MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A
MRC Technical Summary Report # 2756

SOME QUALITATIVE PROPERTIES OF
BIVARIATE EULER–PROBENIUS POLYNOMIALS

Carl de Boor, Klaus Höllig and
Sherman Riemenschneider

Mathematics Research Center
University of Wisconsin—Madison
610 Walnut Street
Madison, Wisconsin 53705

October 1984

(Received September 21, 1984)

Approved for public release
Distribution unlimited

Sponsored by

U. S. Army Research Office
P. O. Box 12211
Research Triangle Park
North Carolina 27709

National Science Foundation
Washington, D.C. 20550
SOME QUALITATIVE PROPERTIES OF BIVARIATE EULER-FROBENIUS POLYNOMIALS

Carl de Boor¹, Klaus Höllig¹,² and Sherman Riemenschneider³

Technical Summary Report #2756
October 1984

ABSTRACT

Let \(M_n \) denote the bivariate box-spline corresponding to the directions (1,0), (0,1), (1,1), each occurring with multiplicity \(n \). We determine all critical points of the polynomials

\[
P_n(x) = \sum_{j \in \mathbb{Z}^2} M_n(j)e^{ixj}, \quad n \in \mathbb{Z}_+.
\]

AMS (MOS) Subject Classifications: 41A15, 41A63

Key Words: multivariate splines, cardinal interpolation, Euler-Frobenius polynomials

Work Unit Number 3 (Numerical Analysis and Scientific Computing)

¹Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
²Supported by the National Science Foundation under Grant No. DMS-8351187.
³Supported by NSERC Canada through Grant #A 7687.
SIGNIFICANCE AND EXPLANATION

This is a further report in a series devoted to the study of box splines. Box splines have been introduced in MRC TSR #2320 and provide a natural generalization of univariate cardinal splines, i.e., splines with a uniform knot sequence.

The process of univariate spline interpolation becomes particularly simple in the cardinal case, and this report considers the corresponding bivariate process of interpolation at the integer points in the plane to a given function by a linear combination of integer translates of a box spline. In particular, the report shows that this process is well posed, i.e., any bounded continuous function f has exactly one such bounded interpolant I. The argument uses the Fourier transform to identify a certain trigonometric polynomial (in two variables) whose nonvanishing is equivalent to the asserted well-posedness. The minimum value of this polynomial yields a bound on the norm of the resulting interpolation projector I.

The responsibility for the wording and views expressed in this descriptive summary lies with MRC, and not with the authors of this report.
In a series of beautiful papers, I. J. Schoenberg developed the theory of univariate cardinal splines [6-8]. A basic result is the positivity of the Euler-Frobenius polynomials which implies the well posedness of cardinal interpolation.

Theorem 1 [6]. Let M_r denote the univariate cardinal B-spline with support centered at 0. The Euler-Frobenius polynomials

$$P_r(x) = \sum_{j \in \mathbb{Z}} M_r(j) e^{i j x}, \quad r \in \mathbb{Z}_+,$$

are strictly positive and attain their unique minimum (maximum) at

$$x = \pi \mod 2\pi \mathbb{Z} \quad (x = 0 \mod 2\pi \mathbb{Z}).$$

In this note we obtain the bivariate analogue of this result for box-splines. For a set of vectors $\Xi = \{\xi_1, \ldots, \xi_n\}$ with $\xi_\nu \in \mathbb{Z}^m$, the box-spline M_{Ξ} is the functional on $C_0(\mathbb{R}^m)$ defined by [1]

$$M_{\Xi} \phi := \int_{[-1,1]^m} \phi(\frac{1}{2} \lambda \xi) d\lambda.$$

Equivalently, M_{Ξ} can be defined by its Fourier transform

$$M_{\Xi}(y) = \prod_{\nu=1}^n S(\xi_\nu y)$$

1Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
2Supported by the National Science Foundation under Grant No. DMS-8351187.
3Supported by NSERC Canada through Grant #A 7687.
where \(S(z) := (2/z) \sin(z/2) \). The latter definition stresses the similarity to the univariate case. We define the multivariate Euler-Frobenius polynomials by

\[
P_z(x) := \sum_{j \in \mathbb{Z}^m} M_z(j) e^{i j x}.
\]

In the bivariate case \((m = 2)\) we proved [3] the following conjecture. The polynomials \(P_z \) are strictly positive iff the box-splines \(M_z(\cdot - j) \), \(j \in \mathbb{Z}^m \), are linearly independent.

If valid in general \((m > 2)\) the conjecture would imply that cardinal interpolation is well posed if the obvious necessary condition of linear independence is satisfied. For two variables it was shown in [2] that the box-splines are linearly independent only on the "standard" three direction mesh, up to symmetry the vectors in \(\mathbb{Z} \) have to be chosen from the set \(\{(1,0), (0,1), (1,1)\} \). While the corresponding grid is very regular, the analysis of the interpolation problem is complicated. Our results [3,4] are not as complete as in I. J. Schoenberg's univariate theory. E.g. we were not able to determine the location of the minimum for \(P_{\mathbb{Z}} \) which in general depends on \(\mathbb{Z} \). We conjectured that in the symmetric case, when each of the three vectors in \(\mathbb{Z} \) occurs with multiplicity \(n \), the polynomial \(P_n \) attains its minimum at the point

\(\left(\frac{2\pi}{3}, \frac{2\pi}{3} \right) \). In this note we prove this conjecture and determine all critical points of \(P_n \).
Theorem 2. The polynomials P_n, $n \in \mathbb{Z}^+$, attain their minima at

$\pm \left(\frac{2\pi}{3}, \frac{2\pi}{3} \right) \mod 2\pi z^2$, their maxima at the points $2\pi z^2$ and have saddle

points at $z^2 \backslash 2\pi z^2$. These are the only critical points of P_n.

Figure 1 below shows the gradient field of P_3 on $[\pi/2, 3\pi/2] \times [-\pi, \pi]$ which illustrates the general situation.
The proof of Theorem 2 relies heavily on the symmetries of P_n. Let A denote the group of 12 linear transformations which leave the mesh generated by the three directions (1,0), (0,1), (1,1) invariant. This group is generated by the matrices

$$
\begin{bmatrix}
-1 & 0 \\
0 & -1 \\
0 & -1 \\
1 & 0 \\
1 & -1 \\
0 & 1
\end{bmatrix},
\begin{bmatrix}
0 & -1 \\
-1 & 0 \\
1 & 0 \\
1 & 1 \\
0 & 1
\end{bmatrix}
$$

which correspond to reflection at the origin and permutation of the directions. The symmetric box-spline M_n is invariant under composition with A, i.e.

$$M_n(Ax) = M_n(x), \quad A \in A.$$

Therefore, the corresponding Euler-Frobenius polynomials satisfy

$$P_n(A^*x + 2\pi j) = P_n(x), \quad A \in A, \quad j \in Z^2,$$

where A^* denotes the transpose of A. These relations give much information about the structure of P_n. Denote by $\nabla f(u,v) := (D_u f(u,v), D_v f(u,v))$ the gradient of a function f. Differentiating the identity (6) we obtain

$$\left(\nabla P_n(A^*x + 2\pi j)\right) A^* = \nabla P_n(x), \quad A \in A, \quad j \in Z^2.$$
Let I denote the unit matrix. Identity (7) implies in particular that

\[(8) \quad V_p_n(x) \in \ker(I - A) \text{ if } (I - A^*)x = 2\pi j.\]

For \(A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \), \(\begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix} \) \(\in A \) it follows from (8) that \(V_p_n \)

vanishes at the points \(\pi Z^2 \) and \(\pi \left(\frac{2\pi}{3}, \frac{2\pi}{3} \right) + 2\pi Z^2 \) respectively. For

\[A = \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix} \in A, \]

the matrices \((I - A)\) have rank one and it follows from (8) that for \(k \in Z \),

\[(0,1)V_p_n(x) = 0 \text{ if } (1,2)x = 2\pi k,\]

\[(1,0)V_p_n(x) = 0 \text{ if } (2,1)x = 2\pi k,\]

\[(1,-1)V_p_n(x) = 0 \text{ if } (1,-1)x = 2\pi k,\]

\[(1,1)V_p_n(x) = 0 \text{ if } (1,1)x = 2\pi k,\]

\[(2,-1)V_p_n(x) = 0 \text{ if } (1,0)x = 2\pi k,\]

\[(1,-2)V_p_n(x) = 0 \text{ if } (0,1)x = 2\pi k.\]
The remaining 4 matrices in \(A \) give no further information.

Let \(\Omega \) denote the (closed) triangle with vertices \((0,0), (\pi,0), (\frac{2\pi}{3}, \frac{2\pi}{3})\). The set

\[
\Omega^* = \bigcup_{A \in A} A\Omega,
\]

which is the convex hull of the six points \(\pm(\frac{2\pi}{3}, \frac{2\pi}{3}), \pm(\frac{4\pi}{3}, -\frac{2\pi}{3}), \pm(\frac{2\pi}{3}, -\frac{4\pi}{3}) \), is a fundamental domain, i.e. its translates form an essentially disjoint partition of \(\mathbb{R}^2 \). Therefore, to complete the proof of Theorem 2, it is sufficient to show that

\[(10) \quad V P_n(x) \neq 0 \text{ for } x \in \Omega \setminus \{(0,0), (\pi,0), (\frac{2\pi}{3}, \frac{2\pi}{3})\}\]

and that

\[(11) \quad P_n(\frac{2\pi}{3}, \frac{2\pi}{3}) < P_n(\pi,0) < P_n(0,0).\]

To this end we prove the following estimates:

(i) \(D_u P_n(u,v) / (2u + v) < 0 \) for \((u,v) \in \Omega_1 := \{(u,v): 0 \leq v \leq u, 2u + v \leq \frac{3\pi}{2}, u > 0\}\),

(ii) \(D_u P_n(u,v) / (2\pi - 2u - v) < 0 \) for \((u,v) \in \Omega_2 := \{(u,v): \frac{3\pi}{2} \leq 2u + v < 2\pi, 0 \leq v, u + 2v \leq 2\pi\},

(iii) \(D_v P_n(u,v) / v < 0 \) for \((u,v) \in \Omega_3 := \{(u,v): 0 < v = 2\pi - 2u \leq \frac{\pi}{3}\}.\)
Note that, since $P_n(u,v) = P_n(v,u)$, it follows from (ii) that

$$D_{v}P_{n}(w - v/2, v) / (\pi - 3v/2) < 0, \quad \pi/3 < v < 2\pi/3.$$

For small n the inequalities (i) - (iii) can be verified numerically and we shall assume in the sequel that n is sufficiently large ($n \geq 5$). Using the Poisson summation formula and (2), we write P_n in the form

$$P_n(u,v) = \sum_{(k,\ell) \in \Lambda} S(u + k)^n S(v + \ell)^n S(u + v + k + \ell)^n$$
where \(\Lambda := 2\pi \mathbb{Z}^2 \). For \((u,v) \in \Omega\) and large \(n\), the terms with \(|k| + |\ell|\)
small dominate in the expression for \(P_n\). This fact is crucial for the
subsequent estimates.

Proof of (1). We write

\[
D_n P_n(u,v) = n \sum_{(k,\ell) \in \Lambda} a_k, \ell \cdot b_k, \ell
\]

with

\[
a_{k,\ell} := S(u+k)^{n-1} S(v+\ell)^n S(u+v+k+\ell)^{n-1}
\]

\[
b_{k,\ell} := S'(u+k) S(u+v+k+\ell) + S(u+k) S'(u+v+k+\ell).
\]

Using the inequalities

\[
|S(w)|, |S'(w)| \leq \min \left(1, 2/|w|\right),
\]

\[-\frac{1}{12} w \leq S'(w) \leq -\frac{1}{16} w, \quad 0 \leq w \leq \pi,
\]

for \((u,v) \in \Omega\), we obtain the estimates

\[b_{0,0} \geq -\frac{1}{12} (2u + v),\]
\[b_{0,0} \leq -\frac{1}{16} u S(\pi) - \frac{1}{16} (u + v) S\left(\frac{3\pi}{4}\right) \leq -\frac{1}{8\pi} (2u + v), \quad (16) \]

\[\left| \frac{b_{k,\ell}}{b_{0,0}} \right| \leq \frac{4 \cdot 8\pi}{|u+k||u+v+k+\ell|} \left(\frac{-\sin(u/2)}{2u + v} + \frac{\sin((u+v)/2)}{2u + v} \right) \]

\[\leq \frac{16\pi}{|u+k||u+v+k+\ell|}. \]

For \((u,v) \in \Omega_1\) and \((k,\ell) \neq (0,0)\), we have

\[\left| \frac{1}{u+k} \right| \left| \frac{v}{v+\ell} \right| \left| b_{0,0} \right| \leq \pi^{-2}. \]

Combining this inequality with (16), we see from the definition of \(a_{k,\ell}\) and \(S\) that

\[\left| \frac{D_P \hat{P}(u,v)}{n a_{0,0} b_{0,0}} - 1 \right| \leq \sum_{\Lambda(0,0)} \left| \frac{a_{k,\ell}}{a_{0,0}} \right| \left| \frac{b_{k,\ell}}{b_{0,0}} \right| \]

\[\leq \sum_{\Lambda(0,0)} \left| \frac{u}{u+k} \right|^{n-1} \left| \frac{v}{v+\ell} \right| \left| \frac{u+v}{u+v+k+\ell} \right| \left| b_{0,0} \right| \left| \frac{16\pi}{u+k} \right| \left| \frac{16\pi}{v+\ell} \right| \left| \frac{16\pi}{u+v+k+\ell} \right| \]

\[\leq \frac{16}{\pi} \sum_{\Lambda(0,0)} \left| \frac{3\pi/4}{3\pi/4+k} \right|^{n-1} \left| \frac{\pi/2}{\pi/2+\ell} \right|^{n-1} \left| \frac{\pi}{\pi+k+\ell} \right|^{n-1}. \]

The last right-hand-side is less than 1 for \(n \geq 5\). Therefore, inequality (i) follows from the second inequality in (16) and the fact that \(a_{0,0}\) is positive on \(\Omega_1\).
Proof of (ii). In expression (13) for $D_{u,v}^n$ we split the index set Λ into the three parts

$$\Lambda_0 := \{(k,\ell): 2k + \ell + 2\pi = 0\},$$

$$\Lambda_{\pm} := \{(k,\ell): \mp(2k + \ell + 2\pi) > 0\}.$$

The sets Λ_+ and Λ_- are related by the bijective mapping

$$(k,\ell) \in \Lambda_+ \leftrightarrow (k',\ell') = (-k - \ell - 2\pi,\ell) \in \Lambda_-.$$

Therefore, we can write $D_{u,v}^n$ in the form

$$D_{u,v}^n(u,v) = n \sum_{\Lambda_0} a_{k,\ell} b_{k,\ell} + n \sum_{\Lambda_+} a_{k,\ell} b_{k,\ell}$$

where (c.f. (14))

$$b_{k,\ell} := b_{k,\ell} + \frac{a_{-k-\ell-2\pi,\ell}}{a_{k,\ell}} b_{-k-\ell-2\pi,\ell}$$

$$= [S'(u+k)S(u+v+k+\ell) + S(u+k)S'(u+v+k+\ell)]$$

$$+ \zeta^{n-1} [S'(u-k-2\pi)S(u+v-k-2\pi) + S(u-k-2\pi)S'(u+v-k-2\pi)]$$

with
\begin{align*}
\zeta := \frac{u + k}{u - k - 2\pi} \frac{u + v + k + \ell}{u + v - k - 2\pi}.
\end{align*}

Observe that for \((u,v) \in \Omega_2^+\) and \((k,\ell) \in \Lambda_+^2\)

\begin{equation}
0 \leq \zeta \quad \text{and} \quad 1 - \zeta = \frac{2\pi - v - 2u}{u - k - 2\pi} = \frac{2k + \ell + 2\pi}{u + v - k - 2\pi}.
\end{equation}

Since the numerator in \(1 - \zeta\) is positive, letting \(\Lambda_\ast := \{(k,\ell) \in \Lambda_+: (k+\ell+\pi)(k+\pi) > 0\}\), we have

\begin{equation}
0 \leq \zeta \leq 1, \quad (k,\ell) \in \Lambda_\ast,
\end{equation}

\begin{equation}
0 \leq 1/\zeta \leq 1, \quad (k,\ell) \in \Lambda_+ \setminus \Lambda_\ast.
\end{equation}

Using the identity

\begin{equation}
S(p)S'(q) \pm S'(p)S(q) = \frac{2}{pq} \sin \frac{p+q}{2} - \frac{4(p+q)}{pq} \sin \frac{p}{2} \sin \frac{q}{2},
\end{equation}

we can simplify the above expressions for \(b_{k,\ell}\) and \(b_{k,\ell}'\) and obtain

\begin{equation}
b_{k,\ell} = \frac{2 \sin(u+v/2-\pi)}{(u+k)(u+v+k+\ell)} - \frac{4(2u+v-2\pi)}{(u+k)^2(u+v+k+\ell)^2} \sin \frac{u+k}{2} \sin \frac{u+v+k+\ell}{2}, \quad (k,\ell) \in \Lambda_0^2.
\end{equation}
\[b_{k,l} = \frac{2(-1)^{\ell} \sin(u+v/2)(1 + \zeta^n) - 4(-1)^{\ell} \sin(u/2)\sin((u+v)/2)}{(u+k)(u+v+k+l)^2} \]
\[\times [(2u+v+2k+l)\zeta^{n+1}(2u+v-2k-l-4\pi)] , (k,l) \in \Lambda_n. \]

In the term in square brackets we add and subtract \((2u+v-2k-l-4\pi)\). Then a direct computation using (18) yields

\[[...] = (2u+v-2\pi)(2 + \frac{(2k+\delta+2\pi)(2u+v-2k-l-4\pi)}{(u-k-l-2\pi)(u+v-k-2\pi)} \sum_{\nu=0}^{n} \zeta^{\nu}). \]

Analogous to case (i) we show that \(a_{0,0}b_{0,0}\) is the dominant term for the right hand side of (17). Indeed,

\[b_{0,0} \leq -0.6 \frac{2\pi - 2u-v}{u(u+v)} \text{ for } n \geq 5, \]

as one checks numerically for \(n = 5\), and therefore has it for \(n \geq 5\), since \(b_{0,0}\) decreases as \(n\) increases as we see from (19), (22) and (23). For \((u,v) \in \Omega_2\) we have \(\pi/3 \leq u, u+v \leq 4\pi/3\) and we obtain from (19)-(24) the estimates

\[\left| b_{k,l} \right| \leq \frac{2}{\delta} \left| \frac{u}{u+k} \right| \left| \frac{u+v}{u+v+k+l} \right| , (k,l) \in \Lambda_0. \]
For \((k, \ell) \in \Lambda_+ \backslash \Lambda_\ast\) we estimate \(\zeta^{-n} b_{k, \ell}\) in a similar way and obtain

\[
\left| b_{k, \ell} \right| \leq \zeta^n \frac{3(n+1)(2k+\ell+2\pi)}{6} \left| \frac{u}{u+k} \right| \left| \frac{u+v}{u+v+k+\ell} \right|, \quad (k, \ell) \in \Lambda_+ \backslash \Lambda_\ast.
\]

For \((k, \ell) = (0, -2\pi)\) we obtain the sharper estimate

\[
\left| b_{0, \ell-2\pi} \right| \leq \zeta^n \frac{3(n+1)(2k+\ell+2\pi)}{6} \left| \frac{u}{u+k} \right| \left| \frac{u+v}{u+v+k+\ell} \right|, \quad (k, \ell) \in \Lambda_+ \backslash \Lambda_\ast.
\]

numerically for \(n = 5\), hence valid for \(n \geq 5\) since \(\left| b_{0,0} \right|\) increases with \(n\).

Similarly as for case (i), it follows from (17), (25)-(28), the definition of \(\zeta\), and the inequality

\[
\left(\frac{v}{2\pi - v} \right)^n \left(\frac{u + v}{2\pi - u - v} \right)^n \leq 1, \quad (u,v) \in \Omega_2,
\]

that
\[
\left| \frac{\partial^2 P_n(u,v)}{\partial u \partial v} - 1 \right| \leq 6 + \frac{2}{6} \sum_{x \in \Lambda} \left(\frac{\pi}{\pi + k} \right)^n \left| \frac{5\pi/6}{5\pi/6 + i} \right|^n \left| \frac{4\pi/3}{4\pi/3 + k + i} \right|^n \left(2k + \ell + 2\pi \right) + \frac{3(n+1)}{6} \sum_{x \in \Lambda^*} \left(\frac{\pi}{\pi + k} \right)^n \left| \frac{5\pi/6}{5\pi/6 + i} \right|^n \left| \frac{4\pi/3}{4\pi/3 + k + i} \right|^n \left(2k + \ell + 2\pi \right).
\]

The right-hand side is less than 1 for \(n \geq 5 \) and the inequality (ii) follows from (24) and the fact that \(a_{0,0} \) is positive.

Proof of (iii). We have

\[
(29) \quad D_v P_n(\pi - v/2, v) = n \sum_{x \in \Lambda} a_{k, \ell} b_{k, \ell}^t
\]

with

\[
a_{k, \ell}^t := S(\pi - v/2 + k) \beta^{n-1} S(v + \ell) \beta^{n-1} S(\pi + v/2 + k + \ell) \]

and

\[
b_{k, \ell}^t := S(\pi - v/2 + k) S'(v + \ell) S(\pi + v/2 + k + \ell) + S(\pi - v/2 + k) S(v + \ell) S'(\pi + v/2 + k + \ell).\]
Note that \(a_{0,0} = a_{-2\pi,0} \). It can be verified numerically that

\[
\sup_{0 < v \leq \pi/3} \left(b_{1,0}^* + b_{2\pi,0}^* \right)/v > 1.
\]

To estimate the remaining terms in (29) we observe from the definition of \(S \) and (15) that

\[
|b_{k,\ell}| \leq 2v^2 \min \left\{ 1, \frac{2}{\pi-v/2+k}, \frac{2}{\pi+v/2+k+1} \right\}.
\]

Therefore,

\[
\left| \frac{a_{k,\ell} b_{k,\ell}}{a_{0,0} c_v} \right| \leq \frac{1}{2} \left| \frac{\pi}{\pi+k} \right|^n \left| \frac{\pi/3}{\pi/3+1} \right|^n \left| \frac{7\pi/6}{7\pi/6+k+1} \right|^n,
\]

and we obtain

\[
\left| \frac{D_{\nu} P_n(\pi-v/2,v)}{n a_{0,0}(b_{0,0}+b_{-2\pi,0})} - 1 \right| \leq \frac{1}{2} \sum_{\ell \in \{(0,0),(-2\pi,0)\}} \left| \frac{\pi}{\pi+k} \right|^n \left| \frac{\pi/3}{\pi/3+1} \right|^n \left| \frac{7\pi/6}{7\pi/6+k+1} \right|^n.
\]

The right-hand side is less than 1 for \(n \geq 2 \) which, together with (30), implies the inequality (iii).
References

7. I. J. Schoenberg, Notes on spline functions III, On the convergence of the interpolating cardinal splines as their degree tends to infinity, Israel J. Math. 16 (1973), 87-93.

Title: SOME QUALITATIVE PROPERTIES OF BIVARIATE EULER-FROBENIUS POLYNOMIALS

Authors: Carl de Boor, Klaus Hollig, and Sherman Riemenschneider

Performing Organization Name and Address:
Mathematics Research Center, University of Wisconsin
610 Walnut Street
Madison, Wisconsin 53706

Number of Pages: 16

Distribution Statement: Approved for public release; distribution unlimited.

Abstract: Let M_n denote the bivariate box-spline corresponding to the directions $(1,0)$, $(0,1)$, $(1,1)$, each occurring with multiplicity n. We determine all critical points of the polynomials

$$P_n(x) = \sum_{j \in \mathbb{Z}^2} M_n(j) e^{i j x} , \quad n \in \mathbb{Z}^+ .$$

Key Words: multivariate splines, cardinal interpolation, Euler-Frobenius polynomials