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ABSTRACT

It is demonstrated how the kernel functions of single integral

constitutive equations may be determined from analysis of experiments in time

dependent shear-free flows alone. It is assumed that the kernel functions may

be factored into a product of a linear viscoelastic function and a finite-

6strain dependent function. No assumption is needed on the strain-dependent

function except that it must be continuous within the attainable invariant

space. The experimental data for ever-increasing deformations are not

compatible with the assumptions inherent in single integral constitutive

equations with factorized kernel functions.
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SIGNIFICANCE AND EXPLANATION

The characterization of the flow properties of polymeric ir..its represents

an important and still partially unsolved problem. The "constitutive

equations" used in the characterization involve unknown kernel functions of

several variables that need to be determined from experiments. Usually some

4 specific analytical form of the kernel functions with a small number of

'.[" parameters is either assumed or derived from molecular arguments. In this

report we show how one may determine the kernel functions of some rather

general constitutive equations directly from experiments on a polymer melt.

The method is analagous to the determination of the strain energy function in

crosslinked rubber. The paper should be useful to the theoretical rheologist

* who is continually searching for "the most general" constitutive equation

needed to characterize polymer melts, and to the experimental rheologist who

wishes to analyze measurements with a minimum of assumptions.
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SINGLE INTEGRAL CONSTITUTIVE EQUATIONS FOR VISCOELASTIC FLUIDS

*Poul Bach and Ole Hassager*
S

1. INTRODUCTION AND DEFINITION OF MODELS

The purpose of this report is to demonstrate how the kernel functions of two rather

general single integral constitutive equations for viscoelastic fluids may be determined

from experimental measurements. The two particular equations are:

"The factorized K-BKZ model":

t

f(t) = f M(t - t')[3 W + (1.1)
S1 

.12

and "The factorized Rivlin Sawyers model":

r(t) f M(t - t')[0 11[ 0] + *2X[
0 1]dt' (1.2)

Here T(t) is the stress tensor at a given particle at the current time t and

[0]
1[01 and )C are strain tensors that differ from the Finger strain tensor and its

inverse B respectively only by a unit tensor 6:

= 10- 1 = B -6 (1.3)

The components of P are given by Bij = (axi/ax-)(;x/x) where the xi are the

coordinates at time t of the particle with coordinates x! at time t'. In addition in

Eqs. (1.1) and (1.2) the function M is the memory function of linear viscoelasticity

related to the linear viscoelastic relaxation modulus G as follows

G(t) = f M(s)ds (1.4)
* t
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Also hi( 1,2) , A2 (1II 2) and W(I,11 2 ) are nondimensional scalar functions that depend

on the scalar invariants I, and 12 defined by
-II

11 = tr B; 12 = tr B (1.5)

Certainly the model in Ea. (1.1) is contained in Ea. (1.2), however for the purpose of this

report it is convenient to consider it as a separate model.

In connection with the models in Eqs. (1.1) and (1.21) we note that:

i) If F(I1,12) and the Ai(1 1 ,I2 ), i = 1,2 are analytic at (11,12) = (3,3) then

the models may be approximated in slow flow by a "third order fluid" with parameters given

in Bird, Armstrong and Massager (1985).

ii) Renardy (1984) has derived sufficient conditions on W under which initial value

problems based on Eq. (1.1) are always well posed, i.e. Hadamard type instability cannot

occur.

iii) Hassager (1981) has derived a variational principle for Eq. (1.1) useful for

simulation of creeping flow situations based on that constitutive equation.

The model in Eq. (1.1) is a factorized form of a more general model proposed

independently by Kaye (1962) and Pernstein, Kearsley and Zapas (1963):

fT o" I + 1- 011dt'

L = * ) V [0]]dt, (1.6)

where V is a scalar function of (t - t'), 1, and 12. We call this the K-BKZ model.

The arguments leading to this model may be traced back to Lodge (1964) who noted the

striking similarity between the behavior of polymer melts and crosslinked natural rubber.

Lodae then started with a stress-strain relation for crosslinked natural rubber obtained on

the basis of a molecular theory, and then used a heuristic argument to "liquify" the

relation to arrive at the "rubberlike liquid model" in Table 1.1. In the same way does Eq.

(1.6) represent a heuristic "liquification" of the nonlinear stress-strain relation for

incompressible isotropic materials. For example if in Eq. (1.1) one replaces M(t - t')

by Gj0(t' - t0 ) one obtains the stress-strain relation for an elastic material with

stress Free state ecual to the configuration of time to  and with strain energy
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function (GoW). Certainly the special status given to one particular configuration is

* incompatible with the concept of a fluid, and it is understood that the function V in Eq.

(1.6) or M in Eq. (1.1) do not give special status to any one past configuration (but

they decay to zero as (t - t') tends to infinity sufficiently fast that the integrals

converge).

The argumentation leading to Eq. (1.6) was questioned by Rivlin and Sawyers (1971) who

instead started with the physical assumption that the effects on the stress at time t of

the deformations at different past times t' are independent of each other. With this

assumption it may be shown from the theory of additive functionals (Martin and Mizel

(1964), Chacon and Friedman (1965)) that the most general constitutive equation for

isotropic fluids is:

t(t) =  t [,1,y-[0 + (b2Y[0]]dt' (1.7)

where the do's are functions of (t - t'), I, and 12. We call this the Rivlin Sawyers

model.

We now see that the two models to be investigated in this report, Eqs. (1.1) and (1.2)

follow from the assumptions inherent in K-BKZ model and the Rivlin Sawyer model plus the

additional assumptions that respectively

V(t - t,1 1,12 ) = M(t - t')W(1,II2 ) (1.8)

,1)i(t -t',1,I12 )  = M(t -t')"i(IiI2); i =  1,2 (1.9)

It is at this point reasonable to ask why the seemingly arbitrary assumptions in Eqs. (1.8)

and (1.9) are added to the assumptions already present in the I-BKZ and Rivlin Sawyers

models. We do this for the following reasons:

i) Two key types of molecular models, the Lodge (1956) network model on the one hand

and the Curtiss Bird (9 = 0) (1981) and Doi Edwards (1978) melt models on the other handF; show such a factorization and may in fact be represented by a K-BKZ model with a potential.

ii) Carefully performed experiments (e.g. Laun (1978), Einaga, Osaki and Kurata

* (1971)) indicate that at least some polymers may allow for such a factorization in simple

shear deformations.

!- -3-
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iii) From a practical point of view it may be impossible to determine a function of

three independent variables on the basis of a limited number of experimental data. For

* this reason a number of empirical models with a limited number of parameters have been

proposed, as shown in Table 1.2. These empirical relations all involve the assumption in

Ea. (1.8).

Table 1.1 Examples of factorized K-BKZ models

Reference N(s) W(11 ,12 ) Adjustable parameters

M - e4 -s/A.
Lodge (1956) )~-e 'yi.A for i1 1,2,...

i=1X A1

Curtiss and Birda -i--A- 5 Ln (B :uu)du (NnkTA ) and I
(1981) with their 5 -

S0.

D22

I. exp(-r 2a 2s/X)
aodd

Notes: amn this model u is a unit vector, and f du is an integral over a unit

sphere. This model is identical in form to that of Doi and Edwards (1978), (1979)

-4-
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Table 1.2 Examples factorized Rivlin Sawyers models (empirical)

Reference Flow 1 12 Adjustable Parameters

Phillips Simple Sheara (1 - C)exp(-(%s) r exp(-is) E, a
(1977)

note that

General (not specified) (not specified) E = -2.0/Vl.0

Wagner Simple Sheara exp(-ns) 0 n, a
(1979)

note that 2 = 0
exp(-n V' - 3) 2

General 0
I = 1 + (1-()1 2

Papana Simple Sheara a 0 r,2

Stasiou 
Ct + s

et al.(1983)

General E0 note that 2 =0
(1-3) + I + (1- )I2 2

aHere s(t,t') is the "magnitude of shear", defined for vx = y(t)y, vy = vz = 0 as

s(t,t') = If ; (t")dt"t.
t yx

The simnificance of the factorizations in Eqs. (1.8) and (1.9) is that the properties

of, say, the K-BKZ model now depends on two separate functions: the linear viscoelastic

memory function M(t - t') and a nonlinear strain function W(1 1 1,2). Standard techniques

exist for the determination of M from measurements performed at small deformations (Ferry

1980). In this report we will demonstrate how W(111, 2 ) (or respectively +1(I1,I2) and

A 2(I,1 2)) may be determined without the restrictions inherent in the empiricism in

Table 1.2.

Since the nonlinear functions to be determined, W(II,I2 ) and Ai(1 1 ,12 ), i = 1,2,

are functions of two arguments one needs experiments that cover as densely as possible the

-5-
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"obtainable invariant space" given by all possible values of (11,12) subject to the

incompressibility constraint. Such experiments may presently be performed in just one

laboratory namely that of Meissner at the ETH in ZUrich (see Meissner, Stephenson,

Demarmels and Portman (1982)). The experimental method can be thought of as an analog for

fluids of the method used by Rivlin and Saunders (1951) in their now classical experimental

determination of the strain energy function for natural rubber.

-6-
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2. KINEMATICS

We now consider the class of flows called shear-free flows. We use the notation

proposed by Bird, Armstrong and Hassager (1985) but we have obtained the material data from

Meissner, Stephenson, Demarmels and Portmann (1982). A comparison of the two notations is

given in Table 2.1. In the notation of Bird et al. (1985), all shear-free flows may be put

in the form:

2 e(t)(1 + b)xVX = - b)

1*
vy = - - e(t)(1 - b)y (2.1)

2

v z = e(t)z

where 0 < b < 1 and Z(t) is any function of time.

Table 2.1: Comarison of notation in shear-free flows.
b, E: parameters of Bird, Armstrong and Hassager (1985)
m, CO: parameters of Meissner, Stephenson, Demarmels and Portmann (1982)

Flow Type b m Strain-rates Material Functions

_! axial = 1,-=
|_V~a~al2 = To I

11 -+

biaxial 0 1 1-2C0  1i = 'I

plannar 1 0 4C0  U1l 4 nl1

1 +V 2 = 7 2

1 1" 3. 3 -+
ellipsoidal 3 2 - O Ul 1 ,

3 -+
P2  2

-7
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We have analyzed measurements taken by Demarmels (1983) on a polyisobutylene melt in

start-up of the following flows: rUniaxial-, biaxial-, planar- and ellipsoidal-elongational

flows. Uniaxial elongational flow is obtained by choosing b = 0 and E positive, and

biaxial elongational flow by choosing b =0, but E negative. Planar elonoational, also

* called "pure shear flow", is obtained with b = 1 and negative, and ellipsoidal

elongational flow is obtained with b -and E neaative.
3

We wish to find the displacement functions for start-up of the shear-free flow

* described in Etq. (1), i.e. we imagine that Z~t) = 0 for t < 0 and Z(t) Z a constant

for t > 0. Tlen, for 0 < t' < t we get:

x= x*- 1/2 E(1+b)(t-t')

y = y le-12  W(-b)(t-t') 2.

z = z'e +~-
and t,,r t' < 0 we get

y= 1 1 2 c(1-b)t(23

z zlet

wh-ere a fluid particle P with coordinates x1, at the present time t. bad coordinates

x., i =1,2,3 at a past time t'. We define s = t - t'; we now calculate the

* displacement qradient tensor for 0 < t' 4 t. In the notation of Bird, Armstrong and

Hassoger (1985):

0e-1/2 c(I-b)s 0(24

0(+~ 0 Z0

and we find

-clbs 00

+- EB 0 eE~~) 0(25

0 0 -e



We now find the first invariant:

11 -- tr(b)

-(1+ )s -E(1-b)s 2's (2.6)=-e + e + e

Similarly we find:

0 e1 /2 W-b)s 0 (2.7)

0 0 e- sj

and

e (1+b)s 0

+ I e(1-b)sA -  B 0 e 0 (2.8)

0 0 e- e

The notation is this of Bird, Armstrong and Hassager (1985).

Similarly we find the second invariant

2- tr(B
- )

(1+bls (1-b)s -2 s
e + e + e (2.9)

-1
The tensors B and B may be cbtained for -w < t' < 0 merely putting "s" equal to

"t" in Eqs. 2.5 and 2.8.

For the incompressible flows defined by (2.1) there can be only two independent

v" material functions in start-up flow:

* 1 xx
+z - (2.10)

.2 (Tzz Tyy U

and in fact for b = 0 only one independent material function can be found, as

_+ -+
n1  = n2; b =  0 . (2.11)

This will become obvious when we write down the expressions for n
1

-9-
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_+ 0 2;t r(1+b)t -2;t e(1+b)t]
rnI = f M(s [e - e I + te - e 1dt

1 1 2

U e2S - ( 1+b)s -2r c(l+b)s]

+ f M(s)A [ e - e I + A[e - e ]Ids (2.12)
1 20

Similarly we find:

0 fe 2
;t -*(1-b)t [e-2t e d-b)t '"+= - 1(~ - e ] A 2  -e %t

t e2s -U-(1-b)s -2;s e(1-b)s
+ f M(s)A 1e - e + 4 2e -e Ids (2.13)

0

The A are the functions we wish to estimate.
1

r
I--

-10
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3. ESTIMATION PROCEDURE.

* We now want to find a set of parameters Aim' which minimizes the objective function:

2 Na = (; ,ilt ) _- + (t ) 12 1 . )

i1n i n n 
(3.1)

i=l n

where n(t ) are the material functions calculated by (2.12) and (2.13), and 4i(t ) are
1 n i n

the experimental data, and N is the number of data points. The parameters *im will be

defined below. It is possible to use an iterative minimization routine directly on the

problem: Min(J). However it is more advantageous first to solve the integral equations

(2.12) and (2.13) for the strain functions. This allows us to solve the minimization

problem directly. The following derivation leads to the same formula as given by Demarmela

(1983) (except from an obvious misprint in his eg. 6-12).

We first calculate the time derivative of the material functions:

dn+
1 d 2;t -e(1+b)t -2 t e*(1+b)te - e[e [e -e+1e

+ M(t)(Ile2t e- (l+blt] + 2e-2et (l+b)t (3.2)

where we have defined

0 t

G(t) ( M(t - t')dt' = - f M(s)ds

we also define

- 2et -e 1+b)t: Cl e -e
' -2 ;1 ~blt(3.3)

-Uet F.11+b)t
c12 e -e

and we now find

di> d+b dc dft2  dc 2
Id1 11

F - = - C(t)(A1C + A6 c ) + G(t)I-- c + A - + - c + A
d 11 212 dt 11 1 dt dt 12 2 dt

+ M(t)(A c + 4 c ) G(t) dt (3.4)
1 1 2 12 dt

" -11-
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where we have defined:

1 lCl + 12

The solution to Ea. (16) is found easily

t dvi01 = 1 1_)[___ds. (3.5)

0

After partial integration we have

0 = i G--+ f - () rnlds (3.6)
1 (t) 0 G(s)

2

and we see that the RHS only involves the experimental data ()and the known (measured)

linear viscoelastic relaxations modulus G(t). The LHS is linear in the strain

functions. If we use the same procedure for the second material function we find:

n2  t dG(s)-+

"1c21 + * 2c2 2 = S.----+ 
f  k- ( d-(-)f s (3.7)0 Gs)

2 (Tn

where

2t -(1-b)t
c2 1 = e - e

-22 t -(1-b)t 
(3.8)

Eqs. (3.6) and 3.7) can now be solved explicitly for the strain functions 01 and 02'

except for flows with b = 0. This implies that it is only possible to determine a linear

combination of 01 and 02 if we only have data from uniaxial or biaxial longational

experiments.

We now choose a specific form for the strain functions; which is the same form as used

by Bach (1985) to obtain accurate approximations to the Doi-Edwards potential function:

M

01 = N(III2)01m

(3.9)
M

#2 
=  

N NM(I1'I2)"2m
m=1

-12-
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where A and A are the nodal values of the strain functions, and Nm(I1,I2) are theIm 2m

global shape functions for the isoparametric 4-node element, i.e. the strain functions are
&

approximated with piecewise bilinear functions. The functions are defined on an element

mesh covering the allowable invariant space where data are present. We may now write eqs.

(3.6) and (3.7)

M M
) Nm(I12I2 )%Imc11 + ) Nm(I 1 ,12 )2mc 12  H I (t)

m=1 m=1
(3.10)

M M

') Nm(i,I 2 )^lmc2i + ' NmI1,2)2mC22 = H2 (t)
m=1 m=1

where H, and H2 are the RHS of (3.6) and (3.7) respectively. The arguments of the

strain functions are functions of elapsed time t : I, - e + e + e
;.(l~b)t ;(l-b)t -2;t

and 12 = e + e + e We can calculate the H, and H2  functions at

every data point tn, and if we have N data points we have a overdetermined linear

equation system with 2M unknowns and 2N equations. We know that the equations (3.10)

are linearly dependent for b = 0, and one of these may a priori be excluded from the

final equation system. The least squares solution for the 2M parameters 4im can now be

calculated directly using any standard algorithm. We have used the IMSL-routine LLSQF. In

Appendix we give a short description of the FORTRAN programs we have developed to solve the

estimation problem. Here we only note that it is convenient to use

= log(I1 - 2)

and (3.11)

12 = log(12 - 2)

as the independent variables for the strain functions. We see that 2 and I increase

linearly in time for large t, which gives a good distribution of data points in the

(I*,,Il) space. In Figure 1 we show one of the meshes we have used to describe the strain

functions. Datapoints are indicated by (+). We also note that d1 = A (I;,I;) and

A = r( 
'I*) have to obey

2 2 1 2

1 (0,0) + A2(0,0) = 1 (3.12)

K" -13-
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if the model shall conform with the linear viscoelastic model for very small

*deformations. This leaves 2N - 1 parameters to be estimated. When we estimate the

parameters in eq. (3.10), with the restriction (3.12), we find a very high (106)

condition number for the equation system. This indicates that several of the supplied

equations are numerically linearly dependent. In the two flows, uniaxial- and biaxial

longational (b = 0), we know that it is impossible to determine other than the

combination:

= 1 + *2e-e (3.13)

The planar data do apparently not supply the additional information needed. If the mesh is

arranged as in Figure 1 the planar data do not supply any information to determine the

parameters on the uniaxial branch, due to the fact that the shape functions belonging to

the planar branch are all zero at the uniaxial branch. If we avoid this situation we do

find a decrease in the condition number, but only a factor 10, we may conclude that it is

not possible to obtain two numerically reliable and independent strain functions with the

present data and model. To obtain numerically reliable parameters we simply add

constraints to the strain functions by requiring equations of the form

#1 - a#2 - 0, (b = 0) (3.14)

to be satisfied in least square sense for all data points on the two branches corresponding

to b - 0. We choose a to be 5/2; which is the value obtained for Doi-Edwards strain

functions for zero deformation. When we add eq. (3.14) to the equation system we obtain a

very large decrease in the condition number, from 105 to 102. This indicates that the

calculated parameters are numerically reliable, but the ultimate test of a model is of

course its capability to reproduce the measured material functions. The obtained strain

* functions are shown on Figure 3 to Figure 6. Doi-Edwards strain functions are shown for

comparison. We use the approximation to the Doi-Edwards strain functions obtained by

Currie (1982). Bach (1985) has shown that the approximation do not give deviations in the

viscosity functions that are larger than 5%, and this accuracy is sufficient for our

present comparisons. In the following we use Curries approximation everywhere the Doi-

Edwards strain functions are used. The most striking feature of the calculated strain

-15-
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functions is that they are not "damping"-functions. In fact they increase from the zero

4 deformation value for small deformations. This is true for both strain functions in all

flows -onsidered. It is also obvious that the Doi-Edwards strain function would give a

rather bad fit to the data. We see, for example, on Figure 2 that the Doi-Edwards strain

function is typically a factor 2 smaller than the optimal strain function for I* larger

than 2, and the deviation becomes much larger as I* increases.

The ultimate test of any model is its capability to reproduce experimental data. We

have calculated the material functions in all flows considered, and plotted them together

with the data on the Figures 7 to 10. The largest derivation is found where the data shows

the largest derivation from the linear viscoelastic behavior, which is in uniaxial

extension. The model gives a reasonably good overall fitj especially if we use the

"yardstick" normally used when model predictions and data for polymer results are

* compared. The present polymer is very polydisperse, with a weight average molecular

weight (Mw ) that is 2.14 times the number average molecular weight (Mn) so that

Mw/Mn - 2.14

We may also notice that we have used the memory function obtained by Demarmels (1983), and

his procedure for calculation of this function may not be the best. He choses the time

constants a priori, and then he calculates the coefficients gk" Whether the large

deviation found by Demarmels (1983) between the calculated zero shear rate function
t/t

"1 + (t) = k grk(1 - e and the measured function for small times is due to the

estimation procedure, or due to experimental problems, as claimed by Demarmels is not

clear. It is not likely though that an optimal memory function would imporve the models

fit to the present data significantly.

We may conclude that it is not possible to find a set of parameters in the proposed

model so it interpolates the present data, but the optimal set of parameters in the least

square sense is a reasonable approximation to data.
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4. ESTIMATION OF W.

We now want to investiqate the consequences of an assumption of the existence of a

potential function W for the strain functions, i.e. that

W- (4.1)
1 2 I 2

The W function has to be at least C
1  

if the strain functions are to be continuous.

Alfeld (1984) has developed a C interpolant, which is a piecewise cubic function defined

on a mesh of triangles. We now briefly summarize the method of Alfeld as follows: Each

triangle is subdivided into three subtriangles (microtriangles), see Figure 11. On each

microtriangle a cubic function is defined.

q(P)3! b 1b AbYb 43

q() %!9!y!! caRy 1 2 3 4(v+R+y+A=3

where

4
P ) bY .

i=1

is the point of evaluation. The "generalized barycentric coordinates" bi satisfies

4
b. = 1

i=1

(4.4)

3
7 b. = 0

i=1 1

The "Bezier ordinates" c PYA are functions of the parameters in the Clough-Tocher

scheme. The Bzier ordinates are given explicitly by Alfeld (1984). The parameters are

the function values Q and the directional derivatives at all vertex nodes. The

directional derivatives ij (q) are defined in terms of the partial derivatives

Dij(q) 'qei (4.5)

where eii is the direction. The parameters we have to estimate in the polymer melt model
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(1.1) are the potential function values, and the partial derivatives at all conner

vertices.

To calculate the strain functions everywhere on the triangular mesh we need to

calculate the partial derivatives of (4.3) with respect to I and I* We find[2-

1 3!

x cb'b 234) (4.6)ax +B+y+6=3 "taY6 . ay 3x 12.

where x may be I* or I* defined in Ea. (3.11).
1 2

It is trivial, but acuite lengthy, to write down all the terms that evolves from

differentiation of the products, so we only give the formula for the partial derivatives of

the harycentric coordinates bi with respect to the invariants I*,I .

The coordinates bi may be expressed explicitly in I,I* :
11' 2

b. = a0  + ali(I* - 11(4)) + a2 i(I2 - I(4)); i = 1,2,3

where a0i = - for all i, and
3

a l l = - (I(2) - 1*(3)); a 2 1  2A (I;(3) -1 2

1
| "1 1

a12 = -L (1I*(3) - I2*(1)); a22 = - (I;(1) - I()

a 13  = - (I M(1) - *(2)); = (1 (2) - (12A 2 12 a 2A 1 I1)

See Fiqure 11 for a geometrical interpretation of above formula

(I (i),I*(i)) = Vi = vertex coordinates of microtriangle
I2

We now have the simple result:

. i ali and i - a 2 i 4.7)

1 2

We may now formulate the estimation problem:

3

[ - 36-
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Min ( _ic . (.W C - H (t ) 1 2 1  (4.8)
W i,n 1I  2  i2 i n

where the 3M parameters are:

= ,((p W (. ( W) 1... fW(P ) rW( .W ) ,('W L

1 1 112 1'1M 2 ,PM:'1* Pi PM'(4.9)

11 '21 '""31. (()lM',) 2M'(33M

where M is the number of vertices. We note that W does not enter into the objective

function (4.8), and conseouently we must supply at least one w value. This may be picked

arbitrarily. We take

W(I!,o*) = 0 at (* = ,0)

1'2 2,~ 00

We want to approximate the potential function W by (4.3):

W(I* 2  ! b=Vbb4 (4.10)2 t-+P+y+A=3 CEI.YA! fIYA 1 2 3 4 (.0

where

c aYA = c( )

(1'*) = biVi + b2v2 + b3V3 + b4 V4

and Vi  are the vertex coordinates, including the centride (V4 ), and bi  are the

Barycentric coordinates of the triangle containing (I,I*).

If the model shall conform with the linear viscoelastic model for very small

deformations we must require:

W + = 1 at (1-,1*) = (0,0)
1 I2 1'2

This leaves 3M - 2 parameters left to be estimated. The objective function is a sum of

squares of cubic functions and the optimization problem is consequently supposed to be

simple, and we may choose any standard unconstrained algorithm, in particular one that does

not require analytical derivatives of the objective function with respect to W. These

derivatives are rather lengthy to write down.
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In Appendix I we give a short description of the program developed to estimate the

parameters ui in (4.9).

On the Figures 13 to 16 we present the calculated potential function, and its partial

derivatives with respect to 11 and 12. We have used following relations:

3w 3w 1 3W -I;
3I i I I 2 e (4.11)

-T*
w 3w 1 - e 2 (4.12)

31 31* 1 -2 3*
2 2 2- *2

The invariant space has been transformed into a regular rectangular mesh, as required by

the plotting routines. We use a dimensionless time T 
= 

2st as the first independent

parameter, and a "flow type" parameter E as the other:

+1 biaxial longational flow

0 planar longational flow

-1 uniaxial longational flow

In Figure 12 we have made a draft of the transformation, and the two different view-

directions used. The zero deformation point is transformed into a line. The maximum T

value is approximately 6, which corresponds to the largest invariants in the data (see

Figure 1). We also note that the different figures have different scales on the "z-axis",

in fact (a'--0 = 0.66 and --- )0 = 0.34.
12

We initially tested the influence of the number of polynomials used to describe W.

We found no improvement using more than 3 cubic polynomials. (We tried to use up to 33

cubic polynomials).
3w

The most characteristic feature of the - - function is that in uniaxial

elonqational flow it increases rapidly above the zero deformation value for moderately

small t, and for large t it decreases. The opposite is true for biaxial elongational

3w
flow, and here we see a monotanic decrease in time. The - - function increases

initially for all types of flow.

I

-I. , _. .- . .. , t . . .. . ° . .. . , .,. , , - . ,



4-.)

r 02

4

02 1 4 4 1x 0

0 4.. 0 0 r.e

>- 0 ' u

0 0

020

0 0
02 V ) 0 -
.- 4 C2 02

02

0 y 0

020 *'4 441

-39-0 -



4)

-i 0

CV

0
.

*0

Z

CD r

-44

-40-



.r -~*~ -~ -

I

ct let

________ ~

o ~..

o
___________________ If~ ~s.

_____ 0

4 (0

(0

(0

0 ~

(0

- (0q~ G~
(0 ~z
V
0

A ~

~ .2
1-

I-. ~4..
o

0)
0. >

V 4-'
(0

-p.
44*

4"
0)

4.

0)*

0)1

I

-41-

I

I

-. . 4 4 . 4

4 . . 4 4 4 .~ 4 4 . - - 4 4

4 4 4*~44 4..-.4 .4...................-4 - . . - 4 4 4 . 4



=71

,%OX . ______M____

'S.,'
* 5,

N *~* Go

_ _ _ _ _ _ _ _ _ _ _ _ _ __-42-C-



414

OD 0

0
o 41

14

44

-43-



-44

-44-



-45



07

To obtain an idea about how the strain function depends on the invariants we have

aw aw
plotted the and the - function on Figures 17 to 19 as functions of II with

1 2

b as discrete parameter. We have also plotted the "effective" strain function in the two

extreme flows with b = 0. The Doi-Edwards strain functions have been plotted for

comparison. We notice again the initial increase in ["--J in uniaxial flow. In Figure

17c the effective strain function combination is plotted, and we notice a good coincidence

between the estimated strain function and Doi-Edwards for very small deformations but very

soon the derivations become very large (>100%). There is no overshoot in planar extension

aw aw
for - I, but now there is for a-- 2 "

There is a very small overshoot in - in biaxial extension. (It is too small to be

seen on the 3-D plots). The effective strain function shows a larger overshoot, as it is

now the -- - function that is the important strain function. Again there is a large
ai 2

deviation between the estimated strain function and the Doi-Edwards function.

Figure 20 to 23 shows how the estimated potential function describes data, both in a

linear scale and in a logarithmic scale. The latter is often used as the customarily large

deviations between data and model predictions look quite small on such plots.

The deviations in uniaxial flow are approximately the same as we observed for the more

general model. In planar extension we see that the curve for the largest C - value has

improved, but the curves for the two smallest C -values have become worse. The data,

especially for the smallest C - value, do not seem to be accurate. The second viscosity

function has improved for all C - values. We may notice that, although there is a large

negative deviation from the linear viscoelastic behaviour for the largest C - value, the

model is apparently much better to describe this kind of deviation. Again in ellipsoidal

extension we see a small improvement for the largest C - value, and an overall good fit

for both viscosity functions. In biaxial extension we observe the same deviations as we

.. saw when we did not assume the existence of a potential function.

We may now conclude that a potential function "exists", in the sense that we obtain a

* fit to data which is as qood as if we do not assume the existence. In fact we get some
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improvemenlts, especially to the larger £-data. Apparently we do not sacrifice anything

if we assume that the strain functions have to be the partial 
derivatives of the same

function.

-67-



5. DISCUSSION

Our investigations of the factorized single integral constitutive equation suggests

that the assumption of existence of a potential function for the strain functions does not

limit the model in its ability to describe experiments. We find equally good descriptions

of the general elongational data for the investigated PIB-polymer melt, with the assumption

of a potential (Eq. 1.1) as without (Eq. 1.2).

We also found that with the factorized single integral constitutive equations and the

linear viscoelastic memory function given by Demarmels (1983) it is impossible to adjust

the strain functions to describe the experiments of Demarmels (1983) without significant

I systematic deviations. There may be several reasons for this:

i) The linear viscoelastic memory function given by Demarmels may not be the optimal

function. For example we do not feel comfortable with the oscillatory

"measurements" in the frequency range from 10-3s - 1 and 10-2s-1 artificially

constructed from time temperature superposition. Also the shortest relaxation

time, 10- 3 sec. should be compared with the fact that a constant strain rate is

not established in the experiments before after about 3 sec. It might have been

preferable to represent relaxation times so short compared to typical times in

the experiment by just a Newtonian contribution and estimate this contribution

directly from the elongational flow experiment.

ii) One can not rule out systematic errors in the experimental data. In particular

what we fit is not raw data, but rather the results of some analysis applied to

the measurements. This analysis is often different in differnt flow situations

even for the same apparatus (Demarmels 1983, Ch. 5) and consequently a

possibility for different types of systematic errors in the material functions

arises.

iii) The most interesting possibility, and the one we consider most likely is that the

factorized single integral models with a memory function determined entirely from

linear viscoelastic measurements, simply does not have sufficient flexibility to

represent nonlinear material behavior over the entire invariant space. We

-68-
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believe it is the first time that possibility has been so clearly established on

the basis of experiments with "ever increasing deformations." The factorized

single integral models are known (Demarmels 1983) to be unable to describe flows

with sudden changes in flow type.

The strain functions calculated from the estimated potential function differ greatly

from previously proposed strain functions; see Tables 1.1 and 1.2. The optimal strain

functions for the particular PIB melt have maxima, with values well above 1, so the concept

of the strain functions as being "damping-function" is not true for the particular model,

and material. This point was noted also by Demarmels (1983). The general elongational

flow data used here have the unique feature that they cover major parts of the invariant

space. In contrast, the more common transient shear experiments are limited to I, = 12.

The general elongational experiments have two disadvantages, however. First it is not

possible to obtain data for times that are even comparable to the smallest time constants

of the fluid. The present rheometer can not give measurements with constant for times

smaller than approximately 3 sec., and the smallest time constant is 0.001 sec. Second it

is not possible to obtain measurements for large C - values, or invariants.

If one were to search for a more general model our data comparison indicates that one

should build on Eq. (1.1). We point out two possible generalizations:

i)
t Aw. w.

T(t) = -n Y + f M.(t - )11 + - Y'[]dt2 (5.1)
1 TI2

where

Mi(s) = - exp(-s/A i) (5.2)

i

and ; is the rate-of-strain tensor. Here the short relaxation times have been

"strangled" and represented by a Newtonian term. In other words to a first approximation

= n . where the summation is on the relaxation times small compared to the shortest5 1

time in the experiment, here about 3 sec.
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ii) One could add a term similar to the Curtiss-Bird (1981) r-term. This involves

the rate-of-strain tensor contracted twice with a fourth order tensor, and it is not

immediately obvious how one would determine this fourth order tensor. The method proposed

by Currie (1982) involves second derivatives of a potential function. Alfeld (1984b) has

derived an explicit C
2-Clough-Tocher scheme so this approach is feasible, but a serious

question is if it is possible to implement models with this complexity in general flow

pr_ rams.

4
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APPENDIX

A brief documentation

FORTRAN IV programs for the use in parameter estimation in a Kaye-BKZ polymer
melt model. The theory and sample results for a specific IlB-polyrner is given by Bach
and Hassager (1984a).

Estimation programs.

The programs ESTIM , and ESTW are the main programs for estimation of two
independent strainfunctions, and for estimation of a potential function respectively. The
input is raw start-up data from any elongational flow. The time dependent behaviour is
in the model assumed to be described by the linear viscoelastic memoryfunction, which is
supplied as a FUNCTION. Only a very little programming effort is required to make the
estimation programs take other material data. e.g. shear data (stress relaxation, stress
growth experiments).

ESTIM estimates two independent strainfunctions *1 and *2- These functions are
defined by the shape functions belonging to an element mesh covering the invariant space.
ESTIM uses the functions GPIB and FPIB. These are the relaxations modulus and the
memory function respectively. When the linear least squares equation system is set up by
ESTIM the IMSL routine LLSQF is called and finally the solution is written onto a file.

A number of routines from the Newtonian Flow program package NEWTON (Bach
and Hassager (1984b)) have been used in ESTIM.

ESTW estimates the parameters in a C1 Clough-Tocher scheme Alfeld (1984) for
the potential function W. The Clough-Tocher scheme is implemented in the subroutine
CIINT. This routine calculates the partial derivatives 2. and 9w and optional the
potential function value, at any point in the covered invariant space. The invariant space
is transformed to obtain a better distribution of data points. We use P = log(l - 2) and
I1" = log(II - 2). The partial derivatives are related by

o9W atV I Of"
=w __ i_ _ _ e.al in- (1-- 2) ai-

agw a14 aVw
t911 ali (11- 2) all.

It would in principle be possible to use the same method as in ESTIM but as the
equations system would be very difficult to set up. a straight forward minimazation method
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is used instead. The IMSL routine ZXSSQ performs very well on the actual problem. The
residuals are calculated by the FUNCTION FC2.

All subroutines used are described in the following. They are listed in alphabetic
order. All parameters in boldface are to be set by the user, and all underlined parameters
are to be reset by the user, as they are changed by the routine.

CIINT(X, Y, IOPR, MP, W, DW, DDW 1. DD1V2, DDW3, F, DFX, DFY, IER)

(;INT calculates the function value F (only for IOPR - 0), and the partial derivatives
DFX. and DFY of the interpolant at (X,Y). If JOPR > 0 then CIINT assumes

that (X.Y) is in element number = IOPR. If IOPR < 0 then CINT searches all elements
until the one containing (X,Y) is found. If no element is found IER equal to 1 will be
returned, else IER 0 is returned, and IOPR is set to the actual element number found.
Note that this option can be used to enhance the effectiveness greatly in situations where
(C INT is to be called with the same set of (X,Y) many times. Topology data is supplied
in the CIDATA - COMMON block, and the data to be used in the interpolation scheme
are suplied in W(MP), and DW(MP,2) . The arrays DDWI(MP,2), DDW2(MP,2), and
DDk3(MP.2) are the directional derivatives at the local nodes 1,2 and 3 respectively.

FC2(OMEGA, NRES, I-PAR,RESV)

FC2 is the EXTERNAL routine required by ZXSSQ. The parameters are suplied
in OMEGA(NPAR), and all residuals are to be returned in RESV(NRES) for any given
parameter vector suplied by ZXSSQ. Every datapoint contribute with two residuals, except
for flows with B - 0.

FMEMO(S. Td, GO)

FUNCTION FMEMO calculates the Doi-Edwards memory function. S is the inde-
pendent argument of the memory function, and Td :- Td" is the disengagement time . and
(;0 : G is the elastic modulus. The function value is returned in FMEMO.

FPIB(S.Td, GO)

FINCTION F1114 calculates the memory function obtained by Demarmels (1983). S
is th. argument of the mernory function, and here is GO the zero shear rate viscocity 71,-
Id is not used. The function value is returned in FPIB.

GAUSSW(N,RO0T. K4 EIGHT)

* I'BROUTINE GAUSSW calculates the N'th Gauss-Legendre rule; that is the abcis-
sac: ROOT(N) in the interval '-1,, I, and the corresponding weights: WEIGHT(N).
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GMEMO(S, TD, GO)

FUNCTION GMEMO calculates the Doi-Edwards relaxation modulus.(See FMEMO
for the explanation of the arguments).

GPIB(S,Td, GO)

FUNCTION GPIB calculates the relaxation modulus obtained by Demarmels (1983)
for a commercial PIB polymer. (See FPIB for the explanation of the arguments).

LAMDA(I, II, L)

SUBROUTINE LAMDA calculates the eigenvalues in any flow using the analytical
formulae derived by Currie (1982). 1, II are the first and second invariants respectively.
Note Curries definitions ! It shall be noted that Curries formulae are not suited for nu-
merical evaluation for large invariants. Numerically it would be better to solve the cubic
equation for the eigenvalues directly Bach (1985).

UPOT(I, II, N,L, FI1, F12)

FUNCTION UPOT evaluates the Doi-Edwards potential function W using a N'th
degree Gauss-Legendre quadrature formula. The partial derivatives of W with respect to
the first (1) and second (II) invariant are calculated using the analytical formulae derived
by Bach (1985). The eigenvalues L(3) are calculated by LAMDA. The partial derivatives
- and 1- at (1,11) are returned in F11 and F12 respectively. The value of the W -
function at (1,11) is returned in UPOT.

Utility programs.

The programs START and STARTI are the interactive main programs used to calcu-
late material functions and to test the obtained models.

START: Interactive MAIN program.

START calculates start-up material functions in shear flows, and in all kinds of elon-
gational flows for 1) The exact Doi-Edwards model, 2) Curries (1982) approximation to
Doi-Edwards model. 3) General Kaye-BKZ models, with two independent strainfunc-
tions given as nodalpoint values on an elementmesh. The exact Doi-Edwards potential
function is calculated by UPOT. The memory integral is evaluated by a very cautious
Romberg routine called DCADRE (IMSL). START writes the necessary information to
the PLOT79-interface routines (GPLT, GPLTL, GPLTLL). START can also be used to
test model prediction against viscometric data.
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STARTI Interactive MAIN program.

STARTI calculates the start-up material functions in shear and all kinds of elonga-
tional flows for the Kaye-BKZ polymer melt model with a potential function W. W , and
its derivatives, are calculated be ClINT. The memory integral is evaluated by DCADRE
(IMSIL-routine). STARTI writes the necessary information to the PLOT79-interface rou-
tines (see STARtT). STARTI can also be used to test model predictions against viscometric
data.
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