COMPARING DIFFERENT THEORETICAL DESIGNS OF SIX-PORT REFLECTOMETER JUNCTORS (U) ROYAL SIGNALS AND RADAR ESTABLISHMENT MALVERN (ENGLAND) E J GRIFFIN ET AL.

UNCLASSIFIED APR 84 RSRE-MEMO-3684 ORIC-REF-93573 F/G 9/7
ROYAL SIGNALS & RADAR ESTABLISHMENT

COMPARING DIFFERENT THEORETICAL DESIGNS
OF SIX-PORT REFLECTOMETER JUNCTIONS

Authors: E J Griffin and T E Hodgetts

PROCUREMENT EXECUTIVE,
MINISTRY OF DEFENCE,
RSRE MALVERN,
WORCS.
Title: COMPARING DIFFERENT THEORETICAL DESIGNS OF SIX-PORT REFLECTOMETER JUNCTIONS

Authors: E J Griffin and T E Hodgetts

Date: April 1984

SUMMARY

This memorandum presents a derivation of numerical procedures for comparing different theoretical designs of six-port junctions for use in measuring the voltage reflection coefficient r of passive loads. It shows from these that the maximum uncertainty in measuring any passive load can be minimised by a suitable choice of components, in each of four different designs, and discusses the relative merits of these designs in terms of selecting a best compromise for use in a dual six-port network analyser.
RSRE MEMORANDUM NO 3684

COMPARING DIFFERENT THEORETICAL DESIGNS OF SIX-PORT REFLECTOMETER JUNCTIONS

E J Griffin and T E Hodgetts

CONTENTS
1 INTRODUCTION 1
2 MAXIMUM UNCERTAINTY U_{max} 2
3 MAXIMUM POWER P_{max} 5
4 OPTIMISING U_{max} 6
5 PRACTICAL CONSIDERATIONS 8
6 CONCLUSION 10
7 REFERENCES 10
8 APPENDIX A 10

FIGURES 1-4

1 INTRODUCTION

1.1 Measurement of complex voltage reflection coefficient Γ with a six-port reflectometer was first described by Engen and Hoer (1-3). In this instrument, Figure 1, radiation is directed from a source to the device under test (DUT) by

\begin{center}
\includegraphics[width=\textwidth]{figure1.png}
\end{center}

Figure 1 A six-port reflectometer
a six-port waveguide junction which also directs to four square-law detectors different samples of the waves incident on and reflected from the DUT. After calibration (to establish the phase and magnitude relations between these samples in terms of external standards) \(\Gamma \) is calculated from the ratios of outputs \(P_k(k=1,2,3) \) from three of these detectors to that from the fourth (reference) detector \(P_R \). A number of different designs of junction have been described for this instrument (4-22) and it has been shown that, given infinite resolution in representing the power ratios in calculation, any constant linear waveguide junction having non-identical transmission between its six ports would suffice (23). Since the detector signal-to-noise ratio is finite in practice, a prospective constructor is faced with the question: "Can the likely performance of these different designs be compared theoretically?" By limiting consideration to the measurement of passive DUTs, so that \(|\Gamma| \ll 1 \), the tradeoff between uncertainty of measurement and RF power required can be used as a basis for this comparison.

1.2 Specifically, given a maximum level of power \(P_D \) permitted at any detector and an equivalent noise power \(P_N \) at each detector we derive as criteria for comparing different six-port junction designs:

(i) the maximum uncertainty \(U_{\text{max}} \) in measuring any \(|\Gamma| \ll 1 \) when the reference detector absorbs \(P_D \) and

(ii) the maximum power \(P_{\text{max}} \) that can be incident on the junction without the power at any detector exceeding \(P_D \).

We then show that \(U_{\text{max}} \) can be minimised for each of four different designs by a suitable choice of components and discuss their relative merits for practical application.

2 MAXIMUM UNCERTAINTY \(U_{\text{max}} \)

2.1 The power ratios \(P_k/P_R \) for a six-port reflectometer such as that of Figure 1 can be related to \(\Gamma (\equiv a_2/b_2) \) by an expression of the form:

\[
\frac{P_k}{P_R} = \left| \frac{d_k \Gamma + e_k}{c \Gamma + 1} \right|^2 \quad (k=1,2,3)
\]

(2.1)

where \(c, d_k, e_k \) are dimensionless numbers describing the instrument in terms of the calibration standards.

Equation (2.1) represents three circles in the complex \(\Gamma \) plane and \(\Gamma \) is calculated from their common intersection. If \(c \neq 0 \) then the coordinates (in the \(\Gamma \) plane) of the centres vary with \(\Gamma \) but the condition \(c=0 \) can be realised by isolating the reference detector from the wave reflected by the DUT. It is usual for design purposes to assume \(c=0 \) and sufficient to do so if calibration procedures not relying on this approximation are used. With this approximation, equation (2.1) can be written as:

\[
R_k^2 = D_k^2(P_k/P_R) = |\Gamma - f_k|^2 \quad (k=1,2,3)
\]

(2.2)

where

\[D_k = |d_k|^{-1} \quad \text{and} \quad f_k = -(e_k/d_k) \]
Equation (2.1) describes for each k a circle in the complex plane centred at f_k and of radius $R_k = D_k \sqrt{P_k / P_R}$ and the diagrammatic representation of Figure 2 assumes the necessary condition that the three f_k are different from each other so that the circles intersect uniquely in Γ. In Appendix A derivations of equations of the form of (2.2) are presented for four different designs of six-port junction (4, 15, 16, 19, 22).

Noise present in the output of each detector will cause uncertainty in determining each R_k and we can represent this by a rectangular probability distribution of R_k between limits of $\pm \Delta R_k$ caused by an equivalent noise power P_N for each detector. Then, from equation (2.1):

$$R_k + \Delta R_k = D_k \sqrt{(P_k + P_N) / (P_R + P_N)}$$

$$= D_k \sqrt{P_k / P_R} \left(1 + P_N / P_k\right)^{\frac{1}{2}} \left(1 + P_N / P_R\right)^{-\frac{1}{2}}$$

Assuming that $P_N \ll P_k$ and $P_N \ll P_R$ then

$$R_k + \Delta R_k \approx R_k \left(1 + \frac{1}{2} \left(\frac{P_N}{P_k} + \frac{P_N}{P_R}\right)\right)$$

$$\frac{\Delta R_k}{R_k} \approx \frac{1}{2} \left(\frac{1}{P_k} + \frac{1}{P_R}\right) P_N$$ \hspace{1cm} (2.3)

Equation (2.3) shows that the minimum fractional uncertainty in determining radius R_k would be when detector k and the reference detector both receive the
maximum permitted detector power P_D (for $\frac{\Delta R_k}{R_k} = \frac{P_N}{P_D}$ when $P_k = P_R = P_D$). This minimum fractional uncertainty cannot be achieved for all Γ but, with $c=0$, the power absorbed by the reference detector is a constant sample of the power associated with the wave incident on the junction so that the resolution of measuring this sample would be maximised by operating with $P_R=P_D$. If the design is such that $P_R < P_D$ (because another detector absorbs P_D for some value of Γ with $P_R < P_D$), then the estimated uncertainty can be scaled by the multiplier P_D/P_R. Thus we can write, as a starting point, equation (2.3) as:

$$\frac{\Delta R_k}{R_k} = \frac{1}{2} \left(1 + \frac{P_D}{P_k} \right) \frac{P_N}{P_D}$$

Equation (2.4) enables ΔR_k to be calculated from this ratio for any Γ with the aid of the reflectometer design equation (2.2).

In the region of the intersection of the circles of radius R_1, R_2 and R_3 (from which Γ is calculated), each pair of limits $(\Delta R_1, \Delta R_2)$, $(\Delta R_2, \Delta R_3)$, $(\Delta R_3, \Delta R_1)$ defines a curvilinear parallelogram within which Γ lies, as illustrated in Figure 3(a). Because $\pm R_k$ are the limits of a rectangular probability distribution of R_k, it is certain that Γ lies within the smallest of these three curvilinear parallelograms — as shown by the cross-hatched area of Figure 3(a). For those Γ for which all three ΔR_k are approximately equal, the area of uncertainty would be a curvilinear hexagon (as illustrated in Figure 3(b)) but, in that case, an estimate based on the smallest of the three parallelograms will be pessimistic and, therefore, safe. We now observe that for the parallelograms of interest, $\Delta R_k \ll \Delta R_k$. This follows, for when one of

\[\text{Figure 3 Areas of uncertainty of intersection}\]
the \(R_k \) is small then, for a well designed junction, the remaining two are large and this is sufficient - as can be seen from Figure 2, for if \(\Gamma \) were to approach \(\Gamma_1 \), for example, then the intersection of \(R_2 \) and \(R_3 \) could be found with great precision and the only function of \(R_1 \) would be to resolve the ambiguity of which of the two intersections of \(R_2 \) and \(R_3 \) relates to \(\Gamma \). With the assumption that \(\Delta R_k \ll R_k \) we may approximate each area of uncertainty by a rectilinear parallelogram, as shown in Figure 4, which allows the cosine law to be used for calculating the maximum diagonal \(2U \) from:

\[
U = \left(\Delta R_1 \right)^2 + \left(\Delta R_2 \right)^2 + 2\left(\Delta R_1 \right)\left(\Delta R_2 \right) | \cos \theta |^{\frac{1}{2}} / \sin \theta
\]

(2.5)

Equations (2.2), (2.4) and (2.5) allow the limits of \(\pm U \) to be estimated for any \(\Gamma \) as the smallest of the three semi-diagonal lengths \(U \) obtained by treating the three \(\Delta R_k \) in pairs.

2.2 Relating the limits of \(\pm U \) so calculated to the measurement of \(\Gamma \) relies on the fact that the angular orientation of the maximum diagonal of Figure 4, relative to the x-y axes in the \(\Gamma \) plane, has no significance until the reflectometer has been calibrated with external standards. This means that the range

\(-U \) to \(+U \) can be regarded only as defining the diameter of a circle of confusion (to borrow a term from optics) within which it is certain that \(\Gamma \) lies (certain, that is, to the extent allowed by our approximations). Hence the estimated uncertainty in measuring magnitude |\(\Gamma \)| is \(\pm U \) and in measuring phase angle \(\angle \Gamma \) is \(\pm \arctan \left(U / |\Gamma| \right) \). Finally, we can compute each \(U \) for a net of different \(\Gamma \) covering the |\(\Gamma | = 1 \) radius circle and select the largest to provide an estimate of the maximum uncertainty \(U_{max} \) in measuring any |\(\Gamma | < 1 \). This procedure has been followed with a net of 321 different values of \(\Gamma \), evenly spaced over the |\(\Gamma | = 1 \) radius circle, in estimating the values of \(U_{max} \) presented in section 4 for different designs of junction.

3 MAXIMUM POWER \(P_{max} \)

3.1 In section 2 we have postulated that the reference detector (i) is isolated from the wave reflected from the DUT and (ii) absorbs the maximum permitted detector power \(P_D \). The net power supplied to the reflectometer and DUT from a matched source with available power output \(P_D \) will vary with \(\Gamma \) but a consequence of (i) is that \(P_R \) is a constant fraction \(F \) of \(P_D \), irrespective of \(\Gamma \), so that:

\[
P_R = FP_D
\]

(3.1)
A consequence of (ii) is that it is necessary to check whether the condition \(P_R = P_D \) to maximise resolution in measuring \(P_R \) can be met and, if not, to scale each computed \(U_{\text{max}} \) by \(P_D/P_R \).

3.2 For each \(k \), the maximum of \(P_k \) for all \(|\Gamma| \leq 1 \) will be given, from equation (2.2), by:

\[
\frac{P_{k_{\text{max}}}}{P_R} = \left(1 + |f_k|\right)^2 D_k^2
\]

For one of the three \(k \) (say \(k = n \)), \(P_{n_{\text{max}}} \) will be the greatest of the three \(P_k \), so that

\[
\frac{P_{n_{\text{max}}}}{P_R} = \left(1 + |f_n|\right)^2 D_n^2
\]

But \(P_{n_{\text{max}}} > P_D \), so that the limiting condition is \(P_{n_{\text{max}}} = P_D \), for which:

\[
\frac{P_D}{P_R} = \left(1 + |f_n|\right)^2 D_n^2
\]

Ideally then, we require that \((1 + |f_n|)^2/D_n^2 = 1 \) and, if not, the computed \(U_{\text{max}} \) must be scaled by the value of \(P_D/P_R \) given by equation (3.2). Finally, the maximum power that can be incident on the junction to minimise \(U_{\text{max}} \) is, from equations (3.1) and (3.2):

\[
P_o = \frac{D_n^2 P_D}{F(1 + |f_n|)^2}
\]

In section 4 we present the results of applying the procedure using equations (3.1) to (3.3), and that derived in section 2, to compare the four designs of six-port junction detailed in Appendix A.

4 OPTIMISING \(U_{\text{max}} \)

4.1 Four of the cited designs of junction (4, 15, 16, 19 and 22) have been demonstrated to cover a frequency bandwidth at least equal to that of rectangular waveguide without the use of either switches or manual adjustment (after initial setting-up) and should therefore be stable. They each comprise between two and four conventional 90° hybrids (3 dB couplers) plus an input directional coupler, at which the source is connected. We show in this section that the coupling factor \(C \) of the input coupler (where \(C = 20 \log_{10}(1/c) \), the voltage transmission and coupling coefficients being \(t \) and \(c \), respectively, such that \(|t|^2 + |jc|^2 = 1 \)) can be chosen for each design to minimise \(U_{\text{max}} \). In Appendix A we provide for completeness a derivation of equation (2.2) for each design and in Tables 1 to 4 we summarise the computed values of the following quantities of interest:-
4.2 **TABLE 1** - for design of reference (4)

<table>
<thead>
<tr>
<th>CdB</th>
<th>P_D/P_R</th>
<th>U_{max}/P_N</th>
<th>P_{max}/P_D</th>
<th>W/P_D</th>
<th>Γ for U_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
<td>(f)</td>
</tr>
<tr>
<td>3</td>
<td>4.01</td>
<td>14.01</td>
<td>2.00</td>
<td>1.00</td>
<td>$+1.0+0.0j$</td>
</tr>
<tr>
<td>6</td>
<td>2.92</td>
<td>12.19</td>
<td>1.83</td>
<td>0.48</td>
<td>$+1.0+0.0j$</td>
</tr>
<tr>
<td>10</td>
<td>2.09</td>
<td>12.17*</td>
<td>2.12</td>
<td>0.21</td>
<td>$-0.8+0.0j$</td>
</tr>
<tr>
<td>20</td>
<td>1.30</td>
<td>20.05</td>
<td>3.10</td>
<td>0.03</td>
<td>$-1.0+0.0j$</td>
</tr>
</tbody>
</table>

4.3 **TABLE 2** - for design of reference (15) for angle $2\alpha = 120^\circ$, giving largest U_{max} (see Appendix A)

<table>
<thead>
<tr>
<th>CdB</th>
<th>P_D/P_R</th>
<th>U_{max}/P_N</th>
<th>P_{max}/P_D</th>
<th>W/P_D</th>
<th>Γ for U_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
<td>(f)</td>
</tr>
<tr>
<td>3.0</td>
<td>1.00</td>
<td>13.80</td>
<td>2.00</td>
<td>0.13</td>
<td>$+0.4+0.1j$</td>
</tr>
<tr>
<td>3.4</td>
<td>1.00</td>
<td>12.06*</td>
<td>2.2</td>
<td>0.14</td>
<td>$+0.4+0.0j$</td>
</tr>
<tr>
<td>6.0</td>
<td>2.48</td>
<td>21.53</td>
<td>4.0</td>
<td>0.19</td>
<td>$-0.4-0.9j$</td>
</tr>
<tr>
<td>10.0</td>
<td>7.48</td>
<td>53.79</td>
<td>10.0</td>
<td>0.23</td>
<td>$-0.6-0.8j$</td>
</tr>
</tbody>
</table>

4.4 **TABLE 3** - for design of reference (16) which coincides with that of reference (15) at mean guide wavelength (when $2\alpha=90^\circ$)

<table>
<thead>
<tr>
<th>CdB</th>
<th>P_D/P_R</th>
<th>U_{max}/P_N</th>
<th>P_{max}/P_D</th>
<th>W/P_D</th>
<th>Γ for U_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
<td>(f)</td>
</tr>
<tr>
<td>3.0</td>
<td>1.00</td>
<td>11.81</td>
<td>2.00</td>
<td>0.13</td>
<td>$+0.2-0.1j$</td>
</tr>
<tr>
<td>4.0</td>
<td>1.00</td>
<td>9.30*</td>
<td>2.5</td>
<td>0.15</td>
<td>$+0.3-0.1j$</td>
</tr>
<tr>
<td>6.0</td>
<td>1.95</td>
<td>13.15</td>
<td>4.0</td>
<td>0.19</td>
<td>$+0.5-0.1j$</td>
</tr>
<tr>
<td>10.0</td>
<td>5.89</td>
<td>32.50</td>
<td>10.0</td>
<td>0.23</td>
<td>$+0.0-1.0j$</td>
</tr>
</tbody>
</table>
4.5 TABLE 4 - for design of references (19,22)

| CdB | P_D/P_R | U_max | P_D/P_N | P_max/P_D | W/P_D | \(|r| \) for U_max |
|-----|---------|-------|---------|-----------|-------|----------------|
| (a) | (b) | (c) | (d) | (e) | (f) |
| 3.0 | 1.00 | 14.13 | 2.0 | 0.13 | +0.5+0.0j |
| 4.8 | 1.00 | 8.30* | 3.0 | 0.17 | +0.6+0.0j |
| 6.0 | 1.49 | 9.92 | 4.0 | 0.19 | +0.6+0.0j |
| 10.0| 4.50 | 18.69 | 10.0 | 0.23 | +0.7-0.7j |

4.6 The ratio \(P_D/P_N \) represents the maximum possible signal-to-noise ratio for any detector and, if this is known for a particular instrumentation system to be used with the junction, then the worst case uncertainty in measuring any \(|r|<1\) can be estimated from Tables 1 to 4. (For example, if the output of each detector is proportional to RF power absorbed and if all the proportionality factors are the same then, if the full range of a binary n-bit analogue-to-digital convertor represents \(P_D \) and \(+\) (half the least significant bit) represents \(+P_N\) then the estimated uncertainty in measuring any \(|r|<1\) is \(U_{max}(P_D/P_N)/2^{n+1} \) worst case). In the absence of specific information on instrumentation, the tables still provide a comparison of the extent to which the different designs degrade the maximum \(P_D/P_N \) ratio, since the tabulated \(U_{max}(P_D/P_N) \) represents this degradation even when the maximum permissible power is incident on the junction. The values that are starred (thus*) in Tables 1 to 4 represent the minimum \(U_{max}(P_D/P_N) \) achieved for each design by selection of the input coupling factor \(C \), showing that the procedures derived in section 3 enable the resolution of each design to be optimised.

5 PRACTICAL CONSIDERATIONS

5.1 Tables 1 to 4 provide data for comparing different designs of junction each with different values of input coupling but there is lacking a single criterion for such a comparison. In practice, there is need to compromise between the conflicting requirements to:

(a) minimise the measurement uncertainty (and Table 4 shows that the design of references 19, 22 achieves this)

(b) minimise the RF source power \(P \) in order to minimise the cost, particularly for use at millimetric wavelengths (and Table 1 shows that the design of reference 4 achieves this)

(c) minimise the power incident on a matched load, to minimise overloading semiconductor devices under test (see the column \(W/P_D \) in Tables 1 to 4)

(d) simplify experimental evaluation by using off-the-shelf directional couplers

(e) allow planar construction to permit possible development to other transmission media, including E-plane split waveguide, microstrip, image guide or dielectric guide (of the designs shown in Appendix A, only those of references 15 and 16 are easily adaptable to all these media)
(f) use the minimum of components to (hopefully) minimise the departure of practical performance from that predicted by simple theory (design of reference 15)

(g) not assume equality of phase velocity in the directional couplers to that in the interconnecting leads (and the analyses of Appendix A show that this applies to references 4 and 16 only).

5.2 Experience at RSRE in different frequency bands ranging from 10 MHz to 100 GHz with single reflectometers of each of the designs considered shows that, with the instrumentation used, the uncertainty of measurement of r is limited by the repeatability of connection of precision coaxial connectors and waveguide flanges. At first sight, therefore, this reported work aimed at minimising the contribution of junction design to this uncertainty seems superfluous. However, the utility of dual six-port network analysers (D6 PNA) will depend in part on their range of attenuation measurement and this depends on the uncertainty $\Delta \Gamma$. It can be shown from equation (4.2) of ref (23) that the span S of a ion produced by a matched attenuator that could be measured with a D6P is

$$S = 20 \log_{10} \left(2^{n+1} (10^{0.05} - 1)/\Delta \Gamma \right) \text{ dB}$$

when an n-bit A to D convertor is used (see para 4.6). We have tabulated in Table 5 values of S that would be obtained with $n = 16$ when P_0 is (i) equal to P_{max} and (ii) equal to 1.83 P_D. Condition (i) gives the maximum obtainable S for each design and condition (ii) allows comparison of S when all the junctions considered are subject to the minimum power tabulated in column 4 of Tables 1 to 4. The values of S tabulated are slightly pessimistic, for they have been calculated using the worst case $\Delta \Gamma$ throughout. The coupling factors tabulated correspond to the coupling coefficients C_1 to C_4 of Appendix A and they have been restricted to values obtainable for off-the-shelf directional couplers.

<table>
<thead>
<tr>
<th>Design Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4)</td>
</tr>
<tr>
<td>Coupling factor</td>
</tr>
<tr>
<td>dB</td>
</tr>
<tr>
<td>dB</td>
</tr>
<tr>
<td>P_{max}/P_D</td>
</tr>
<tr>
<td>$S(\text{MAX})$ dB</td>
</tr>
<tr>
<td>$S(1.83P_D)$ dB</td>
</tr>
</tbody>
</table>

Table 5
Table 5 shows that the design represented by the column marked (1) has the greatest \(S(1.83P_D)\) value and that its \(S(F_{\text{max}})\) value is only 0.3 dB less than the maximum of these but is achieved with 3 dB less power than that maximum. These factors, together with the desirable practical features listed in para 5.1, show that the designs represented by columns (1) and (2) are the first and second choices, respectively, for future practical work.

6 CONCLUSION

We have derived a numerical procedure for comparing different theoretical designs of six-port junction and have considered the desirable practical features of design. From this work we have established an "optimum" design for use in development of dual six-port network analysers and have, in doing so, established a practical benchmark for judging other published theoretical designs. We conclude that if the span of measurement of \(S_{21}\) with a D6PNA is to be increased much beyond 60 dB, then work on improving the detector signal-to-noise ratio is likely to be more worthwhile than further work on six-port junction design.

7 REFERENCES

6 A L Cullen, S K Judah and F Nikravesh, "Impedance measurement using a 6-port directional coupler", ibid, 92-98, Apr 1980.

10 M Yeo, "A microwave integrated circuit six-port reflectometer", ibid, 12/1-12/9, May 1981.

13 U B Stumper, "A simple multiport reflectometer using fixed probes and an adjustable attenuator," ibid, 622-626.

APPENDIX A

A.1 In this appendix we present, for completeness, a derivation of equation (2.2) for each of the designs considered. Throughout, complex numbers c_n and t_n are used to denote the voltage coupling and transmission coefficients, respectively, of the nth directional coupler and we assume the reference planes of each coupler to be positioned such that $|t_n|^2 + |j c_n|^2 = 1$. We refer to angles θ_n, α, and β, to denote the angular electrical lengths of various interconnecting waveguides and denote the voltages associated with waves incident on and emergent from the mth port of the complete junction by a_m and b_m, respectively. All components are assumed to be matched and lossless, so that the directional couplers have infinite directivity.

A.2 A diagram of the design of reference (4), drawn for Lange microstrip directional couplers (10) is given in Figure A.1.

Elementary circuit analysis shows that:

$$\frac{b_R}{a_0} = -t_1 c_2 c_3 e^{-j(\theta_1 + \theta_2)}$$

$$\frac{b_1}{a_0} = j c_1 t_4 t_5 e^{-j(\theta_4 + \theta_5)} \left(r + \frac{t_2 c_4}{c_1 t_5} e^{-j(\theta_1 + \theta_6 - \theta_5)} + j \frac{c_2 t_3 c_4}{c_1 t_5} e^{-j(\theta_1 + \theta_2 + \theta_3 - \theta_4 - \theta_5)} \right)$$

$$\frac{b_2}{a_0} = -c_1 t_4 t_5 e^{-j(\theta_4 + \theta_5)} \left(r + \frac{t_2 c_5}{c_1 t_5} e^{-j(\theta_1 + \theta_6 - \theta_5)} - j \frac{c_2 t_3 t_4}{c_1 c_5 t_5} e^{-j(\theta_1 + \theta_2 + \theta_3 - \theta_4 - \theta_5)} \right)$$

$$\frac{b_3}{a_0} = -c_1 t_5 e^{-j \theta_5} \left(r - \frac{t_2 t_5}{c_1 c_5} e^{-j(\theta_1 + \theta_6 - \theta_5)} \right)$$
By arranging that $\theta_1 + \theta_2 = \theta_5$; $\theta_2 = \theta_6$; $\theta_3 = \theta_4$ and choosing $|c_2| = |c_3| = |c_4| = |c_5| = \frac{1}{\sqrt{2}}$ (ie 3 dB couplers) and writing c, t for $|c_1|, |t_1|$ then, since $P_R = |b_R|^2$ and $P_k = |b_k|^2$, where $k = 1, 2, 3$, the foregoing equations give the following coefficients for equation (2.2):

$$
\begin{align*}
\lambda & \quad D_k \\
1 & \quad \frac{1}{2c} \quad -\frac{1}{\sqrt{2}c} (1+j) \\
2 & \quad \frac{1}{2c} \quad -\frac{1}{\sqrt{2}c} (1-j) \\
3 & \quad \frac{1}{2c^2} \quad \frac{1}{\sqrt{2}c} + j0
\end{align*}
$$

A.3 In Figure A2, relating to the design of reference (15), we first denote the voltage reflection coefficients (VRC) presented by the short circuits to couplers 2 and 3 by Γ_A and Γ_B, respectively. Then:

$$
\begin{align*}
\frac{b_R}{a_o} &= jc_1 \\
\frac{b_1}{a_o} &= jc_1 t_1 t_2 t_3 e^{-j2\beta} \left(\Gamma - \frac{c_2}{t_2} \Gamma_B + \frac{c_2}{t_2} e^{j2\beta} \right) \\
\frac{b_2}{a_o} &= jc_2 t_1 t_2 t_3 e^{-j2\beta} \left(\Gamma - \frac{c_3}{t_3} \Gamma_B + \frac{c_3}{t_3} e^{j2\beta} \right) \\
\frac{b_3}{a_o} &= jc_3 t_1 t_2 t_3 e^{-j2\beta} (\Gamma + \Gamma_B)
\end{align*}
$$
But $\Gamma_A = -e^{-j2\alpha}$ and $\Gamma_B = -1$, so that choosing $\beta = 0$ and $|c_1| = |c_2| = |c_3| = 1/\sqrt{2}$ and $\alpha = (\theta - \pi/4)$ at the mean guide wavelength (where $t_3 = |t_3 e^{-j\beta_3}$), give the following coefficients in equation (2.2):

$$
\begin{align*}
&k & D_k & f_k \\
&1 & 16/t^2 & -1-2(\cos2\alpha - jsin2\alpha) \\
&2 & 16c^2/t^2 & -1+2(\cos2\alpha - jsin2\alpha) \\
&3 & 8c^2/t^2 & 1 + j0
\end{align*}
$$

We note that as the frequency is increased over the bandwidth of rectangular waveguide, 2α increases from 60° to 120° and U_{max} increases also; for this reason, Table 2 has been calculated for $2\alpha = 120°$.

A.4 A modification of the design of reference (15) produces the broadband design (16) illustrated in Figure A3. Equations (A.1) apply to this junction also, but Γ_A has to be evaluated for them to be applied. Using, for the moment, a_m, b_m to refer to coupler 4, as shown in Figure A4 (so that $\Gamma_A = b_1/a_1$) then, by inspection:

$$
\begin{align*}
b_1 &= ta_2 + jca_4 \\
b_2 &= ta_1 (:\ a_3 = 0) \\
b_3 &= jca_2 + ta_4 \\
b_4 &= jca_1 (:\ a_3 = 0)
\end{align*}
$$

Figure A4
With length of waveguide α connecting ports 2 and 4,

\[a_2 = b_4 e^{-j\alpha} \quad \text{and} \quad a_4 = b_2 e^{-j\alpha} \]

Whence \(\frac{b_3}{a_1} = (t^2 - c^2) e^{-j\alpha} \) and \(\frac{b_2}{a_1} = 2jct e^{-j\alpha} \) \(\Gamma_A \)

For the complete junction, with \(\Gamma_B = -1 \), \(\Gamma_A = 2jc4t4e^{-j\alpha} \) and \(\beta = \alpha/2 \) in equations (A.1), the coefficients of equation (2.2) become:

<table>
<thead>
<tr>
<th>(k)</th>
<th>(D_k)</th>
<th>(f_k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(16/t^2)</td>
<td>(-1 + j2)</td>
</tr>
<tr>
<td>2</td>
<td>(16c^2/t^2)</td>
<td>(-1 - j2)</td>
</tr>
<tr>
<td>3</td>
<td>(8c^2/t^2)</td>
<td>(1 + j0)</td>
</tr>
</tbody>
</table>

A.5 The diagram describing the design of references (19, 22) is shown in Figure A5.

\[\frac{b_R}{a_o} = je1 \]

\[\frac{b_1}{a_o} = j\tau_1c_2t_2t_4^2 \left(r + \frac{c_4^2}{t_2^2} + j \frac{c_4^2 e^{-j\alpha}}{t_2^2 t_3^2 t_4^2} \right) \]

\[\frac{b_2}{a_o} = -\tau_1 c_2t_2t_3^2 t_4 \left(\frac{c_3^2}{t_3^2} - j \frac{t_4 e^{-j\alpha}}{c_4 t_2 t_3^2} \right) \]
\[
\frac{b_3}{a_0} = j t_1 t_2 c_3 t_3 (\gamma - 1)
\]

With \(|c_3| = |c_4| = 1/\sqrt{2} \) and \(\alpha = \theta_2 + 2\theta_3 \) (where \(t_2 = e^{-j\theta_2/\sqrt{2}} \) and \(t_3 = e^{-j\theta_3/\sqrt{2}} \)), these equations lead to the following coefficients in equation (2.2):

<table>
<thead>
<tr>
<th>(k)</th>
<th>(D_k^2)</th>
<th>(f_k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(32 \text{e}^2 / t^2)</td>
<td>(-1 - j2\sqrt{2})</td>
</tr>
<tr>
<td>2</td>
<td>(32 \text{e}^2 / t^2)</td>
<td>(-1 + j2\sqrt{2})</td>
</tr>
<tr>
<td>3</td>
<td>(8\text{e}^2 / t^2)</td>
<td>(1 + j0)</td>
</tr>
</tbody>
</table>
Abstract

This memorandum presents a derivation of numerical procedures for comparing different theoretical designs of six-port junctions for use in measuring the voltage reflection coefficient r of passive loads ($|r| < 1$). It shows from these that the maximum uncertainty in measuring any passive load can be minimised by a suitable choice of components, in each of four different designs, and discusses the relative merits of these designs in terms of selecting a best compromise for use in a dual six-port network analyser.
END

FILMED

2-85

DTIC