AD-A149 346

UNCLASSIFIED

OPTICAL DATR PROCESSING FOR MISSILE GUIDANCECU)
CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF ELECTRICAL
AND COMPUTER ENGINEERING [ CASASENT 21 NOV 84
AFOSR-TR-84-1162 AFOSR-73-0091 F/G 17/7




ol

fl<2 £
= .

o

F

36
=
40

.
——
r
r rr
rr

N
(&

I

o]

MICROCOPY RESOLUTION TEST CHART
STONAC BEEANL 8 STANDAREN [0k A

1
ot St b

I

~ - K
Iy _a "a s ‘m

»
«




AD-A149 346

it COPY

Ll

z.n
Cia

AFOC

T T B N T T T I
. . ST - . - T - ST - -

S

FINAL REPORT

OPTICAL DATA PROCESSING

FOR MISSILE GUIDANCE

SUBMITTED BY:

David Casasent, Principal Investigator
Carnegie-Mellon University
Deparment of Electrical and Computer Engineering
Pittsburgh, PA 15213

Telephone: (412) 578-2464 D"“ ‘(

, ELECTE
SUBMI D TO:
Air Force Office of Scientific Research
Bolling Air Force Base E
Washington, D.C. 20332

ATTN: Lt. Colonel Robert Carter, Building 410

i ?El\case:
S anateds

Date: 21 November 1984

Period Covered
30 September 1983 - 30 September 1984

34 17 2 080

ARERE i st

Lan

deandhe, A

‘e g g o

ot




'-I'-'-'!! I-.!E!.E.I- ,t!! " ! E". e T e e T L T e e T e L S T TRTINTUTT O T T FITL T T T T e
.
.

FINAL REPORT

OPTICAL DATA PROCESSING

FOR MISSILE GUIDANCE

SUBMITTED BY: o
David Casasent, Principal Investigator o 1
Carnegie-Mellon University Accession For
Deparment of Electrical and Computer Engineering NTIS GR E .:',:.jﬁ'
Pittsburgh, PA 15213 Drte TuNALL g o
Telephone: (412) 578-2464 Unannounced g - j
Justification ]
SUBMITTED TO: ]
\
Air Force Office of Scientific Research _Distribut ton/ i
Bolling Air Force Base | Avallability Codes - 9_1
Washington, D.C. 20332 Avail and/or | N ’-;1
I'ist Special el
ATTN: Lt. Colonel Robert Carter, Building 410 ST
g
Al .
- -9

Date: 21 November 1984 |

Period Covered
30 September 1983 - 30 September 1984

v o
- - 1
B L EA .

ATR PO

KT
oo R
- ., '\,
v RN

e [ane! ®

. el Te s .
PP Y R PR W e P ONEINE VW R S ¥ "ilili V..‘..




T T p— At B &l e u a4 R R W W N Y Y T WV~ T
AR A e Rt Al i Rt s s Bt a2t Sl fallint Ll S Sl g

Unclassified, 21 November 1984

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

& REPORT DOCUMENTATION PAGE BEF O e b e oRM

. GO\:’ K!\quo 13!?&1"5 CATALOG NUMBER

S. TYPE OF REPORY & PERIOD COVERED

: Final Report
E Optical Data Processing for Missile Guidance Sept. 1983 - tember 1984

6. PERFORMING OG. REPORT NUMBER

- LIRS B P

4. TITLE (and Subtitle)

7. AUTHORC(s) 8. CONTRACT OR GRANT NUMBER(s)

AFOSR-79-0091
David Casasent

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

AREA & WORK UNIT NUMBERS
Carnegie-Mellon University
Dept. of Electrical and Computer Engineering

Pittsburgh, PA 15213 WIGFE, 2305 6
1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
AFOSR/NE, Building 410 21 November 1984
Bolling Air Force Base, D.C. 20332 13. NUMBER OF PAGES x
(Lt. Col. Robert Carter) \Alo
4. MONITORING AGENCY NAME & ADDRESS(/f different from Controlling Office) 15. SECURITY CLASS. (of this report)
same Unclassified

18a, DECL ASSIFICATION/ DOWNGRADING

SCHEDULE N/A

T——
16. DISTRIBUTION STATEMENT (of this Report)

Unlimited - oroluased
:Il_l.tb’d. l,‘/

i BPNER
[ o

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, i different froe Report)

Unlimited

18. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on reverse side if necessary and identily by block number)

Acousto-optic, Correlators, Feature extractors, Fourier coefficient, Kalman
filtering, Moments, Optical linear algebra processors, Optical pattern
recognition, Pattern recognition, Synthetic discriminant functions, Systolic
array processors.

20. ABSTRACT (Continue on reverse side if necessary and Identity by block number)

Research on optical data processing for missile guidance and robotics is
described. Components addressed include acousto-optic cells. Pattern
recognition work includes feature extraction (Fourier coefficients and
moments) and correlation (using synthetic discriminant functions). A1l
pattern recognition work concerns multi-class distortion-invariant pattern
recognition. Optical linear algebra processors are addressed with attention °
to: algorithms, architectures, applications, Kalman filtering, system .

DD ,J2%% W73  eoimow or 1woves s omsoLerTE Unclassified, 21 November 1984 N
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) 'j
®
- b
LLLLL P IO SR N ~{:l‘"‘)'.';_".~ _~ . 3 PN N 2 T O Uy By 4 '_;'_- .x " .. 2 _‘_AQ




LIPS A Sk S i et A ey A s A A S SRS TSNS TRO T TS
g e —— A s g
.

~ ‘ "__lnclassitied, 21 November 1984

: SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered) R

° fabrication, accuracy and performance, plus error source modeling and simula-
o tion.

Y

v
VI

’

o -

SECURITY CLASSIFICATION OF Yu'r P AGE(When Deta Ente




1.
2.

7.

9.

11.
12.

13.

14.

15.
18.

e e Laudr MMM ar S e ) LGRS M aiaua aran g v saar

Table of Contents

‘ ABSTRACT

INTRODUCTION
OVERVIEW AND SUMMARY

2.1 INTRODUCTION

2.2 SPATIAL LIGHT MODULATORS (ACOUSTO-OPTIC CELLS, CHAPTER 3)

2.3 OPTICAL PATTERN RECOGNITION REVIEWS (CHAPTER 4)

2.4 OPTICAL PATTERN RECOGNITION FEATURE EXTRACTION (CHAPTERS 5 - 7)
2.5 OPTICAL PATTERN RECOGNITION CORRELATORS (CHAPTER 8)

2.6 OPTICAL LINEAR ALGEBRA PROCESSORS (CHAPTERS 9 - 14)

. TIME-INTEGRATING ACOUSTO-OPTIC CORRELATOR: ERROR SOURCE

MODELING

. PARALLEL COHERENT OPTICAL PROCESSOR ARCHITECTURES AND

ALGORITHMS FOR ATR

. FOURIER TRANSFORM FEATURE-SPACE STUDIES
. HIERARCHICAL PATTERN RECOGNITION USING PARALLEL FEATURE

EXTRACTION

IMAGE SEGMENTATION AND REAL-IMAGE TESTS FOR AN OPTICAL
MOMENT-BASED FEATURE EXTRACTOR

UNIFIED SYNTHETIC DISCRIMINANT FUNCTION COMPUTATIONAL
FORMULATION

ACOUSTO-OPTIC LINEAR ALGEBRA PROCESSORS: ARCHITECTURES,
ALGORITHMS AND APPLICATIONS

10. DIRECT AND INDIRECT OPTICAL SOLUTIONS TO LINEAR ALGEBRAIC

EQUATIONS: ERROR SOURCE MODELING
OPTICAL KALMAN FILTERING FOR MISSILE GUIDANCE
A STATE ESTIMATION KALMAN FILTER USING OPTICAL PROCESSING:
NOISE STATISTICS KNOWN
ITERATIVE SOLUTIONS TO NONLINEAR MATRIX EQUATIONS USING A
FIXED NUMBER OF STEPS
FABRICATION CONSIDERATIONS FOR ACOUSTO-OPTIC SYSTOLIC
PROCESSORS
REFERENCES
PUBLICATIONS AND PRESENTATIONS
16.1 PUBLICATIONS (AFOSR SUPPORTED, 1979-DATE)
16.1.1 PUBLISHED PAPERS UNDER AFOSR SUPPORT (30 SEPTEMBER 1979
SEPTEMBER 1980)
16.1.2 PUBLISHED PAPERS UNDER AFOSR SUPPORT (30 SEPTEMBER 1980
SEPTEMBER 1981)
16.1.3 PUBLISHED PAPERS UNDER AFOSR SUPPORT (30 SEPTEMBER 1981
SEPTEMBER 1982)
16.1.4 PUBLISHED PAPERS UNDER AFOSR SUPPORT (30 SEPTEMBER 1982
SEPTEMBER 1983)
16.1.5 PAPERS PUBLISHED AND SUBMITTED UNDER AFOSR SUPPORT
(SEPTEMBER 1983 - SEPTEMBER 1984)
16.2 SEMINARS, CONFERENCES, ETC. PRESENTATIONS OF AFOSR RESEARCH (1
SEPTEMBER 1983 - 30 SEPTEMBER 1984)

30

30

30

30

.......

At et et c B o e M -, . W PR .
P AT T AP 6. WGP W S e LIV TSRy TrastrrrTrerswavs a.

00 OOt b N

o

10
11

12

13

14

15

16
17

19

20
22

22
22

23

25

26

27

28

e

!

l Lt
e

e e g

,“ C '."v‘-'
ij“ o

RO . s R ,
PSS S NP N N aa a'a oa 0 o 4 *

A

Y

PAa . .
° . . .
Al e b

ray

e o




mLm s nar

AdSth it Shagh Shane Jost Jhade San MRt fiatt ] Mol 8 g

-

il

T

16.3 THESES SUPPORTED BY AFOSR FUNDING (SEPTEMBER 1980 - SEPTEMBER 1984)
16.4 PATENT DISCLOSURES (SEPTEMBER 1980 - SEPTEMBER 1984)

__ RPN

ey

P PCUDE U WY WV GO WY Gult ol S Ol G G S S S Sy

30
31




LAt aas 20k and e are Sus sus e S A i A I B A A CH e g g A A Al S M i I et “alie -~ e S A e S R JDSNOIEL S it S e A4 AR I e

ABSTRACT 5

®
Research on optical data processing for missile guidance and robotics is described. Components '
4
addressed include acousto-optic cells. Pattern recognition work includes feature extraction (Fourier
coefficients and moments) and correlation (using synthetic discriminant functions). All pattern w
recognition work concerns multi-class distortion-invariant pattern recognition. Optical linear algebra }

N processors are addressed with attention to: algorithms, architectures, applications, Kalman filtering,

system fabrication, accuracy and performance, plus error source modeling and simulation.
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1. INTRODUCTION | e

During the past year (September 1983 - September 1984), our research in optical data processing for

L8

missile guidance has addressed many of the key issues and aspects of this technology. This research

£ aul SEA R Jng gws g

includes: real-time devices and components, new system architectures, new high-speed general purpose

=4

N optical data processing techniques and systems, tests on new image data bases, basic studies of existing - 3
<

pattern recognition architectures, and new pattern recognition techniques, algorithms and concepts. As in 1
3

past years, we have been quite faithful in reporting our AFOSR sponsored research in various journals

and conference publications. Copies of the more relevant papers we have published over the past year are -3
included as chapters of this report to provide complete documentation of each aspect of our work. .
In Chapter 2, we provide a summary and overview of our research progress achieved over the past ® A
y
year. This work addresses five vital areas of optical data processing research: S
1. real-time spatial light modulators (Section 2.2 and Chapter 3),
2. optical pattern recognition (Section 2.3 and Chapter 4), o !
3. optical feature extraction (Section 2.4 and Chapters 5-7),
4. optical correlation (Section 2.5 and Chapter 8), and §
5. optical linear algebra processors (Section 2.6 and Chapters 9-14). °
o]
Topic (1) concerns the vital issue of real-time spatial light modulators. Topics (2)-(4) address o ;
pattern recognition for ATR using optical pattern recognition (OPR) techniques. In this work, we have - ;
been faithful to address vital problems such as multi-class distortion-invariant pattern recognition of o
military targets, the acquisition and importance of a large data base, and the effect of noise on the ’
algorithm used. Topic (5) concerns the most attractive item in optical processing at present and a
-
potentially quite general-purpose optical processor. ., p
o]
-
Details on the more salient results of our research are provided in Chapters 3-14. References are . ;
included in Chapter 15. In Chapter 16, we enumerate our AFOSR sponsored publications, the '. R

presentations given on this research at conferences and seminars during the past year, and the Master’s

and PhD students that this grant has supported. o]
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During the past year, the principal investigator (PI) presented invited talks on our AFOSR
sponsored research at various conferences including the Critical Review of Technology SPIE Conference
on Optical Computing (SPIE, Los Angeles, CA, January 1984) and the DoD conference on Parallel
Algorithms and Architectures for ATR (Leesburg, VA, July 1984) and various optical computing and
robotics conferences during the past year. The PI has chaired conference sessions and seminars and
served on the organizing committees for the following conferences and topics: SPIE (Robotics), IOCC
(Optical Computing), ICALEO (Optical Data Processing). One of this major papers in 1984 was an
invited paper on optical linear algebra processors for the July 1984 Proc. IEEE Special Issue on Optical

Computing.
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2. OVERVIEW AND SUMMARY

2.1 INTRODUCTION

Our five major research areas and our recent progress in each are highlighted in Sections 2.2 - 2.6.

Details of each aspect of our thirteen work topics follows in Chapters 3 - 14.

2.2 SPATIAL LIGHT MODULATORS (ACOUSTO-OPTIC CELLS,
CHAPTER 3)

Recently, our spatial light modulator research has emphasized acousto-optic cells. In Chapter 3, we
discuss recent new work in this area [1]. We have considered the salient acousto-optic architectures
(spectrum analyzers and correlators). The various acousto-optic cell and acousto-optic architecture
component errors have been enumerated, grouped into different classes and combined into several new
models. New performance measures for acousto-optic correlators and spectrum analyzers were defined
and detailed (spectrum estimation, delay estimation, and detection). Each is an appropriate performance
measure for a different application. General error-free formulae for each of these performance measures
were derived and the performance obtained with each was described and quantified as a function of the
various system parameters. Our future work in this area will include component error source effects on
performance, the relationship of these models to optical linear algebra processors and tests on multi-

channel acousto-optic cells.

2.3 OPTICAL PATTERN RECOGNITION REVIEWS (CHAPTER 4)

Our AFOSR optical pattern recognition research is at the forefront. Our paper [2] on coherent
optical pattern recognition was included in the recent Critical Review of Technology series on optical
computing. A more recent review [2] was the only optical pattern recognition paper at a DoD conference
on parallel architectures and algorithms for ATR. For completeness and as an introduction and overview,
we summarize recent coherent optical pattern recognition research. A full length journal paper on this
topic with extensive references is expected to be in the Optical Engineering - Special Issue on Optical
Computing (23] in January 1985 and will be included in our 1985 report. Chapter 4 reviews optical
techniques for feature extraction and correlation, new algorithms, architectures and hybrid optical/digital

concepts [2].
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2.4 OPTICAL PATTERN RECOGNITION FEATURE EXTRACTION
(CHAPTERS 5 - 7)

Two new optical feature extraction techniques are detailed: the use of new feature extractors and
dimensionality reduction techiques on a wedge ring detector-sampled optically-produced feature space
(Chapter 5) and a hierarchical two-level hybrid optical/digital moment feature processor (Chapters 6 and
7). Our earlier conference paper [4] on an optical Fourier coefficient feature space has been improved and
expanded into a journal paper [5] for a special issue on robot vision. In Chapter 5 [4], this work is
summarized. It includes four different dimensionality reduction and feature extraction techniques, a new
classifier concept, quantitative data on the importance of amplitu sus p..ase Fourier coefficients (for
pattern recognition, rather than image reconstruction) and the performance of each in the presence of
noise. Experimental results for two letters and two vehicles with 25 images of each at different scale and
in-plane rotational differences were obtained. In Chapter 6, our new hybrid optical/digital moment
processor, a new hierarchical class estimator, and a new two-level classifier are detailed and results
obtained on a set of over 300 robot objects (pipe parts) [6]. New quantitative and analysis data for our
ship image data base will shortly be published [7]. The performance of the system on non-controlled
imagery and the necessary pre-processing required are included (8] in Chapter 7. Our future work will
involve laboratory optical Fourier coefficient research, new theoretical and optical laboratory work on
chord distributions, fundamental work on training set selection, laboratory optical moment system
fabrication, generic object recognition using optical feature extractors and synthetic filters. Our feature
extraction work will continue to address distortion-invariant multi-class object recognition and

performance in the presence of noise.

2.5 OPTICAL PATTERN RECOGNITION CORRELATORS (CHAPTER 8)

Our distortion-invariant multi-class multi-object correlator research emphasizes synthetic
discriminant functions (SDFs). The basic SDF synthesis algorithms have now been unified (9] (Chapter
8). Our tests of projection SDFs on ship images with data on noise performance and guidelines for the
selection of projection values are expected to appear [10] in a special journal issue on pattern recognition
late this year. These results will be included in our 1985 Final Report. Three new types of SDFs have

been devised and initial results with them have been obtained for a tank and APC image data base [11].
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These details will be available shortly and will be included in our 1985 report together with initial results
on linear functional (optimal linear discriminant functions) SDFs. Laboratory experimental data, system
fabrication concepts and optical matched spatial filter work will be major future work issues together

with various extensions of new SDFs and their applications to different correlation pattern recognition

ATR data bases.

2.6 OPTICAL LINEAR ALGEBRA PROCESSORS (CHAPTERS 9 - 14)

This optical data processing application area has received very much recent attention.

Our recent work in this area has included extensions of previous LU and other direct matrix
decomposition algorithms and architectures and new algorithms and architectures for back-substitution
and the solution of triangular systems of LAEs (linear algebraic equations). Most recently, a parallel QR
algorithm and its implementation were detailed by us [12,13]. This completes the major algorithm optical
realization work on direct and indirect linear algebra solutions to systems of LAEs. A recent special issue
of the Proc. IEEE on optical computing summarizes our architecture, algorithm, data flow and selected
applications research on optical linear alzebra processors. Chapter 9 details this work [14]. It is
extremely noteworthy since one optical linear algebra processor system can achieve all n-cessary

operations by format control.

A second vital aspect of optical linear algebra research that we initiated was the error source
modeling and simulation of OLAP (optical linear algebra processor) architectures and algorithms [15].
Chapter 10 details this work [15] and our initial results using it in the comparison of direct and iterative
solutions of LAEs on OLAPs. A third facet of our OLAP research has concerned specific applications.
The operation chosen for major attention was Kalman filtering and the specific application of it was
missile guidance and control. In [16] we first advanced the details of a gcneral Kalman filter realization
on one type of OLAP. Chapter 11 details this work fully [17). A new architecture for Kalman filtering
when noise statistics are known [18] was also devised. It is detailed in Chapter 12. New algorithms and
optical architectures and accuracy issues concerning this and other applications will be available in 1985

as we unify our algorithm, architecture, modeling and simulation research on this application. We have
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detailed the use of residue arithmetic in OLAPs [19] to achieve increased accuracy and have found other

P‘] methods to be preferable to the use of residue arithmetic.

The major linear algebra operation required in Kalman filtering is the solution of a nonlinear
quadratic matrix equation. We have devised a new algorithm to achieve this using a fixed number of
iterations. We have quantified all operational parameters for the algorithm, simulated several solutions

of it using different algorithms, assessed the effect of different optical system errors, the dominant optical

,,r,..,ﬁ_v_.,

system errors, and the effect of multiple errors as well as quantified the performance of the algorithm and

-t

provided a laboratory OLAP demonstration of it. This work is detailed [20] in Chapter 13.

——

The fourth and final aspect of our OLAP research has been attention to fabrication of an OLAP.

3 We recently [21] clarified that the number of operations acheivable on our frequency-multiplexed

processor is comparable to others and showed its equality and that it is preferable from a fabrication
standpoint. We also detailed 4 - 5 different techniques for fabrication of such a system and provided the

first initial laboratory experimental data on the performance and operation of an optical systolic

o
processor. These results are highlighted in Chapter 14. In 1985, we expect significant laboratory OLAP . P
n
results to emerge. Many applications for OLAPs exist. Reference {14] details several others and reference .
[22] discusses their use in pattern recognition. L
o
®
-
®
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3. TIME-INTEGRATING ACOUSTO-OPTIC
CORRELATOR: ERROR SOURCE
MODELING
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Time-integrating acoustooptic correlator:

error source modeling

David Casasent, Anastasios Goutzoulis, and B. V. K. Vijaya Kumar

The error sources present in a time-integrating acoustooptic correlator are considered. They are classified
and modeled into three categories: input plane errors; frequency plane errors; and detector plane errors.
To facilitate error analyses, performance measures are defined and quantified for an error-free system for
detection and delay estimation applications.

I. Introduction

Optical signal processors provide real-time operations
on high bandwidth and time-bandwidth product data
of long duration and high center frequency. These
features plus the rapidly maturing commercial avail-
ability of acoustooptic components are the major rea-
sons optical signal processors (OSPs) employing ac-
oustooptic devices have recently received considerable
attention.!® These acoustooptic systems offer a most
attractive approach to signal processing problems in
which data with high time bandwidths and variable
codes must be processed.

Acoustooptic (AO) devices can be incorporated into
various architectures. These OSP systems!-4 can be
divided into two general classes: (1) correlators and (2)
spectrum analyzers. Both system classes can be real-
ized by performing the necessary integration in space
or in time.!

Time-integrating (TI) processors’ have received
considerable attention because they can accommodate
extremely large time-bandwidth (TBW) product data
and because many new and attractive TI algorithms?®
and architectures? exist. An important feature of TI
processors is their ability to operate on signals with very
large TBW product with the ability to change (on-line)
the signal code being processed.

Despite the rapidly increasing use of AO devices, little
attention (in the literature) has been given to the

When this work was done all authors were with Carnegie-Mellon
University, Department of Electrical & Computer Engineering,
Pittsburgh, Pennsylvania 15213; A. Goutzoulis is now with West.
inghouse Research & Development Laboratories, Pittsburgh, Penn-
sylvania 15235.

Received 12 March 1984.
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modeling of the components of such systems, to the
effect various system parameters and component error
sources have on the performance of these systems, and
to the performance measures used to describe, analvze,
and design such processors. In this paper, we advance
the first such formulation for T1 bulk AO correlators.
In Sec. 11, we briefly review the operation of a TI AO
correlator. OQur categorization and modeling of the
various error sources are given in Sec. I1I, and their
enumeration and origin are then presented in Sec.
V.

In Sec. V, we discuss the performance measures we
chose to describe the accuracy and performance of the
TI AO correlator. We consider two different correlator
applications (detection and delay estimation) and em-
ploy different performance measures for each. The
basic error-free analyses for a TI AO correlator for de-
tection and delay estimation are then presented (Secs.
V1 and VII). These analyses provide the basic statis-
tical framework for further analyses that include and
quantify the effects of the various error sources. Such
analyses will be the subject of future publications.

il. Signal Correiation with TI AO Correlators

The basic operation of a TI AQ correlator is explained
with the aid of Fig. 1. The signals to be correlated are
sq(t) and sp(t). sp(t) is usually a delayed version of
sq(t) and includes some additive noise n(t). For linear
intensity modulation? of the AO cells, the signals are
added to two biases B and B; and used to modulate the
amplitude of an rf carrier. Thus the baseband electrical
inputs to the laser diode (or other input point modula-
tor) and the AO cell are

81(')’[31#'3,(”]. 1)
s2(t) = (B + sp(t)). @)

The intensity of the data portion of the light leaving
plane P, is proportional to

A a2 hoala ot

-
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Fig. 1. Schematic diagram of a time-integrating acoustooptic
correlator.
5(t) = Bo + s(t). (3)

This light beam is expanded by lens L; and uniformly
illuminates the AO cell at plane P. Thus Eq. (3) also
describes the light intensity incident on P;. Note that
it varies only in time and and not spatially. Lenses Lo,
L3 and the spatial filter at P; separate the undiffracted
and diffracted orders, block the undiffracted order light,
and image the first-order diffracted light onto a detector
array at plane P,. Denoting the detector’s time con-
stant of integration by T}, the final detected output at
P4 is (including all bias terms)

T2
I{7) = (T fr'n (B + so()](By + solt = 7)idt.  (4)
=1}

where 7 = x/v, x is the direction of sound propagation
in the AO cell, and v is the velocity of sound in the AQ
crystal. The second term in Eq. (4) is the modulation
on the first-order term in the transmittance of Ps.
Equation (4) can be further simplified to

T2
Id7) =B+ B, + (1/T)) fms,,(r)s.(z -ndt, ()
el I

which is recognized as the desired correlation (last term)
on a signal-independent bias B and a signal-dependent
bias Bs with both temporal and spatial dependence.
Many AO architectures exist® that utilize amplitude
rather than intensity modulation of the AO cell. In
such cases, the detector output has the general form?

T2
1i(7) = B+ Bs + (1/T))m cos(2xfor) fm selt)salt = 7)dt,
=1}
®

where B is a bias, Bs is a signal-dependent bias with
both temporal and spatial variation, m is a constant, and
cos(2mfo7) is a spatial carrier where f is the frequency
of a reference rf oscillator purposely included with the
input signals. This electronic reference allows the
correlation term to be separated from the bias terms by
bandpass filtering the electrically readout version of Eq.
(6).

The intensity and amplitude modulation modes for
T1 AO correlators have many well-known? advantages
and disadvantages. Our initial objective is to model the
various component error sources and system parameters
so that our results are appropriate for both modulation
modes. To achieve this, we consider the intensity
modulation scheme, which for B = Bs = 0 is equivalent
to the amplitude modulation scheme (after the neces-
sary postprocessing filtering).
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.  Error Source Modeling

In this section, we describe the mathematical models
we use to describe the various types of component error
in an AO TI correlator. The ideal model would express
the system’s output as a function of all the error pa-
rameters; however, because of the number of error
sources and their nature, such a model cannot be ana-
lyzed statistically. Thus, we propose to model, study,
and quantify several independent classes of errors and
to determine the lower bound of the system’s perfor-
mance for each error class independently. We thus
include three classes of error distinguished by whether
their effects are modeled in the input, frequency, or
output detector plane. Fortunately, there are only a
few error sources that affect more than one error plane.
We elaborate on these errors and the way to treat them
in Sec. IV.

If the error to be considered occurs in the input plane
P, it is directly mapped onto the output plane, and we
thus describe it by including a multiplicative weighting
function w(r) in the processor’s output, Eq. (5) be-
comes

T2
l(r)-uv(r)[B+Bs+(1/Tl)f_”zsb(t)s.(r—r)dl]. ™
=i}

This class of error is quite unique, since it maps directly
onto the output plane. The effect of this type of error
is local rather than global and can thus be corrected by
postdetection processing.

The second class of error are those which affect the
frequency response of the system. (These concern the
AOQ cell and the lenses.) Such error scurces are ob-
viously best modeled by a weighting function in the
frequency plane. Because of the excellent quality of
state-of-the-art lenses plus the fact that lens effects in
optical processors have been studied in detail else-
where,!0 we restrict our attention to the AO cell fre-
quency response. With this in mind, we include the
impulse responses h,(t) and hy(t) of the AO cell and the
input point modulator. With these factors included,
we can describe the output of the processor as

, T2 -
I(r) = B+ Bs+ (1/T)) f_m ﬂ'_. ha(Ag)se(t — Ag)
X hy(A})sq(t = 1 = A)dA;dAodt, (8)

where By includes the effects of h; and ho on Bs. To
obtain Eq. (8), we used the fact that the convolution of
the input signal s(t) with the system's impulse response
h(t) can be written as fh(A)s(t — A)d\. In writing Eq.
(8), we also assumed that the AO cell is operated in a
linear intensity mode, as is necessary for an AO corre-
lator. We also note that intermodulation products in
a 'TI correlator do not appear in specific spatial locations
(as is the case for space-integrating spectrum analyzers),
but rather they tend to be uniformly distributed over
the l?utput plane, and thus their effect is rather
small.

For most statistical analyses, the form of Eq. (8) is not
convenient. This is because extensive convolutions
have to be evaluated in the time domain. Such a task
is not trivial in digital simulators, since most signals of

31N

15 September 1984 / Vol. 23, No. 18 / APPLIED OPTICS

A

i

J
.
ad

.
(PRI P

.

PRI
N E
. .
PR TN SR Y




interest are most commonly described in terms of their
frequency domain characteristics. It is thus preferable
that this class of e >r be studied in the frequency do-
main. This chor . is also convenient because the
transfer functions H(f) = F[h(t)) are easily measured
for the two real-time devices in the system. To express
Eq. (8) in the frequency domain, i.e., in terms of H(f),
we first form the expected value of Eq. (8) as below:

EU(r) = E\Bi + E|Bgl

1 Ti/2 -
+—f f ha(Azhhy(Ay)
T J-1112 -

X Elsa(t = 7 = A)sp(t = Aglid A ydAadt. 9)

For analytical simplicity, we consider the case of 7o =
0 (without any loss of generality). Then the received
signal s,(t) is simply s,(¢) + n(t), and Eq. (9) be-
comes

, 1 Ti/2 -
= +— A2)hy(A
BN =B+EBsi+ = {0 (7 Rk

<|Elsalt = 1 = Asalt = A}
+ Elsa(t = 7 = A)nit = Alid A dAdt. (10)

Since the noise n(t) is of zero-mean and is statistically
independent from the signal s, (t), Eq. (10) simplifies
to

, 1 T2 -
- L A
Eut =B+ EBs + (" haahiow

«Ry(r + Ay = A2)d A dAqdt

= B + E|Bs| + ﬂ'_' ha(Adhy(A;)

X Ry(7 4+ Ay — AgddAd A, 11

Expressing the signal autocorrelation function R,(7) in
terms of its power spectral density P, (f), i.e.,

Rir) = . Pstf) expy2sfrdf, 12)
Eq. (11) becomes
Ell(r) = B+ E\Bs) + f f _'_ ha(As) exp(=j2xfA2)
- hi(Ay) exp(i2xf A Ps{f) expli2xf7)d N dNodf
= B+E\Bs| + f_ " HiOH()Ps() expli2afr)df,  (13)

where H(f) and H(f) are the transfer functions of the
peint modulator (or laser diode) and the AO cell, re-
spectively. When formulated as in Eq. (13), the effect
of all the frequency plane errors can be described by one
transfer function H(f) = Hi(f)Ha2(f). This class of er-
rors is global in nature and cannot be corrected by
postdetection electronic processing and are thus ap-
preciably different from the input plane weighting error
sources whose effects were described by Eq. (7).

The third class of error are those which are best
classified as detector plane errors. (They are due to the
output detectors used.) Some of these detector errors
can be considered as spatial response variations. They
are best modeled by including them in our input plane
weighting factor w(7). The next detector plane error
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we consider is the output plane sampling (i.e., the fact
that the output plane detectors are of finite size or
length D in one dimension). This effect causes a spatial
integration of the output over D followed by a temporal
integration over T;. We describe such detector effects
by writing the observed output as an integral over space
(dr) followed by an integral in time (dt), i.e.,

T2 (h4+1/2)D
Iky = (1/T)) f f wh(r)
=Ti2 J(R=-1/2)D

X [B+ Bs + so(t)sp(t = v) + sx(t)]d7dt, (14)

where k is the detector element number, wy(7) is the
spatial weighting function across the detector k, s, (t)
is the noise of the kth detector element (this includes
detector element cross talk) and where the integration
over the 1-D detector area D describes the effect of the
finite size of each detector element.

IV. Classification of Error Sources

In this section, we consider the origin of the specific
system error sources that give rise to the three types of
error we isolated in Section. III. We also discuss several
other component errors present in an AO TI correlator
and how to treat their effects.

In the case of input plane errors, we include the input
optical beam profile, spatial variations in the AO cell
response, and the nonuniform element-to-element re-
sponse of the detector array. The input optical beam
has a Gaussian rather than a plane-wave profile that can
be described as!!

T =7\

Wosl(r) -expl 2( w | (15)
where the beam-taper coefficient W is the beamwidth
at which the input light intensity is down by exp(—2)
and 7. denotes the center of the AO cell. This effect
can be reduced by proper design of the collimation lens
system L;. In most practical situations (AO cells with
2-3-cm aperture), beam uniformities of 5% can be
achieved without significant loss of input light. This
corresponds to a worst-case weighting of 0.22 dB across
the output. This can be reduced further by postde-
tection processing (since the errors are spatially fixed).
Thus we ignore this effect in our future analysis.

The AO devices are the system components with the
most significant input-plane errors. These errors in-
clude (1) beam walkoff (referring to the fact that the
acoustic beam does not travel normal to the transducer
as it propagates along the cell); (2) reflections from the
sides of the cell (referring to the fact that the acoustic
wave diffracts as it leaves the transducer and thus can
strike the sides of the cell and suffer multiple reflections
before reaching the end of the cell. This results in a
nonuniform acoustic field and is particularly important
when long AO delay lines are used); (3) near-field effects
(referring to the Fresnel pattern resulting from the
transducer excitation); (4) acoustic attenuation (re-
ferring to the fact that the acoustic field strength de-
creases exponentially within the cell with increasing
distance from the transducer and as a function of fre-
quency).
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This last AO error source contributes to both the
input plane and frequency plane errors. For a fixed
signal bandwidth, we calculate the resulting weighting
due to acoustic attenuation as a function of distance
only and incorporate it into our w(7) input plane
weighting function in Eq. (7). To describe the model
the frequency dependence of the acoustic attenuation
a (i.e., a « [), we include its effect in H(f) for the AO
cell.

Many of these error sources can be reduced or cor-
rected for to various degrees. The beam walkoff can be
minimized by proper AO cell design and accurate crystal
cut. The sound reflections and near-field effects can
be partially corrected by either careful AO cell design
or optical spatial filtering. The effects of acoustic at-
tenuation can be reduced (at one frequency) by elec-
tronic postprocessing and by a fixed optical mask whose
transmittance compensates the acoustic attenuation’s
weighting. The last input plane error is the element-
to-element nonuniform response in the detector array.
State-of-the-art detector arrays have a uniformity of
90-95%. This corresponds to a maximum 0.46-dB
spatial variation in the output plane intensity data.
This weighting is generally negligible but is correctable
if required for a given application.

Next we enumerate the frequency plane errors. In
this category, we include the nonideal transfer function
H(f) = |H(H)| explif(f)} of the AO cells, where the
magnitude |H(f)| and phase 8(f) are functions of the
frequency of the input signal. It is known!? that {H (f)|
is the product of (1) the transducer’s transfer function,
(2) the shape of the acoustic interaction bandwidth, and
(3) spatial frequency response terms due to dispersion
and the finite AO cell aperture. The magnitude of the
transfer function is also affected by the acoustic at-
tenuation as noted earlier. The AO cell's phase re-
sponse H(f) is composed of (1) the transducer’s phase
response and (2) the optical phase within the cell. The
transducer's phase is in general nonlinear!? with a shape
that depends mainly on the bonding techniques used.
(A thin bond yields a quite nonlinear phase response,
whereas a quarterwave bond yields a less nonlinear
phase response but a poorer electrical-to-acoustical
conversion efficiency for the transducer.) The optical
phase effects are due to (1) off-axis acoustic beams that
propagate in different directions due to beam walkoff
and other effects (each off-axis beam will have a dif-
ferent phase) and (2) the finite transducer width. (This
results in acoustic diffraction, which in turn results in
off-axis beams.) With careful AO cell design and ex-
ternal optical filtering, the optical phase effects can be
minimized, and the transducer’s phase effects will
dominate. We will assume this in future analyses.

In Ref. 12, exact expressions for |h(f)| and models for
f(f) have been calculated. The |H(f)| expressions are
quite complex, and it is thus difficult to incorporate
them in any statistical analysis. Thus the alternative
we adopted was to measure |H(f)| (from the optical
Fourier transform of the light leaving the AO cell when
it is driven by a linear FM signal) and to approximate
it by a mathematical function. This alternative ap-

proach has vielded simpler expressions for |H(f}| that
can be incorporated in a statistical analysis. This class
of errors is not correctable, and thus its effects on the
system’s performance will be studied in our future
work.

The last class of error source are those due to the
output correlation plane detectors. These include (1)
the sampling and area integration due to the detector
finite area D. (2) the spatial weighting function due to
the trapezoidal'? spatial response across each detector
element, (3) the location of the output correlation peak
within one detector element, (4) detector noise, and (5)
cross talk between detectors. The effect of detector
noise has been considered,? and the effect of finite de-
tector area has been initially addressed.’* The re-
maining detector error sources and the effects of all
errors on our performance measures merit further re-
search.

V. Performance Measures

Let us now discuss the performance measures which
we will use in our error-free analyses (Secs. VI and VII)
and in our future work. A correlator has two main
purposes: (1) detection of the presence of a signal and
(2) estimation of its location. These two different ap-
plications require different performance measures.

As detection performance measures, one should use
probability of detection Pp, probability of false alarm
Pr4, and probability of error P,. The Pp is the prob-
ability that the correlation value at the peak C(0) will
exceed a threshold 6 when the correlation is present. It

is given by!®

1 - —lx ~ E[CO)*
- 2w var[C(0)] J: exp( 2 var{C(0)) )d:. (e
where E[C(0)] and var[C(0)] are the expected value and
variance at the correlation peak and where C(0) is
modeled by a Gaussian random variable from central
limit theorem arguments. Pp will be less than unity
because of noise and because of the statistical nature of
the signals. The presence of noise also results in a
nonzero probability that the value of the correlation at
the peak will exceed the threhsold when the signal is
absent. This is the probability of false alarm. It can
be described!® as

Pes = 1 f"ex —ix — E|C(D)¥? . a7
Fa V2x var[Ctn)] Je P 2 var[Ct1)] ’ ’

where the mean E|[C(7)) and the variance var[C(7)] of
the noise in the output plane can be estimated by eval-
uating C(7) at 7 > 0. With no loss of generality, we
assume the correlation peak occurs at 7 = 0. Assuming
equal probabilities for the presence and absence of a
signal, P, is given by

P, = (1 + Pra = Pp). (18

These three probabilistic performance measures can
be easily expressed as a function of the correlation plane
SNR values:

Pp

- E?|C(0))

. a9
var|C(0)]

SNR,

15 September 1984 / Vol. 23, No. 18 / APPLIED OPTICS 3133

L e e - L v s —y - — o
M " PR “all et —— Lital e Aai mad Smd et T Ty v
- . . N WU A |

P

» f
Sefenn cnlnos

AJ‘A'A




. 4 Tew ‘_‘
- - - -

'1

EACO]
var{C(r)] 0
which can easily be evaluated and experimentally
measured. SNR; is the SNR at the peak (the conven-
tional communications definition!®), and SNR; is
similar to the peak-to-sidelobe ratio (with the sidelobe
or noise level measured at r > 0, far from the peak).
Both of these SNR measures have been used previous-
ly,16.17 and SNR; can be directly related to SNR;. In
terms of these SNRs, one can show

f [—SNR.lz - E[C(O)}}
\/212“-[?‘(0)]7814' R 2E?(C(0)]

SNR; = (20)

{21)

f {—SNRglx - E[C(n}} .
TV f’[t—(O)TSNR_z 2E2{C(0) '

(22)

We now consider the second correlator application:
delay estimation. The location of the correlation peak
contains useful target location and signal synchroni-
zation information, and thus one refers to the target
location or signal delay estimation performance of a T1
AO correlator. Inimage correlations, this performance
measure is referred to as registration error,!7 since it
describes the accuracy with which the location of an
object in an image is known or the accuracy to which two
images can be registered. To develop an expression for
the delay estimation error e, we define the exact peak
location as 7, and we denote the estimated peak loca-
tion by #o. Then

e = (1g ~ $9). (23)

We will denote other observed parameters by a (4) (i.e.,
the observed correlation function is C, whereas the exact
or ideal correlation function is C). To analyze e, we
must calculate its expected value and its variance. The
first parameter determines if the estimator is biased
(time bias), whereas the second provides us with the
variation to be expected in calculatinge. We thus use
both E[e] and var|e] as delay-estimation performance
measures.

VI. Error-free Detection Analysis

In this section, we derive general expressions for the
mean and variance of the correlation output. We then
evaluate these expressions for a zero-mean Gaussian
signal model with a Gaussian-shaped autocorrelation
function. We then evaluate SNR, and SNR; and plot
Pp and Pr, as functions of the basic TI AO system
parameters.

For both active and passive signal processing, the
transmitted s, (t) and received s,(t) signals to be cor-
related are denoted by

5,(t) = s(t), (24)
sy{t) = s(t — 19) + n(t), (25)

where 7, is the time delay between the two signals, and
n(t) is additive noise. Assuming equal biases (B, = B,
= B) for simplicity, Eq. (4) becomes
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Ti/2
C(r)-87+%f u(l-ro)dt+—f n(t)dt

B T2 1 T2
+T; f c(t-r)dH-Ef s(t — 7)n(t)dt
1 Tz
- j: mm - sit = To)dt. (26)
Since s(t) and n(t) are zero-mean signals and as-
suming that they are independent random processes,
the expected value of the correlation peak (assumed to
occur at 7o = 0 with no loss of generality) becomes

1 T2
ElC©) = ™ j: rEla0aolde = R, ), @n

where R, (7) is the signal autocorrelation function, and
where we assumed that the bias term B? was subtracted
from the output. In general, we find E{C(7)] = R,(7),
and thus (with bias subtraction) the estimator is unbi-
ased or the average value of the estimated correlation
equals the correlation we are trying to estimate. The
variance of ((7) is easily found to be

var{C(n)] = E[C(7)]2 ~ E¥C (1))
T,
=BT [ (1= 2R + Rate)

+ (1/BYRz) + (1/BHR,(z + 1)R,(z - 7)
+ (1/BY)R,(2)Ra(2) + 2R,(z — 7)]d2, (28)

where the assumption that s(¢) is Gaussian distributed
(this makes the third-order moments zero), and the
fourth-order theorem for Gaussian random variables!®
were used.

We now consider the evaluation of our output SNRy
measures in Egs. (19) and (20) for the specific case of a
Gaussian signal with a Guassian-shaped autocorrelation
function. In this case, R,(z) has the form

R,(7) = Ro exp{—xf2r?), (29)

where £ is the signal’s 3-dB bandwidth (BW) and Ry is
the signal power. We assume that the noise has power
R, and has a statistical autocorrelation function that
18 of the same form as in Eq. (29). In this case, the input
SNR is SNR; = Ry/R,. A more complex SNR; ex-
pression results!®¢ if this assumption is not valid.
Substituting Eq. (29) into Eqs. (27) and (28), evaluating
at 7 = 0, and assuming T; > 1/8 (i.e., a signal time-
bandwidth product TBW = T; > 10), we find

T8
[- (2 + 1/SNR/) + ———

SNR, =

(30)

[+ 5w
(SBR)2 SNR,
where SBR = \/_[)/B is the signal-to-bias ratio. The
SNR; expression is identical to Eq. (30) with (2 + 1/
SNR;) replaced by (1 + 1/SNR;). We note that when
SBR and SNR; are infinite, SNR; is >SNR, by 3 dB.
From Eq. (30), we note that both SNR, measures
increase as either 7,8, TBW, SNR;, or SBR increase.
These results are as expected. In Fig. 2, we plot SNR,
vs TBW for several SBR values. These plots are im-
portant since they quantify the rather severe SNRg loss
for SBR < =. SNRy is superior with AO cell amplitude
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Fig. 2. Effect of SBR and signal TBW on output SNR; for a time-

integrating correlator.
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Fig. 3. Effect of input SNR; and signal TBW on detection perfor-

modulation than with intensity modulation. Here we
quantify this effect and the effect of SBR on SNR,.
The case of no bias (i.e., SBR = =) corresponds to AO
cell amplitude modulation. SBR = 0.5 corresponds to
the best case one can obtain using AO cell intensity
modulation. Comparing these two cases, we find an
SNRy loss of 8 dB for most TBWSs.

Expressions for Pp and Pr4 are obtained by substi-
tuting Eq. (30) into Eqs. (21) and (22). We normalize
to unity and consider E[C(7)] to be zero for 7 >> 0. In
Fig. 3, we show Pp (for Prs = 0.001) and Pr, (for Pp =
0.999) vs TBW for three SNR; values (i.e., 0.1, 1.0, and
10.0). From these curves, we see that Pp(Pr4) in-
creases (decreases) monotonically as TBW or SNR;
increases, thus improving the detection performance
of the system. Such trends ar well known. In Fig. 4,
we show Pp (for Pr4 = 0.001) and Pr4 (for Py = 0.999)
as a function of TBW and SBR. As expected, Pp(Pr,)
increases (decreases) as SBR increases. For the best
practical intensity modulation case (SBR = 0.5), both
Pp(Pra4) are quite inferior to the Pp and Pr4 values for
SBR = ». For TBW > 5000, the difference is small.
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Fig. 4. Effect of SBR and signal TBW on the detection performance

mance for & time-integrating correlator: (a) Pp (for Pra = 0.001)and  of o time-integrating correlator: (a) Pp (for PrA = 0.001) and (b) Pr,s

(b) Pr, (for Pp = 0.999).

(for Pp = 0.999).
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Fig.5. Effect of integration time T; and signal BW on the variance

varle] of the delay estimation error ¢ for a time-integrating
correlator.

For TBW < 1000, the difference is quite appreciable
(i.e., for TBW = 450, Pp = 0.35 vs 0.999, and Pr4 = 0.65
vs 0.00001). From these data, the TBW increase re-
quired to achieve a given performance for a given SBR
can be found.

VIl. Error-free Delay Estimation Analysis

We now analyze the delay estimation performance
of the correlator with attention to the calculations of
Ele)] and var|e), their relationships to measurable C(r)
correlation data, and their dependence on system pa-
rameters.

To relate C(7) to e, we expand C(7) in a Taylor series
around 7 = 79. We consider #o = 7¢ and thus ignore
terms higher than (7o — 7¢)? in our C(70) expansion.
Setting the derivative C’(7) of C(7) equal to zero, we
find

e=(rg— fo) = =C"(19)/C" (1), (31)

where " and ” denote first and second derivatives. From
the gradient €’(7¢) and curvature C” (7o) of the corre-
lation at the peak, we can thus obtain e. We consider
the case when the standard deviation of the curvature
C” (1) of the correlation at the true peak is small. In
this case, €”(7¢) is well approximated by its average
value. We thus write

ez =C'(10)/C (7o), (32)

where the average value ¢ (7o) is used, since it can be
more easily evaluated!® for our statistical signals.

To describe the delay estimation performance, we
require the mean and variance of e in Eq. (32) in terms
of measurable correlator parameters. To develop this,
we denote the two parts of the correlation output in Eq.
(26) (for an intensity modulation scheme) by C,(7) [the
autocorrelation of s(t) or the last term in Eq. (26)] and
¢, (7) [the terms remaining in Eq. (27) after bias sub-
traction, i.e., only the fifth term in Eq. (26)]. Interms
of these quantities,
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Efe] = [EIC, (oM + EIC GoM]/C (1) (44)

From Eq. (33), we see that ¢ is an unbiased estimate.
This follows since C, is a maximum at 7, and thus its
gradient is zero at 7. The second term in the numer-
ator of Eq. (33) is zero since it corresponds to the zero
mean terms in Eq. (26). Next, we evaluate the variance
of e, which (from the above) simplifies to

varle] = [EIC" (76M) 2 EIC (o)1 + EIC (1632) (34)

To evaluate Eq. (34) in terms of system parameters, we
considered the case of a Gaussian-distributed signal and
noise with a Gaussian-shaped autocorrelation function
given by Eq. (29). For this case, a lengthy but
straightforward analysis shows

1 Ty 1 1 ( 1 )]
varle| = — |——————— ¢+ + 1+ .
le] BT7 ISNR;+/32r 4872 28(xSBR)? SNR,

(35)

where equal signal and noise bandwidths 3 and TBW
2 10 were assumed.

Equation (35) relates the delay estimation accuracy
of a T1 AO correlator to the various system parameters.
To quantify the delay estimation performance and the
effect of the various system parameters, we include Fig.
5. InFig. 5, we show how var[e] varies with the band-
width S for four different T; values (0.1, 0.5, 1.0, and 5.0
msec). From this figure, we see that var[e] monotoni-
cally decreases as B or T increases, and, most impor-
tant, this plot quantifies these variations. The main
new feature in these data is that var|e] depends more
on the signal bandwidth (Avarle] « 1/3%) than on the
integration time (Avarfe] « 1/T7). In retrospect, this
might have been expected because of the well-known
inverse dependence of the width of the correlation peak
on the bandwidth of the signal. However, the depen-
dence has now been quantified. In Fig. 6, we show
var|e] vs bandwidth 8 for three SNR; values (0.1, 1.0,
and 10.0). Asexpected, var|e] decreases as SNR; or 8
increases. Finally, in Fig. 7, we plot var|e] as a function
of bandwidth S for two SBR values (0.1 and »). Aswe
see, var[e] exhibits a negligible dependence on SBR.

var (el (Lsecz)
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TI ms
: = 0.
1 SNRI 1
: =1
2 SNRI
3:SNR, = 10

1T 0 00 100M
SIGNAL BW

Fig. 6. Effect of SNR; and signa! BW on the variance var|r] of the
delay estimation error e for a time-integrating correlator.

UL TP RPN

-y,

.
‘

v .

. - ‘e
L I
e .
P

.
¢

AL‘L“AL.-‘A .._l -

| -

.

s

P IV

FANE 7

. .
POV WY NI




A N e AN S et g o rat g i e e e e o

SNRy = 0.1
T, = 0.5ms
0.1
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2:SBR

100 1000 BMHz)
S1GNAL BW

Fig. 7. Effect of SBR and signal BW on the variance varl|e] of the
delay estimation error ¢ for a time-integrating correlator.
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This is a rather important result since it demonstrates
that AO correlators with amplitude (SBR = =) or in-
tensity (SBR » «) modulation will yield equivalent
delay estimation performance.
Vill. Summary

In this paper, we have modeled and classified the
error sources present in a time-integrating acoustooptic

correlator. We have shown that the error sources can

I best be grouped into three major error classes: input
plane errors; frequency plane errors; and output de-
tector plane errors. The effect of input plane errors was
shown to be a weighting of the correlation output.
These errors were quantified, and we noted that such
errors are in general negligible and correctable. The
frequency plane errors are uncorrectable and were noted
to result in a complex frequency domain weighting.
The major such error was found to be the nonideal
transfer function of the acoustooptic cells. Most output
detector plane errors are uncorrectable and were noted
to consist of detector limitations such as sampling, area
- integration, and weightings.
- We also suggested performance measures to describe
' the performance of a time-integrating acoustooptic
correlator in different applications. For detection ap-
plications, we employ Pp, Pra, and P, and noted how
to relate these measures to acoustooptic time-inte-
grating correlator parameters and measurable correla-
tion output SNRs. For delay estimation applications,
we used the expected value and variance of the regis-
tration error. For these two correlator applications, we
demonstrated how simple statistical analyses allow
quantification of the effects of different system pa-
: rameters. Using these formulations, we conducted
error-free statistical analyses for both detection and
. delay estimation. Our analyses confirmed (and most
' important, quantitified) well-known trends. They also

o7 TARY

provided and quantified several new results. These
included the effect of signal-to-bias ratio on both de-
tection and delay estimation performance. For de-
tection applications, we found that low SBR values
significantly affect Pp, and Pr4. Fordelay estimation
applications, we found SBR effects to be rather negli-
gible. These trends affect the selection of amplitude
or intensity modulation modes for acoustooptic cells.

Our error-free statistical analyses provide valuable
quantitative data. They also provide the base line
performance levels against which to quantify the effect
of the various component error sources noted. This
present paper has laid the framework for the component
error source analysis of acoustooptic correlators. A
detailed error source analysis using these guidelines,
models, and performance measures is the subject of
future research.
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Departm.nt of Electrical and Computer Ergineering
Pittsburgh, Peansylvania 15213

AEBSTRACT

Parcllel optical pattern recognition architectures for multi-class distcrtion-invariant
autcnomous target recognition (ATR) are described. Algorithins that utilize the parallel
outputs and rezl-time processing features of optical systems are noted. Three hybrid
optical/digital feature extraction techniques for ATR are described together with an
optical correlation method that achieves multi-class shift-invariant distortion-invariant
object identification. Initial results on selected military objects are included in the
presentation. Brief remarks on optical systolic linear algebra processors are also

advanced as they apply to the processing requirements for ATR.

1. INTRODUCTION

The real-time, parallel-processing, low size, weight and power discipation advantages of
optical pattern recognition (OPR) systems for ATR bhave long been recognized.
Recently, several small size and weight real-time optical correlators have bcen fabricated
and demonstrated.!’? Thus, the technology of OPR for ATR merits attention and
discussion. In Section 2, we briefly review the classic Fourier transform (FT) and
correlation operations of such architectures. Section 3 considers three different hybrid
optical/digital feature extractors and Section 4 considers a new optical correlator. In all
cases, these parallel architectures and algorithms achieve distortion-invariant multi-class
recognition. Rlccent performance of one feature extraction system on non-controlled IR
data® and recent performance of the correlator Section 4 in structured clutter have been

obtained. Optical systolic linear algebra processors are then briefly noted in Section 5.
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2. A REVIEW OIF OPRR

The system of Figure 1 is the clessic OPR architecture. The FT G(u,v) of the input
image g(x,y) in P, appears at P, with higher input spatial frequencies (u,v) appearing at
radially increasing distances from the center of P,. As the input translates, the intensity
detected magnitude cf the I'T is shift-invariant. However, as the input object rctates, so
df)es the I'T. These fectures of a coherent optical system are exploited in &ll of our
arckitectures to be described. In the full system of Figure 1, & transperency proportional
to the conjugate FT H‘(u,v) of a refcrence object can be recorded holographically at P,
This is referred to as a matched spatial filter (MSF). The light distribution incident on
P, is G(u,v) and the lizht leaving P, is G(u,v)H‘(u,v}. Thus. passing one 2-D image
plane through another achicves a 2-D point-by-point multiplication. This feature is
likewise constantly exploited in OPR systems. The FT of this product of FTs is then

formed at Ps, where the correlation of the two space functions f and h results.

FIGURE 1 Ccherent optical Fourier transform and correlation
processor




3. OPTICAL FEATURE EXTRACTION

The classic approach to pattern recognition employs a trzining sct of imagery from
which features are extracted and subsequently operated upon to determine class and
orientation estimates of input objects and the confidence of these estimates. A kybrid
optical/digital architecture in which the image features are optically computed in

parallel is shown schematically in Figure 2.
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FIGURE 2 Simplified dizagram of a hybrid optical/digital
feature-space pattern recognition processor

Such an architecture is attractive because it can provide orientation information on the

input object and because the same optical system can be used for different object classes.

‘Q With the proper digital post-processor, distortion-invariance and multi-class recognition
can be achieved. We now discuss three versions of parallel opticzily-computed features

and the associated digital post-processor system required.

3.1. Fourler-CoefTicient Feature-Space

The shift-invariance of the FT coupled with the change in scale and rotation of the FT
pattern with changes in the scale and orientation of the input image can be utilized for °
feature-space pattern recognition. The anatomy of an optical FT dictates that a wedge S ]
ring detector (WRD) sampling at P, of Figure 1 provides data compression and ‘
dimensionality reduction in a8 Fourier coefficient feature-space plus scale (from wedge o

data) and rotation (from ring data) invzriance. Many uses of this technique have been R
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FIGURE 3 Block diagram of a hybrid optical/digital WRD-sampled ’ 1
Fourier-coefficient feature-space pattern recognition system ]
T
detailed.>* The most recent work” used the system block diagram of Figure 3 in which -
the amplitude, phase and both the amplitude and phase of the FT were used as the )
observation space. WRD-sampling provided dimensionality reduction to 64 image o
features (32 wedges and 32 ring data elements). Feature extraction involves three :
techniques: " 1
’
1. projection of the feature vector onto the domirant Karhunen-Lozve (KL)5 ]
eigenvectors per object class; '
]
2. projection onto a Fukunaga-Koontz (FK)® discriminant vector for each class,
with FK feature vectors calculated only from the dominant KL eigenvector; ) :
and - - ‘ ;

3. projection onto the Foley-Sammon (FS)’ discriminant vector, calculated from ]
the dominant KL eigenvectors only. 1

different data sets (50 different vebicles in two classes and 50 different letters of two
types, each with different scales and orientations). The KL feature extractor was found

]

The three different feature extractors noted in Figure 3 were evaluated using two S 1
to give good intra-class performance, but better Fisher ratio performance measures }
1

1
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resulted when the FK and FS unitary transfcrmations were employed. Amplitude
Fourier-coefficient features were found to be more robust in the presence of noise than
were phasc features. This is attributed to the concentration of the dominant Fourier-
amplitude coelficients into & few WRD-samples, whereas phase Fourier-plane data is
more evénly distributed over all WRRD samples. An extensive tabulation and analysis of
this data is available elsewhere.®, The performance obtained is not the major concesn at
p;esent, rather the flexibility of digital analysis of Fourier-coefficients that are optically
produced in parallel is the major message to be conveyed. These featurcs are easily
produced on the simplest coherent optical processor in parallel.  Dimensionality
reduction of these features is employed to simplify the digital post-processing required.
Only simple vector inner product operations are needed in the post-processor, with
computation of the discrimircant functions and transformation matrices required being

performed off-line on training set data.

3.2. Chord-Histogram Distribution Feature-Space

The chords of an object boundary define the object's shape and are useful image
features.®!% Each chord is described by two parameters (its length r and angle 0). The
distribution h(r,6) of all chords thus defines the shape of the boundary. Denoting a
boundary point on an object by b(x,y) = 1, then

g(x,y,r,0) = b(x,y)b(x+rcosd,y+rainf) = 1 (1)

defines a chord. The chord distribution is simply the integral

h(r,0) = / g(x,y,r,0)dxdy. (2)

Substituting (£,7) = (rcosf,rsinf) into (2), the chord distribution is seen to be the
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autocorrelation of the object's boundary. Optical systems easily perform the
autocorrelation function on Figure 1 or in a joint transform correlator or from the FT of
the magnitude of a FT. Since optical systems perform a correlation on the full grey-scale
image rather than on just the cbject's boundary, a generalized chord distribution
function can be obtained optically.“ We WRD-sample this optical autocorrelation plane
to simultaneously obtain the h(r) and h(#) chord distributions and a reduced
d;mcnsionality feature space. These distributions provide invariance to object rotations

and scales respectively.

The hybrid optical/digital system block diagram shown in Figure 4 uses the chord
distributions optically generated in parallel together with a vector inner product of the
observed feature vector and a Fisher discriminant vector w for feature extraction.!!
Comparison of the vector projection value to a threshold determined from the training
set data determines the class of the input object. As befcre, the post-processor must
perforn only a vector inner product since calculation of the Fisher discriminant vector is

performed off-line on training sct data. The major multi-class databases on which most

of the results noted were obtained consists of five different ship classes from a 80°
depression angle with 36 images per class (at 10° aspect intervals). Extensive datall

(summarized in Table 1) was obtained with the system of Figure 4.

OBJE CT—<DIAUTOCORR£LAT ION SAMPLIN (FISHER)
: AND CLASSIFICATION

FIGURE 4 Block diagram of a Lybrid optical/digital generalized
chord histogram feature-space pattern recognition system

To compute the Fisher discriminant vector w with a reduced number of training set
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Table - k: Test results obtained with a generalized chord feature space on the
72 images in the first 2 ship image classes

[ TEST NUMBER OF TR SET NUMBER PERCENT
TR SET IMAGES SELECTION OF CORRECT
| NUMBER USED PER CLASS REMARKS ERRORS CLASSIFICATION
IMAGE
1 18 EVERY 0 100%
20°
IMAGE
EVERY 20°
2 12 (£50° 8 88.9%
(BROADSIDE)
IMAGE
3 12 EVERY 0 100%
S IR SN | Lo S B I

images, we selected the 18 dominant WRD features and used 12-18 different training set
images per class (tests 1-3 in Table 1). The results shown indicate that perfect class
pcrformance of all 72 images in the two ship classes tested can be obtained with as few
as 12 training set images per class. Such excellent and correct recognition and
classification of multiple object classes in the face of 3-D out-of-plane aspect distortions

are typical of the performance that is possible with parallel optical feature extractors.

3.3. Moment Feature-Space

The geoinctrical intensity moments of an object f(x,y) are defined by

mpq= | [ tyierstanay. @)

These features are used in nearly all computer vision systemns.!® The moment feature

vector m can be computed optically in parallel on the system of Figure 5.
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FIGURE 5 Schematic diagram of an optical moment-based feature
generation system

With different monomial masks g(x,y) = xPy? present on different spatial frequency

carriers at P, thc P, output pattern

/ f(x,y)g(x,y)dxdy (4)

corresponds to the moments of the P, input f(x,y), each located at a spatially-di{ferent
position in P,. The_parallel moment computer of Figure 5 is attractive because the
computed moments can be corrected for various optical system errors in a simple matrix-
vector post-processor.!? The architecture of Figure 4 can be fabricated in a small size

system occupying 330in® or much less volume if needed.

The parallel set of observed moment features m optically-computed in parallel are fed

to the two-class classifier of Figure 6.
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FIGURE 6 Full hybrid optical/digital moment feature-space
two-level classifier pattern recognition system

In the first-level classifier,“'ls

the central moment ratio HBoo/Byo 18 used to estimate the
aspect ratio of the input object and a hierarchical node tree is used to provide class
estimates. The node selection is automated from scatter plots onto a multi-dimensional
Fisher space obtained from the Hoq for the training sct data. The branch selection is
automatically determined from similar two-class Fisher projections. This first-level
classifier reduces the number of aspect view classes that the second-level classifier must
bandle. It also allows the jointly Gaussian random variable nature of m features with
respect to sampling to be employed in a Bayesian classifier. The discriminant function

calculated in the second-level classifier for each aspect view class i is
g(@ = [ - m() "L (@ - mb)], (5)

where L, is the covariance matrix for class i, mis the observed moment vector and m,(b)
denotes the reference moment vector for class i with distortions described by the

distortion vector b = (x,,y,,2,b,R,0), where (x,,y,) are translations of the input object,
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P (a,b) are its horizontal and vertical scale changes, R is its range and # is its in-plane
; rotation angle. For each aspect view class, (5) is evaluated for an initial b_o estimate
(| obtained from the m , and a new b¥ estimate at iteration k is calculated from the
4

nonlinear estimator

F < pM = bR 4+ [(HTETINTITE M - m(bh). (8)

POp—" "

Eq.(5) is then evaluated for this new _l_)_" estimate and the process is continued. The
{ aspect class i and the distortions b that yield the lowest gi(ﬁg define the object class,
aspect and distortion parameter estimates. The gi(r_?j value is a measure of the

confidence of our estimate.

Excellent performance (over 80% correct class recognition has been obtained with this

parallc! algorithm and architecture for our 180 image ship database!® and for a 32 image
L )

five-class pipe-part robotic database!? and on non-controlled real infrared imagery.
each case, 3-D aspect distortions of all aspects over all 300° were used. The algorithm in
(5) and (6) requires 6500 operations per iteration and in general requires only six
iterations. Thus, the full architecture of Figure 6 is quite parallel, efficient, sutomated,

has a sound theoretical basis and has demonstrated excellent initial performance results.

4. DISTORTION-INVARIANT OPTICAL CORI'ELATORS

1
S
-

r‘ The optical correlator of Figure 1 has the multi-object, processing gain and
4

performance and noise features noted earlier. To form a MSF at P, of Figure 1 that
L yields a distortion-invariant correlation, we employ a training set of images {f } of ]
different distorted versions of the object f in one class. We form the correlation matrix i
R, for this data set and restrict the filter function h(x,y) to be a linear combination of
the training set data 1

| hixy) = 8, ) @) ]
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The MSFs with distortios-invaricnt features that we discuss hercin are referred to as B
synthetic discriminant fanctions (SDFs). Five different types of SDFs have becn
defined.’® We now erzphasize the algorithms to produce these SDFs and B’rieﬂy discuss
their performance. The SDF synthesis algorithm is computed off-line on training set
- data. Once synthesized, the SDF can be used oa-linc in the parallel correlater of Figure ~.:

1 with no additional computational overhead.

To produce a filter function h such that its correlation with all {f } is a constant value

. . ®
of unity, i.e. =
LOQn=1, (®) ]
a L
the filter in (7) is defined by W
PR ]
. E

L J
where u is the unit vector. This is referred to as an equal correlation peak (ECP) SDF. o
It is useful for intra-class pattern recognition. To achieve inter-class discrimination with ]

one object per class, we desire N filters h for an N-class problem such that

o
, g
f,Ob; = 6, (10) ]
..
These mutual orthogonal function (MOF') SDF's are defined by ‘
=Ry, (1) * ]
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wkere R, is the full correlation matrix of the N object claases, 8, denotes the selection of
coefficients for filter i, and w, contains all zeroes with a single 1 in location i. The
extension to intra-class MOF SDFs hj(x,y) follows directly. The filter function is now a
sum over a!l N|N training set images (N, images per class and N object classes). The

coefficients of the filter hj are

& Ea.‘!-ljv (12)

where Ry is the full N)N x NN correlation matrix and u, contains all zeroes except for

N, ones in the locations corresponding to the class j training set images.

Another SDF that achicves inter-class discrimination and intra-class recognition is the
multi-level nonredundant filter (NRF) SDI'. In this filter, the correlation output is

allowed to assume different levels,

{ ® p=n, (13)

where the value n of the correlation output determines the output class n. Synthesis of
the simple SDF to satisfy (13) is defined by

R u, (14)

where u = (l,...,l,2,...,2,...]T. To retain binary valued outputs, we can employ a K-
tuple NRF SDF. For M-object classes, we require K filters, where 2K > M. For the

four-class case, K = 2 and the two SDFs h; and b, are defined by the truth table
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INPUT CLASS OUTPUTS FOR EACII FILTER
b, b,
1 0 0
2 0 1
3 1 0 (15)
. 4 1 1
Each filter is defined as a lincar combination of all training set images as
hy=Xa f, by=2Xb f. , (16)
The solution for the filters is given by the solution of
B{,[ﬁ bj == El ﬂg]v (17)

where [u; u,} is the full vector extension of the right-hand side of (15).

The synthesis of all five types of SDFs described ebove is quite similar and other
variants are obvious. Many test results have been obtained with these parallel

algorithms and architectures on our ship image database!?18

and on other military
objects}g Excellent results have been obtained (over 80% correct object classification,
even in the presence of noise and real-world clutter) in all cases. This represents the
most attractive and promising technique for utilization of the full potential and parallel
processing possible with coherent optical pattern recognition architectures. It is a
practical and efficient processor and it achieves very high effective computation and

image frame rates.
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5. OPTICAL LINEAR ALGEBRA SYSTOLIC PROCESSORS
The optical processors described thusfar are quite powerful and appropriate for the
parallel realization of various pattern recogaition algorithms. The most intense topic in
optical computing research at prescnt is optical linear algebra processor:;.21 These
architectures provide the basic framework for a general-purpose optical processor
capable of matrix-vector operations. This concept in parallel opticel processing is the
e;uivalcnt of th~ digital array processor in which arrays of data (matrices) are operated

on in parallel.

The optical system of Figure 7 is one example of such a processor. In this system an
array of input point modulators is imaged through separate regions of an acousto-optic
(AO) cell. With the input data representing & vector and the contents of the AO cell
being a matrix (N vectors each on a separate temporal input carrier), the light leaving
the AO cell is the product of the input vector and matrix. The output lens jorms the

sum of each vector product by spatial integration and the matrix-vector product

appears on the linear detector array in parallel.

Various rezlizations of this processor are detailed elsewhere2? By frequency, time
and space-multiplexing, format control of the inputs to the system can be used to achieve
all of the fundamental operations in linear algebra. This flexible and general-purpose
processor can achieve in excess of 10 GOPs per second. Alternate architectures (with
multi-channel AO cells) allow digital accuracy (32 bit) processing to be achieved with

this processor at comparable data rates.
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FOURIER-TRANSFORM FEATURE-SPACE STUDIES
David Casasent and Vinod Sharma

Carnegie-Mellon University
Department of Electrical and Computer Engineering
Pittsburgh, Pennsylvania 15213

ABSTRACT

A hierarchial multi-level feature-space pattern recognition system is described, Multi-
class distortion-invariant object identification is the purpose of this study. Attention is
given to dimensionality reduction (to simplify computations} and to the use of non-unitary
transformations (to achieve discrimination). A Fourier transform feature space is used.
However, our basic hierarchial concepts, our theoretical analysis, and our general conclu-
sions are applicable to other feature spaces. The use of intensity versus phase features is
studied and the performance of our system in the presence of noise is studied. Quantitative
experimental data on 2 two-class pattern recognition databases are provided.

1. INTRODUCTION

Distortion-invariant multi-class pattern recognition is considered using a feature space.
Feature extraction, dimensionality reduction, discrimination and classification are adklresscil.
A simplified block diagram of our hierarchial pattern recognition system is shown in Figure
1. We begin with a Fourier transform feature space, since such a representation is well-
known {1] to allow significant data compression. We extract the amplitude, phase or both
from the Fourier transform plane. As the first dimensionality reduction technique, we wedge
ring detector (WRD) sample the Fourier transform plane data [2]. This reduces the dimen-
sionality of the feature space to 64. Next, we compute the dominant eigenvectors of the WRD-
sampled autocorrelation matrix. This reduced subspace is calculated using a Karhunen-loeve
(K-L) transformation (3] or implemented by new efficient techniques [4) for computing the
dominant eigenvectors and eigenvalues of a large matrix. This completes the dimensionality
reduction steps in our system. To provide discrimination, we employ two non-unitary trans-
formation: the Fukunaga-Koontz (F-K) [5) and the Foley-Sammon (F-S) [6]. Our classifier
selects the best subspace (based on the probability of error) from the K-L, F-K and F-S
feature vectors.

MAGN1TUDE
INPUT FOURTER ' WRD DOMINANT
mace—Pliransroru] og“ggiﬁ saMpLING || E1GENVECTOR
SUBSPACE

EXTRACTION —‘>l CLASSIFIER l >

Pl SUBSPACE

e o

FIGURE 1. General Fourier Transform (etc.) Feature-Extraction
Pattern Recognition System Block Diagram,

In Section 2, we review and highlight our two levels of dimensionality reduction and we
discuss how we achieve distortion-invariance. Our two discrimination algorithms are
detailed in Section 3. Brief theoretical remarks on the use of Fourier transform plane in-
tensity or amplitude features and on the noise performance of a feature extractor are
then advanced in Section 4. The databasr used and our five image tests on dominant eigen~
image feature vectors are summarized in Section 5. Our more extensive 25 image per class
databace tests are presented in Section 6. These results include a comparison of the per-
formance of our system for five different discrimination vectors, comparison of the perform-
ance of amplitude and phase Fourier transform features, and a comparison of the classifiers
and feature extractors in the presence of noise.
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2. DIMENSIONALITY REDUCTION AND DISTORTION-INVARIANCE

If the input image or object is 256 x 256 pixels, its dimensionality is n = 2562, The
Fourier transform plane for such an object still has a dimensionality of n. This is cuite
prohibitive for subsequent feature-extraction, matrix transformations, or other similar
operations. Thus, we consider dimensionality reduction techniques.

As the first level of dimensionality reduction, we sample the Fourier transform plane with
a WRD. If an optical system is used to produce the Fcurier transform, a commercial WRD de-
tector exists [2). This units consists of 32 wedge-shaped detector elements in one-half of
a circular detector and 32 annular-shaped detector elements in the other half of the detector
plane. This device thus provides 64 WRD outputs. One can also digitally model such a de-
vice, of course. The ring detector elements provide rotation-invariance, whereas the wedge
detector elements provide scale-invariance (if the values of the wedge-ring detector element
readings are properly normalized for object energy). This WRD-sampling, plus the training of
our system on different distorted images provides distortion-invariance to our algorithm.
The WRD-sampling also provides a dimensionality reduction from n to 64, i.e. the Fourier
trangsorm plane feature vectors {x;7]., and {y;73=) are converted to WRD feature vectors
{x;132] and (y;1%d;

As the second level of dimensionality reduction, we apply a K-L transformation [3] to the
autocorrelation matrix formed from the WRD feature vectors for each separate object class.
The autocorrelation matrix is formed from the 64 element x;' vectors for each of the training
set images x in class one and a second matrix is formed from the corresponding y,' vectors of
images in class two. The eigenvalues and eigenvectors of each matrix are calculated and
tabulated. We retain the dominant ny and n, eigenimages per class. In general, nxzny=l,2,3.
In our experiments, we retained only the dominant eigenimage for each class.

To use these dominant eigenimages for pattern recognition and classification, we would
compute z;' (i=1...64) for an unknown input 2z, project it onto the dominant eigenimages or
eigenvectors KL-1 and KL-2 (for class one and two respectively), and select the class of the
unknown input based upon which projection value is larger. 1In practice, we calculate the
dominant eigenvectors using newer and more efficient algorithms [4].

: 3. NON-UNITARY TRANSFORMATIONS

The K-L or dominant eigenvector transformation (Section 2) represents a considerable com-
pression of data and simplifies feature extraction and classifier decisions. The dominant
eigenvectors represent each class well in the optimally compressed manner, however there is
no assurance that those features which represent each class well will be optimal for dis-
criminating one class from another. Thus, dominant eigenimages are useful for intra-class
pattern recognition, but not necessarily for inter-class discrimination. 1In a hyperspace
feature vector and discriminant vector description, unitary transformations do not change
the distances of points or vectors in hyperspace. To achieve discrimination or inter-class
pattern recognition, non-unitary transformations represent an attractive approach. These
transformations can increase interclass distances and hence provide improved discrimination.
We pursue this approach rather than employing more eigenvectors, since the latter approach
would only further increase the dimensionality and computational complexity of our proces-
sing.

F-K Transformation

The first non-unitary transformation we consider is the F-K transformation [5). To
describe the steps in this algorithm, we first define P; as the a'priori probability for
class i and Rj' as the autocorrelation matrix for class 1. We form the autocorrelation
matrices R} and Ry for each class, where R; = PjRj', and we form the full autocorrelation
matrix R = R} + Ry. We then determine the transformation matrix T that diagonalizes R, i.e.

TRTT = T(R; + R,)T = I. (1)
By this transformation, we have orthogonally decomposed the full Ry+Ry .  Next, we_apply
T to R} and R, i.e., we form new matrices for each class given by TRlTT and TR,T:.

These new correlation matrices have two attractive features:

(1) ana 4; 2 of TRITT and TR,TT are equal

(b} The eigenvalues li(l)andxi(z) associated with wi(l) and wi(Z)

(a} The eigenvectors yj
are related by
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by -l-xi (2)

From (2), we see that the dominant eigenvectors of the transformed class one matrix are the
least-dominant eigenvectors for the transformed class two matrix. Thus, those eigenvectors
which represent class one the least represent class two the best {(in the new F-K transformed
feature space). From (2), these operations have T?parated the data in the two classes.
Thus, we will select two yj with the largest lx, - 0.5| values. We will denote these

two eigenvectors y; (as defined above) of the transformed autocorrelation matrices by

FK-1 and FK-2. To use these new discriminant vectors to determine the class of an unknown
input image z, we transform z to a new Tz= 2', This transforms the data input to the new
FK space. We then project zT onto an FK discriminant vector yj and calculate wl*z = d. 1If
d § our threshold, we select class one or class two for the class of the input object. We
normalize the FK eigenvectors and refer to the projections onto the FK directions ] and 2
(corresponding to FK-1 and FK-2). We note that FK-1 and FK-2 do not refer to discriminant
vectors for classes one and two, rather they refer to the two most dominant eigenvectors of
the transformed full autocorrelation matrix of both classes.

Foley-Sammon Transformation

In the F-S nonunitary transformation (6], we find a linear discriminant vector w that is
a linear combination of the x; and y; vectors in our two-class training set. The vector w
1s selected to maximize the Fisher ratlo {(7):

(Dif of Means of Projectionsﬁ

F(W) = SGm of Scatter of Projections
2T
. }“‘1 '“2| ¥ Sp¥ (3)
p) z 5T !
51 + 52 ﬁ §.WE

where Sp is the between-class scatter matrix and Sy is the within-class scatter matrix [7].
The solutxon for w that maximizes (3) is

-1
w=S§, (m~-m), (4)

where m; and m, are the vector means of the two classes. To use w for an unknown input 2,
we form sz = and compare the projection value to the threshold T

T = (ml-tmz)/z. . (5)

If d 2 T, we select class one or class two for the class of the unknown input image repre-
sented by the vector z.

4. INTENSITY OR PHASE FOURIER TRANSFORM FEATURES

One particular aspect of our Fourier transform feature-space study is to determine if the
intensity or the phase of the Fourier transform features provides better performance. As
the basic theoretical justification for the performance and use of our algorithm, we repre-
sent the intensity or phase of the wedge ring detected Fourier transform output for an image
as a random process. We have extensively investigated the theoretical basis for this and
the conditions to be satisfied for the resultant {x;]} and {yj} features to be validly repre-
sented as random vectors. We have shown that the Fourier transform of an analoc or discrete
image can be represented by a random process {x(t))} if: ({x(t)} is separable, has finite
expected value, is continuous in the mean and in probability. Under these conditions, the
resultant analog or digital Fourier transform is an n-dimensional random vector. We have
also shown that the Fourier transform intensity and phase are continuous and yield real
random vectors. Finally, the WRD-sampled intensity and phase Fourier trantform features are
found to be randam variables (since the sum of random variables is a random variable). -

Considerable work [8,9] exists on the representation of image data by the intensity or
phase of the Fourier transform. 1In general, the conditions under which the Fourier trans-
form phase features are adequate is less restrictive than the conditions for which the
Fourier transform magnitude features are adequate. 1If the zeroes of the z-transform of a
sequence occuring in reciprocal pairs lie on the unit circle, the phase of the FT is ade-
guate. The intensity of the FT is adeguate if the z-transform does not contain reciprocal
pole~-zero pairs, poles outside the unit circle, or zeroes inside the unit circle,
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S. DATABASES AND INITIAL RESULTS

The four image databases used are summarized in Table 1. They include scaled and rotated
images of the letters A and B and of hand-drawn tanks and trucks. For each of these two ob-
ject classes, we used a set of five images per class and a set of 25 images per class. Vari-
ous scaled and rotated views were included in each of these image sets. The specific dis-
torted object views included in each case are detailed in Table 1.

TABLE 1. Summary of Experimental Image Databases Used

TEST FIVE-TMAGE DATA BASE 25-TMAGE DATA BASE
SETS SCALES ROTATIONS SCALES ROTATIONS
0°,10° 0.8,0.9,1.0, +10°,+5°,0°
Aand B 10.9,1.0.1.1  (¢) 6.9 1.1 scales) 1.1,1.2 (for each scale)
Hand-Drawn | 0 o 4 01 0°,10° D.8,0.9,1.0,  £10°,45°,0°
Tank/Truck |~ v (for 0.9,1.1 scales) 1.1,1.2 (for each scale)

In Table 2, we list all of the eigenvalues for the dominant eigenvectors for the five-
image database for all four object types and for both intensity and phase Fourier transform
features. As seen, the dominant eigenvectors for intensity FT features is approximately 70
times the second dominant eigenvector. Using phase FT features, the dominant eigenvector is
considerably less dominant (in general). The eigenvalue for the dominant eigenvector for A
obtained from FT phase data is exceptionally low (0.67). From the low (0.67) eigenvalue
associated with the dominant eigenvector for Fourier transform phase features for the letter
A, we expect low projection values and hence more errors in our pattern recognition of let-
ters using phase features. In general, the dominance of the eigenimage in this data can be
attributed to the fact that the image database consists of scaled and rotated (in-plane ro-
tation) images rather than different aspect views of each object. 1In such distorted images,
there is no appreciable new information present in each object representation in our data-
bases investigated.

TABLE 2. Eigenvalues (e-v) of WRD Fourier Transform
Eigenvectors (Five-Image Databases).

WRD TRIK TARE K B
FEATURES INT PHASE INT PrASE || I PRASE TNT PHASE
ev 1 0.983 0.992 0.983 0.886 0.99 0.67 0.99 0.95
e-v 2 || 0.17x20°7 0.78x10°2 |{o.166x10°} 0.983x107 || 0.71x07  0.24 || 0.13x107! o0.43x107}
e-v 3 || 0.82x107% 0.28x1073 || 0.21x1073 0.117x1071 || 0.84x10°* 0.72x107!|| 0.49x207% 0.186x1072
e-v 4 || 0.81x107° 0.125x1073 || 0.64x107% 0.236x1072 |{ 0.47x10"% 0.11x10°}|] 0.28x10"% 0.77x1073
e-v 5 || 0.49x10°® 0.11x107% [} 0.11x10"% 0.138x1072 |} 0.65x10°% 0.38x1072|| 0.17x207% o0.70x107

The projections of all five images per class on the dominant eigenimage for each class
were tabulated. Our results show that the projections of all images in one class on the
dominant eigenimage for that class were larger than the projections on the dominant eigen-
image of the other class. However, the differences (for intensity FT features) were quite
small (e.g. 0.99 versus 0.96). The projections on the second dominant eigenimages (for in-
tensity FT features) gave lower projection values than those on the dominant eigenvector.
In many cases, larger projections were obtained for the wrong images. Thus, for intensity
FT features, the second dominant eigenvector should not be included. These results support
our earlier observation that the eigenvectors generally provide intra-class recognition
rather than inter-class discrimination. A comparison was also made of the dominant eigen-
images obtained from the intensity-only and phase-only WRD Fourier transform features. The
phase features provided larger differences of the projections onto the dominant eigenimages
of each class (on the average) for the five-image tank versus truck images. However, for the
five-image letter (A and B) database, phase features gave many errors. This was expected and is at-
tributed to the amall eigenvalue associated with the daminant eigenvector for A. Had we retained two daminant
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eigenvectors, better phase feature performance for the case of letters coule be expected.

6. INITIAL EXPERIMENTAL RESULTS

6.1 Non-Unitary Transformations

All of the results included in this section were obtained on our more extensive database
of 25 object images per class. In Figure 2, we show the scatter plots for the projections
of all tank and truck images onto the dominant eigenimages for tanks and for trucks respec-
tively. As seen, all images can be separated and correctly classified from either projec-
tion alone. However, all projection values (even those on the dominant eigenimage of the
other class) are quite large (all projection values are above 0.95). Only five points (X)
are shown for the 25 training images corresponding to different scaled and rotated truck
images. All five rotated images for each scale factor o yielded identical projection values.
This verifies the good rotation - invariance of our WRD features and our training set used.
The variation in the projection values due to scale differences can be attributed to the
normalization technique used (each eigenimage was normalized only within one class) and to
the significantly larger number of pixels present in the tank object compared to the truck
object (800 versus 280 pixels).

In Figures 3 and 4, similar data are shown for the projections onto the two dominant FK
discriminant vectors (Figure 3) and onto the best FS vector (Figure 4). These data in Fig-
ures 2-4 were obtained from intensity-only WRD Fourier transform features. Note the sig-
nificantly different axes scales in Figures 2-4. To compare which feature extraction tech-
nigque (dominant eigenvectors, FK vector, FS vector) yields the best performance, we computed

a separation measure

SEPARATION _ DIFFERENCE OF MEANS OF PROJECTIONS PER CLASS (6)
MEASURE SUM OF STANDARD DEVIATIONS PER CLASS

for five different discriminant vectors for the tank/truck and A/B image sets. The results
(for intensity-only WRD Fourier transform features) are summarized in Table 3. As shown,
both domirant eigenimages (KL-1 and KL-2) perform quite well (even though they only achieve
intra-class compression). This can be attributed to the a'priori existence of different
wedge and ring Fourier transform features for the two object classes and to the distortion-
invariance and lack of information loss incurred by wedge ring detection sampling of the
Fourier transform plane. For the tank/truck images, the performance of both F-K features is
comparable, whereas the performance of the F-S vector is slightly better. For the case of
the letters A and B, the non-unitary transformations achieve considerable improvement (by
approximately a factor of 2). Thus, in some cases, non-unitary transformations will improve
performance. The results are quite data dependent. These non-unitary transformations

do not degrade performance and in general improves performance. Thus, such feature-extrac-
tion techniques appear to be merited in all instances.

6.2 Noise Performance

To further test and compare our different feature-extraction approaches, we added noise
to the image data, recalculated the projections and the associated separation measures. The
results are summarized in Table 4 for our 25 feature vectors, for five different amounts
of noise and for both databases. For the tank and truck image data, very little difference
occurs as the noise level is varied. This can be attributed to the fact that only several
wedge and ring elements dominate the feature vectors. Since the noise is evenly distributed
over all wedge and ring feature elements, its effect on the dominant feature elements is
reduced and noise has less of an effect. For the case of letter recognition and classifica-
tion, the separation measure decreases as the noise level is increased. This is the general
trend we would expect. The amount of decrease is generally the same for all five discrimi-
nation vectors. The difference in the case of letters and tanks/trucks can be attributed to
the fact that letters have more structure and hence Fourier transform plane information is
more uniformly distributed over all of the wedge and ring sampling elements. Hence, the
effects of noise is more fully transferred to such a feature-space. It should be noted that
in all cases, good performance was obtained.

6.3 WRD Fourier Transform Phase versus Intensity Features

Similar tests were performed for the case of phase-only WRD Fourier transform features.
For the tank/truck data, the separation measure for phase features was found to be better
(by 10-65%) than for intensity features. For the A and B letter images, the phase features
sometimes provided better separation measures, but in general gave worse results. This can
be attributed to the small 0.66 eigenvalue of the dominant phase eigenvector for the letter
A. Tests were also performed using combined intensity arnd phase features. For the tank/
truck images, 10-90% better separation measures were obtained with phase features. For the
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FIGURE 2. Intensity-Only WRD Fourier Transform Features FIGURE 3.
Projected onto Daminant Tank/Truck Eigenimages (for 25
Image Database).

¢)=Dominant Truck Eigenimage; ¢2=

Intensity-Only WRD Fourier Transform

Feature Projections for Tank/Truck Images onto FK
Vectors (25 lmages/Class).

Daminant Tank Eigenamage: ¢ =Tank Images; X*I'ruck Images.
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FIGURE 4. Projections of 25 Image/Class Tank/Truck
Data on Best Foley-Sammon Vector.
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TABLE 3. Separation Measures for Different Intensity
Peature-Extraction Techniques.
DATA TRUCK
PRO A AND B
VECTOR AND TANK
DOMINANT ||
CLASS 1 || 4.13 7.09
EIGENIMAGE i
DOMINANT T
CLASS 2 2.89 5.98
EIGENIMAGE
FK-1 i{ 3.91 12.1
FK-2 3.88 12.1
F-$ 4.50 11.9 |

Noise Performance of Intensity WRD Fourier Transform Features for Dif-

ferent Feature Extraction Techniques (Separation Measure Tabulated).

MIPUEAT WL GE VAP WU )

TMAGES TRUCK_AND TANK K AND B
STANDARD
DEVIATION 0 |o.1}o0.2(0.3 |0.4]] o | 0.1 0.2 |0.3]0.4
OF NOISE
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KL (CLASS 1)]14.2]4.3]4.3 (4.3 a.1]18.5] 9.3 |7.7 |a.6]2.7
KL (CLASS 2)||2.9]2.9]2.9 2.9 |2.8] | 6.9] 6.6 |5.0 |3.3]2.4
FK-1 3.9 3.9 3.9 {3.9 B.8s} |13.5| 16.4 }12.3 {6.2 |3.8
FK-2 3.9 |3.9 3.9 |3.9 13.8] |13.5]| 16.4 J12.3 |6.2 |3.7
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letters A and B, the separation measure was never significantly better and often was sig-
nificantly worse than when intensity-only features were used.

The performance of phase features with noise were also tested. For the tank/truck images,
the separation measure decreased as the noise increased (by a factor of 0.3 to 10.0). This
was guite significant and worse than the intensity feature results which showed negligible
variation with noise. Similarly large reductions in the separation measure (by factors of
0.3 to 10.0) were obtained for the case of the letters A and B as the noise was increased.
These losses were much larger than for the intensity features.

The conclusions reached from this limited testing are that phase features provide better
separability. Better performance can be expected for the case of letters if the second dom-
inant eigenvector is included. The noise performance of phase features appears to be worse.
This can be attributed to the more uniform distribution of Fourier transform phase over all
of the WRD features (compared to the concentration of the intensity features in fewer WRD
elements) .

8. SUMMARY AND CONCLUSIONS

In this paper, we have addressed a hierarchial multi-level general feature-space pattern
recognition system for multi-class distortion-invariant object recognition. Attention was
given to dimensionality reduction and its importance and success were demonstrated. The
Fourier transform plane was found to allow significant dimensionality reduction. Wedge ring
detector Fourier transform sampling and Karhunen-Loeve (KL) or dominant eigenvector calcula-
tions were found to allow considerable reduction and compression with little information
loss. To provide discrimination, non-unitary transformations were used and found to either
improve discrimination (or to provide negligible loss in performance). The Fukunaga-Koontz
(FK) and Foley-Sammon (FS} non-unitary transformations were considered. Both perform com-
parably, with the FS technigue being somewhat better.

Quantitative experimental data and excellent performance were obtained on various image
databases. The dominant eigenimage performed quite well if it was very dominant. When it
was not dominant, non-unitary transformations helped performance considerably. If several
of the feature elements are dominant, noise performance improves. This provides further
motivation for reducing the number of feature elements and for devising schemes in which
only several features are dominant. Our theoretical contributions on random vector modeling,
noise performance and sample matrix calculations are gquite general and useful in many other
feature-extraction problems. Our study of intensity and phase Fourier transform features
found phase features to be preferable, but thut phase features generally perform poorer
in the performance of noise (since they are more uniformly distributed in Fourier transform
space) .
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ABSTRACT

A hierarchical feature extraction pattern recogni-
tion technique is described and experimental test data
is presented. The multi-level system estimates the
class of the object and its aspect view in level one.

A nonlinear iterative least squares estimator comprises
the level two processor. A moment-based feature extrac-—
tor is used. The level one system allows the classi-
fier to use features that are jointly Gaussian random
variables. Experimental results on a set of pipe

images are presented.

1. INTRODUCTION

Feature extraction 1s a major computationally ef-
ficient approach to pattern recognition. In this paper
we consider the use of a moment-based feature extractor
for distortion-invariant object identification and
classification. Moments were selected as the feature
space to be used because of four unique aspects that
these features exhibit:

(a) They can be computed in parallel [1].

(b) They allow easy correction after computation
for various system computational errors [2].

(¢) They provide position, orientation and scale
information on the object [3].

(d) They are jointly-Gaussian random variables
(JGRVs) [4] and hence allow use of a Bayesian
classifier [5) and do not require a training
set of imagery.

Our concern is to be able to recognize and classify
objects in multiple classes independent of geometrical
distortions due to the object's orientation and view
angle and to estimate the distortions. The former is
needed for object recognition and the latter for object
control (i.e. by a robot).

In Section 2, we briefly review how the moment
vector mj(b) for an object in class 1 can be computed
for different object distortions, described by b, from
a reference mj(b") vector (Section 2.1). We then re-
view (Section 2.2) the conditions under which moment
features are JGRVs and the simplified classifier that

results (Section 2.3). To utilize the JGRV property of
moments, a new classifier is required. This two-level
classifier is summarized in Section 3 and demonstrated
for a new database of pipe parts in Section 4.

2. MOMENT FEATURE SPACE

A moment feature space is most attractive for many
reasons, several of which were noted in Section 1. In
this section, we expand upon several of the less-
detailed properties of moments, especially those aspects
that apply to our new moment-based classifier.

2.1 Distortion Parameter Effects

For our application, we consider b = (a,b,x(,y(,6)
where the elements of b contain the horizontal (a) and
vertical (b) scale of the object, its translation (x0,
yo) and in-plane rotation (6) with respect to a refer-
ence b’ vector. Computing my(b) from my(b0) for differ-
ent distortions described by b involves a simple matrix
multiplication. For intensity changes by a factor k,

mpq - kmpq . (1

For scale changes,

A ptl q+l
L (1/8)" " (1/b) L (2)

For translations,

- - P q P q i J
®pg " 140 JEO(J G)“O’ RORSS RS A

For in-plane rotations

®pq " o jgo ('1)) (3‘) (cose) P4

. (sing)3-3*L (4)

Pptq-1-3,143°

For reflections about the y axis (x axis reflections
are similar),

hdih.
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Thus, new é moments are easily calculated from the nomi-
nal m moments for different distortions.

2.2 Moment Statistics

Finite spatial-sampling of the object causes vari-
ations in m. It is fairly straightforward to show that
the statistics of these sampled moments are good esti-
mates of the true moments and that the moment features
are JGRVs. The number of object pixels required to
satisfy the Gaussian pdf assumption is much less than
the number of object pixels needed for recognition and
classification. Thus, a JGRV model for moment features
is quite valid. However, this is only true for those
distortions b; specifically the moments are JGRVs with
respect to scale, translation and in-plane rotation 6,
but not for out-of-plane rotations ¢. Thus, with re-
spect to the distortions in b, the moments are JGRVs.
Similarly, one cannot devise deterministic linear trans-
formations as in Section 2.1 for the variations inm
with ¢. Thus, for all of the above reasons, different
aspect views (¢) of each object must be considered as
separate classes. We refer to these as view classes to
distinguish them from object classes (different objects
specifically).

2.3 JGRV Classifier

The conventional Bayesian classifier [6] that
minimizes the probability of an incorrect view-class i
estimate can be used with conventional assumptions
(such as JGRV features) to obtain the discriminant
function

g, = (u) I xmpy), 6

where Ly and Iy = I are the mean vector and covariance
matrix for class i{. In most cases, py and Ij must be
estimated from training sets of imagery. When the
measured feature vector x is a moment vector m, only
one object view per class is needed to measure uj and
Ij. The class { that minimizes gj(x) is the best class
estimate. The discriminant function in (6) is the
Mahalanobis distance. If £ = I, (6) becomes a Euclidean
distance measure or nearest-neighbor classifier. This
assumes that all moments are independent and that the
expected variations of all moments are equal.

3. NEW CLASSIFICATION ALGORITHM

3.1 Overview

To utilize the classifier in (6), each view-class
must be treated as a separate class 1. For 9 objects
and 36 aspect views per object (10° increments from a
fixed depression angle), there are i = 324 view-classes
to be searched. In Section 3.2, we describe our second-
level classifier which solves (6) for the view-class i
and the distortion parameter vector b. Its parameters
are discussed in Section 3.3. To reduce the number of
view-classes i to be searched, a hierarchical first-
level classifier is used in which estimates of the ob-
ject class (Section 3.4) and the aspect view (Section
3.5) of the object are obtained and passed to the sec~-
ond-level classifier where the final decision on the
view-class i and the distortion parameters b is made,
and the confidence of our estimates are provided. A
block diagram of the classifier is provided in Figure
1.

CLASS
INPUT MOMENT FISHER ESTIMATE
xmct—("l COMPUTER LASSIFIER REFERENCE
ASPECT ®oq
ASPECT ESTIMATE
DY £ ST IRATOR ) DATABASE

!

ITERATIVE NON-LINEAR
LMS CLASS/ASPECT/

CLASS (1) DISTORTION PARAMETER
ORIENTATION (b) ESTIMATOR
CONFIDENCE

FIGURE 1 Block diagram of our Two-Level Moment-
Based Classifier.

3.2 Iterative Second-Level Distortion-Parameter

Estimator

The second~level classifier is described first to
provide added motivation for the first-level-classifier.
We desire to combine the ease with which my(b) can be
calculated for new b vectors and the classifier in (6)
to estimate b for the input object and to provide final
estimates of the object class and aspect view. The ba-
sic concept is to vary i and b to minimize ey = m-gi(b).
where E is the measured moment vector of the input ob-
ject. The square error measure Ef = eirr‘lgi where 2‘1
is the weighting matrix used. To minimize Ej with re-
spect to b, an iterative algorithm is used since m(b)
is a nonlinear function of b. The algorithm is of the
general form

=b +ar, 7

vhere bk 1s the b estimate at iteration k and bk*l is a

point In an r-dimensional space a distance aK in the

direction r" from the present b*. We expand m;(b) in a
Taylor series about the present Ek point as
B (®) = m (5 + 0", (8)

where J 1s the Jacobian of my(b) with respect to b at
the k-th iteration. Substituting ey and (8) into Ey,
solving for the minimum b (by setting VE;(b) = 0), we
obtain

T o -1
B o bk ) Tl (J)t Ya- n (D], (®

Eq.(9) 1is the nonlinear iterative algorithm used in
our second-level classifier to estimate b. For each i,
(9) is repeated and we calculate

sg, = (g5 - 1g (L), (10)

vhere g4(b) = Ej. The iterations k are continued until
g4 is less than a convergence threshold T. The algo-
rithm in (9) is the Gauss-Newton formulation, which de~
generates to the Newton algorithm with appropriate
assumptions (7).

3.3 Second-Level Classifier Parameters

The iterative algorithm in (9) and the second-level
classifier requires selection of various parameters.
These are summarized in Table 1 and discussed below.
The convergence threshold T determines when the itera-
tions k are stopped and how small (10) becomes. T= 107
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corresponds to a difference of 0.012 in (10). The con-
fidence value C is a measure of the confidence of our
estimates. It is obtained by measuring the distances
d] and d; between the input m vector and the two closest
mi(b) vectors and defined as C = 100{1~d)/d2], where
d)} < dz. Calculation of J is simplified by evaluating
it for b with (xp,yp) = (0,0) and (a,b) = (1,1), i.e.
assuming the presently calculated distortion is correct.
This 1s equivalent to viewing each {teration as an up-
date of the prior gk rather than the initial b0 esti-
mate. This greatly simplifies calculation of J and (9)
at each iteration.

TABLE 1 Second-Level Classifier Parameters

SYMBOL PARAMETER REMARKS

T Convergence

Threshold Typically 0.1

C2 Confidence Value C,=100(1 -dl/dz]

J J Calculation b= [1'1'0'0]T

2-1 I-l Calculation I-l =1 or E-l =W !T
0 ok

b (8,b,%4.¥p) (BogRig0+ ~B10/Bgg» 81/ Bog)

Calculation of Efl is quite difficult since the
exact [ matrix is quite ill-conditioned. The two
choices considered in our system are I = 1 and I7' =»

w ET. The choice I = 1 weights all features equally
and assumes independent features. In our first-level
classifier, we calculate a multiclass Fisher projection
matrix W. In a Fisher space, -1 = W K~IWT, where K is
the covariance matrix of the Fisher features. With K=
1, our second E'l choice is obtained. The second I~l
estimate contains some information about the object
separation of the reference set. Initial estimates of
the distortion parameters in bo are obtained directly

from the measured npq as listed in Table 1.

3.4 First-level Classifier: Object Class Estimates
To reduce the number of view-classes i for which
the second~level classifier of (9) and (10) and Table 1
must be used, object class estimates are obtained in
the first-level classifier. This 1s achieved by a
hierarchical classifier. To provide invariance to the
distortions in b, the central moments uy (normalized
for translation and scale) for each mj are computed.
To select the best subsets at each node in the hier-
archical node tree, a multclass Fisher projection ma-
trix W of size mx (c-1) is conputed, where m is the
number of moments and ¢ is the number of object clas-
ses. W is chosen to maximize the total between class
scatter to total within-class scatter (with respect to
the overall sample mean). The u normalized central
moments are then transformed into this multidimensional
Fisher space as new transformed feature vectors y =
W'u. In practice, the u are projected onto only the
two dominant Fisher feature vectors.

An example of such a multiclass projection for 9
objects (Section 4) 18 shown in Figure 2. In this
classifier, all aspect views of each object (36 for
the case shown) are viewed as different versions of
each object to be clustered and separated from aspect
views of the other objects. The various data points
in each cluster correspond to scatter due to 36 aspect
views per object class. From this multiclass Fisher
projection, the object subsets (these may be multiple
classes) that are best separated at node 0 in our

hierarchical tree are determined. A new two-class
Fisher discriminant vector w is then computed that op-
timizes the Fisher ratio for these two object subsets.
The corresponding w'uy projections for the two class
subsets at a later node in the tree are shown in Figure
3. As seen from this data, the two object subsets
(represented by the symbols 0 and 1) can easily be
separated. As seen, the simple linear w discriminant
defined by Fisher feature 1 for this node achieves this.
Thus, our class estimator proceeds by forming multiclass
Fisher projections of the available reference imagery
and from this selecting the subsets to be separated at
each node in the tree. A different multiclass case is
considered at each node and a different two-class
Fisher discriminant vector w is then calculated for use
at each node. These procedures are performed on avail-
able reference imagery prior to classification and thus
need not be performed in real-time. During classifica-
tion, only the simple vector inner product wjuy must be
calculated for each node n. A confidence C; = 35 for
the object class estimator is used at each node. 1If
C1 < 35, both subsets at that node are passed. C] is
similar to C2 but in Fisher space.

o~
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PIGURE 2 Multiclass Node-0 Fisher Projection for the
Database of 9 Pipe Parts.
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(b) PVC Tee (Class 1)

(a) Hose Tee (Class 0)

FIGURE 4 Representative Images of Objects in the Four Main Classes.

s
( TABLE 2 >
Effect of First-Level Classifier
(9 Aspect References Every 40° Used, Tested Against all 324 Images)
AVERAGE NUMBER .
TEST CONDITIONS ON OF VIEW CLASSES Z(E)ggggi
g NUMBER FIRST~LEVEL CLASSIFIER PASSED TO OUT OF 324 »
¢ SECOND-LEVEL
1 FIRST-LEVEL ENABLED 10.3 97.5
ASPECT-RATIO ESTIMATOR
2 NOT USED 23.8 97.5
OBJECT-CLASS ESTIMATOR
3 NOT USED 34.7 72.2 )
4 FIRST-LEVEL DISABLED 81.0 71.0 1

TABLE 3
Effect of Convergence Threshold on Number of Iterations Required

b
TEST ITERATION UPDATE CONVERGENCE PERCENT AVERAGE
NUMBER INCREASED LINEARLY THRESHOLD CORRECT NUMBER OF E
: OVER N ITERATIONS RANGE OUT OF 324 ITERATIONS j
-4 -1 )
5 N =25 T=10 " -« 10 98.2 17 - 13 1
6 N=S T =10 - 107} 98.2 6.3 - 5.7 ’
7 N = 25 T=20.5-1.0 98.2 2 ‘
y
TABLE 4 ‘
Effect of Covariance Matrix Estimate Used J
. -
TEST COVARIANCE PERCENT 9
NUMBER ESTIMATE CORRECT [
8 4 Figher Vectors 93.9
9 2 Fisher Vectors 92.8 )
10 Identity 90.0
4
]
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3.5 First-Level Classifier: Aspect Estimates

Once the object classes (that are sufficiently
acceptable to be checked further in the second-level
classifier) have been selected, those aspect views of
each such object class (that should be included in the
view classes 1 in the second-level classifier) are es-
timated from m The use of moment features provides
a quite convenient method. Specifically, we estimate
the aspect ratio (ratio of its length to heigh?) of the
input object as_A = upg/ugz, where u2g = mzgp-m{p/mop
and ugy = mgo- 1/mgg- The aspect ratios A for all
reference objects in the estimated object class(es) are
calculated and K = A/A is formed. The aspect view with
K closest to one and all aspect views within a factor
Tp = 1.5 (the aspect threshold) of this are passed as a
member of the view class 1 to be further processed by
the second-level classifier. The value A can also be
used to omit object class estimates (from Section 3.4)
with no aspect ratio in the proper range. If a lower
Tp value (closer to 1.0) is used, the number of aspect
views per object class passed to the second-level
classifier can be restricted to 1 or 2 with excellent
final classification performance.

4. DATABASE RESULTS

4.1 Database

The new database used consisted of four different
classes of pipe parts (Figure 4). Two different types
of hose tees, four different types of PVC tees and two
different types of PVC elbows were included (9 differ-
ent pipe objects in four classes). 512 x 512 pixel
digitized images of each of the 9 objects were obtained
from a 50° depression angle at 10° aspect view incre-
ments (36 aspect views per object). These 324 images
were reduced to 128 x 128 pixels and binarized.

4.2 Hierarchical Node Tree

The multiclass Fisher projections in Figure 2
show the scatter of the different pipe parts. From
such plots, the subsets used at each node in the tree
were chosen. Figure 5 shows the level-one classifier
hierarchical node tree. A two-class Fisher discrimi-
nant vector is computed for each node and used to de-
termine the subset choice at each node. An example of
the scalar projections at node 2 was shown in Figure 3.

HOSE TEE MHOSE ELBOW PVC TEE PVC ELBOW
CLASS 0 CLASS 3 CLASS 1  CLASS 2

FIGURE 5 Hiearchical Node Tree for Class Estimation
in the Level-One Classifier.

4.3 Experimental Results

Our extensive simulation tests are summarized in
Tables 2-4. The nominal values used for the various
classifier parameters were: convergence threshold T =
10~4, confidence threshold C2 = 0 (this forces a deci-
sion to be made for each input), covariance matrix I =
1, C; = 35, Tp=1.5. Thereference set contains 9 asp;cts
per class at 40° intervals. Unless otherwise noted,
these conditions are used in each test. In Table 2,
the overall performance obtained with and without the
first-level classifier used i{s shown. As seen, over
97% correct object classification can be obtained (tests
1 and 2). 1If the aspect ratio estimator in the first-
level classifier is not used (test 2), no performance
change results, however about 2.4 times more view clas-
ses i must be checked in the second-level classifier.
If the object-class estimator is not used (test 3), the
number of view classes i to be checked in the second-
level classifier is 3.5 times larger and performance is
25% poorer. Without the first-level classifier (test
4), performance is comparable to test 3 but all 81 view
classes (9 reference aspects for each of 9 objects)
must be searched. Thus, the first-level classifier both
improves performance and reduces the number of computa-
tions needed. The object-class estimator controls per-
formance and both the aspect and object-class estimators
reduce computations.

In separate tests, various reference image sets
with different numbers of aspect views (i.e. only four
aspect views in one quadrant per object class) were
used and achieved comparable results. In Table 3, the
number of iterations required in the second-level clas-
sifier is quantified and the effect of varying the con-
vergence thres! s1d T is investigated. As seen, varying
T has negligible effect on the percent of the images
correctly identified. Smaller T values result in fewer
iterations required. However, we suspect that better b
estimates will result if more iterations are used. In
Table 4, the effect of various covariance matrix I~
estimates are considered. The identity matrix 1is found
to perform adequately with only a few percent better
accuracy resulting when different Fisher vectors are
used to calculate I7 .

5. SUMMARY AND CONCLUSIONS

A new classifier using a moment-based feature
space has been described. The second-level classifier
is optimal and uses the JGRV property of the features
with respect to distortions contained in b. A hierar-
chical first-level classifier was included to improve
performance and reduce the computational load on the
second-level classifier. A new organized procedure for
selecting the node structure, the subsets per node and
the discriminant vector per node was advanced. A mul-
ticlass and conventional two-class Fisher discriminant
technique was advanced to automate this procedure. Ex-
perimental verification and quantification of all as-
pects of both levels of the classifier were obtained
for a pipe part database. Excellent results were ob-
tained. This appears to be a most attractive and viable
feature space pattern recognition system with many
unique properties.
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A two-level classifier has been designed for use in a moment-based hybrid optical/digital processor. The simulation per-
formance of this pattern recognition system using real IR input test images of ships and reference moments obtained from
<hip models is described with emphasis given to the preprocessing operations required.

1. Introduction

The use of optical processors to compute image
features for feature-based pattern recognition has re-
cently received renewed interest. The optically-com-
puted image features thus far considered include
Fourier coefficients [1-3], chord histogram distribu-
tions [4,5], and geometrical moments [6—8] . In this
paper,a moment-based feature extractor and classifica-
tion algorithm for pattern recognition is considered
(section 2) and its performance in the classification of
ship imagery (section 3) is addressed. Specific atten-
tion is given to classification of real input imagery
(section 5) and the image preprocessing required (sec-
tion 4).

2. Optical computation of the geometrical moments

The optical system considered to generate the mo-
ments of an input object [7] consists of an input plane
P, (in which the input image is placed) imaged onto a
moment generating mask at plane P,. The monomials
xPy4 up to fifth-order (p + g < 5) are recorded on the
P, mask each spatiall- multiplexed using a different
spatial frequency for each carrier. The optical Fourier
transform of the hight distribution leaving P, is de-
tected on 21 multiple parallel output detectors in the
P5 output plane and contains the moments

0 030-4018/84/503.00 © Eisevier Science Publishers B.V.

(North-Holland Physics Publishing Division)

My = ff(x,y)xpy" dxdy 0]

of the P; input pattern f(x, ) as detailed in [7].

These optically-generated image features are used
as inputs to a digital feature-based classifier which then
determines the object class and the orientation, scale
and aspect of the input object. The details of this clas-
sifier are provided elsewhere [8] and are not germaine
to our present discussion, however several remarks on
the classifier follow for completeness. The optically-
calculated input moment vector m is projected by the
first-level classifier in the digital section onto a multi-
dimensional Fisher feature space {9]. From the loca-
tion of the projection vector, initial estimates of the
input object class are made. From the ratio of the nor-
malized second-order moments u5q and w5, an esti-
mate of the aspect ratio or aspect angle of the input
object is made. These estimates are used to select ref-
erence vectors m;(6) for class f and aspect 8 from stor-
age against which m is compared. The final decision
on the object class and the geometrical location of the
input object is made in a second-level classifier imple-
menting a nonlinear least-squares solution as detailed
in [8]. Our present concern is the preprocessing re-
quired on real images before their moments m can be
reliably extracted.

(5]
tJ
~
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3. Database

Number

of Pixels

As our reference database we used 180 images of
five types of ships with 36 images available per ship
(at 10° intervals around each ship, from a 90° depres-
sion angle). This reference database was obtained from
ship models under controlled conditions. Each image
contains 128 X 32 pixels with about 2000 pixels cor-
responding to the ship (for the broadside view) and
less than 200 ship pixels (for the bow and stern views).
The moments of 4 images per class (10°, 30°, 50° and
80°, where 0° is the bow view and 90° is the broadside
view) constituted our reference m;(6) database. As test
data, we used various real images of the class 2 ship
(the Leahy). A typical image is shown in fig. 1. It
shows the ship in water with a sky and shoreline back-
ground. We used 256 X 128 pixel images with 8 bits
of gray scale for the real ships in our tests. The hori-
zon (separating the water and the sky background) is
seen and the depression viewing angle for the real
images is 80° (rather than 90°, as in the reference
imagery). The real image (from bottom to top) con-
tains four regions: (1) water, (2) the hull of the ship
and some water, (3) the superstructure of the ship with
a water background, and (4) the sky and shoreline at
the top of the image. In section 4, we detail the pre-
processing used to extract the ship from the back-
ground and in section 5, we discuss the classification
performance obtained on such imagery.

4, Image preprocessing

Feature-extraction pattern recognition algorithms
require that one object location within the input field-

Fig. 1. Typical ship test image (the guided-missile cruiser, the
Leahy, ship class 2).

228

ixe

150 168 value

Fig. 2. Bimodal gray-level histogram of fig. 1.

of -view be extracted before the features are computed.
These operations are most commonly referred to as
segmentation and also involve noise removal and filling
in of holes on the object [10] . Care should be taken
to employ only simple image preprocessing operations
that are not computationally expensive. Thus, we used
mainly histogram operations (since they require only
simple tallies of image pixel levels) to aid in threshold
selections. A wealth of such methods exist, but their
specific implementations are quite problem-dependent.
In our case, we used context information (the water is
below the ship, the sky is above the ship and the deck
line and horizon are nearly horizontal due to the sen-
sor system used) to greatly simplify the ship segmenta-
tion. Our approach is quite novel in the techniques
employed to select separate thresholds for the differ-
ent image regions and dynamically select these regions
based on the scene information. Such methods are of
use in feature extractors for diverse applications.

As step 1, we formed the gray-level histogram of
fig. 1 (see fig. 2). It was bimodal as expected extending
from 0 to 255 (8 bits). A broad peak exists at low
pixel values (corresponding to the water and noise,
which is low in intensity in fig. 1) and a sharper peak
is centered at the high 175 pixel level (corresponding
to the ship and the sky, whose pixel values are larger
in fig. 1). A well-defined valley at pixel level 150 exists.
Thus, at step 2, we thresholded the image at 150 (with
all pixel values below 150 set to zero and all pixel val-
ues above 150 set to one). The resuitant binary image
is shown in fig. 3.

At step 3, the image in fig. 3 is used to estimate the
location of the four image regions defined in section
3. To achieve this, a horizontal or row-projection
histogram of fig. 3 is formed. This is a graph (fig. 3) of
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‘Pumber
of Pixels
Sky and
Water

Fig 3. Binary version of fig. 1 thresholded from the bimoda)
gray-level histogram of fig. 2.

the number of pixels with value equal to ore in each
row of fig. 3. From fig. 4, the different i1.1age regions
can be identified. The region to the right of row C
(with zero-valued pixels) is the water below the ship.
The flatter region just to the left of row C is the fhull.
The region between row B and where the hull occurs
contains the ship’s superstructure (plus water back-
ground). The sky and shoreline lie in the region to the
left of row A. Between rows A and B is a transition re-
gion between the sky and water which contains the
horizon region with some sky, water and ship super-
structure. Row A and C are easily defined and located.
Row B was located from the sum of first differences
for consecutive row values as the inflection point in
the histogram, These procedures are all automated and
require only simple computations.

In step 4, the values for rows A, B and C from fig. 4
are used to extract the sky only (top row to row A)

Transition
Region

Hull Water

Pixels

Super-
structure

AB Number

Fig. 4. Horizontal projection histogram of the binary image
of fig. 3. The sky, ship, superstructure and water regions of
the image are noted.

Fig. 5. Gray-level histogram of the gray-scale image in fig. 1
after subtraction of the means of the sky and water from the
appropriate image rows.

and water only (row A to the bottom row) region of
the original gray-scale image. Specifically, the average
pixel values in these two image regions are calculated.
This involves only a simple sum of the pixel levels in
the proper rows of fig. 1. In step 5, the mean-value of
the sky and shoreline region is subtracted from the
rows above A in fig. 1, the mean value of the water re-
gion is subtracted from the rows below C in fig. 1, and

a linear combination of the mean of the water and sky

is subtracted from the rows between A and B. This
produces an image with the ship pixels on a positive

bias and with the water and sky regions on a zero bias.

In step 6, the gray-level histogram of this image is
formed. As shown in fig. 5, it has an obvious bimodal

structure with a very apparent threshold level or valley

point at pixel value V.
In step 7, all pixels in the image with gray-level val-

ues below V' in fig. 5 are set to zero. This removes the

Fig. 6. Segmented ship image produced using the threshold
level VT found from fig. S.
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sky, shoreline and water and thus extracts the ship. If
the gray-levels above 1’y are retained, a gray-scale seg-
mented ship image results. If levels above V' are set to
unity, a binary segmented ship image results (fig. 6).
Simple median filtering or other local convolution op-
erations can be used to suppress miscellaneous noise
pixels remaining in the background and to fill in holes
on the target object.

§. Image classification

The moments m of the image in fig. 6 were com-
puted and fed to our digital first-level Fisher projection
class estimator. This first-level classifier omitted class 1
and 3 ships as possible class matches. The second-level
classifier returned class 2 as the most-likely object
class. This classifier also provides confidence levels for
each possible ship class (classes 2, 4 and 5) passed by
the first-level classifier. The class 4 ship, another
guided-missile cruiser, had the second-best confidence
but it was quite worse than that of the best (and cor-
rect) class 2 match. The correct aspect angle (70°) and
scale (50%) of the input object are also provided by
the classifier.

6. Summary and conclusion
A necessary aspect of feature extractors for pattern

recognition is the image preprocessing required. A
novel digital segmentation preprocessing procedure of
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quite general use was detailed for a ship pattern recog-
nition scenario. Such operations are essential if optical
or digital feature extraction processors are to achieve
good performance. The successful classification of a
real input image using moment features and a unique
two-level classifier was demonstrated. Similar results
were obtained for other real images.
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Unified synthetic discriminant function computational
formulation

David Casasent f ._-_‘7.:

} A most attractive approach to distortion-invariant pattern recognition uses a synthetic discriminant func- - ®

b tion (SDF) as the matched spatial filter in a correlator. In this paper, we (1) provide a general basis function 4
&nd hyperspace description of SDFs, (2) advance a derivation showing the generality of the correlation ma. )
trix observation space that we use in our filter synthesis, and (3) detail a unified SDF filter synthesis tech-

T

nique for five different types of patiern recognition probiem.

I. Introduction

Correlators are well known to be powerful systems
and architectures that can recognize multiple occur-
rences of an object in the presence of noise. Optical
systems using holographic matched spatial filters
(MSFs)! easily perform the correlation function.
However, the performance of a correlator rapidly de-
grades as distortions are present in the input image.
Various approaches have been advanced in recent years
to achieve distortion-invariant pattern recognition.
None has yet demonstrated such performance while
retaining the shift-invariant feature of a correlator. If
shift-invariance is not required, a correlation approach
is still preferable to feature extraction techniques for
distortion-invariant pattern recognition because the
processing gain (PG) of a correlator allows more input
noise to be present.

In this paper, we detail a generalized method to
achieve multiobject shift-invariant and distortion-
invariant pattern recognition using a correlator. This
technique uses a synthetic discriminant function (SDF)
to form the MSF for use in a correlator. The SDF
synthesis technique achieves the distortion-invariance,
whereas the use of an MSF correlator provides the PG
and shift-invariance. This SDF is similar to averaged
filters23 and generalized matched filters.* However,
the filter synthesis and computational technique we
use® are most general. In Sec. II, we discuss this pattern
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recognition problem and SDF synthesis using a modi-
fied hyperspace description. In Sec. III, we describe our
filter synthesis in terms of general 2-D basis functions,
and we show that a correlation matrix observation space
results directly and yields a SDF synthesis technique.
In Sec. IV, we detail the synthesis of five different types
of SDF for different pattern recognition applications
(using our general filter synthesis description). As we
show, all SDFs can be derived from the same basic
matrix-vector equation.

We restrict attention to the use of a conventional
correlator (moditied to use an MSF of an SDF). Insuch
an architecture, the positions of the output correlation
peaks denote the locations of the objects in the input
field of view. This differs from coded-phase proces-
sors®7 in which the location of the output peak deter-
mines the class of the input object. Such processors are
not shift-invariant and require that only one object be
present in the input field of view. The SDF concept we
advance can be viewed as an extension and reformula-
tion of the use of correlators with multiple MSFs (one
per object class) and multiple correlation outputs. As
noted in Ref. 8, one can obtain better performance from
a multichannel correlator by forming a linear combi-
nation of the multiple correlation outputs (compared
to the performance that results if we simply select the
single correlation output with the largest peak value).
Our filter synthesis technique forms one MSF thatisa
linear combination of the MSFs of the different object
classes being considered. However, we form this filter
in the image plane and then by a conjugate Fourier
transform construct the MSF. This approach might
appear to differ only slightly from others. However, as
we show (Secs. Il and I1I), it is much more general (since
synthesis of a SDF directly in the MSF Fourier trans-
form plane restricts the basis functions used to be
Fourier coefficients or exponentials etc.), and it is also
much easier to compute (as we show in Sec. I11).




-I. Hyperspace SDF formulation

A hyperspace description of ar SDF is the moust
conventional pattern recognition approach.? This
approach to SDF descriptions was first advanced in Ref.
10. Conventional pattern recognition uses a feature
vector representation in which each input image is de-
scribed by its projections on different scalar image
features.® Each input image is then described by a
feature vector in a hyperspace (whose axes are the scalar
image features considered to be of importance). In Fig.
1, we show a typical representation of how one might
desire two classes of data to be displayed in a simplified
two-axis hyperspace. Objects in the two classes (rep-
resented by Xs and Os, respectively, in Fig. 1) should
be widely separated, and objects within each class
should cluster in a small region in this display space. In
conventional pattern recognition, the basis functions
or object features (the axes of the hyperspace) are
usually scalar features. In our description, we consider
the use of a hyperspace with 2.D spatial basis functions
as the axes or object features. This will clearly greatly
increase the power of such a pattern recognition rep-
resentation. The major problem is the selection of the
object features (the axes of the hyperspace or equiva-
lently the basis functions) to achieve the desired sepa-
ration of different classes and the clustering of data
within each class. Most technigues that have been
suggested to achieve this are rather ad hoc. However,
our approach is automatic (as will be shown).

We thus consider an advanced and modified hyper-
space in which the basis functions are 2-D spatial image
functions rather than scalars. We retain the same basic
concepts used in conventional hyperspace feature-space
pattern recognition. For example, if a line or a hyper-
plane (shown in Fig. 1) can be drawn that separates the
two image classes, the normal to this plane from the
origin defines the discriminant function to be used. In
conventional pattern recognition with scalar basis
functions, an input object is described by its features,
and these comprise the elements of the feature vector
that describes the input object. When this feature
vector is projected onto the discriminant feature vector,
a decision on the class of the input object is made (based
upon the value of the proyection).

In our modified hyperspace formulation, we retain
the major element of conventional pattern recognition,
the concept of basis functions, discriminant functions,
etc. However, in our formulation, each of these now
becomes a 2-D spatial function. Since the basis func-
tions are 2-D, so is the discriminant function and so is
the input image in our representation. We can simply
project the 2-D input image onto the SDF as in the
conventional case of image and feature vectors. How-
ever, the result will be valid for only one location of the
object in the input field of view. To see this, recall that
our basis functions are 2-D spatial functions; thus each
shifted version of an object corresponds to a new point
in our hyperspace. All these points (for one object) lie
on the surface of a hypersphere (since shifted versions
of an object have the same energy). Clearly, a con-

\
\ surface 3
\-( Surface 2
: \ \ °
'\— Surface 1
] 0 axis
ol =n,

Fig. 1. Simplified two-axis hyperspace description of distortion-
invariant multiclass shift-invariant pattern recognition using a feature
vector and discriminant vector hyperspace concept.

ventional hyperspace description becomes very com-
plicated if shifted versions of the input object are re-
quired to be recognized. Thus, in our modified hy-
perspace description, we retain the simplicity of a single
vector representation of an object and the definition of
the discriminant function as the normal from the origin
to the discriminant hypersurface separating regions
containing different object classes. To provide shift-
invariance, we correlate (a 2-D spatial correlation) the
discriminant function with the input image and use the
hyperspace concept only to synthesize the discriminant
function to be used. Since any shifted version of an
object can be used to synthesize a MSF in a correlator,
we need select only one shifted version of each object
class in our hyperspace representation and for our
discriminant function synthesis. We select the specific
shifted version used for each object class based upon
maximum common information concepts as we detailed
in Ref.11. A maximum common information SDF then
results.

The selection of the specific shifted version of each
object class to be used can often be simply achieved by
colocating the centroids of all the objects. In specific
cases, small shifts from the centroid-centered images
are needed if optimum performance is to be achieved.
In general, sufficient performance results from the use
of centroid-shifted objects alone.!* Since this and other
pattern recognition techniques employ training sets of
data for the different object classes, such flexibility in
the selection of the images used in the hyperspace de-
scription is quite valid and appropriate. The general
approach is described in the simple system diagram of
Fig. 2. We use several different images of each object
class for filter synthesis and to perform the hyperspace
diagram. These images can and usually are different
geometrically distorted views of each object class.
These are referred to as the image training set. They
are used to determine the basis function to be used, to
select the discriminant hypersurface, and hence to de-
fine the discriminant function itself. The training set
of images is chosen to provide a valid statistical repre-
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Fig. 2. Simplified block diagram of the off-line synthetic discrimi-
nant function synthesis from training set data and the use of such
filters for on-line correlation of the SDF with unknown input
imagery.

sentation of each object class. The SDF algorithm itself
provides the discrimination (as we will detail in Sec.
1ID.

This entire filter synthesis operation is performed
off-line on training set images. From such computa-
tions, an SDF h(x,y) is produced, which is then corre-
lated with new input imagery in a MSF correlator as
shown in Fig. 2. This new input imagery is referred to
as test imagery. These test images are not members of
the training set of images. For generality, a prepro-
cessing box is included in Fig. 2. This can perform edge
enhancement, median filtering, or similar operations.
In general, this preprocessing function can be omitted
or restricted to quite simple operations (because of the
processing gain of a correlator).

ll. Correlation Observation Space

In this section, we discuss an automated technique
to select the basis functions and the SDF described in
Sec. I1. The general SDF formulation we employ uses
a correlation observation space. To justify the gener-
ality of this technique, we devote this section to a deri-
vation of it as the most general set of features to be used
in synthesizing and computing a SDF MSF for use in
8 correlator. Our formulation uses a general set of basis
functions and involves an automated technique to select
them. To develop our general SDF synthesis tech-
nique, we consider N training set images of an object in
class one. These N images can represent different
distorted versions of this one object. For simplicity, we
consider the synthesis of an equal correlation peak
(ECP) SDF. This filter function h(x,y) has the prop-
erty that the correlation output of h(x,y) and all images
{fn (x,y)} in class one equals a constant (unity is chosen
for this constant), i.e.,

falz y) (O hixy) =1 (1)

In Sec. IV, we extend the basic algorithm in this section
to other pattern ern recognition applications and other
types of SDF. When the different images {f, (x,y)} are
different geometrically distorted versions of one object
f(x,y), this ECP SDF is appropriate for an intraclass
pattern recognition problem (recognition of any dis-
torted version of an object using a single filter func-
tion).

To develop formally an algorithm for synthesis of a
filter function h(x,y) that satisfies Eq. (1), we describe
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each training set image as a linear combination of a basis
function set ¢, (x,y), i.e.,

fa(x.y) = 3 Gambmix,y) 2)

This follows directly from our hyperspace description
in Sec. Il. We place no specific restrictions on the basis
function set; i.e., we do not assume a Fourier coefficient
basis function set as in Ref. 4 or the use of circular har-
monics as in Ref. 12. The desired SDF is described as
another linear combination of the same basis function
set. This is compatible with the conventional hyper-
space description in Fig. 1 and Sec. II, extended to the
case of 2-D basis functions, i.e.,

h(x.y) = L bmomix,y). (3)
m

Assuming an orthonormal set of basis functions (as
is conventional in pattern recognition), we can substi-
tute Eq. (2) into Eq. (1) and rewrite the ECP SDF
condition in Eq. (1) as

falx ) Oh(xy) =, -h = Tambm = 1. (4)

‘Next we note that since h(x,y) is a linear combination

of the ¢m (x,y) and so is f, (x,y), we can write h(x,y) as
a linear combination of the input training set of images
ifn(x,y)}; i.e., we first write out several of the terms in
Eq. (3):

hix,y) = b1o)(x.y) + badz(x.¥) + ... = Y bnom(x,y).  (5)

From Eq. (2), we can write the basis function set
¢m(x,y) as a linear combination of the training set of
images f,(x,y) as

Om(xy) =3 dmnfnlxy). (6)

Substituting Eq. (6) into Eq. (3), we obtain

A(xy)=b T diafalx,y) + b2 Tdgafalz,y) +. 7)
= e, falx,y) + eaf2(x,¥) + . .. (7a)
- zem/m(x»)" (7b)

m

In Eq. (7a), we have grouped all coefficients of f,, f2, etc.
together and have denoted them by e, ey, etc. The
final result in Eqgs. (7b) and (3) are equivalent; one de-
scribes the SDF in terms of the basis functions [Eq. (3)),
and the other [Eq. (7b)] describes them in terms of the
original training set of images.

We now consider how to determine the e,, in Eq. (7b)
to satisfy our ECP SDF criteria in Eq. (1) or (4). For
notational simplicity, we describe all images [the SDF
h(x,y) and the training set images) by vectors hand f,
or f., respectively. This notation and description
follow directly from the hyperspace model advanced in
Sec. II. We denote the correlation of two such vector
functions by the vector inner product, which we write
simplyasf, - h. Since we use a correlator for our final
object classification, and since any shifted version of an
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‘ image can be used as the MSF in a correlator, there is
no loss of generality in this simplified formulation.
With these preliminaries, the ECP SDF requirement
in Eq. (1) is now written as

f,-h=1 i)

Substituting Eq. (7b) into Eq. (8) for h, rearranging
terms, and defining r,,, as the elements of the correla-
tion matrix R, Eq. (8) becomes

f,-h‘f.-lemfm]=)_'c,..(f,.-f,..’=z_'c,..r,.,.=l. (3)

In matrix-vector form, we rewrite Eq. (9) as
Re =4, (10)

where i denotes the unit vector and where the elements
of the vector e are the e,,, in Eq. (7b) or (9). The solu-
tion for the ECP SDF h(x,y) defined by Eq. (7b) that
satisfies (1) is thus given by the solution to Eq. (10),
ie.,

e=R"'u i1

From this general formulation, we have shown that
a correlation matrix observation space directly results
as an ideal feature space from which to compute the
required coefficients for a linear combination filter such
as an SDF. We note that this formulation used a gen-
eral basis function set ¢, (x,¥), but that in our algorithm
no specific choice for the basis function set was required.
Thus, to synthesize an SDF, we simply form the corre-
lation matrix of the training set of data, invert it, and
multiply it by the appropriate vector 4. This discri-
minant function formulation is thus automatic and does
not require ad hoc selection of certain basis functions
or input features. We first advanced the fundamentals
of this unified correlation matrix observation space
description in Ref. 5. This present description is a re-
vised and more general version of our original algorithm
for synthesis of an averaged filter?? with the removal
of any specific requirements or selection techniques for
the basis functions used. In Sec. IV, we develop a
general formulation along the general description in Eq.
(11) for the synthesis of several different SDF's for dif-
ferent pattern recognition applications.

Many techniques exist by which a general basis
function set can be obtained. In Refs. 2,3,10,and 11,
we used a Gram-Schmidt procedure to select orthogonal
basis functions. In Refs. ¢ and 7 a Fukunaga-Koontz
and Foley-Sammon technique is employed. In Refs.
10 and 13, Karhunen-Loeve transforms were suggested
for similar problems. In Ref. 14, singular value de-
composition techniques were described. Our present
algorithm can accommodate any of these methods, but
by our new generalized description, we require no spe-
cific basis function selection. However, these prior
techniques are useful as intermediate steps in per-
forming the required correlation matrix inversion in Eq.
(11). No specific guidelines for matrix inversion tech-
niques are advanced in this present paper, since we
desire to retain a general description. However, we note
that if R is singular, we employ a generalized inverse,

and if the dimension of R is large, we use several new
computationally efficient methods such as on-line
dominant-image calculation'® and orthogonal-hyper-
plane-projection methods.!®

IV. Generalized SDF Synthesis

In this section, we describe five general SDFs and
detail their synthesis in the form of Eq. (11) and their
use for different pattern recognition problems and ap-
plications. The computational ease with which these
useful pattern recognition filters can be fabricated is
quite attractive. The filters to be described include a
more unified and general description (Sec. IV.A) of the
ECP SDF of Sec. 111 (for intraclass pattern recognition),
a mutual orthogonal function (MOF) SDF (Sec. 1V.B)
for M -class interclass pattern recognition, an MOF SDF
for two-class and multiclass interclass discrimination
as well as intraclass recognition (Sec. IV.C), a new
multiclass MOF SDF using several SDFs (Sec. 1V.D),
and another new simple nonredundant filter (NRF)
SDF for intraclass and interclass pattern recognition
(Sec. IV.LE).

A. Equal Correlation Peak SDFs for Intraclass Pattern
Recognition

The general formulation for the ECP SDF satisfying
the condition in Eq. (1) can be described (for a training
set of N, images and an associated N; X N, correlation
matrix R;) as

a=R;'u;=R;'L, ..., 17, (12)

where the unit vector &; has N, elements (all of which
are unity). The elements of a are the weighting coef-
ficients in the linear combination SDF:

hixy) = ¥ anfnlxy), a3

where the [f,(x,y)}| training set images associated with
the correlation matrix R are different distorted versions
of the same object. This SDF filter h(x,y) when used
in a correlator is thus capable of intraclass distortion-
invariant pattern recognition (i.e., recognition of dif-
ferent distorted views of one class of object). Such an
ECP SDF yields the same correlation output for all
distorted views of one object as required by Eq. (1). In
other extensions of this general SDF synthesis algorithm
to other pattern recognition applications {(beyond in-
traclass object recognition), we begin by describing the
SDF as a linear combination of the training set of im-
ages. Asshown in Sec. III, such a formulation emerges
directly from our hyperspace description.

B. Mutual Orthogonal Function SDF for interclass
Pattern Recognition

Next we consider an interclass pattern recognition
problem (the discrimination between and recognition
of M different objects in M different classes). In this
initial example, we assume one image per object class,
and we consider only interclass discrimination rather
than intraclass recognition of distorted versions of each
object. We describe our training set of M images (one
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’ per object class) by {f,, (x v}, and we denote the M X M
correlation matrix of this training set of databy R,. For
this problem, we desire to produce M SDFs h,, =

hh,. . so that

/,(x,\”‘-}h‘u,'\)=6,,, {14}

Le., [,(x,x) O A, (x,v) is unity only for filter i and image
class j = {. Thus only one of the M SDFs |h,, (x,y}
yields an output of unity, whereas all the M — 1 other
SDFs yield zero outputs. The filter with the unity
output thus determines the class of the input object.

Following our general procedure in Secs. 111 and IV A,
we describe each of these M SDFs as a different
weighted linear combination of all M training set images
[m(x 3) le.,

Ax A=Y amfm(x ), ho(x ¥} = 3 bpfmlxy) ..,
m

Apg(x ) = Y Mofm(xy), {15)

orin general

Az ) = Y Prfmtr.y), (16)

where each summation in Egs. (15) and (16) is over all
M training set images. Following our earlier general
approach, we can write the coefficients a. b, etc. in Eq.
(15) that satisfy Eq. (14) as

aR. =4, =1.000....,0]7, (17a)
bR =4, = {0.1.00. ...0]7, 117b)
cR =4, =1001.0.....0]7 etc {17¢)

Each i,, vector in Egs. (17) has M elements and con-
tains M — 1 zeros and one 1. The location of the single
1 is different in each of the vectors. For ii,, the first
element isa 1; for i, the second element isa 1;etc. The
elements of the different vectors a, b, etc. in Egs. (17)
are the linear coefficients in the corresponding SDF
equations in (15). Thus the M SDFs in Eq. (15) that
satisfy Eq. (14) are described by

a=R:',, b=R3'G, ¢=Rjl. et (18)

As seen by inspection of the d,, vectors in Eq. (17}, filter
h, (described by a) yields unity output for the image f,
of class one and zero for all other image classes. Filter
h- (described by b) yields unity output for the image f,
of class two and zero for all other M — 1 image classes,
etc. This is as required by Eq. (14).

Since all these filter functions are mutually orthog-
onal, we refer to this type of SDF as a mutual orthogonal
filter (MOF) SDF. The problem formulation advanced
above is similar to that of the generalized matched filter
as described in Ref. 4 and the decorrelation matrix filter
synthesis described in Ref. 10. However, our present
formulation is in terms of our general description using
the correlation matrix of the training set of data.

In Ref. 4, the filter function was synthesized from
Fourier coefficients of each object and is thus the fre-
quency-domain filter synthesis dual of the earlier8 use
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of a linear combination of multiple correlation-plane
outputs. Instead of forming a linear combination of M
multiple correlation-plane outputs (each correlation
using an MSF of one class of object), the M MSFs are
synthesized so that onlv one of the M correlation-plane
outputs yvield a peak value near the maximum. Qur
algorithm for synthesis of such filters in Egs. (18) de-
scribes such generalized matched filter synthesis using
the original images rather than the Fourier coefficients
of each image. In Ref. 4, only interclass discrimination
was discussed (rather than intraclass recognition of
distorted views of an ohject). In Sec. IV.C, we will ex-
tend this MOF SDF to include both intraclass and in-
terclass object recognition.

In Ref. 10, a Gram-Schmidt hasis function selection
technique was used to assemble a Gram-Schmidt cor-
relation matrix. In this approach, the first basis func-
tion contains information only associated with the first
image f,; the second basis function contains only the
new image information present in the second image f»
that is not also present in the first image f,; the third
basis function contains the new information present in
fa but not previously included in f, and f; etc. If the
first row and column of this Gram-Schmidt matrix is set
equal to zero (in Ref. 10, this was achieved by multi-
plying this matrix by a decorrelation matrix), all
training set image information associated with f is re-
moved, and the correlation of the filter synthesized from
this reduced matrix will yield zero output when corre-
lated with f,. Extensions of this technique to the de-
correlation of the training set of data for the other object
classes follow directly.

Our present formulation in Egs. (17) and (18) is much
simpler and more easily implemented, and it is cast in
the same general matrix-vector form as that of Eqs. (11)
and (12). Werefer to the SDF in Eqs. (17) and (18} as
an interclass MOF SDF or simply as an MOF SDF.

C. MOF SDF Synthesis for Intraclass and Interclass
Pattern Recognition

We now combine our ECP intraclass SDF (Sec. IV.A)
and our MOF interclass SDF (Sec. IV.B) formulations
to describe the synthesis of an MOF SDF for both in-
traclass and interclass pattern recognition. We de-
scribe the algorithm for a three-class problem, for a
two-class problem, and then we generalize to the case
of an M-class problem. This type of SDF is appropriate
for pattern recognition applications in which the input
object can be a member of several classes and when
different distorted versions of the input object can be
expected. In such a case, we must insure interclass
discrimination between objects of different classes and
intraclass recognition of distorted versions of one object
as members of the same object class. We consider a
three-class pattern recognition problem with N, images
of one object |f,, (x,y)] of class a, N5 images of the class
b object {f,(x,y)l, and N3 images of a class ¢ object
/. (x,y) used as the training set. As before, each of
these training sets of objects consists of different dis-
torted versions of one object.

S T |




We desire to synthesize three filter functions hy{(x,y),
hy(x,y), and h.(x.y) that satisfy

[ X XY O hm(x.,3) = bppm, 19)

for all members i of each separate object class m = n.
We describe the SDFs for our three-class problem as
linear combinations of the entire training set of data
Vn (X,_V)I = Val(xv.")- /h,(x,_\’). fn(I.)’N, i~e--

holxn) =Y apfatxy), hplz ) =3 bafalx,y), hclx.y)

=3 cofatx ), (20)

where all summations in (20) are over the entire N = N,
+ N, + Ntraining set of images. By directly extend-
ing our results in Secs. IV.A and [V.B, we form the full
(N; + No+ Ny X (N + Ny + Nj) correlation matrix
R.. By analogy with Eq. (17), we can then describe the
three SDFs in Egs. (20) subject to the conditions in Eq.
(19) by the vectors a, b, and ¢ (each of dimensionality
N+ N:+Nypas

aR. =4, = [I. L0000, (21a)
bR, =u,=(0. .03, .10.....0]7, (21b)
cR.=u =0, .. 00, ol 17 (21¢)

In Egs. (21), 4,, 4p, and &, each contain Ny + No + N;
elements with only the first N, the central N, or the last
N elements being 1, respectively, and with all other
elements being zero. The matrix-vector constraints in
Eqs. (21) thus correspond to those in Eq. (19), i.e., a, and
hence h,(x,y) is required to have a unity correlation
output for the N, objects in class a and zero for the
other training set images. Similar remarks follow for
b and ¢ and equivalently for the associated filters
hy(x,y)and h.(x,v).
The three SDFs in Eqgs. (20) are thus defined by

a=Rj'd,. b = R;'ds. c = R, (22)

analogously to Egs. (18). They thus satisfy a three-class
intraclass and interclass pattern recognition problem.
The extension to M -classes with N training set images
per class results in an increase in the size of the corre-
lation matrix (to MN X MN) and an increase in the
dimensionality of the coefficient vectors to MN. We
refer to such filters as intraclass and interclass MOF
SDFs or simply as MOF SDFs.

For smaller problems such as two-class pattern rec-
ognition applications requiring intraclass distortion-
invariance, considerable simplifications are possible.®
We can use a single SDF h(x,y) described by

a=R{'4,. (23)

where g, = [1,...,1:0,...,0]7 contains N ones and
N zeros and where R, is the two-class correlation matrix
of dimensionality N, + N, If the correlation peak
output is above (or below) an 0.5 threshold level (half-
way between the two required zero and one output
levels), we choose class one (or class two) for the object
class. Since a zero correlation output or a correlation
output below 0.5 can also result when no input object

is present, this approach in Eq. (23) is appropriate only
in the restricted applications. We can modify Eq. (23)
usingu, = [1,...,1;=1,...,—1]7. Inthis case, if the
correlation peak value is above 0.5 (or below —0.5), we
select class one (or class two) as the object class. Such
an approach is attractive for digital correlators but not
for conventional optical correlators using intensity de-
tectors. (Such correlators provide unipolar correlation
outputs only.) For now. we only note that for two-class
intraclass pattern recognition problems, a single SDF
in general suffices if two different correlation plane
detection threshold levels are used with the class of the
input object determined from the correlation peak
value. Such multilevel nonredundant filter (NRF)
SDFs are discussed further in Sec. IV.D.

D. Multilevel NRF SDFs

We now generalize our three-class intraclass and in-
terclass pattern rcognition example in Sec. IV.C to the
use of a single SDF. This SDF h(x,y) is required to give
outputs of 1, 2, and 3 for :hjects in classes one, two, and
three, respectively.® (Other appropriate constants can
be selected.) We refer to such a filter as a multilevel
nonredundant filter (NRF) SDF. The filter require-
ment is described by

falx VYo hix ) =n, (24

where the correlation output n = 1 for objects |f,(x,y)}
in class one, n = 2 for objects {f,(x,y)} in class two, etc.
With N,;, No, and N; training set images for the three
classes, respectively, h(x,y) is described by

hix,y) =3 amfmix.¥). (25)
m

where [m(x,y) = {f1:(x,¥),f2: (x,y).f3,(x,¥)| contains all
N, + N3 + Njtraining set images and where the sum-
mation in Eq. (25) is over N; + N2+ N3 The vector
a that describes the h(x,y) that satisfies Eq. (24) is

a = Ri'd, (261

where R3isthe (N, + Nao+ N3) X (N + No+ Ny cor-
relation matrix and where 3 = [1,...,1;2,...,2
3,...,3]T contains N, ones, N, twos, and Nj threes.
Extensions of this multilevel NRF SDF to more classes
are straightforward. However, more stringent detector
plane requirements and reduced performance can be
expected as the number of restrictions placed on such
a single SDF filter are increased. Thus, if this tech-
nique is to be used for more than three or four classes
of data, more advanced preprocessing and image
training set selection techniques should be considered.!’
Such issues will be addressed in subsequent journal

papers.

E. K-tuple NRF SDFs

As implied in our discussion in Sec. IV.D, a single
SDF for multiclass intraclass and interclass recognition
is possible conceptually but may not yield acceptable
performance when noise and other issues are included.
The specific nature of the distortions to be considered
and the nature of the different object classes to be dis-

15 May 1984 ' Vol 23, No 10/ APPLIED OPTICS 1625

e o= m




{

tinguished plus the type and amount of noise to be ex-
pected will determine the performance obtained. Ifa
large number of object classes must be considered, the
conventional MOF SDFs (Secs. IV.B and 1V.C) would
require the use of M SDFs (for an M-class problem) and
the scanning of M 2-D output correlation planes. For
such pattern recognition problems, an alternate tech-
nique we refer to as a K -tuple NRF SDF technique may
be more appropriate.

In this SDF algorithm, we consider an M-class pat-
tern recognition problem and the use of only K SDFs,
where K is chosen to satisfy M < 2K. In this case, we
denote the K correlation outputs at the same (x,y)
spatial location in ali K correlation planes by
€1,62, ..., cx. Weconsider the case of binary correla-
tion plane threshold levels of 0 or 1 as in Secs. IV.B and
IV.C. For each correlation plane point, we thus have
a K-tuple binary vector ¢. Using conventional binary
Boolean algorithm encoding, each ¢ vector can thus
represent up to 2K different numbers. In our present
M -class pattern recognition problem, this means that
the corresponding ¢ value can determine to which of M
= 2K classes the input object lies (the object at the as-
sociated position in the input plane). We refer to this
as the K-tuple binary-level NRF SDF or simply as a
K-tuple NRF SDF.

The formal description of such SDFs is best pre-
sented only for a K = 2 filter SDF case, i.e., a four-class
pattern recognition problem. Generalizations beyond
this case should follow directly, but formally writing the
associated matrix—vector equations results in unneeded
notational complexity that will not further advance
understanding of the basic concepts. We thus consider
only an M = four-class intraclass pattern recognition
problem and the use of K = 2 SDFs. We describe the
training sets of data for these four object classes by
f1i(x .y f2i(x,¥)}, etc. We assume that there are N,
training set images in class one, N2 images in class two,
etc. For notational simplicity, we assume N = N, = N,
= N3 = Njyor4N total training setl images. We describe
the full 4N training set of images by }/, (x,y)}, the asso-
ciated correlation matrix by R (it is of dimensionality
4N X 4N), and the two SDFs by h,(x,y) and h,(x,y).

We require the two correlation outputs of the general
input image f(x,y) and the two filters h,tx,y) and
hp(x,y) to satisfy the truth table in Table I. The four
possible combinations of the binary (0 and 1) correlation
plane outputs are used 1o denote in which of the four
classes the input object lies. We use correlation plane
levels of 0 and 1 with noloss of generality. .iithougha
zero vutput level can correspond to no object, this is
easily altered by selecting any other nonzero coefficient
for the desired correlation plane output level in our filter
synthesis equation (as noted at the end of Sec. IV.D).
We denote the two SDFs by

halxy) = T anfalzy),  helxy) = T bafaley),  (27)
where the summations in Eqs. (27) are over the 4N

training set images. In matrix-vector form, we write
the truth table in Table I as
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Tabie t. Truth Table for 8 K-tuple Norwedundant SOF. The Case of
M = &4 Classes ond K = 2 Filters is Shown.

Ohbject \ Filter
class out halx,y) hplx,y)
Y
1 0 0
2 0 1
3 1 {]
4 1 1
0 0
a, b,
) 0 1
|R} : =] - (28a)
g bun 1.0
1 1
or
Rlab} = [2,a2]. (28b)

where R is 4N X 4N, a and b define h, and h; in Egs.
(27) and where the right-hand side vector in Egs. (28)
consists of two column vectors &, and i, with NV element
pairs equal to (0,0), N element pairs equal to (0,1), etc.
The solution to Egs. (28) for the vectors a and b that
define h,(x,y) and hy(x,y) in Egs. (27) to satisfy Table
I or Eq. (28) is thus

llb] = R"l&,dg]. (29)

A variation of this K -tuple NRF formulation was first
advanced in Ref. 18 for coherent optical systems and
then extended to noncoherent optical correlators in Ref.
19. Neither of these formulations used a correlation
matrix observation space to describe synthesis of the
required filter, however.

V. Summary and Conclusion

From Sec. IV, we have shown and detailed how five
different types of synthetic discriminant function for
different pattern recognition problems (intraclass rec-
ognition, interclass discrimination, and both intraclass
and interclass object identification) can be formulated
as the same genera) matrix-vector equation. Specifi-
cally, the vectors that describe the SDFs equal the in-
verse of a correlation matrix R times a control vector
(containing ones, zeros, or other similar constants).
Inspection of Eqs. (11) and (12), (17) and (18), (21) and
(223, (23}, 126), and (28) and (29) shows that all ex-
pressions for such a filter computation and synthesis are
of the same general matrix-vector linear algebraic
equation form.

In Sec. 111, we provided a general description of a
distortion-invariant matched spatial filter and showed
for general basis functions that all such MSF pattern
recognition problems involve inversion of a correlation
matrix and multiplication by a different external vector.
The size of and the elements of the correlation matrix
and the elements chosen for the external vector differ
for specific pattern recognition applications, but the
same general format is retained throughout all types of
SDF for different applications. In Sec. I1, we described
the philosophy and details of SDF synthesis in terms of
a modified hyperspace and feature-vector system.




This hyperspace description (using 2-D basis func-
tions and 2-D discriminant functions), our derivation
of the use of a correlation matrix observation space
(independent of the basis functions used), and the
general unification and detailed description of five
different types of SDF are the original contributions in
this paper. Other variations of these concepts (such as
combinations of multilevel K-tuple nonredundant filter
SDFs) are obvious but were not detailed. Initial ex-
periments?® have showed that the SDFs described
herein give most excellent performance even in the
performance of noise.!” These results and the issue of
training set selection and the theoretical basis for the
performance found using such filters will be the subject
of future journal papers. Our intent in this paper was
to provide the initial details and foundations of a unified
SDF filter synthesis technique for multiclass distor-
tion-invariant shift-invariant pattern recognition.

The support of this research by grants from the Air
Force Office of Scientific Research (AFOSR-79-0091)
and the Internal Research and Development Funds of
General Dynamics Pomona (313614) is gratefully ac-
knowledged as is the original work by Charles Hester
on this topic and many fruitful technical discussions
with B. V. K. Vijaya Kumar.
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Acoustooptic Linear Algebra Processors:
Architectures, Algorithms, and

Applications

DAVID CASASENT, FELLOW, IEEE

Invited Paper

Architectures, algorithms, and applications for systolic processors
are described with attention to the realization of parallel algorithms
on various optical systolic array processors. Systolic processors for
matrices with special structure and matrices of general structure,
and the realization of matrix-vector, matrix-matrix, and triple-ma-
trin products and such architectures are described. Parallel algo-
nthms for direct and indirect solutions to systems of linear algebraic
equations and their implementation on optical systolic processors
are detailed with attention to the pipelining and flow of data and
operations. Parallel algorithms and their optical realization for LU
and QR matrix decomposition are specifically detailed. These repre-
sent the fundamental operations necessary in the implementation
of least squares, eigenvalue, and SVD solutions. Specific applica
tions (e.g., the solution of partial differential equations, adaptive
noise cancellation, and optimal control) are described to typify the
use of matrix processors in modern advanced signal processing.

I, INTRODUCTION

Optical processors have long intrigued researchers and
data processors because of their parallelism, high computa-
tional rates, small size and weight, and their low power
dissipation and cost. Most optical processors have been
special-purpose systems performing Fourier transforms and
correlations. However, in the past three years, more gen-
eral-purpose optical processors have emerged that perform
matrix-vector and various linear algebra operations. These
optical tinear algebra processor architectures exhibit pipe-
lining and both local and global interconnections and are
generally referred to as optical systolic array processors. In
this paper, several architectures and various algorithms for
the use of such systems in various applications are re-
viewed. Because of the parallel nature of these optical
systolic array processors, parallel linear algebra algorithms
are essential and the flow of data and operations in the
system as well as input and output issues merit attention.

Many systolic 1], wavefront [2], and concurrent [3] paral-
lel digital architectures have been suggested in which most

Manuscript received March 1, 1984; revised March 22, 1984, This
work was supported by the NASA Lewis Research Center under
Grant NAG-3-5, the Air Force Office of Scientific Research under
Grant AFOSR-79-0091, and the NASA Langley Research Center
under Grant NAG-1-409, as well as the contractors of Unicorn
Systems incorporated

The author 1s with the Department of Electrical and Computer
Engineering, Carnegie-Melion University, Pittsburgh, PA 15213, USA.

processing elements are standard and in which each
processing element is always kept active as data flow across
the element array. Conventional algorithms (e.g., the Inter-
national Mathematical and Statistics Library, IMSL) are
appropriate for uniprocessors but not for systolic array ar-
chitectures. A wealth of research on algorithms for multi-
processors and parallel algorithms suitable for systolic
processors exist [4). However, systolic architectures are often
devised to implement different algorithms, and the algo-
rithm and system design for complex operations is often
complicated by the requirement to utilize only local com-
munication and yet maintain efficiency in the systolic array.
Thus even within the digital systolic array community, ap-
propriate algorithms for systolic architectures is a current
area of intensive research. No attempt will be made to
review digital systolic architectures and algorithms. Rather,
attention will be focused only on optical systolic processors
and parallel algorithms thus far developed for such systems.
Since research on appropriate algorithms and architectures
for optical systolic processors is still in the formulation
stage, and since different algorithms and implementations
detailed are appropriate for each different optical systolic
architecture proposed, | shall concentrate on the basic
linear algebra operations of matrix-vector, matrix—matrix,
and triple-matrix multiplications, plus matrix inversion, di-
rect and indirect solutions of systems of linear algebraic
equations (LAEs), and matrix decomposition. These repre-
sent the basic linear algebra operations required for more
advanced problems such as least squares, eigenvalue, and
singular value decomposition (SVD) algorithms needed in
advanced modern signal processing.

Optical systolic processors represent an attractive gen-
eral-purpose system for performing various matrix—vector
and linear algebra operations with the high speed and
parallelism of the optics being fully utilized. Since many
image, pattern recognition, and signal processing problems
can and generally are formulated as matrix-vector prob-
lems, such optical processors represent a general-purpose
and flexible system in which one optical processor can
solve a wide variety of problems in many different applica-
tions. By examples and specific case studies, these features
will be shown,

Many different optical matrix-vector processors have
been described as far back as 1965. A survey of these
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architectures is available [5]). Several of the current systolic
architectures advanced in the past two years are reviewed
in Section lI. These are separated into architectures for
matrices with special structure and those for general
matrices. How these various architectures achieve the basic
operations of matrix-vector and matrix-matrix multiplica-
tion is detailed. The solution of systems of linear algebraic
equations is a central problem in engineering and computa-
tional mathematics. Thus the basic indirect (Section 1t) and
direct (Section 1V) parallel algorithms for this fundamental
operation are reviewed and optical implementations for
each are detailed, with attention to pipelining and flow of
data and operations in the system. The extension of these
basic operations to advanced problems such as least square,
eigenvector, and SVD solutions are then briefly reviewed
(Section V). Three specific applications are then briefly
discussed to detail how the basic operations (the vector
inner product, matrix-vector multiplication, and the solu-
tion of systems of LAEs) and matrices with special structure
arise. The applications chosen include: the solution of par-
tial differential equations (Section VI-A), adaptive noise
filtering (Section VI-B), and optimal control requiring the
solution of quadratic matrix equations (Section VI-C). Accu-
racy and performance issues are then addressed together
with a summary and conclusion in Section VII.

. OPTICAL LINEAR ALGEBRA PROCESSOR ARCHITECTURES

A plethora of optical matrix-vector and systolic architec-
tures have been described in the past several years. These
include: the original Naval Ocean Systems Center (6], Stan-
ford [7), and Carnegie-Mellon University [8] systems, beam
modulator systems using change-coupled device (CCD) shift
register detector readout [9], beam modulator systems
without CCD shift register readout [10], banded and Toep-
litz matrix acoustooptic (AO) systems [10], iterative AQ
systolic architectures [10], vector outer product systems using
time-integrating detectors and crossed AO celis or two-di-
mensional (2-D) spatial light modulators (SLMs) [11], an
engagement-mode processor using multichannel AO cells
[12), frequency-multiplexed AQ processors [13), an engage-
ment-mode (RUBIC) cube processor using 2-D SLMs {14],
and architectures combining one-dimensional (1-D) and
2-D SLMs [15]. Many optical systolic architectures for im-
proved accuracy and performance have also been de-
scribed. These include: accurate vector outer product
processors {16]), an accurate RUBIC cube processor [17],
architectures using 1-D and binary 2-D StMs [18], and an
accurate engagement-mode processor using multichannel
AQ cells (the systolic AO binary convolver, SAOBIC) [19].
Several of these architectures are reviewed elsewhere in
this issue [20], [21].

tn this present paper, only analog optical systolic
processors using single-channel AQ cells are considered
(such systems are readily available with present component
technology). All of the systems and algorithms described in
this paper can be extended fairly directly to use multichan-
nel AQ cells and binary 2-D SLMs. Such extensions increase
the number of operations performed per second. It appears
best to use the added dimension of such systems to achieve
improved system accuracy (as accomplished, for example,
in the SAQBIC architecture {19)) rather than increased com-
putational rates [22]. The method by which such advanced
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optical systolic processors achieve digital accuracy uses data
encoding and the basic algorithm for digital multiplication
by convolution first described in {23] (and first applied to
optical architectures in [24]). Examples of several such archi-
tectures are described elsewhere in this issue {20}, {21].
Initial laboratory demonstrations have been provided for
several of the architectures and algorithms described {¢]-[8),
[18], [22), [25). Many of the optical systems noted above
produce 2-D output data in parallel. Use of such systems in
most applications requires advanced detector readout
methods with parallel A/Ds, detectors, and paraliel high-
speed post-processing logic. In incorporating such 2-D out-
put systems into the algorithms described, parallel readout
of one row or column of the 2-D output is assumed. in the
block diagrams that will be used to describe the various
algorithms and architectures, a generic optical systolic
processor that performs one matrix-vector multiplication
every bit time T is assumed (with a paraliel linear input
and a paralle! linear output array). With associated modifi-
cations, most of the algorithms described can be imple-
mented on the various optical systolic array processors
(with associated modifications to the data flow and compu-
tational time, depending upon the specific processor used).

A. Systems for Matrices with Special Structure

As the first class of AO systolic processors, we consider
systems suitable for matrices with special structure. The
system of Fig. 1 consists of N point modulators who<c

POINT AO CCD SR
MODULATORS CELL DETECTOR

a; 0 8 0 ”Dé >

0 2y 0 o8y, "Dé }
©c b, 0 bx—>J Ab=d

2

Fig. 1. Simplified schematic of a banded-matrix optical sve-
tohic processor using CCD shift register (SR) detector readout
(adapted from [9])

outputs are imaged through different regions of an AQ .ell
and onto different output detectors. AO cells and conven-
tional AQ architectures are detailed elsewhere [25]. but a
simplistic description is included herein for completeness
tlectrical data fed 10 an AO cell are converted to an
acoustic wave which travels the length of the cell and
introduces spatial and temporal variations in the dielectric
constant of the acoustic material. When the data reach the
end of the cell, they are absorbed. When the cell is il-
luminated with light, the amplitude or intensity of the hight
ieaving the cell is modulated spatially in proportion to the
strength of the acoustic field in the cell (i.e., proportional to
the strength of the input electrical signal). and the hight
leaves the cell at an angle proportional to the spattal
frequency of the acoustic signal (i.e, proportional to the
frequency of the input electrical signal) These two proper-
ties of AQ cells will be employed in the various architec-
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fig. 2. Simplified schematic of a banded-matrix and Toeplitz-matnx optical systolic
processor [10] with only a single detector. This architecture extubits local and global
interconnections and performs a vector inner product as 1ts basic operation

tures described. For simplicity, we will omit the details of
the single-sideband filtering required in such architectures.
With respect to Fig. 1, the elements of the vector are fed
time-sequentially to the AQ cell. Each vector element is
assigned a given time slot in the input electrical signal and
the electrical power in each time slot is proportional to the
desired vector element value. We denote the length of the
AO cell in time by 7, and the time duration of each data
packet or vector element by Tg. For simplicity, we assume
N = T,/ Tg data packets or pulses can be present in the cell
un practice, some time spacing, i.e., a guard band, will be
required between data pulses). The parameters N and T,
are set by the time-bandwidth product (TBWP) of the AQO
cell, TBWP = T,W, = 1000 being a typical value, where W,
1s the bandwidth of the cell We consider the use of the
system of Fig. 1 to form the matrix-vector product Ab

a,, b, d,
a, a,, O bJ d.
a, a, a, b, d,

a,, a,, dy,

O dey  dgy dg

where the matrix A is banded We denote matrices and
vectors by bold face upper and lower case letters, respec-
tively. The bandwidth of the matrix is the number of non-
zero diagonals (three in (1)).

The matnx-vector product in (1) can be accomplished
optically on the system of Fig. 1 by feeding the vector b to
the AQO cell time-sequentially as shown and the three
diagonals of the matrix as time-histories to the three input
point modulators. The data modulation on the electronic
time-history input signals for this case is shown in Fig. 1
(time increases from right to left in the figure). New data
enter the system every Tg with zero-valued data packets of
duration T, placed between each vector and matrix ele-
ment. When the input point modulators are pulsed on, the
ight intensity leaving the AQ cell is the point-by-point
product of the input data to the point modulators and the
associated RF input to the AQ cell These point-by-point
products are collected on separate output detectors. The
contents of the output CCD detector array are then shifted
down by one and at the next 7, the new point-by-point
products are added (by charge accumulation) to the shifted
data previously present on the detectors. It is easily shown
that the time-history output from the single channel on the

CASASENT ACOUSTOOPTIC LINEAR ALGEBRA PROCESSORS

linear detector CCD shift-register (SR) array is seen to be
the desired matrix-vector product Ab = d in (1). This first
AQ systolic processor architecture was described by Caul-
field et al. [9) earlier. At each point in the AO cell (opposite
an input point modulator), the system performs a multipli-
cation, and on the associated output detector this scalar
product is added to a prior value obtained from the neigh-
boring local element. In this sense, this architecture is the
optical equivalent of a conventional digital systolic architec-
ture [1].

Another AO systolic architecture for multiplication of a
banded matrix by a vector, described by Casasent [10], [13].
is shown in Fig. 2. In this system, the nonzero elements of
each row of the matrix are fed one row at a time in paralle!
to the input point modulators and the vector data are fed
time-sequentially to the AO cell. Each T, the elements of
the input matrix row are multiplied by the corresponding
elements of the vector b, and the sum of these scalar
products is produced on a single output detector. The
integrating lens shown achieves this summation of partial
products. Thus each Ty, this architecture multiplies one row
of the matrix by the associated elements of the vector b
and thus one element of the Ab = d vector is produced
each Tg. Other techniques to perform banded matrix-vec-
tor multiplications exist that avoid the need for the CCD SR
detector readout required in the beam-modulator architec-
ture of Fig. 1. The system of Fig. 2 is the simplest since it
requires only one output detector. Such architectures are
quite attractive for banded matrices since the number of
input point modulators required only need equal the band-
width of the matrix, and only one output detector is neces-
sary. Such processors exhibit the loca!l interconnection fea-
ture of digital systolic processors together with a globa!
interconnection feature unique to optical systems (i.e., ad-
dition of all separate element products by use of an in-
tegrating lens). The system of Fig. 2 thus performs one
vector inner product each T, of time. In designing optical
systolic array architectures, the unique global interconnec-
tion features, which have served optical processing systems
very well in the past, should not be abandoned, and thus
optical systolic architectures should not attempt to emulate
the various digital systolic architectures that are proposed.
The subsequent optical systolic architectures to be de-
scribed make use of this philosophy.

Let us next consider an optical systolic processor to
multiply a vector by a Toeplitz matrix (the elements along a
diagonal are constant in a Toeplitz matrix, i.e , the elements
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Fig. 3. Simplified schematic of a Toeplitz-matrix optical systolic processor [10] for matnices

with large bandwidths

of each row of the matrix are the same shifted by one
position). In this case, the architecture of Fig. 2 again
suffices [10). Now, the nonzero elements of one row of the
matrix are fixed inputs (constant with time) to the input
point modulators, and the vector data are fed to the AO
cell. Each Tz, one row of the matrix is multiplied by the
corresponding vector elements (the AO cell achieves the
time-delay shift required to align the matrix elements with
the proper vector elements automatically) and summed (by
the integrating lens) to produce one element (a vector inner
product) of the final matrix-vector product on a single
output detector every Tz. The number of input point modu-
lators required and the TBWP needed for the AO cell are
determined by the size of the matrix,

An alternate architecture devised by Casasent [10] for the
multiplication of a vector b by a Toeplitz matrix A is shown
in Fig. 3. In this system, the elements of b are fed time-
sequentially to one input point light modulator whose
output uniformly illuminates an AO cell fed with the data a
in one column of the Toeplitz matrix A. The light distribu-
tion leaving the AO cell at each Tz is a scalar-vector
product, i.e., ba, (where the input to the point modulator
b, is the associated element of the vector b, and a, con-
tains all of the elements of coiumn n of the matrix A,
properly apertured). This ba, product is imaged onto a
linear output detector array. At the next Tz, b,..,a,,, is
formed and added to the previous scalar-vector product.
Thus after NT; (the integration time of the detector) the
entire matrix-vector product Ab = d is present on the
output detectors. This Toeplitz matrix-vector product is
thus achieved as

Ab=(a, ---a][b,--- b)) =ba +ba,+ - =aebh

6]

where a, is the nth column of the matrix A and b, is
element n of the vector b Since all columns of A are
shifted versions of each other, the matrix-vector product is
simply the convolution of the elements of b and the
elements of one column a of A. We denote this by a# b in
(2) (where « denotes convolution). This formulation of a
matrix-vector product as a convolution is also employed in
many high-accuracy digital optical systolic processors.
Persons familiar with AO signal processors will recognize
the system of Fig. 2 as a space integrating AO correlator and
the system of Fig. 3 as a time integrating acoustooptic
correlator. These architectures have existed and have been
used for correlation signal processing for many years (25}
Thus in retrospect, optical signal processors have used sys-
tolic architectures for many years (but under different
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names). The architecture of Fig. 3 is preferable for Torplitz
matrix applications when the bandwidth of the matrix is
large, and the architecture of Fig. 2 is preferable when the
length of the vector is large. Since convolution is commuta-
tive, the roles of the matrix and vector can be reversed in
either architecture, as the application or system fabrication
merits.

8. Systems for General Matrices

The architecture of Fig. 1 (or an associated architecture
with parallel readout detectors) can be extended to handle
general matrices at a significant increase in computational
difficulty. The architectures of Figs. 2 and 3 are most ap-
propriate for matrices with special structure (banded or
Toeplitz). Special techniques for circulant matrices (as arise
in FFTs) and other matrix structures are also possible and
follow directly from conventional linear algebra. In this
subsection, we discuss optical systolic processors suitable
for the multiplication of a general matrix by a vector (i.e,
when the matrix has no specific structure). The two major
architectures considered are an AO modulator and an AQ
modulator-deflector. The modulator system is analogous to
that of Fig. 1 but with separate detectors with parallel
readout (and a rearrangement of the method for feeding
data to the system). This system is described elsewhere [20]
and is thus not detailed here. Rather, the frequency-multi-
plexed modulator-deflector architecture of Fig. 4 is de-
scribed. In this latter system [13], M input point modulators
are imaged through M spatially separated regions of an AO
cell, and the Fourier transform of the light distribution
leaving the AO cell is formed in the back focal plane of the
lens where it is sensed by a linear output detector array
with parallel outputs. This system is thus topologically iden-
tical to that of Fig. 2 with the addition of parallel output
detectors. For simplicity, only five input point modulators
are shown in Fig. 4.

We describe the operation of the optical systolic processor
in Fig. 4 for the case when M signals (vectors), each of
length N and each on a separate temporal frequency., are
present simultaneously in the AO cell. We refer to this as
frequency-multiplexing of the input AO cell data. \Vvhen
the N input point modulators are pulsed on in parallc!, the
associated input vector multiplies all M vectors in the AO
cell. This produces the elements of M separate vector inner
products. Each vector inner product will leave the AO cell
at a different angle (proportional to the temporal frequency
used for each of the M input signal vectors to the AQO cell)
The Fourier transform lens thus forms each of these M
vector inner products on M separate output plane detec
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muttiplication as 1ts basic operation

tors. i e, the system performs a matrix-vector multiplication
in parallel each T, of ime. During the next Ty, the matrix
data in the AO cell shift up by Tz At this time, N input
po:nt modulators (spatially shifted up by one) are pulsed on
with new vector data and a new matrix-vector product
(with the same matrix as before) is formed in parallel on the
output detectors After MTg, a matrix-matrix product has
been formed as M matrix-vector multiplications (one per
Tg). For square matrices (M = N), N? is the required TBWP
of the AO cell. The motivation for this architecture devised
by Casasent et al. [13] was that an AO modulator architec:
ture requires N’ = TBWP input point modulators and out-
put detectors to fully utilize the processing capability of the
AO cell. In the AO modulator-deflector system of Fig. 4,
the bit time T, and AQ cell bandwidth W, are traded
(TW, = N° = TBWP is fixed). The resultant frequency-mul-
tiplexed architecture is easier to fabricate, can use larger Ty
intervals, and performs a more intensive basic operation
(matrix-vector multiplication versus a vector inner product)
each T, For an N X N matrix-matrix muluplication, we
require an AO cell with TBWP = N?, 2N — 1 input point
modulators, and N detectors. If the input point modulators
are pulsed on with new vector data faster than every Tg,
higher computation rates are possible, and the modulator
and deflector architectures achieve the same computation
rate, with the associated need to feed input data and
collect output data at a faster rate.

We now discuss how all of the basic linear algebra
operations required can be accomplished on the system of
Fig. 4 by various data encoding choices. If the matrix A is
fed to the point modulators one row at a time in parallel,
i.e., with its elements a,,, time and space multiplexed as
a[t, x], and the vector b is fed time-sequentially to the AO
cell, i.e., with its elements b, encoded as b{t], then the
matrix-vector product Ab = ¢ is formed one element ¢, at
a time as c(t) on a single output detector. In this case, the
degenerate system of Fig. 2 is adequate (or Fig. 4 without
frequency multiplexing and with only a single output de-
tector used). In the case when A is fed one column in
parallel per T, to the AO cell, i.e, its elements a,, are
encoded as a,,, = a[f,t] and all elements b, of b are fed in
parallel to the point modulators as b, = b{x] (ie,
space-multiplexed), then the matrix-vector product Ab = ¢
is formed in parallel in space on the output detectors, ie.,
as ¢, = ¢(x). In eftect, the AO cell converts time to space

CASASENT ACOUSTQOPTIC LINEAR ALGEBRA PROCESSORS

fig. 4 Simphitied schematic of a frequency-multiplexed generai-matrix acoustooptic (AO)
systolic processor [13) with both local and global interconnections and with a matrix-vector

(ie., t — x), and the Fourier transform lens behind the AO
cell converts temporal frequencies to spatial coordinates
(e, f— x). Next, we consider matrix-matrix multiplica-
tion. If A is fed to the AO cell one row at a time as
a,m ™= alt, f] and B is fed to the input point modulators as
bn = b[t, x], the matrix product BA is produced one row
at a time in parallel on the output detectors. With the
opposite encoding, a,,, = a[f,t] and b,, = blx,t], the ma-
trix product AB is produced one column at a time in
parallel on the output detectors. Reference {20] provides a
tutorial description of the frequency-multiplexed architec-
ture of Fig. 4 for those readers less versed in optical Fourier
transforms.

In Table 1, we summarize the various operations that
result from the different possible encoding choices. The
two matrix-matrix multiplication techniques, with the
product matrix fed back to the AO cell and a new matrix C
fed to the input point modulators, produces the triple-ma-
trix products CBA or ABC. Various other operations can be
performed on this system using these basic functions. These
are noted under applications in Table 1. Subsequent sec-
tions will detail each of these. They are included in Table 1
at this time for completeness. In general, these operations
are accomplished by feeding back the output of the system
to the AO cell or the input point modulators. In subsequent
sections, we will assume that the matrix to be processed
can be accommodated in half of the AO cell and that one
row or column of it can be accommodated by half of the
input point modulators. If this is not the case, matrix parti-
tioning techniques are required. Such issues are not in-
cluded at present to simplify description of the algorithms
and architectures.

Other encoding schemes are, of course, possible, but
have thus far not been found useful. These include: a)
A = a[t,f] and b[x], which yields A'b in parallel; b) A =
a[t, f] and B = b[x, t), which yields A'8; etc.

111, PARALLEL SYSTOLIC INDIRECT ALCORITHMS FOR THE
SOLUTION OF SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

A wealth of literature exists on various algorithms for the
solution of systems of linear algebraic equations (LAEs),
where we wish to find the vector solution

x=A""b 3)
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Table 1 Format Control for Flexibility and Data Flow in Fig 4
Operation Notation AO Cell Modulators Applications
Banded Matrix Multiplication
Matnx-Vector Solve Banded Matnix Problems
Multiplication Ab b = bjt) A= g[t x] Solve Trnangular Matnix Problems
(Feedback to AO Cell or Point Modulatory)

Matnx-Vector A= a(tl) Solve Toeplitz Matrix Problem
Multiplication Ab b= b(t) (one row) (Feedback to AQ Celly
Matrix-Vector A= a(t) b= b(1) Solve Tuephtz Matrix Problem
Multiplication Ab (one column)  (senally) (Feedbadk to Point Modulators)
Matrix-Vector Solve Systems of LAES
Multiplication Ab A= alft) b= b[x] (Feedback to Point Modulators)

Taple Matrix Product CBA
Matrix~Matrix LU Matnix Decomposition
Multiphication BA A=a[1f)] B=bltx] Direct LAES Solution by LU or QR

Least Squares Solution by (L or QR
(Feedback to AQ)

Triple Matoix Product ABC
Matrix-Matrnx (Feedback 1o AQ)
Multiplication AB A= a[ft] 8= bix, t} QR Matrix Decomposstion

Without Vector Quter Product Processor
(Feedback to Point Modulators and AO Cell
to the matrix-vector equation In (6) and (9), w is an acceleration or <.aling paramet: « that
Ar=b (4) regulates the rate of convergence and approprately scales

where all vectors and matrices are assumed to be of order
N (i.e, the order of the system of equations) throughout
this paper. This one problem is central to many image and
signal processing applications, and thus we detail various
solutions for LAEs in this and the next section. The material
in Sections 11 and IV draws heavily on several surveys of
operations achievable on optical systolic processors [26],
[27] and associated journal literature [8), [28]-[30] As de-
tailed by Rice [31] and others, the two major classes of
solutions to systems of LAEs are direct (matrix decomposi-
tion) and indirect (iterative). Direct algorithms are discussed
separately in Section IV,

Four linear iterative algorithms to solve the LAEs Ax = b
can easily be identified. These solutions emerge from the
additive splitting of the coefficient matrix into

A=D-L-U (5)

where D is a diagonal and nonsingular matrix, L is lower
triangular (elements only on and below the main diagonal),
and U is upper triangular. The four iterative algorithms then
become [26], [27], [32], [33]: the Richardson algorithm (also
called simultaneous-displacement or semi-iterative, de-
pending upon whether w is constant with j)

x(j+1)=x(j) - wAx(j) + wb (6)
the Jacobi algorithm
x(j+N)=[D'(t+V)]x(j)+D b 7)

the Gauss-Seidel algorithm

w(j+1)=[(0-0) vy« (D-0)"6 (9)
and the successive overrelaxation (SOR) algorithm

x(j+1) = {(D- o) '[(1 - w)D + wU]}

x(j) + w(D - wl) " 'b. 9)
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the eigenvalues to insure convergence The choice of one
of these four iterative algorithms depends on many tactors
that are highly application and problem dependent (e g

convergence of the algorithm, the dynamic range of the
matrices, the number of iterations required, and the ease of
implementation). The Gauss-Seidel algorithm n (%) 1s
equivalent to the SOR algorithm in (9) when w =1 Con-
vergence of the algorithms in (7)-(9) requires that A have
various specific properties [32], [33] In (6). A mu«t be
completely stable or unstable; in (7), A must be strongly
diagonally dominant,; and in (8) and (9), A must be poutive
definite (i.e., have only positive eigenvalues). Calculation of
w in (9) imposes other matrix conditions [32], [33]. We have
chosen to concentrate on the Richardson algorithm in (6)
because selection of w for stability and cunvergence is
quite easy, because convergence is insured when A (or
— A) is stable (i.e., when all eigenvalues lie strictly in the
left (right)-half plane), and because its optical implementa-
tion is easy to detail. The selection of w and stopping
criteria are discussed later,

To understand how such iterative algorithms are imple-
mented using matrix-vector processors, let us consider the
use of (6) to solve Ax = b. At iteration one, we usc our
initial estimate x(0) of x and form Ax(0) (this requires a
matrix-vector multiplication). We then subtract this from
the vector b, multiply the result by w, and add x(0) to the
result. This produces the right-hand side of (¢) and hence
our next x(j = 1) estimate, which is then fed back to the
input of the system. We then repeat the above operations
with x = x(1). These iterations continue until x(;+ 1) =
x(/). Stopping criteria for iterative algorithms are discussed
below. When x(j + 1) & x(j). we see that (b) reduc~ e« to
Ax = b, where x = x(j), and thus the resultant x i« the
solution x = A~ 'b 10 Ax = b. This iterative algorithm thus
requires successive matrix-vector multiplications and vector
addition at each iteration. The basic element of a processor
to iteratively solve LAEs is thus a matrix~vector multiplier
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Let us now consider the use of i::-* systems of Figs. 2-4 to
realize the iterative solution in (6) to systems of LAEs. For
the banded-matrix architecture of fig. 2, the matrix is fed to
the input point modulators and the vector to the AO cell
and a new vector element is produced at the output detec-
tor each Tg. The aperture time T, = NT; for the AO cell is
often such that N is much larger than the bandwidth of
panded matrices. Thus the input point modulators can be
located at appropriate positions near the upper end of the
AO cell and the lower portion of the AO cell can be used
to store the calculated vector elements as they are pro-
duced. In this case, newly produced vector data (one ele-
ment per Tg) at the output are used to produce the right-
hand side of (6) and are then immediately fed to the new
data slot available at the bottom of the AO cell. Such an
architecture is shown in Fig. 5 for the system of Fig. 2 (a
degenerate case of Fig. 4 with one output detector). This
system requires only one detector, a one-channel resistive
subtractor and adder, and a single operational amplifier [10].
To teratively solve a set of Toeplitz LAEs, the systems of
Figs. 2 or 3 can be used as the basic block with feedback to
the AO cell [10).

Next, we consider the solution of LAEs with general
matrices without special structure. In this case, the architec-
ture of Fig. 4 (or similar ones that produce one matrix-vec-
tor multiplication per 7,) is considered as the basic element
in the system. For the specific system of Fig. 4, the vector
() data are fed in parallel to the input point modulators
and the matrix A data are fed to the AO cell as a[f, t]. After
the matrix data have been loaded into the AO cell (after a
latency time NTg), the elements of the vector x(j) are
applied to the input point modulators. immediately, the
matrix-vector product Ax(j) is produced in parallel on the
output detectors. This output matrix—-vector product is read
out in parallel, operated upon by the N elements of the
vector b, etc, to produce the right-hand side of (6) in
dedicated analog hardware. The new x(j + 1) vector data
are then fed back to the input point modulators in parallel.
At the next T, bit time, the next iteration occurs. Thus, one
ieration occurs every Tg, and the data tlow in the system is
such that the processor is kept fully active, i.e., the data-
handling requirements of the output vector data produced
and the input vector data required are simultaneously satis-
fied by the feedback arrangement in a system which is
easily synchronized. The associated architecture and data
flow for this algorithm are shown in Fig. 6. The system of
Fig 5 employs the data encoding scheme in line one of
Table 1, and the system of Fig. 6 uses the encoding noted in
hine two of Table 1. After NT; of time, the system of Fig. 6
has performed N iterations of the Richardson algorithm in
(6) M the problem 15, such that the iterations will not
converge sufficiently in this amount of time, then the
matrix contents of the AQ cell are constantly recycled; i.e.,
a< matrix data reach the upper end of the cell, the associ-
ated new matnx data are immediately reentered into the
bottom of the cell. The length of the cell need only satisfy
T, = NTg (where N s the size of the matrix to be processed),
and only N nput point modulators are required [34]. In the
case where the aperture of the cell satisfies 7, = 2NT,, new
matrx or vector data can be entered into the bottom of the
cell as required for the next operation following the solu-
tion of the LAEs. As we briefly discuss in Section V, the
solution of LAEs is rarely the only operation to be per-
formed in advanced modern signal processing. As further
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A+ alt,x) :

Fig. 5. Simplified schematic of an optical systolic processor
[10] to solve banded-matrix LAEs by indirect algonthms
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fig. 6. Simplified schematic of an optical processor {13] to
solve LAEs with general matrices using indirect algorithms

extensions of iterative algorithms, we note that (6) and the
associated processors can also be realized for the case
when A, b, and w are time-varying functions of the itera-
tion index j. This extension allows the general LAEs solution
presented to be extended to time-varying stochastic gradr-
ent-following algorithms 1n adaptive filtering and signal
processing.

Experimental demonstrations of the algorithm in Fig 4 for
a Toeplitz matrix in a deconvolution apphication [10] and for
the system of Fig. 5 for a full matrix [34] have been reported
Werative algorithms require attention to stability, con-
vergence, the choice of w, and the stopping criteria. These
issues are problem dependent but easily obtained given the
available a priori problem specifics. Iterative algorithms
appear essential for the so’ tion of eigensystems and for
singular value decomposition, as noted in Section V, and
thus much future work on such algorithms is expected In
general, the successful use of iterative algorithms requires
slight application-dependent algorithm and matrix modifi-
cations. Specific examples will be detailed in future publi-
cations. However, several general guidelines are advanced
below.

Let us now address the general guidelines for parameter
selection in indirect algorithms. We will consider selection
of w and the stopping criteria. For such analyses, we be-
lieve that one should utilize deterministic engineering tech-
niques and digital simulation rather than formal mathe-
matical analyses (since formal analyses are valid only
“in-the-limit”) and develop tight upper bounds from ana-
Iytical models to characterize convergence of the algorithm
{27]. We will first develop the general expressions for the
case of the iterative algorithm in (6) and then separateh
address selection of w and the stopping criteria We first
note that the right-hand side of (6) weights the difference
between the calculated solution x(j) at iteration ; and the
weighted error w[Ax(j) — b] in the exact solution The
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algonthm successfully reduces this weighted error. This is
best seen by writing the computational error e(j) at the jth
iteration as the difference between the calculated solution
x(J) at the jth iteration and the exact solution x* = A 'b
The error vector is thus

e(j) = x(j) - x*. (10)
The error vectors on successive iterations can be related by
e(j+1)=[1- wAle()). ()

After j Richardson iterations, the error e(j) is related to the
initiahzation error e(0) by

e(j) = [1 - wA]'e(0). (12)

To facilitate selection of a fixed number / of iterations, we
require a tight upper bound on the norm of the computa-
tional error in (12). The classic upper bound is

le(HiE < Hl?— wA]llle(0)IL (13)
Let us now consider the choice of w and then return to

evaluating (13). It is well known [35] that for the eigenval-
ues of [ — wA] 10 be less than unity, one uses

wE‘]/Amax (14)

and that A ,, of A is bounded by the Euclidean norm as

max

M N LV
Am,.<||A||=[): ):ai.,,] . (15)

Mmel ne)
Since the upper bound in (15) is weak, we select

w = p/llA|l (16)

where p is a problem-dependent constant greater than two
In our algebraic Ricatti equation (ARE) solutions (Section
Vi-C), we have emperically {8), {36] selected p =3 and
consistently achieved excellent performance in over ten
cases investigated

tf A 1s symmetric and w satisfies (14), the norm ||I - wAl|
in (13) is well approximated [33] by the spectral radius (the
largest eigenvalue, 1n absolute value) of [/ - wA]l. iec. by
(1 -~ 1/0). where the condition number C = A ... /A . (the
ratto of the largest to smallest eigenvalues of A, in absolute
value) Substituting this into (13), we obtain

Ne(N < [V ~1/C(A)] 1e(0)lI = exp [ -/ C(A)]lie(0)II
(17)

Equation (17) describes the performance (convergence) of
the Richardson algorithm for | iterations. We see that it is
determined by C and thus from an estimate of C we can fix
the number of iterations at a constant number J to achieve
a given accuracy or error in (17). Selection of a fixed /[ is
quite problem-dependent. In our work in Section VI-C we
found

J=30C (18)

has yielded excellent performance for those cases consid-
ered. In specific cases, i.e., if A is the covariance matrix, C
can often be approximated by the ratio of the strengths of
the signals expected 37]. Since the exact answer is rarely
known and in some cases an estimate of C is not easily
obtained, one can simply continue the aon until the
norm of the differencc between successive sterates 1s below
a preset error th - ;hold [3«). Goodman and Song {38] have
shown that this approach is also helpful in reducing the

838

effect of noise in an optical iterative processor. As noted at
the outsel, the effective use of iterative algorithms is very
problem-dependent and merits further research

1V, PARALLEL SYSTOULIC DIRECT ALGORITHAS FOR THt
SOLUTION Of Systems OF LAES

The iterative solution of LAEs (Section i) was an obvious
choice for the initial optical matrix-vector processors using
fixed 2-D spatial masks to store the matrix data spatiaily (8]
However, with the advent of systolic processors uaing AQ
cells, a different algorithm philosophy (direct solutions to
LAEs) emerged [39], [40]. Since the matrix data 1n < tolic
processors shift through the AQ cell one row or columin per
Tg. a new vector row or column of a matrix must be fed to
the AO (or other) transducer every Tg (i.e., the matrix in an
optical systolic processor must be updated each T;) Re-
search on direct algorithms for the optical solution of LAEs
and for matrix decomposition is thus quite new. Howver,
parallel algorithms for LU [28]), QR [29]. and Cholesky [28)
matrix decomposition and parallel algorithms for the <olu-
tion of triangular LAEs [30] and general LAEs using optical
systolic processors have been detailed and published during
the past year. In this section, we summarize this research. In
Section V, we discuss various possible extensions of these
initial matrix decomposition algorithms to more advanced
optical systolic processors.

The general philosophy in matrix decomposition solu-
tions to LAEs is to convert the given Ax = b LAE problem
into a simpler one where the new matrix has specific
structure that allows the solution of a simpler matrix-vector
equation (by easily implemented techniques such as for-
ward or backward substitution). Most matrix decomposition
techniques are variants of Gaussian elimination. The two
conditions used in the various Gaussian-elimination-based
algorithms are that: 1) the elements of any row of the matrix
A can be multiplied by a nonzero real number, and 2) a
constant multiple of any row can be added to the associ-
ated elements of any other row. All matrices produced by
these operations are equivalent. The two classic direct LAE
solutions are LU (triangular) and QR (orthogonal) matrix
decomposition. We thus discuss these two algorithms and
their optical systolic processor realization in this section In
Section V, we discuss advanced applications of other de-
composition algorithms to other modern signal processing
problems.

in LU decomposition, the matrix A in the original Ax = b
problem is decomposed into a lower L and upper U trian-
gular matrix, where the diagonal elements of L are all “1”
and the resulting decomposition is unique. Thus the origi-
nal Ax = b problem (where x is unknown) becomes (sub-
stituting A = LU) two problems. First, one can solve LUx =
b for y = Ux and second solve Ux = y for x, where U and
y are known from the LU decomposition and the first
triangular system solution in step one. Each of these sub-
problems requires the solution of a lower or upper tnangu-
lar system of equations. This is trivial on-line in dedicated
digital hardware. In QR matrix decomposition. the matrix A
is factored or decomposed into an orthogonal matrix Q
(such that Q' = Q ' or QQ’ = Iy and an upper tnangular
matrix R In this case, the onginal Ax = b LAE problem
reduces 10 Rx=Q 'b=Q'b=1F, ie, the soluton of
another simplified tnangular system of equations Ry = b as
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petore Achieving the matrix decomposition in either of
these algorithms was recognized early [39] as the major
computational step in such algorithms. We thus first detail
how to achieve LU and QR decomposition (Sections IV-A
and I\ -B) on optical systolic processors. Then, we address
an optical solution to the triangular system of equations
that results (Section 1IV-C); and finally (Section IV-D), we
detail a full direct systolic solution in N matrix-matrix
multiplication steps The major reasons for interest in direct
versus indirect solutions to LAEs is that the number of
iterations required 1n an indirect solution (Section HI) is not
easth quantified and is thus highly problem-dependent.
Conversely, direct solutions require a fixed number of steps
N (the order of the matnix). The parallel aspects of direct
LAE solutions must be properly advanced and not imple-
mented on systohic architectures as in the conventionat
hnear algebra descriptions. Our algorithms and architec-
tures will demonstrate such paraliel guidehines and the best
use of matrix decomposition with systolic processors.

A Optical Systolic Realization of LU Matrix Decomposition
I-8]

All matrix decomposition solutions to Ax = b nvolve
multiplying A and b by a decomposition matrix P, (this
velds LA = A, and P,b = b)), multiplying A, and b, by a
matrix P,, etc. After N such matrix-matrix multiplications,
one obtains a matrix PA and a vector Pb= U, where
P=Py_, - P, - P In matrix decomposition, each
P, A, multiphcation only affects columns (or rows) m
through N of A, _,.

In LU decomposition, P,, is chosen to force the elements
below the diagonal in the mth column of A, to be zero.
On successive cycles, we require a matrix-matrix muftipli-
cation and a matrix-vector multiplication. These operations
are combined (since the same matrix is used in both) into
the multiplication of the matrix P, by the augmented
matrix [A,:b,] Each successive cycle of the system thus
requires a matrix-matnx multiplication, calculation of one
column of P.. and assembly of the P, matrix. On each
successive cycle, we produce: one row of the upper triangu-
lar matrix U, one element of the new & vector (from the
matrix-matrix multiphication). and one column of P ="'
(from the calculations of the P,, matrix). This is achieved as
detailed below P, is an identity matrix except for column
m whose elements p\™ are well-known and easily calcu-
lated [28] functions of the elements of the mth row of
A Je,

mo 1
P = A (19)

where superscripts denote the step or matrix—matnix multi-
phication number If A is neither strictly diagonally domi-
nant nor posttive-definite, pivoting (1.e., interchanging of
rows of the matrix) i1s necessary to insure that (19) is less
than urity.

The data flow for use of a systolic processor for LU
decomposition 1s shown in Fig. 7. The matrix A augmented
by the vector b (1e., [A,:b,] is fed to the AO cell, mu'ti-
plhied by P,, to yield the new augmented matrix [A ., y'b,,. ).
After each matrix—-matrix multiplication, one row of the
final U matnix and one element of the final b vector are
produced (1.e., the first row of A, ., and the first element
of b, ., are in final converted form). One additional row
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Fig. 7. Simphfied schematic of an optical svstolic processaor
[28] 1o perform LU matrix decompositiun of a general miateon
by Gaussian elimination

and column of the augmented matrix just calculated
[A,. b, 1] 15 thus not altered or needed in each suber-
quent matrnx-matrix multiplication. Thus we remove one
row and column of the matrix product produced at each
cycle and reduce the order of each subsequent matrix-ma-
trix multiplication by one. The remaining elements of A, .
and b,,, , are fed back to the AQ cell and the processor as
they are produced (one row at a time in parallel). The new
elements to be calculated in P, ., require only the ele-
ments of one column m + 1 of the new A, ., matrix as in
(19). Since one row of A, ., is produced in parallel each Ty,
the column elements of A ., , needed to compute P, ., are
available one element each Tg (from the same output
detector). As each element of the proper A,,., column is
produced, the element in the corresponding column of
P, .. is calculated during Tg and stored.

These calculations in (19) are performed in special-pur-
pose analog hardware in the box noted in fig. 7. These
operations are easily achieved during 1T, since only one
element per row of P,,., must be computed Similarly,
storage of these P, ., values and formatting the P, _,
matrix (an identity matrix except for one column) for input
to the point modulators one row at a time in parallel is
easily achieved [28). The operations that the special-pur-
pose analog hardware must perform are inversion of the
first element of the appropriate column of A,,,. , during the
first Tg. At subsequent T, times, this element is multiplied
by the new column elements of A ., to generate the
appropriate new elements in the new column in P, . as
defined in (19). Each new row of P, ., defines arow of L™’
which is available as an output as shown in Fig 7 After
each matrix-matrix muitiplication, one column of L' ', one
row of U, and one element of b are computed. After N
matrix-matrix multiplications, the full LU decomposition
has been achieved and L™, U, and ¥ have been produced
Since the order of the matnx is reduced by one on each
cycle, and (assuming one matrix—vector multiphcation each
Tg) the matrix decomposition (including NTg of latency
time to load the cell) thus requires a total time

[N+(N=1)+(N=2)+ - +2]T
=[(N+N=-2)/2]T, (20

or (for large N)& N’°/2Tg, during which (for large N)
approximately N*/3 multiplications and additions are per-
formed.
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B Paralle! Optical Systolic Realization of QR Matrix
Decomposition [29)

QR decomposition or orthogonal matrix factorization (A
= QR) can be accomplished [41), [42] by modified
Gramm-Schmidt orthogonalization, Householder plane re-
flections [41], or Givens plane rotations [43] The first meth-
od requires transposing a matrix and performing two ma-
tax-matax multiphications to produce one column of @Q
and R The last method requires one matrix-matrnix multipli-
cation 1o produce one element of Q and R Thus the
Householder QR decomposition appears to be the most
practical and most easily paralleled algonthm for QR fac-
torization, since 1t produces one column and row of the
final decomposed A, matrix in each step. The basic steps
in this operation are similar to those in Fig. 7 for (U
decomposition, 1 e, successive multiphcation of A and b by
a decomposition matnx B, to produce A, and b,, multipl:-
cation of this matrix and vector by P, to produce A, and b,
etc The decomposition matnices in QR decomposition are
different from those in LU decomposition Each successive
matnix-matnx multiphcation produces one row of the final
upper tnangular matrix R After N such matrix-matrix mul-
uphcations, we obtain PA=R and Pb=b. where P=
Q '= Q' QR decomposition yields, after each matrix-
matnix multiphication, one row of R and one row and
column of Q' as in LU decomposition. One row and
column of the computed augmented matrix [A, b, ] are
not needed on subsequent matrix—-matrix multiplications
Thus the order of the matrix-matrix multiplications can be
reduced by one on each subsequent cycle. This will repre-
sent a considerable reduction in the computational time
and system performance as we note in Sectton IV-D. The
full A, matnx after cycle m will have the structure

Rm: Vﬂl
A= [» ----- ] 1)

where R is an upper triangular matrix. On subsequent steps.
only W is changed (W, _,, denotes that W for A,, 1s of
order N — m) To calculate the next P, ,, decomposition
matrix, only the elements of the first column of W are
needed. We denote the first column of W by the column
vector w,, . ,. The equation to generate P,, is [41]

P= 1~ kpu,,. (22)

The vector u,, in (22) is the same as w,, except for the first
element, which is

uN = Wm m + (m Sign(wm m) (23)

where ¢, is the norm or the vector inner product of w,,,
e,

N-m
b= L Wi, (24)

=1

and the constant &, is

km'= [{r;:+{mlwm ml]"' (25)

The steps in a Householder QR decomposition thus
involve 1) calculation of P, (this requires a vector outer
product). and 2) the matrix—matrix and matrix-vector multi-
phcations P,A_ = A_., and P.b, = b, ., The second
operation i1s performed on the system of Fig 4 using the
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data encoding in the last line of Table 1 Since calculaton
of P, in (23) requires only one column of the new A,
matnx, we generate A one column at a time rsther than
onc row at a hime (using the data encoding nioted) Step
one s clearly the critical operation in terms ot data flow
and effiaent processor use Since one column of A can be
produced in paraliel on the system, the vector outer prod-
uct operation (an be performed on the optical swwem of
Fig 4 by several methods [29), [39) H A s symimctae, we
can [29] operate with the transposed A’ matrix and utihize
the symmetry of A, A, and P,,. For a nonsymmetnic A, one
can [39] produce one column u of W in paralicl and (in N
cycles) compute the vector outer product in (22). the norm
from the trace of w,u’,, and evaluate k. Both oi these
approaches require intermediate data storage and lcave the
processor inactive during fill times of the AQ cell More
attractive data flow results if the optical system i Fig 8
(using two crossed-point modulator arrays) is used to per-
form the vector outer product. This vector outer-product
system of Fig. 8 is detailed elsewhere [55]. It involves

Fig. 8. Simphtied schematic of an optical systolic vector
outer product processor (adapted from [55))

imaging the modulator at plane P, horizontally onto the
output plane P,, with P, compressed vertically and ex-
panded horizontally as shown to uniformly illuminate P .
and with P, imaged horizontally onto the P, output plane
More attractive data flow within the optical matrix multi-
plier results if rows are fed in parallel with data encoding
achieved as in the LU processor of Fig. 7.

The use of the combined architectures of Figs. 4 and 8 for
QR matrix decomposition is shown in Fig. 9. In this archr-
tecture, one row of A_ is produced in parallel on the
output detectors. The first row produced (one row of R) 1<
an output and the remaining rows are reinserted into the
AQ cell. When the first column of A, has been produced.
it is fed in parallel (or sequentially as it is produced) to the
outer-product processor of Fig. 8, which produces a,4!, in
parallel. This 2-D symmetric output in fig. 8 is read out onc
line at a time m"parallel, ¢, is calculated from the trace of
a,al (with parallel output detectors along diagonals). k.. 1s
formed, then P ., is assembled one row at a time n
paratlel in simple analog hardware and fed to the input
point modulators Thus after one cycle, the necessary rows
and columns of [A,,, ,'b,,. ] are in the AO ceil and the first
row of the new P, ., matrix ts available at the input point
modulators. The next cycle can thus begin immediately

After each matrix-~matrix multiplication, one row of Q '
and R and one element of & is formed Data flow in this
system is ideal, and full advantage 1s made of the reduced
matrix order on each cycle. Assuming a negligible time to
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fig. 9. simplified schematic of an optical svstolic processor [29] 1o perform QR matnx

decomponition on a general matrin

produce the vector outer product and assemble each row of
P.. (this is realistic), the system of fig 9 performs a QR
decomposition in the same (N'/2)Ty time as in (20)

C Farallel Optical Systolic Processors for the Solution of
Trianigular LAEs [30)

In the architecture of Fig 7, we detailed how all of the
matnices and vectors associated with LU decomposition
could be calculated in parailel, ie, PA= U Pb= ¥, and
P= L' ' the conventional second and third steps in a
direct LU decomposition solution to a system of LAEs, one
sol.es Ly=b for y and then Ux =1y for x The latter
tnangular LAEs can easily be solved by back or forward
substitution in dedicated hardware and on digital systolic
processors. Ghosh and Casasent [30] have also noted that
such tnangular systems can be solved optically and have
d-tailed the solution for the Ly = b case (the Ux = y case
follows directly as noted in Section 1V-D). The system of
t'g. 10 achieves this and demonstrates the general algo-
nthm and architecture for an optical systolic processor to
solve a triangular system of equations The data flow for the
case of a lower triangular system of equations is described.
\We assume that one row of L and one element of U are
produced in parallel on each cycle. If these elements are
trd to the input point modulators and a one-channel adder
as1n Fig 10(b). the solution x = L™ 'V is obtained sequen-
tially from the system. The algorithm used is [30)

m-1
xm - (Um - Z (mnxn)(w/{mm) (26)
Nn= /

where 7, is the associated diagonal element of L. for L,
its diagonal elements are unity in LU decomposition and
thus 1/¢,, = mm INVolves no additional calculations. The
data flow for this case is shown in Fig. 10(b) and the
interconnections between figs 7 and 10(b) are shown in
Fig. 1(a) Thus is the most efficient method for a direct
solution of LAEs as we discuss in the following section

D Parallel Optical Systolic Processor for the Direct
Solution of LAEs

Conceptually, 1t is eastest to view an LU decomposition
solution of a system of LAEs as a sequence of successive
matrix-matrix multiplications with the augmented matrix
[An.¢b.. ] Such an architecture is shown in Fig 11 for
the implementation of the Gauss-Jordan [41] algonthm for
the direct solution of a system of LAEs In this algonthm
and architecture, N matnx-matrix multiplications of P, by

CASASENT ACOUSTOOPTIC LINEAR ALGEBRA PROCESSORS

I—Aﬂ\‘ 1 E 5 +1 ) v N a a
v OUTER Zme 15med
PRODUCT
PROCESSOR
. v
1
X P ASLEMBLE
—m+1
3
Le)
L SYSTLLIC
TRIANGULAR

1Ag ———p x - L

b SYSTEM
- | SALCLESSCE
(a)
=" [~ |[|E
L |
MODS CELL

;

1/t

-2

(b)
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Fig. 11.  Simphified schematic of an optical processor tor the
direct solution of a system of LAEs (a combined vervon of
Fige 10and 7 or ™

the augmented matrix are performed to convert A to an
upper triangular matrix U. N additional matrix~matnx mul-
tiplications are then performed to diagonalize the upper
tniangular matrix and to properly condition the augmented
vector b These last N matrix-matox multiplications accom-
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plish the back-substitution algorithm as depicted in Fig. 10.
in the final augmented matrix, A is an identity matrix and
the final b vector is the desired solution vector x 1o the
original Ax = b problem. The detailed steps in this
Gauss-Jordan algorithm are detailed elsewhere [42]. (44]
The required feedback and data flow for such an algonthm
are shown in Fig. 11.

In this architecture and algorithm, 2(N — 1) successive
matrix-matrix multiplications are performed (full N X N
matrices are required in this case) This architecture s
attractive because of the simplified schematic diagram that
results, as in Fig 11. However, this algorithm requires 2(N
= 1) matrix-matrix multiplications (with all matrices N x
Nj. The execution time for such an algonthm requires
(N — )Ty setup time plus (2N ~ 2)NT, of time for the
matrix multiplications, for a resultant calculation time of

(N= 1T+ (2N = 2N)Ty = 2N'T,. (27)

This is significantly longer than the time required using a
combined version of Figs. 7 and 10 as we now detail First,
we note that L ' and b are available as outputs in Fig 7.
We could form L™ 'b = y (i.e., the solution yof Ly = LUx =
b) by a simple matrnix-vector multiplication. However, the
system of Fig 7 has already produced L 'b= ¥ as an
autput and thus, by the use of an augmented matrix, we
have already solved the first lower triangular svstem of
LAEs Hence, if we feed the stored U and & data produced
from Fig 7 back to the point modulators and AO cell, we
can compute x= U~ ¥ directly in an additional NT, of
time using the system of Fig. 10(b) and the algorithm

N
Xm = Um - Z UnnXp (1/Umm) (28)
n=m+1
where u,,, denotes the elements of U.

Stmilar remarks apply tor QR decomposition as achieved
in Fig. 9. In this case, the original Ax = b problem is
converted to Rx = Q'b = b/, where R and b are outputs
from Fig. 9. Thus this upper triangular system of equations
can be solved in an additional NT; as noted above for the
final x solution. Thus in a direct solution implemented as
above with augmented matrices, the size of the matrix is
reduced by one on each cycle, and U or R and the new b
are stored. Then, U or R are fed to the point modulators
and U to a senial adder (as in Fig. 10), and in an additional
NTg after LU decomposition the final solution is produced.
The total time for the LU or QR versions of such an
algorithm is thus the time in (20) plus NTg or

(N/2)Tg + NTg = (N°/2) T, (29)

for N laige. This is one-fourth the time required in (27). and
storage 15 a factor of N less. Propagation of the full matnx
data can introduce and accumulate additional errors, since
the many O and 1 matnx elements in such a full matnx
propagation may not be identically 0 and 1. Thus it is
preferable to use the architecture of Fig 11 asin Figs 7 or 9
and on the last cycle 1o feed U or R to the input point
modutators Such an architecture witl thus achieve a full
direct LU or QR solution to a system of N LAEs in N T,/2
of time.

tn closing this section, we note that most of the proposed
optical systolic processors (Sectron N) can implement the

various algorithms (Figs 5-11} with different degreps of
paralichsm and with associated detector complexity (de-
pending upon the precise architecture). Specitic issues of
the detector system readout and the data and Girerationa)
flow must be detaded for each system 10 assess the begy
architecture 1o use for a given application and opr ration

V. EXTENSIONS OF BASIC ALCORITHMS AND OPERATL NS

The matrix-vector, matrix—=matnix, and tnple-matos mglhy-
plication operations (Section 1), plus the matux decompos-
tion methods (Section V) and the techmques 1or solving
LAEs (Sections (Il and IV) represent the basic ofr rations
required in advanced hinear algebra processors Speiser [5)
has defined the fundamental needs of a modern o L-time
matnx or systohc processor to include the above opr rations
plus the solution of eigensystems, singular value dcom-
position (5VD), and least squares solution In this <« tion,
these latter operations, other matnx decompusition algo-
rithms, and various extensions of the basic operations are
briefly discussed. Emphasis 15 given to those method- that
are most suitable for parallet implemeniation on optical
systolic processors, to those methods for which an optical
systolic processor implementation has thus far been
detailed, and 1o the most stable and preferred algonthms.
For reasons of space, all of these discussions must be quite
brief. The complexity of different problems and operations
is usually described by the number of multiplication. and
additions required for problems of size N. The problen:s of
mc-t concern are of order N’ In Table 2. problem. of
different order, the name given to each, and examples
of each are provided.

Table 2 Complexity Measures tor Driferent Problems
(Adapted from [5])

Order Name Examplos
N Scalar inner Product, HR filter
N’ vector Linear Transtorms. Fourier Transform.
Convolution, Correlation.
Matnix-vector Products
N3 Matrix Matrix—Matrix Products, Matrix

Decomposition, Solutions of tigen-
systems or LAEs or Least Squares
Problems

'n many cases, the system of LAEs is overdetermined (i.e
there are more equations than unknowns) In this case
Ax = b is a matrix with M rows and N coiumns, where
M > N. The conventional least squares solution to min
mize {|Ax — by}’ results in the classical Gauss-normal equa-
tion A’Ax = A'b. One can solve this as LAE< where the
matrix is A'A (a square matrix) and the vector s A’b This is
not attractive since the new matrix has a condition number
that is the square of the one in the originat problem. This
will significantly increase ‘he effect of any computational
errors Modern signat processing solutions to least squares
problems employ matrix decomposition by (U, QR, and
SVD methods. If a QR decomposition is performed (A =
QR), the Causs-normal equations become x = (A'A) ‘A’b
of Rx = Q'b = I, and thus from the R matsix and the &
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vector (produced for example in Fig 9). only the solution of
an upper tnangular system is required (this can be achieved
on the svstem of fig 10 as detailed in Fig. 1) Simitar
remarks apphy 10 an LU decomposition. In adaptive beam
forming (Section V1), calculation of the adaptive weights
can be formulated as a constrained least squares problem.
In sohing this, the constraints are first removed and a
conventional least squares problem results which can be
solved a~ above Such advanced adaptive nowse cancellation
algorithms using direct least squares techmques are attrac-
tve since they provide better convergence than the gradi-
ent-ba~ed atgonthm noted 1n Section VI They require the
matrn decomposition algonthms described in Sectuon IV
and below

Saiutions of eigensystems 1s a second major problem that
anises in modern signal processing algonthms The newest
beani-forming and direction-finding algonthms for high-
resolution performance require the solution of a symmetnic
eig- nsystem for each resolved temporal frequency [45] for x
ang A The most popular algorithms for eigensystem solu-
tiors involve the jJacobian method [46], SVD [67), House-
holder or Givens transformations [41] (to calculate selected
eigr mvalues). and the QR algorithm {41]. In the QR algo-
nthm, simitanty transformations are applied (A s trans-
formed into B=T ‘AT, where A and B have the same
eigr-mvalues and the eigenvectors y of B are related to the
eigi'nvectors x of A by Ty = x). Using QR decomposition,
the matrix @Q 15 calculated such that Q'AQ = D (where D
is approxamately diagonal, with small off-diagonal ele-
meats) This s achieved by successive matrix decomposi-
tions and matrix multiplications, 1.e, at step m we decom-
pos A, = Q,R, and form a new matiix A,., = R.Q,.
= QLA.Q. This procedure 15 repeated recursively until
Q A.Q., s approximately diagonal The final matris s
Q=QQ - Q... Thehighaccuracyachieved with such
orthiogonal transformations makes their general use most
attractive

The optical realization of QR solutions to eigensystems
ha< been detailed [29] and follows directly from Fig 9 and
the above steps. Shift algonthms [41] can be used to greatly
recuce the number of matrix multiplications needed (f the
ma'ox A s full and not symmetric, similarity transforms can
or-. reduce A to a Hessenberg matrix (an upper triangular
m.atrix with one additional diagonal below the main diago-
na!y Standard decomposition methods exist to reduce Hes-
senberg matrices to tndiagonal form and symmetric matrices
to tndhagonal (using the QR algorithm) or bidiagonal (using
S\ D) matnices. The optical realization of several of these
mc thods have been detailed [29]. [47] The preferable sotu-
tons appear to be to use QR technigues to reduce A to
tnid-agonal form or one-sided SVD techniques to reduce A
to tudhagonal form, and to then calculate the eigenvalues of
these amplified matnices Such methods are the subject of
actie current research [29) [48]-[50] Such eigensvstem
solutions are preferable to power methods for which several
optical reahzations (51} {52] have been described These
repsent other frutful areas for future optical systolic
processor research

Let us next advance several remarks on other triangular
and orthogonal matnix decompositions and then briefly
discuss SVD Many triangular factonization techmiques are
possible besides LU decomposition These include LDU.
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LDU', and LL' (optical realizations of each of these are quite
straightforward). LU and LDU decomposition require that
A be only nonsingular. If A is symmetric and positive-defi-
nite (as often occurs in signal processing), then DU’ and
tt' decomposition are quite attractive since they avoid the
nced for pivoting in the calculations required to compute
the new P,. The optical realization of Cholesky (£{' or
LDty decomposition {53] has been detailed [28] and fol-
lows directly from Fig 7. LDU' decomposition is the prefer-
able choice in such cases since it avoids the need to form
the square root, as required in [L7 decomposition Orthogo-
nal matnx factorizations are preferable for general matrices
since they are numerically stable, since there 1s no need for
pivoting (as can be required in LU decomposition of gen-
eral matnices), and because fast shifted QR algorithms (for
eigensystem solution) exist

As noted in Section IV, numerically stable QR de-
composition can also be achieved by modified Gramm-
Schmidt [53] and Givens techniques [53]. The optical realiza
tion of these methods can be directly realized by a se-
quence of matrix multiplications with calculations of the
elements of the next transformation matrix required after
each matnx product is formed. The Householder technique
appears to be the most parallel, stable, and easiest algo-
rithm to realize optically as quantified tn Section IV-D For
digital systohc processors, Givens techniques are presently
the most popular and attractive ones (this ts due to the
architectural differences between most digital and optical
systolic processors)

As noted earlier, SVD is a powerful and useful techmique
for least squares, eigensystems, and high-resolution direc-
tion-finding problems. Although this is a complicated
decomposition algorithm, 1t provides estimates of the con-
dition aumber of the matrix and the number of signals
present In SVD, the matrix A s factored into three matrices,
A = PDQ’ where Pand Q are orthogonal matrices and D
is a diagonal matrix. The singular values of A are the
elements of D When applied 10 a least squares problem,
the SVD solution x = QD 'P'b is easily calculated once
the SVD has been performed. Thus far, the anly optical
realization of SVD described {47] used 2-D modulators in an
optical matrix-vector processor. Extension to optical sys-
tolic architectures appears to be rather straightforward

A review of the wealth of linear algebra algorithms n
modern signal processing is beyond the scope of this paper
However, the selected algorithms noted above and the
selected applications discussed in Section VI provide a
good ntroduction and overview to the role of optical
systolic processors in modern signal processing A summan
of attractive solutions for various mathematical problems 1«
provided in Table 3. This table s the compilation of mar.
references [5), [26]. [27), {41). [53) The matrix solution< ginen
are by no means complete and represent what pre en:
appear to be the better approaches for opticul <« i
processors. Several general signal processing apsicai M0
are then noted in Table 4. For each, an attractiv - proviem
formulation and one candidate sofution are v ned As bo-
fore, various other problem formulations ard candidate
solutions are possible beyond those histed - Tat ~ 4 How -
ever, the methods listed appear at present 1. 2 among the
most attractive ones for realization on ontical systolic
processors
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Table 3 Attractive Solutions for Various Problems

Problem

Matrix Features

Attractive Solution

Solution of Time-
Dependent PDEs [29]

Deconvolution |10}
(S:ationary)

Solution of Systems
of LAEs
Ax= b

tigensystem Solution
Ax = Ax

{41],153)

Symmetnc Generalized
tigensystem Solutions
Ax = ABx [45]

Least Squares Solutions
llAx ~ b||*

Banded
Toephtz

None

Diagonally Dominant
Stable

Symmetric Positive Definite

Real-Symmetric or
Complex Hermitian
Symmetric

Symmetric Nonnegative
Definite

A and B are Real Symmetac
B is Positive-Definite

R = A'A is Positive-
Definite

A'A 1s Nonsingular

A'A 15 Singular

Finite Dhfferences
imphait or Exphait

Time or Space Integrating
Processors with feedbach

Direct by QR
Direct by LU
Indirect

Direct by Cholesky

Householder Direct
Decomposition
tterative QR Algorithm

Direct SVD Reduction
to Bediagonal

Urnitary Transforms
or 17

Direct Matnix
Decomposition
QR Decomposition

SVD

Table 4 One Possible Problem Formulation and Solution for Selected Specific Applications

Attractive
Problem Candidate Solutions Reference
Application Formulation
High Resolution
Direction Finding  Symmetric Eigensystem SvD [45)

State Estimation Kalman Filter

Adaptive Noise
Cancellation

Constrained Least Squares

Recursive Least Squares
(S5quare-Root Formulation) [66)

Triangular or
Orthogonal Decomposition (371

VI SELECTED APPLICATIONS FOR OPTICAL SYSTOLIC
PROCESSORS

A wealth of physical, signal processing, and control prob-
lems require various linear algebra operations and the solu-
tions of diverse matrix equations. Brief discussions of several
applications are now advanced. These are drawn from avail-
able optical systolic processing literature and are chosen
and intended to demonstrate different points and features:
1) solutions of partial differential equations (PDEs) with
emphasis on matrix structure and implicit and explicit solu-
tions (Section 1V-A), 2) radar and sonar applications with
attention to simple adaptive filtering and the need to han-
dle complex-valued data (Section Vi-B), and 3) optimal
control with attention to the solution of a nonlinear matrix
equation on an optical systohc processor (Section Vi-C).

A Solution of PDEs

PDEs are the standard mathematical models for many
physical problems and distributed systems in applied mech-
anics For steady-state PDEs (e.g, elliptical equations), spa-
tral discretization leads directly to LAEs which can be solved
by the indirect (Section 1) or direct (Section V) solution
methods noted earlier. Time-dependent PDEs represent
another major class of mathematical models. Discretization
of such equations can yield implicit or exphcit solutions as
we now demonstrate [29)

We consider the diffusion equation as a second-order
PDE example

du(x,t)/8t = 2 u(x,t)/dx° (30)

to be solved for u(x,t) with boundary conditions u(x,0) =
f(x)forOg xg Land u(0,t) = u(L,t)=g(t)forOg t < T
We discretize time and space into increments At =T/
(N + 1) and Ax = L/(J + 1), and denote discrete points in
time and space by nAt and jAx. If we apply single dif-
ferencing in time and space to both sides of (30), we obtain

n+1 n n n n
u u ARAY 20"+ W,

At ¢ (Ax)"

where superscripts denote time increments and subscripts
denote space increments. Rearranging (31), we obtain

u™t =AU+ (Y- 200+ A

1)

forn>0,1<j</ (32)

where A = c’At/(Ax)’. An alternate formulation results it
we apply double differencing to the space derivative on the
night-hand side of (30). In this case, we obtain

-1

=A%, 4+ (1= 20)u" + Au o (33)

(1 +20)u " = AUy - Ay

Let us now consider and compare the use of (32) or (33)
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1o solve for u(x, 1) as u'” (at t = 1At forall 1 € /< /), then
U at =24t for ali j), etc. From (32). calculation of
u"”' ' for all j requires a simple matrix~vector multiphca-
pon ¢ = AU, where A is tridiagonal with elements
A. (1 - 2X). and A along the three diagonals (where '™ is
known from boundary conditions or from the calculations
at the prior ¢t = ndt time step). However, for the single-dif-
ferencing approximation to be a good approximation, Ax
must be small, and for stability 0 < A < 0.5 is necessary, and
thus a large number of very small time steps At are needed
to produce accurate results. Hence, such explicit solutions
(which initially look quite attractive because they require a
matnix-vector multiplication to obtain the data at the next
time step) can. in practice, require many small & x samples
and many small At ume steps, and thus a significant num-
bee of maten multiphications

Let us next consder the Crank-Nicholson algorithm as
tarmulated 1in (33) In this case, u'” """ s calculated from
¢ which i« known from boundary conditions or calcula-
nons at the prnior t = npAt time step. by solving the LAEs
Au'" "= b Thus the exphait solution in (32) requires
only a matnx-vector multiphcation, whereas the implicit
solution 1n (33) requires the solution of a system of LAEs at
each time step An imphait solution s still attractive be-
cause 1t s unconditionally stable and has second-order
accuracy, and because the number of matrnix multiplications
in the explicit solution may be quite large. Since the matrix
v tndiagonal, solutions to such LAEs can become quite
ample using, for example, the system of Fig 2. In many
cases, the coefticient ¢ n (30) 1s constant or is slowly
varying with time, and hence so i1s the matrix A in such
cases, matnx decomposition or direct solutions are quite
attractive, since the matrix decomposition need be per-
formed only once, thereafter the simplified tnangular sys-
tems solution can be used with a different exogenous
vector. This would require only a matrix-vector multiplica-
tion at each time step, as in the explicit algorithm in (32).

Trapezoidal, Runge-Kutta, and other difference ap-
proximations in space and time are also possible. These will
vield different forms for (32) and (33), but with similar
matrix structures and conclusions. In general, all discretiz-
ing methods will yield imphcit or explicit solutions with
banded matrices. Thus many physical problems directly
result in matrix-vector problems with quite structured
matrices. Deconvolution applications [10] are yet another
case when structured matnces result In such cases, the
received signal s(?) is the convolution of the original signal
a(t) with the 1mpulse response h(t) of the transmitting
medium In terms of discrete signal samples, ¢, = Lh,, .4,
(where the summation 1s over the range of sample points)
The matrnix-vector form is ¢ = Ha (where the matrix A s
Toeplitz and contains elements h, ) Thus to recover a
given b and ¢ requires the solution of a system of LAEs with
a Toephtz matnx The Toeplitz matrix structure will exist for
linear shift-invariant distortions, and tts bandwidth will de-
pend upon the length of the impulse response function In
such cases, the architectures of Fige 2 and 3 with ap-
propriate feedback as in Figs 5 or 6 can be emploved A
variety of apphications thus exist for structured matrix and
LAE solutions The best solution, algonthm, and architec-
ture depend upon the specific problem and apphcation
However, implementation methods for the basic algorithms
and architectures have been described (Sections H-1V)
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One of the original motivations and applications for
optical matrix-vector processors was adaptive phased-array
radar processing [54]. This application [55] introduced the
onginal iterative optical matrix-vector algorithm in (o) We
briefly consider the calculations required to obtain the <et
of adaptive weights w for an adaptive phased array 1o steer
the antenna in a direction defined by the vector s and 1o
null the noise field defined by the covarnance matrix M
This problem s the basis for much of radar and sonar beam
forming. In the simple case of a linecar array of N evenlhy
spaced antenna elements, the received signal v, () at an-
tenna element nis multiplied by an appropniate weight v,
For the full antenna, the output signal for one set of
weights 1s

N

s() = 2w (1)

n=1

The weights defined by the vector w are chosen to control
the antenna beam pattern E(8), where 6 is the angle at
which the beam is steered. In general, w is complex-valued
and varies with time in conjunction with the noise environ-
ment. w is chosen to null the noise sources within the
antenna’s field of view at the desired angles and frequen-
cies, and to produce a peak at the desired steering direc-
tion. Hence, a least squares formulation is appropriate as
noted in Section V.

Various adaptive control loops are possible to achieve
this. Their operation and convergence are detailed else-
where [54]. In vector notation, the dynamic behavior of one
type of adaptive control loop and weight vector is de-
scribed by

tw/GC+(M+ IG)w = s* (34)

where 7 is the time constant of a low-pass filter and G 1s
the gain within the control loop. The covariance matrix has
elements m, = (v*(t)v(1)), where (—) denotes a time
average. Assuming G > 0, then in steady state (w = 0),
(34) reduces to Mw = s*, and the set of adaptive weights w
is given by the solution w = M~'s* 10 a set of LAEs. The
various algorithms described in Sections Itl and IV and the
various optical systolic architectures in Section ([ are suit-
able for solution to such problems. Least squares, SVD, and
eigensystem solutions (Section V) are the most attractive
present methods for such beam-steering problems using
new algorithms noted in Section V.

Matrix inversions will arise in various applications At this
point, we note that the architecture and algorithm depicted
in Figs. 9 or 11 can perform matrix inversion if the aug:
mented vector b is replaced by the identity matrix 1 of
order equal to that of A, In this case, the system soives the
matrix~-matrix equation BA =1/ for B= A"' by a dieqt
algonthm. A parallel iterative algonthm [13] for mateix inver-
sion on the system of Fig. 6 is also possible by moditying
the algorithm in (6). To develop this algorithm, we consider
the solution of a general matrix-matrix equation C = AB
for B= A" 'C by a new indirect method. The conventional
iterative algonthm is rewnten as
B‘t-w(A'B,+C) (35)

i’

where A" = (1/w — A). Calculation of A’ is trivial and (35) 15

845




A e o o4

considerably simpler to implement than the conventional
matrix extension of (6).

Extensions of adaptive phased-array radar processing to
provide multidimensional adaptation in velocity or time as
well as angle or space have also been described [56). The
matnx vectorizing methods discussed in Section VI-C are
quite useful in such extensions. Calculation of antenna
weights also introduces the issue that the vector will have
complex-valued elements. Various methods for handling
matrices and vectors with bipolar-valued and complex-val-
ued elements have been described. These include space,
time, frequency, or wavelength multiplexing. The most
popular general methods for representing complex-valued
data are by a four-tuple representation (the positive- and
negative-valued real and imaginary parts) or a three-tuple
representation (each complex number is represented by its
three projections on the 0°, 120°, and 240° axes in the
complex plane).

Other classical signal processing operations can also be
described as matrix operations, some as vector outer prod-
ucts rather than matrix-vector multiplications. In signa!
processing applications, the matrix used is generally the
covariance matrix. It will be real, symmetric, and nonnega-
tive definite (for real random vectors) or Hermitian symmet-
ric and nonnegative definite (for complex vectors). Hence,
different matrix properties will result in different appli-
cations, and appropriate decomposition algorithms utilizing
the matrix features should be employed. Calculation of the
ambiguity function [57] of two signals is a classical signal
processing operation. In its discrete form, it can be de-
scribed [44] as the product of three matrices (one matrix
being Toeplitz and another being diagonal). The required
cross-ambiguity function can thus be calculated on a matrix
processor by performing the indicated tripie-matrix product.
Detailed algorithms and optical systolic processors for these
and other advanced signal processing functions described
here and in Section V are the subject of current research.

C. Optimal Control, Statc Estimation, and Kalman Filtering

State estimation and Kalman filtering applications are
among the most demanding ones for which advanced highly
parallel optical systolic processors with very high computa-
tional rates are needed. The basic operations required in
Kalman filtering are well known [58]. They include triple-
matrix products, matrix inversions, and the solutions of
nonlinear matrix equations [13]. Algorithms and architec-
tures to achieve all of these operations (except the last one)
have been described earlier in this paper. We thus now
advance a new algorithm for solving nonlinear matrix equa-
tions on optical systolic processors. This will enable our
repertoire of operations achievable on an optical systolic
processor to include all of the basic operations needed for
state estimation and Kalman filtering.

For the case when the noise statistics are known, a simple
two-channel optical systolic processor design has been ad-
vanced for steady-state Kalman filter computations [59]. In
the more important case of a fully adaptive Kalman filter,
the sequence of operations necessary and the required
processor architecture, as well as the flow of operations, is
far more complicated. The full solution to this problem for
an extended Kalman filter has been detailed [60), [61] for
an air-to-air missile guidance controlier. in this case, a

Newton-Raphson solution was employed to solve the non-
linear matrix equation, and calculation of the Jacobian was
achieved by an efficient digital table lookup method or by a
new optical systolic processor as described in the refer-
ences noted. A more general optical systolic method to
solve nonlinear quadratic matrix equations is described be-
low [36), [62), [63].

The specific application considered is the solution of 3
linear quadratic regulator (LQR) problem of modern control
engineering, in which the control signals u(t) that mini-
mize a quadratic cost-performance index for the general
linear system model

dx/dt = Fx(t) + Gu(t) (36)
are desired. The solution is
u(t) = —Kx(1) (37)
where the LQR feedback gain matrix K is computed as
K=RG'S (38)

and the symmetric matrix § is the solution of the algebraic
Ricatti equation (ARE)

SF+FS-SIS+ Q=0 (39)

where L = GR™'G’. Selection of this application was moti-
vated by the availability of all of the necessary matrices for
the F100 turbofan jet engine, thus allowing specific quanti-
tative data to be obtained and used. The key step in the
calculation of wu(t) in (37) is solving the quadratic matrix
equation (39) for §. Hence, we concentrate on one solution
method recently developed [63]. This will result in an opti-
cal systolic system realization of earlier algorithms [36), [62]
devised for an optical matrix-vector processor using a 2-D
light modulator.

The solution § to (39) is devised beginning from the
classical Newton-Raphson algorithm. Substituting the ARE
into the Newton-Raphson solution, the iterative algorithm

S(K)F(k) + Fi(k)S(k) = —S(k-1)LS(k-1)+ Q
(40)
results, where k denotes the iteration index and where
F(k) = F- LS(k - ). (41)

This is known as the Kieinman algorithm [64]. Noting that
the right-hand side of (40) is known from the value S(k - 1)
at the prior (k — 1) iteration, we see that (40) is linear in §.
the Kleinman algorithm has thus converted the nonlinear
quadratic matrix equation in (39) intc *he linear equation in
$ in (40). We also note that (40) has the form of the
Lyapanov equation and that solutions to this equation using
the Kronecker or tensor product and vectorization exist [65}).
To convert (40) to LAEs, we vectorize the matrix on the
right-hand side of (40) by lexographically ordering the ma-
trix elements. The resultant column vector is denoted by
y(k). The vectorized column vector associated with $(k) is
denoted by x{k). Equation (40) can now be described by
the system of LAEs

H(k)x(k) = y(k) (42)

where H(k) is a matrix with specific block structure as
detailed elsewhere.

The steps in solving for the matrix § in the form of the
vector x in (42) thus involve at step k: a) evaluation of F(k)
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in (41). the right-hand side y(k) of (40). and formatting of H
in (40), and b) the solution of the LAEs in (42) for x(k). The
steps in a) involve simple matrix-vector and matrix-matrix
multiplications. For the steps in b). indirect or direct algo-
rithms (Sections Il and V) can be used. For the case when
an indirect solution to (42) is used, the solution x for § in
(39) can be described by the two-loop iterative algonthm

X+ 1K) = (1= w(k)H(MIR(E K) + w(k) (k).
(43)

fFor a fixed k, (40) is the Richardson algorithm in (6) used to
solve (39) for x(k) We use r to denote wterations in the
Richardson algonthm solution to the LAEs in (42) H(k) and
y(A) are then updated and new LAEs in (42) are obtained.
We denote the iterations of the Kleinman algorithm by the
index k. The solution described to a quadratic matrix equa-
tion thus employs an inner iterative loop (implementing the
Richardson algorithm for solutions to LAEs) and an outer
loop (mplementing the Kleinman algorithm, to update the
LAEs) These iterations continue until the solution x(k + 1)
= x(k) = x 15 obtained. Direct LAE solutions to (42) and
other solutions (more complicated to formulate) to (40) are
of course possible. The algonthm described above is one
example of the class of operations and algorithms possible
on optical systolic processors for advanced signal process-
ing applications.

VI DIsCUSSION, SUAMMARY, AND CONCLUSIONS

The accuracy and performance of any optical processor is
always an issue of concern. If the »nerformance of the
analog architectures described is not sufficient, they can be
extended to digital-optical architectures as noted earlier
and elsewhere. In ' instances, the error source modeling
and performance measures used merit attention. The con-
ventional roundoff error analysis available for many digital
linear algebra algorithms is not appropriate for optical sys-
tolic processors whose errors (such as spatial nonuniformi-
ties in the input, AO cell and detector planes, plus detector
noise) are considerably different in nature. Initial modeling
of such error sources in optical processors has been accom-
phshed [25]. and the results are applicable to both analog or
digital optical systolic processors The appropnate perfor-
mance measure used is also of concern. This will depend
on the purpose of the processor For general systolic array
processors, the average or maximum error in any one ele-
ment of the computed matrix of vector s one performance
measure. In specific applications, different performance
measures can be defined. For the LQR example defined in
Section VI-C, the accuracy of the closed-loop poles of a
controlled system matrix is an appropnate performance
measure (since these poles describe the transient response
of the closed-loop system). In some cases, such as many
adaptive noise canceltation applications, the set of adaptive
weights may only need to be computed to 1-percent accu-
racy or so. Such issues merit attention in both analog and
digital optical systolic processors

The algorithms selected and used can also significantly
affect the performance obtained in both analog and digital
optical systolic processors. Parallel algorithms are essential,
and not all algorithms have yet seen parallel realizations.
The specific algorithm used must often be selected to
match the specific optical systolic architecture. In all in-

CASASENT ACOUSTOOPTIC LINEAR ALGEBRA PROCESSORS

stances, robust and stable algorithms are essential and
speaific attention should be given to selecting algorithms
that do not increase the condition number (and hence the
accuracy requirements) of the original problem.

The solutions of LAEs, least-squares problems, and eigen-
systems are essential problems in signal processing The
major direct and indirect algorithms to solve LAEs were
noted. For general-purpose processors, direct algorithms are
often preferable since the number of iterations and process-
ing time required is known. For specific applications, indi-
rect algorithms are acceptable. Direct algorithms appear to
require more precision at each multiplication step than do
indirect solutions; however, they will then also provide
more accurate results. In general, it is necessary 1o employ
improved algorithms and attention to specific applications
to fully address such tssues. tterative solutions to nonlinear
equations, eigensystems, and large matrices are still the
preferable and often the only approach.

In this paper, many optical systolic architectures have
been reviewed and several architectures detailed. Attention
was given to architectures for matrices with specific steuc-
ture (banded, Toeplitz, and triangular), and to matrices with
general structure. The solution of LAEs, least squares prob-
lems, and eigensystems were selected as the most funda-
mental problems. it is quite significant that one optical
systolic architecture can achieve all of the basic operations
required. Efficient digital systolic architectures have thus far
required a new mesh connection for different functions
The use of various indirect and direct algorithms and associ-
ated optical systolic architectures to realize each were de-
scribed and discussed. Several specific applications were
detailed to demonstrate the many diverse linear algebra
problems and operations that emerge. These included the
solution of partial differential equations, adaptive noise
cancellation, and the basic operations required in state
estimation and Kalman filtering,

The field of optical systolic processors is quite young and
active. Many architectures, parallel algorithms, and systems
with potentially high computational rates above 10 multi-
plications per second have been suggested. in several in-
stances, prototype systems have been fabricated, and in
other instances commercially available architectures are
being fabricated. Considerable system fabrication, algo-
rithm, and application-directed research remains. All pre-
sent indicators promise a bright future for this newest topic
in optical computing. Optical systolic array processors
achieve the flexibility and general-purpose features (that
have escaped prior systems), the accuracy and performance
(that have eluded prior approaches to optical computers),
and such architectures can be fabricated with available
components (at competitive cost, size, weight, and power
dissipation specifications)
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DIRECT AND INDIRECT OPTICAL SOLUTIONS TO LINEAR ALGEBRAIC EQUATIONS:
ERROR SOURCE MODELING

David Casasent, Anjan Ghosh and Charles P. Neuman

Curnegie~-Mellon University
Department of Electrical and Computer Engineering
Pittsburgh, Pennsylvania 15213

ABSTRACT

Direct and indirect solutions to linear algebraic eauations (LAEs) are considered with
attention to the use of optical acousto-optic (AO) systolic array processors. Specific at-
tention is given to error sources in one AO systolic processor. A case study of an LAE solu-
tion is conducted. The first error source model for an optical systolic array processor is
advanced. Using this and digital computer modeling, a direct solution is found to te less
sensitive to various optical system error sources than is an indirect solution. Acoustic
attenuation is found to be the dominant error source in the A0 systolic array processor con-
sidered. Related error source remarks on different bipolar data representation schemes and
on optical versus digital solutions to a triangular system of eguations are also advanced.

1. INTRODUCTION

Optical linear algebraic processors are currently receiving considerable attention [1-1€].
These architectures vary from simple optical systems that compute matrix-vector products [1l-
2] to iterative optical processors [3-4] that solve matrix-vector equations or LREs. Newer
architectures using AO light modulators [5-7) are more attractive and can be fabricated with
presently available components, These architectures [5-7] and more advanced ones using 2-D
CCD-addressed liguid crystals [8) represent yet another class of optical linear algebra
systems known as optical systolic array processors. This paper focuses on only
the discussion of one specific architecture. We have selected the freguency-multiplexed RO
architecture [7) for our specific case study in this paper. Extensions of this freguency-
multiplexed AO architecture have been described for the optical solution of: nonlinear
matrix eguations [9-10]), LAE solutions by matrix-decomposition [11-13]) and the solution of
the resultant lower or upper triangular system of equations [14].

In this paper, we consider only AO systolic processors and specifically only the frecuen-
cy-multiplexed optical system (this decision is made because the architecture allows more
flexibility in the data format possible and in the operations achievable on the system). 1In
this paper, we concentrate on various possible optical and dicital solutions to LAEs. Atten-
tion is specifically given to the error sources present in optical systems. This subject
has not received attention previously. Other technigues to achieve increased accuracy by
encoding of the data to be processed using various methods are not addressed (such architec-
tures generally result in a significant reduction in the number of operations possible per
second and in an increased complexity in the output detector array). Similarly, vector-outer
product optical processors are not addressed (since they recuire the readout of an entire
2-D output matrix of data every bit time Tg).

In Section 2, we briefly review th¢ AD freguency-multiplexed architecture and several of
the different operations that it can achieve., Attention is given to iterative (or indirect)
and direct (specifically matrix-decomposition) solutions to LAEs. When direct techniques are
used, the final step recuired is the solution of a triangular system of ecuations. 1In Sec-
tion 2, we note that this is also possible both optically and digitally. 1In Section 3, we
advance the first error source and component model for an optical systolic array processor
using AO devices. In Section 4, we discuss how this model is incorporated into a digital
simulator to model and analyze the effects of the different error sources present in such
advanced data processors. We also advance initial remarks on the effects of different cata
encoding schemes for representation of bipolar data (with attention to the effect that orti-
cal system and component error sources and noise have on the resultant performance and accu-
racy). 1In Section 5, we present initial results obtained for an optical direct and indirect
solution of a system of LAEs. We also consider a hybrid optical and digital direct solution
toan LAE problem. We gquantify the dominant system and component error sources found and the
performance and accuracy achievable. Conclusions, guidelines and a summary are then advanced
in Section 6.

2. FPEQUENCY-MULTIPLEXED AO SYSTOLIC PROCESSOR

The basic freguency-multiplexed systolic AC ar+-ay processor (SAOP) [7) to be considered
is shown schematically in Figure 1. It consists of a linear array of point modulators
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imaged through separate spatial regions of an AO cell with the Fourier transform of the re-
sultant data collected on an output linear detector array. The point modulator inputs can
be time and space multiplexed and the AO cell inputs can be time and freauency-..altiplexed.
This enables this system to perform matrix-matrix multiplications with one matrix-vector
product (one column or row of a matrix-matrix product) produced in parallel every bit time
Tp- The bit time Tp is the time reguired for the AO cell data to propacate between two spa-
tially adjacent regions of the AO cell. This time Tp also represents t..e rate at which new
data can be fed in parallel to the AO cell and to the linear point modulator input array.
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FIGURE 1 Schematic diagram of a frecuency-multiplexed
AO systolic array processor.

To describe the operation of this system most simply, w. consider its use in the calcula-
tion of the 3 x 3 matrix-matrix product

SPACE FREQUENCY SPACE
51 %12 %3 1 b2 b 11 €12 613
g a,, 85 8, g by, by, b =AB=C -g S €23 ¢ | (H
3 %32 %3 by by b €31 €32 €33

For now, we consider the case when time and space multiplexing of the rows and columns of A
and time and frequency-multiplexing of the rows or columns of B is performed, as noted in
(1). After 3Tg, the entire B matrix is present in the lower 3Tg of the AO cell. Point modu-
lator inputs 3-5 are now pulsed on with the first row of A. The first row of the matrix-
matrix product AB = C is then produced immediately on the output detector array in parallel.
At the next Ty, the data input to the AO cell is shifted up by Tp. We now pulse on point
modulators 2-4, with the data input being the next row of the matrix A and immediately ob-
taining the second row of C at the output of this system. This procedure is repeated until
all rows of the matrix-matrix product have been produced.

We now briefly describe several other data formats and applications of this basic matrix-
matrix or matrix~vector processor architecture. In general, with 2N -1 LEDs and with an A0
cell with a time-aperture Tp=(2N-1)Tp we form N vector inner products on N element vectors
every Tg (all in parallel). As we have previously shown [7,12-16]), pipelining and the flow
of data and operations is quite ideal in this system architecture.

2.1 INDIRECT (ITERATIVE) SOLUTIONS OF LAEs

For an indirect or interative solution to the LAE eguation

Ab = ¢ (2)
for

b=ale, (3)
we prefer the jiterative Richardson algorithm [4,6,7,15). 1In this case, we use the basic
optical matrix-vector multiplication system in Figure 1 in conjunction with a parallel analog
adder and feedback of the output directly into the AO cell, This configuration, described in
(7], realizes the iterative algorithm

b(j+1) = b(j) -~ wAb(3) + wc, (4)

where j denotes the jterative index or time-step, and where w is the acceleration parameter,
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which is selected as described in [(4]. When b(j+41) = b(j), equation (4)converges to l2) and
the output b is the desired solution in (3). “To achieve this [7), we frequency-multiplex the
rows of A and time-sequentially multiplex the co! mns of B. As'we will sec later, recycling
of A within an AO cell of length TA = NTp is preferable to the use of & longer AO cell length
Ta = (2N-1)Tp. .

b T )()

2.2 BANDED MATRIX AND TRIANGULAR SYSTEM SOLUTION

1f we feed the vector b output back to the AO cell and if one row of A is fed to the LEDs
in parallel at one time {T4), then the same architecture in Figure 1 is ideal for the solu-
tion of banded matrix problems and a triangular LAE solution,

2.3 DIRECT SOLUTIONS (MATRIX-DECOMPOSITION)

If we frequency-multiplex the columns (rather than the rows) of the matrix A and if we
feed one column (rather than one row) of the matrix B to the LEDs in parallel, then we form
the matrix-matrix product B A at the output (rather than the matrix-matrix product AB) [7].
This data encoding approach is ideal [12,13) for matrix-decomposition algorithms (the basic
step in a direct solution of an LAE). In [12) and {13), we detail this matrix-decomposition
procedure for the cases of LU (Gauss elimination), QR, and Cholesky decompositions.

2.4 TATA FLOW

Moreover, we showed earlier that the pipelining and data flow in such an approach
is attractive (the same remarks apply to the indirect algorithms described in Section
2.1). Specifically, every bit time Tp, one time-slot of data leaves the AO cell and a new
time-slot of data must be entered into the AO cell. With the aperture time Tp of the AO cell
properly chosen for a given problem, we find that the parallel output detected data can be
operated upon and fed back immediately to the AO cell input. Thus, in the realization of all
of the algorithms we describe, the output data are immediately fed back into the system as
they are produced.

2.5 MATRIX INVERSION

The data encoding in Section 2.1 is alsc appropriate to allow matrix inversion on this
system. This aspect of this processor was fully detailed in [7]. It is thus not discussed
in further detail here.

3. ERROR SOURCE MODEL

Our :omponent error source model is summarized in Table 1, We consider calculation of
the matrix-vector product Ab = €. We separate all component errors into: input plane, AO
cell plane and detector plane errors, and we denote each by a separate superscript as noted
in Table 1. We denote the spatial coordinates of the input plane and the AO cell by the sub-
script i and the fregquency coordinate of the AO cell and the output detectors by the sub-
script Jj.

ERROP SOURCE NOTATION ERROR SOURCE 1 NOTATION
1
Spatial Errors Subscript i AO CELL PLANE ERRORS
Frequency Errors Subscript j Amplifier Errors 1+ 6(2)
Input Plane Errors Superscript 1 Spatial Response 1+ 6;2)
AO Cell Errors Superscript 2 A0 Transfer Function H(fy)
Detector Plane Errors Superecript 3 Acoustic Attenuatior exp (~ax)
INPUT PLANE EPRORS DETECTOR PLANE ERRORS
Point Modulator Spatial Response 1+ 613)
Spatial Gain 1+ 61%) park Current dj
Nonuniform 1 + éié) Time-Varying Noise nj(t)
Response
. ; (1)
Coupling (Spatial) 1l + 613

TABLE 1. SAOP ERROR SOURCE MODEL
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For the input plane, we note that the light intensity incident on the AO cell with all
errors incluced can be described by the factor

} (1) , (1) , (1)
B bi(l 850 8 v 853)

where b is the point-modulator vector input data. Similarly, the space i and freguency j
transmittance of the AO cell for the matrix element ajj is described b,

(5)

. (2) (2)) -

sji °ji(1 + 6 + 6i H(fj)exp( uxi). (6)
: Likewise, the actual detector plane output B, (the observed output) is related to the exact
Ii 55 value and the other error source paramete;s by

. (3)
. éj sj(l + 6j )+ dj + nj(t). (7

Crmbining all of these factors in (5) - (7), we note that in general all of the error
sources must be small (this is realistic and necessary to obtain reasonable accuracy in such

a proce.sor). In this case, we can describe the observed detector output éj in terms of the
exact inputs aj, and bj as

-0X.
= i
ej Eajibi(1+wi)(1¢6j)H(fi)e + dj + nj(t), (8)

where

- (1) (1) (1) (2) (2)
wi sil + 6i2 + 613 + 6 + 6i . (9)

For a (2x 2)matrix, the observed outputs[él,gleare related to the various component error
sources in Table 1 by

. (3) -ax2
¢y l*él 0 H(fl) 0 ayy 8y, 1+w2 0 lie 0 bl d1 nl(t)
= (3 —axy + .10}
&2 0 1+62 0 H(fz) a,; a,, 0 1+y1 0 e b2 d2 n, (t)
A e NN T e N e
DET SPAT AO FREQ RESP DATA SPAT AO ATTN DATA DET DET
ERPORS MATRIX ERRORS b DARK NOISE
INPUT D

1f we assume that the acoustic attenuation a is small, then (10) reduces to

(1)

EXACT SPATIAL TEMPORAL

This latter formulation in (ll) is attractive because it shows that spatial and temporal
errors can be separated in such an AO systolic processor. This is useful, since all spatial
errors can then be reduced to any desired level by applying the associated fixed correction
factors to the input point licht-modulator input and to the output detector elements. 1In
closing our remarks on error sources, we noted that the new spatially-multiplexed bipolar-
data representation scheme we advanced earlier [7) is very attractive since it does not re-
sult in the magnification of system errors. The various biasing and scaling technicues pre-
viously proposed to accommodate bipolar data in such an optical matrix-vector processor re-
sult in a magnification of any residual system errors (by a Jactor egual to the dynamic range
of the matri.). In general, such errors rapidly become quite intolerable.

4. SIMULATION OF SAOP ERROR SOURCES

To determine the dominant error sources, to quantify the degree to which the va.10us error
eources must be reduced, and to guantify the perfcrmance to be expected as a function of all
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of the various system parameters, digital simulation technigues are essential and were em-
ployed. 1In this section, we discuss several of the details »ssociated with our digital
modeling and simulation of the SAOP system error sources and model noted in Section 3, From
(10), we note that the SAOP system and component errors are multxgl1cat1ve and are a matrix
cascade. This is distinguished from the error source analysis anc modeling we conduct=d for
the fixed-mask iterative optical processor (IOP) system., In the case of the IOP system, we
found the error sources of this architecture to be additive [10]), rather than multiplacative
we also note that for the matris-matrix multiplication reguired in the LU decomposition (one
approach to the direct solution of LAEs), the matrix cascade of errors is reversed since row-
wise multiplication (rather than column-wise multiplication) is employed (see Section 2)
However, the same basic results are expected for both systems. We also note that we assure
(in our analysis) that the residual spatial errors (for the input, AO cell and detector sys-~
tem) are reduced to a significantly low level, but are present even after correction. Our
intent is to guantify the amount to which correctable spatially-fixed errors must be reduced
and the amount of time-varying detector noise and acoustic attenuation that is allowable in
such a processor.

In our digital modeling, we represent residual spatial errors (input, AO, and detector
plane) by Gaussian random variables with 30 maximum deviations egual to the fractional residual error
remaining after corrections. These residual errors are included as fixed-multiplicative
factors that we apply to the point-source inputs and the detector outputs at each matrix-
vector multiplication. Detector plane temporal errors (noise versus dark current spatial
variations) are also modeled by similar Gaussian random variables applied to each vector out-
put produced on the detectors. However, a different seed-value is used to produce uncorrela-
ted noise that is added to each matrix-vector output product at each Tg time to appropriately
model detector system time-varying noise. This approach models the time-varying detector
noise and distinguishes the fixed spatial errors from the time-dependent noise errors.
Acoustic attenuation effects are handled by directly including the necessary exponential at-
tenuation factor into the input data to the AO cell (and the associated transmittance of the
AO cell)., Acoustic attenuation is dispersive. However, our initial tests included only a
fixed attenuation a which can thus be transferred to the point-modulator input plane (and
subseguently corrected to the degree necessary).

As performance measures, we use three guantities. First, the Euclidean norm of the error
in the calculated vector b is used; i.e.,

[ 1. -b)?)

- 1/2
avg I i i °

}lab] | (12)

This error measure corresponds to the averajge error in the calculated vector output E If we
divide ||¢b,| by the norm of the exact b vector, then

|1eb] 13, = 1100 x ([|ab[/]1b*| 1)) (13)

defines the average percent error in the elements of the calculated vector. In (12) ancd (13)
i )i| denotes the Euclxdean norm of the r»>rresponding vector, 5 denotes the measurel value
of the vector, and b denotes the exact value of the associated Vector.

The second performance measure we use is the maximum error in any single element of a
calculated vector. This corresponds to & very worst-case error. This performance measure
1s described analytically by

1251 a® = ”;x{loo(ﬁi -b.)/bl). (14)

This error measure is an extremely worst-case one. The final error-measure we considered
was the maximum error in the closed-loop poles of the resultant system. This error measure
is simply defined by

IAxlmax = max(100() mA;)/A;), (a5

where ii denotes the calculated poles and A; denotes the location of the exact pole values.
This particular error-source measure is most avpropriate for optimal control applicatiorn:
It is also most appropriate to provide a specific case study and application of a gituati~n
in which a large error in one element of the vector output does not appreciably affect the
net performance of the system.

In general, different performance measures are appropriate for different problers and
applications. Attention to the worst-case element error in (l14) is not an appropriate meac-
ure of an optical LAE solution for many specific cases and applications. Wher the arplica-
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tion can be specifically defined, other performance measures are more appropriate than this
worst-case one. For certain specific case-studies and applications, we note the fact that
the following performance measures are appropriate for t!.. various indicated applications:
locations of the closed-loop poles of this system (this is appropriate for control applica-
tions), SNR (this is appropriate for adaptive filtering applications), and symbol error rate
(this is appropriate for communication applications). For our present studies, we use
the three performance measures noted above: (12) (average error}, (14) {maximum percentage
error in any element of the computed vector], and (15) [the maximum percent error in the lo-
cation of the closed-loop poles of this system],

S. INITIAL EXPERIMENTAL RESULTS

The purposes of our initial simulations were: (1) quantification of the amount of allow-
able residual spatial errors in the input and detector planes (these are entered as percent-
ages in our table): (2) quantification of the amount of allowable time-varying detector noise
(this time-varying detector noise parameter is also entered as a percentage in our tables of
data presented); and (3) quantification of the amount of AO cell acoustic attenuation possi-
ble (this is entered in units of dB/cm in our tables of data. Only the results for 0.18B/cm
or approximately 6% spatial errors across the A0 cell are shown and considered in the data
presented. This was necessitated by the fact that the use of larger a values yielded un-
acceptable performance and no convergence for the algorithm in many instances). Data for
the three performance measures in (12), (14) and (15) are given in the tables.

Tre specific LAE solution case-study used arose from the final outer-loop solution of
an LOR (linear quadratic regulator) design with the algebraic Ricatti equation for an Fl00 air-
craft with three states and three controls (9,10]. This situation corresponds to an LAE of
order N = 9. The matrix associated with this matrix-vector solution has no specific struc-
ture and is essentially full. It is characterized by a condition number C = 2.48 and a
dynamic range = 47.7. The acceleration parameter w = 1/Ap.y = -0.044 was selected as we
described earlier [4,6). For this specific problem ilg'lT = 0,4€ is the average output plane

value. This parameter can be used to express the average error ||sb|| as a percentage of the
indicated system performance,

Our tests were intended to quantify the component performance of an indirect (oriterative)
solution using the Richardson slgorithm and a direct solution (using LU decomposition). For
the iterative solution, we used J = 10 iterations., This value was determined from four times
the condition number of the matrix as described in [16].

TABLE 2. ERROR SOURCE EFFECTS IN AN INDIRECT LAE SOLUTION

TEST RSEPSAIQPIUAA]{. T IME-VARYING AO CELL ] ERROR MEASURES
DETECTOR ATTENUATION
NumMBER || ERRORS (V) 1t norse (a) aB/cm ﬁHAbH 1ab) tw) |2d ] (%)
INPUT DET - - A X max
11
1 0 0 0 0 ]}:}.28::10'3 0.39 0.26x10"°>
2 6 o 2 0 lp-71x10™® 2.8 o0.s2x107°
3 1 1 0 0 p.3x10°¢ 1.9 0.27
4 1 1 1 0 b.39x10°¢  1.36 0.26
5 1 1 1 0.1 0.16 61.8 15.8
6 0 0 0 0.1 0.16 60.4 16.1

In Table 2, we show the results of an indirect solution for six different sets of systepr
and component errors. The error and noise-free results in Test 1 were obtained with 36-bit
digital accuracy. As seen, excellent accuracy was obtained in these experiments (the per-
formance obtained is limited by the finite word-length and number of iterations performed).
Test 2 shows the effects of 1\ detector noise error-source alone. The accuracy obtained is
better than 0.1% even though one element of the matrix-vector output was in error by 2.8%.
The effects of 1% spatial input errors and 1% spatial output errors (Test 3) alone show that
better than 1% accuracy is still possible on such a system. However, the maximum error in
one element of the computed matrix is 1.78, 1n Test 4, both spatial errors and detector

e AT
aalsoa sy




Sainb Al A I A et S ars ol o e e ST S i R R e e e e A Tt R it e el A i R e BeP o R e e I 0 o2 oo

6};,;1.;-5?‘5

noise were present. The results of these tests confirmed the implications advanced by our
earlier findings on similar tests performed on our I0P optical matrix processor. Specifical-
ly, we found that the presence of both spatial and temporal errors did n t appreciably affect
the accuracy obtained in this system (compared to the case when only one type of error was
present). In Test 6, we used the valuve a = 0.1dB/cm for the acoustic attenuation present.
From the results obtained and from the results in Test 5 (when acoustic atteiuvation and all
other error sources are present), we see that acoustic attenuvation is the dominant error
source effect and tha’ the a value used must be significantly reduced if wc are to obtain
adequate performance from such a matrix-vector processor.

TABLE 3. ERROR SOURCE AND NOISE EFFECTS ON DIRECT AND INDIRECT
AND OPTICAL AND DI1GITAL TRIANGULAR SYSTEM SOLUTIONS

TO LAESs.
_¥EST NO. RESIDUAL JTIME-VARYING AQO CELL ERROR MEASURES
v it | gmsgren” | oo
.(sussr FENEOT & ) dB/cm [1apll  [lebf,, (& [ (831, (0
1 0 0 ) 0 0.28x10"> -3
INDIR . 28x 0.39 0.26x10
preect Il © | © 0 0 0.11x107°j0.28x1072 | 0.10x20"*
2 (VAX) 0 0 1 0 0.8x163] 1.27 |o.sex10"?
aisaop) || o 0 1 0 1.0x383 | 2.47  [o0.22x1071
s(saop) || 2 1 0 0 106162 6.0 0.34
6(saop) || 2 1 0 0.1 1.0x362| 8.8 0.39
2esn0p) |} 2 1 1 0.1 1.1x162] 9.2 0.37
8 (VAX) 1 1 1 0.1 1.4x10°% 8.2 0.57

In Table 3, we compare direct and indirect solutions to LAEs. The error and noise-free
results in Tests 1 and 2 show that better accuracy appears to be obtainable with a direct
solution, However, this is misleading since, if the number of iterations J were increased
to 50, then both algorithms would yield similar error and noise-free performance. In Tests
3 through 8, we inrluded various amounts of spatial errors, temporal noise, and acoustic
attenuation. As seen, a direct algorithm yields better accuracy and performance than an in-
direct algorithm. Specifically, 0.5-2% accuracy is obtained (the maximum error in one ele-
ment is 8-9%) even with 1% input spatial error, 1% output spatial error, 1% detector noise
and 0.14B/cm acoustic attenuation all present. We also note from this data that in a direct
solution, acoustic attenuation is no longer necessarily the dominant error source. Further
tests on various implementation- of the direct LAE solution were also conducted and are in-
cluded in Table 3. These involve performing the matrix decomposition optically followed by
the solution of the resultant triangular system of equations digitally to 36-bit accuracy
(this is denoted by VAX in parentheses in Table 3) or optically using our triangular system
solutions algorithm [14] (this is denoted by SAOP in parentheses in Table 3). Comparing the
results of the VAX tests (3 and 8) and the SAOP tests (4-7), we find negligible difference
in performance whether the triangular system was solved optically or digitally. This is *
expected due to the nature of the simpler vector inner product calculations required in a
triangular system snlution.

6. SUMMARY, CONCLUSION AND GUIDELINES

In this paper, attention was given to one optical systolic array architecture, the fre-
ouency-rultiplexed SAOP. The flexibility possible in formatting data in this architecture
was noted together with examples of how the same architecture can be used for many different
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operations. This flexibility plus the reduced component reguirements (fewer point light
modulators and detectors and lower per-channel data rates are required to achieve perform-
ance comparable to other architectures) appea s to make this system more attractive than
others. Hence, we restricted attention to it. Extensions of this basic architecture using )
multi-channel AO cells are also obvious and direct, In this paper, we also advanced the first __ B
component error-source model for an optical systolic processor and we noted that many system
and component errors are spatially-fixed and hence are correctable, To quantify the level
to which various errors and noise must be reduce” and to quantify the perfoimance expected,
we detailed the digital model for the SAOP architecture and its system and component error
and noise sources. By simulation, we tested an indirect algorithm solution and found that
acoustic attenuation was the dominant error source, that 1%V accuracy could be obtained: but
to do this the acoustic attenuation must be below 0.1dB/cm, We compared direct and indirect
solutions and found that direct solutions yielded significantly better accuracy and perform- .. ®
ance, Finally, we compared direct solutions in which the triangular system of eguations

_ that resulted was solved optically and dicitally. Negligible difference was found if either

) approach was used. Using a direct solution, accuracy and performance approaching 1\ appears
to be possible using realistically achievable component quality and detector noise.

Further tests, experimental verification, and more general analyses and trends and quan-
tification for other specific spplications is necessary before definitive general conclusions
should be advanced. However, gualitative explanations for all of the results obtained have »
been advanced and thus the trends observed appear to be representative of a general matrix-
vector LAE problem solution.
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Optical Kalman filtering for missile guidance

David Casasent, Charles P. Neuman, and John Lycas

Optical systolic array processors constitute a powerful and general-purpose set of optical architectures with
high computational rates. 1n this paper. Kalman filtering. a novel application for these architectures. is in-
vestigated. All required operations are detailed: their realization by optical and special-purpose analog elec-
tronics are specified; and the processing time of the system is quantified. The specific Kalman filter appli-
cation chosen is for an air-to-air missile guidance controller. The architecture realized in this paper meets
the design goal of a fully adaptive Kalman filter which processes a measurement every | msec. The vital
issue of flow and pipelining of data and operations in a systolic array processor is addressed. The approach
is sufficiently general and can be realized on an optical or digital svstolic array processor.

I. Introduction

A multitude of optical systolic array processors!-*
have recently been proposed. These processors com-
prise a broad class of optical linear algebra processors.
Numerous engineering applications of these processors
have been described, including adaptive phased array
radar,® optimal control,”® and Kalman filtering.?? In
this paper, we detail the realization of a discrete-time
extented Kalman filter (EKF) for air-to-air missile
guidance using optical systolic array processors. This
application provides a specific case study of the use of
an optical systolic linear algebra processor in a full
problem application. This case study leads to a novel
discrete-time EKF algorithm with sufficient parallelism
for realization on an optical or digital systolic array
processor. Qur approach results in a novel algorithm
and novel operations that are possible on optical systolic
processors. We realize an EKF because the missile and
target are modeled by linear differential equations in
Cartesian coordinates, whereas the measurement model
is nonlinear. Linearizing the nonlinear measurement
equation about the most recent relative motion esti-
mates results in an EKF. Discretization of the con-
tinuous-time Kalman filter leads to a novel discrete-
time algorithm. Such a discrete-time algorithm is es-
sential for realization on optical or digital systolic pro-
cessors.

The authors are with Carnegie-Mellon University, Department of
Electrical & Computer Engineering. Pittshurgh, Pennsyivania
15213.
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We note recent publications on systolic Kalman fil-
ters, which appeared as our work was reaching com-
pletion. A steady-state analysis of finite word-length
effects, roundoff-error propagation, stability and esti-
mation sensitivity is detailed in Ref. 10 for a systolic
Kalman filter architecture. Our fully adaptive optical
systolic Kalman filter (which processes a measurement
every 1 msec) incorporates the automatic updating of
the Kalman filter gain and covariance matrix of the
error of state estimation and thus differs appreciably
from this work. Extended Kalman filter algorithms for
optical implementation are proposed in Ref. 11, but
implementation details are not provided. In this paper,
we detail the design and realization of a complete dis-
crete-time EKF optical systolic array processor.

A. Motivation

Proportional navigation guidance (PNG)!? is the
traditional guidance law used for air-to-air missiles. In
this controller, noisy measurements of the target's po-
sition and velocity are fed to the PNG computer, which
estimates the line-of-sight rate and calculates the mis-
sile acceleration for the steering autopilot, which is then
applied to the missile’s actuators (the fins) to control
the missile’s position and velocity. These estimates are
fed back to the PNG computer, new target measure-
ments are taken, and the process is repeated. Of the
PNG assumptions, removing the assumption of a con-
stant relative missile-to-target velocity provides the
largest improvement,!? especially for the case of evasive
targets. For advanced guidance laws to be practical.
enhanced target motion estimates are required.
Modern filtering algorithms, such as the Kalman filter,
can provide such estimates. The Kalman filter pro-
vides the optimum estimate (in a least-mean square or
maximum likelihood sense). Such algorithms use the
kinematics and dynamics of the missile and the target.
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plus the statistics of the noise in the measurements and
in the dynamic process disturbances.

B. Overview

In Sec. 11, we highlight the missile-target and mea-
surement models, and review the conventional contin-
uous-time Kalman filter and EKF formulations. A
novel discrete-time EKF is then introduced (in Sec. IID)
and the linear algebra operations required in each step
are defined. The major operation required is the so-
lution of a quadratic matrix equation. In Sec. IV, we
review optical systolic processors with attention to one
specific architecture® and to the variety of achievable
operations by format control. A new optical system
solution to a quadratic matrix equation is then ad-
vanced in Sec. V and the required operations are noted.
These include a new optical systolic system for calcu-
lation of the Jacobian matrix. In Sec. VI, the realization
of all operations required in our EKF is summarized,
and the load time and calculation time for each step in
our algorithm are detailed. Our full system architecture
is advanced, the critical time path is isolated, and the
processing time required for our EKF is quantified.
Our summary and conclusions are then advanced in Sec.
VIL

Il. Continuous-Time EKF for Dynamic Systems

In this section, we highlight the missile-target and
measurement models and review the continuous-time
Kalman filter and EKF formulations.

A. Missile-Target Mode!

The linear dynamic system model for the missile and
target is described by the matrix-vector differential
equation

x(t) = Fx(t) + u(t) + wit), 1)

where x(t) = (9 X 1) missile-target state vector (the
state variables are the Cartesian coordi-
nates of the relative target-to-missile
position and velocity and the target ac-
celeration);
F = (9 X 9) missile-target state matrix;

u(z) = (9 X 1) missile acceleration control vector;
and

w(t) = (9 X 1) missile and target dynamic dis-
turbance vector; w(t) is modeled as a
zero-mean Gaussian white-noise uncor-
related vector with covariance matrix Q,
i.e, w(t)~ N[0,Q].

B. Target Measurement Mode!

We assume that a passive sensing system estimates
the elevation (¢) and azimuth (#) of the target.!* These
polar coordinates are related to the relative Cartesian
position coordinates by a nonlinear transformation.
We denote the relationship between the measured
quantities and the relative spatial coordinates by the
elements h; and h, of avector h. The target measure-
ment model is thus described by the nonlinear vector
algebraic equation

z(0) = hixi)] + w, (1), (2)

We model the sensor noise vector w,(t) by a zero-
mean Gaussian white-noise vector with covariance
matrix R. In Eq. (2) we note that z(t) is the measure-
ment; h[x(¢)] is nonlinearly related to the state vector
x (since Cartesian coordinates rather than polar coor-
dinates are used). The angles ¢ and # are the directly
measurable quantities (because of the sensors used and
the techniques available). We chose Cartesian coor-
dinates since the target-missile model is linear and its
propagation is easier to realize. Since the measurement
model in Eq. (2) is nonlinear, we linearize the nonlinear
function h[x] by the matrix-vector product H(¢)x(t),
where H is the gradient of h. This approximation leads
to the EKF (Sec. III).

C. Continuous-Time Extended Kalman Filter

The objective of the extended Kalman filter (EKF)
is to produce an estimate %(t) of x(¢) for each ¢ and ¢
measurement z(t). We linearize h(x), about the most
recent estimate R(¢) of the relative spatial coordinates,
and approximate h[%(t)] by the matrix-vector product
H(t)k(t), where the gradient matrix is

dh(x(t)]
axtt) jmn=gn

We thus realize an EKF from the conventional KF.
The three steps and three equations which define an
EKF follow!5:

H() 4

g(t) = F&(t) + K(2)iz(¢) = h{x(e)]i + utt), (3)

Pit)=FP(t)+ POFT+ Q) - POHTWOR-UOH(OP¢),
(4)

Ky = POHT(OR- (1), (5)

The state-estimate equation in (3) propagates the
estimate %(t) of the state vector. From Eq. (3) we see
that the next state estimate is the weighted sum of the
output of the process or system model, plus the inno-
vations process (the difference between the measure-
ment z and the nonlinear transformation h of the state
vector), plus the control vector u. The second term in
Eq. (3) is an estimate of the measurement noise. 1f the
system noise increases, the present measurement is
weighted more heavily (i.e., the KF gain K is large). We
note that the feedback of the current state estimate
(including the KF gain) is included via the control
vector and the iteration implied in Eq. (3). Thus, the
system model is updated with the current state-estimate
information from the KF.

The error covariance matrix P, which is a measure of
the uncertainty of the % estimate, is defined by

Pit) = Ej[xt0) = x()][%¢t) — xi2)] 7). (6)

Propagation of P is the major aspect of the KF and is
defined by Eq. (6). The KF gain K is defined by the
matrix product in Eq. (5). From Eqs. (4)-(6), we see
that P increases if the system noise (Q) increases (this
is logical). Thus, if Q increases, K increases and hence
we weight the present measurement more. If the
measurement noise R increases, K decreases, and we
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Fig. 1. Schematic diagram of a frequency-multiplexed acoustooptic
systolic array processor.”

weight the system more heavily. Thus, the next esti-
mate relies on the last estimate (if R is large) and relies
on the present measurement z (if R is small).

The operations required in the EKF thus include:
calculation of the KF gain in Eq. (5), propagation of the
error covariance matrix P(t) according to Eq. (4), and
propagation of the state estimate ®(t) according to Eq.
(3).

il. Discrete-Time Extended Kalman filter

In this section we develop our new discrete-time EKF
algorithm. The need for a discrete-time EKF arises
because of the systolic processor realization (which re-
quires pulsed data). Any time-sampled processor
(digital or optical) requires a discrete-time formulation.
We used the forward Euler method to discretize the
state and update equations in (1) and (3) and the trap-
ezoidal rule to discretize the error covariance matrix
propagation equation in (4). These algorithms de-
couple the update equations. The resultant discrete-
time EKF algorithm becomes

K = P.H[R}{' )
fr+) = {1 + TFigs + TKelze = h(ge) + Tuy, 8
PrsiMis Prey + [Pos L7 + LPrayl + Ci = 0. (9

Our discrete-time EKF algorithm is thus novel and
differs from prior applications of discretization
schemes!® (e.g., explicit algorithms and Runge-Kutta
methods) to Kalman filtering. In all our equations, the
subscript k refers to the time-index or the KF iteration
count. Equation (7) defines the KF gain, Eq. (8)
characterizes the state-estimate update, and Eq. (9)
describes the error covariance update. InEq. (8), T is
the measurement sampling interval. The matrices
which we introduced in Eq. (9) are

Mysi =HLL R, Heor
L=[(1/TN-F] (10)
Ce=P,M,P - P.I(I/T)l + F]T - l(l/T" + F]Pk -2Q.

Equations (7)-(10) outline the steps and identify the
linear algebraic operations (matrix-vector, matrix—
matrix, and matrix-matrix-matrix multiplication)
which are required in each iteration to realize our dis-
crete-time EKF. The solution of the symmetric qua-
dratic matrix equation in (9) is the major computational
operation required. In Sec. V we detail our new solu-
tion to the symmetric quadratic matrix equation in (9)
for this application.
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IV. Optical Linear Aigebra Systolic Array Processors

Numerous optical systolic array processors have been
described and some have been analvzed.!'” The ac-
oustooptic (AO) optical systolic array processor we
chose to detail for this EKF application is the fre-
quency-multiplexed system shown schematically in Fig.
1.* The system consists of a linear input array of point
modulators, each imaged through a different region of
an AO cell, and the Fourier transform (FT) of the light
leaving the AO cell formed on the output linear detector
array. This specific system was chosen because it is the
most documented and analyzed one and because its
flexibility leads to the realization of a spectrum of linear
algebraic operations by format control of the input data.
In this section we summarize the operations heretofore
documented that are required for our present EKF
application, and we detail how each is realized on this
system.

The inputs to the point modulators, light emitting
diodes (LEDs) or laser diodes (LDs), are space (x) and
time (t), while the inputs to the AO cell are time (1) and
frequency (f). The time variable is converted to space
as the contents of the AO cell travel across the aperture
in time. We achieve the matrix-vector (MV) multi-
plication Ab = ¢ on this system as

x.t

—————

ITen a2 a3 b I3}

flan azx ax xllbe] = xyleal - AD
Vlas a3 aam b3 €3

point detector

AO cell modulators outputs

To see how the operations described in Eq. (11) occur,
we define the bit time T'g as the time it takes data in the
AO cell to move from the region illuminated by the
input point modulator N to the region illuminated by
the point modulator N + 1. We consider a (3 X 3)
matrix example as in Eq. (11). At time 1Tg, we load the
first column of the matrix into the AO cell with each
element present on a different frequency (f). At times
2Ts and 3T g, we load the second and third columns of
the matrix into the AO cell. At 3T, the full matrix is
present in the AO cell, with its columns opposite point
modulators 3, 4, and 5, respectively. At this point, the
elements of the vector b are fed in parallel to the point
modulators 3-5. Each element of b multiplies the
corresponding columns of the matrix A. The output
FT sums the proper elements of the product in each
row; and on the output detectors, the MV product Ab
appears in parallel. For an (N X N) element matrix,
the MV product appears in parallel in zero time (after
a load time NTg, during which the matrix is loaded into
the AO cell).

Matrix-matrix (MM) multiplication for a (3 X 3)
example is realized as

x.t t 1
[[an a1z ay by b1z biy 1 2 €13
[lan a2 ax| x||ba b ba|=x||ca e 2| (12)
tlom axn ag ba1 ba2 by Ca1 €32 Cag
point detector
AOQ cell modulators outputs
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This MM multiplication is a direct extension of the MV
product in Eq. (11), repeated N times. At each suc-
cessive Ty of time (after the load time), N vector inner
products of N-element vectors are formed in parallel on
the N output detectors. A MM product thus requires
NTj of time (plus NTg of time to load the matrix into
the AO cell). One row of the MM product emerges in
parallel on the output detectors every Ty time in-
terval.

Matrix-matrix-matrix (MMM) multiplication is a
further extension of the MM multiplication in Eq. (12).
We realize ABD = E by forming AB = C, feeding C to
the AO cell as it is formed (one row at a time), and then
producing CD = E one row at a time in parallel. Aswe
have shown,”? operations and data flow ideally in this
architecture (i.e., as one row of the matrix is produced,
one Ty of the cell becomes vacant, and we immediately
feed the row of the MM product produced to the vacant
slot in the AO cell).

Iterative MV algorithms for the solution of linear
algebraic equations can also be realized on this system.
To solve Ab = ¢, we feed one iterate b of b to the point
modulators and A to the AO cell. We form Aby at the
output, subtract ¢, add b, to the result, and feed this
sum back to the point modulators as the next by it-
erative input. Tosolve Ab = ¢ for b, we thus realize the
Richardson algorithm,36.17

b.,|=w(Abk—c)+ bk. 13)

where w is the acceleration parameter chosen for sta-
bility.® When by = by, Eq. (13) produces the solution
to Ab =g¢;i.e,

b=A"!c (14)

The operations in Egs. (11)-(13) realize all the steps
required to implement our discrete-time EKF with the
exception of the solution of the symmetric quadratic
matrix equation in (9). Our prior approaches to solving
a quadratic matrix equation used two iterative loops to
implement the Kleinman and Richardson algorithms,
respectively.” In Sec. V we introduce a new optical
solution to the symmetric quadratic matrix problem and
detail its implementation. This novel algorithm has
many advantageous features compared with those
which we previously reported.”

V. Optical Systolic Algorithms

In this section, we apply the Newton-Raphson algo-
roithm to introduce an optical systolic solution to the
symmetric quadratic matrix equation in (9) and high-
light the efficient calculation of the Jacobian matrix.

A. Optical Systolic Solution to a Quadratic Matrix
Equation

The optical solution we introduce to solve the sym-
metric quadratic matrix equation

Gi =Py M 1Py + 1P LT+ LP 1+ G =0 (15)

for P+, is the Newton-Raphson’¥ algorithm, We write
Eq. (15) as the lexographicaily ordered vectorg(p, . ..
px1) = 0, where p,, contains the N- = 8] elements of P,,.
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Fig.2. Triple-nested discrete-time EKF algorithm.

We thus convert Eq. (15) into a system of N- = 81 si-
multaneous quadratic equations (for a 9-state prob-
lem). The elements (p, ... pg;) of Py4, are the desired
solutio]r;. The Newton-Raphson algorithm to solve Eq.
(15} is

Pn+1 = Pn = J(pn]'glpn]. (16}
where the Jacobian matrix J|p,] is defined by
JUig) =g /ap, g forig=1...., 81. amn

The Jacobian in Eq. (17) is thus an (N2 X N?) = (81
X 81) matrix. We chose this algorithm because it is
quadratically convergent and is a single-step algorithm
(i.e., J[pn] is computed from the nth iterate p, alone
and not from prior iterates of p).

The four steps in each iteration of the algorithm in
Eq. (16) and the operations required to implement it
are:

(i) Calculate the constituent matrices in Eq. (15) and
form the N2 vector g[p,].

This step requires matrix-matrix and matrix-ma-
trix-matrix multiplication.

(ii) Calculate the N* = 81 elements of the Jacobian
matrix J(i,j) in Eq. (17). In Sec. V.B we describe a
novel optical or digital approach for this step.

(iii) Modify Eq. (16) and solve Eq. (15) in the
form.

Jipals, = —¢|p,| L]
for s, , where

80 T Pusr ~ Pu (1Y)
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Fig 3. Optical random-access AO storage/multiplier/summer for calculation of the Jacobian.

To solve the svstem of linear algebraic equations in (18),
we apply the iterative Richardson algorithm!* in Eq.
(13) in the form

Sre) =5, + WIEPY + Jipais. 20

(iv) Compute p,+, from Eq. (19).

This formulation is attractive since it circumvents the
need to invert the Jacobian matrix in Eq. (16).

We illustrate our discrete-time EKF algorithm in the
block diagram of Fig. 2. Our algorithm thus incorpo-
rates three nested iterative loops. In the innermost loop
(index r), we apply the Richardson algorithm in Eq. (20)
to solve Eq. (18) for s,+,. The iterations in Eq. (20)
continue until s,4+; =~ s,. When the iterative Rich-
ardson algorithm converges, we set 5,4 = s, and form
p.+1 from Eq. (19). If |s,| > ¢, we begin a new New-
ton-Raphson loop (index n), calculate g[p,] in Eq. (15)
and J|p,] in Eq. (17). We then repeat the Richardson
iterative algorithm in Eq. (20) for the new g[p..] vector
and Jacobian J[p,] matrix. This two-loop Newton-
Raphson/Richardson iterative procedure is repeated
until |s, | < ¢, at which point weset P,y =Py, ;. We
now return to the KF loop (index k) and calculate a new
K: and £:+,;. The next measurement z; can then be
accepted. In Sec. VI we detail our full system archi-
tecture and quantify the processing time for our
EKF.

B. Etficient Calculation of the Jacobian

The calculation of the Jacobian matrix is a crucial
step in a Newton-Raphson solution. We have devel-
oped an efficient technique for J calculation using the
table look-up method of Blackburn!? (developed for the
solution of the algebraic Riccati equation) and modified
the table look-up method for an optical or digital sys-
tolic paraliel processor and its application in our dis-
crete-time EKF algorithm. We rewrite the Jacobian
matrix in Eq. (17) as

J=AT@1+18©AT, @2n
where
A=M., P+ L (22)
and ® denotes the Kronecker product. i.e.,
MeP=m.P), (21

Equations (21) and (23) illustrate that the Kronecker
product reorders the elements of A. Thus, calculation
of J can be simply achieved by addressing the proper
elements of A.
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For an N-state problem, A in Eq. (22) is (N X N) and
the full-order Jacobian J in Eq. (21) is (N- X N-).
Because the matrices M, P, C, and G and the quadratic
matrix equation in (15) are symmetric, there are N (N
+ 1)/2 = 45 unknown elements in P (rather than N =
81). Thus, we can reduce the size of the Jacobian from
(81 X 81) to (45 X 45). This simplifies the calculation
of J and reduces the number of elements of A that must
be addressed. The number of states or dimension (N
= 9) of the problem and the symmetry of the matrices
determine which elements of A form which elements of
J. Since N is fixed, the same elements of A are ad-
dressed in each Newton-Raphson iteration. Although
P,, and hence A, change with the index n, the elements
addressed remain the same. Thus, we need only form
anew A, matrix and use the same processor to calculate
the new J,, matrix from this A, matrix. Sinces, isa
combination of p, (the lexographically ordered ele-
ments of P,), S is symmetric (i.e., s; = s;,). By
applying this property and the fact that J multiplies s,
in Eq. (18), we can delete and combine redundant rows
of J and the corresponding elements of s,. We find
that only 405 elements (or one-fifth of the 2025 elements
of the reduced-order J) are nonzero and must be cal-
culated. The system of Fig. 3 can compute J using this
table look-up technique and the aforementioned algo-
rithm. In this system, the matrix A is fed to the AO cell.
At successive instants of time, the proper point modu-
lators are pulsed-on. This accesses the correct elements
of A. By varying the strength of the point modulators,
different weights or multiplictions of an element of A
can be achieved. By pulsing-on two point modulators
simultaneously, the sum of two elements of A can be
produced. By this technique and architecture, J can
easily be produced (one element at a time). The point
modulators addressing each Tg are determined from a
look-up table (and this table is fixed for an Nth order
problem).

VI. Systolic EKF Architecture and Processing Time

For our AO cell we assume an aperture time T4 = 35
usec, which is divided into 100 time slots: i.e., Ty = 350
nsec (for a 3-MHz data rate per channel). Calculation
of J in Fig. 3 (which incorporates 81 point modulators)
requires Ty = 20.7 usec using this system. The non-
linear functions h[X] and [H] require evaluation of the
arctangent and magnitude and are thus best formed in
nonlinear analog modules. The calculation times for
h and H (using conventional available off-the-shelf
analog modules) are t;, = 20 usec and ¢y, = 30 usec. re-

DR, G SR N T AN

T )

, et s .
L., L o .
e mad LA at K e e aoaaala

|

T SN

P

U

P




—Te T

TvT v ¥ vy i v 0

o

B (

. 1.

— v
e

Table |. Component Requirements and Performance for the Linear Algebraic Operations Required in Ow EKF Algorithm -

Number of —
Multiplication point Number of Load Caleulanion
Size operation modulators  frequencies Remarks time (Ty) time t 150 Svmbeel
{9 X 9) Bipolar M-V 19 9 AN -] 2 MA
9 x9 Bipolar M-M 35 9 Extend number of IN - 2N MM
point modulaters ’
OXN Bipolar MM + MM 53 9 IN - 2N MAL 4+ MM ( A
. . - INI = 1TN +9 . ]
(45 %X 45 Bipolar M-\ 91 9 Partition tno AN -1 _— RBIMA 4
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Fig. 4. Optical systolic discrete-time EKF processor architecture.

spectively. Faster computation of all these parameters
is possible with a different AO cell, a higher data rate
per channel and different analog modules. The per-
formance goal (a 1-kHz measurement sample rate) can
easily be achieved with these present components and
the parameters noted above. Consequently, additional
effort was not directed toward improving further the
speed obtainable.

In the design of the optical system in Fig. 1, we re-
stricted the number of frequencies to be a maximum of
ten (to simplify the electronic support required) and we
assumed an AO ceil with a time-bandwidth product of
1000 maximum (this value is compatible with present
off-the-shelf components). In Table I we list the linear
algebraic operations which are required, and the system

-
3
L | RO
€
°
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must be performed on (9 X 9) matrices. To represent
bipolar data, we use 18 elements (space or time-multi- ]
plexed) to represent 9 bipolar values. The number of ‘
point modulators required in each case is noted (in all
cases only 9 frequencies are used). The time to load the
data into the AO cell of the system and the calculation
time (once the data are loaded) are noted separately in
units of the bit time Tp and as a function of the di-
mension N of the matrix. In general, the load time does
not enter into the full processing time, since the oper-
ations can be pipelined to allow new data to be loaded
as calculations proceed. The symbols used for each
operation are noted in the last column of Table I.

In Fig. 4 we display the architecture of our final EKF
design. We employ two of the optical systolic proces-
sors depicted in Fig. 1. The first system uses 35-input

s
N
ko d 4 o

-
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design parameters and performance specifications as-  point modulators and the second uses 91-input point L~
sociated with each operation. The first three operations  modulators. Each system employs 9 multiplexed T
Table i. Operations and Timing for Our EXF Processor ( *Defines Critical Caiculation Time Path) ER ) ‘
System 1 Svstem 2 !
Load/calculation - 4
Calculation Operation time Calculation Operation Time "3
*Kax M-M 18Tx Cs M-M 18T ’
*TKe(zx - h(y)] M-V 2Tk M-M 18Tk I
198 M-V + M-V 1975 M-M + M-M 36Tx .
hi%s) NL 20 usec .
*Heer NL 30 usec ..
*My+ M-M-M 22Tk :
| JPN (Newton-Raphson) 18Th *s, (Richardson) 18Ty K
- M-M '
Jacobian 20.7 psec -
BPMV 455T !
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frequencies within the AO cell. This allows optimal use
of parallelism in the operations required in our EKF
algorithm.

In Table 11 we compile the operations and load and
calculation times for the sequence of steps (for each
time-sample k) in our optical systolic discrete-time EKF
processor (Fig. 4). The asterisks in the table label the
critical time paths in our processor.

We summed the load and calculation times delin-
eated in Table 11 and found the total calculation time
for one time-sample k in our EKF processor to be

Ty = 42Ty + 30 usec + n[18Tx + 20 usec + r 455Tg].  (24)

where n and r denote, respectively, the number of
Newton-Raphson and Richardson algorithm iterations
required. For the bit time T = 350 nsec, the compu-
tation time is

Te = 44.7 + n{26 + 159r]usec. (25)

The largest time is spent in the innermost Richardson
loop. [The solution of the symmetric quadratic matrix
equation in (15) for Pi4+, consumes 35% of the compu-
tation time.] We have thus optimized our system, the
data flow, and the data format to reduce the computa-
tional time for this specific bipolar MV operation (in
Tables I and II). From our initial simulations, we found
n = 2or 3 and r = 2 to be adequate to achieve conver-
gence of our algorithm. On substituting these values
into Eq. {(25), we find the processing time for one EKF
sample to be T = 0.73 msec or T = 1.08 msec. These
correspond to a measurement data rate of 1/T% = 1.36
kHz or 0.926 kHz. These data rates are adequate for
our present goal of ~1-msec data measurements. As
we noted at the outset of this section, faster calculation
times are possible with different system and component
parameters choices.

Vil. Summary and Conclusions

In this paper we have considered a specific problem
in optical linear algebra, the realization of a Kalman
filter (for an air-to-air missile engagement) and have
developed a new discrete-time extended Kalman filter
algorithm for this application. We have structured the
steps in this algorithm in terms of basic linear algebra
operations. We then detailed how each operation could
be realized on an optical systolic array processor, and
the pipelining and data flow between all steps. A spe-
cific frequency-multiplexed optical systolic processor
was chosen since it allows the flexibility of performing
different operations with different data encoding and
format control techniques. A new triple-nested algo-
rithm was devised to solve the discrete-time extended
Kalman filter problem for this application. This al-
gorithm also involved a new optical technique to eval-
uate the Jacobian matrix. The performance achieved
in this design was found to be adequate for our intended
measurement sampling rate. This represents a new
application of systolic array processors (optical or dig-
ital). This paper represents an important case study
in how individual operations must be pipelined and
nested to solve an overall system problem.
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Kalman filtering and state estimation are major tech-
niques used in many control and signal processing applica-
tions.1:2 A Kalman filter produces the optimum least mean
square or maximum-likelihood estimate of the state of a linear
system driven by additive noise. In Kalman filtering, a sys-
tem or process model with additive noise and a sensor mea-
surement system with additive noise are assumed. The
Kalman filter provides estimates of the state of the system,
the accuracy of the most recent estimate, and the control for
the system. This is achieved, assuming that the system and
measurement noise are known (zero-mean Gaussian statistics
are assumed), by recursive curve-fitting to estimate the state
of the system. The next state estimate is a linear combination
of the prior control and the prior estimate and the uncertainty
measurement of the sensor’s noise. Depending upon the
amount of process and sensor noise, more weight (through the
Kalman filter gain matrix) is given to the present estimate or
the present measurement.

In Ref. 3, we described a frequency-multiplexed acous-
tooptic (AO) processor and detailed how it was capable of
performing all the individual operations (matrix-matrix-
matrix multiplication, matrix inversion, etc.) required for
Kalman filtering. However, the data flow and organization
of all required operations were not detailed. In this Letter,
we consider specifically a simpler Kalman filter state esti-
mation problem. We assume that the measurement vector
2x is received serially and is sampled at regular intervals. We
now consider the problem of calculating the state estimation
vector £, and the extrapolated state estimation vector Xs+1,
assuming that the system’s noise statistics are known. The
data flow is found to be quite ideal in the iterative optical
processor we devised for this Kalman filtering state estimation
problem.

In Table I, we list the discrete-time Kalman filter equations.
For more details and a derivation of these equations, Refs. 1-3
should be consulted. We assume equally spaced time-sam-
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pled intervals kT, where k is the iterative time index. We
assume that the system noise vector w and the measurement
noise vector v are uncorrelated and Gaussian-distributed and
that the noise statistics (Q and R) and the system model
(®,I',H) are known. Thus the error covariance matrix P and
the extrapolated error covariance matrix M can be precom-
puted, and hence the Kalman gain matrix K, can be pre-
computed and stored for each input time sample.

With these assumptions, we now consider the state of the
filter and system and the calculations required after receipt
of a new measurement sample z, at time kT,. From the
previous Kalman filter cycle, we have an extrapolated state
estimate X,, and from the known noise statistics we have
precomputed the Kalman gain matrices. In many cases, the
noise statistics {(and the matrices describing the system model)
change sufficiently slowly that the storage requirements and
updating requirements for K and the other nacessary system
and noise matrices (®;, I'y Hx, Qi, and R,.) are not excessive.
When & new measurement sample z; is obtained at time kT,
the new state vector estimate £, must be calculated from Eq.
(1c), and then the new extrapolated state estimate vector X+
must be evaluated using Eq. (1d). Thus, with known noise
statistics and a known system model, the required Kalman
filter state estimate calculations required for each new input
sample are simply Egs. (1c) and (1d) of Table I. Combining
these equations, we describe the simplified Kalman filter and
the calculations required by

pe1 = (@ - K HOX, + K2z + I, &, (2a)
Xi+1 = ApXp + Bezp + T W (2b)

Since the matrices (¥, — $+ K, H,:) and &, K, can be pre-
computed, we denote the associated matrices required in Eq.
(2a) by A, and B, as noted in Eq. (2b) to simplify notation.
If we had included the assumption of zero-mean system noise
(W, = 0), the equation would simplify even further.

Table |. Discrete-Time (k) Katman Filter Equations

Description Defining Equations

System model Xae) = Puxp + Tw 1)
z = Hyxy + v (1b)
&, =)+ Ki(zp — HiXy) (1c)

B =ik + Iiw Ody

State estimate
Extrapolated state estimate
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Fig. 1. Schematic diagram of an optical systolic processor for Kal-
man filter state estimation.

We consider the use of optical systolic array processors
employving acoustooptic (AOQ) transducers to perform the
necessary computations in Egs. (2). Only single-channel
optical systolic array processor architectures®4 have been
described thus far in the literature. This class of optical linear
algebra processors is quite general purpose. Attention,
however, must be given to the flow of data and operations in
such systems; and for high computational efficiency one must
avoid analog-to-digital conversion and the storage of inter-
mediate data results. To perform efficiently the calculations
necessary in Egs. (2), we found that a multichannel optical
systolic array processor vielded the best results. One reali-
zation with such a system is shown in Fig. 1.

This architecture is a new two-channel iterative optical
systolic array processor. In the system of Fig. 1, two linear
LED arrays are imaged onto two separate channels of an AO
cell. This forms the separate product of the corresponding
input LED data and the contents of the AQ cell. Since all the
data in the AO cell are present at the same frequency, all the
light distribution leaving both channels of the AO cell will be
deflected in the same direction and will thus be focused by lens
L, at the same horizontal location in the output plane. Lens
L also vertically integrates and focuses the light leaving both
channels of the AQ cell. The size of the detector is chosen to
collect all this light. Thus the summation of the total light
distribution leaving both channels of the system is formed on
the single-output photodetector (DET). The upper AO cell
channel is fed with the measurement vector z;, and the lower
AO cell channel is fed with the prior state estimate X;. The
upper LED array is fed with one row of the matrix A; in par-
allel, and the lower LED array is similarly fed sequentially
with the rows of B,. Subsequent rows of A, and B, are en-
tered every T, in parallel. Foran N X N matrix, the leftmost
N LEDs (1 to N) are addressed with the first row of A, and
B, at time step T,. At 2T,,LEDs2to N + 1 are addressed
with the next row of A; and B,. Since the datain the AO cell
move horizontally by a time step T, it is necessary to stagger
the LEDS being addressed at each k7, tin.e as detailed in Ref,
3

At each T, time step, the output from the photodetector will
be one element of the matrix-vector product and vector
summation given by the first two terms in Eq. (2a) or (2b).
After NT,, the vector data have reached the end of the AO cell,
and the entire matrix-vector product has been produced as
the time-history output from the detector. As each element
of the output vector is produced, the corresponding element
of T4 W, [the last term in Eq. (2)] is added to it (using a simple
resistor adder) to produce one element of the new state update
veclor Xx4 ;. As this vector is produced, it is fed back directly
into the lower AQ cell. The aperture time of the AO cell is
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chosen to be (2N - 1)T,,and (2N - 1) LEDS are used. Thus,
after NT,, a new extrapolated state estimate vector X, +1 has
been produced and loaded into the cell (together with the new
measurement vector zx+1). The above iterative cvcle can
then be immediately repeated on the new sampled data. As
seen, data flow in such a system is ideal. {As soon as an output
is produced, it is loaded directly into the newly vacant slot at
the transducer end of the AO cell.) The time history of the
output from the adder is the new extrapolated state estimate,
which can then be used for various control applications and
other on-line adaptive processing functions depending upon
the application. Many variations of this basic architecture
are possible, such as the use of a linear CCD shift register
detector readout system as in Ref. 4, frequency-multiplexing
of the LED or AQ cell data as in Ref. 1. These different sys-
tems may be preferable for specific applications such as when
the number of states is large, but the input data sampling rate
is slow. The system of Fig. 1 appears to be the best general
solution at present.

We now briefly consider the extension of this system to
allow it to operate on bipolar-valued matrix and vector data.
Many possibilities exist. The one we have found to be most
attractive is a direct extension of the system of Fig. 1. We
frequency-multiplex the inputs to the AO cell (and thus use
both its bandwidth and delay time). For matrices and vectors
with bipolar values, we enter the positive X} and negative X;
parts of the vector X; = X — X; into the lower channel of the
AO cell in parallel on two separate frequencies. We separate
the positive and negative parts of the input matrices and time
multiplex the LED outputs (first pulsing them on with the
positive-valued matrix data and then with the negative-valued
matrix data). A similar time and frequency division multi-
plexing is used for the measurement data and the upper AO
cell channel. With the LEDs pulsed at twice the input data
rate to the AO cell, the system thus operates properly with no
reduction in the input data rate it can handle. At the output,
we determine the magnitude and sign of X,+, and appro-
priately feed this data back to the AQ cell iteratively as before.
The sign of X+ is determined from the time slot in the de-
tector output with a nonzero value. From the sign of X;+1.
we select the multiplexed frequency input to the AO cell to
be used. The data in such an architecture still pipeline ideally
from the output detector back to the AO cell. Extensions of
this technique to handling complex-valued data by the use of
three frequencies to encode complex data by their projections
on the 0, 120, and 240° axes in complex space® also follow di-
rectly.

These techniques for handling bipolar data increased the
required LED source modulation rate by a factor of 2 above
the input data sampling rate. (However, the number of LEDs
required is not increased.) More important, the bipolar data
handling technique requires a quadruple increase in the AQ
cell's bandwidth and in its time-bandwidth product (a factor
of 2 due to the two frequencies used and a factor of 2 due to
the doubling of the LED modulation rate). Despite these
disadvantages, this technique is more appropriate than the
use of various biasing methods or the use of two cvcles to
process bipolar data (one cycle for positive data and one for
negative data) because of the complicated detector postpro-
cessing that results and/or the intermediate data storage re-
quired. Thus the reduced amount of data shuffling and
postprocessing that results with the technique described above
seems to make it preferable. If the dimension of the ma-
trix-vector problem becomes too large (i.e., if the entire vector
will not fit into ' of the AO cell at one time), matrix-parti-
tioning techniques on several simple system modifications are
required. These are simple conceptually and require using
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more than two AO cell channels plus time-division multi-
plexing of the LED inputs and the single detector output. We
will detail such issues in a later publication.
The use of multichannel AO cells (together with proper
time-division multiplexing of the inputs and outputs of the
system) represents a major extension to this class of optical
systolic array processor. Their applications to Kalman fil- °®
tering, state estimation, and handling bipolar and complex-
valued data appear to be quite significant.

The support of the Air Force Office of Scientific Research
(grant AFOSR 79-0091) and NASA Lewis Research Center
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ABSTRACT

An iterative algorithm for the solution of a guadratic matrix equation (the algebraic
Ricatti eguation) 1is detailed. This algorithm is unigue in that it allows the solution of
a nonlinear matrix equation in a finite number of iterations to a desired accuracy. Theo-
retical rules for selection of the operationparameters and number of iterations required are
advanced and simulation verification and quantitative performance on an error-free processor
are provided. An error source model for an optical linear algebra processor is then ad-
vanced, analyzed and simulated to verify and quantify our performance guidelines. A com-
parison of iterative and direct solutions of linear algebraic eguations is then provided.
Experimental demonstrations on a laboratory optical linear algebra processor are included
for final confirmation. Our theoretical results, error source treatment and guidelines are

appropriate for digital systolic processor implementation and for digital-optical processor
analysis.

1. INTRODUCTION

Optical linear alcebra processors (OLAPs) represent a most general and attractive use of
the parallelism and real-time processing features of optical systems [1]. The frequency-
multiplexed acousto-optic (AO) processor [2,3] of Figure 1 represents a most general-purpose
OLAP architecture with ease of fabrication [4] and competitive computational rates [2,4]).

In this architecture (Figure 1), N point modulator inputs are imaged through N separate
regions of an AO cell. These individual regions are separated by Tp of time (for propagation
of the acoustic wave) and by a physical distance dg. 1In [2), the use of this processor in
iterative algorithms, direct LU and OR matrix decomposition algorithms, and triangular sys-
tem solutions was detailed.

FT

POINT AO LENS

MODS CELL

é‘ amn

=a(t,x) 3%

£
(SHIFTED) 0%

—p = O €* cm
f = c(t,x)
s—p = = 0%

=2B

- bnm = b(t,f)

FIGURE 1
Simplified schenatic of a frequency-multiplexed optical linear
algebra processor [3)

In this paper, we consider the use of this processor for the solution of a nonlinear matrix
equation (Section 2). The specific application chosen is the solution of the algebraic
Ricatti equation (ARE). This nonlinear equation is similar to the expressions to be snlved
in Kalman filtering and other advanced modern signal processing algorithms. An iterative
solution is necessary for such problems and for eigensystem solutions. Our proposed non-
linear ARE solution is quite unique since it requires a fin‘te number of steps to achieve
a specific accuracy and performance. In Section 3, we summarize selection of the operation-
al parameters for such an iterative algorithm and the theoretical basis for our choice of
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the fixed number of iterations to be used. Section 4 presents initial error-free simulation
data. 1In Section 5, we advance our error source model. In Section 6, we review our itera-
tive and direct solutions to systems of linear algebraic equations (LAEs). This represents
the fundamental operation required in advanced linear algebra algorithms. Section 7 con-
tains simulation data to quantify the dominant error sources and the accuracy expected from
such algorithms. We conclude in Section 8 with the experimental verification and quantifi-

cation of our theoretical results. Our summary and conclusions are then advanced in Section
9.

2. NONLINEAR MATRIX SOLUTION

In reference (5], we detailed a solution to the linear quadratic regulator control problem to
minimize a quadratxc performance index for a linear system. Computation of the regulator
feedback gain matrix K that defines the optimal controls u involves the solution of the ARE

SE+Es-SLS+@=0 (1)

for S. To achieve this, we used the Kleinman algorithm [5] and the solution of the vector-
ized Lyapanov equation to format the solution of (1) as a solution of the set of LAEs

HiX)s(k) = y(k), (2)

where s and y are the vectorizations of S and SLS-Q respectively and H is a Kronecker for-
matted matrix. This system of LAEs must be solved successively with different matrices H
and vectors y with the results of one cycle used to compute the matrix H and vector y for
the next cycle. To achieve this, we employ a two-loop iterative algorithm described by

s(r+l,k) = {I - w(k)H(k)]s(r,k) + w(k)y(k). (3)

In solving (2) using (3), we solve (2) for one outer loop iteration k, update H and y and
solve the next LAE. This procedure continues until s is of sufficient accuracy. The algo-
rithm in (3) implies an iterative solution for each TAE. Direct solutions are also possible
as we discuss in Sections 6 and 7. The indices r and k in (3) refer to Richardson (inner)
and Kleinman (outer) loop iterations respectively.

3. OPERATIONAL PARAMETER SELECTION

In an iterative algorithm such as (3), various operational parameters must be selected.
The initjal selection s(0,0) for S and the choice s(0,k) for each LAE solution are required.
For $(0,0), we use 0 10 insure ou{er loop convergence {(a stability matrix). For s(0,k), we
use the obvious choice of the prior s(0,k-1) estimate. The acceleration parameter . in (3)
is chosen to be u = n/Arnax This insures inner loop convergence [2,5]. Stop-
ping the inner loop ierations (index r) for each LAE solution and stopping the number of

outer loop iterations (index k) is a major decision.

In reference [5), we derived bounds for the inner loop error, the outer loop error and
their coupling. From this analysis, we derived the selection of a fixed number of inner
loop iterations R to solve each LAE given by

R=nC =Cloga # 1.5C to 3.0C. (4)

where ||x (0)-x*(1) || < a and {1 - 1/C)JR = exp(-n) < 1/0 is chosen. This follows from our
analysis of the error In an iterative solution (due to a fixed number of iterations R),
which showed that the norm of such an error is

||8tr,k) = ™| = [|I - oH(K)||T = (1 - 1/C(k)]F, (5)

where C is the condition number of H. Since r is expected to increase with C, we set r = nC
and thus select n such that the error between the computed solution s and the exact solution
8" in (5) is as small as is required. For the fixed number of outer loop iterations K, we
Use K = 5 or 6, which can be theoretically derived (and appropriately modified) for other
applications with matrices with specific features. These iterative operational parameter
selections are summarized in Table 1.

4. ERROR-FREE SIMULATION RESULTS

The performance measures we adopted to assess performance of the algorithm in Section 2
implemented using the operational parameters in Table 1 are the maximum percent error in any
element of the matrix K (i.e. 4Kpaxi) and the maximum error in the location of the closed-
loop poles of the system (A)pax$). We expect AK >> 4) and note that 4) is the more
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appropriate error measure for this specific application and that similar error measures
should be used to evaluate the performance of other specific case studies. 1In
Figures 2 and 3, we show the variation of these two error measures with the number of outer
loop iterations k for a fixed number of inner loop iterations for two case studies. These
case studies are the fifth (Figure 2) and third (Figure 3) order models of an F100 engine.
As seen from the data for these two case studies, the use of a fixed number of iterations
results in a monotonic decrease in the solution error with the 4K error being approximately
ten times that of the AA error. From these results, we conclude that the use of a fixed
number of iterations can yield adequate results when the number of iterations is properly
chosen. Our parameter selection guidelines in Table 1 have thus all been verified and dis-
cussed.

TABLE 1
Operational Parameter Selection Guidelines [5]
SYMbOL PARAMETER PREFERRED CHOICE
s(0,0) Initial Initialization 5(0,0) = 0
s(0,k) k-th Kleinman Loop Initialization 8(0,k) =s(0,k-1)
R Number of Inner Loop Iterations R =1,5C to 3.0C
K Number of Outer Loop Iterations K=5-6
wik) Acceleration Parameter w(k) =3/||H(k) ||
4] ‘i
31 3
2
L ]
_ = |
» '5‘1
21§ 5 3
6 | %o]
% 0 § |
£ A -l c
Tl max oK¥; cp =107 = 1 wmax s,
- = Curve A -2] €r=10-% = Curve A
q
. max 81%; cr*10°7 C .
2! s Curve B '3] ‘rﬁ.;oeaz; Curve B
3 max ax%; R = 100
- = Curve C -4 max AA%;
! } R=10 scurvec
" - . X B— S
72 3 & 5 & 1 1 2 3 4 5 6 1
NO. OF OUTER LOOPS NO. OF OUTER LOOPS
FIGURE 2 FIGURE 3
Variation of the error measures AKmay($) Variation of the error measures 8Kpay (%)
and 4imax (%) with the number of outer- and Alpax (%) with the number of outer-
loop iterations K for different inner- loop iterations K for different inner-
loop iteration stopping criteria for the loop iteration stopping criterfa for the
fifth-order HPG3 F100 model third-order HPG3 F100 model

5. ERROR SOURCE MODEL

In earlier publications [(7,8]), we detailed the first system and component error source
model for an OLAP and the general issue of errors in such an architecture. 1In this section,
we review this OLAP error source model. In this model, we distinguish input, AO cell and
detector plane errors separately. Spatial errors include: input and detector response
variations and errors in the interconnections between the input modulators and the AO cell,
and detector dark current. The spatial variations are fixed (time-independent) and are
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correctable to small residual levels as required (by adjusting the gain of the input point modu-
lators, the detector amplifiers, and the input matrix and vector data). Detector noise 1s
the only time-varying error source considered. Acoustic attenuation produces a deterministic
exponential variation of the data in the AO cell. This effect is dispersive, but its fre-
quency dependerce is not included in our present model. Acoustic attenuationcan be corrected
at one frecuency and is thus an 1ngpt spatial error. The product of an input matrix A and vector
b thus yields a final output d given by

Detector RO Cell Point Mod Time-
R . Data Data Detector
a = Spatial Frequency |0 oix AO Cell Response and vector| +| park |+ | Varying (6)
- Response Response Attenuation| |[Interconnection b Current Detector| *
arjations| [Variations - Variations = Noise

As seen, the different types of system and component variations are described by error ma-
trices that multiply the input data vector or input matrix data. Thus, the system errors
are described by the corresponding variations in the data matrix and vector. The detector
dark current and noise appear additively in the output vector as shown in Eg. (6).

6. DIRECT AND INDIRECT SOLUTIONS OF LAEs

The sclution of a system of LAEs, A x = b is the fundamental operation required in most
linear algebra processors and signal processing applications. Thus, we concentrate on this
function. The two major types of LAE solutions are direct or matrix decomposition solution

and an iterative or indirect solution.

The preferable iterative algorithm is (2,9]
x(r+l) = x(r) + wfb - Ax (r)], (7)

where . is an acceleration parameter chosen to insure convergence. The iterations (described
by the iterative index r) continue until x(r) = x(r+l). Then, (7) reduced to A x = b and

the system's output x is the desired solution. To implement (7) on the system of Figure 1,
the matrix data is fed to the AO cell one column at a time in parallel with the rows of the
matrix frequency-multiplered, i.e. with the matrix elements amp encoded in time and fre-
quency as a(f,t) and with the vector data x spatially-multiplexed as x(x) and fed in parallel
to the input point modulators. The matrix-vector product A x is formed, operated upon in
analog or digital post-processing electronics to produce the right-hand side of (7) and hence
the new x iterate input to the point modulators. Thus, the detector output is fed back to
the input point modulators. The length of the AO cell NTg is chosen to be just as suffi-
cient to accommodate the matrix data. Each Tg, as one column of the matrix leaves the AO
cell, it is reintroduced into the bottom of the cell. This recycling of the matrix data is
more efficient for system fabrication and reduces the effects of acoustic attenuation.

In direct solutions, the matrix A and the vector b are multiplied by a decomposition
matrix P} to generate new A] and b Each such matrix-matrix and matrix-vector multiplica-
tion generates one row of the flnai A' matrix and one element of the final b' vector.

After each matrix-matrix multiplication, the order of the matrix and vector are reduced by
one and the new reduced order A; and bj are multiplied by a new P,. This procedure is re-
peated N-1 times (for an N x N matrix) and yields a new upper-triangular matrix U and a new
vector b'. This simplified upper-triangular system of equations U x = b' is then easily
solved by back-substitution. The matrix-decomposition can be rea¥ized either as an LU de-
composition (this is the technique we use when the matrix is positive-definite or diagonally-
dominant, as is the case here, since pivoting is then not required) or as a QR orthogonal
decomposition (this technique is more general and stable, but is more difficult to realize).
The detailed implementation of LU {2,10] and QR [2,1]1] decomposition and back-substitution
[2,12) have been described elsewhere. To implement the Gaussian-elimination algorithm (LU)
used in the present application on the system of Figure 1, we feed one row of the matrix A
to the A0 cell in parallel (with the columns of A frequency-multiplexed, i.e. with the
elements ampn of A freguency and time encoded as a(t,f)) and with one row of the decomposition
matrix Py fed to the input point modulators in parallel (with the elements pmn of P time
and space encoded as pl(t,x)). To facilitate data flow and for speed, we sxmultaneously
operate on A and b by us;ng an augmented matrix. One row of the augmented matrix A' is
produced in parallel as a'(t,x) on the output detector during each of the N cycles. The new
Py matrix is easily calculated from the elements of the j-th column of the augmented matrix
in dedicated electronics.

7. SYSTEM ERROR EFFECTS ON THE SOLUTION OF LAEs

The direct solution requires an AO cell of twice the length of the matrix, but achieves
the decomposition in a fixed number of steps. However, as noted in Section 3, iterative
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algorithms can be operated with a fixed number of iterations to achieve a given desired
accuracy and iterative algorithms are essential [2] for eigen-systems solutions and the

solution of nonlinear matrix equations such as the ARE [5) and in Kalman filtering [13].

our new results (Sections 7 and 8),we campare [6] the performance
rithms in the solution of the LAEs that arise in a specific ARE solution for the F100 engine.

The two cascs considered are third and fifth-order F100 models.

and 25 x 25 matrices.

the size of the matrices and vectors required.
dynamic range is 47.7 and from (5), j = 10 iterations are required to solve each LAE.

In

of direct and iterative algo-

These give rise to 9 x 9
Bipolar data is handled by space-multiplexing {3] and this doubles
For the third-order problem, C = 2.48, the

For

the fifth-order problem, C = 56.9, the matrix dynamic range is 1117 and from (5), j = 100

an iterative algo-
rithm, direct LU Gaussian-elimination with the back-substitution performed optically and

iterations are required to solve each LAE.

direct Gaussian-elimination with the back-substitution performed digitally with high accuracy.

Ve consider two problems:

We consider three solutions:

the solution of Agxgs = bg for the fifth and last outer loop in
(2) and (3) for the solution of the ARE in (1) with As and bs digitally calculated exactly,
and the solution of all five LAEs for all outer loop iterations.

TABLE 2
Performance of Three Algorithms for Two Data Sets in the Solution of One System of LAEs
F100 RESP. VARIATIONS | ACOUSTIC
ALGORITHM TEST | pata | [~ Point ATTEN., Nbffsms) Naxli o) fer_ (o)
- | sET || Mods (%) | pets(s) | (aB / cm) ma
(I) Iterative 1 3 1 0.1 0.6 2.49 0.2x10"3
I L2 I J N o | o001 | 006§ a3 ) 13
(1I) LU and 3 3 1 0.1 0.6 2.39 0.52
Optical Back-
__§9§§sisesiee-_-.-.---.4.-+-.5._..----l---.----l ........ 0.1 __}-& 0.006 _{_ __ 9.27__1__0.93__
(III) LU and 3 1 1 0. 0.6 3.04 0.33
pigital Back-
Substitution 6 5 1 1 0.1 0.006 6.78 0.71
TABLE 3
Performance of Three Algorithms for Two Data Sets in the Solution of the Nonlinear ARE
F100 RESP. VARIATIONS | ACOUSTIC
ALGORITHM o | oata| [ “Point ATTEN. t?:fsm Hexll ) | & (%)
* SET Mods (%) Dets(%) | (dB / cm)
(I) Iterative 3 0.1 0.6 2.98 0.77
e cccccccc—————— B I NI EI O S SRR, SO G 0.001 | __0.06___ [ __ 3:28__ ) __1.62_
(II) LU and 3 1 0.1 0.6 4.56 0.72
Lptical Back~- -4
[substitution. [ | a0 L s |1 1o 1 | o1 |- ex107f_ | 134 | 140
(III) LU and 11 3 1 1 ( 0.1 0.6 4.12 0.5
pigital Back- -4
Substitution 12 5 1 1 0.1 6x10 10.17 1.17
In Table 2, we show the results for the solution of the singlefifth set of LAEs. Our

results for the full set of five LAEs,

i.e,

the full ARE solutions are included in Table 3.
Data sets 3 and 5 refer to the third and fifth-order F100 matrix problems respectively.

The

performance measures used in evaluating each approach are the average norm }|ax|| of the
error in the calculated vector x and the maximum error Almax in the location of the closed-

loop poles of the final system.

The spatial, detector noise, and acoustic attenuation
errors noted earlier were selected to produce approximately equal output errors for each
error source treated separately.

In Tests 1 and 2, we see that our theoretical operational parameters (Table 1) are also

valid when noise and system errors are present.

Comparing the results for Algorithm I and

11, we see that acoustic attenuation is the dominant error source for an iterative algorithm

and detector noise dominates the performance of a direct algorithm,
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because of the cyclic data flow of the matrix in the AQ cell during the iterative algorithm.
This alters C for the matrix. 1In the direct algorithm, detector noise on one cycle is fed
back to both the inputs and the AO cell and thus changes the noise distribution and its
effects accumulate, Also, detector noise affects the small vector elements and this effect
also compounds on successive cycles. From the results of Algorithms 1I and 111, we see that
optical back-substitution yields comparable performance to digital back-substitution. This
is expected, since the operations required in back-substitution are only vector inner prod-
ucts and only N-1 of these are required. This is a substantially lower computationally in-
tensive set of operations than those required in the matrix decomposition. Thus, the
accuracy of the matrix decomposition determines the final accuracy in our results. Comparing
the results for data sets 3 and 5 and the corresponding data in Tables 2 and 3, we see that
the larger matrix size and the increased number of steps required in the ARE versus the LAE
solution causes the required accuracy to increase for direct algorithms more than for iter-
ative algorithms (e.g. a lower acoustic attenuation constant a is noted to be required for
the iterative ARE solution than for a direct LAE solution). We have derived a theoretical
expression (6]

a < (1/2.3LC) (7)

for the amount of acoustic attenuation a in dB/cm allowed for convergence of an iterative
algorithm, where L is the length of the AO cell in cm. From the last two columns in both
tables, we see that A)lpax errors are significantly less than Ax errors as expected. The
results in Tables 2 and 3 are in agreement with the theoretical guidelines in (7). From
Test 1 and all other tests, we find that spatial errors are additive and that for small errors
the percent performance scaled with the magnitude of the error. 1In Tables 2 and 3 and in
(7), we assume that each Tg of the AO cell corresponded to lmm and we assumed new input data
to the point modulators in the AO cell to be introduced every Tg. To achieve more practical
a levels, closer spacing of data packets in the cell is necessary. This can easily be
obtained by scaling the values given in Tables 2 and 3. Operation of the input point modula-
tors at a higher rate than the AO cell data {2] can also improve the a and detector noise
values found in Tables 2 and 3. These initial test results are intended to provide guide-
lines for the efficient use of various algorithms, efficient solutions to linear and non-
linear matrix equations, and quantitative data on performance expected. Our theory, guide-
lines, and modeling are also appropriate for digital-optical linear algebra architectures.

8. REAL-TIME LALGRATORY EXPERIMENTS

In Figure 2, we show the nine outputs from a laboratory system to iteratively solve the
fifth set of LAEs for the third-order F100 model (Test 1, Table 2). The outputs are shown
after 80, 400 and 640 iterations. The laboratory system used a fixed 2-D photographic mask
for the matrix in place of the A0 cell and 2-D space-multiplexing in place of frequency-mul-
tiplexing. To accomodate bipolar data, the matrix and vector were biased positive. This
increased C to 120. The laboratory system was operated at a 10MHz data rate per channel.

To facilitate easy monitoring of the system, we used w = -0.125. The number of iterations

j = nC required for 0.6% accuracy was calculated from (3) to be 613 iterations. Our experi-
mental value of 640 iterations at which convergence occurred is thus in excellent agreement
with theory. 1In the laboratory system, the maskerrors were t7.2% and these dominated other
spatial system errors. The detector noise was measured as 0.4%. With these errors included
in our simulator, the solution vector x was calculated, compared to the ideal theoretical x'
value and to the x vector calculated on the laboratory system. The locations of the closed-
loop poles of the system in each case were calculated and compared. The results in Table 4

show excellent agreement (0.5% accuracy or better) in the location of the poles and with the
nature of the poles preserved (e.g. complex-conjugate pole pairs).

TABLE 4
Comparison of the Closed-Loop Poles Computed Theoretically and Using
the Optical Laboratory System

[ THEORETICAL POLE OPTICAL LABORATORY | rrrOR
LOCATIONS COMPUTED POLES
-20.45 + j6.26 -20.74 + j5.88 0.5
-20.45 -~ 36.26 -20.74 - 35.88 0.5
-4.53 -4.53 10-3
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(a) 80 ITERATIONS (b) 400 ITERATIONS (c) 640 ITERATIONS

FIGURE 2
The nine photo-detectors outputs from a fixed mask OLAP at selected cycles in the iterative
solution of the system of LAEs Agxs = bg that arise in the fipal loop of
the solution of the nonlinear ARE

9. SUMMARY AND CONCLUSION

We have detailed a two-loop solution to the nonlinear ARE. 1In the iterative solution, a
fixed number of iterations can be employed to achieve a given performance accuracy. A
direct solution of each LAE can also be employed, however the iterative solution is faster
{100Tp vs. 975Tg). Selection of the operational parameters for the two-loop algorithm were
theoretically derived, verified by noise-free simulations and shown to be appropriate when
system noise and errors were present. The implementation of direct and iterative solutions
of LAEs on a frequency-multiplexed OLAP was detailed. A theoretical analysis of both algo-
~ithms showed that acoustic attenuation was the dominant error source in iterative algorithms
and detector noise dominated direct algorithms. Our simulations verified these theoretical
predictions and quantified the performance obtained with each. Our theoretical values for
the amount of acoustic attenuation allowed to permit convergence of an iterative algorithm
was verified by simulations. We confirmed and quantified by simulations that optical back-
substitution yields comparable performance to its digital realization. Experimental verifi-
cation on a laboratory system was obtained. The guidelines, and theory provided are appro-
priate for various other systolic processors (optical and digital) and for high-accuracy
digital-optical linear algebra processors. Our nonlinear matrix solution using a fixed num-
ber of iterations is appropriate for realization on any linear algebra processor.
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FABRICATION CONSIDERATIONS FOR ACOUSTO~OPTIC SYSTOLIC PROCESSORS
David Casasent and James Jackson

Carneqgie-Mellon University
Department of Electrical and Computer Engineering
Pittsburgh, Pennsylvania 15213

ABSTRACT

The number of multiplications per second and fabrication issues associated with several
different acousto-optic systolic processors are discussed and the flexibility in the opera-
tions achievable by format control are briefly reviewed. Emphasis is given to the effects
of divergence of the optical input beam. Various input sources and interconnection schemes
are considered. These include: fiber and GRIN optics, multi-channel acousto-optic cells
and individually collimated laser diodes. Quantitative theoretical and experimental data
are provided. A new architecture using spatial-multiplexing of the input sources and fre-
guency-multiplexing of the acousto-optic cell data is described and used for handling bipolar
and complex-valued matrix and vector elements.

1. INTRODUCTION

Optical matrix-vector processors [1,2) represent a most general-purpose class of optical
system. Optical systolic array processors, especially those using acousto-optic (AO) cells
[3-5,13] represent very practical systems that can be fabricated with present technology.
Many interested people feel that the optics community should fabricate an optical systolic
array processor rather than continue paper studies of such systems. 1In this paper, we ad-
dress several fabrication and architectural issues associated with AO systolic array proces-
sors. In Section 2, we provide a gquantitative assessment of the performance (in terms of
mults/secs) possible on two different basic AO systolic processors. A new architecture using
a multi-channel AO cell is described for use in cases when a higher computational rate is
required. Other more advanced multi-channel AO systolic processors have been advanced else-
where [13] and their use with digitally-encoded data for higher accuracy has also been de-
scribed. 1In Section 3, we briefly review some of the different operations required in line-
ar algebra and how all of the basic operations needed are possible (via format control) on
the same generic optical systolic array processor.

Our initial remarks and comparisons of different architectures (Sections 2 and 3) are also
flavored with practical fabrication considerations. In Section 4, we specifically address
and quantify the effects of optical beam divergence on the performance of various input
to AO cell interconnection technigues (Section 5) suitable for a wide variety of AO systolic
array processors. In Section 6, we address several architectural issues associated with
handling bipolar and complex-valued matrix and vector data. A new optical systolic array
architecture is advanced for such practical applications, Our summary and conclusions then
follow in Section 7.

The computational rate of an optical systolic array processor is the most discussed per-
formance parameter of such systems. However, the flow and pipelining of operations and data
in these systems is of equal importance [3), as is the ease of fabrication and the flexibil-
ity of a given architecture (Section 3). Another vital factor is that the operations possi-
ble on a given architecture must be properly arranged to solve a given problem. This gen-
erally involves much more than simply a matrix-vector multiplication. Examples of the de-
tailed linear algebra operations required in various applications are available in the lit-
erature. The examples thusfar published include adaptive phased array radar [6], Kalman
filtering [3,7], and optimal control [8]. The need for parallel algorithms suitable for
optical architectures {9,10] is also of vital concern. The accuracy of optical linear alge-
bra processors is yet a final issue requiring attention in many applications.

In this present paper, we restrict attention to AO-based systolic array processors, since
they are the most easily fabricated architectures. We further consider only vector inner
product (VIP) and matrix-vector (M-V) architectures, since such systems have 1-D output de-
tector arrays. The high data rates from optical matrix processors are such that optical
linear algebra systems requiring 2-D detector output arrays (such as vector outer product
systems and certain matrix-matrix processors) pose severe output detector fabrication re-
quirements. Specifically, a 2-D parallel readout detector array with high data readout rates
is required. We also consider in this present paper only optical architectures operating on
analog data. These systems represent those architectures with the highest throughput. By
the use of multi-channel AO cells and various architectural changes, these basic systems we
consider can be extended to operate on digital and other encoded data. Other authors have
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addressed various approaches to achieving high-accuracy optical systolic array processors
In this present paper, we will also

using various architectures and data encoding schemes,
consider only optical systems capable of operating on general matrices with no special struc-
ture. This class of system represents the most general-purpose architecture.

Different

architectures [3,4]) are suitable for matrix problems with special matrix structure.

Our results are sufficiently general to be applicable to many AO systolic processors.

new architectures we describe can be extended (by the use of multi-channel cells and addi-
tional linear modulater arrays) to handle encoded data (for applications where higher accu-

racy is reguired).

The computational rates possible from all optical systolic processors is

so large that one dimension of the multiplexed systems shown can easily be used for data

encoding.

In such cases, the performance of the system is only reduced by a factor of 16-32

and still ylelds a quite significant number of mults/sec with a significantly more accurate

system with fewer dynamic range constraints.

2. COMPUTATIONAL RATES

As noted in Section 1, the computational rate (mults/sec) possible is a favorite criteria

(but not the panacea) for comparing optical systolic array processors.

Following the termi-

nology and motivation in [11], we now briefly compare the performance obtainable from the

two generic clacses of optical systolic array processors.
two types of AO systolic processors by the manner in which the AQ cell was used.
to these AO operating modes as a modulator (Figure 1)

Both approaches are self-explanatory.
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(A) Integrating Detector System.
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[11) distinguished between

Hc refers

and a deflector/modulator (Figure 2).
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ONE
DET

Single Detector Architecture,

FIGURE 1: Two Basic Acousto-Optic Modulator Vector Inner Produc* Processors.

The architectures in Figure 1 perform the basic operation of a VIP with one vector fed to
the AO cell and the other vector fed to the input point modulators.

tem is the VIP,

In the system of Figure 1B, the full VIP appears on one detector.

The output from the sys-
In the

system of Figure 13\, the product of each correspondiing element of each vector is formed on
separate detectors. The output detectors in Figure lA can accumulate data or their contents

can be shifted and added.
plications on a VIP processor.

These operations can be used in performing matrix-vector multi-
In the system of Figure 2, data is fed to the AO cell time

and frequency-multiplexed, i.e. the cell contains 2-D or matrix data and the basic operation

of the system is a matrix-vector multiplication.

POINT

MODS CELL

AO

FT
LENS

DET

ARRAY

FIGURE 2: Frequency-Multiplexed Modulator/Deflector Acousto-Optic Matrix-Vector Processor.

We denote the transit time in the AO cell between two adjacent spatially-illuminated re-

gions by the bit time Tp and the full aperture time of the cell by Tp.
cient use of the system requires a cell with Tp

is the order of the vector or the matrix)

In all cases, effi-

2NTg and 2N - 1 point modulators (where N
To see this, recall that NTg of time is reguired

to load data into the cell and that NTp of the cell's aperture time is required for this
data. After 1Tg of time, the entire contents of the cell are no longer useable (since one

element of the vector has now left the cell).

We could recycle this element into the bottom
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of the cell, but this requires additional complexity, memory and complicates data flow and
feedback in general applications. Thus, we consider operation of all systems by initially
(at 1Tg) pulsing on the bottom N point modulators with one input vector, forming one VIP.
Then (at time 2Tg) pulsing on the point modulators 2 to N+1 with new vector data, etc. 1In
this way, we multiply the vector in the cell by N different vectors before data reaches the
end of the cell. Every Tp, we input new data to the cell and thus maintain full throughput
in the system. 1In all systems, we thus assume Tp = 2NTg. The architectures of Figures 1A
and 1B thus perform one VIP on N element vectors every Tg or N VIPs in T = NTg (where Tp=2T).

The operation of the system of Figure 2 can most easily be described by viewing the con-
tents of the AO cell as N} vectors (each of length Nj) with each vector on a separate fre-
quency carrier. The data leaving the AO cell in the system of Figure 2 thus consists of Nj
VIPs on Nj element vectors. Since the data leaving the AO cell is Fourier transformed onto
the output plane in Figure 2, proper frequency-multiplexing and arranging of data can allow
each of these separate N} VIPs to be produced in parallel on Nj separate output detectors.
wWhen the input data to this system is properly multiplexed, a full matrix-vector multiplica-
tion is performed each Tg (this is compared to one VIP per Tgp for the architectures in Figure
1). We will denote the time bandwidth product (TBWP} of the AO cell as TBWP = 2N. Thus, the
systems in Figure 1 can operate on N element vectors, whereas the system of Figure 2 can
operate on an Nj x N] element matrix (where N;j© = N). Furthermore, Tg for the systems of
Figure 1 satisfies T = NTg or N = Tp/2Tp, whsreas the system of Figure 2 requires T = TgN;
or a larger Ty since N < N, specifically N;4 = N,

To guantitatively compare the performance and fabrication issues for these architectures,
we assume an AO cell with Tp = 40.sec (T = 20.sec) and TBWP = 2000 (i.e., N = 1000). The
systems in Figure 1 can thus perform

N mults/TB =1 VIP/TB, or N2 mults/T = 1 M-V mult/T (1)

i.e., one VIP every Tg or one matrix-vector (M-V) multiplication every T. This results in

1000%/20usec = 5 x 10'% mults/sec = 50 Gops. (2)
The system of Figure 2 performs
Ng VIPs/TB =1 M-V mult/TB = NL’N;s mults/TB =N mults/'I‘B = NN* mults/T, (3)

where T = NgTB was used. This yields a computation rate for the system of Figure 2 of

1000(32)/20usec = 1.6 x 109 mults/sec. (4)
It is possible to pulse on each point modulator, in Figure 2, N% = 32 times per TB‘ In this
case, (4) becomes
5.1 x 1010 mults/sec, (5)

and thus both architectures can achieve the same performance for the same 1/0 data rate (as
expected) .

However, let us consider the hardware and fabrication requirements of these architectures
to achieve the computation rate in (5). The architectures of Figure 1 reguire 2000 point
modulators all packed very densely and all addressed in parallel at

TB = 20usec/1000 = 20nsec, or at 50MHz, (6)

This is a quite high data rate (and precludes A/D and D/A conversion, at a large number of
bits). The very large number of sources required represents a considerable fabrication
achievement. Conversely, to achieve the same performance, the system of Figure 2 requires
only 64 point modulators, 32 detectors and a much lower bit time

T, = ('I‘A/Z)/N;5 = 0,625usec, or 1.6MHz. (7)

B

As seen, the bit time is significantly reduced, as is the data rate 1.6MHz versus 50MHz at

which data must be fed in parallel to each channel. Thus, the ease of fabrication (64 vs.

2000 point modulators) for the frequency-multiplexed modulator/deflector matrix-vector pro-
cessor of Figure 2 is quite attractive compared to the VIP architecturesusing AO modulators
in Figure 1.
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Should a given application require a higher computational rate above 50 GOPS, a multi-
channel AO cell can be used (Figure 3). Practical considerations dictate that the number of
multiple channels (rows of the matrix A) will be less than the TBWP of each channel (the
number of columns of the matrix A). Freguency-multiplexing and matrix partitioning are thus
guite essential to redistribute the TBWP of the multi-channel AO cell. If we have M; AO
cell channels (each 2N)Tg = Tp long), M] frequencies, 2N} point modulators, and M] output arrays
of M detectors each, the architecture of Figure 3 realizesM); matrix-vector multiplications per Ty
(where the matrix is Mp xNj, i.e. one matrix per frequency, and the vector is of length Nj)
i.e.

| S }
F

M, M-V mults/TB = M/M_N

MM mults/'rB. (8)

1
Assuming reasonable parameters: 2Nj;M; = TBWP = 2000, M; = Nj & 32 and M; = 100, we find

11

105 mults/'.l‘B = 105/0.625usec =1,6x10 mults/sec (9)

or with 32 pulses per Tg, we obtain

12

5.1x10 mults/sec. (10)

This is eguivalent to 3200 VIPs every 0.6usec. The computation rate in (9) or (10) can be
achieved with only 64 point modulators and a data rate of 1.6MHz. With vertically-oriented
detector arrays, the system of Figure 3 can perform M; matrix-vector multiplications on MjxNj matrices.

MULTI-
CHANNEL AQ
—T ~
1 d N N
~
B=—=p ~T N
] ™~
- - o
- -
~
POINT g — — — - — ﬁ
MODS
A

FIGURE 3: Multi-Channel AO Modulator/Deflector Freguency-
Multiplexed AO systolic processor.

Many variations of the basic architecture of Figure 3 are possible and obvious. The in-
put point modulators can be replaced by a second multi-channel AC cell. The second dimen-
sion of either modulator can be used to encode the data in digital or other reprerentations.
Alternatively, the system can be made to perform M; correlations per channel (this achieves
M} digital multiplications on N1-bit words). Finally, partial products can be accumilatad by
time integration on the output detectors. All of these techniques provide methoCs to in-
crease the accuracy of the system and reduce dynamic range requirerents (at the expense of a
reduced number of mults/sec). Since few applications require the large number of operations
possible in (9) and (10), such tradeoffs appear quite attractive and realistic. A detailed
analysis of the architecture of Figure 3 (or similar ones) shows that such architectures are
only appropriate for matrix-matrix multiplication, operation on partitioned larger-order ma-
trices, or similarly more complicated linear algebra operations.

3. FORMAT CONTROL AND DATA FLOW FOR FLEXIBILITY

As noted in Section 1, given practical problems require far more complex operations than
a VIP or even a M-V multiplication. 1In Table 1, we list various operations, the associated
matrix and vector formatting of the data to the A0 cell and the point modulators, plus where
the output procduced is fed back to achieve more complicated operations and applications.
Each of these operations has been fully detailed in different publications, e.g., the solu-
tion of banded matrices [4), the solution of triancular systems of equations [12], general
linear algebraic equation (LAE) solution by iterative or indirect algorithms [5], matrix-
matrix-matrix (M-M-M) multiplication [5], matrix decomposition [9,10] for direct LAE solu-
tions, etc. An attractive feature of the architecture of Figure 2 and all of the operations
noted in Table 1 is that the data and operations flow ideally with no dead time in the sys-
tem. From these brief remarks, data flow and format control are seen to provide consider-
able flexibility.




b

TABLE 1. Format Control or Data Flow for Flexibility and Data Flow.

ENCODING (ROW, COL) FEEDBACK
OPERATION NOTATION A0 CELL POINT MODS TO APPLICATION
M-V Multiplication| AD b = b(t) A= alt,x) - Solve Banded M-V
- - (1 row per Tg) AO and Triangular M-V
B {One Detector)
Coa . Ab A =a(f,t) = Point
M-V Multiplication == (1" col pe; Tp) b = b(x) Modulators Solve LAE
-M Multiplication BA A = aft,f) B = b(t,x) AO MMM = CBA
MMM = ABC
_ 1 . A = al(f,t) = M Decomposition
M-M Multiplication AB B = bi(x,t) AO M Inversion
Solve M Eagn

4. OPTICAL BEAM DIVERGENCE CONSIDERATIONS

As seen in Section 2, the bit time Tp is a key parameter affecting the system computation
rate. As we will show below, Tp also guite significantly affects fabricatjon. The center-
to-center spacing Tp of packets of data in the AO cell should be largely filled with the
information packet (a fill ratio of 0.5 is gquite practical). If we denote the physical size
along the AO cell (associated with TB) by dp, we find

dB = v Ty, (11)

where vg is the velocity of sound in the AO cell. For Tgp = O.lusec (a 10MHz data rate per
channel), dp = 62um (for a TeO; AO cell) and dg = 657um (for a LNB AO cell). These guanti-
tative parameters significantly affect fabrication of the system. For N; = 200 and TeO;
with Tp = 40usec, the above dp parameters are appropriate. Larger Nj values (or cells with
lower Tp values) will require guite smaller dg values and will thus introduce guite signifi-
cant practical fabrication problems.

Even with the above dp values, typical point modulators have physical sizes or center-to-
center spacings dg larger than the required dg. Thus, a demagnification of the input point
modulator array (by a factor M) is required when imaging the input sources onto the AO cell,
i.e. we reguire

dp = dg/M. (12)

Another vital and practical fabrication issue of concern is the divergence i6p of the input
light incident on each Tg packet of data in the AO cell, It is well-known that the diver-
gence 6p of the input light affects the frequency resolution of an A0 spectrum analyzer. 1In
the frequency-multiplexed deflector system, this affects the spacings Af and center fre-
quency fc of the data. In the modulator architecture, this affects the spacing Tg of the
data bits or packets. 1In the following paragraphs, we quantify the effect of ép on the per-
formance of AO systolic processors with specific attention to different point modulator
choices and different point modulator to AO cell interconnection techniques.

All AO modulators require a separation of the zero and first-order beams. This separation
is 2ep (where 6p is the Bragg angle). If the input light has a divergence fp, the zero and

first-order beams will also have a divergence ép. Thus, separation of the two beams requires’

8p < 8g- (13)
Since 6g satisfies
ZeB = xO/A = xofc/vs, (14)
where A, is the optical wavelength, A is the acoustic wavelength and f. is the center fre-
quency gf the AO cell. Thus, we require
8y < Agf./vge (15)
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Thus, as 6p increases, a larger f. is required. Acoustic attenuation effects now increase.
To quantify these issues, we note that for a LNB AO cell at Ay = 820nm

2 = 2.3° to 6.1° (16)

eD(max)

as f. varies from 300 to B0OMHz. For TeO2, as f. varies from 40-100MHz, we require

26 = 3.0° - 7.6°. (17)

D (max)

Next, we consider the effects of a divergence $6, or 46 = 26p on the frequency resolution
tf and the minimum bit separation Tg. A beam divergence 8 is equivalent to a spread  f in
the input RF frequency where

Af = 2(M66)VS/X0 = zeDdB/XOTB’ (18)

where 6p is the divergence of the source and Meﬁ = 6p is the divergence of the optical beam

as it enters the AO cell. This effect in (18) limits the 4f between multiplexed frequencies.

Similar effects appear to be present on the minimum Tg allowed. In the conventional proces-

sors of Figure 1 (using the AO cell as a modulator), the nominal Tp is set by Tp/2 = T = NTp,

i.e. N packets of data can be used (where 2N = TBWP). However, when 6p is included, the in-

teraction length L, the size of the AO transducer, the thickness of the A0 cell and the )
Bragg sensitivity all enter. In general, it appears that the TBWP or the number N of bit

times Tp allowed in this system is affected similarly by the presence of a .8. Specifically,

the 4f increase reduces the number of resolvable freguencies to BW/Lf (where BW is the band- "
width of the device) and this correspondingly reduces the number of bit times allowable. -
Thus, when 68p is present, the number of bit times allowed in the AO modulator architectures 3
is also reduced. Since the frequency-multiplexed architecture uses a larger Tg, it is o
far less susceptible to this effect than are the AQ modulator architectures where N (ana {
hence the computation rate) are directly reduced as 6p effects are included. »

o

To quantify the magnitude of this effect, we note that for Tgp = 0.lucer and ig = 0.82um,
we find for LNB that ép = 1° = 17.45mrad requires a :f = 250MHz and for 6p = 3mrad we require
4f = 47MHz., For TeO; ?slow shear), 6p = 17.45mrad corresponds to 4f = 25.2MHz and ép = 3mrad .o
corresponds to 4f = 4.5MHz. For LNB and TeO2 cells with typical bandwidths, a large diver- C
gence angle of 1° thus has quite severe effects. As noted earlier, these effects on Tg are
comparable. The 8p and Tg effects are less significant for the frequency-multiplexed AO
modulator/deflector architecture however. )

N BN

5. SOURCES, INTERCONNECTIONS AND EXPERIMENTAL RESULTS

LR RN

1 One attractive technique for demagnifying a linear array of point modulator sources (LEDs

1 or laser diodes) onto the A0 cell, while maintaining low divergence 6p at the cell, is shown

in Figure 4. As depicted in this figure, the point modulators are first focused into fiber

L optics using graded index (GRIN) optical elements (Gl). The fiber optic (FO) interconnec- S

¢ tions allow the source spacings (which are generally quite large) to be reduced to the cen- .

- ter-to-center spacing of the GRIN elements (G2) placed at the opposite end of the FO assembly R

" as shown in Figure 4. The primary purpose of the Gl elements is to provide high-coupling R

i efficiency from the point modulators to the fibers. The primary purpose of the FO link is o

. to increase the packing density of the sources and to reduce the center-to-center source .

- size. The G2 elements have the function of producing well collimated separate optical S

- light channels incident on the AO cell, The GRIN optical element we have used have an 0.29 ’
pitch and a lmm diameter (for Gl) and an 0.25 pitch, a lmm center-to-center spacing with an ' -

(] active optical output beam diameter of 0.4mm and a fy, = 1.lmm (for G2). Such an intercon- P
nection system provides parallel output beams from G2 from separate input point modulators

! with a corresponding dg = 1.0mm and an active beam diameter of 0.4mm. These parameters are

f quite compatible with the requirements for several of our AO cell systems. Additional beam

reducing optics can be included between the G2 outputs and the light to the AO cell (as

shown in Figure 4) to further reduce the center-to-center spacing (if this is required by

f the AC cell and its Tg or dg value).

| The portion of each 1.0mm diameter GRIN lens that contains light is the active source ’
size from G2, This is set by fr, = 1.1mm of G2 and N,A, = 0.19 of the fiber. With multi-
mode fibers, with a 50um core, the core diameter d sets the divergence from G2. For such a
system, we find an active source diameter (at the input to the AO cell) of

{ dé = 2(N-A-)fL z 400um (19:
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and a beam divergence given by
tang, = 6, = (D/2)/fL = 25um/1.1mm = 22mrad. (20)
For a single-mode fiber (SMF) with a 6um core, we obtain
dé ¥ 350um, and &y & 3mrad. (21)

Our experimental tests have verified all of the above theoretical parameters of the two in-
dicated interconnection architectures. Other experiments we performed verified the associ-
ated theoretical sf associated with the various given £6 values noted above.

Other possible linear point source alternatives include the use of a multi-channel AO
cell (Figure 5) and the use of laser diodes with separate individual collimating optics
(Figure 6). Each of these architectures represents most attractive alternatives that are
appropriate for various applications. The multi-channel AO input cell architecture requires
demagnification optics. It has the advantages of a very low divergence angle; however its
performance is generally limited by the optical and electrical isolation achievable between
the separate AO channels. The use of such an input to an optical matrix-vector processor is
thus probably restricted (within the near-term) to systems employing data encoding for re-
duced dynamic range and improved accuracy. As multi-channel AO devices mature, such systems
may become more appropriate for analog matrix-vector applications. The use of separate
laser diodes with individual collimating optics for each source is quite attractive since
several such units are commercially available. The divergence angle obtainable from such
systems appears to be adequate to allow simple beam-reducing optics to be employed (without
the need for the GRIN-FO-GRIN system in Figure 4).

6. BIPOLAR AND COMPLEX-DATA HANDLING

The issue of handling bipolar and complex-valued data in optical systolic processors has
often not been detailed. 1In Figure 7, we show a new architecture that is appropriate for
such data. For the input point sources, we spatially-multiplex two linear arrays of point
modulators. With such an arrangement, we can represent bipolar data by inputing positive
valued vector elements on one input array and negative valued vector elements on the other
input array. Thus, which input array contains non-zero elements will determine whether the
input data is positive or negative valued. For complex-valued data, three linear input
arrays would be employed. As shown in Figure 7, the light from each input array passes
through the AO cell at a different angle and hence the matrix-vector product of the corres-
ponding input vector and the matrix within the AO cell appears on a separate linear output
detector array (in a different vertical location). We now direct attention to the data in-
put to the AO cell in Figure 7. 1In this figure, we show three multiplexed frequency inputs
to the AO cell. These can be used to represent complex-valued data (by encoding such data
with its projections on the 0°, 120° and 240° projections in the complex plane). For the
architecture shown, a bipolar input vector is multiplied by a complex-valued matrix and the
corresponding matrix-vector product is formed on separate linear output detector arrays.
The post-processing required to convert this output data for feedback to the system in a
compatible form is quite simple.

7. SUMMARY AND CONCLUSION

In this paper, we have described many practical fabrication issues associated with opti-
cal systolic array processors. The performance (mults/sec) of several different architec-
tures have been quantified and compared. A frequency-multiplexed architecture was shown to
require greatly simplified fabrication and to yield equivalent performance to that achieved
on other architectures. We noted that by format control, many different linear algebraic
operations were possible on the same architecture and that all such operatiors provide quite
ideal data and operational flow. The effects of the bit element size at the AO cell and the
divergence of the optical beam entering the A0 cell were noted and gquantified. Three new
architectures were suggested that appear appropriate for fabrication of a realistic and prac-
tical optical systolic array architecture. These systems include the detailed issues of
source size, source spacing, and fill-ratio, as well as the details of the source-to-AO-cell
coupling, and the aforementioned issues of bit size and divergence. Finally, a new spatial
and frequency-multiplexed architecture was described to allow handling of complex-valued and
bipolar matrix and vector data.
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SPIE Conference - San Diego, California - "Hierarchical Fisher and Moment-Based Pattern
Recognition®.

SPIE Conference - San Diego, California - *SDF Control of Correlation Plane Structure for
3-D Object Representation and Recognition®.

September 1984

. Philips Laboratories - Briarcliff, NY - *Optics and Pattern Recognition in Robotics®.

Optical Society of America - Pittsburgh, PA, *CMU Center for Excellence in Optical Data
Processing®.

Carnegie-Mellon University - Pittsburgh, PA, *Signals and Systems Research in ECE".

Westinghouse Corporation - Baltimore, MD, "“Center for Excellence in Optical Data
Processing*®.

SEPTEMBER 1984)

. Hiroyasu Murakami, M.S. Dissertation, *Matched Filter Statistical Correlator (February

1981).

. Saulius Eiva, M.S. Dissertation, *Image Quality Effects in Optical Correlators® (May 1981).

. Charles Hester, PhD Dissertation, *Synthetic Filters for Multi-Class Pattern Recognition®

(May 1981).

. Yair Barniv, PhD Dissertation, *Multi-Sensor Image Registration® (May 1981).
. Mark Carlotto, PhD Dissertation, *Iterative Electro-Optic Matrix Processor* (May 1981).

. Andrew Sexton, M.S. Dissertation, "Digital Analysis of Space-Variant Optical Processors®

(July 1981).

. Bernard Szymanski, M.S. Dissertation, *A Computer-Controlled Film Recorder for Optical

Processing® (July 1983).
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10.

11.

12.

13.

14.

31

. Vinod Sharma, PhD Dissertation, *Design and Analysis of Algorithms for Distortion-Invariant

Object Recognition® (January 1985).

. R. Lee Cheatham, PhD Dissertation, *Moment-Based Object Recognition Using a Two-Level

Classifier® (April 1984).

Anjan Ghosh, PhD Dissertation, *Performance Evaluation of Optical Linear Algebra
Processors® (April 1984).

Eugene Pochapsky, M.S. Dissertation, "The Simulation of Optical Pattern Recognition
Systems® (August 1984).

William Rozzi, M.S. Dissertation, *New Distortion-Invariant Correlator Research® (Expected
in December 1984).

Bruce Thomas, M.S. Dissertation, *Moments for Distortion Parameter Estimation® (Expected
in December 1984).

Wen-Thong Chang, PhD Dissertation, *Shift-Invariant and Distortion-Invariant Pattern
Recognition Techniques® (Expected in February 1985).

16.4 PATENT DISCLOSURES (SEPTEMBER 1980 - SEPTEMBER 1984)
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1. Multiple-Invariant Space-Variant Pattern Recognition System.

2.

3.

4.

Pattern Recognition by Invariant Moments.
Synthetic Discriminant Functions for Multi-Class Pattern Recognition.

Equalization and Coherent Measure Correlator.

5. Multi-Variant Technique for Multi-Class Pattern Recognition.
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