functions and/or Procedures Other packages named .

Name included in package in a WITH clause

*PKG_SORT SORT 40

PKSCBRT CBRT

PKGLOGS NATLOS
COM LOG
BINLOG 5

PK6 TRIG SIN
Cos
TAN

PKS_COTAN COTAN

PKGARCSINARCCOS ARCSIN
ARCCOS

PKGSARCTAN ARCTAN

PKG_E_EXP EXP PKG_LOGS

" PKG GEN EXP PKG E EXP
PK6_LOGS

.

," ~~~~~.. ... . . .. ........ ... .. .*.... . ... .-.. .-.. .-. ... "°.'

P.- '.' '-._" "• . . .. . . ....... * ........... .. -- *. .



PKS-HYPERDOL ICS SI NH
COSH
TANH

PKSGINVHYPERDOLICS INVSINH
I NV..COSH
INYTANH

PG-POLARCARTES IAN POLAR (X PKG..SORT
POLAR CX1,X2) PKBARCTAN
POLAR CRHO,PHI) PKG TRIG
CARTESIAN CR)
CARTESIAN CX1,X2)
CARTESIAN (RHO,PHI)
ABSCISSA MX
ABSCISSA CR)
ABSCISSA CRHO,PHI)

ORDINATE MX
ORDINATE CRHO,PHI)
RADIUS MX
RADIUS CR)
RADIUS (Xl,X2) .
ANGLE MX
ANGLE (R)
ANGLE (X1,X2)

PKG CARTESIAN COMPLEX CARTESIAN CXl, X2) PKG..SORT
POLAR (XIX2) PKGARCTAN
REALPART CU)
XMASPART (U)
CONJUGATE (U)
RADIUS (U)
ANGLE CU)___
POLAR CU)

GET CU)
PUT CU)

PKG-POLAR_COMPLEX POLAR (RHO, PHI) PKGTRIG
CARTESIAN CRHO,PHI)
CONJUGATE CS)
CARTESIAN CS)
REALPART CS)
IMAG..PART CS) .
RADIUS CS)
ANGLE CS)
+0 -9 *0

GET CS)
PUT CS)

PKGFLL COMPLEX PKG .CARTES IANCOMPLEX
PKG POLARCOMPLEX

PKGCOIIPLEXSQRT SORT (U) PKG FULL COMPLEX
S1ORT (S)

-A-L.-



*P1<6_COMPLEXLOG NATLOS (U) PKSGFULL-COMPLEX
NAT..LO6 (S) P1<6_LOSS

*P1<6_COMPLEXEXP EXP (U) P1<6_POLARCOMPLEX
EXP (5) P1<6_TRIG

P1<6_COMPLEX_TRIG SIN (U) PKGFULL-COMPLEX
SIN (8) P1<6_HYPERBOLICS
Cos (U) PKGJTRIG
Cos (S)
TAN (U)
TAN (S)

P1<6_COMPLEX INV TRIG ARCSIN (U) PKG..FULL..COMPLEX0
ARCSIN (S) P1<6_ARCSIN-ARCCOS
ARCCOS (U) PKG_ARCTAN
ARCCOS (S) PKGLOSS
ARCTAN (U) PK6_SO2RT
ARCTAN (S)

PKGCOMPLEXHYPERBOLICS SINH (U) PKG FULL COMPLEX
SINH (S) P1<6_HYPERBOLICS
COSH (U) P1<6_TRIG
COSH (S)
TANH (U)
TANH (S)

P1<6_COMPLEXINVHYPER INV_SINH (U) P1<6_COMPLEX_INVJTRI6
INVSINH (S)
INV COSH (U)
INVCOSH (S)
INVTANH (U)
INVTANH CS)

*P1GGENCOMPLEX EXP U**V PKG FULLCOMPLEX
S**T P1<6_COMPLEX LOG

0b. ANGLES. Before explicitly or implicitly referring to angles in
* the context of trigonometric functions, coordinate transformations, or
* complex arithmetic, the user shall have the option to decide whether he
* wants angles in degrees or in radians.

c. NAMES. Names of packages, functions, procedures, and constants,
* which are used in the code, shall be as given.

d. EXCEPTION HANDLING. For most functions and procedures there shall
be "catch-all" exception traps and handlers which report their function
or procedure name to the calling program, raise the exception, and do

* nothing else (no printing, no value assignments, etc.). The calling
programs must decide what to do, among options such as Ca3 printing
that there is trouble in function XYZ, Cb] halting program execution,
[ c] re-executing the calling routine (for expl., recursively) with dif-



ferent parameter values, [d] choosing a substitute routine, and resum-
ing execution, Ce] sounding an alarm at the control center, or Cf1 re-
raising the exception, etc. When the calling program is itself part of
one of the library packages, then the developer shall decide on the S
action to be taken by the exception handler in the calling program. If,
in a specific case, a decision is made to re-raise the exception, then
the name of the calling program, too, shall be reported back to the pa-
rent routine, in addition to the name of the subprogram where the prob-
lem started; etc.

S

e. REFERENCES. All literature references shall be by author's last
name, year of publication, and a letter when several publications are
listed for the same author and year. For example, "Wilkinson (1959b)"
would refer to the second of the following fictitious entries in a list
of references:

Wilkinson,J.H. (1959a), "Error Analysis of Floating-point Computation",
Numer.Math., vol.2, pp.319-340.

Wilkinson,J.H. (1959b), "The Evaluation of Zeros of Ill-conditioned Po-

lynomials", Numer.Math., vol.1, pp.150-166, 167-180.
p

. f. GENERIC PACKAGES. Most functions shall be declared inside gene-
ric packages, with statements like

' generic type REAL is digits <>;

" - package XXX_XXX is

function ANY (X:REAL) return REAL;
function ETC (X:REAL) return REAL;

g. ACCURACY TESTS. There shall be separate tests of the "single-pre-
-* cision" and the double-precision evaluations, as well as tests of the

single-precision results by comparing them with double-precision ones.
There shall be random argument accuracy tests as well as tests with se-
lected specific arguments (near the extremes of the function domains,
near the zeros of the functions, near zero-arguments, etc.). The diffe-

. rent kinds of tests are labelled Tests [A], Tests CB], Tests [C], etc.,
and each of these kinds of tests shall satisfy its own set of require-
ments as illustrated further below for Tests [A].

Tests CA]: random arguments,
with range reductions,
separate test packages,
no double-precision tests.

-". Tests [B]: random arguments
no range reductions,
separate test packages,
no double-precision tests.

. .%. .. . . . .

S. -. "..,.-.---
. . . . . . . .,.•. .



Tests CC]: random arguments,

one integrated test program,
only double-precision tests.

Tests CD3: random arguments,
one integrated test program,
no double-precision tests,
but double-precision comparisons.

Tests CE]: selected arguments,
separate test packages,
single- and double-precision tests.

Tests CA]

Tests of type CA] do not apply to double-precision functions. They use
random arguments, and check how well certain identities are satisfied.

1. Tests [A] shall be in the form of separate test packages for each
function.

2. Packages for Tests CA] shall become available to the users in the
same way as function approximations, so that users can repeat the
tests, either with the given functions or with their own.

3. Each Test CA] package shall display the results in the form shown
in paragraph (10) below.

4. The Test [A] packages shall be prepared with the same care
and in the same style, and with the same level of documentation,
as is required for the function approximations themselves.

5. Tests CA] shall be random argument accuracy tests, to check how
well certain functional identities are satisfied.

6. Random arguments in the Tests CA] shall for most functions have a
logarithmic distribution, in intervals for which the functions S
are defined.

7. Each Test CA] shall use a repeatable sequence of 100,000 random
arguments, with seed N=1.

8. For each Test CA] the required number of significant decimals, K,
shall be FLOAT'DIGITS.

-- 2~* P~ - - .'..-----



17

9. For each random argument accuracy Test EA3, the contractor shall
compute the following quantities:

Ell R -ABS(E), absolute value of the relative

error E, for each argument;

E23 MAXR -maximum R. see [13;

E33 X-MAXR =argument associated with MAX_.R, see E2:3;

E43 AVGR W average value of R, see E13;

E53 MIN_DIG = -CONL06(MAX-R) -minimum number of
correct decimal digits obtained with
any argument in the test, see E2];

E6] AV6_DIG =-COM _LOG(AVG -R) =average number of
correct decimal digits obtained with
the arguments in the test, see E43;

[7] MAXMISS - K-MINDIG if K> MIN-DIG
= 0 if K<=IIINDIG

maximum number of significant decimal
digits missing on required K decimal
digits, see (8) and E53;

£8]3 AVG-MISS - K-AVG-DIG if K> AVG_-DIG
W 0 If K<=AVGDIG -

average number of significant decimal
digits missing on required K decimal
digits, see (8) and £6];



10. Table arrangement illustration for results of tests of type [A].
All numerical values are fictitious. However, they indicate what 0
results may be expected, i.e., some unavoidable inaccuracies when

users' DIGITS specifications correspond to maximum machine accu-
racy, and K is set to this DIGITS value.

a Type [A] random argument accuracy test of: SORT 1 •

Location of test site: XYZ Co., City, State
Computer: DEC-360

I Date: 10/5 '83 -

I Number of arguments: 100,000 "!
1 argument distribution: logarithmic
I argument range: O..9.876543210E65

I relative error: E = [SORT(X**2)-X]/X. "
- I -

* K MIN-DIG AVG_DIG MAXMISS AVG_MISS XMAX_R
I a
1 10 8.9 9.5 1.1 0.5 1.222333444E-55 I
; I

P K FLOAT'DIGITS - maximum number of significant 0

decimal digits available;

MINDIG minimum number of significant figures actually .
returned for any of the random arguments;

AVG-DIG average number of significant figures actually ,
returned for all random arguments;

MAX_MISS -- K-MINDIG (if positive), 0 (otherwise); '

AVG MISS -- K-AVG DIG (if positive), 0 (otherwise); -

X_MAXR -- argument causing the maximum relative error.

h. VERIFICATIONS AND DEMOS

(1) Mathematical constants.
(2) Coordinate transformations.
(3) Complex arithmetic and I/O.
(4) Complex functions.
(5) Double-preci si on.
(6) Scalar operations. 7
(7) Array operations.
(8) Linked lists.
(9) Random numbers.

(10) Exception handling.

- . . . . 9 . . . . . . % . , . ..%



i. DOCUIENTAT ION.

(1) Electronic transmittals.
(2) Package hierarchy overview.
(3) Summaries of Ada packages. 0

(4) Source code listings.
(5) Output listings.
(6) Test evaluations.
(7) General comments.
(8) References.

1. Electronic transmittals. The entire documentation shall be
stored in the form of files on hard or floppy disks of the
preparer's computer, and shall be transmitted electronically
to a dedicated special directory on an ARPANET host compu-
ter, to be designated by the Ada Joint Program Office. Each S
section of the reports which starts on a new page shall cor-
respond to a different disk file on the preparer's computer,
and vice versap and the transmittals of these files shall be
by uploading from the preparer's (micro-) computer(s) to the
ARPANET host.

2. Package hierarchy overview. In a file of its own, there
shall be an overview of the hierarchical package structure
of the Ada packages and subprograms in this library, in the
style illustrated in (a.9).

3. Summaries of Ada packages. For each individual Ada package, JU
there shall be a separate abstract in English prose, stating
such items as domains of input variables of subprograms in
the package, range of output values of the subprograms,
approximation methods, range reduction procedures, exception
handling, generic aspects, literature references, etc.
There shall be one such summary for each package listed in .
the above overview (2) under the heading "Package Name", and
the summaries shall be in the same order as in this listing,
each in a file by itself, and none exceeding the equivalent
of an ordinary typewritten text page.

4. Source code listings.

(4.1) Source code of Ada packages.
(4.2) Source code of verifications.
(4.3) Source code of accuracy tests.
(4.4) Source code of timing program.
(4.5) Source code of random number tests.

4.1 Source code of Ad* packages. For each package in the over-
view (2), there shall be a separate file with its Ada source
code.

4.2 Source code of verifications. For each verification pro- -

gram in (h), there shall be a separate source code file.

. . . . .. . .o .. o .'° .°.

,, ... .,.. .. ..... ~.. ......,. . .... ... .... ... .. ....... -. t] .. .. . _, .-' L.. .. . -



4.3 Source code of accuracy tests. For each individual accura-
cy testing program (devised according to section (g)), there
shall be a separate source code file. 0

4.4 Source code of timing program. There shall be a separate
file with the timing program source code.

4.5 Source code of random number tests. There shall be a sep-
arate source code file for each of the five test programs
for evaluating the UNIFORMRANDOM number generator.

5. Output listings.

(5.1) Two parallel sets.
(5.2) Verification outputs.
(5.3) Accuracy test outputs.
(5.4) Timing test outputs.

5.1 Two parallel sets. There shall be two parallel sets of files
of output listings for the outputs described below in (5.2),
(5.3) and (5.4), one set obtained with runs on one computer,
the other with runs on another computer, and the two compu-
ters shall be by different manufacturers. Each output list-
ing shall identify the computer, its location and the date
of the run; and each set shall contain all of the following

output files. See (5.2, 5.3, and 5.4).

5.2 Verification outputs. There shall be separate files for each
of the following output listings:

-- the output listing of the verifications program for the
mathematical constants;

the output listing of the verifications program for the "
coordinate transformations;

the output listing of the verifications program for the
complex arithmetic and 1/0;

the output listing of the verifications program for the
evaluation of elementary functions of complex argument;

the output listing of the verifications program for the
double-precision capabilities; -

the output listing of the verifications program for the
various _.-alar operations;

two output listings from the two verification programs
for array operations;

two output listings from the two verification programs
for operations on linked lists;

-..-

,'. - ! .o o. - . . . . . . . .. . . . . . . . . . .. . . •. - "o ' " '



ten frequency plots obtained with the program for veri-
fying the performance of random number generators; each
of these plots shall be considered a separate output
listing. 0

-- the five program outputs for verifying exception hand-
ling shall all be in the same output listing.

5.3 Accuracy test outputs. There shall be files with the out-
puts of the accuracy testing programs of section (g), (see
also (4.3)). Thus, there shall be 62 (or more) output tab-
ulations of the test results, and each shall be a separate
output listing, as follows:

-- twenty tabulations for Tests [A], i.e., one for each of

the elementary functions;

-- twenty tabulations for Tests [B], i.e., the repeats of
Tests [A] for primary ranges;

-- one tabulation for all Tests [C], the accuracy tests of
the double-precision function evaluations;

-- one tabulation for all Tests [D], the accuracy tests of
the single-precision function evaluations, by comparing
with double-precision results;

-- twenty (or more) tabulations for Tests [El with delibe-

rately chosen arguments.

5.4 Timing test outputs. There shall be files with the output

listings of the timing tests.

6. Test evaluations.

(6.1) Accuracy test evaluations.
(6.2) Timing test evaluations.
(6.3) Random number test evaluations.

6.1 Accuracy test evaluations. Separately for each elementary
function there shall be a summary of the results of the ac-
curacy tests, a cursory comparison with results of corre-
sponding tests in FORTRAN, as well as comments on such items
as the extra loss of accuracy due to range reductions (Tests
-A] versus Tests [B]), the adequacy of tests which rely on
identities rather than double-precision comparisons (Tests
CA] versus Tests ED])$ any accuracy loss at the endpoints of
the domain (Tests CE]), e'tc. Each summary shall begin on a
new page, and none shall exceed one page. -.

6.2 Timing test evaluations. There shall be a summary of the "
timing test results, and a cursory comparison with results
of corresponding FORTRAN tests. All twenty functions shall
be discussed in the same summary, starting on a new page.

i" - ..°> .-

" *. . . ... . . . . .. . . . . . . . . . . . . . .. . °-°. . . . ., •... °.. . . .° . - ,°.%.-° .- '- .°...-'°



I

6.3 Random number test evaluations. There shall be a summary
of the results of the tests of the generator of uniformly
distributed random numbers, including comparisons with cor-
responding FORTRAN results on the same equipment, and in-
cluding statements (for each of the tests) telling whether -

Ada results are better (more random) or worse (less random)

than FORTRAN results.

7. General comments. There shall be some brief comments on pro-
gramming approaches, and on difficulties encountered during
the implementation of this library, and the developer shall
feel free to make suggestions for other programmers of large
Ada software systems.

I

B. References. There shall be a collection of all references in
this part of the documentation, compiled in the manner as is
described in (e).

.

41 •_

................. .. .

- . . . .
. . . . . . . . . . . .". . . . . . . . . . . .

. . . . . . . . . . . ,..-. . . . . . . ..... ".-.



102

IV.8 Knowledge Based Toolsi for Data Type Implementation

GORDON KOTIK



Knowledge Based Tools For

Data Type Implementation

by

Gordon Kotik

of

Computer and Information Science Dept*
University of California ,Santa Cruz

and

Kestrel Institute
1801 Page Mill RoadI
Palo Alto, CA 94304

............................... ..... ...... . .



OUTL INE

I. What does a data type user want?

I.How can a programming environment help?

A. CHI, a Knowledge Based
Programming Environment

B. A Theory Of Data Type Implementation

C. A Tool For Implementing Data Types

III. Relevance To ADA Libraries

KESTREL INSTITUTE.,

* . . .- .. .*-.--* **---. .p. . -.- how



A SHOPPING LIST FOR DATA TYPE USERS
--------------------------------------

1. Expressive Power

11. Efficient Implementation

III. Correctness

KESTREL INSTITUTE



EXPRESSIVE POWER
-------------------

-Standard Low Level Types

- Integers
- Booleans
- Floating Point
- Characters

-High Level Type Constructors

-Sets
- Sequences
- Mappings
- Relations
- Product Types

-- Powerful Operators ~1

- Set Constructors
- Reduction operators
- Relational operators
- Quantifiers

-User Defined Types _9

- Data Abstraction
- Hidden Implementations

KESTREL INSTITUTE



*POWERFUL DATA TYPES ALLOW SIMPLE SPECIFICATIONS
--------------------------------------------------

Primes:

(x In 2..Max IV y In 2..(x -1) [(.(ylx)J)

*Business Programming:
- - - - - - - - - - -- - - - -

type Employee =record

Fname, Lname :string;
Salary :integer

end;

*var Employees :set of Employee;
TotalWages :Integer;
IsBossOf :relation on Employee x Employee;

begin

TotalWages (-

Reduce(x in Employee, x.Salary,+)

Overpaid <-
C E in Employees I

(3~ B in Employees [IsBoss~f(B.E) &
E.Salary > B.SalaryJ)

.. n ~ d

end ;KESTREL INSTITUTE



EFFICIENCY

-Default Implementations are not good enoigh

-Data type Implementations should be chosen
according to

-Context of use (operation frequencies)

* - User defineable cost function

KESTREL ,tSTIT II



KNOWLEDGE BASED TOOLS FOR
- - - - - - - - - - - - - -

DATA TYPE IMPLEMENTATION
------------------------ -------

1. CHI: A Knowledge Based
Programming Environment

11. A Theory Of Data Type Implementation

III. Data Structure Implementation in CHI

IV. An Example: Derivation of a Hash Table
Implementation For Sets

KESTREL INSTITUTE

zI



CHI -_

L ,,

.0-A Programming Language "V6

A database for representing V objects

-- Tools for

- Reading and Printing V objects

- A structure-based editor for V

- Compiling V into Lisp

KESTREL INSTITUTE

,9./--

-.° .*.-



V: A WIDE SPECTRUM, VERY-HIGH-LEVEL LANGUAGE
--------------------------------------------------

-Includes standard low level data types
* and control constructs

-Very high level constructs

-Program transformation rules

* - High level data types

- Sets
- Sequences
- Mappings
- Relations
--Products
-Un ion s

-Logic constructs

KESTREL INSTITUTE



THE CHI DATABASE

Instances of V constructs are represented
In the CHI Database as sets of assertions

-- Programs, Knowledge (expressed as rules)

-- Uniform Representation Of All Assertions
as (Property, Object, Value) triples _ .

-- Stored and computed properties

Maintains multiple contexts in a
tree structure

KESTREL INSTITUTE

. . . . . .. .. ... . - .•.. .. 2-,°.>°: ...:- > : -. '.-.
• " ... . -°-... .- ,-... . . - .. ". -...............-.

.... " ... "-,.'..~~~~~~~~~~~~~~~..... .... '.. - -'-'..... ...... ..-..-.-.. ..... . - . .. . . .



V PROGRAMS ARE COMPILED BY

SUCCESSIVE RULE APPLICATIONS

----

V Rules Are Source to Source
Program Transformations

.. Rules operate on the database

-- Rules have form

P->

where P and 0 are predicates on the
state of the database, and are
interpreted as

"if P Is true In the current state
of the database, then make Q true
in the next state of the database"

KESTREL INSTTIUTE

*5 ._ *-.5 .'.. ...!



DATA TYPE IMPLEMENTATION IN CHI
0

--- -------

GOAL: Intelligent selection of implementations
for high-level V data types

PROBLEM:

1. High Level types in V have many
distinct implementations.

2. Distinct Implementations have widely
disparate efficiency characteristics.

3. Many different usage patterns.

0

K 'T-REL INSTITUTE
SF9.



• D

TOOL S FOR SOLUTION

----------------------------

I. A system which generates a broad class
- of data type implementations.

2. An "efficiency expert", which estimates
the resource requirements of V programs.

..3. A control structure for searching the
space of alternatative Implementations,
guided by the efficiency expert.

I

KESTREL INSTITUTE

.............................................

- . .- .--



KNOWLEDGE BASED SYNTHESIS OF
- - - - - - - -- - - - - - - - - - - - - -

'3 DATA TYPE IMPLEMENTATIONS

- - - - - - - -- - - - - - - - - - - -

IDEA: Complex data type Implementations
embody the results of a sequence of
Independent implementation decisions.

DESIGN PLAN:

1. Factor knowledge about data structure
implementation into a small set of
general, orthogonal representational
techniques ("data type refinements"). -

"Set of XV can be represented by
"mapping from X to boolean"

"Mapping from I to YV can be represented by
"Array(I) of V. if Iis an integer subrange.

2. Derive distinct data type implementations
by composing data type refinements.

"Set of 1. .102"

=> "Mapping from 1..100' to boolean"

=> "Array(1..1240) of boolean"

--- a--. NA IT



DATA TYPE REFINEMENTS
- - - - - - - -- - - - - - - - -

For data types

X =(X-Vals,X-Ops)

Y (V-Vals,Y-Ops)

a refinement

I: X ->

of type X to type V is a pair

I =(Abs,Trans)

*where:

Abs: V-Vals ->X-Vals (abstraction function)

Trans: Relation on Terms x Terms
(translates relation)

KESTREL INSTITUTE

1700t6 VO '011TV O1Vd



COMPOSING DATA TYPE REFINEMENTS

For refinements

I: A ->B ,I =(Abs-I. Trans-I

J: B ->C ,J =(Abs-J, Trans-J)

the refinement K J3oI,

K: A ->C ,K =(Abs-K, Trans-K)

obtained by composing J and I, is defined by

Abs-K =Abs-I o Abs-3

Trans-K =Trans-J o Trans-I

KESTREL INSTITUTE

d..-.......



rrr . - -r' r -r - °r- r- . - - ' "- -'-" .-." - - . - . . n , - r 1 .-.-

IMPLEMENTATION OF DATA TYPE REFINEMENTS

A refinement

I: X -> Y , I (Abs-I, Trans-I) P

is implemented as

(1) A V rule which specifies choice of
refinement I, and p

(2) A set of (term rewriting) V rules
which specify the legal translations
of X-Terms into V-Terms.

-Each rule in (2) induces a relation on
Terms x Terms.

* - The translates relation Trans-I is then
* . the union (over these rules) of the

Induced relations.

KESTREL INSTITUTE

.................................. .



AN EXAMPLE DATA TYPE REFINEMENT:
---------------------------------------

SETS REPRESENTED AS SEQUENCES

- - - - - - - -- - - - - - - - - - -- - - -

-Abstraction Function: Abs(Seq) =Range(Seq)

-Rule which chooses the refinement:

* rule Set-Rep-As-Sequence params(*)
*set of V'- *.Impl='Set-Rep-As-Seq

* & *.Rep-As=SeqType
& SeqType:-'sequence of X'

* -Some rules which translate operations:

rule Set-Rep-As-Sequence-Member-Test params(*)
*:'Yin S' & S.Type.Impl='Set-Rep-As-Seq
&S.Rep-Var=Repv -

E: Ex I C I i n Ilo s iz e(S & (Repv(I)=Y)J'

rule Set-Rep-As-Sequence-Size params(*)
*size(S)' & S.Type.Impl='Set-Rep-As-Seq

* & S.Rep-Var=Repv - *:size(Repv)a

KESTREL INSTITU TF

-- 7 -7



EXAMPLE SYNTHESIS OF A DATA TYPE IMPLEMENTATION:

SETS REPRESENTED BY HASH TABLES
---------------------------------- A

var S :set of Integer; xIn SI Choose a characteristic
function Implementation

11 S1 mapping from integer to boolean; SI(x)

~. -~ F.Ise
~ I-s rre

a -True

KESTREL INSTITUTO

............... . ..7



SI mapping from Integer to boolean; SI(x)

Coose a hashed impi.
for characteristicI function

function Hash (1 integer) :HashlndexType; -

S2 :mapping from HashlndexType to
mapping from Integer to boolean;.

S2( Hash( x))( x)IChoose HashlndexType
to be Z..109; choose
a hash function

function Hash (I :integer) :HashlndexType;
begin return(t mod lZl) end;

S2 mapping from Z.. I Z0 to
mapping from integer to boolean;

S2( Hash( x) )(x)

KESTREL INSTITUTE



S2 :mapping from 8..100 to
mapping from integer to boolean;

S2( Hash( x) )( x)IRepresent the top-level

mapping as an array

S3 :array(O..10') of
mapping from integer to boolean;

(ELT S3 Hash(X))(x)

0 -.vTrve
--Io~ False

* 4 j~s -cil Se
GN

L( S mo d s

1015~~~~ 10 -'ipTf

2ETE NTTT
. . . . . . . . . .. . . . . . . . .



S3 :array(0..100) of
mapping from Integer to boolean;

(ELT S3 Hash(X)M(x)

SRepresent the range type
of the array as sets

*S4 :array(Z..10) of set of integer;

x In (ELT S4 Hash( x)

01

KESTREL INSTITUTE



SS4 :array(0..100) of set of Integer;

x In (ELT S4 Hash( x)

SChoose a sequential
representation for
the set type

S5 :array(Zf..1ZZ) of sequence of integer;

Ex y (y in 1..size(ELT S5 Hash(x))

& (ELT S5 Hash( x))(y )x]

-The sequence type can now be refined into

linked lists or trees or ....

KESTREL INSTITUTE

. .. .- . . z



S

ADA DATA TYPE LIBRARIES

ADA users should have high level types

High level types necessitate the use
of many distinct target Implementations

Storing a large library of hand-coded
data type implementations is not the p

best way

- Implicit, informal derivations

- Tremendous redundancy

-- A better method is to have a computed
ibrary

- Generate ADA packages for high level
data types based on efficiency
analysis and resource constraints

KESTREL INSTITUTE

.... .. ....... . . . . ... . .... ...... ........... .. ........ . ........ . .. .. .



103

IV.9 Library Organization and User Interfaces

ri JOSE MESEC-UER



P4.

US6bAlD

747 ;v,*



GOAL M~xi mi ze %(jAel

IA

'06*

IA IRloBeoAThim
P. S

tdtt4 k~t WMe &J4



ORc&ANIZATIOAJ

SENANTICS

A DA (IOV~L(

£JLADA 4,bOi '~

2. .C-kAO Y C .O . .



AIHAT TFO STORE I/AJ THE 1.1G3.

tux ~ftD sI6ws
V I e W iTAJSFRtAIOIS

In PAC ICAC5 .

~IPF)44Ve4S op A&S7RAC7YcW
tMo( i20WJAL , Ve OZ770t4 8s rjeUCiVOZ (AWhA{

1~lie



..... .. ..

Taxonomay of Library Entities

eat-ity

concrete abstract manageria

ML progm code horiz A ueipn req. accutg proj
cmndf ta. Tort status

*pkg subpgm asserta history spec doc



MOTE H/I6PAjPC* SWLW,

I rIA

os DB

mum 9 ft

%I

H/ER.Y To_____
MANYWA

146P SJ6

I U AA

v~~ ~ ~ I. V 1Jn%

e&

mom. ..



CAT LMG6 A1- MeRIVAI.

A~AL-

^"'p 4aWCofi 4  ek#e

AUTN 4j±O~e two'*, A Ac 9WMCTINi6

VALaOS



By8

UA/ATN HELrii

U~lAt Tj~t6 AkesTtp

~TfZ~cwp~ mMOM

a ___________________________________

I. [d~tc30



U4SeR 1'JreRAC6

cqef4^n too4 p/ a4Zjoro GOlve
L4. 6ft&WiiC4 c~~/fL 'fe- lal t

0 0aa. AIIMTIAJ $V&
S . . ~ 't. . 7 .



ANIMPATIONJ

PAMcAGeS Wlkn VA&f4"t.

'4~~~~ 0 ~cY

oQ ctdi 1.

. Cogoi ot4OtcA~4~~

ANIMATIO

te-e

0A C' A +0 j!)P 4 e& 4 it* 4 3



PUSH

FUS14

P14



104

IV.1O Version Control in Program Libraries

WALTER TiCHY

kid'



TIA



Tk&

Y&4L YV 1-~. 46 &u% VA

Ejec .,fws

$l~p v4* tI~d~ d a 4 .00,

4A,

7*1100~A44;L~C @4



. . . . . . . . . .u~

. . . . . . . . . . .. . . .0



AA &o~t . Cr-dVOw~o "0ok "

gocm4m imA 4s:

th4~c4 ire ~w$44~~$cc



i

IeE~I~C~Ofrb A

5 ~t(iej ~ ~

I ~ ~ dOCvC4 4 41IC~~4.*.

U- ~ A, *~L'E~&4 4~O(~Ot R~4A 4

44...~ L4~Q~U14 f'rO~W% tcL~.A
*

*
I.

* A* 4
* I I -

I E

I I
~ g a. I I' 43, 2. 1

* t 1 __

S

I'~2.

* I
S 11D

. -::.~.., - -



. o.

II

° ,,4 6. .

, I', , -q , ", 1#,# ' ":S

Ni

". .. '.':, :.

S - - -

.S

-::" ':::-- : " " ." " : :: :: : ": " '"" : - ::s :-:-.-.,.:, -- : :...: .:.:.-... , :.-..:.,.. :::i!



W.0 A A

P t 1 =ro

qoI

jV

I4



S

(llwit.' ~

"44

0

I4'~

0

S

0*
'~ '~ ~ g.I(

'. t~pS.~.k ~ -

~a

2~ I

-S

a - .f

$Ih~ jjj ~ /2 f~ t;.-

/ "4

gs-mm-ud

S

-S

S



J&a /CA wtcw, 9W.000 CQk6,1

VV l -1Vj I'A44 if 4019 CI #Lbh 1~rL

cMI.~C 0 to^ d

Cot)

I~~leN boa's

t7.+4( P)



.4A

b, ,a .



0.0- A ct 1dC 4.4 (lot,

-C, coo U*., 1 O0



'do v S ou ~

(ao~q

C)~.0% ve oft koqr. e. vo



OwnE

CA to 4&6

-b)c,Lc t-AO (crcy0 46

"6s*,k co * lo
es40

rili



S 3

C0  ?~; ~ ~,

-... , S

3. -

4~.4 1(A'~gd s~r
:) )

£ S

4
E

A

~ 1 C~
.3. -~

~ 14'~N 4

4) SC ~

"-3
A'

S

S

(*' IEPJI#') ~t44S~ ~~!Ip& 4 644*,

S

- .. .' . - -............... b ......-



4S

146CoVW.A60

cK*



-. .. .. V-. .. -.-.

VA a

~~~.~s 4kE.c#N4

p

-.-. •-..-. ,. ,.•.

- - ."

* . -- *.* ~ Ac~. .c "

I

S

I

p

0

S

S

S

D-R149 570 REPORT ON ADA (TRADEMARK) PROGRAM LIBRARIES WORKSHOP 4/04
HELD AT MONTEREY CAL..(U) SRI INTERNATIONAL MENLO PARK
CA J A GOGUEN ET AL. 03 NOY 83 N888i4-83-M-988

UNCLASSIFIED F/O 9/2 N

El'.

:17

111g ,6 1126

flju

IIII25 . 16

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963 A

. . .- . .

105

IV.11 Using ANNA for Specifying and Documenting Ada Packages

FRIEDRICH Wm VON HENKE

(Ls j AA&1A 4 - S-te c sr t' t -D o c p%%etA 1 4

A- t'wA - t4v& A at a

alt *~O4 dhi~ A .c 41w- AL*tat,

* &AOL oreoc vxteA

OI t^ AL-ft -c a. .. 404~

t4 a
*4%&.

totctL-~e
xd~

-Zdctos (La$P4A..L.

:::%::Z: z

- pevi'oh iart.'I44'. &aACL "M~ & Lqj4

4.s 41. ftl

80164 %L' 4% e sr

.A12

* AWW44 ttar Lee&,atem easte 4o jo e-M,'-L A.L.L'

AAL'r C&C 0 i4 0"

A. A"L " JEL .4 L(o~e 4o

L44A ~ (f-CI pecs'a(cvv.4&4.e4, 4 aa (At &~i,w 4e v-r:

*V.,i-4,(T.eA4

id e491 a A of ot-Lejo

-rtoLr 4oif rutaxII~b .4' .ri 4 L, ve-kr- CSot-eptSwf exL 14-&~

omptieece, e4 f Ao erjvre srr 4'o& :

CoLLbt,Ce'.

4.,.~(XAArUPZAL>

eac is AJArLrAL? lmz> SarZ7-x) Y.1

9 40,4 "s ai co&"rvg..4 4-eech ft.J pac 4mQ~e r44r

J;'TA-CL< IvvilA1L U[oL.S-(K); PLAT1Cc)

x44-mir c(erc 4o 4L..4 ,r? S.
- rewsk4 1 ecr leg,4 teat Co 4-Lt4 el4. t4 rees -at.

t .4&&I11 Ca s 4 c6 4oroe s-a 4p.,A

0 &q4a. 14IOea4C4S oLr-,ed4. .f

* 6 .44rei~~g te,-aA&a* 4Le 4 ctoa, c*%,%c"4- oC

ArL A%4&L pr~oqa #r' isaSSC"sse4 f 4e Ae4

4.tj.4t t.s co.z'4 c,,4 4Le. 4t%4to% ti.e. 'f au(

.,

rVtt4Jjpc- Abfl.4i-f-c-ace tic

&lA O4 & 4~tZV. S reC"

~~C U~AL T' IOU~1 Gt?.

k I IL
-tvn*,: o ve.A . at £&crp'evL~ .L?~I t

0 e zF rz P:D A

A/AT-Q~ .r2.t >Y

, l<~g(1 *Cqtei~

t(i4",b4ATo/qs '%4rLs4 L.L c,- tA-rl'4

CA-44&A kbe 4 bc 474, X0pk. e prLLk c L.4L 4 A

g4L&4 a e(o4~ a~t +(. ctes'v'J,~ad'i

* eo~Cs e4 4te 4-%,

LA -.e O.C 11t -(O4

%As* a. f*£4a (,fej c

w-i- Ce4j4 * 4 *.'.
t4"4-. co-4L*Nn CtU44-1~ /uodr4t %ie" %tecet

411,e ITEM :rnv -

c t<

YOrce 4 'i.Ler re i arr PJt1t&,e4m

&r A ic.L r7i 4 XS- (Z u=> .4 0 e PFtL

r cI,_-r.

ST-AC.LpjGTm = t0: A~jbj~j=PLJ.

S PL4s mCx); Por C y)

C lo -T c14(x)[L G ovr r (4 L Evi - 1-
L(rT{~opCre L pa 4 r9 CL C" Cr.I--f

-rT4Cc< o uCr-4 L, L~EA/ ~4 - a
!rT C l/

&(~ S-rSAc& ryve t X- S LsAjG1vH 4

V.4 16 4, &, z c

"t, Syr 4dqt44 -

&- - 64 of. 4-&i £.d k-e ~(4 4- o~..

4Orhq~ *..f-%" ecAcSZ. L% L %.%X Ai. 4a)

- . -~.4 ~4b'~,. o. 5 ~C4~V , 4 I.LL~S4L-

7-- *'a

-: *Li. Li

Q flr....#' co Aar O L 4J

c,, Q- A, t? o

-a---,- A -

P0~-A7A.T -ooV(4,Lr citc(PR ZrA4L.4T-icAJ

* _IF

% %>~(A)

-7.

4 3C-I2Lj Lc aw (tA.,bEC rQt V)o rEM;

)(<=(Z'r.A rc~ >, 'p

46- > .4) <- 4

to or c'fe4it S61eTAre r iS Ro

0 rzw Lr t- e Cre ,> I~u.-(A-t v

-- o fe' tt'

AVL o~r 44,aj Is UGIF

4
6 , Ot*-P r.~e vi, a , 4,iq s ~p~~e,

* * e cp4.'. C 4* .(e 9*911 *Le tL4q

7 af OsL4 4 &r',4 rats P' LL t~~

FILMED

2-85

DTIC

