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ABSTRACT .S
Research on optical data processing for missile guidance and robotics is described. Components

addressed include acousto-optic cells. Pattern recognition work includes feature extraction (Fourier

coefficients and moments) and correlation (using synthetic discriminant functions). All pattern

-" recognition work concerns multi-class distortion-invariant pattern recognition. Optical linear algebra

processors are addressed with attention to: algorithms, architectures, applications, Kalman filtering,

system fabrication, accuracy and performance, plus error source modeling and simulation.
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1. INTRODUCTION
3 .0

During the past year (September 1983 - September 1984), our research in optical data processing for

missile guidance has addressed many of the key issues and aspects of this technology. This research

includes: real-time devices and components, new system architectures, new high-speed general purpose

optical data processing techniques and systems, tests on new image data bases, basic studies of existing

pattern recognition architectures, and new pattern recognition techniques, algorithms and concepts. As in

past years, we have been quite faithful in reporting our AFOSR sponsored research in various journals

and conference publications. Copies of the more relevant papers we have published over the past year are

included as chapters of this report to provide complete documentation of each aspect of our work.

In Chapter 2, we provide a summary and overview of our research progress achieved over the past _ ]

year. This work addresses five vital areas of optical data processing research:

1. real-time spatial light modulators (Section 2.2 and Chapter 3),

2. optical pattern recognition (Section 2.3 and Chapter 4),

3. optical feature extraction (Section 2.4 and Chapters 5-7),

4. optical correlation (Section 2.5 and Chapter 8), and

u] 5. optical linear algebra processors (Section 2.6 and Chapters 9-14).

Topic (1) concerns the vital is-sue of real-time spatial light modulators. Topics (2)-(4) address

pattern recognition for ATR using optical pattern recognition (OPR) techniques. In this work, we have

been faithful to address vital problems such as multi-class distortion-invariant pattern recognition of

military targets, the acquisition and importance of a large data base, and the effect of noise on the

algorithm used. Topic (5) concerns the most attractive item in optical processing at present and a

potentially quite general-purpose optical processor. 0

Details on the more salient results of our research are provided in Chapters 3-14. References are

included in Chapter 15. In Chapter 16, we enumerate our AFOSR sponsored publications, the

presentations given on this research at conferences and seminars during the past year, and the Master's

and PhD students that this grant has supported.

S
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During the past year, the principal investigator (PI) presented invited talks on our AFOSR

sponsored research at various conferences including the Critical Review of Technology SPIE ConferencerI
on Optical Computing (SPIE, Los Angeles, CA, January 1984) and the DoD conference on Parallel

Algorithms and Architectures for ATR (Leesburg, VA, July 1984) and various optical computing and

robotics conferences during the past year. The PI has chaired conference sessions and seminars and

served on the organizing committees for the following conferences and topics: SPIE (Robotics), IOCC

(Optical Computing), ICALEO (Optical Data Processing). One of this major papers in 1984 was an

invited paper on optical linear algebra processors for the July 1984 Proc. IEEE Special Issue on Optical

Computing.

* *1
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2. OVERVIEW AND SUMMARY

2.1 INTRODUCTION

Our five major research areas and our recent progress in each are highlighted in Sections 2.2 - 2.6.

Details of each aspect of our thirteen work topics follows in Chapters 3 - 14.

2.2 SPATIAL LIGHT MODULATORS (ACOUSTO-OPTIC CELLS,

CHAPTER 3)

Recently, our spatial light modulator research has emphasized acousto-optic cells. In Chapter 3, we

discuss recent new work in this area [1]. We have considered the salient acousto-optic architectures

(spectrum analyzers and correlators). The various acousto-optic cell and acousto-optic architecture

component errors have been enumerated, grouped into different classes and combined into several new 0

models. New performance measures for acousto-optic correlators and spectrum analyzers were defined

and detailed (spectrum estimation, delay estimation, and detection). Each is an appropriate performance

measure for a different application. General error-free formulae for each of these performance measures

were derived and the performance obtained with each was described and quantified as a function of the

various system parameters. Our future work in this area will include component error source effects on

performance, the relationship of these models to optical linear algebra processors and tests on multi-

channel acousto-optic cells.

2.3 OPTICAL PATTERN RECOGNITION REVIEWS (CHAPTER 4)

Our AFOSR optical pattern recognition research is at the forefront. Our paper [2] on coherent 0

optical pattern recognition was included in the recent Critical Review of Technology series on optical

computing. A more recent review [2] was the only optical pattern recognition paper at a DoD conference

on parallel architectures and algorithms for ATR. For completeness and as an introduction and overview, •

we summarize recent coherent optical pattern recognition research. A full length journal paper on this

topic with extensive references is expected to be in the Optical Engineering - Special Issue on Optical

0 Computing [23] in January 1985 and will be included in our 1985 report. Chapter 4 reviews optical

techniques for feature extraction and correlation, new algorithms, architectures and hybrid optical/digital

concepts [2].
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* 2.4 OPTICAL PATTERN RECOGNITION FEATURE EXTRACTION

(CHAPTERS 5- 7)

Two new optical feature extraction techniques are detailed: the use of new feature extractors and

dimensionality reduction techiques on a wedge ring detector-sampled optically-produced feature space

(Chapter 5) and a hierarchical two-level hybrid optical/digital moment feature processor (Chapters 6 and

7). Our earlier conference paper [4] on an optical Fourier coefficient feature space has been improved and

expanded into a journal paper [5] for a special issue on robot vision. In Chapter 5 [4], this work is

summarized. It includes four different dimensionality reduction and feature extraction techniques, a new

classifier concept, quantitative data on the importance of amplitu .us p.ase Fourier coefficients (for

pattern recognition, rather than image reconstruction) and the perforwance of each in the presence of

noise. Experimental results for two letters and two vehicles with 25 images of each at different scale and

in-plane rotational differences were obtained. In Chapter 6, our new hybrid optical/digital moment

processor, a new hierarchical class estimator, and a new two-level classifier are detailed and results

obtained on a set of over 300 robot objects (pipe parts) [6]. New quantitative and analysis data for our

ship image data base will shortly be published [7). The performance of the system on non-controlled

imagery and the necessary pre-processing required are included [8] in Chapter 7. Our future work will

involve laboratory optical Fourier coefficient research, new theoretical and optical laboratory work on

chord distributions, fundamental work on training set selection, laboratory optical moment system

fabrication, generic object recognition using optical feature extractors and synthetic filters. Our feature

extraction work will continue to address distortion-invariant multi-class object recognition and

performance in the presence of noise.

2.5 OPTICAL PATTERN RECOGNITION CORRELATORS (CHAPTER 8)

Our distortion-invariant multi-class multi-object correlator research emphasizes synthetic

discriminant functions (SDFs). The basic SDF synthesis algorithms have now been unified [9] (Chapter

8). Our tests of projection SDFs on ship images with data on noise performance and guidelines for the

selection of projection values are expected to appear [10] in a special journal issue on pattern recognition

late this year. These results will be included in our 1985 Final Report. Three new types of SDFs have

been devised and initial results with them have been obtained for a tank and APC image data base I[1].
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These details will be available shortly and will be included in our 1985 report together with initial results

on linear functional (optimal linear discriminant functions) SDFs. Laboratory experimental data, system S

fabrication concepts and optical matched spatial filter work will be major future work issues together

with various extensions of new SDFs and their applications to different correlation pattern recognition

to ATR data bases. S

2.6 OPTICAL LINEAR ALGEBRA PROCESSORS (CHAPTERS 9 - 14)

This optical data processing application area has received very much recent attention.

Our recent work in this area has included extensions of previous LU and other direct matrix

decomposition algorithms and architectures and new algorithms and architectures for back-substitution

and the solution of triangular systems of LAEs (linear algebraic equations). Most recently, a parallel QR

algorithm and its implementation were detailed by us [12,131. This completes the major algorithm optical

realization work on direct and indirect linear algebra solutions to systems of LAEs. A recent special issue

£ K of the Proc. IEEE on optical computing summarizes our architecture, algorithm, data flow and selected 0

applications research on optical linear a -ebra processors. Chapter 9 details this work [14]. It is

extremely noteworthy since one optical linear algebra processor system can achieve all n, cessary

operations by format control.

A second vital aspect of optical linear algebra research that we initiated was the error source

modeling and simulation of OLAP (optical linear algebra processor) architectures and algorithms [151.

Chapter 10 details this work [15] and our initial results using it in the comparison of direct and iterative o

solutions of LAEs on OLAPs. A third facet of our OLAP research has concerned specific applications.

The operation chosen for major attention was Kalman filtering and the specific applicatioa of it was

missile guidance and control. In [16 we first advanced the details of a gcneral Kalman filter realization

on one type of OLAP. Chapter 11 details this work fully [17]. A new architecture for Kalman filtering

when noise statistics are known [18] was also devised. It is detailed in Chapter 12. New algorithms and

optical architectures and accuracy issues concerning this and other applications will be available in 1985

as we unify our algorithm, architecture, modeling and simulation research on this application. We have
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detailed the use of residue arithmetic in OLAPs [191 to achieve increased accuracy and have found other

methods to be preferable to the use of residue arithmetic.

The major linear algebra operation required in Kalman filtering is the solution of a nonlinear

quadratic matrix equation. We have devised a new algorithm to achieve this using a fixed number of

iterations. We have quantified all operational parameters for the algorithm, simulated several solutions - .

of it using different algorithms, assessed the effect of different, optical system errors, the dominant optical

system errors, and the effect of multiple errors as well as quantified the performance of the algorithm and

provided a laboratory OLAP demonstration of it. This work is detailed 1201 in Chapter 13. S

The fourth and final aspect of our OLAP research has been attention to fabrication of an OLAP.

We recently [211 clarified that the number of operations acheivable on our frequency-multiplexed
S

processor is comparable to others and showed its equality and that it is preferable from a fabrication

standpoint. We also detailed 4 - 5 different techniques for fabrication of such a system and provided the

first initial laboratory experimental data on the performance and operation of an optical systolic

processor. These results are highlighted in Chapter 14. In 1985, we expect significant laboratory OLAP

results to emerge. Many applications for OLAPs exist. Reference [14] details several others and reference

[221 discusses their use in pattern recognition.

S
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Time-integrating acoustooptic correlator:
error source modeling

[avid Casasent, Anastasios Goutzoulis, and B. V. K. Vijaya Kumar ]
The error sources present in a time-integrating acoustooptic correlator are considered. They are classified
and modeled into three categories: input plane errors; frequency plane errors; and detector plane errors.
To facilitate error analyses, performance measures are defined and quantified for an error-free system for
detection and delay estimation applications.

1. Introduction modeling of the components of such systems, to the
Optical signal processors provide real-time operations effect various system parameters and component error

on high bandwidth and time-bandwidth product data sources have on the performance of these systems, and

of long duration and high center frequency. These to the performance measures used to describe, analyze,
features plus the rapidly maturing commercial avail- and design such processors. In this paper, we advance

ability of acoustooptic components are the major rea- the first such formulation for TI bulk AO correlators.
sons optical signal processors (OSPs) employing ac- In Sec. II, we briefly review the operation of a TI AO

- oustooptic devices have recently received considerable correlator. Our categorization and modeling of the

attention. 2-6 These acoustooptic systems offer a most various error sources are given in Sec. III, and their
attractive approach to signal processing problems in enumeration and origin are then presented in Sec.

I[which data with high time bandwidths and variable IV I . Vw•ics h efrac esrsw

codes must be processed. Inse to desc ss the performance Se. te
Acoustooptic (AO) devices can be incorporated into chose to describe the accuracy and performance of the

.arious architectures. These OSP systems1-4 can be TI AO correlator. We consider two different correlator
divided into two general classes: (1) correlators and (2) applications (detection and delay estimation) and em-

spectrum analyzers. Both system classes can be real- ploy different performance measures for each. The
ized by performing the necessary integration in space basic error-free analyses for a TI AO correlator for de-

or in time.1  tection and delay estimation are then presented (Secs. 5
Time-integrating (TI) processors" have received VI and VII). These analyses provide the basic statis-

considerable attention because they can accommodate tical framework for further analyses that include and

extremely large time-bandwidth (TBW) product data quantify the effects of the various error sources. Such
and because many new and attractive TI algorithms8  analyses will be the subject of future publications.
and architectures 9 exist. An important feature of TI II. Signal Correlation with TI AO Correlators
processors is their ability to operate on signals with very The basic operation of a TI AO correlator is explained
large TBW product with the ability to change (on-line) with the aid of Fig. 1. The signals to be correlated are
the signal code being processed.

Despite the rapidly increasing use of AO devices, little s.(t) and Sb(t), Sb(t) is usually a delayed version of

attention (in the literature) has been given to the s,(t) and includes some additive noise n(t). For linear
intensity modulation9 of the AO cells, the signals are
added to two biases BI and B2 and used to modulate the
amplitude of an rf carrier. Thus the baseband electrical

When this work was done all authors were with Carnegie-Mellon inputs to the laser diode (or other input point modula-
University, Department of Electrical & Computer Engineering, tor) and the AO cell are
Pittsburgh, Pennsylvania 15213; A. Goutzoulis is now with West-
inghouse Research & Development Laboratories. Pittsburgh, Penn- si(t) lB1 + s0 (t )l, (1)
sylvania 15235. s2(t) - IB2 + s(t0- (21

Received 12 March 1984.
0003-6935/84/183130-08502.00/0- The intensity of the data portion of the light leaving •
C 1984 Optical Society of America. plane P is proportional to

3130 APPLED OPTICS / Vol. 23, No. 18 / 15 September 1984
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1 P F, L P3  L3 4 Ill. Error Source Modeling
In this section, we describe the mathematical models

we use to describe the various types of component error
in an AO TI correlator. The ideal model would express
the system's output as a function of all the error pa-

,1t) rameters; however, because of the number of error
sources and their nature, such a model cannot be ana-

:AO CELL SPATIAL ARRA lyzed statistically. Thus, we propose to model, study,
MC{L'LAteR FI LTERI NG A RRAy lyestttcaytu,

Fig. 1. Schematic diagram of a time-integrating acoustooptic and quantify several independent classes of errors and
correlator. to determine the lower bound of the system's perfor-

mance for each error class independently. We thus
include three classes of error distinguished by whether

11(t) - B 2 + sb(t). (3) their effects are modeled in the input, frequency, or
output detector plane. Fortunately, there are only a -This light beam is expanded by lens L I and uniformly

illuminates the AO cell at plane P 2. Thus Eq. (3) also few error sources that affect more than one error plane.
illuinats th AGWe elaborate on these errors and the way to treat them

describes the light intensity incident on P2. Note that Wn ec. oreit varies only in time and and not spatially. Lenses L2, in thcnuIln

L3 and the spatial filter at P3 separate the undiffracted Ift is t me onto the out input plane

and diffracted orders, block the undiffracted order light, P2, it is directly mapped onto the output plane, and weighin

and image the first-order diffracted light onto a detector thus describe it by dicso'ng a multiplicative weighting
array at plane P4. Denoting the detector's time con- function W(T) in the processor's output, Eq. (5) be-
stant of integration by T, the final detected output at comes
P4 is (including all bias terms) ](7) - w(r)[B + Bs + (ITI) /2 sb(t)s08(t - 7)dt]. (7)

1S TI/2 J - Til2

(1/T") - B2 + sb(t)l(BI + SoU - i)]dt, 4 This class of error is quite unique, since it maps directly

where r = x/v, x is the direction of sound propagation onto the output plane. The effect of this type of error
in the AO cell, and v is the velocity of sound in the AO is local rather than global and can thus be corrected by
crystal. The second term in Eq. (4) is the modulation postdetection processing.
on the first-order term in the transmittance Of P2. The second class of error are those which affect the

frequency response of the system. (These concern the
Equation (4) can be further simplified to AO cell and the lenses.) Such error scurces are ob-

14() - B + B, + (l/T!) T12 sb(OSAI - r)dt, (5) viously best modeled by a weighting function in the
B -T)/2 frequency plane. Because of the excellent quality of S

which is recognized as the desired correlation (last term) state-of-the-art lenses plus the fact that lens effects in
on a signal-independent bias B and a signal-dependent optical processors have been studied in detail else-
bias Bs with both temporal and spatial dependence. where,10 we restrict our attention to the AO cell fre-

Many AO architectures exist9 that utilize amplitude quency response. With this in mind, we include the
rather than intensity modulation of the AO cell. In impulse responses hi(t) and h2(t) of the AO cell and the
such cases, the detector output has the general form9  input point modulator. With these factors included,

we can describe the output of the processor asf TI

14(7) - B + BS + (l/Tt)m cos(2 or) -T/sb()sa(t - 7)dt, T/2
.f-TI/2 I(T)-B +BS+( 1/Ti) f 1/ If h2(X\2lsb(t - 12

(6)

where B is a bias, Bs is a signal-dependent bias with X h1()s(t - 7 - AX)dAdXdt, (8)

both temporal and spatial variation, m is a constant, and where Bs includes the effects of h and h 2 on Bs. To
cos(2rfoT) is a spatial carrier where fo is the frequency obtain Eq. (8), we used the fact that the convolution of P -

of a reference rf oscillator purposely included with the the input signal s (t) with the system's impulse response
input signals. This electronic reference allows the h(t) can be written as fh()s(t - X)dX. In writing Eq.
correlation term to be separated from the bias terms by (8), we also assumed that the AO cell is operated in a
bandpass filtering the electrically readout version of Eq. linear intensity mode, as is necessary for an AO corre-
(6). lator. We also note that intermodulation products in

The intensity and amplitude modulation modes for a TI correlator do not appear in specific spatial locations
TI AO correlators have many well-known 9 advantages (as is the case for space-integrating spectrum analyzers),
and disadvantages. Our initial objective is to model the but rather they tend to be uniformly distributed over
various component error sources and system parameters the output plane, and thus their effect is rather
so that our results are appropriate for both modulation small.
modes. To achieve this, we consider the intensity For most statistical analyses, the form of Eq. (8) is not
modulation scheme, which for B = Bs - 0 is equivalent convenient. This is because extensive convolutions
to the amplitude modulation scheme (after the neces- have to be evaluated in the time domain. Such a task S
sary postprocessing filtering), is not trivial in digital simulators, since most signals of

15 September 1984 Vol. 23, No. 18 / APPLIED OPTICS 3131
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interest are most commonly described in terms of their we consider is the output plane sampling (i.e., the fact
frequency domain characteristics. It is thus preferable that the output plane detectors are of finite size or
that this class of e: -r be studied in the frequency do- length D in one dimension). This effect causes a spatial
main. This choi, . is also convenient because the integration of the output over D followed by a temporal
transfer functions H (f) = 9r Ih (t)] are easily measured integration over T1. We describe such detector effects
for the two real-time devices in the system. To express by writing the observed output as an integral over space

w Eq. (8) in the frequency domain, i.e., in terms of H(1), (dT) followed by an integral in time (dt), i.e.,
we first form the expected value of Eq. (8) as below:E{I(T) ffi IBI + IB's ilk) =f W1TI)J-s2 r1/2 ,Jk+1/2) V k w(7)

EIIRi- EIB + EI KI/

1 jTI/2j- h 2 (\ 2)h1 (X1) X[ B + Bs + sa(t)sb(t - ) + sk(t)]drdt, (14)

T, - -- where k is the detector element number, wk () is the
X EIs.(t - 7 - ),X)sb(t - A2)Id) ndX 2dt. (9) spatial weighting function across the detector k, sk (t)

- For analytical simplicity, we consider the case of To is the noise of the kth detector element (this includes
0 (without any loss of generality). Then the received detector element cross talk) and where the integration
signal Sb(t) is simply s0 (t) + n(t), and Eq. (9) be- over the I-D detector area D describes the effect of the
comes finite size of each detector element.

EJ(r)I - B + EtB~sI + I -T,/ h2(X2)h1(X IV. Classification of Error Sources
T, J-T/2 fT -In this section, we consider the origin of the specific

[Els.(t - 7 - X1)s0(t - A2) system error sources that give rise to the three types of
+ Els.(t -,r - AXn(t - A\2)Id~jd\2dt. (10) error we isolated in Section. III. We also discuss several

Since the noise n(t) is of zero-mean and is statistically other component errors present in an AO TI correlator
ineptenosent ) f sro hero-nal s n. (t),iEq satiesti y and how to treat their effects.

independent from the signal s(t), Eq. (10) simplifies In the case of input plane errors, we include the input
to optical beam profile, spatial variations in the AO cell

E)1( 1 B + E)B'Sj + I T1/2 h2(X2)hi(X) response, and the nonuniform element-to-element re-
TJ + T/2 fJ-. sponse of the detector array. The input optical beam

R, (r + X. - 1\2)d,\ dA2dt has a Gaussian rather than a plane-wave profile that can
be described as"1

-B + EIBSIl + fS h2(A\2)hi(X0)W 5 i x j- 7-,)' 15

K I X R,(r + X; - A2)dX X2. (11) where the beam-taper coefficient W is the beamwidth
Expressing the signal autocorrelation function R. (T) in at which the input light intensity is down by exp(-2)
terms of its power spectral density P,(f), i.e., and 7, denotes the center of the AO cell. This effect

can be reduced by proper design of the collimation lens
R.,) - f Ps(J) ezp(j2r/f)d/, (12) system Li. In most practical situations (AO cells with

2-3-cm aperture), beam uniformities of 5% can be
Eq. (11) becomes achieved without significant loss of input light. This
E(01B + ' corresponds to a worst-case weighting of 0.22 dB across

EI~tIB IBI+ J hff )ep(fif 2  the output. This can be reduced further by postde-
-hn(\ 1) ezp(j2f f/)Ps(f) exp(j21r/r)djdX2d/ tection processing (since the errors are spatially fixed).

Thus we ignore this effect in our future analysis.
-B + EIBs5 + =H;()H 2 )PS() ezp(j2rf-)df, (13) The AO devices are the system components with the

most significant input-plane errors. These errors in- 9
where H2() and HI(f) are the transfer functions of the clude (1) beam walkoff (referring to the fact that the
point modulator (or laser diode) and the AO cell, re- acoustic beam does not travel normal to the transducer
spectively. When formulated as in Eq. (13), the effect as it propagates along the cell); (2) reflections from the
of all the frequency plane errors can be described by one sides of the cell (referring to the fact that the acoustic
transfer function H(f) - Hi(f)H2(). This class of er- wave diffracts as it leaves the transducer and thus canrors is global in nature and cannot be corrected by strike the sides of the cell and suffer multiple reflections

postdetection electronic processing and are thus ap- before reaching the end of the cell. This results in a
preciably different from the input plane weighting error nonuniform acoustic field and is particularly important
sources whose effects were described by Eq. (7). when long AO delay lines are used); (3) near-field effects

The third class of error are those which are best (referring to the Fresnel pattern resulting from the
classified as detector plane errors. (They are due to the transducer excitation); (4) acoustic attenuation (re-
output detectors used.) Some of these detector errors ferring to the fact that the acoustic field strength de-
can be considered as spatial response variations. They creases exponentially within the cell with increasing
are best modeled by including them in our input plane distance from the transducer and as a function of fre-
weighting factor w(T). The next detector plane error quency).
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This last AO error source contributes to both the proach has yielded simpler expressions for IH(f)l that
input plane and frequency plane errors. For a fixed can be incorporated in a statistical analysis. This class
signal bandwidth, we calculate the resulting weighting of errors is not correctable, and thus its effects on the
due to acoustic attenuation as a function of distance system's performance will be studied in our future
only and incorporate it into our u,(T) input plane work.
weighting function in Eq. (7). To describe the model The last clasg of error source are those due to the
the frequency dependence of the acoustic attenuation output correlation plane detectors. These include (1) .
a (i.e., a a 7), we include its effect in H(f) for the AO the sampling and area integration due to the detector
cell. finite area D, (2) the spatial weighting function due to

Many of these error sources can be reduced or cor- the trapezoidal" spatial response across each detector
rected for to various degrees. The beam walkoff can be element, (3) the location of the output correlation peak
minimized by proper AO cell design and accurate crystal within one detector element, (4) detector noise, and (5)
cut. The sound reflections and near-field effects can cross talk between detectors. The effect of detector
be partially corrected by either careful AO cell design noise has been considered,9 and the effect of finite de-
or optical spatial filtering. The effects of acoustic at- tector area has been initially addressed.1 4 The re-
tenuation can be reduced (at one frequency) by elec- maining detector error sources and the effects of all
tronic postprocessing and by a fixed optical mask whose errors on our performance measures merit further re-
transmittance compensates the acoustic attenuation's search.
weighting. The last input plane error is the element-
to-element nonuniform response in the detector array. V. Performance Measures
State-of-the-art detector arrays have a uniformity of Let us now discuss the performance measures which

90-95%. This corresponds to a maximum 0.46-dB we will use in our error-free analyses (Secs. VI and VII)
spatial variation in the output plane intensity data. and in our future work. A correlator has two main
This weighting is generally negligible but is correctable purposes: (1) detection of the presence of a signal and
if required for a given application. (2) estimation of its location. These two different ap-

Next we enumerate the frequency plane errors. In plications require different performance measures.
this category, we include the nonideal transfer function As detection performance measures, one should use P
H(f) = IH(f)i expU#(f)] of the AO cells, where the probability of detection PD, probability of false alarm
magnitude IH(f)I and phase 0(f) are functions of the PFA, and probability of error P. The PD is the prob-
frequency of the input signal. It is known12 that JH(f)j ability that the correlation value at the peak C(0) will
is the product of (1) the transducer's transfer function, exceed a threshold 0 when the correlation is present. It
(2) the shape of the acoustic interaction bandwidth, and is given byI5

(3) spatial frequency response terms due to dispersion 1 1-4 - EC(O)I-
and the finite AO cell aperture. The magnitude of the PD = (x0 I 2 ". (16)

transfer function is also affected by the acoustic at- %27 C(0) exp -2 varlC

tenuation as noted earlier. The AO cell's phase re- where EC(0)] and var[C(0)] are the expected value and

sponse 0(f) is composed of (1) the transducer's phase variance at the correlation peak and where C(0) is

response and (2) the optical phase within the cell. The modeled by a Gaussian random variable from central

transducer's phase is in general nonlinear 12 with a shape limit theorem arguments. PD will be less than unity

that depends mainly on the bonding techniques used. because of noise and because of the statistical nature of

(A thin bond yields a quite nonlinear phase response, the signals. The presence of noise also results in a

whereas a quarterwave bond yields a less nonlinear nonzero probability that the value of the correlation at

phase response but a poorer electrical-to-acoustical the peak will exceed the threhsold when the signal is

conversion efficiency for the transducer.) The optical absent. This is the probability of false alarm. It can

phase effects are due to (1) off-axis acoustic beams that be described' 5 as
4 propagate in different directions due to beam walkoff 1 j-x - EIC(T)1I1'

and other effects (each off-axis beam will have a dif- PFA -/2w var10-01 exp tvar /_ . (17) __

ferent phase) and (2) the finite transducer width. (This where t m varcerI o
results in acoustic diffraction, which in turn results in where the mean E[C(T)I and the variance var[C )] of
off-axis beams.) With careful AO cell design and ex- the noise in the output plane can be estimated by eval-

ternal optical filtering, the optical phase effects can be uating C(r) at r >> 0. With no loss of generality, we

minimized, and the transducer's phase effects will assume the correlation peak occurs at r = 0. Assuming
dominate. We will assume this in future analyses. equal probabilities for the presence and absence of a

In Ref. 12, exact expressions for Ih(f)I and models for signal, P is given by

0(f) have been calculated. The IH(f)I expressions are P, - 1/20 + PA - PIA'

quite complex, and it is thus difficult to incorporate These three probabilistic performance measures can
them in any statistical analysis. Thus the alternative Tesexree as tio fthe meation pan
we adopted was to measure IH(f)I (from the optical be easily expressed as a function of the correlation plane
Fourier transform of the light leaving the AO cell when SNR values:
it is driven by a linear FM signal) and to approximate SNRI E21C(o (1q
it by a mathematical function. This alternative ap- varICwl(
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E2IC(o)Il - ,8 g.il -.oTi/
SNR2 - E2C(O)l (20) C(r) B2 + -A r (t-? t -f T,1

va(C1' _r1/ rod TI+ Tl T, J/2which can easily be evaluated and experimentally B ,T, /2a

measured. SNRI is the SNR at the peak (the conven- +T, J-Tit
tional communications definition 8 ), and SNR2 is TO
similar to the peak-to-sidelobe ratio (with the sidelobe +(t - 7 )8(t - to)dt. (26) .0
or noise level measured at r >> 0, far from the peak). T" K /2

Both of these SNR measures have been used previous- Since s(t) and n(t) are zero-mean signals and as-

ly,16 . 17 and SNR 2 can be directly related to SNRI. In suming that they are independent random processes,
terms of these SNRs, one can show the exr.ected value of the correlation peak (assumed to

occur at To - 0 with no loss of generality) becomes
1 =- e -SNRzx - EIC(0)i r1/

PD = 22ErECC(O)/SNR, eZ "E[-( -) EIC(0) - - /Els(t)a(t)ldt - R.Mo). (27) S

(21)T, r-T/2

I- __ where R, () is the signal autocorrelation function, and
1 (-SNR2(x - E[C(0)I12. where we assumed that the bias term B2 was subtractedPFA /2rE[C(U)JSNR2 J" p 2["(() r from the output. In general, we find E[C(-)J -=,(,),

(22) and thus (with bias subtraction) the estimator is unbi-

We now consider the second correlator application: ased or the average value of the estimated correlation

delay estimation. The location of the correlation peak equals the correlation we are trying to estimate. The

contains useful target location and signal synchroni- variance of C(() is easily found to be

zation information, and thus one refers to the target var{(Cl - ElC(7)12 - E21C(T)l
location or signal delay estimation performance of a TI
AO correlator. In image correlations, this performance - 2/T . (T - Iz)12R.(z) + R8(z)
measure is referred to as registration error,1 7 since it f T,
describes the accuracy with which the location of an + (I/B2)R,(z) + (I/B2)R.(z + 7)R.(z - 7)
object in an image is known or the accuracy to which two + (1/B2)R.(z)R.(z) + 2R.(z - r)Jdz, (28)
images can be registered. To develop an expression for
the delay estimation error e, we define the exact peak where the assumption that s(t) is Gaussian distributed
location as To, and we denote the estimated peak loca- (this makes the third-order moments zero), and the
tion by fo. Then fourth-order theorem for Gaussian random variables' s

e - (ro - to). (23) were used. 0
We now consider the evaluation of our output SNRO

We will denote other observed parameters by a (A) (i.e., measures in Eqs. (19) and (20) for the specific case of a
the observed correlation function is C, whereas the exact Gaussian signal with a Guassian-shaped autocorrelation
or ideal correlation function is C). To analyze e, we function. In this case, R,(z) has the form
must calculate its expected value and its variance. The R.(7) - Ro ep-r 2), (29)
first parameter determines if the estimator is biased
(time bias), whereas the second provides us with the where # is the signal's 3-dB bandwidth (BW) and Ro is
variation to be expected in calculating e. We thus use the signal power. We assume that the noise has power
both Ele) and vale) as delay-estimation performance R. and has a statistical autocorrelation function that
measures. is of the same form as in Eq. (29). In this case, the input

SNR is SNRi - Ro/IR,. A more complex SNRI ex-
VI. Error-free Detection Analysis pression results' 6 if this assumption is not valid.

In this section, we derive general expressions for the Substituting Eq. (29) into Eqs. (27) and (28), evaluating
mean and variance of the correlation output. We then at r - 0, and assuming T >> 1/0 (i.e., a signal time-
evaluate these expressions for a zero-mean Gaussian bandwidth product TBW - T, > 10), we find
signal model with a Gaussian-shaped autocorrelation SNRI T0 (30)
function. We then evaluate SNR, and SNR2 and plot (2 +/SNR)+ 1 ( - )
PD and PFA as functions of the basic TI AO system 2 + S BRI ) 4+

parameters. (B) NI
For both active and passive signal processing, the where SBR = Rx/-/B is the signal-to-bias ratio. The 0

transmitted so t and received Sb M signals to be cor- SNR2 expression is identical to Eq. (30) with (2 + I/
related are denoted by SNR,) replaced by (I + I/SNRI). We note that when

SBR and SNRI are infinite, SNR2 is >SNRI by 3 dB.
S.(t) - s(t), (24) From Eq. (30), we note that both SNRo measures

increase as either TIP, TBW, SNRi, or SBR increase.
8b It) lt -ro) + n(t), (25) These results are as expected. In Fig. 2, we plot SNR2

where ro is the time delay between the two signals, and vs TBW for several SBR values. These plots are im- Fi
n(t) is additive noise. Assuming equal biases (B - B2  portant since they quantify the rather severe SNRo loss W
= B) for simplicity, Eq. (4) becomes for SBR < a. SNRO is superior with AO cell amplitude

3134 APPLIED OPTICS /Vol. 23, No 18/ 15 Septenber 1984

I)S

S



. . . . . . . I

* I

r

* d

I

I

S

S

* 4

*



-. , - ..- , ,- ... . -
-- 1 il - .r.. ... .- . .. - . ..

%

S"R ko modulation than with intensity modulation. Here we
10 sjoo.01 Smquantify this effect and the effect of SBR on SNRo.

sofe The case of no bias (i.e., SBR = ) corresponds to AO
" a cell amplitude modulation. SBR - 0.5 corresponds to

3 &46 the best case one can obtain using AO cell intensity S
S 0.2modulation. Comparing these two cases, we find an

SNRo loss of 8 dB for most TBWs.
Expressions for PD and PFA are obtained by substi-

tuting Eq. (30) into Eqs. (21) and (22). We normalize
2 3dto unity and consider EIC(r)] to be zero for 7 >> 0. In

Fig. 3, we show PD (for PFA - 0.001) and PFA (for PD -
i ___......... __" - 0.999) vs TBW for three SNR, values (i.e., 0.1, 1.0, and

10 10 63 i10.0). From these curves, we see that PD(PFA) in-
SmNAL Tmw creases (decreases) monotonically as TBW or SNR,

Fig. 2. Effect of SBR and signal TBW on output SNR2 fa tie. increases, thus improving the detection performance lSt
inegratingn TonoptS i of the system. Such trends ar well known. In Fig. 4,integrating correator fwe show PD (for PFA = 0.001) and PFA (for Pd - 0.999)

as a function of TBW and SBR. As expected, PD (PFA)ii increases (decreases) as SBR increases. For the best
practical intensity modulation case (SBR - 0.5), both
PD (PFA) are quite inferior to the PD and PFA values for

PD SBR -. For TBW > 5000, the difference is small.

PFA - 0.001

5BR -=

s~1.0I - .1 / PFA " 0.oo01.
2: 1 SNR I  - 0. 1

3;xo SO = - 1:-

2:0.5

i f4:0.3
5:0.2
G4 0.31

10 b2 o
SIGNAL 3W (*MAL T3W

(a) a

U 41

PFA - 0,999
2 SBR - .

SNRo 1: 0.1

2:1 PFA 
= 
0.999

3:10 SNR I - 0.1

SOP -
2:0.5
3:0.4
4:0.3
5:0.2
6:0.1

10 j2
SIGNAL T@W 0 lox-W-

(bI b

Fig. 3. Effect of input SNR, and signal TBW on detection perfor- Fig. 4. Effect of SBR and signal TBW on the detection performance
Emce or a time-integrating correlator. (a)PD(fOPFA -0.001)and of a me.integrating correhtort (a) PD (for PrA 0.001) and b) PFA

(b) PrA (for PD - 0.999). (for PO - 0.999).
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Vartel (usec2) Eirl = IE1(,(r0 ) + E0¢(roiIj/('s) (33)

From Eq. (33), we see that e is an unbiased estimate.
This follows since C., is a maximum at To, and thus its

SBR = gradient is zero at To. The second term in the numer-
ator of Eq. (33) is zero since it corresponds to the zero

19SNRI = 0 .1 mean terms in Eq. (26). Next, we evaluate the variance
1 :T I  0. lms of e, which (from the above) simplifies to

10 2:T 0.5ms varlcl = lEle (ro)l-2ElC,(toj)j - + Elr tr()I12 (:34)

3: T = IMS To evaluate Eq. (34) in terms of system parameters, we
I considered the case of a Gaussian-distributed signal and

4: T I = 5ms noise with a Gaussian-shaped autocorrelation function
0 given by Eq. (29). For this case, a lengthy but

straightforward analysis shows

varleh _ +SNR, (+
1 12 'SBR)2

SIGNAL BW (35)

Fig. 5. Effect of integration time T, and signal BW on the variance where equal signal and noise bandwidths J and TBW
varlel of the delay estimation error e for a time-integrating >- 10 were assumed.

correlator. Equation (35) relates the delay estimation accuracy

For TBW < 1000, the difference is quite appreciable of a TI AO correlator to the various system parameters.
(i.e., for TW =450, PD 0.35 vs 0.99, and PFA = 0.65 To quantify the delay estimation performance and the
vs 0.00001). From these data, the TBW increase re- effect of the various system parameters, we include Fig.
quired to achieve a given performance for a given SBR 5. In Fig. 5, we show how var[ej varies with the band-
can be found. width 0 for four different Ti values (0.1, 0.5, 1.0, and 5.0

msec). From this figure, we see that varel monotoni-
VII. Error-free Delay Estimation Analysis cally decreases as 0 or T, increases, and, most impor-

We now analyze the delay estimation performance tant, this plot quantifies these variations. The main
of the correlator with attention to the calculations of new feature in these data is that vatne] depends more
Eje] and vatne], their relationships to measurable (r) on the signal bandwidth (Avarfe] - 1/3) than on the
correlation data, and their dependence on system pa- integration time (Avarie] a 1/TJ). In retrospect, this
rameters, might have been expected because of the well-knownTo relate C(r) toe, we expand (r) in a Taylor series inverse dependence of the width of the correlation peakaround r = To. We consider eo w and thus ignore on the bandwidth of the signal. However, the depen-atroud h e t To. We coinr f (To) expanhus inone dence has now been quantified. In Fig. 6, we showterms higher than (f0 - T0) 2 in our C(To) expansion,. a~]v adit o treS~ aus(.,10

Setting the derivative C'(T) of C(r) equal to zero, we varje] vs bandwidth 3 for three SNRi values (0.1, 1.0,
find and 10.0). As expected, varne] decreases as SNR, or/.

increases. Finally, in Fig. 7, we plot var[e] as a function
e (ro - f o) = - 0'(to)/0'(o), (31) of bandwidth 0 for two SBR values (0.1 and -). As we

where 'and denote first and second derivatives. From see, var[e] exhibits a negligible dependence on SBR.
the gradient C'("0) and curvature C" (TO) of the corre- va2 e(isec2
lation at the peak, we can thus obtain e. We consider
the case when the standard deviation of the curvature Itt
C'(ro) of the correlation at the true peak is small. In
this case, (C"(o) is well approximated by its average S T = s
value. We thus write TI  0. rs

ea -(¢'(7o)/("to), (32) 1:SNRI = 0.1

where the average value e"1ro) is used, since it can be I 2:SNP1 = 1
more easily evaluated' 8 for our statistical signals. 3:SNRI = 10

4 To describe the delay estimation performance, we
require the mean and variance of e in Eq. (32) in terms
of measurable correlator parameters. To develop this,
we denote the two parts of the correlation output in Eq.
(26) (for an intensity modulation scheme) by C,(T) Ithe
autocorrelation of s() or the last term in Eq. (26)] and
(, (r) Ithe terms remaining in Eq. (27) after bias sub- SIGNAL BW
traction, i.e., only the fifth term in Eq. (26)]. In terms Fig. 6. Effect ofSNR/ and signal BWon the variance AarLr} of Bhe

of these quantities, delay estimation error e for a time-integrating correlator.
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Vat[el (wsecz) provided and quantified several new results. These --
included the effect of signal-to-bias ratio on both de-
tection and delay estimation performance. For de-
tection applications, we found that low SBR values
significantly affect PI and PFA. For delay estimation
applications, we found SBR effects to be rather negli-

1 1 gible. These trends affect the selection of amplitude
SNR1 - 0. 1 or intensity modulation modes for acoustooptic cells.
T 0.5ms Our error-free statistical analyses provide valuable

quantitative data. They also provide the base line
1 : SBR = 0. 1 performance levels against which to quantify the effect

2:SBR = of the various component error sources noted. This
present paper has laid the framework for the component
error source analysis of acoustooptic correlators. A _
detailed error source analysis using these guidelines,
models, and performance measures is the subject of
future research.
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ABSTPACT

Parallel optical pattern recognition architectures for multi-c!ass distcrtion-invariant

autcnomous target recognition (ATR) are described. Algorithms that utilize the parallel

outputs and real-time processing features of optical systems are noted. Three hybrid
°S

optical/digital feature extraction techniques for ATR are described together with an

optical correlation method that achieves multi-class shift-invariant distortion-invariant

object identification. Initial results on selected miitary objects are included in the

presentation. Brief remarks on optical systolic linear algebra processors are also S

advanced as they apply to the processing requirements for ATR.

1. INTRODUCTION
P, The real-time, parallel-processing, low size, weight and power dissipation advantages of

optical pattern recognition (OPR) systems for ATR have long been recognized.

Recently, several small size and weight real-time optical correlators have been fabricated

and demonstrated. 1'2 Thus, the technology of OPR for ATR merits attention and

discussion. In Section 2, we briefly review the classic Fourier transform (FT) and

correlation operations of such architectures. Section 3 consideis three different hybrid

* optical/digital feature extractors and Section 4 considers a new optical correlator. In all

cases, these parallel architectures and algorithms achieve distortion-invariant multi-class

recognition. Recent performance of one feature extraction system on non-controlled IR

data2° and recent performance of the correlator Section 4 in structured clutter have been

* obtained. Optical systolic linear algebra processors are then briefly noted in Section 5.
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2. A 1flEVIEW OF OPR
The sytem of Figure 1 is the classic OPR architecture. The FT G(u,v) of the input

image g(x,y) in P1 appears at P 2 with higher input sputial frequencies (u,v) appearing at

radially increasing distances from the conter of P2. As the input translates, the intensity

detected magnitude of the FT is shift-invariant. However, as the input object rotates, so

does the FT. These features of a coherent optical system are exploited in all of our
architectures to be described. In tho fu!l system of Figure 1, a transparency proportional

to the conjugate FT 1I*(uv) of a reference object can be recorded holographical!y at P2.

This is referred to as a matched spatial filter (MSF). The light distribution incident on

P2 is G(u,v) and the light leaving P2 is G(u,v)Hl (u,v). Thus: passing one 2-D image

plane through another achieves a 2-D point-by-point multiplication. This feature is

liewise ccnstantly expuIted in OPR systems. The FT of this product of FTs is then

formed at P3' where the correlation of the two space functions f and h results.

P, L, P LZ  p

• 4"iI zJ 0 "I . :--- I "' 3

".- 000,

g(. ,.,,1' ))

g*h

FIGURE 1 Coherent optical Fourier transform and correlation
processor
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3. OPTICAL FEATURE EXTRACTION
The classic approach to l)attern recognition employs a training set of imagery from

r which features are extracted and subsequently operated upon to determine class and 0

orientation estimates of input objects and the confidence of these estimates. A hybrid

optical/digital architecture in which the image features are optically computed in

parallel is shown schematically in Figure 2.

---CLASS

INPUT FEATURE FEATURE EXTRACTOR Z ,I .>1O B ECT

O C (DIMENSIONALITY IFIER ORIENTATIO N , etc.
FeORENTAION etc.TON

1---I>CONFIDENCE

FIGURE 2 Simplified diagram of a hybrid optical/digital
feature-space pattern recognition processor

Such an architecture is attractive because it can provide orientation information on the

input object and because the same optical system can be used for different object classes.

With the proper digital post-processor, distortion-invariance and multi-class recognition 0

can be achieved. We now discuss three versions of parallel optically-computed features

and the associated digital post-processor system required.

3.1. Fourier-Coefficient Feature-Space

The shift-invariance of the FT coupled with the change in scale and rotation of the FT

pattern with changes in the scale and orientation of the input image can be utilized for

feature-space pattern recognition. The anatomy of an optical FT dictates that a wedge

ring detector (WRD) sampling at P 2 of Figure 1 provides data compression and

dimensionality reduction in a Fourier coefficient feature-space plus scale (from wedge

data) and rotation (from ring data) invariance. Many uses of this technique have been 0

°- .0
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INPUT FOURIER MGNITUDE, WRD DOMINANT
IMAGE TRANSFORM EGN CTI OR BOT SUBSPACE

SUBSPACE

FIGURE 3 Block diagram of a hybrid optical/digital WRD-sampled
Fourier-coefficient feature-space pattern recognition system

detailed. 3' 4 The most recent works used the system block diagram of Figure 3 in which

the amplitude, phase and both the amplitude and phase of the FT were used as the

observation space. WRD-sampling provided dimensionality reduction to 64 image

features (32 wedges and 32 ring data elements). Feature extraction involves three

techniques:

1. projection of the feature vector onto the dominant Karhunen-Loeve (KL)5

eigenvectors per object class;

2. projection onto a Fukunaga-Koontz (FK)8 discriminant vector for each class,
with FK feature vectors calculated only from the dominant KL eigenvector; _ _
and

3. projection onto the Foley-Sammon (FS)7 discriminant vector, calculated from
the dominant KL eigenvectors only.

The three different feature extractors noted in Figure 3 were evaluated using two

different data sets (50 different vehicles in two classes and 50 different letters of two

types, each with different scales and orientations). The KL feature extractor was found

to give good intra-class performance, but better Fisher ratio performance measures

I"'1
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resulted when the FK and FS unitary transformations were employed. Amplitude

Fourier-coefficient features were found to be more robust in the presence of noise than

F were phase features. This is attributed to the concentration of the dominant Fourier- 0

amplitude coefficients into a few WRD-samples, whereas phase Fourier-plane data is

more evenly distributed over all AN, MD samples. An extensive tabulation and analysis of

this data is available elsewhere.8 . The performance obtained is not the major concern at 0

present, rather the flexibility of digital analysis of Fourier-coefficients that are optically

produced in parallel is the major message to be conveyed. These featurcs are eausily

produced on the simplest coherent optical processor in parallel. Dimensionality

reduction of these features is employed to simplify the digital post-processing required.

Only simple vector inner product operations are needed in the post-processor, with

computation of the discriminant functions and transformation matrices required being

, performed off-line on training set data.

3.2. Chord-Histogram Distribution Feature-Space

The chords of an object boundary define the object's shape and are useful image 0

features. 9' 10 Each chord is described by two parameters (its length r and angle 0). The

distribution h(r,0) of all chords thus defines the shape of the boundary. Denoting a

boundary point on an object by b(x,y) = 1, then

g(x,y,r,O) = b(x,y)b(x+rcosV,y+ruinO) = 1 (1)

defines a chord. The chord distribution is simply the integral

h(r,0)-= / g(x,y,r,0)dxdy. (2)

Substituting (C,q) = (rcos9,rsinO) into (2), the chord distribution is seen to be the
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autocorrelation of the object's boundary. Optical systems easily perform the

autocorrelation function on Figure 1 or in a joint transform correlator or from the FT of
the magnitude of a FT. Since optical systems perform a correlation on the full grey-scale

image rather than on just the object's boundary, a generalized chord distribution

function can be obtained optically."1 We WRD-sample this optical autocorrelation plane
to simultaneously obtain the h(r) and h(0) chord distributions and a reduced -

dimensionality feature space. These distributions provide invariance to object rotations

and scale-s respectively.

The hybrid optical/digital system block diagram shown in Figure 4 uses the chord

distributions optically generated in paralel together with a vector inner product of the

observed feature vector and a Fisher discriminant vector w for feature extraction. 1

Comparison of the vector projection value to a threshold determined from the training

set data determines the class of the input object. As before, the post-processor must

perform only a vector inner product since calculation of the Fisher discriminant vector is

performed off-line on training set data. The major multi-class databases on which most

of the results noted were obtained consists of five different ship classes from a oe'

depression angle with 36 images per class (at 100 aspect intervals). Extensive data 1

(summarized in Table 1) was obtained with the system of Figure 4.

*

INPUT UTOCORRELATIO FEATURE EXTRACTION
OBJECT (FISHNR)

AND CLASSIFICATION

FIGURE 4 Block diagram of a Lybrid optical/digital generalized
chord histogram feature-space pattern recognition system

To compute the Fisher discriminant vector w with a reduced number of training set

*L
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Table 1: Test results obtained with a generalized chord feature space on the
72 images in the first 2 ship image classes

TEST NUMBER OF TR SET NUMBER PERCENT
TR SET IMAGES SELECTION OF CORRECT

NUMBER USED PER CLASS REMARKS ERRORS CLASSIFICATION

IMAGE
- 1 18 EVERY 0 100%

200

IMAGE
2 12 EVERY 200 8 88.9

(±500
4- (BROADSIDE)

IMAGE
3 12 EVERY 0 100%

300

images, we selected the 18 dominant WRD features and used 12-18 different training set

images per class (tests 1-3 in Table 1). The results shown indicate that perfect class

pcrrormance of all 72 images in the two ship classes tested can be obtained with as few

as 12 training set images per class. Such excellent and correct recognition and

classification of multiple object classes in the face of 3-D out-of-plane aspect distortions

II U are typical of the performance that is possible with parallel optical feature extractors.

3.3. Moment Feature-Space

The geometrical intensity moments of an object f(x,y) are defined by

mpq = f(x,y)xydxdy. (3)

These features are used in nearly all computer vision systelns. 13 The moment feature

vector m can be computed optically in parallel on the system of Figure 5.

".3
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Input P Mask
f (xy) g(x.y) Mn

1 A
1V 0 1V -1I-:O

P, Imaging P,

Optics Lens

FIGURE 5 Schematic diagram of an optical moment-based feature
generation system

With different monomial masks g(x,y) - y present on different spatial frequency

carriers at P21 the P3 output pattern

f(x,y)g(x,y)dxdy (4)

corresponds to the moments of the P, input f(x,y), each located at a spatially-different

position in P3. The parallel moment computer of Figure 5 is attractive because the

computed moments can be corrected for various optical system errors in a simple matrix-

vector post-processor.12 The architecture of Figure 4 can be fabricated in a small size
system occupying 330in3 or much less volume if needed.

The parallel set of observed moment features i optically-computed in parallel are fed

to the two-class classifier of Figure 6.

- ..
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INPUT HOKENT jpq FiSHER _ETM E7
IM GE--- COMPUTERJ--, --- ' SSIFIER ERLNCE

ASPECT M mPq

- ESTIMATOR

LMS CLASS/ASPECT/
CLASS (W) DISTORTION PARAMETER

ORIENTATION (b) ESTIMATOR

CONFIDENCE

FIGURE 6 Full hybrid optical/digital moment feature-space
two-level classifier pattern recognition system

In the first-level classifier, 14'15 the central moment ratio P20/P 0 2 is used to estimate the

aspect ratio of the input object and a hierarchical node tree is used to provide class 0

estimates. The node selection is automated from scatter plots onto a multi-dimensional

Fisher space obtained from the ppq for the training set data. The branch selection is

automatically determined from similar two-class Fisher projections. This first-level
classifier reduces the number of aspect view classes that the second-level classifier must

handle. It also allows the jointly Gaussian random variable nature of m features with

respect to sampling to be employed in a Bayesian classifier. The discriminant function

calculated in the second-level classifier for each aspect view class i is

( -- [-"m.(b-)JTll m i()l, (5)

where L is the covariance matrix for class i, M is the observed moment vector and m.(D

denotes the reference moment vector for class i with distortions described by the

distortion vector b - (x0,y0,a,b,RO), where (x0 ,y0) are translations of the input object,

* S
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(a,b) are its horizontal and vertical scale changes, R is its range and 0 is its in-plane

rotation angle. For each aspect view class, (5) is evaluated for an initial bO estimate

obtained from the m , and a new bk estimate at iteration k is calculated from the

nonlinear estimator

bk+ l 1 bk + [(Jk)T_."JkjTjTEi[- A .(bk)]. (6) -

Eq.(5) is then evaluated for this new bk estimate and the process is continued. The
aspect class i and the distortions b that yield the lowest gi(;J) define the object class,

aspect and distortion parameter estimates. The gi(fij value is a measure of the

confidence of our estimate.

Excellent performance (over 00% correct class recognition has been obtained with this

paraIlcl algorithm and architecture for our 180 image ship database15 and for a 32 image

five-class pipe-part robotic database 14 and on non-controlled real infrared imagery. 20 In

each case, 3-D aspect distortions of all aspects over all 3X°were used. The algorithm in

(5) and (6) requires 6500 operations per iteration and in general requires only six

iterations. Thus, the full architecture of Figure 6 is quite parallel, efficient, automated,

has a sound theoretical basis and has demonstrated excellent initial performance results.

4. DISTORTION-INVARIANT OPTICAL CORPELATORS

The optical correlator of Figure 1 has the multi-object, processing gain and

performance and noise features noted earlier. To form a MSF at P2 of Figure 1 that

yields a distortion-invariant correlation, we employ a training set of images {f.} of

different distorted versions of the object f in one class. We form the correlation matrix

Ri for this data set and restrict the filter function h(x,y) to be a linear combination of

the training set data

E

I



- . - - .-.

The MSFs with dLstortion-invariant features that we discus3 herein are referred to as

synthetic discriminant functions (SDFs). Five different types of SDFs have been

defined. 18 We now ermphasize the aMgorithms to produce theze SDFs and briefly dLscuss

their performance. The SDF synthesis algorithm is computed off-line on training set

data. Once synthesized, the SDF can be used on-line in the parallel correlator of Figure 0

I with no additional computational overhead.

To produce a filter function h such that its correlation with all {fa} is a constant value
i

of unity, i.e.

h=1, (8)
0

the filter in (7) is defined by

* 0

0 I

where u is the unit vector. This is referred to as an equal correlation peak (ECP) SDF.

It is useful for intra-class pattern recognition. To achieve inter-class discrimination with

one object per class, we desire N filters h for an N-class problem such that
S

f =j 6 . (10)

0

These mutual orthogonal function (MOF) SDFs are defied by

P = R21 (I) 0
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where R2 is the full correlation matrix of the N object cla3ses, a denotes the selection of

coefficients for filter i, and u contains all zeroes with a single 1 in location i. The

extension to intra-class MOF SDFs hi(x,y) follows directly. The filter function is now a

sum over a!l N N training set images (N1 irages per class and N object classes). The

coefficients of the filter h. are

a-R -,(12)pg3

%Lere R is the full N1N x N N correlation matrix and u. contains all zeroes except for-J

N, ones in the locations corresponding to the class j training set images.
IP

Another SDF that achieves inter-class discrimination and intra-class recognition is the

multi-level nonredundant filter (NRF) SDF. In this filter, the correlation output is

allowed to assume different levels,

f h n, (13)

where the value n of the correlation output determines the output class n. Synthesis of

the simple SDF to satisfy (13) is defined by

a = -u (14)-- 4

where . [1,..., 1,2 ,..., 2,...jT. To retain binary valued outputs, we can employ a K-

tuple NRF SDF. For M-object classes, we require K filters, where 2 K > M. For the

four-class case, K = 2 and the two SDFs h1 and h2 are defined by the truth table

1 21
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INPUT CLASS OUTPUTS FOR EACH FILTER

M I  2  0

1 0 0
2 0 1
3 0 (4 1 1 0.

Each filter is defined as a line..r combination of all training set images as
0

h1:1 =LEanf' h2 =Ebaf. (16)

The solution for the filters is given by the solution of

L1(17)

where Luf 1_2] is the full vector extension of the right-hand side of (15).

The synthesis of all five types of SDFs described above is quite similar and other

variants are obvious. Many test results have been obtained with these parallel

algorithms and architectures on our ship image database i7 '18 and on other military

object. 1 Excellent results have been obtained (over 00% correct object classification,

even in the presence of noise and real-world clutter) in all cases. This represents the

most attractive and promising technique for utilization of the full potential and parallel

processing possible with coherent optical pattern recognition architectures. It is a

practical and efficient processor and it achieves very high effective computation and

image frame rates.

* ' 0

0
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5. OPTICAL LINEAR ALGEBRA SYSTOLIC PROCESSORS

The optical processors described thusfar are quite powerful and appropriate for the

parallel realization of various pattern recognition a!gorithms. The most intense topic in

optical cow.puting research at present is optical linear algebra processors.21 These

architectures provide the basic framework for a general-purpose optical processor

capable of matrix-vector operations. This concept in parallel optical proceszing is the

equivalent of th _ digital array processor in which arrays of data (matrices) are operated

on in parallel.

The optical system of Figure 7 is one example of such a processor. In this system an

array of input poiat modulators is imaged through separate regions of an acousto-optic

(AO) cell. With the input data representing a vector and the contents of the AO cell

being a matrix (N vectors each on a separate temporal input carrier), the light leaving

the AO cell is the product of the input vector and matrix. The output lens orms the

sum of each vector product by spatial integration and the matrix-vector product

appears on the linear detector array in parallel.

Variuus realizations of this processor are detailed elsewhere? 2  By frequency, time

and space-multiplexing, format control of the inputs to the system can be used to achieve

all of the fundamental operations in linear algebra. This flexible and general-purpose

processor can achieve in excess of 10 GOPs per second. Alternate architectures (with

multi-channel AO cells) allow digital accuracy (32 bit) processing to be achieved with

this processor at comparable data rates.
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FOURIER-TRANSFORM FEATURE-SPACE STUDIES

David Casasent and Vinod Sharma

Carnegie-Mellon University
Department of Electrical and Computer Engineering

Pittsburgh, Pennsylvania 15213

ABSTRACT

A hierarchial multi-level feature-space pattern recognition system is described. Multi-
class distortion-invariant object identification is the purpose of this study. Attention is
given to dimensionality reduction (to simplify computations) and to the use of non-unitary
transformations (to achieve discrimination). A Fourier transform feature space is used.
However, our basic hierarchial concepts, our theoretical analysis, and our general conclu-
sions are applicable to other feature spaces. The use of intensity versus phase features is
studied and the performance of our system in the presence of noise is studied. Quantitative
experimental data on 2 two-class pattern recognition databases are provided.

1. INTRODUCTION

Distortion-invariant multi-class pattern recognition is considered using a feature space.
Feature extraction, dimensionality reduction, discrimination and classification are a&hies3&I.
A simplified block diagram of our hierarchial pattern recognition system is shown in Figure
1. We begin with a Fourier transform feature space, since such a representation is well-
known 11] to allow significant data compression. We extract the amplitude, phase or both
from the Fourier transform plane. As the first dimensionality reduction technique, we wedge
ring detector (WRD) sample the Fourier transform plane data [2]. This reduces the dimen-
sionality of the feature space to 64. Next, we compute the dominant eigenvectors of the WRD-
sampled autocorrelation matrix. This reduced subspace is calculated using a Karhunen-Loeve
(K-L) transformation [3] or implemented by new efficient techniques [4] for computing the
dominant eigenvectors and eigenvalues of a large matrix. This completes the dimensionality •
reduction steps in our system. To provide discrimination, we employ two non-unitary trans-
formation: the Fukunaga-Koontz (F-K) [5] and the Foley-Sammon (F-S) [6]. Our classifier
selects the best subspace (based on the probability of error) from the K-L, F-K and F-S
feature vectors.

INPUT FOURIER MAGNITUDE, DOMINANTIMAGE TRANSFORM O BOTH ENVER|OR BOTH
5UBSPACE

' EATRE

FK EXTRACTION -4__________

F-S SUBSPACE

FIGURE 1. General Fourier Transform (etc.) Feature-Extraction
Pattern Recognition System Block Diagram.

In Section 2, we review and highlight our two levels of eimensionality reduction and we
discuss how we achieve distortion-invariance. Our two discrimination algorithms are
detailed in Section 3. Brief theoretical remarks on the use of Fourier transform plane in-.
tensity or amplitude features and on the noise performance of a feature extractor are
then advanced in Section 4. The databasp used and our five image tests on dominant eigen-
image feature vectors are summarized in Section 5. Our more extensive 25 image per class
database tests are presented in Section 6. These results include a comparison of the per-
formance of our system for five different discrimination vectors, comparison of the perform-
ance of amplitude and phase Fourier transform features, and a comparison of the classifiers
and feature extractors in the presence of noise.

2
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2. DIMENSIONALITY REDUCTION AND DISTORTION-INVARIANCE

If the input image or object is 256 x 256 pixels, its dimensionality is n - 2562. The
Fourier transform plane for such an object still has a dimensionality of n. This is cuite
prohibitive for subsequent feature-extraction, matrix transformations, or other similar
operations. Thus, we consider dimensionality reduction techniques.

As the first level of dimensionality reduction, we sample the Fourier transform plane with
a WRD. If an optical system is used to produce the Fcurier transform, a commercial WRD de-
tector exists (2). This units consists of 32 wedge-shaped detector elements in one-half of
a circular detector and 32 annular-shaped detector elements in the other half of the detector
plane. This device thus provides 64 WRD outputs. One can also digitally model such a de-
vice, of course. The ring detector elements provide rotation-invariance, whereas the wedge
detector elements provide scale-invariance (if the values of the wedge-ring detector element
readings are properly normalized for object energy). This WRD-sampling, plus the training of
our system on different distorted images provides distortion-invariance to our algorithm.
The WRD-sampling also provides a dimensionality reduction from n to 64, i.e. the Fourier
tranpform plane feature vectors {xi"= { and {yi")=l are converted to WRD feature vectors
{xi)1 1 and (yj 1 =

As the second level of dimensionality reduction, we apply a K-L transformation [3] to the
autocorrelation matrix formed from the WRD feature vectors for each separate object class.
The autocorrelation matrix is formed from the 64 element xi' vectors for each of the training
set images x in class one and a second matrix is formed from the corresponding y1' vectors of
images in class two. The eigenvalues and eigenvectors of each matrix are calculated and
tabulated. We retain the dominant nx and ny eigenimages per class. In general, nx-ny=1,2,3.
In our experiments, we retained only the dominant eigenimage for each class.

To use these dominant eigenimages for pattern recognition and classification, we would
compute zi' (i=1... 64) for an unknown input z, project it onto the dominant eigenimages or
eigenvectors KL-l and KL-2 (for class one and two respectively), and select the class of the
unknown input based upon which projection value is larger. In practice, we calculate the
dominant eigenvectors using newer and more efficient algorithms [41.

3. NON-UNITARY TRANSFORMATIONS

The K-L or dominant eigenvector transformation (Section 2) represents a considerable com-
pression of data and simplifies feature extraction and classifier decisions. The dominant
eigenvectors represent each class well in the optimally compressed manner, however there is
no assurance that those features which represent each class well will be optimal for dis-
criminating one class from another. Thus, dominant eigenimages are useful for intra-class
pattern recognition, but not necessarily for inter-class discrimination. In a hyperspace
feature vector and discriminant vector description, unitary transformations do not change
the distances of points or vectors in hyperspace. To achieve discrimination or inter-class
pattern recognition, non-unitary transformations represent an attractive approach. These
transformations can increase interclass distances and hence provide improved discrimination.
We pursue this approach rather than employing more eigenvectors, since the latter approach
would only further increase the dimensionality and computational complexity of our proces--
sing.

F-K Transformation

The first non-unitary transformation we consider is the F-K transformation (5]. To
describe the steps in this algorithm, we first define P4 as the a'priori probability for
class i and Ri' as the autocorrelation matrix for class i. We form the autocorrelation
matrices R1 and R2 for each class, where Ri - PiRi', and we form the full autocorrelation
matrix R - Rl + R2 . We then determine the transformation matrix T that diagonalizes R, i.e.

TRTT T(R 1 + R2 )TT I. ()

By this transformation, we have orthogonally decomposed the full R1+R2 . Next, we apply
T to Rl and R2 , i.e., we form new matrices for each class given by TRlTT and TR2TT.

S
These new correlation matrices have two attractive features:

(a) The eigenvectors pi(l) and ;q(2 ) of TRITT and TR2TT are equal

(b) The eigenvalues Ai(1)andi (2) associated with q,i(1) and qi(2 ) are related by
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From (2), we see that the dominant eigenvectors of the transformed class one matrix are the
least-dominant eigenvectors for the transformed class two matrix. Thus, those eigenvectors
which represent class one the least represent class two the best (in the new F-K transformed
feature space). From (2), these operations have,11parated the data in the two classes.
Thus, we will select two *i with the largest I i(L; - 0.51 values. We will denote these
two eigenvectors qi (as defined above) of the transformed autocorrelation matrices by
FK-l and FK-2. To use these new discriminant vectors to determine the class of an unknown 0

* - input image z, we transform z to a new Tz = z'. This transforms the data input to the new
FK space. We then project zT onto an FK discriminant vector i and calculate 4Tijz- d. if
d ' our threshold, we select class one or class two for the class of the input object. We
normalize the FK eigenvectors and refer to the projections onto the FK directions I and 2
(corresponding to FK-l and FK-2). We note that FK-l and FK-2 do not refer to discriminant
vectors for classes one and two, rather they refer to the two most dominant eigenvectors of
the transformed full autocorrelation matrix of both classes.

Foley-Sammon Transformation

In the F-S nonunitary transformation (6], we find a linear discriminant vector w that is
a linear combination of the xi and Yi vectors in our two-class training set. The vector w
is selected to maximize the Fisher ratio (7]:

F (Dif of Means of Projections)
2

--~ Sum of Scatter of Projections

2 wTSw~Iml-in 2  -TsB-

s 2 s 2(3)
1 27T;

where SB is the between-class scatter matrix and SW is the within-class scatter matrix [7].
The solution for w that maximizes (3) is

- S I I -m2),(4)

where m i and m are the vector means of the two classes. To use w for an unknown input z,
we form wTz =9- and compare the projection value to the threshold-T

T - (mI +m 2 )/2. (5)

If d < T, we select class one or class two for the class of the unknown input image repre-
sentea by the vector z.

4. INTENSITY OR PHASE FOURIER TRANSFORM FEATURES

One particular aspect of our Fourier transform feature-space study is to determine if the
intensity or the phase of the Fourier transform features provides better performance. As
the basic theoretical justification for the performance and use of our algorithm, we repre-
sent the intensity or phase of the wedge ring detected Fourier transform output for an image
as a random process. We have extensively investigated the theoretical basis for this and
the conditions to be satisfied for the resultant {xi) and {yi) features to be validly repre-
sented as random vectors. We have shown that the Fourier transform of an analoa or discrete
image can be represented by a random process {x(t)) if: {x(t)} is separable, has finite
expected value, is continuous in the mean and in probability. Under these conditions, the
resultant analog or digital Fourier transform is an n-dimensional random vector. We have
also shown that the Fourier transform intensity and phase are continuous and yield real
random vectors. Finally, the WRD-sampled intensity and phase Fourier transform features are
found to be random variables (since the sum of random variables is a random variable).

Considerable work [8,9] exists on the representation of image data by the intensity or
phase of the Fourier transform. In general, the conditions under which the Fourier trans-
form phase features are adequate is less restrictive than the conditions for which the
Fourier transform magnitude features are adequate. If the zeroes of the z-transform of a
sequence occuring in reciprocal pairs lie on the unit circle, the phase of the FT is ade-
quate. The intensity of the FT is adequate if the z-transform does not contain reciprocal
pole-zero pairs, poles outside the unit circle, or zeroes inside the unit circle.

4
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5. DATABASES AND INITIAL RESULTS

The four image databases used are summarized in Table 1. They include scaled and rotated
images of the letters A and B and of hand-drawn tanks and trucks. For each of these two ob-
ject classes, we used a set of five images per class and a set of 25 images per class. Vari-
ous scaled and rotated views were included in each of these image sets. The specific dis-
torted object views included in each case are detailed in Table 1.

TABLE 1. Summary of Experimental Image Databases Used

TEST FIVE-IMAGE DATA BASE 25-IRAGE DATA BASE
SETS SCALES ROTATIONS SCALES ROTATIONS 1

0,10°  0.8.0.9,1.0. ±10°,±50.0"
-and 0.9.1.0,1.1 (for 0.9,1.1 scales) 1.1,1.2 (for each scale)

Hand-Drawn 00,10. D.80.9,1.0. ±10,±50,0
Tank/Truck (.9*1.O,1.1 (for 0.9,1.1 scales) 1.1,1.2 (for each scale)

In Table 2, we list all of the eigenvalues for the dominant eigenvectors for the five-
image database for all four object types and for both intensity and phase Fourier transform
features. As seen, the dominant eigenvectors for intensity FT features is approximately 70
times the second dominant eigenvector. Using phase FT features, the dominant eigenvector is
considerably less dominant (in general). The eigenvalue for the dominant eigenvector for A
obtained from FT phase data is exceptionally low (0.67). From the low (0.67) eigenvalue
associated with the dominant eigenvector for Fourier transform phase features for the letter
A, we expect low projection values and hence more errors in our pattern recognition of let-
ters using phase features. In general, the dominance of the eigenimage in this data can be
attributed to the fact that the image database consists of scaled and rotated (in-plane ro-
tation) images rather than different aspect views of each object. In such distorted images,
there is no appreciable new information present in each object representation in our data-
bases investigated.

TABLE 2. Eigenvalues (e-v) of WRD Fourier Transform
Eigenvectors (Five-Image Databases).

WRD TRUCK TANA B

FEATURES INT PHASE INT PHASE INT PHASE INT PHASE

e-v 1 0.983 0.992 0.983 0.886 0.99 0.67 0.99 0.95

e-v 2 0.17x10l  0.78x0 "2  0.166xi0 "I  0.983x10 "  0.71xlO "2  0.24 0.13x10-  0.43xi0 "

e-v 3 0.82x0 4  0.28x10-3  0.21x10 3  0.117x10 I  0.84xl0 4  0.72xI0 1  0.49x10 3  0.186xI02

e-v 4 O.81x10 5  0.115x10 3  0.64x1O" 4  0.236x10 2  O.47xlO 4  0.11x10 1  0.28l0 4  O.77xlO 3

e-v 5 0.49x10 "  O.llXO 4 .llxlO 5  0.138x10 2  0.65x10 5  O.38x10 2  0.17xl0 4  0.70xl0 4

The projections of all five images per class on the dominant eigenimage for each class
were tabulated. Our results show that the projections of all images in one class on the
dominant eigenimage for that class were larger than the projections on the dominant eigen-
image of the other class. However, the differences (for intensity FT features) were quite
small (e.g. 0.99 versus 0.96). The projections on the second dominant eigenimages (for in-
tensity FT features) gave lower projection values than those on the dominant eigenvector.
In many cases, larger projections were obtained for the wrong images. Thus, for intensity
FT features, the second dominant eigenvector should not be included. These results support
our earlier observation that the eigenvectors generally provide intra-class recognition
rather than inter-class discrimination. A comparison was also made of the dominant eigen-
images obtained from the intensity-only and phase-only WRD Fourier transform features. The
phase features provided larger differences of the projections onto the dominant eigenimages
of each class (on the average) for the five-image tank versus truck images. However, for the
five-image letter (A and B) database, phase features gave many errors. This was expected and is at-
tributed to the small eigemvalue associated with the dcuminant eigenvector for A. Had we retained two dominant
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eigenvectors, better phase feature performance for the case of letters coule be expected.

6. INITIAL EXPERIMENTAL RESULTS

6.1 Non-Unitary Transformations

All of the results included in this section were obtained on our more extensive database
of 25 object images per class. In Figure 2, we show the scatter plots for the projections
of all tank and truck images onto the dominant eigenimages for tanks and for trucks respec-
tively. As seen, all images can be separated and correctly classified from either projec-
tion alone. However, all projection values (even those on the dominant eigenimage of the
other class) are quite large (all projection values are above 0.95). Only five points (X)
are shown for the 25 training images corresponding to different scaled and rotated truck
images. All five rotated images for each scale factor a yielded identical projection values.
This verifies the good rotation - invariance of our WRD features and our training set used.
The variation in the projection values due to scale differences can be attributed to the
normalization technique used (each eigenimage was normalized only within one class) and to
the significantly larger number of pixels present in the tank object compared to the truck
object (800 versus 280 pixels).

In Figures 3 and 4, similar data are shown for the projections onto the two dominant FK
discriminant vectors (Figure 3) and onto the best FS vector (Figure 4). These data in Fig-
ures 2-4 were obtained from intensity-only WRD Fourier transform features. Note the sig-
nificantly different axes scales in Figures 2-4. To compare which feature extraction tech-
nique (dominant eigenvectors, FK vector, FS vector) yields the best performance, we computed
a separation measure

SEPARATION , DIFFERENCE OF MEANS OF PROJECTIONS PER CLASS (6)
MEASURE SUM OF STANDARD DEVIATIONS PER CLASS

for five different discriminant vectors for the tank/truck and A/B image sets. The results
(for intensity-only WRD Fourier transform features) are summarized in Table 3. As shown,
both dominant eigenimages (KL-l and KL-2) perform quite well (even though they only achieve
intra-class compression). This can be attributed to the a'priori existence of different
wedge and ring Fourier transform features for the two object classes and to the distortion-
invariance and-lack of information loss incurred by wedge ring detection sampling of the
Fourier transform plane. For the tank/truck images, the performance of both F-K features is
comparable, whereas the performance of the F-S vector is slightly better. For the case of
the letters A and B, the non-unitary transformations achieve considerable improvement (by

4 J approximately a factor of 2). Thus, in some cases, non-unitary transformations will improve
performance. The results are quite data dependent. These non-unitary transformations 0
do not degrade performance and in general improves performance. Thus, such feature-extrac-
tion techniques appear to be merited in all instances.

6.2 Noise Performance

To further test and compare our different feature-extraction approaches, we added noise
to the image data, recalculated the projections and the associated separation measures. The

* results are summarized in Table 4 for our 25 feature vectors, for five different amounts
- of noise and for both databases. For the tank and truck image data, very little difference

occurs as the noise level is varied. This can be attributed to the fact that only several
wedge and ring elements dominate the feature vectors. Since the noise is evenly distributed
over all wedge and ring feature elements, its effect on the dominant feature elements is
reduced and noise has less of an effect. For the case of letter recognition and classifica-
tion, the separation measure decreases as the noise level is increased. This is the general
trend we would expect. The amount of decrease is generally the same for all five discrimi-
nation vectors. The difference in the case of letters and tanks/trucks can be attributed to
the fact that letters have more structure and hence Fourier transform plane information is
more uniformly distributed over all of the wedge and ring sampling elements. Hence, the i
effects of noise is more fully transferred to such a feature-space. It should be noted that
in all cases, good performance was obtained.

6.3 WRD Fourier Transform Phase versus Intensity Features

Similar tests were performed for the case of phase-only WRD Fourier transform features.
For the tank/truck data, the separation measure for phase features was found to be better
(by 10-651) than for intensity features. For the A and B letter images, the phase features
sometimes provided better separation measures, but in general gave worse results. This can -*
be attributed to the small 0.66 eigenvalue of the dominant phase eigenvector for the letter
A. Tests were also performed using combined intensity and phase features. For the tank/
truck images, 10-90% better separation measures were obtained with phase features. For the S
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FIGURE 2. Intensity-Only WFO Fourier Transform Features FIGURE 3. Intensity-Only WRD Fourier Transform
Projected onto Dominant Tank/Truck Eigenimages (for 25 Feature Projections for Tank/Truck Images onto F<
Image Database). #,=Dominant Truck Eigenimage; 02= Vectors (25 Images/Class).
Dominant Tank Eigenrnage; *-Tank Images; Xruck Images. _.

FK 2

* ,,=0.8 +0.4

1 .0 *,. * * , * . , , , , * e= 0 .9 .+ 0 .2

L= I .0 +0.2+0.4

0.98-as O I X-0. 2
a . 0 ,,* .a l
,.0,9 =Trc *a=1.2 -0.4

~0~9 =Truck

0.96- -0 Projections
Tank ... -0.6

Projections

0.94".
".-0.8

-1.0

I I I I I
0.96 0.98 1.0

TABLE 3. Separation Measures for Different Intensity
Feature-Extraction Techniques.

I ' N T' TUCK
FIGURE 4. Projections of 25 Image/Class Tank/Truck PRO IA AND B
Data on Best Foley-Sanmon Vector. VECTOR AND TANK

DOMINANT
CLASS 1 4.13 7.09

• ".......... X X)(EIGENIMAGE

DOMINANT

* = TANK CLASS 2 2.89 5.98
I= TRUCK EIGENIMAGE _ "

FK-1 3 *.91 12.1

S" : * : FK- 3.88 12.1

0.62 0.64 0.66 0.68 F.[4.50 11.9F-S .0 1.

TABLE 4. Noise Perfonmance of Intensity WRD Fourier Transform Features for Dif-

ferent Feature Extraction Techniques (Separation Measure Tabulated).

4 IMAGES _, TRUCK AND TANK A AND BSTANDARD

DEVIATION 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
OF NOISE II

DI SCRIMINN ::::
V E C T O R -- ----------. . --. ----. --. -.- . ... ... ... ...

4 KL (CLASS 1) 4.2 4.3 4.3 4.3 4.1 8.5 9.3 7.7 4.6 2.7

KL (CLASS 2) 2.9 2.9 2.9 2.9 2.8 6.9 6.6 5.0 3.3 2.4

FK-1 3.9 3.9 3.9 3.9 3.85 13.5 16.4 12.3 6.2 3.8

FK-2 3.9 3.9 3.9 3.9 3.8 13.5 16.4 12.3 6.2 3.7

F-S 4.6 4.7 4.7 4.7 4.7 13.3 17.0 13.9 6.7 4.0

* 7



letters A and B, the separation measure was never significantly better and often was sig-
nificantly worse than when intensity-only features were used.

The performance of phase features with noise were also tested. For the tank/truck images,
the separation measure decreased as the noise increased (by a factor of 0.3 to 10.0). This S
was quite significant and worse than the intensity feature results which showed negligible
variation with noise. Similarly large reductions in the separation measure (by factors of
0.3 to 10.0) were obtained for the case of the letters A and B as the noise was increased.
These losses were much larger than for the intensity features.

The conclusions reached from this limited testing are that phase features provide better
separability. Better performance can be expected for the case of letters if the second dom-

WA inant eigenvector is included. The noise performance of phase features appears to be worse.
This can be attributed to the more uniform distribution of Fourier transform phase over all
of the WRD features (compared to the concentration of the intensity features in fewer WRD
elements).

8. SUMMARY AND CONCLUSIONS

In this paper, we have addressed a hierarchial multi-level general feature-space pattern
recognition system for multi-class distortion-invariant object recognition. Attention was
given to dimensionality reduction and its importance and success were demonstrated. The
Fourier transform plane was found to allow significant dimensionality reduction. Wedge ring
detector Fourier transform sampling and Karhunen-Loeve (KL) or dominant eigenvector calcula-
tions were found to allow considerable reduction and compression with little information
loss. To provide discrimination, non-unitary transformations were used and found to either
improve discrimination (or to provide negligible loss in performance). The Fukunaga-Koontz
(FK) and Foley-Sammon (FS) non-unitary transformations were considered. Both perform com-
parably, with the FS technique being somewhat better.

Quantitative experimental data and excellent performance were obtained on various image
databases. The dominant eigenimage performed quite well if it was very dominant. When it
was not dominant, non-unitary transformations helped performance considerably. If several
of the feature elements are dominant, noise performance improves. This provides further
motivation for reducing the number of feature elements and for devising schemes in which
only several features are dominant. Our theoretical contributions on random vector modeling, S
noise performance and sample matrix calculations are quite general and useful in many other
feature-extraction problems. Our study of intensity and phase Fourier transform features
found phase features to be preferable, but that phase features generally perform poorer
in the performance of noise (since they are more uniformly distributed in Fourier transform
space).
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ABSTRACT results (Section 2.3). To utilize the JGRV property of
A hierarchical feature extraction pattern recogni- moments, a new classifier is required. This two-level

tion technique is described and experimental test data classifier is summarized in Section 3 and demonstrated S
Is presented. The multi-level system estimates the for a new database of pipe parts in Section 4.
class of the object and its aspect view in level one.
A nonlinear iterative least squares estimator comprises
the level two processor. A moment-based feature extrac- 2. MOMENT FEATURE SPACE
tor is used. The level one system allows the classi-
fier to use features that are jointly Gaussian random A moment feature space is most attractive for many
variables. Experimental results on a set of pipe reasons, several of which were noted in Section 1. In
images are presented, this section, we expand upon several of the less-

detailed properties of moments, especially those aspects
1. INTRODUCTION that apply to our new moment-based classifier.

Feature extraction is a major computationally ef- 2.1 Distortion Parameter Effects
ficient approach to pattern recognition. In this paper For our application, we consider b - (a,b,x0,y0,0)
we consider the use of a moment-based feature extractor where the elements of b contain the horizontal (a) and
for distortion-invariant object identification and vertical (b) scale of the object, its translation (xO,

4 ~ classification. Moments were selected as the feature yo) and in-plane rotation (e) with respect to a refer- 0
apace to be used because of four unique aspects that ence b

0 
vector. Computing mjt(b) from mi(b

0
) for differ-

these features exhibit: ent distortions described by b involves a simple matrix
multiplication. For intensity changes by a factor k,

(a) They can be computed in parallel [1).
(b) They allow easy correction after computation i - km . ()

for various system computational errors [2]. Pq pq
(c) They provide position, orientation and scale For scale changes,

information on the object [3].
(d) They are jointly-Gaussian random variables

(JGRVs) [41 and hence allow use of a Bayesian mpq -(/a) (1/bmpq (2)
classifier [5J and do not require a training
•set of imgery. For translations,

Our concern is to be able to recognize and classify P q
objects in multiple classes independent of geometrical m - I 0  q ( 0 0(x0 )a(y0 )mp-i . (3)
distortions due to the object's orientation and view pq i 0 (3)-•.-j
angle and to estimate the distortions. The former is
needed for object recognition and the latter for object For In-plane rotations I
control (i.e. by a robot). SM

In Section 2, we briefly review how the moment 
(q \ 0 0

vector !i(b) for an object in class i can be computed (sinS)q-J+qi (4)
for different object distortions, described by b, from "+q (ij.) •
a reference mi(b

u) 
vector (Section 2.1). We then re-

view (Section 2.2) the conditions under which moment For reflections about the y axis (x axis reflections
features are JGRVs and the simplified classifier that are similar),

" - i -: , + + ; + • + , "- - - .
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Thus, new moments are easily calculated from the nomi-

nal m moments for different distortions.ASET P
N ASEESTmAO IMAE DTRS

2.2 Moment Statistics
Finite spatial-sampling of the object causes vari-

ations in a. It is fairly straightforward to show that I
the statistics of these sampled moments are good esti- T -ECT/
mates of the true moments and that the moment features CLASS (1) DISTORTION PARAMETER
are JGRVs. The number of object pixels required to ORIEN ATION (b)< ESTIMATOR
satisfy the Gaussian pdf assumption Is much less than CONFIDENCE

the number of object pixels needed for recognition and
classification. Thus, a JGRV model for moment features FIGURE I Block diagram of our Two-Level Moment-

is quite valid. However, this is only true for those Based Classifier.
distortions b; specifically the moments are JGRVs with
respect to scale, translation and in-plane rotation 6.

but not for out-of-plane rotations 0. Thus, with re- 3.2 Iterative Second-Level Distortion-Parameter

spect to the distortions in b, the moments are JGRVs.
Similarly, one cannot devise-deterministic linear trans- Estimator

formations as in Section 2.1 for the variations in m The second-level classifier Is described first to

with *. Thus, for all of the above reasons, different provide added motivation for the first-level-classifier.
We desire to combine the ease with which Si(b) can beaspect views (*) of each object must be considered as

separate classes. We refer to these as view classes to calculated for new b vectors and the classifier in (6)

distinguish them from object classes (different objects to estimate b for the input object and to provide final
dstcinishlthemestimates of the object class and aspect view. The ba-

sic concept is to vary i and b to minimize i - -!_.(b),

2.3 JGRV Classifier where i is the measured moment vector of the input ob-
The conventional Bayesian classifier [6] that ject. The square error measure Ei - eiT_-li where z-

1

minimizes the probability of an incorrect view-class i is the weighting matrix used. To minimize Ei with re-

estimate can be used with conventional assumptions spect to b, an iterative algorithm is used since m(b)

(such as JGRV features) to obtain the discriminant Is a nonlinear function of b. The algorithm is of the

function general form

gi(b) 
+

(
1

ui)T 1 (6) b bk + akrk, (7)

where bk is the b estimate at iteration k and bk+
l 

is a
where Y and Ej - Z are the mean vector and covariance point In an r-dimensional space a distance ak 'n the
matrix for class i. In most cases, pi and ji must be direction rk from the present bk. We expand m(b) in a
estimated from training sets of imagery. When the Taylor series about the presen- bk point as

measured feature vector x is a moment vector m, only
one object view per class is needed to measure y_ and k k k

Ii. The class i that minimizes gi(x) is the best class mI(b) - m + J (b-b), (8)

estimate. The discriminant function in (6) is the
Mahalanobis distance. If L - I, (6) becomes a Euclidean where J is the Jacobian of Ri(b) with respect to b at
distance measure or nearest-neighbor classifier. This the k-th iteration. Substituting !I and (8) into Ei ,

assumes that all moments are independent and that the solving for the minimum b (by setting VEi(b) - 0), we

expected variations of all moments are equal. obtain

bk+l b k+ [(Jk)TZ-1Jk]-10k)T -mI(b)] (9)
3. NEW CLASSIFICATION ALGORITHM .. .[ . . (

3.1 Overview
To utilize the classifier in (6), each view-class Eq.(9) is the nonlinear iterative algorithm used in

must be treated as a separate class I. For 9 objects our second-level classifier to estimate b. For each i,

and 36 aspect views per object (10@ increments from a (9) is repeated and we calculate
fixed depression angle), there are i - 324 view-classes
to be searched. In Section 3.2, we describe our second- k k-i k

level classifier which solves (6) for the view-class i &g- . [g (ib) -g (i.b)/g (ib), (10)

and the distortion parameter vector b. Its parameters
are discussed in Section 3.3. To reduce the number of where gi(b) - Ei. The iterations k are continued until

0 view-classes i to be searched, a hierarchical first- Agi is less than a convergence threshold T. The algo-
level classifier is used in which estimates of the ob- rithm in (9) is the Gauss-Newton formulation, which de-

ject class (Section 3.4) and the aspect view (Section generates to the Newton algorithm with appropriate
3.5) of the object are obtained and passed to the sec- assumptions [7].
ond-level classifier where the final decision on the
view-class I and the distortion parameters b is made, 3.3 Second-Level Classifier Parameters
and the confidence of our estimates are provided. A The iterative algorithm in (9) and the second-level
block diagram of the classifier is provided in Figure classifier requires selection of various parameters.

* 1. These are summarized in Table I and discussed below.
The convergence threshold T determines when the itera-

tions k are stopped and how small (10) becomes. T- 10
.
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corresponds to a difference of 0.01% in (10). The con- hierarchical tree are determined. A new two-class
fidence value C is a measure of the confidence of our Fisher discriminant vector w is then computed that op-
estimates. It is obtained by measuring the distances timizes the Fisher ratio for these two object subsets.
dl and d2 between the input £ vector and the two closest The corresponding wTHj projections for the two class
!i(b) vectors and defined as C - 100[l-dl/d2 l, where subsets at a later node in the tree are shown in Figure
dl e d2. Calculation of J is simplified by evaluating 3. As seen from this data, the two object subsets
it for b with (xo,yO ) - (0,0) and (ab) - (1,I), i.e. (represented by the symbols 0 and 1) can easily be
assuming the presently calculated distortion is correct, separated. As seen, the simple linear w discriminant 0
This is equivalent to viewing each iteration as an up- defined by Fisher feature 1 for this node achieves this.
date of the prior bk rather than the initial bO esti- Thus, our class estimator proceeds by forming multiclass
mate. This greatly simplifies calculation of J and (9) Fisher projections of the available reference imagery
at each iteration. and from this selecting the subsets to be separated at

each node in the tree. A different multiclass case is

considered at each node and a different two-class
TABLE I Second-Level Classifier Parameters Fisher discriminant vector w is then calculated for use

at each node. These procedures are performed on avail-

SYMBOL PARAMETER REMARKS able reference imagery prior to classification and thus
need not be performed in real-time. During classifica-

Convergence tion, only the simple vector inner product T_ must be

T eThreshold Typically 0.1 calculated for each node n. A confidence C1 - 35 for

the object class estimator is used at each node. If
C2  Confidence Value C2 =100[1- dI/d 2] Cl < 35, both subsets at that node are passed. Cl is

similar to C2 but in Fisher space.
J J Calculation b-

I I Calculation I i or I W WT

b0 (a-bx0Y
_ ( 00 ,m0 0 ,- 10 / 00 ,-l/ 0 )

Calculation of I1 is quite difficult since the o T
exact Z matrix is quite ill-conditioned. The two VC
choices considered in our system are E - I and E

I - 0
W WT . The choice E - I weights all features equally NN PVC Elbow
and assumes independent features. In our first-level
classifier, we calculate a multiclass Fisher projection
matrix W. In a Fisher space, I-I W V K-WT, where K is 07

the covariance matrix of the Fisher features. With X -

1, our second Z-1 choice is obtained. The second E-1 Hose Tee
estimate contains some information about the object . 0
separation of the reference set. Initial estimates of _
the distortion parameters in b

0 
are obtained directly L-'

from the measured iipq as listed in Table 1. N-Hose

3.4 First-Level Classifier: Object Class Estimates ."_
To reduce the number of view-classes i for which -0.,4 -0.66 -b.08 -0.3 .

the second-level classifier of (9) and (10) and Table I F;.her Feature *10

must be used, object class estimates are obtained in FIGURE 2 Multiclass Node-0 Fisher Projection for the 0
the first-level classifier. This is achieved by a Database of 9 Pipe Parts.
hierarchical classifier. To provide invariance to the
distortions in b, the central moments ui (normalized
for translation and scale) for each mi are computed.
To select the best subsets at each node in the hier-
archical node tree, a miltclass Fisher projection ma-
trix W of size mx (c-I) is computed, where m is the
number of moments and c is the number of object clas-
ses. W is chosen to maximize the total between class -0 ,4 -b0'2 -b 0 .0 OR -0 0C 04
scatter to total within-class scatter (with respect to Fsher Feature I .10'
the overall sample man). The u normalized central
moments are then transformed into this multidimensional
Fisher space as new transformed feature vectors x -

WTu. In practice, the u are projected onto only the
two dominant Fisher feature vectors. FIGURE 3 Two-Class Vector Inner Product !TMi Fisher

Projection at Node-2 for the Database of 9
An example of such a multiclass projection for 9 Pipe Parts.

objects (Section 4) is shown in Figure 2. In this

classifier, all aspect views of each object (36 for
the case shown) are viewed as different versions of
each object to be clustered and separated from aspect
views of the other objects. The various data points
In each cluster correspond to scatter due to 36 aspect S
views per object class. From this multiclass Fisher
projection, the object subsets (these may be multiple
classes) that are best separated at node 0 in our

3

* 0
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(a) Hose Tee (Class 0) (b) PVC Tee (Class 1) (c) PVC Elbow (Class 2) (d) Hose Elbow (Class 3)
I

FIGURE 4 Representative Images of Objects in the Four Main Classes.

TABLE 2

Effect of First-Level Classifier

(9 Aspect References Every 40' Used, Tested Against all 324 Images)

AVERAGE NUMBER PERCENT

TEST CONDITIONS ON OF VIEW CLASSES CORRECT
NUMBER FIRST-LEVEL CLASSIFIER PASSED TO

SECOND-LEVEL

1 FIRST-LEVEL ENABLED 10.3 97.5

2 ASPECT-RATIO ESTIMATOR 23.8 97.5
NOT USED

3 OBJECT-CLASS ESTIMATOR 347 72.2
NOT USED

4 FIRST-LEVEL DISABLED 81.0 71.0

TABLE 3
Effect of Convergence Threshold on Number of Iterations Required

TEST ITERATION UPDATE CONVERGENCE PERCENT AVERAGE

NUMBER INCREASED LINEARLY THRESHOLD CORRECT NUMBER OF
OVER N ITERATIONS RANGE OUT OF 324 ITERATIONS

5 N - 25 T = 10- 4  1 10- 1 98.2 17 - 13

6 N - 5 T = 10 - 4 
- 10 - 1 98.2 6.3 - 5.7

7 N - 25 T - 0.5 - 1.0 98.2 2

TABLE 4
Effect of Covariance Matrix Estimate Used

TEST COVARIANCE PERCENT
NUMBER ESTIMATE CORRECT

8 4 Fisher Vectors 93.9

9 2 Fisher Vectors 92.8

10 Identity 90.0

4



3.5 First-Level Classifier: Aspect Estimates 4.3 Experimental Results
Once the object classes (that are sufficiently Our extensive simulation tests are summarized in

acceptable to be checked further in the second-level Tables 2-4. The nominal values used for the various

classifier) have been selected, those aspect views of classifier parameters were: convergence threshold T =

each such object class (that should be included in the 1O
-4
, confidence threshold C2 - 0 (this forces a deci-

view classes i in the second-level classifier) are es- sion to be made for each input), covariance matrix Z - O

timated from ^q The use of moment features provides I, C1 = 35, TA- 1.5. The reference set contains 9 aspects
a quite conven ent method. Specifically, we estimate per class at 40. intervals. Unless otherwise noted,

the aspect ratio.(ratio of its length to heigh ) of the these conditions are used in each test. In Table 2,

input object as A - u20/u02- where u20 - m20-m!O/mOO the overall performance obtained with and without the

and u02 - m02 -m 1 /m0O. The aspect ratios A for all first-level classifier used is shown. As seen, over
reference objects in the estimated object class(es) are 97% correct object classification can be obtained (tests

calculated and K - A/A is formed. The aspect view with I and 2). If the aspect ratio estimator in the first-
K closest to one and all aspect views within a factor level classifier is not used (test 2), no performance

OF TA - 1.5 (the aspect threshold) of this are passed as a change results, however about 2.4 times more view clas-
member of the view class i to be further processed by sea i must be checked in the second-level classifier.
the second-level classifier. The value A can also be If the object-class estimator is not used (test 3), the
used to omit object class estimates (from Section 3.4) number of view classes I to be checked in the second-
with no aspect ratio in the proper range. If a lower level classifier is 3.5 times larger and performance is

TA value (closer to 1.0) is used, the number of aspect 25% poorer. Without the first-level classifier (test
views per object class passed to the second-level 4), performance is comparable to test 3 but all 81 view

classifier can be restricted to 1 or 2 with excellent classes (9 reference aspects for each of 9 objects) •
final classification performance. must be searched. Thus, the first-level classifier both

improves performance and reduces the number of computa-
4. DATABASE RESULTS tions needed. The object-class estimator controls per-

formance and both the aspect and object-class estimators

4.1 Database reduce computations.
The new database used consisted of four different

classes of pipe parts (Figure 4). Two different types In separate tests, various reference image sets

of hose tees, four different types of PVC tees and two with different numbers of aspect views (i.e. only four S

different types of PVC elbows were included (9 differ- aspect views in one quadrant per object class) were

ent pipe objects in four classes). 512 x 512 pixel used and achieved comparable results. In Table 3, the
digitized images of each of the 9 objects were obtained number of iterations required in the second-level clas-

from a 500 depression angle at 10* aspect view incre- sifier is quantified and the effect of varying the con-

ments (36 aspect views per object). These 324 images vergence thres ld T is investigated. As seen, varying

were reduced to 128 x 128 pixels and binarized. T has negligible effect on the percent of the images

correctly identified. Smaller T values result in fewer
* 4.2 Hierarchical Node Tree Iterations required. However, we suspect that better b

The multiclass Fisher projections in Figure 2 estimates will result if more iterations are used. In-

show the scatter of the different pipe parts. From Table 4, the effect of various covariance matrix

such plots, the subsets used at each node in the tree estimates are considered. The identity matrix is found

were chosen. Figure 5 shows the level-one classifier to perform adequately with only a few percent better

hierarchical node tree. A two-class Fisher discrimi- accuracy resulting wien different Fisher vectors are
nant vector is compcted for each node and used to de- used to calculate Z-

termine the subset choice at each node. An example of

the scalar projections at node 2 was shown in Figure 3. 0

5. SUMMARY AND CONCLUSIONS

A new classifier using a moment-based feature
INPUT space has been described. The second-level classifier

is optimal and uses the JGRV property of the features

with respect to distortions contained in b. A hierar-

0 chical first-level classifier was included to improve

HOSES PVCS performance and reduce the computational load on the

0 OR 3 1 OR 2 second-level classifier. A new organized procedure for

s electing the node structure, the subsets per node and
the discriminant vector per node was advanced. A mul-

1 2 ticlass and conventional two-class Fisher discriminant

technique was advanced to automate this procedure. Ex-

perimental verification and quantification of all as-

pects of both levels of the classifier were obtained S

HOSE TEE HOSE ELBOW PVC TEE PVC ELBOW for a pipe part database. Excellent results were ob-

CLASS 0 CLASS 3 CLASS 1 CLASS 2 tamned. This appears to be a most attractive and viable
feature space pattern recognition system with many
unique properties.

FIGURE 5 Hiearchical Node Tree for Class Estimation

in the Level-One Classifier. ACKNOWLEDGMENTS
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A two-level classifier has been designed for use in a moment-based hybrid optical/digital processor. The simulation per-
formance of this pattern recognition system using real IR input test images of ships and reference moments obtained from
thip models is described with emphasis given to the preprocessing operations required.

1. Introduction mpq = ff f(x, y) xPyq dx dy (1)

The use of optical processors to compute image
features for feature-based pattern recognition has re- of the P1 input patternf(x,y) as detailed in [7].

cently received renewed interest. The optically-com- These optically-generated image features are used I
9 F puted image features thus far considered include as inputs to a digital feature-based classifier which then

Fourier coefficients [1 -3] , chord histogram distribu- determines the object class and the orientation, scale
tions [4,5], and geometrical moments [6-81. In this and aspect of the input object. The details of this clas-

paper, a moment-based feature extractor and classifica- sifter are provided elsewhere [8] and are not germaine
tion algorithm for pattern recognition is considered to our present discussion, however several remarks on
(section 2) and its performance in the classification of the classifier follow for completeness. The optically-

I U ship imagery (section 3) is addressed. Specific atten- calculated input moment vector mj is projected by the
tion is given to classification of real input imagery first-level classifier in the digital section onto a multi-
(section 5) and the image preprocessing required (sec- dimensional Fisher feature space 19]. From the loca-
tion 4). tion of the projection vector, initial estimates of the

input object class are made. From the ratio of the nor-
malized second-order moments P20 and t02, an esti- p _

2. Optical computation of the geometrical moments mate of the aspect ratio or aspect angle of the input
object is made. These estimates are used to select ref-

The optical system considered to generate the mo- erence vectors mi(0) for class i and aspect 0 from stor-
ments of an input object [7] consists of an input plane age against which m is compared. The final decision
Pl (in which the input image is placed) imaged onto a on the object class and the geometrical location of the
moment generating mask at plane P2 . The monomials input object is made in a second-level classifier imple- s
xpyq up to fifth-order (p + q < 5) are recorded on the menting a nonlinear least-squares solution as detailed
P2 mask each spatiall" multiplexed using a different in [8]. Our present concern is the preprocessing re-
spatial frequency for each carrier. The optical Fourier quired on real images before their moments m can be
transform of the light distribution leaving P2 is de- reliably extracted.
tected on 21 multiple parallel output detectors in the
P3 output plane and contains the moments p

0 030-4018/84/$03.00 © Elsevier Science Publishers B.V. 227
(North-Holland Physics Publishing Division)
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3. Database

Nuinber

As our reference database we used 180 images of of Pixels

five types of ships with 36 images available per ship Ship
(at 100 intervals around each ship, from a 900 depres- and sky
sion angle). This reference database was obtained from
ship models under controlled conditions. Each image ater
contains 128 X 32 pixels with about 2000 pixels cor-
responding to the ship (for the broadside view) and
less than 200 ship pixels (for the bow and stern views). 150 168 Value
The moments of 4 images per class (10', 300, 500 and
800, where 00 is the bow view and 900 is the broadside Fig. 2. Bimodal gray-level histogram of fig. I.
view) constituted our reference mi(O) database. As test
data, we used various real images of the class 2 ship of-view be extracted before the features are computed.
(the Leahy). A typical image is shown in fig. 1. It These operations are most commonly referred to as
shows the ship in water with a sky and shoreline back- segmentation and also involve noise removal and filling
ground. We used 256 X 128 pixel images with 8 bits in of holes on the object [10]. Care should be taken
of gray scale for the real ships in our tests. The hori- to employ only simple image preprocessing operations
zon (separating the water and the sky background) is that are not computationally expensive. Thus, we used
seen and the depression viewing angle for the real mainly histogram operations (since they require only
images is 800 (rather than 900, as in the reference simple tallies of image pixel levels) to aid in threshold
imagery). The real image (from bottom to top) con- selections. A wealth of such methods exist, but their
tains four regions: (I) water, (2) the hull of the ship specific implementations are quite problem-dependent.
and some water, (3) the superstructure of the ship with In our case, we used context information (the water is
a water background, and (4) the sky and shoreline at below the ship, the sky is above the ship and the deck
the top of the image. In section 4, we detail the pre- line and horizon are nearly horizontal due to the sen-
processing used to extract the ship from the back- sor system used) to greatly simplify the ship segmenta-
ground and in section 5, we discuss the classification tion. Our approach is quite novel in the techniques
performance obtained on such imagery. employed to select separate thresholds for the differ-

ent image regions and dynamically select these regions
based on the scene information. Such methods are of

4. Image preprocessing use in feature extractors for diverse applications.
As step 1, we formed the gray-level histogram of

Feature-extraction pattern recognition algorithms fig. I (see fig. 2). It was bimodal as expected extending
require that one object location within the input field- from 0 to 255 (8 bits). A broad peak exists at low

pixel values (corresponding to the water and noise,
which is low in intensity in fig. I ) and a sharper peak

-" .. , is centered at the high 175 pixel level (corresponding!s ' " - - - " ." - •~ - -"" '"
- ., ." " ". : to the ship and the sky, whose pixel values are larger

~ ~ ~ 'in fig. Il).A well-defined valley at pixel level 150 exists.dThus, at step 2, we thresholded the image at 150 (with
all pixel values below 150 set to zero and all pixel val-

• -'-. - -. ues above 150 set to one). The resultant binary image
-" ." . is shown in fig. 3.

At step 3, the image in fig. 3 is used to estimate the
location of the four image regions defined in section

Fig. 1. Typical ship test image (the guided-missile cruiser, the 3. To achieve this, a horizontal or row-projection
Leahy. ship class 2). histogram of fig. 3 is formed. This is a graph (fig. 3) of

228
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"• .- . . umber

-. :.. of Pixels

Sky and
Water

Shippa ..- -. .. Ship -

o • • + + -s..a .-.P •

Fig 3. Binary version of fig. I thresholded from the bimodal

gra, -level histogram of fig. 2. T Val.

the number of pixels with value equal to ore in each Fig. 5. Gray-level histogram of the gray-scale image in fig. 1
row of fig. 3. From fig. 4, the different iiaage regions after subtraction of the means of the sky and water from the

can be identified. The region to the right of row C appropriate image rows.

(with zero-valued pixels) is the water below the ship.
The flatter region just to the left of row C is the hull.
The region between row B and where the hull occurs and water only (row A to the bottom row) region of
contains the ship's superstructure (plus water back- the original gray-scale image. Specifically, the average
ground). The sky and shoreline lie in the region to the pixel values in these two image regions are calculated.
left of row A. Between rows A and B is a transition re- This involves only a simple sum of the pixel levels in
gion between the sky and water which contains the the proper rows of fig. 1. In step 5, the mean-value of
horizon region with some sky, water and ship super- the sky and shoreline region is subtracted from the
structure. Row A and C are easily defined and located, rows above A in fig. 1, the mean value of the water re-
Row B was located from the sum of first differences gion is subtracted from the rows below C in fig. 1, and
for consecutive row values as the inflection point in a linear combination of the mean of the water and sky
the histogram. These procedures are all automated and is subtracted from the rows between A and B. This
require only simple computations. produces an image with the ship pixels on a positive

In step 4, the values for rows A, B and C from fig. 4 bias and with the water and sky regions on a zero bias.
4 ~are used to extract the sky only (top row to row A) In step 6, the gray-level histogram of this image is

formed. As shown in fig. 5, it has an obvious bimodal
structure with a very apparent threshold level or valley

Number point at pixel value VT.
ofmSer Transition In step 7, all pixels in the image with gray-level val-Pixels ion Hull Water ues below VT in fig. 5 are set to zero. This removes the

Super-"

TrRow *
A B Number

Fig. 4. Horizontal projection histogram of the binary image
of fig. 3. The sky, ship, superstructure and water regions of Fig. 6. Segmented ship image produced using the threshold
the image are noted, level VT found from fig. 5.
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sky, shoreline and water and thus extracts the ship. If quite general use was detailed for a ship pattern recog-
the gray-levels above IT are retained, a gray-scale seg- nition scenario. Such operations are essential if optical
mented ship image results. If levels above VT are set to or digital feature extraction processors are to achiexe

unity, a binary segmented ship image results (fig. 6). good performance. The successful classification of a
Simple median filtering or other local convolution op- real input image using moment features and a unique
erations can be used to suppress miscellaneous noise two-level classifier was demonstrated. Similar results
pixels remaining in the background and to fill in holes were obtained for other real images.
on the target object.
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Unified synthetic discriminant function computational
formulation

IMP,

David Casasent

A most attractive approach to distortion-invariant pattern recognition uses a synthetic discriminant func-
tion (SDF) as the matched spatial filter in a correlator. In this paper, we (i) provide a general basis function
and hyperspace description of SDFs, (2) advance a derivation showing the generality of the correlation ma-
trix observation space that we use in our filter synthesis, and (3) detail a unified SDF filter synthesis tech.
nique for five different types of pattern recognition problem.

I. Introduction recognition problem and SDF synthesis using a modi-
Correlators are well known to be powerful systems fled hyperspace description. In Sec. III, we describe our

and architectures that can recognize multiple occur- filter synthesis in terms of general 2-D basis functions,
rences of an object in the presence of noise. Optical and we show that a correlation matrix observation space
systems using holographic matched spatial filters results directly and yields a SDF synthesis technique.
(MSFs)l easily perform the correlation function. In Sec. IV, we detail the synthesis of five different types

N However, the performance of a correiator rapidly de- of SDF for different pattern recognition applications
grades as distortions are present in the input image. (using our general filter synthesis description). As we
Various approaches have been advanced in recent years show, all SDFs can be derived from the same basic
to achieve distortion-invariant pattern recognition. matrix-vector equation.
None has yet demonstrated such performance while We restrict attention to the use of a conventional
retaining the shift-invariant feature of a correlator. If correlator (modified to use an MSF of an SDF). In such
shift-invariance is not required, a correlation approach an architecture, the positions of the output correlation

U is still preferable to feature extraction techniques for peaks denote the locations of the objects in the input
distortion-invariant pattern recognition because the field of view. This differs from coded-phase proces-
processing gain (PG) of a correlator allows more input sors6 .7 in which the location of the output peak deter-
noise to be present. mines the class of the input object. Such processors are

In this paper, we detail a generalized method to not shift-invariant and require that only one object be
achieve multiobject shift-invariant and distortion- present in the input field of view. The SDF concept we
invariant pattern recognition using a correlator. This advance can be viewed as an extension and reformula-
technique uses a synthetic discriminant function (SDF) tion of the use of correlators with multiple MSFs (one
to form the MSF for use in a correlator. The SDF per object class) and multiple correlation outputs. As
synthesis technique achieves the distortion-invariance, noted in Ref. 8, one can obtain better performance from
whereas the use of an MSF correlator provides the PG a multichannel correlator by forming a linear combi-
and shift-invariance. This SDF is similar to averaged nation of the multiple correlation outputs (compared
filters 2.3 and generalized matched filters. 4 However, to the performance that results if we simply select the
the filter synthesis and computational technique we single correlation output with the largest peak value).
use6 are most general. In Sec. II, we discuss this pattern Our filter synthesis technique forms one MSF that is a

linear combination of the MSFs of the different object
classes being considered. However, we form this filter
in the image plane and then by a conjugate Fourier
transform construct the MSF. This approach might

0 The author is with Carnegie-Mellon University, Department of appear to differ only slightly from others. However, as
Electrical & Computer Engineering, Pittsburgh, Pennsylvania we show (Secs. II and III), it is much more general (since
15213. synthesis of a SDF directly in the MSF Fourier trans-

Received 21 November 1983. form plane restricts the basis functions used to be
0003-6935/84/10162008502.00/0. Fourier coefficients or exponentials etc.), and it is also
0 1984 Optical Society of America. much easier to compute (as we show in Sec. 111).
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II. Hyperspace SDF formulation

A hyperspace description of ar SDF is the most
conventional pattern recognition approach.9  This
approach to SDF descriptions was first advanced in Ref. surface -

10. Conventional pattern recognition uses a feature surface 2

vector representation in which each input image is de-
scribed by its projections on different scalar image 1Ofeatures.9 Each input image is then described by a I

feature vector in a hyperspace (whose axes are the scalar ,
image features considered to be of importance). In Fig. ' \.........
1, we show a typical representation of how one might surface I
desire two classes of data to be displayed in a simplified an"eis

two-axis hyperspace. Objects in the two classes (rep-
resented by Xs and Os, respectively, in Fig. 1) should
be widely separated, and objects within each class Fig. I. Simplified two-axis hyperspace description of distortion-
should cluster in a small region in this display space. In invariant multicla.ssq shift-invariant pattern recognition using a feature
conventional pattern recognition, the basis functions vectiir and discriminant vector hyperspace concept.
or object features (the axes of the hyperspace) are
usually scalar features. In our description, we consider
the use of a hyperspace with 2-D spatial basis functions ventional hyperspace description becomes very com-
as the axes or object features. This will clearly greatly plicated if shifted versions of the input object are re-
increase the power of such a pattern recognition rep- quired to be recognized. Thus, in our modified hy-
resentation. The major problem is the selection of the perspace description, we retain the simplicity of a single
object features (the axes of the hyperspace or equiva- vector representation of an object and the definition of
lently the basis functions) to achieve the desired sepa- the discriminant function as the normal from the origin
ration of different classes and the clustering of data to the discriminant hypersurface separating regions
within each class. Most techniques that have been containing different object classes. To provide shift-
suggested to achieve this are rather ad hoc. However, invariance, we correlate (a 2-D spatial correlation) the
our approach is automatic (as will be shown). discriminant function with the input image and use the

We thus consider an advanced and modified hyper- hyperspace concept only to synthesize the discriminant
space in which the basis functions are 2-D spatial image function to be used. Since any shifted version of an
functions rather than scalars. We retain the same basic object can be used to synthesize a MSF in a correlator,
concepts used in conventional hyperspace feature-space we need select only one shifted version of each object
pattern recognition. For example, if a line or a hyper- class in our hyperspace representation and for our
plane (shown in Fig. 1) can be drawn that separates the discriminant function synthesis. We select the specific
two image classes, the normal to this plane from the shifted version used for each object class based upon
origin defines the discriminant function to be used. In maximum common information concepts as we detailed
conventional pattern recognition with scalar basis in Ref. 11. A maximum common information SDF then
functions, an input object is described by its features, results.
and these comprise the elements of the feature vector The selection of the specific shifted version of each
that describes the input object. When this feature object class to be used can often be simply achieved by
vector is projected onto the discriminant feature vector, colocating the centroids of all the objects. In specific
a decision on the class of the input object is made (based cases, small shifts from the centroid-centered images
upon the value of the projection), are needed if optimum performance is to be achieved.

In our modified hyperspace formulation, we retain In general, sufficient performance results from the use
the major element of conventional pattern recognition, of centroid-shifted objects alone." Since this and other
the concept of basis functions, discriminant functions, pattern recognition techniques employ training sets of
etc. However, in our formulation, each of these now data for the different object classes, such flexibility in
becomes a 2-D spatial function. Since the basis func- the selection of the images used in the hyperspace de-

0 tions are 2-D, so is the discriminant function and so is scription is quite valid and appropriate. The general
the input image in our representation. We can simply approach is described in the simple system diagram of
project the 2-D input image onto the SDF as in the Fig. 2. We use several different images of each object
conventional case of image and feature vectors. How- class for filter synthesis and to perform the hyperspace
ever, the result will be valid for only one location of the diagram. These images can and usually are different
object in the input field of view. To see this, recall that geometrically distorted views of each object class.

0 our basis functions are 2-D spatial functions; thus each These are referred to as the image training set. They
shifted version of an object corresponds to a new point are used to determine the basis function to be used, to
in our hyperspace. All these points (for one object) lie select the discriminant hypersurface, and hence to de-
on the surface of a hypersphere (since shifted versions fine the discriminant function itself. The training set
of an object have the same energy). Clearly, a con- of images is chosen to provide a valid statistical repre-
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r - - each training set image as a linear combination of a basisI 'r-LI SYNTHESIS
function set , (x,y), i.e.,

ID I
I( FILTER f,(X.y) = E 0. . l, y (2)

r THI sThis follows directly from our hyperspace description

- ,-------------------- in Sec. I. We place no specific restrictions on the basis
IPUT R E. 4 -4 TARGET function set; i.e., we do not assune a Fourier coefficient
WAGE s I OTFCATIO, basis function set as in Ref. 4 or the use of circular har-

TARGET
LOCATION monics as in Ref. 12. The desired SDF is described as

Fig.2. Simplified block diagram of the off-ine synthetic discrimi- another linear combination of the same basis function
nant function synthesis from training set data and the use of such set. This is compatible with the conventional hyper-
filters for on-line correlation of the SDF with unknown input space description in Fig. 1 and Sec. II, extended to the

imagery. case of 2-D basis functions, i.e.,

sentation of each object class. The SDF algorithm itself
provides the discrimination (as we will detail in Sec. h(xy) = b ,,,(x,y) (3)

This entire filter synthesis operation is performed Assuming an orthonormal set of basis functions (as
Tisnire terin sythmes. operao sch fom is conventional in pattern recognition), we can substi-off-line on training set images. From such computa- tute Eq. (2) into Eq. (1) and rewrite the ECP SDF

tions, an SDF h(x,y) is produced, which is then corre- condition in Eq. (1) as

lated with new input imagery in a MSF correlator as

shown in Fig. 2. This new input imagery is referred to A (x,y) h( f,. h = f o h = b, (4)

as test imagery. These test images are not members of n
the training set of images. For generality, a prepro- Next we note that since h (x,y) is a linear combination 0
cessing box is included in Fig. 2. This can perform edge of the 0, (x,y) and so is f, (x,y), we can write h (x ,y) as
enhancement, median filtering, or similar operations. a linear combination of the input training set of images -
In general, this preprocessing function can be omitted Vf(x,y)J; i.e., we first write out several of the terms in
or restricted to quite simple operations (because of the Eq. (3):
processing gain of a correlator).

Ill. Correlation Observation Space h(xmv) - bio&,) + b202(XY) + .. .0,y) (5)

In this section, we discuss an automated technique From Eq. (2), we can write the basis function set
to select the basis functions and the SDF described in 0,,(xy) as a linear combination of the training set of
Sec. II. The general SDF formulation we employ uses images fn (x,y) as
a correlation observation space. To justify the gener-
ality of this technique, we devote this section to a deri- #.(x.y) = E d,,j(xy). (6)
vation of it as the most genera) set of features to be used
in synthesizing and computing a SDF MSF for use in Substituting Eq. (6) into Eq. (3), we obtain . -

a correlator. Our formulation uses a general set of basis
functions and involves an automated technique to select .h(xy) = bI FdIf1(x.y) + b2 Y d2 fA(x,) )+ (7)
them. To develop our general SDF synthesis tech-
nique, we consider N training set images of an object in = ed/2(x,)') + e2f2(x,y) + (7a)
class one. These N images can represent different
distorted versions of this one object. For simplicity, we = E e f/(x.)4 (7b) -

consider the synthesis of an equal correlation peak
(ECP) SDF. This filter function h(x,y) has the prop- In Eq. (7a), we have grouped all coefficients of fi, f2, etc.
erty that the correlation output of h(xy) and all images together and have denoted them by el, e2, etc. The
Vf (x,y) in class one equals a constant (unity is chosen final result in Eqs. (7b) and (3) are equivalent; one de-
for this constant), i.e., scribes the SDF in terms of the basis functions [Eq. (3)],

and the other [Eq. (7b)] describes them in terms of the
/. .(z ) iah.) - 1 (1) original training set of images.

In Sec. IV, we extend the basic algorithm in this section We now consider how to determine the em in Eq. (7b)
to other pattern ern recognition applications and other to satisfy our ECP SDF criteria in Eq. (1) or (4). For
types of SDF. When the different images Vfm(xy)I are notational simplicity, we describe all images [the SDF
different geometrically distorted versions of one object h (xy) and the training set images) by vectors h and f,,
f(x,y), this ECP SDF is appropriate for an intraclass or fm, respectively. This notation and description
pattern recognition problem (recognition of any dis- follow directly from the hyperspace model advanced in 5
torted version of an object using a single filter func- Sec. II. We denote the correlation of two such vector
tion). functions by the vector inner product, which we write

To develop formally an algorithm for synthesis of a simply as f, • h. Since we use a correlator for our final
filter function h(xy) that satisfies Eq. (1), we describe object classification, and since any shifted version of an
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image can be used as the MSF in a correlator, there is and if the dimension of R is large, we use several new
no loss of generality in this simplified formulation. computationally efficient methods such as on-line

With these preliminaries, the ECP SIF requirement dominant-image calculation"5 and orthogonal-hyper-
in Eq. (I) is now written as plane-projection methods.'

f.- h = 1. ' IV. Generalized SDF Synthesis
Substituting Eq. (7b) into Eq. (8) for h, rearranging In this section, we describe five general SDFs and
terms, and defining r,,, as the elements of the correla- detail their synthesis in the form of Eq. (11) and their
tion matrix R, Eq. (8) becomes use for different pattern recognition problems and ap-

= ] plications. The computational ease with which these
f." h - f. • f mi' = I em(fn - f ) = L r = I. 9) useful pattern recognition filters can be fabricated is

* 1 quite attractive. The filters to be described include a
In matrix-vector form, we rewrite Eq. (9) as more unified and general description (Sec. IV.A) of the

Re = ,, (10) ECP SDF of Sec. III (for intraclass pattern recognition),
a mutual orthogonal function (MOF) SDF (Sec. IV.B)

where L2 denotes the unit vector and where the elements for M-class interclass pattern recognition, an MOF SDF
of the vector e are the e, in Eq. (7b) or (9). The solu- for two-class and multiclass interclass discrimination
tion for the ECP SDF h(x,y) defined by Eq. (7b) that as well as intraclass recognition (Sec. IV.C), a new
satisfies (1) is thus given by the solution to Eq. (10), multiclass MOF SDF using several SDFs (Sec. IV.D),
i.e., and another new simple nonredundant filter (NRF)

e = R-16 SDF for intraclass and interclass pattern recognition
(Sec'. IV.E).

From this general formulation, we have shown that

a correlation matrix observation space d;rectly results A. Equal Correlation Peak SDFs for Intraclass Pattern
as an ideal feature space from which to compute the Recognition
required coefficients for a linear combination filter such The general formulation for the ECP SDF satisfying
as an SDF. We note that this formulation used a gen- the condition in Eq. (1) can be described (for a training
eral basis function set o, (xy), but that in our algorithm set of N, images and an associated N, x N, correlation
no specific choice for the basis function set was required. matrix RI) as
Thus, to synthesize an SDF, we simply form the corre-
lation matrix of the training set of data, invert it, and R '6, - R',I . '.,  (12)
multiply it by the appropriate vector i This discri- where the unit vector 61 has N, elements (all of which
minant function formulation is thus automatic and does are unity). The elements of a are the weighting coef-
not require ad hoc selection of certain basis functions ficients in the linear combination SDF:
or input features. We first advanced the fundamentals
of this unified correlation matrix observation space h (x.) = Ya ,(x.y), (13)
description in Ref. 5. This present description is a re-
vised and more general version of our original algorithm where the if, (x,y)l training set images associated with
for synthesis of an averaged filter- ' with the removal the correlation matrix R are different distorted versions
of any specific requirements or selection techniques for of the same object. This SDF filter h(x,y) when used
the basis functions used. In Sec. IV, we develop a in a correlator is thus capable of intraclass distortion-
general formulation along the general description in Eq. invariant pattern recognition (i.e., recognition of dif-
( 1) for the synthesis of several different SDFs for dif- ferent distorted views of one class of object). Such an
ferent pattern recognition applications. ECP SDF yields the same correlation output for all

Many techniques exist by which a general basis distorted views of one object as required by Eq. (1). In
function set can be obtained. In Refs. 2, 3, 10, and 11, other extensions of this general SDF synthesis algorithm
we used a Gram-Schmidt procedure to select orthogonal to other pattern recognition applications (beyond in-
basis functions. In Refs. f. and 7 a Fukunaga-Koontz traclass object recognition), we begin by describing the
and Foley-Sammon technique is employed. In Refs. SDF as a linear combination of the training set of im-
10 and 13, Karhunen-Loeve transforms were suggested ages. As shown in Sec. III, such a formulation emerges
for similar problems. In Ref. 14. singular value de- directly from our hyperspace description.
composition techniques were described. Our present
algorithm can accommodate any of these methods, but B. Mutual Orthogonal Function SDF for Interclass
by our new generalized description, we require no spe- Pattern Recognition
cific basis function selection. However, these prior Next we consider an interclass pattern recognition
techniques are useful as intermediate steps in per- problem (the discrimination between and recognition
forming the required correlation matrix inversion in Eq. of M different objects in M different classes). In this
(11). No specific guidelines for matrix inversion tech- initial example, we assume one image per object class,
niques are advanced in this present paper, since we and we consider only interclass discrimination rather
desire to retain a general description. However, we note than intraclass recognition of distorted versions of each
that if R is singular, we employ a generalized inverse, object. We describe our training set of M images (one
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per object class) by lf,,(xyyt, and we denote the M x M of a linear combination of multiple correlation-plane
correlation matrix of this training set of data by R2. For outputs. Instead of forming a linear combination of M
this problem, we desire to produce M SDFs h,, = multiple correlation-plane outputs (each correlation
h,h2. . so that using an MSF of one class of object), the M MSFs are

r synthesized so that only one of the M correlation-plane 4
I=, i-)? outputs yield a peak value near the maximum. Our

i.e.,f, (x ,y) Qh, (x,y) is unity only for filter i and image algorithm for synthesis of such filters in Eqs. (18) de-

class j = i. Thus only one of the M SDFs Ih,(x,y)l scribes such generalized matched filter synthesis using

yields an output of unity, whereas all the M - 1 other the original images rather than the Fourier coefficients
SDFs yield zero outputs. The filter with the unity of each image. In Ref. 4, only interclass discrimination

. output thus determines the class of the input object. was discussed (rather than intraclass recognition of 0
Following our general procedure in Sees. III and IV.A, distorted views of an object). In Sec. IV.C, we will ex-

we describe each of these M SDFs as a different tend this MOF SDF to include both intraclass and in-
weighted linear combination of all M training set images terclass object recognition.
fm, (x ,y), i.e., In Ref. 10, a Gram-Schmidt basis function selection

technique was used to assemble a Gram-Schmidt cor-
,1(x, )I = a,,f(x,%), h2(xv) = E bA,,x,y),. relation matrix. In this approach, the first basis func-

tion contains information only associated with the first •

= I M,,,4,(ximage f[; the second basis function contains only the
new image information present in the second image f2

or in general that is not also present in the first image fI; the third
basis function contains the new information present in

h , = Y p,. (16) [1 but not previously included in fi and f2; etc. If the
, first row and column of this Gram-Schmidt matrix is set

where each summation in Eqs. (15) and (16) is over all equal to zero (in Ref. 10, this was achieved by multi-

M training set images. Following our earlier general plying this matrix by a decorrelation matrix), all

approach, we can write the coefficients a, b, etc. in Eq. training set image information associated with f1 is re-

(15) that satisfy Eq. (14) as moved, and the correlation of the filter synthesized from
this reduced matrix will yield zero output when corre-

aR2 = , o = 11.0,.0.0.O7, (?aI lated with f1. Extensions of this technique to the de-
correlation of the training set of data for the other object 0bR. = , = 10.1..0 OT7b classes follow directly.

cR = 100.1,o...0],etc (17c) Our present formulation in Eqs. (17) and (18) is much
simpler and more easily implemented, and it is cast in

Each im vector in Eqs. (17) has M elements and con- the same general matrix-vector form as that of Eqs. i 1t
tains M - 1 zeros and one 1. The location of the single and(12). We refer to the SDF in Eqs. (17) and (18) as
1 is different in each of the vectors. For I.,, the first an interclass MOF SDF or simply as an MOF SDF.
element is a 1; for 1 b. the second element is a 1; etc. The
elements of the different vectors a, b, etc. in Eqs. (17)
are the linear coefficients in the corresponding SDF C. MOF SDF Synthesis for Intraclass and Interclass
equations in (15). Thus the M SDFs in Eq. (15) that Pattern Recognition
satisfy Eq. (14) are described by We now combine our ECP intraclass SDF (Sec. IV.A

a -12.:,. b = R '6h. = R1112-.etc. (18) and our MOF interclass SDF (Sec. IV.B) formulations
to describe the synthesis of an MOF SDF for both in- 0

As seen by inspection of theil, vectors in Eq. ( 17), filter traclass and interclass pattern recognition. We de-
h 1 (described by a) yields unity output for the image fI scribe the algorithm for a three-class problem, for a
of class one and zero for all other image classes. Filter two-class problem, and then we generalize to the case
h 2 (described by b) yields unity output for the image f2 of an M-class problem. This type of SDF is appropriate
of class two and zero for all other M - 1 image classes, for pattern recognition applications in which the input
etc. This is as required by Eq. (14). object can be a member of several classes and when

Since all these filter functions are mutually orthog- different distorted versions of the input object can be
onal, we refer to this type of SDF as a mutual orthogonal expected. In such a case, we must insure interclass
filter (MOF) SDF. The problem formulation advanced discrimination between objects of different classes and
above is similar to that of the generalized matched filter intraclass recognition of distorted versions of one object
as described in Ref. 4 and the decorrelation matrix filter as members of the same object class. We consider a
synthesis described in Ref. 10. However, our present three-class pattern recognition problem with N1 images

0 formulation is in terms of our general description using of one object if., (x,y)I of class a, N 2 images of the class 0
the correlation matrix of the training set of data. b object I/b,(x,y)l, and N1 images of a class c object

In Ref. 4, the filter function was synthesized from If,(x,y)f used as the training set. As before, each of
Fourier coefficients of each object and is thus the fre- these training sets of objects consists of different dis-
quency-domain filter synthesis dual of the earliere use torted versions of one object.
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We desire to synthesize three filter functions ha (x,y), is present, this approach in Eq. (23) is appropriate only
hb(x,y), and h,(xOy) that satisfy in the restricted applications. We can modify Eq. (23)

( usingu 0 =[1....1;-1.....-1T Inthiscase,ifthe
correlation peak value is above 0.5 (or below -0.5), we

for all members i of each separate object class m = n. select class one (or class two) as the object class. Such
We describe the SDFs for our three-class problem as an approach is attractive for digital correlators but not
linear combinations of the entire training set of data for conventional optical correlators using intensity de-
Vn (xy)l = If,(x,y),/l, (x,y), f (x,y)i, i.e., tectors. (Such correlators provide unipolar correlation

outputs only.) For now. we only note that for two-class
h.(x.>) = o,(x.,I. hb(Z.Y) - 1 bj (x,.v). h,(x.y) intraclass pattern recognition problems, a single SDF

in general suffices if two different correlation plane

= L (20) detection threshold levels are used with the class of the
input object determined from the correlation peak

where all summations in (20) are over the entire N = N, value. Such multilevel nonredundant filter (NRF)
+ N 2 + N:, training set of images. By directly extend- SDFs are discussed further in Sec. IV.D.
ing our results in Secs. IV.A and IV.B, we form the full
(NI + N., + N:0 x (NI + N 2 + N-) correlation matrix D. Multilevel NRF SDFs

R:.. By analogy with Eq. (17), we can then describe the We now generalize our three-class intraclass and in-
three SDFs in Eqs. (201 subject to the conditions in Eq. terclass pattern rcognition example in Sec. IV.C to the
(19) by the vectors a. b, and c (each of dimensionality use of a single SDF. This SDF h (x,y) is required to give
N, + '. + NO) as outputs of 1, 2, and 3 for .bjects in classes one, two, and

R 1:0., :.017. (1a) three, respectively." (Other appropriate constants can
be selected.) We refer to such a filter as a multilevel

RR = = lIo. 011. . ..... ,oT. (21b) nonredundant filter (NRF) SDF. The filter require-

CR, = , = =t) ... 0:0 . .0:I.. 1r (21c ment is described by

In Eqs. (21), 60, 0h, and i, each contain N, + N 2 + N:3  f,(x yI'h(x , = n, (24)

elements with only the first N , the central N) or the last where the correlation output n 1 for objects I/(x,y)I
N: elements being 1. respectively, and with all other in class one, n = 2 for objects l/2(x,y )l in class two, etc.
elements being zero. The matrix-vector constraints in With NI, N 2, and N3 training set images for the three
Eqs. (21) thus correspond to those in Eq. (19), i.e., a, and classes, respectively, h(x,y) is described by
hence h.(x,y) is required to have a unity correlation
output for the N, objects in class a and zero for the h(xy) = ( a,(x,v) 25-
other training set images. Similar remarks follow for
b and c and equivalently for the associated filters where fm(x,y) = IfI,(x,y),f 2i(x,y),f.,(x,y)l contains all
hb(x ,y) and h,(x,N,). NI + N 2 + N 3 training set images and where the sum-

The three SDFs in Eqs. (20) are thus defined by mation in Eq. (25) is over N 1 + N 2 + N 3. The vector
a that describes the h(x,y) that satisfies Eq. (24) is

Ja = R 1i1.. b = R-'6t. c = RVL!, (22)
a = 

R 16:,(26)

analogously to Eqs. (18). They thus satisfy a three-class ( 1

intraclass and interclass pattern recognition problem. where R3 is the (NI + N., + N:) x (N, + N 2 + N:) cor-
The extension to M-classes with N training set images relation matrix and where C13 = 11 .... 1;2 ... , 2;
per class results in an increase in the size of the corre- 3 .. , 3] T contains NI ones, N.2 , twos, and N.3 threes.
lation matrix (to MN x MN) and an increase in the Extensions of this multilevel NRF SDF to more classes

4 dimensionality of the coefficient vectors to MN. We are straightforward. However, more stringent detector
refer to such filters as intraclass and interclass MOF plane requirements and reduced performance can be
SDFs or simply as M4OF SDFs. expected as the number of restrictions placed on such

For smaller problems such as two-class pattern rec- a single SDF filter are increased. Thus, if this tech-
ognition applications requiring intraclass distortion- nique is to be used for more than three or four classes
invariance, considerable simplifications are possible.5  of data, more advanced preprocessing and image

We can use a single SDF h(x,y) described by training set selection techniques should be considered, .
Such issues will be addressed in subsequent journal

a = R4-'.. (23) papers.
where ! =... 1;0 ..... 0 T contains N ones and
N zeros and where R 4 is the two-class correlation matrix E. K-tuple NRF SDFs

of dimensionality NI + N 2. If the correlation peak As implied in our discussion in Sec. IV.D, a single
output is above (or below) an 0.5 threshold level (half- SDF for multiclass intraclass and interclass recognition
way between the two required zero and one output is possible conceptually but may not yield acceptable
levels), we choose class one (or class two) for the object performance when noise and other issues are included.
class. Since a zero correlation output or a correlation The specific nature of the distortions to be considered
output below 0.5 can also result when no input object and the nature of the different object classes to be dis-
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* 0

tinguished plus the type and amount of noise to be ex- Table . Truth Table for a K-tuple Nomedundant SDK. The Case of

pected will determine the performance obtained. If a M = 4 classes an K - 2 Fifs i Shown.

large number of object classes must be considered, the Object Filter
conventional MOF SDFs (Secs. IV.B and IV.C) would class out h,(x.y) h_,__...._)

require the use ofM SDFs (for an M-class problem) and 0 0
the scanning of M 2-D output correlation planes. For 2 0 1

such pattern recognition problems, an alternate tech- 3 12

nique we refer to as a K-tuple NRF SDF technique may 4 1 1

be more appropriate.
In this SDF algorithm, we consider an M-class pat-

tern recognition problem and the use of only K SDFs,ro.I thi cae we] 00
where K is chosen to satisfy M < 2 K. In this case, we I0 b1  ]

denote the K correlation outputs at the same (x,y) IRI .. J 28a I

spatial location in ali K correlation planes by 4

C1 ,2 .• , CK. We consider the case of binary correla- l
tion plane threshold levels of 0 or 1 as in Secs. IV.B and or
IV.C. For each correlation plane point, we thus have Rlab] = Li, (28b)
a K-tuple binary vector c. Using conventional binary
Boolean algorithm encoding, each c vector can thus where R is 4N x 4N, a and b define h0 and hb in Eqs.
represent up to 2 K different numbers. In our present (27) and where the right-hand side vector in Eqs. (28)
M-class pattern recognition problem, this means that consists of two column vectors 61 and L22 with N element
the corresponding c value can determine to which of M pairs equal to (0,0), N element pairs equal to (0,1), etc.
= 2 K classes the input object lies (the object at the as- The solution to Eqs. (28) for the vectors a and b that
sociated position in the input plane). We refer to this define h,(x,y) and hb(x,y) in Eqs. (27) to satisfy Table
as the K-tuple binary-level NRF SDF or simply as a I or Eq. (28) is thus
K-tuple NRF SDF. {ab] = R-1101021 (29)

The formal description of such SDFs is best pre-
sented only for a K = 2 filter SDF case, i.e., a four-class A variation of this K-tuple NRF formulation was first
pattern recognition problem. Generalizations beyond advanced in Ref. 18 for coherent optical systems and
this case should follow directly, but formally writing the then extended to noncoherent optical correlators in Ref.
associated matrix-vector equations results in unneeded 19. Neither of these formulations used a correlation 0
notational complexity that will not further advance matrix observation space to describe synthesis of the
understanding of the basic concepts. We thus consider required filter, however.
only an M = four-class intraclass pattern recognition
problem and the use of K = 2 SDFs. We describe the V. Summary and Conclusion
training sets of data for these four object classes by From Sec. IV, we have shown and detailed how five
[f1,(x,y)1, If2i(x,y)}, etc. We assume that there are NI different types of synthetic discriminant function for
training set images in class one, N 2 images in class two, different pattern recognition problems (intraclass rec-
etc. For notational simplicity, we assume N = NI = N 2  ognition, interclass discrimination, and both intraclass

N 3 = N 4 or 4N total training set images. We describe and interclass object identification) can be formulated
the full 4N training set of images by 1/n (x,y)I, the asso- as the same general matrix-vector equation. Specifi-
ciated correlation matrix by R (it is of dimensionality cally, the vectors that describe the SDFs equal the in-
4N x 4N), and the two SDFs by h.(x,) and hh(x,y). verse of a correlation matrix R times a control vector

We require the two correlation outputs of the general (containing ones, zeros, or other similar constants). -0
input image f(x,y) and the two filters hotx,v) and Inspection of Eqs. (11) and (12), (17) and (18), (21) and
hb(x,y) to satisfy the truth table in Table l. Thefour (2'2, (23), (26), and (28) and (29) shows that all ex-
possible combinations of the binary (0 and 1) correlation pressions for such a filter computation and synthesis are
plane outputs are used to denote in which of the four of the same general matrix-vector linear algebraic
classes the input object lies. We use correlation plane equation form.
levels of 0 and I with noloss of generality. ,ithougha In Sec. III, we provided a general description of a
zero output level can correspond to no objec', this is distortion-invariant matched spatial filter and showed
easily altered by selecting any other nonzero coefficient for general basis functions that all such MSF pattern
for the desired correlation plane output level in our filter recognition problems involve inversion of a correlation
synthesis equation (as noted at the end of Sec. IV.D). matrix and multiplication by a different external vector.
We denote the two SDFs by The size of and the elements of the correlation matrix

and the elements chosen for the external vector differ
h.(x~y) = o.(xY), hb(zy) - Y bf,(x,). (27) for specific pattern recognition applications, but the

n same general format is retained throughout all types of
where the summations in Eqs. (27) are over the 4N SDF for different applications. In Sec. II, we described
training set images. In matrix-vector form, we write the philosophy and details of SDF synthesis in terms of
the truth table in Table I as a modified hyperspace and feature-vector system.
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This hyperspace description (using 2-D basis func-
tions and 2-D discriminant functions), our derivation
of the use of a correlation matrix observation space
(independent of the basis functions used), and the 44~
general unification and detailed description of five 0 4 41

this paper. Other variations of these concepts (such as bo 5

combinations of multilevel K-tuple nonredundant filter 4)0 -1. (a4-4W

SDFs) are obvious but were not detailed. Initial ex- a)).-i- (f-4
periments2O have showed that the SDFs described 1, W rs M*Q

herein give most excellent performance even in the 0 W 4) r_ -4 i J
performance of noise.' 7 These results and the issue of 0)U 0 U 5tn r -IU - nC
training set selection and the theoreticaL basis for the U r ' - _ "

performance found using such f ilters will be the subject -r-4Cnfl 4.J 4-1 U

of future journal papers. Our intent in this paper was En E U) 'sUa

SDF filter synthesis technique for multiclass distor- 0'
tion-invariant shift-invariant pattern recognition. U 4 n4
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Acoustooptic Linear Algebra Processors:
Architectures, Algorithms, and

m Applications •

DAVID CASASENT, FELLOW, IEEE

Invited Paper

Architectures, algorithms, and applications for systolic processors processing elements are standard and in which each
are described with attention to the realization of parallel algorithms processing element is always kept active as data flow across
on various optical systolic array processors. Systolic processors for the element array. Conventional algorithms (e.g., the Inter-
matrices with special structure and matrices of general structure,
and the realization of matrix-vector, matrix-matrix, and triple-ma- national Mathematical and Statistics Library, IMSL) are
m, products and such architectures are described. Parallel algo- appropriate for uniprocessors but not for systolic array ar-
nrhms for direct and indirect solutions to systems of linear algebraic chitectures. A wealth of research on algorithms for multi-
equations and their implementation on optical systolic processors processors and parallel algorithms suitable for systolic
are detailed with attention to the pipelining and flow of data and
operations Parallel algorithms and their optical realization for LU processors exist [4d. However, systolic architectures are often
and QR matrix decomposition are specifically detailed. These repre- devised to implement different algorithms, and the algo-
sent the fundamental operations necessary in the implementation rithm and system design for complex operations is often 0
of least squares, eigenvalue, and SVD solutions. Specific applica- complicated by the requirement to utilize only local com-
tions (eg, the solution of partial differential equations, adaptive munication and yet maintain efficiency in the systolic array.
noise cancellation, and optimal control) are described to typify the Tus even wn t igtal systolic array
use of matrix processors in modern advanced signal processing. Thus even within the digital systolic array community, ap-

propriate algorithms for systolic architectures is a current -.

area of intensive research. No attempt will be made to
I. INTRODUCTION review digital systolic architectures and algorithms. Rather,

Optical processors have long intrigued researchers and attention will be focused only on optical systolic processors
data processors because of their parallelism, high computa- and parallel algorithms thus far developed for such systems.
tional rates, small size and weight, and their low power Since research on appropriate algorithms and architectures
dissipation and cost. Most optical processors have been for optical systolic processors is still in the formulation
special-purpose systems performing Fourier transforms and stage, and since different algorithms and implementations
correlations. However, in the past three years, more gen- detailed are appropriate for each different optical systolic
eral-purpose optical processors have emerged that perform architecture proposed, I shall concentrate on the basic 0
matrix-vector and various linear algebra operations. These linear algebra operations of matrix-vector, matrix-matrix,
optical linear algebra processor architectures exhibit pipe- and triple-matrix multiplications, plus matrix inversion, di-
lining and both local and global interconnections and are rect and indirect solutions of systems of linear algebraic
generally referred to as optical systolic array processors. In equations (LAEs), and matrix decomposition. These repre-
this paper, several architectures and various algorithms for sent the basic linear algebra operations required for more
the use of such systems in various applications are re- advanced problems such as least squares, eigenvalue, and 0
viewed. Because of the parallel nature of these optical singular value decomposition (SVD) algorithms needed in
systolic array processors, parallel linear algebra algorithms advanced modern signal processing.
are essential and the flow of data and operations in the Optical systolic processors represent an attractive gen-
system as well as input and output issues merit attention. eral-purpose system for performing various matrix-vector

Many systolic (11, wavefront [21, and concurrent (31 piral- and linear algebra operations with the high speed and
lel digital architectures have been suggested in which most parallelism of the optics being fully utilized. Since many

image, pattern recognition, and signal processing problems S
can and generally are formulated as matrix-vector prob-

Manuscript received March 1, 1964, revised March 22, 1984 This lems, such optical processors represent a general-purpose
work was supported by the NASA Lewis Research Center under and flexible system in which one optical processor can
Grant NAG-3-5. the Air Force Office of Scientific Research under solve a wide variety of problems in many different applica-
Grant AFOSR-79-0091, and the NASA Langley Research Center tions. By examples and specific case studies, these features
under Grant NAC-1-409. as well as the contractors of Unicorn will be shown.
Systems Incorporated

The author is with the Department of Electrical and Computer Many different optical matrix-vector processors have S
Engineering. Carnegie-Mellon University, Pittsburgh, PA 15213, USA been described as far back as 1%5. A survey of these
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architectures is available 15]. Several of the current systolic optical systolic processors achieve digital accuracy uses data
architectures advanced in the past two years are reviewed encoding and the basic algorithm for digital multiplication
in Section II. These are separated into architectures for by convolution first described in [23] (and first applied to
matrices with special structure and those for general optical architectures in [24]). Examples of several such archi-
matrices. How these various architectures achieve the basic tectures are described elsewhere in this issue [20], [211
operations of matrix-vector and matrix-matrix multiplica- Initial laboratory demonstrations have been provided for
tion is detailed. The solution of systems of linear algebraic several of the architectures and algorithms described [j]-[8],
equations is a central problem in engineering and computa- 1181, 122], [25]. Many of the optical systems noted above
tional mathematics. Thus the basic indirect (Section III) and produce 2-D output data in parallel. Use of such systems in
direct (Section IV) parallel algorithms for this fundamental most applications requires advanced detector readout
operation are reviewed and optical implementations for methods with parallel A/Ds, detectors, and parallel high-
each are detailed, with attention to pipelining and flow of speed post-processing logic. In incorporating such 2-D out-
data and operations in the system. The extension of these put systems into the algorithms described, parallel reidout
basic operations to advanced problems such as least square, of one row or column of the 2-D output is assumed. in the
eigenvector, and SVD solutions are then briefly reviewed block diagrams that will be used to describe the various
(Section V). Three specific applications are then briefly algorithms and architectures, a generic optical systolic
discussed to detail how the basic operations (the vector processor that performs one matrix-vector multiplication
inner product, matrix-vector multiplication, and the solu- every bit time Ts is assumed (with a parallel linear input
tion of systems of LAEs) and matrices with special structure and a parallel linear output array). With associated modifi- . -
arise. The applications chosen include: the solution of par- cations, most of the algorithms described can be imple-
tial differential equations (Section VI-A), adaptive noise mented on the various optical systolic array processors
filtering (Section VI-B), and optimal control requiring the (with associated modifications to the data flow and compu-
solution of quadratic matrix equations (Section VI-C). Accu- tational time, depending upon the specific processor used).
racy and performance issues are then addressed together
with a summary and conclusion in Section VII.

A. Systems for Matrices with Special Structure

0 II. OPTICAL LINEAR ALGEBRA PROCESSOR ARCHITECTURES As the first class of AO systolic processors, we consid,'r
systems suitable for matrices with special structure The

A plethora of optical matrix-vector and systolic architec- system of Fig. 1 consists of N point modulators whose
tures have been described in the past several years. These
include: the original Naval Ocean Systems Center [6], Stan-
ford [7], and Carnegie-Mellon University [8] systems, beam POINT O CCD sP

modulator systems using change-coupled device (CCD) shift 0S

register detector readout 19], beam modulator systems • 0 0
without CCD shift register readout [10], banded and Toep-
litz matrix acoustooptic (AO) systems [10], iterative AO .. a32 0 a21 0
systolic architectures [10], vector outer product systems using
time-integrating detectors and crossed AO cells or two-di-
mensional (2-D) spatial light modulators (SLMs) [11], an . 0 t -
engagement-mode processor using multichannel AO cells 22 1.
[12], frequency-multiplexed AO processors [13], an engage-
ment-mode (RUBIC) cube processor using 2-D SLMs [14], 0 b2 0 b At, d

and architectures combining one-dimensional (1-D) and Fig. 1. Simplified schematic of a banded-matrix opti(al svs-
2-D SLMs [15]. Many optical systolic architectures for im- lolic processor using CCD shift register (SR) detector readout
proved accuracy and performance have also been de- (adapted from 191)

scribed. These include: accurate vector outer product
processors 161, an accurate RUBIC cube processor [17 , outputs are imaged through different regions of an AO ell -
architectures using -D and binary 2-D S Ms 1 , and an and onto different output detectors. AO cells and conven-
accurate engagement-mode processor using multichannel tional AO architectures are detailed elsewhere [25]. but a
AO cells (the systolic AO binary convolver, SAOBIC) [19]. simplistic description is included herein for completeness
Several of these architectures are reviewed elsewhere in Electrical data fed to an AO cell are converted to an
this issue [20], [21]. acoustic wave which travels the length of the cell and

In this present paper, only analog optical systolic introduces spatial and temporal variations in the dielectric
0 processors using single-channel AO cells are considered constant of the acoustic material. When the data reach the

(such systems are readily available with present component end of the cell, they are absorbed. When the cell is il-
technology). All of the systems and algorithms described in luminated with light, the amplitude or intensity of the light
this paper can be extended fairly directly to use multichan- leaving the cell is modulated spatially in proportion to the
nel AO cells and binary 2-D SLMs. Such extensions increase strength of the acoustic field in the cell (i.e., proportional to
the number of operations performed per second. It appears the strength of the input electrical signal), and the light

0 best to use the added dimension of such systems to achieve leaves the cell at an angle proportional to the spatial
improved system accuracy (as accomplished, for example, frequency of the acoustic signal (i.e., proportional to the
in the SAOBIC architecture [19]) rather than increased com- frequency of the input electrical signal) These two proper-
putational rates [22]. The method by which such advanced ties of AO cells will be employed in the various archite(-

0I
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fig. 2. Simplified schemati( of a banded-matx and Toeplitz-matrix optical systolic

pru(essor 110] with only a single detector This architecture exhibits local and globalinterconnect ons and performs a vector inner product as its basic operation

lures described. For simplicity, we will omit the details of linear detector CCD shift-register (SR) array is seen to be
the single-sideband filtering required in such architectures, the desired matrix-vector product Ab - d in (1). This first

With respect to Fig. 1, the elements of the vector are fed AO systolic processor architecture was described by Caul-
time-sequentially to the AO cell. Each vector element is field et al. [9] earlier. At each point in the AO cell (opposite
assigned a given time slot in the input electrical signal and an input point modulator), the system performs a multipli- S
the electrical power in each time slot is proportional to the cation, and on the associated output detector this scalar
desired vector element value. We denote the length of the product is added to a prior value obtained from the neigh-
AO cell in time by T. and the time duration of each data boring local element. In this sense, this architecture is the
packet or vector element by T.. For simplicity, we assume optical equivalent of a conventional digital systolic architec-
N - T/TB data packets or pulses can be present in the cell ture [1].
in practice, some time spacing, i.e., a guard band, will be Another AO systolic architecture for multiplication of a
required between data pulses). The parameters N and T. banded matrix by a vector, described by Casasent [10], [13],
are set by the time-bandwidth product (TBWP) of the AO is shown in Fig. 2. In this system, the nonzero elements of
cell, TBWP - TAW = 1000 being a typical value, where W, each row of the matrix are fed one row at a time in parallel
is the bandwidth of the cell We consider the use of the to the input point modulators and the vector data are fed
system of Fig 1 to form the matrix-vector product Ab time-sequentially to the AO cell. Each TB, the elements of

the input matrix row are multiplied by the corresponding
a.b d elements of the vector b, and the sum of these scalara, a. b d products is produced on a single output detector. The

a3' aI, a33  b, integrating lens shown achieves this summation of partial
a4, a,, a,, . products. Thus each T., this architecture multiplies one row

as, a5 4 a of the matrix by the associated elements of the vector b
0 and thus one element of the Ab = d vector is produced

each TB. Other techniques to perform banded matrix-vec-
where the matrix A is banded We denote matrices and tor multiplications exist that avoid the need for the CCD SR
vectors by bold face upper and lower case letters, respec- detector readout required in the beam-modulator architec-
lively. The bandwidth of the matrix is the number of non- ture of Fig. 1. The system of Fig. 2 is the simplest since it
zero diagonals (three in (1)). requires only one output detector. Such architectures are

The matrix-vector product in (1) can be accomplished quite attractive for banded matrices since the number of
optically on the system of Fig. 1 by feeding the vector b to input point modulators required only need equal the band-
the AO cell time-sequentially as shown and the three width of the matrix, and only one output detector is neces- •
diagonals of the matrix as time-histories to the three input sary. Such processors exhibit the local interconnection fea-
point modulators. The data modulation on the electronic ture of digital systolic processors together with a global
time-history input signals for this case is shown in Fig. 1 interconnection feature unique to optical systems (i.e., ad-
(hme increases from right to left in the figure). New data dition of all separate element products by use of an in-
enter the system every TB with zero-valued data packets of tegrating lens). The system of Fig. 2 thus performs one
duration TB placed between each vector and matrix ele- vector inner product each To of time. In designing optical
ment When the input point modulators are pulsed on, the systolic array architectures, the unique global interconnec- 0
light intensity leaving the AO cell is the point-by-point tion features, which have served optical processing systems
product of the input data to the point modulators and the very well in the past, should not be abandoned, and thus
associated RF input to the AO cell These point-by-point optical systolic architectures should not attempt to emulate
products are collected on separate output detectors. The the various digital systolic architectures that are proposed.
contents of the output CCD detector array are then shifted The subsequent optical systolic architectures to be de-
down by one and at the next TB, the new point-by-point scribed make use of this philosophy.
products are added (by charge accumulation) to the shifted Let us next consider an optical systolic processor to
data previously present on the detectors. It is easily shown multiply a vector by a Toeplitz matrix (the elements along a
that the time-history output from the single channel on the diagonal are constant in a loeplitz matrix, i.e., the elements
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Fig. 3. Simplified schematic ot a Toeplitz-marix optical systolic processor [10] for matrces
with large bandwidths

~.1

of each row of the matrix are the same shifted by one names). The architecture of Fig. 3 is preferable for Tooplitz
position). In this case, the architecture of Fig. 2 again matrix applications when the bandwidth of the matrix is
suffices [10]. Now, the nonzero elements of one row of the large, and the architecture of Fig. 2 is preferable when the
matrix are fixed inputs (constant with time) to the input length of the vector is large. Since convolution is commuta-
point modulators, and the vector data are fed to the AO tive, the roles of the matrix and vector can be revervrd in
cell. Each T8, one row of the matrix is multiplied by the either architecture, as the application or system fabri(ation
corresponding vector elements (the AO cell achieves the merits.
time-delay shift required to align the matrix elements with
the proper vector elements automatically) and summed (by B. Systems for General Matrices
the integrating lens) to produce one element (a vector inner
product) of the final matrix-vector product on a single The architecture of Fig. 1 (or an associated architecture

output detector every T, The number of input point modu- with parallel readout detectors) can be extended to handle

lators required and the TBWP needed for the AO cell are general matrices at a significant increase in computational

determined by the size of the matrix, difficulty. The architectures of Figs. 2 and 3 are most ap-

An alternate architecture devised by Casasent [10] for the propriate for matrices with special structure (banded or

multiplication of a vector b by a Toeplitz matrix A is shown Toeplitz). Special techniques for circulant matrices (a, arise

in Fig. 3. In this system, the elements of b are fed time- in FFTs) and other matrix structures are also possible and

sequentially to one input point light modulator whose follow directly from conventional linear algebra. In this

output uniformly illuminates an AO cell fed with the data a subsection, we discuss optical systolic processors suitable

in one column of the Toeplitz matrix A. The light distribu- for the multiplication of a general matrix by a vector (i.e.,

tion leaving the AO cell at each TB is a scalar-vector when the matrix has no specific structure). The two major

product, i.e., bnan (where the input to the point modulator architectures considered are an AO modulator and an AO

bn is the associated element of the vector b, and an con- modulator-deflector. The modulator system is analogous to

tains all of the elements of column n of the matrix A, that of Fig. I but with separate detectors with parallel

properly apertured). This bn, product is imaged onto a readout (and a rearrangement of the method for feeding

linear output detector array. At the next 8, bnlan-1 is data to the system). This system is described elsewhere [20]

formed and added to the previous scalar-vector product. and is thus not detailed here. Rather, the frequency-multi-

Thus after NT, (the integration time of the detector) the plexed modulator-deflector architecture of Fig. 4 is de-

entire matrix-vector product Ab - d is present on the scribed. In this latter system [13], M input point modulators

output detectors. This Toeplitz matrix-vector product is are imaged through M spatially separated regions of an AO

thus achieved as cell, and the Fourier transform of the light distribution
leaving the AO cell is formed in the back focal plane of the

Ab - [a, - an][b, bJ r - b~a, + b2a2 + . a* b lens where it is sensed by a linear output detector array

(2) with parallel outputs. This system is thus topologicall] iden-
tical to that of Fig. 2 with the addition of parallel output

where a, is the nth column of the matrix A and b. is detectors. For simplicity, only five input point modulators
element n of the vector b. Since all columns of A are are shown in Fig. 4.
shifted versions of each other, the matrix-vector product is We describe the operation of the optical systolic processor
simply the convolution of the elements of b and the in Fig. 4 for the case when M signals (vectors), each of
elements of one column a of A. We denote this by a* b in length N and each on a separate temporal frequen \. are
(2) (where * denotes convolution). This formulation of a present simultaneously in the AO cell. We refer to this as
matrix-vector product as a convolution is also employed in frequency-multiplexing of the input AO cell data When

many high-accuracy digital optical systolic processors. the N input point modulators are pulsed on in parallel, the
Persons familiar with AO signal processors will recognize associated input vector multiplies all M vectors in the AO

the system of Fig. 2 as a space integrating AO correlator and cell. This produces the elements of M separate vector inner
the system of Fig. 3 as a time integrating acoustooplic products. Each vector inner product will leave the AO cell
correlator. These architectures have existed and have been at a different angle (proportional to the temporal frequency
used for correlation signal processing for many years [25]. used for each of the M input signal vectors to the A0 cell)
Thus in retrospect, optical signal processors have used sys- The Fourier transform lens thus forms each of these M
tolic architectures for many years (but under different vector inner products on M separate output plane delec-
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Fig. 4. Simpliied schematic of a frequency-multiplexed general-matrix acoustoopic (AO)
systcli processor 1131 with both local and global interconnections and with a matrix-vector

multiplication as its basic operation

tors, ie., the system performs a matrix-vector multiplication (i e., t -. x), and the Fourier transform lens behind the AO

in parallel each T, of time. During the next Ta, the matrix cell converts temporal frequencies to spatial coordinates

data in the AO cell shift up by To. At this time, N input (i.e., f-- x). Next, we consider matrix-matrix multiplica-

point modulators (spatially shifted up by one) are pulsed on tion. If A is fed to the AO cell one row at a time as

%ith new vector data and a new matrix-vector product a,,, - a t, f] and B is fed to the input point modulators as

(with the same matrix as before) is formed in parallel on the bin,, - b[ t, x], the matrix product BA is produced one row

output detectors After MT ,, a matrix-matrix product has at a time in parallel on the output detectors. With the

been formed as M matrix-vector multiplications (one per opposite encoding, a,, - a[f,t] and bim - b[x,t], the ma-

T.) For square matrices (M - N), N2 is the required TBWP trix product AB is produced one column at a time in

of the AO cell The motivation for this architecture devised parallel on the output detectors. Reference [20] provides a

by Casasent et al. 113] was that an AO modulator architec tutorial description of the frequency-multiplexed architec-

ture requires N' - TBWP input point modulators and out- ture of Fig. 4 for those readers less versed in optical Fourier

put detectors to fully utilize the processing capability of the transforms.

AO cell. In the AO modulator-deflector system of Fig. 4, In Table 1, we summarize the various operations that

the bit time To and AO cell bandwidth W are traded result from the different possible encoding choices. The

I TAW, - N2 - T8WP is fixed). The resultant frequency-mul- two matrix-matrix multiplication techniques, with the S

tiplexed architecture is easier to fabricate, can use larger T8  product matrix fed back to the AO cell and a new matrix C

intervals, and performs a more intensive basic operation fed to the input point modulators, produces the triple-ma-

(matrix-vector multiplication versus a vector inner product) trix products CBA or ABC. Various other operations can be

each T,. For an N X N matrix-matrix multiplication, we performed on this system using these basic functions. These

require an AO cell with TBWP - N 2, 2N - 1 input point are noted under applications in Table 1. Subsequent sec-

modulators, and N detectors. If the input point modulators tions will detail each of these. They are included in Table 1

are pulsed on with new vector data faster than every Ts, at this time for completeness. In general, these operations

higher computation rates are possible, and the modulator are accomplished by feeding back the output of the system

and deflector architectures achieve the same computation to the AO cell or the input point modulators. In subsequent

rate, with the associated need to feed input data and sections, we will assume that the matrix to be processed

collect output data at a faster rate. can be accommodated in half of the AO cell and that one

We now discuss how all of the basic linear algebra row or column of it can be accommodated by half of the

operations required can be accomplished on the system of input point modulators. If this is not the case, matrix parti- S

Fig. 4 by various data encoding choices. If the matrix A is tioning techniques are required. Such issues are not in-

fed to the point modulators one row at a time in parallel, cluded at present to simplify description of the algorithms

i.e., with its elements a,, time and space multiplexed as and architectures.

alt, x], and the vector b is fed time-sequentially to the AO Other encoding schemes are, of course, possible, but

cell, i.e., with its elements b, encoded as bit], then the have thus far not been found useful. These include: a)

matrix-vector product Ab - c is formed one element c,, at A - al t, I] and b[x), which yields Arb in parallel; b) A -

a time as c(t) on a single output detector. In this case, the a[t, f] and B - b[x, t], which yields AB; etc.

degenerate system of Fig. 2 is adequate (or Fig. 4 without
frequency multiplexing and with only a single output de-

tector used). In the case when A is fed one column in Ill. PARALLEL SYSTOLIC INDIRECT ALGORITHMS FOR THE

parallel per T1 to the AO cell, i.e., its elements am,, are SOLUTION OF SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

encoded as am,,n - a[ f, tJ and all elements b,, of b are fed in A wealth of literature exists on various algorithms for the

0 parallel to the point modulators as b,, - b[x] (i.e., solution of systems of linear algebraic equations (LAEs),

space-multiplexed), then the matrix-vector product Ab - r where we wish to find the vector solution

is formed in parallel in space on the output detectors, i.e.,

as c, - c(x). In effect, the AO cell converts time to space x- A-'b (3)

CASASINT ACOUS7oOPTIC LINEAR ALGERA PROCtSSORS 835



Table 1 Format Control for flexibility and Data Flow in Fig 4

Point
Operation Notation AO Cell Modulators Applications

Banded Matrix Multiplieatiin
Matrix-Vector Solve Banded Matrix Problems
Multiplication Ab b - bit] A - al t, x) Solve lriangular Matrix Pioblims

(Feedba(k to AO Cell or Point Modulators)

Matrix-Vector A - aft) Solve Toeplitz Matrix Problem
Multiplication Ab b - b(t) (one row) (feedba(k to AO Cell)

Matrix-Vector A - aft) b - bft) Solve Toel)lt Matrix Problem
Multiplication Ab (one (olumn) (serially) (feedba(lk to Piint Modulator,)

Matrix-Vector Solve Systems of LA[ N
Multiplication Ab A = a[ f, I] b - b[ xJ (feedback to Point Miodularors)

Triple Matrix Produ(r CBA
Matrix-Matrix t U Matrix Dec ompoition
Multiplication BA A a t, f] 8 = b t. x] Direct LAEs Solution bs IlU or QR

Least Squares Solution bh I Uor QR
(feedback to AO)

Triple Matrix Produ(I ABC
Matrix-Matrix (feedba(k to AO)
Multipli(ation AB A = aif, t] = blx.t ] QR Matrix De(ompo,o,,

Without Vector Outei Produ(t Pro( ,,,(r
(Feedback to Point Modulators and AC) (i 

to the matrix-vector equation In (6) and (9), w is an acceleration or ,.ahng parari., r that
Ax = b (4) regulates the rate of convergence and appropatel\ ,(ales

the eigenvalues to insure convergence Thi, (hoi e (.: one
where all vectors and matrices are assumed to be of order of these four iterative algorithms depends on man\ fi tor,
N (i.e., the order of the system of equations) throughout that are highly application and problem dependent e g
this paper. This one problem is central to many image and convergence of the algorithm, the dynamic range ot the
signal processing applications, and thus we detail various matrices, the number of iterations required, and the eae of
solutions for LAEs in this and the next section. The material implementation). The Gauss-Seidel algorithm in (I) Is
in Sections III and IV draws heavily on several surveys of equivalent to the SOR algorithm in (9) when w - 1 Con-
operations achievable on optical systolic processors [26], vergence of the algorithms in (7)-(9) requires that A have
[27] and associated journal literature [8], [281-130] As de- various specific properties [32], [33] In (6), A mul be
tailed by Rice [31] and others, the two major classes of completely stable or unstable, in (7), A must be strongly
solutions to systems of LAEs are direct (matrix decomposi- diagonally dominant, and in (8) and (9), A must be poitive
tion) and indirect (iterative). Direct algorithms are discussed definite (i.e., have only positive eigenvalues). Calculation of
separately in Section IV. w in (9) imposes other matrix conditions [32], [33]. We have

Four linear iterative algorithms to solve the LAEs Ax - b chosen to concentrate on the Richardson algorithm in (6)
can easily be identified. These solutions emerge from the because selection of w for stability and cnvergence is
additive splitting of the coefficient matrix into quite easy, because convergence is insured when A (or

A - D - L - V (5) -A) is stable (i,e., when all eigenvalues lie strictly in the
left (right)-half plane), and because its optical implementa-

where D is a diagonal and nonsingular matrix, L is lower lion is easy to detail. The selection of w and stopping
triangular (elements only on and below the main diagonal), criteria are discussed later.
and U is upper triangular. The four iterative algorithms then To understand how such iterative algorithms are imple-
become [26], 127], [32], [33]: the Richardson algorithm (also mented using matrix-vector processors, let us consider the
called simultaneous-displacement or semi-ileralive, de- use of (6) to solve Ax - b. At iteration one, we us our
pending upon whether w is constant with j) initial estimate x(0) of x and form Ax(O) (this require, a

x(i + 1) - x(j) - wAx(j) + wb (6) matrix-vector multiplication). We then subtract this from
the Jacobi algorithm the vector b, multiply the result by w, and add (0) Ito theresult. This produces the right-hand side of (6) and h,.n(e

x(j+ ) o '(L + U)j x(j) + D 'b (7) our next x(j - 1) estimate, which i , then fed back to the
input of the system. We then repeat the above operaton

the Gauss-Seidel algorithm with x - x(1). These iterations continue until %(/ ' 1) Q
X(j + 1) - [(D - L) - Jx(j) + (o - L)- b (8) x(j), Stopping criteria for iterative algorithms are dis( u,,,,ed

below. When x(j + 1) a x(j), we see that (6) redu(', to
and the successive overrelaxation (SOR) algorithm Ax - b, where x - x(j), and thus the resultant x i the

solution x - A- 'b to Ax - b. This iterative algorithm thus
0 + 1) - ((D - .L ) -'[(1 - w) D + wU]} requires successive matrix-vector multiplications and v(tor

addition at each iteration. The basic element of a processor
.x(j) + w(D - wL)-b (9) to iteratively solve LAEs is thus a matrix-vctor multiplier
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1i et u,. now consider the use of; i systems of figs. 2-4 to0
realize the iterative solution in (6) to systems of LAEs. For
the banded-matrix architecture of Fig. 2, the matrix is fed to _. ,, ow AO A

the input point modulators and the vector to the AO cell MODS CELL

and a new vector element is produced at the output detec-
tor each To. The aperture time TA - NTB for the AO cell is
often such that N is much larger than the bandwidth of
banded matrices. Thus the input point modulators can be
located at appropriate positions near the upper end of the
AO cell and the lower portion of the AO cell can be used
to store the calculated vector elements as they are pro- fig. 5. Simplified schematic of an optical systolic processor

duckd. In this case, newly produced vector data (one ele- 110] to solve banded-matrix LAEs by indirect algorithms

mer per T.) at the output are used to produce the right-
- hand side of (6) and are then immediately fed to the new 0

data slot available at the bottom of the AO cell. Such an
ar(hitecture is shown in Fig. 5 for the system of Fig. 2 (a
degenerate case of Fig. 4 with one output detector) This POINT AD

sytem requires only one detector, a one-channel resistive MODS CELL

sutractor and adder, and a single operational amplifier [10]. 0
To iteratively solve a set of Toeplitz LAEs, the systems of
Fags, 2 or 3 can be used as the basic block with feedback to -
the AO cell [10]. (fti A j 0t

Next, we consider the solution of LAEs with general
matrices without special structure. In this case, the architec-
ture of Fig 4 (or similar ones that produce one matrix-vec-
tor multiplication per TB) is considered as the basic element Fig. 6. Simplified schematic of an optical processor [13] to
in the system. For the specific system of Fig. 4, the vector solve LAEs with general matrices using indirect algorithms
%l/) data are fed in parallel to the input point modulators
and the matrix A data are fed to the AO cell as a[ f, t]. After extensions of iterative algorithms, we note that (6) and the
the matrix data have been loaded into the AO cell (after a associated processors can also be realized for the case
latency time NT.), the elements of the vector x(j) are when A, b, and w are time-varying functions of the itera-
applied to the input point modulators. Immediately, the tion index j. This extension allows the general LAEs solution
matrix-vector product Ax(j) is produced in parallel on the presented to be extended to time-varying stochastic gradi-
output detectors. This output matrix-vector product is read ent-following algorithms in adaptive filtering and signal S
out in parallel, operated upon by the N elements of the processing.
vector b, etc, to produce the right-hand side of (6) in Experimental demonstrations of the algorithm in Fig 4 for " -

dedicated analog hardware. The new x(j + 1) vector data a Toeplitz matrix in a deconvolulion application [10] and for
are then fed back to the input point modulators in parallel. the system of Fig S for a full matrix [34] have been reported
At the next T8 bit time, the next iteration occurs. Thus, one Iterative algorithms require attention to stability, con-
iteration occurs every T/, and the data flow in the system is vergence, the choice of w, and the stopping criteria These

P. such that the processor is kept fully active, i.e., the data- issues are problem dependent but easily obtained given the
handling requirements of the output vector data produced available a priori problem specifics. Iterative algorithms
and the input vector data required are simultaneously satis- appear essential for the so' ion of eigensvstems and for
fied by the feedback arrangement in a system which is singular value decomposition, as noted in Section V. and
easily synchronized. The associated architecture and data thus much future work on such algorithms is expected In
flow for this algorithm are shown in Fig. 6. The system of general, the successful use of iterative algorithms requires
Fig 5 employs the data encoding scheme in line one of slight application-dependent algorithm and matrix modifi- O
Table 1, and the system of Fig. 6 uses the encoding noted in cations. Specific examples will be detailed in future publi-
line two of Table 1. After NT8 of time, the system of Fig. 6 cations. However, several general guidelines are advanced
has performed N iterations of the Richardson algorithm in below.
(6) If the problem is, such that the iterations will not Let us now address the general guidelines for parameter
converge sufficiently in this amount of time, then the selection in indirect algorithms. We will consider selection
matrix contents of the AO cell are constantly recycled; i.e., of w and the stopping criteria. For such analyses, we be-
a, matrix data reach the upper end of the cell, the associ- lieve that one should utilize deterministic engineering tech-
ated new matrix data are immediately reentered into the niques and digital simulation rather than formal mathe-
bottom of the cell The length of the cell need only satisfy matical analyses (since formal analyses are valid onls
T, w NTg (where N is the size of the matrix to be processed), "in-the-limit") and develop tight upper bounds from ana-
and only N input point modulators are required [34]. In the lytical models to characterize convergence of the algorithm
case where the aperture of the cell satisfies T, - 2NT8 , new (27]. We will first develop the general expressions for the

0 matrix or vector data can be entered into the bottom of the case of the iterative algorithm in (6) and then separatel, S
cell as required for the next operation following the solu- address selection of w and the stopping criteria We first
tion of the LAEs. As we briefly discuss in Section V, the note that the right-hand side of (b) weights the differen(e
solution of LAEs is rarely the only operation to be per- between the calculated solution x(j) at iteration / and the
formed in advanced modern signal processing. As further weighted error w[A(j) - b] in the exact solution The
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algorithm successfully reduces this weighted error This is effect of noise in an optical iterative processor. A, noted at
best seen by writing the computational error e(j) at the jth the outset, the effective use of iterative algorithm,, is very
iteration as the difference between the calculated solution problem-dependent and merits further research
x(j) at the jth iteration and the exact solution x* , A 'b
The error vector is thus IV. PARAtlt SYSIOtic IRK T A!.ORilHMS OR 10

e(j) = x(j) - x*. (10) SOMLJloN Oi )SUtMS Oi LAEs

The error vectors on successive iterations can be related by The iterative solution of LAEs (Section I1) was an obvious

e(j + 1) = [I - wAe(j). (11) choice for the initial optical matrix-vector proces,or , using
fixed 2-D spatial masks to store the matrix data spatii; [8 ."

After j Richardson iterations, the error e(j) is related to the However, with the advent of systolic processors using AO
initialization error e(0) by cells, a different algorithm philosophy (direct solurions to

LAEs) emerged [39], [40] Since the matrix data in ,\stolic -

processors shift through the AO cell one row or column per - S

To facilitate selection of a fixed number I of iterations, we 76, a new vector row or column of a matrix mut be id to
require a tight upper bound on the norm of the computa- the AO (or other) transducer every Tf (i.e., the matrix in an
tional error in (12). The classic upper bound is optical systolic processor must be updated each T.) Re-

lle(j)ll < III - &A Il'lle(0)l1 (13) search on direct algorithms for the optical solution of LAEs

Let us now consider the choice of c and then return to and for matrix decomposition is thus quite new. Ho ',ver,

evaluating (13) It is well known [351 that for the eigenval- parallel algorithms for LU [28], QR 129], and Chole- 128]
uesmatrix decomposition and parallel algorithms for the olu-tion of triangular LAEs [30] and general LAEs using optical

(14) systolic processors have been detailed and published during

and that Ar of A iS bounded by the Euclidean norm as the past year. In this section, we summarize this research. InSection V, we discuss various possible extensions of these[M N 1/l. (1) initial matrix decomposition algorithms to more advanced
A, IIAII = a ,,I (15) optical systolic processors.

Im-I n-I The general philosophy in matrix decomposition solu-

Since the upper bound in (15) is weak, we select tions to LAEs is to convert the given Ax - b LAE problem

= P/lAil (16) into a simpler one where the new matrix has speofic
structure that allows the solution of a simpler matrix-vector

where p is a problem-dependent constant greater than two equation (by easily implemented techniques such as for-
In our algebraic Ricatti equation (ARE) solutions (Section ward or backward substitution) Most matrix decomposition
Vt-C), we have emperically [8). [361 selected p - 3 and techniques are variants of Gaussian elimination. The two *

consistently achieved excellent performance in over ten conditions used in the various Gaussian-elimination-ba,,rd
cases investigated algorithms are that: 1) the elements of any row of the matrix

If A is symmetric and w satisfies (14), the norm Il - wAll A can be multiplied by a nonzero real number, and 2) a
in (13) is well approximated [33[ by the spectral radius (the constant multiple of any row can be added to the assoi-
largest eigenvalue, in absolute value) of [I - wA], i e by ated elements of any other row. All matrices produced hb '

(1 -/C') where the condition number C - /... (the these operations are equivalent. The two classic direct L AE
ratio of the largest to smallest eigenvalues of A, in absolute solutions are LU (triangular) and QR (orthogonal) matrix
value) Substituting thI, into (13). we obtain decomposition. We thus discuss these two algorithms and

IIe(j)II < [1 - I/C(A)1'lle(O)II r exp[-j/C(A)]Iie(O)II their optical systolic processor realization in this section In
Section V, we discuss advanced applications of other de-

(17) composition algorithms to other modern signal processing

Equation (17) describes the performance (convergence) of problems.

the Richardson algorithm for j iterations We see that it is In LU decomposition, the matrix A in the original Ax = b -

determined by C and thus from an estimate of C we can fix problem is decomposed into a lower I and upper U trian-

the number of iterations at a constant number / to achieve gular matrix, where the diagonal elements of L are all

a given accuracy or error in (17). Selection of a fixed I is and the resulting decomposition is unique Thus the origi-

quite problem-dependent In our work in Section VI-C we nal Ax - b problem (where x is unknown) becomes (sub-

found stituting A = LU) two problems First, one can solve LU% =
b for y - Ux and second solve Ux = y for x, where U and

3 3OC () y are known from the LU decomposition and the firt

has yielded excellent performance for those cases consid- triangular system solution in step one Each of these sub-
ered In specific cases, i e.. if A is the covariance matrix, C problems requires the solution of a lower or upper triangu-
can often be approximated by the ratio of the strengths of lar system of equations. This is trivial on-line in dedicated

• the signals expected (37] Since the exact answer is rareh, digital hardware. In QR matrix decomposition, the matrix A
known and in some cases an estimate of C is not easil, is factored or decomposed into an orthogonal matrix Q

obtained, one can sirmply continue the :ion until the (such that Qr - Q ' or QQ' - I) and an upper trianguLir
* norm of the differen(, between successi%,, ,terates is below matrix R In this case, the original Ax = b LAE problem
- a preset error th .,hold [3 j Goodman and Song (38] have reduces to Rx - Q- 'b - Qrb - U, i e , the solution of

shown that this approach is also helpful in reducing the another simplified triangular system of equations R = a,,
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before Achieving the matrix decomposition in either of 0

these algorithms was recognized early [39] as the major P
computational step in such algorithms We thus first detail roxD

hov to achieve LU and QR decomposition (Sections IV-A MS L

and Il,-B) on optical systolic processors. Then, we address

an optical solution to the triangular system of equations

that results (Section IV-C), and finally (Section IV-D), we

detail a full direct systolic solution in N matrix-matrix

multiplication steps The major reasons for interest in direct

versus indirect solutions to LAEs is that the number of A A
iterations required in an indirect solution (Section III) is not P

ea.il\ quantified and is thus highly problem-dependent. C

Conversely, direct solutions require a fixed number of steps A ASSF..LE

N (the order of the matrix) The parallel aspects of direct

LAE solutions must be properly advanced and not imple- Fig. 7. Simplified schemai of an opti(al sst i I( po( ....,,

mtnted on systolic architectures as in the conventional [281 to perform /U matrix de(composiiun of a general neatl'

linear algebra descriptions. Our algorithms and archile- by Gaussian elimination

tures will demonstrate such parallel guidelines and the best

use of matrix decomposition with systolic processors. and column of the augmented matrix just (dl(ulatd
[A,,,, :b,,,. J is thus not altered or needed in each sub-

A Optical Systolic Realization of LU Matrix Decomposition quent matrix-matrix multiplication. Thus we remove oni •
row and column of the matrix product produced at eadh
cycle and reduce the order of each subsequent matrix-ma-

All matrix decomposition solutions to Ax = b involve trix multiplication by one. The remaining elements of A,,

miultiplying A and b by a decomposition matrix P. (this and b,,. , are fed back to the AO cell and the processor as

ields PA = A, and Pob - b,), multiplying A, and bL, by a they are produced (one row at a time in parallel). The ne,

matrix P. etc. After N such matrix-matrix multiplications, elements to be calculated in P,,, require only the ele-

one obtains a matrix PA and a vector Pb = l, where ments of one column m + 1 of the new A_,. matrix as in

P- P, -I ... P,,, " " " P. In matrix decomposition, each (19). Since one row of A, , is produced in parallel each T.
P,,,Am multiplication only affects columns (or rows) m the column elements of A,. needed to compute P_,, are

through N of A,,, ,. available one element each T, (from the same output

In LU decomposition, P. is chosen to force the elements detector). As each element of the proper A,,,. , column is

below the diagonal in the mth column of A, to be zero. produced, the element in the corresponding column of

On successive cycles, we require a matrix-matrix multipli- P,,,, 1 is calculated during T, and stored.

cation and a matrix-vector multiplication. These operations These calculations in (19) are performed in special-put-

are combined (since the same matrix is used in both) into pose analog hardware in the box noted in Fig. 7. These

the multiplication of the matrix i,,, by the augmented operations are easily achieved during 1T. since only one

matrix [A,,,b,,,] Each successive cycle of the system thus element per row of P,,, must be computed Similarly,

requires a matrix-matrix multiplication, calculation of one storage of these Pm, values and formatting the P,,,.-

column of P,. and assembly of the P, matrix. On each matrix (an identity matrix except for one column) for input

successive cycle, we produce: one row of the upper triangu- to the point modulators one row at a time in parallel is

lar matrix V, one element of the new ' vector (from the easily achieved [28]. The operations that the special-pur-

matrix-matrix multiplication), and one column of P- L- pose analog hardware must perform are inversion of the

(from the calculations of the P, matrix) This is achieved as first element of the appropriate column of Am. , during the

detailed below P_ is an identity matrix except for column first T6. At subsequent TB times, this element is multiplied

m whose elements #,"', are well-known and easily calcu- by the new column elements of Am, to generate the

lated (281 functions of the elements of the mth row of appropriate new elements in the new column in P,,,.. as 0

A_, , i.e, defined in (19). Each new row of Pm., defines a row of -

I - ,, which is available as an output as shown in Fig 7 After
pA' = at ,, /a,, (19) each matrix-matrix multiplication, one column of L ', one

where superscripts denote the step or matrix-matrix multi- row of U, and one element of bY are computed After N

plication number If A is neither strictly diagonally domi- matrix-matrix multiplications, the full LU decomposition

nanl nor positive-definite, pivoting (i.e, interchanging of has been achieved and L- ", V. and Y have been produced

I rows of the matrix) is necessary to insure that (19) is less Since the order of the matrix is reduced by one on each
than unity cycle, and (assuming one matrix-vector multiplication each

The data flow for use of a systolic processor for LU T.) the matrix decomposition (including NT, of latenc,

decomposition is shown in Fig. 7. The matrix A augmented time to load the cell) thus requires a total time

bs. the vector b (i.e., [Ambm] is fed to the AO cell, mu!ti- [N + (N - 1) + (N - 2) + .+-. T
plied by Pm toyield the newaugmented matrix [A,bibm. 1].

After each matrix-matrix multiplication, one row of the - [( N 2 + N - 2)12] T, (20)

final V matrix and one element of the final ' vector are or (for large N) a N 2/2T., during which (for large N)

produced (i.e. the first row of Am., and the first element approximately N 3/3 multiplications and additions are per-

of b. 1 are in final converted form). One additional row formed.
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B Parallel Optical Systolic Realization of QR Matrix data encoding in the last line of Table 1 Sin(, alculaton
Decomposition 129] of P, in (23) requires only one column of tli, ne, A

QR decomposition or orthogonal matrix factorization (A matrix, we generate A one column at a fie rtfir than

- QR) can be accomplished [41], [42] by modified one row at a time (using the data en(oding rdI Step
Gramm-S hmidt orthogonalization, Householder plane re- one is clearly the critical operation in terms ofi data f1),
fletions 14lt. or Givens plane rotations [431 The first meth- and efficient processor use Since one (olumrn of A (an be

od requires transposing a matrix and performing two ma- produced in parallel on the system, the ectlor oitemr prod-
trix-matrix multiplications to produce one column of Q Fig 4 by several methodti n2a], b39 If A is shme, otri, we
and R The last method requires one matrix-matrix multipli- cig 4 bseral mth [2] [39]pIf A ix ir. tiwe
cation to produce one element of Q and R Thus the can [29] operate with tha transposed a, matinx avf utilze
Householder QR decomposition appears to be the most
practi(al and most easily paralleled algorithm for QR fac- can [39] produce one column u of W in parallel dfl( (in N
torization, since it produces one column and row of the cycles) compute the vector outer product in (22). th- normtorzatonsice t poduesonecolmn ndrowof he from the trace of u.,u1t and evaluate A,,, Bothr of these

final deiomposed A, matrix in each step The basic steps

in this operation are similar to those in Fig. 7 for !U approaches require intermediate data storage and k iye the

de(omposition, i e., successive multiplication of A and b by processor inactive during fill times of the AO (ell More
a decomposiion matrix P to produce A, and b,, multpi- attractive data flow results if the optical system in Fig 8

cation of this matrix and vector by P to produce A. and b (using two crossed-point modulator arrays) is used to per-
etc The decomposition matrices in QR decomposiion are form the vector outer product. This vector outer-productdiferent from those in /U decomposition ach succesive system of Fig 8 is detailed elsewhere [55] It ioolves

matrix-matrix multiplication produces one row of the final
upper triangular matrix R After N such matrix-matrix mul-
tiplic ations, we obtain PA = R and Pb = Y, where P =
Q I - Q' QR decomposition yields, after each matrix-
matrix multiplication, one row of R and one row and
column of Q' as in LU decomposition. One row and
column of the computed augmented matrix [A,,b,,] are
not needed on subsequent matrix-matrix multiplications
Thus the order of the matrix-matrix multiplications can be _a
reduced by one on each subsequent cycle This will repre-
sent a considerable reduction in the computational time a

and system performance as we note in Section IV-D. The Fig. 8. Simplified schemati( of an optical s-vtoi( vector

full A,,, matrix after cycle m will have the structure outer product processor (adapted from 155])

£ A, = [ 0 -'+ ,',] (21) imaging the modulator at plane P, horizontally onto theLiW', output plane P3, with P, compressed vertically and ex-

where R is an upper triangular matrix. On subsequent steps, panded horizontally as shown to uniformly illuminate P.,
only W is changed (W, - _ denotes that W for A,,, is of and with P, imaged horizontally onto the P3 output plane
order N - m) To calculate the next P., decomposition More attractive data flow within the optical matrix multi.
matrix, only the elements of the first column of W are plier results if rows are fed in parallel with data encoding
needed We denote the first column of W by the column achieved as in the LU processor of Fig, 7.
vector w,., The equation to generate P,,, is [41) The use of the combined architectures of Figs. 4 and 8 for

I',, - I - kAu,,, (22) QR matrix decomposition is shown in Fig. 9. In this archri
tecture, one row of A, is produced in parallel on the

The vector u,, in (22) is the same as w. except for the first output detectors. The first row produced (one row of R) is
element, which is an output and the remaining rows are reinserted into the

u, - w., _ + g in( wo,) (23) AO cell. When the first column of A,,, has been produced.
it is fed in parallel (or sequentially as it is produced) to the

where ,_ is the norm or the vector inner product of w,,,, outer-product processor of Fig. 8, which produces a,,al, in
Le., parallel. This 2-D symmetric output in Fig. 8 is read out one

N-r line at a time in parallel, t', is calculated from the trace of
YE w, (24) aa', (with parallel output detectors along diagonals), k_ is

formed, then P, I is assembled one row at a time in

and the constant A, is parallel in simple analog hardware and fed to the input
point modulators Thus after one cycle, the necessarn rows

.,= [' + ',,lw. .I] - (25) and columns of [A A,,,. j,,. ] are in the AO cell and the first
row of the new P,,. , matrix is available at the input point

The steps in a Householder QR decomposition thus modulators. The next cycle can thus begin immediatel,
involve 1) calculation of P,, (this requires a vector outer After each matrix-matrix multiplication, one ro, of Q
product), and 2) the matrix-matrix and matrix-vector multi- and R and one element of Y' is formed Data flovA in this
plications P,A, - A,. and Pb,, - b,, . The second system is ideal, and full advantage is made of the reduced
operation is performed on the system of Fig 4 using the matrix order on each cycle Assuming a negligible time to
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fig. 9. ,mplitied ,chematic of an optical s tolh( pro(e,,,or 129] to perform QR matrix
decomi ',tion on a general matrix

0
produce the vector outer product and assemble each row of L /
P,_ (this is realistic), the system of fig. 9 performs a QR sR-AN(
decomposition in the same (N'/2)TB time as in (20) .

C Parallel Optical Systolic Processors for the Solution of
Triatngular LAEs [30]

(a) 0
In the architecture of Fig 7, we detailed how all of the

matices and vectors associated with LU decomposition
conJl be calculated in parallel, i.e., PA -LI, Pb = bI. and
P = L 'n the conventional second and third steps in a
dict LU decomposition solution to a system of LAEs, one LPI
so!,es Ly = b for y and then Ux = y for x The latter MOS CELL

triangular LAEs can easily be solved by back or forward V
substitution in dedicated hardware and on digital systolic
processors. Ghosh and Casasent [301 have also noted that
su;ch triangular systems can be solved optically and have
d. tailed the solution for the L/' = b case (the Ux = y case , - x
follows directl, as noted in Section IV-D) The system of
Fg 10 achieves this and demonstrates the general algo- I/f,•
rthm and architecture for an optical systolic processor to
,olve a triangular system of equations The data flow for the
rise of a lower triangular system of equations is described (b)
\\e assume that one row of L and one element of If are
produced in parallel on each cycle If these elements are Fig. 10. Simplified (a) and detailed :b) schem2tic for an
ted to the input point modulators and a one-channel adder opti'al systolic processor [301 to solve triangular LAE,
as in Fig 10(b), the solution x - 'b' is obtained sequen-
tallv from the system. The algorithm used is [30]

X, br,- r )_Xn (1/11-1) (26) P POINT b

n-1 MOD A -1

where ,, is the associated diagonal element of L. for L,
its diagonal elements are unity in LU decomposition and G--.
thus 1/,,, - I,,, involves no additional calculations The
data flow for this case is shown in Fig 10(b) and the
interconnections between Figs 7 and 10(b) are shown in ,
Fig. 10(a) This is the most efficient method for a direct -
solution of LAEs as we discuss in the following section AT4E

D Parallel Optical Systolic Processor for the Direct
aolutol of I SA o Fig. 11. Simplified schematic of an optical processor tor the

direct solution of a system of LA[s (a combined version of

Conceptually. it is easiest to view an LU decomposition fig, 10 and 7 or 1i

solution of a system of LAEs as a sequence of successive
matrix-matrix multiplications with the augmented matrix the augmented matrix are performed to convert A to an
[A,, :b,,. ,] Such an architecture is shown in Fig 11 for upper triangular matrix U. N additional matrix-matrX mul-
the implementation of the Gauss-Jordan [41] algorithm for tiplications are then performed to diagonalize the upper
the direct solution of a system of LAEs In this algorithm triangular matrix and to properly condition the augmented
and architecture, N matrix-matrix multiplications of P, b, vector b These last N matrix-matrix multiplications a(om-
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plish the back-substitution algorithm as depicted in Fig. 10 various algorithms (Figs 5-11) with different digrees ot
In the final augmented matrix, A is an identity matrix and parallelism and with associated detector (nip'lxitv de-
the final b vector is the desired solution vector x to the pending upon the precise archite(lure) Spiriif, ('.sues of
original Ax - b problem. The detailed steps in this the detector system readout and the data and i,i"raioral
Gauss-loidan algorithm are detailed elsewhere (42]. (44] flow must be detailed for each system to as,,,-- the best
The required feedback and data flow for such an algorithm architecture to use for a given appliation and op, iation
are shown in Fig. 11.

In this architecture and algorithm, 2(N- 1) successive V. EXTiNSIONS Of BASiC AtCORI I HMs AN) OPkWAl I' IN

matrix-matrix multiplications are performed (full N X N
matrices are required in this case) This architecture is The matrx-vector matrx-matrx, and trpl('-matrx niht-
attractive because of the simplified schematic diagram that plication operations (Section II), plus the matrix (,i ,mposi-
results, as in Fig 11. However, this algorithm requires 2( N lion methods (Section IV) and the techniqui,,, 1T ,oling
- 1) matrix-matrix multiplications (with all matrices N x [AEs (Sections III and IV) represent the bdsi( o1. rations
N). The execution time for such an algorithm requires required in ad,.anrid linear algebra pro(eoor,, Sp, ,,er [5] I

(N - 1)T, setup time plus (2N - 2)NTB of time for the has defined the fundamental need,, of a modorn r, :1-tiie
matrix multiplications, for a resultant calculation time of matrix or systolic processor to include the aboe , )t ations

plus the solution of eigensystems, singular ,.alue .r,.om-
(N - 1)TB + (2N 2 - 2N)T, 2N"T. (27) position (SVD), and least squares solution In thi,, - tion,

This is significantly longer than the time required using a these latter operations, other matrix de omp)i,,iir, algo-
combined version of Figs. 7 and 10 as we now detail First, rithms, and various extensions of the basic operat'r., are
we note that L I and b are available as outputs in Fig 7. briefly discussed. Emphasis is given to those nlethoiJ- that p
We could form !. 'b = y (i.e., the solution y of Ly = LUx = are most suitable for parallel implementation on optical
b) by a simple matrix-vector multiplication However, the systolic processors, to those methods for which an optical
system of Fig 7 has already produced L- b = Yi' as an systolic processor implementation has thus far been
output and thus, by the use of an augmented matrix, we detailed, and to the most stable and preferred algorohms
havo already solved the first lower triangular system of For reasons of space, all of these discussions must be quite
Lmis Hence, if we feed the stored U and b data produced brief. The complexity of different problems and operations
from Fig 7 back to the point modulators and AO cell, we is usually described by the number of multiplication and
can compute x = U W' directly in an additional NT, of additions required for problems of size N. The problen,., of
time using the system of Fig. 10(b) and the algorithm mu-e concern are of order N3 . In Table 2. problem, of

different order, the name given to each, and examples
b

- Umnxn)(/ur,) (28) of each are provided.

where u_, denotes the elements of U. Table 2 Complexity Measures lor Diferent Problem,.
Similar remarks apply for QR decomposition as achieved (Adapted from [5])

in Fig 9. In this case, the original Ax - b problem is
converted to RA - Q'b - Y, where R and 1' are outputs Order Name fxampl's

from Fig 9. Thus this upper triangular system of equations N Scalar Inner Product. fIR filter

can be solved in an additional NT, as noted above for the N? Vector Linear Transforms. Fourier Transform.
final x solution. Thus in a direct solution implemented as Convolution, Correlation.
above with augmented matrices, the size of the matrix is Matrix-vector Products
reduced by one on each cycle, and U or R and the new 1Y N3  Matrix Matrix-Matrix Products, Matr"
are stored Then, U or R are fed to the point modulators Decomposition. Solutions of tigin-

and Yf to a serial adder (as in Fig 10), and in an additional systems or [as or teast Square'.
NT, after LU decomposition the final solution is produced. Problems
The total time for the LU or QR versions of such an
algorithm is thus the time in (20) plus NT8 or In many cases, the system of LAEs is overdetermined (i e

(N"/2) TE + NT. (N?/2) T8  (29) there are more equations than unknowns) In this cast
Ax - b is a matrix with A4 rows and N columns, where

for N large This is one-fourth the time required in (27), and M > N The conventional least squares solution to mini
storage is a factor of N less Propagation of the full matrix mize Jlax - b,12 results in the classical Gauss-normal equa-
data can introduce and accumulate additional errors, since lion AAx - Arb. One can solve this as LAtis where th( -

the many 0 and I matrix elements in such a full matrix matrix is A1A (a square matrix) and the vector is Arb This i,
propagation may not be identically 0 and 1. Thus it is not attractive since the new matrix has a condition number
preferable to use the architecture of Fig 11 as in Figs 7 or 9 that is the square of the one in the original problem This
and on the last cycle to feed U or R to the input point will significantly increase 'he effect of any computational
modulators Such an architecture will thus achieve a futll errors Modern signal processing solutions to least squares
direct LU or QR solution to a system of N LAEs in N" Te/2 problems employ matrix decomposition by LU, QR, and
of time SVD methods. If a QR decomposition is performed (A =

In closing this section, we note that most of the proposed QR), the Gauss-normal equations becomc % = (AA) A'b
optical systolic processors (Section II) can implement tfhc or Rx , Qrb- 1r, and thus from the R matrix and the U
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,ector (produced for example in Fig 9). only the solution of LDP', and L' (optical realizations of each of these are quill
an upper triangular system is required (this (an be a(hieved straightforward) 1U and LDU decomposition require that
on the sstem of Fig 10 as detailed in fig 11) Similar A be only nonsingular. If A is symmetric and posi ive-defi-
remark, appl, to an LU de(omposition In adaptive beam nite (as often occurs in signal processing), then 1D1' and
forming (Section VI). calculation of the adaptive weights L.I decomposition are quite attractive since they avoid the
can hi formulated as a constrained least squares problem. need for pivoting in the calculations required to compute"
In solstg this, the constraints are first removed and a the new P,,,. The optical realization of Choleskv (11' or
Consentional least squares problem results which can be LDL) decomposition [53] has been detailed [28] and fol-
sol,.ed a, abose Such advanced adaptive noise cancellation lows directly from fig 7. LD1 decomposition is the prefe r-
algorinthms using direct least squares techniques are attrac- able choice in such cases since it avoids the need to form
tve .ine theN provide better convergence than the gradi- the square root, as required in L' decomposition Orthogo-
ent-bad'd algorithm noted in Section VI They require the nal matrix factorizations are preferable for general matrices,
matrs de(omposition algorithms described in Section IV since they are numerically stable, since there is no need for
and t,,,lo%% pivoting (as can be required in LU decomposition of gre-

So'utions of eigensystems is a second major problem that eral matrices), and because fast shifted QR algorithms (for
arise, i modern signal processing algorithm,, The newes t eigensystem solution) exist
beani-forming and direction-finding algorithms for high- As noted in Section IV, numerically stable QR de-
resolution performance require the solution of a symmetric composition can also be achieved by modified Gramm-
eig- rsstem for each resolved temporal frequency [45] for x Schmidt [53] and Givens techniques [53] The optical realiza
and X The most popular algorithms for eig nsystem solu- tion of these methods can be directly realized bv a se-
tir, involve the lacobian method [46], SVD [67], House- quence of matrix multiplications with calculations of the S
hoi ier or Givens transformations [411 (to calculate selected elements of the next transformation matrix required after
eig, 'alues). and the QR algorithm [41] In the QR algo- each matrix product is formed The Householder technique
rithm, similarity transformations are applied (A is trans- appears to be the most parallel, stable, and easiest algo-
formed into B = T AT, where A and B have the same rithm to realize optically as quantified in Section I -D For
eig .nsalues and the eigenvectors y of B are related to the digital systolic processors, Givens techniques are presentls
eig.rivectors x of A by Ty = x). Using QR decomposition, the most popular and attractive ones (this is due to the
thf matrix Q is calculated such that Q'AQ = D (where D architectural differences between most digital and optical
is .ipproximately diagonal, with small off-diagonal ele- systolic processors)
mrts) This is achieved by successive matrix decomposi- As noted earlier, SVD is a powerful and useful technique
tior.- and matrix multiplications i.e., at step m we decom- for least squares, eigensystems, and high-resolution dtrec-
pci,' A,, = Q,,,R,,, and form a new matrix A,,.. , = R,,Q,, tion-finding problems Although this is a complicated

Q,,,A,Q,,, This procedure is repeated recursively until de(omposition algorithm, it provides estimates of the con-
Q A,,,Q,,, is approximately diagonal The final matrix is dirion number of the matrix and the number of signals S
Q Q Q "- Q.. The high ac(uracyachieved .ith such present In SVD, the matrix A is factored into three matrices
ort ogonal transformations makes their general use most A - PDQ', where P and Q are orthogonal matrices and D
ateictive is a diagonal matrix The singular values of A are the

Ihe optical realization of QR solutions to eigensystems elements of D When applied to a least squares problem. -
ha, been detailed [291 and follows directly from fig 9 and the SVD solution x,- QD 'Prb is easily calculated once
th, above steps Shift algorithms [41] can be used to greatlr the SVD has been performed. Thus far, the only optical
re ,,!ce the number of matrix multiplications needed If the realization of SVD described [47] used 2-D modulators in an
mi-,ix A is full and not symmetric, similarity transforms can optical matrix-vector processor Extension to optical s-
or-'. reduce A to a Hessenberg matrix (an upper triangular tolic architectures appears to be rather straightforward
m.jix with one additional diagonal belos, the main diago- A review of the wealth of linear algebra algorithms in
na!) Standard decomposition methods exist to reduce Hes- modern signal processing is beyond the scope of this paper
5,&r . erg matrices to tridiagonal form and symmetric matri(es However, the selected algorithms noted above and the
toi tridiagonal (using the QR algorithm) or bidiagonal (using selected applications discussed in Section VI provide a
S\ D) matrices The optical realization of several of these good introduction and overview to the role of optical
mi :fiods have been detailed [29]. [47] The preferable solu- systolic processors in modern signal processing A summar\
ticiis appear to be to use QR techniques to reduce A to of attractive solutions for various mathematical problems i,,

trit1agonal form or one-sided SVD techniques to reduce A provided in Table 3 This table is the compilation of mar\
to tidiagonal form, and to then calculate the eigenvalues of references [5], [26]. [27], [41], !53] The matrix solution gi en
th, i simplified matrices Such methods are the subject of are by no means complete and represent what pri on;
act,.F, current research [29] [48)-150] Such eigensvstem appear to be the better approaches for optic:i s .. ,,(
solations are preferable to power method,, for which several processors Several general signal processing ap. h( ; -)n,,
opl,(al realizations [51] [52] have been described These are then noted in Table 4. For each, an attractiv " prL.om
rep-sent other fruitful areas for future optical systoli formulation and one candidate solution are 1 )ired As be
pro essor research fore, various other problem formulations a,'d candidate

L[I us next advance several remarks, on other triangular solutions are possible beyond those listed !- T3- - 4 Hes,-
and orthognnal matrix decomposition and then briefl, ever, the methods listed appear at present i , .among the
dis( os SVD Many triangular factorization tchniques are most attractive ones for realization on ortical svstoh
pos ile besides LU decomposition These in(ludo IDU. processors
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Table 3 Attractive Solutions for Various Problems

Problem Matrix Features Attractive Solution

Solution of Time- Banded finite Differences
Dependent PDEs [291 Imphiit or Explicit

Deconvolution [101 Toeplitz Time or Space Integrating
(Siationary) Processors with feedback

Solution of Systems None Direct by QR
of AEs Diagonally Dominant Direct by LU

Ax- b Stable Indirect
Symmetric Positive Definite Direct by Cholesky

Eigensystem Solution Real-Symmetric or Householder Direct
A - Xx Complex Hermitian Decomposition

Symmetric Iterative QR Algorithm
[41], [531 Symmetric Nonnegative Direct SVD Reduction

Definite to Bidiagonal

Symmetric Generalized A and B are Real Symmetric Unitary Transforms
Eigensystem Solutions B is Positive-Definite or W

Ax - ABi [45]

R - AYA is Positive- Direct Matrix
Least Squares Solutions Definite Decomposition
IlAx - b1l2  A7,4 is Nonsingular QR Decomposition

ArA is Singular SVD

Table 4 One Possible Problem Formulation and Solution for Selected Specific Applications

Attractive
Problem Candidate Solutions Reference

Application Formulation
0 High Resolution

Direction Finding Symmetric Eigensystem SVD [45]

Recursive Least Squares
State Estimation Kalman Filter (Square-Rool Formulation) [66]

Adaptive Noise Triangular or
Cancellation Constrained Least Squares Orthogonal Decomposition [371

VI. SELECTED APPLICATIONS FOR OPTICAL SYSTOLIC We consider the diffusion equation as a second-order
PROC[SSORS PDE example

A wealth of physical, signal processing, and control prob- au(x,t)/at - C282U(Xt)/cX 2  (30)
lems require various linear algebra operations and the solu- to be solved for u(x, t) with boundary conditions u(x,O) = I

tions of diverse matrix equations. Brief discussions of several f(x) for 0 < x < L and u(O, t) - u(L, 1) = g(t) forO < t < T

applications are now advanced. These are drawn from avail- We discretize time and space into increments At = T/
able optical systolic processing literature and are chosen (N + 1) and Ax - L/(I + 1), and denote discrete points in
and intended to demonstrate different points and features: time and space by nat and jAx. If we apply single dif-
1) solutions of partial differential equations (PDEs) with ferencing in time and space to both sides of (30), we obtain
emphasis on matrix structure and implicit and explicit solu-

0 lions (Section IV-A), 2) radar and sonar applications with -l" _ 2 [ U1 - 2 u + u7- .
attention to simple adaptive filtering and the need to han- At 4 ( A ) (31)

die complex-valued data (Section VI-B), and 3) optimal ( )'

control with attention to the solution of a nonlinear matrix where superscripts denote time increments and subscript,
equation on an optical systolic processor (Section VI-C). denote space increments. Rearranging (31), we obtain

A Solution of P01s --,+ - 2A)u7"i+Au,(
• 1for n >_ 0, 1 </ < 1 (32) 4

PDEs are the standard mathematical models for many
physical problems and distributed systems in applied mech- where X - c 2At/(Ax) 2 . An alternate formulation results it
anics For steady-state PDEs (eg, elliptical equations), spa- we apply double differencing to the space derivatie on the
tial discretization leads directly to LAEs which can be solved right-hand side of (30). In this case, we obtain
by the indirect (Section It1) or direct (Section IV) solution (I + 2X ) - u - "
methods noted earlier Time-dependent PDEs represent

* another major class of mathematical models. Discretization -x". , + (1 - 2A) u" + Au," . (33)
of such equations can yield implicit or explicit solutions as
we now demonstrate [29] Let us now consider and compare the use of (32) or (33)

0 844 PROCtDINfCS OF IH 1ii vOL '1 NO 1UJ 1984



to se for u( x.) as u,' (at t 1At for all 1 < / /), then B Simplified Aoaptive Noise Cancellation

u' (at t = 2At for all j), etc. From (32). calculation of

u,- I for all t requires a simple matrix-vector multiplica- One of the original motivations and appli(atons for

tion u"' =
)  Au '"', where A is tridiagonal with elements optical matrix-vector processors was adaptive phased-arra,

A, (I - 2A), and X along the three diagonals (where u' is radar processing [54]. This application [55] introdued the

kno,,%n from boundary conditions or from the calculatons original iterative optical matrix-vector algorithm in (b) We

at the prior t - nAt time step). However, for the single-dif- briefly consider the calculations required to obtain the (t

ferencing approximation to be a good approximation, Ax of adaptive weights w for an adaptive phased arras, to st er

must be small, and for stability 0 < A < 0.5 is necessary, and the antenna in a direction defined by the vector s and to

thus a large number of very small time steps At are needed null the noise field defined by the covariance matrix M

to produce accurate results. Hence, such explicit solutions This problem is the basis for much of radar and sonar blam

fich initially look quite attractive because they require a forming. In the simple case of a linear array of N ewerlh

matrix-vector multiplication to obtain the data at the next spaced antenna elements, the received signal v;J t) al air

etiro step) can, in practice, require many small A1 samples tenna element n is multiplied by an appropriate Aeight 1, 0
sml For the full antenna, the output signal for one set ofand mane, small At time steps, and thus, a significant num- weights is

h,( of malrix multiplications

Let us next (onsider the Crank-Nicholson algorithm as
t,rniulated in (33) In this (a(e, u(" " is calculated from s(t) = .wv.v, ( t).
u' ' . w~hich is known from boundary conditions or calcula- n-1

t:o s at the prior t = nAt time step b, solving the LA[s The weights defined by the vector ware chosen to (ontrol 0

Au"' .. = b' "' Thus the expli(t solution in (32) requires the antenna beam pattern E(O), where e is the angle at
inl,, a matrix-vector multiplication, whereas the implicit which the beam is steered. In general, w is complex-valued
solution in (33) requires the solution of a system of LAEs at and varies with time in conjunction with the noise environ-
'a(h time step An impli( solution is still attractive be- ment. w is chosen to null the noise sources within the
cause it is unconditionally stable and has second-order antenna's field of view at the desired angles and frequr'n-
accura(, and because the number of matrix multiplications cies, and to produce a peak at the desired steering direc-
in the explicit solution may be quite large. Since the matrix tion. Hence, a least squares formulation is appropriate as

is tridiagonal, solutions to such LAEs can become quite noted in Section V.
simple using, for example, the system of Fig 2. In many Various adaptive control loops are possible to achieve

cases, the coefficient c in (30) is constant or is slowly this. Their operation and convergence are detailed else-
.arying with time, and hence so is the matrix A In such where [54]. In vector notation, the dynamic behavior of one
cases, matrix decomposition or direct solutions are quite type of adaptive control loop and weight vector is de-

attractive, since the matrix decomposition need be per- scribed by

formed only once, thereafter the simplified triangular sys-
tems solution can be used with a different exogenous rw/G +(M + IG)w -* (34)

vector This would require only a matrix-vector multiplica- where r is the time constant of a low-pass filter and C is
tion at each time step, as in the explicit algorithm in (32). the gi ithi the conto loT vanc atr a sTraezoda. RngeKutaandoter iffrece p- the gain within the control loop. T[he covariance matrixhas

Trapezoidal. Runge-Kutta, and other difference ap- elements in,- (v,*(t)v,(t)), where (-) denotes a time
proximaions in space and time are also possible. These will
yield different forms for (32) and (33), but with similar average. Assuming G :P 0, then in steady state (w = 0),

matrix structures and conclusions. In general, all discretiz- (34) reduces to Mw - s*, and the set of adaptive weights w

ing methods will yield implicit or explicit solutions with is given by the solution w - M-s
" to a set of LAEs The

banded matrices Thus many physical problems directly various algorithms described in Sections III and IV and the

result in matrix-vector problems with quite structured various optical systolic architectures in Section II are suit-

matrices Deconvolution applications [10] are yet another able for solution to such problems. Least squares, SVD, and

case when structured matrices result In such cases, the eigensystem solutions (Section V) are the most attractive

received signal s(t) is the convolution of the original signal present methods for such beam-steering problems using

a(t) with the impulse response h(t) of the transmitting new algorithms noted in Section V.

medium In terms of discrete signal samples, c_ h,, a,, Matrix inversions will arise in various applications At this
(where the summation is over the range of sample points) point, we note that the architecture and algorithm depicted

in Figs 9 or 11 can perform matrix inversion if the aug-
Toepitand cotains eemnts - Ta(whu to reorix A is mented vector b is replaced by the identity' matrix i of
gien h and c requires the solution of a system of [Aas with order equal to that of A. In this case, the system solves the

a Toeplitz matrix The Toeplitz matrix Structure will exist for matrix-matrix equation BA = I for B- A b, a direct
linear shift-invariant distortions, and its bandwidth will de- algorithm. A parallel iterative algorithm [13] for matrix inver-

pend upon the length of the impulse response function In sion on the system of Fig, 6 is also possible by modifying

such cases, the archite(tures of Figs 2 and 3 with ap- the algorithm in (6) To develop this algorithm, we consider

propriate feedback as in Figs 5 or 6 can be employed A the solution of a general matrix-matrix equation C = AB

variety of applications thus exist for structured matrix and for B - A- C by a new indirect method. The conventional

LAE solutions The best solution, algorithm, and archite(- iterative algorithm is rewriten as •

ture depend upon the specific problem and application B,,.- (A'B, + C) (35)
However, implementation methods for the basic algorithms
and architectures have been described (Sections Il-tV) where A' - (/1w - A) Calculation of A' is trivial and (35) is
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considerably simpler to implement than the conventional Newton-Raphson solution was employed to solve the non-
0 matrix extension of (6). linear matrix equation, and calculation of the Jacobian was

Extensions of adaptive phased-array radar processing to achieved by an efficient digital table lookup method or by a
provide multidimensional adaptation in velocity or time as new optical systolic processor as described in the refer-
well as angle or space have also been described [56]. The ences noted. A more general optical systolic method to
matrix vectorizing methods discussed in Section VI-C are solve nonlinear quadratic matrix equations is described be-
quite useful in such extensions. Calculation of antenna low [36], [62], [63].
weights also introduces the issue that the vector will have The specific application considered is the solution of a - 4
complex-valued elements. Various methods for handling linear quadratic regulator (LQR) problem of modern control
matrices and vectors with bipolar-valued and complex-val- engineering, in which the control signals u(t) that mini-
ued elements have been described. These include space, mize a quadratic cost-performance index for the general
time, frequency, or wavelength multiplexing. The most linear system model
popular general methods for representing complex-valued dx/dt - Fx(t) + Gu(t) (36)
data are by a four-tuple representation (the positive- and
negative-valued real and imaginary parts) or a three-tuple are desired. The solution is
representation (each complex number is represented by its u(t) - -Kx(t) (37)
three projections on the 0° , 120, and 2400 axes in the where the LQR feedback gain matrix K is computed as
complex plane).

Other classical signal processing operations can also be K - R- GTS (38)
described as matrix operations, some as vector outer prod- and the symmetric matrix S is the solution of the algebraic
ucts rather than matrix-vector multiplications. In signal and th equatic (AR
processing applications, the matrix used is generally the Ricatti equation (ARE)
covariance matrix. It will be real, symmetric, and nonnega- SF + FS - S.S + Q - 0 (39)
tire definite (for real random vectors) or Hermitian symmet- where L - GR-Gr. Selection of this application was moti-ric and nonnegative definite (for complex vectors). Hence, vated by the availability of all of the necessary matrices for
different matrix properties will result in different appli- the F100 turbofan jet engine, thus allowing specific quanti-
cations, and appropriate decomposition algorithms utilizing tative data to be obtained and used. The key step in the

* the matrix features should be employed. Calculation of the calculation of u(t) in (37) is solving the quadratic matrix
ambiguity function [57] of two signals is a classical signal equation (39) for S. Hence, we concentrate on one solution
processing operation. In its discrete form, it can be de- method recently developed [63]. This will result in an opti-
scribed [44] as the product of three matrices (one matrix cal systolic system realization of earlier algorithms [36], [62]
being Toeplitz and another being diagonal). The required devised for an optical matrix-vector processor using a 2-D
cross-ambiguity function can thus be calculated on a matrix light modulator.
processor by performing the indicated triple-matrix product. The solution S to (39) is devised beginning
Detailed algorithms and optical systolic processors for these classical Newton-Raphson algorithm. Substituting the ARE
and other advanced signal processing functions described
here and in Section V are the subject of current research.

S(k)F(k) + F(k)S(k) - -S(k - 1)LS(k - 1) -- Q
C Optimal Control, Stat Estimation, and Kalman Filtering (40)

e' State estimation and Kalman filtering applications are results, where k denotes the iteration index and where
among the most demanding ones for which advanced highly F(k) - F - LS(A - 1). (41)
parallel optical systolic processors with very high computa-
tional rates are needed. The basic operations required in This is known as the Kleinman algorithm [64]. Noting that
Kalman filtering are well known [58]. They include triple- the right-hand side of (40) is known from the value S(k - 1)
matrix products, matrix inversions, and the solutions of at the prior (k - 1) iteration, we see that (40) is linear in S.
nonlinear matrix equations [13]. Algorithms and architec- the Kleinman algorithm has thus converted the nonlinear
tures to achieve all of these operations (except the last one) quadratic matrix equation in (39) intr 'he linear equation in
have been described earlier in this paper. We thus now S in (40). We also note that (40) has the form of the
advance a new algorithm for solving nonlinear matrix equa- Lyapanov equation and that solutions to this equation using
tions on optical systolic processors. This will enable our the Kronecker or tensor product and vectorization exist [65).
repertoire of operations achievable on an optical systolic To convert (40) to LAEs, we vectorize the matrix on the
processor to include all of the basic operations needed for right-hand side of (40) by lexographically ordering the ma-

• state estimation and Kalman filtering. trix elements. The resultant column vector is denoted by
For the case when the noise statistics are known, a simple y(k). The vectorized column vector associated with S(k) is

two-channel optical systolic processor design has been ad- denoted by x(k). Equation (40) can now be described by
vanced for steady-state Kalman filter computations [59]. In the system of LAEs
the more important case of a fully adaptive Kalman filter, H(k)%(k)- y(k) (42)
the sequence of operations necessary and the required
processor architecture, as well as the flow of operations, is where H(k) is a matrix with specific block structure as
far more complicated. The full solution to this problem for detailed elsewhere.
an extended Kalman filter has been detailed 160], 161] for The steps in solving for the matrix S in the form of the
an air-to-air missile guidance controller. In this case, a vector x in (42) thus involve at step k: a) evaluation of F(k)
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in (41). the right-hand side y(k) of (40), and formatting of H stances, robust and stable algorithms are essential and
in (40), and b) the solution of the LAEs in (42) for x(A). The specific attention should be given to selecting algorithms
steps in a) involve simple matrix-vector and matrix-matrix that do not increase the condition number (and hence the
multiplications For the steps in b), indirect or direct algo- accuracy requirements) of the original problem.
rithms (Sections III and IV) can be used. For the case when The solutions of LAEs, least-squares problems, and eigen-
an indirect solution to (42) is used, the solution x for S in systems are essential problems in signal processing The
(39) can be described by the two-loop iterative algorithm major direct and indirect algorithms to solve LAEs were

ri- 1, A)= k I- w.(k)H(k)]x(r, ) w(k)y(k). noted, For general-purpose processors, direct algorithms are _
often preferable since the number of iterations and process-

(43) ing time required is known. For specific applications, mdi-

For a fixed k, (40) is the Richardson algorithm in (6) used to rect algorithms are acceptable. Direct algorithms appear to
sol~e (3q) for %(k) We use r to denote iterations in the require more precision at each multiplication step than do
Ri(hardson algorithm solution to the LAEs in (42) H(k) and indirect solutions; however, they will then also provide,
y( ) are then updated and new LAEs in (42) are obtained, more accurate results. In general, it is necessary to emplo,
"A', denote the iterations of the Kleinman algorithm by the improved algorithms and attention to specific applications
Inchx k The solution described to a quadratic matrix equa- to fully address such issues. Iterative solutions to nonlinear
ton thus employs an inner iterative loop (implementing the equations, eigensystems, and large matrices are still the
Ri(hardson algorithm for solutions to LAEs) and an outer preferable and often the only approach.
loop (implementing the Kleinman algorithm, to update the In this paper, many optical systolic architectures have
LAEs) These iterations continue until the solution x(k + 1) been reviewed and several architectures detailed Attention
- x(k) = x is obtained. Direct LAE solutions to (42) and was given to architectures for matrices with specific struc- S

other solutions (more complicated to formulate) to (40) are ture (banded, Toeplitz, and triangular), and to matrices with
of course possible. The algorithm described above is one general structure. The solution of LAEs, least squares prob-
,xample of the class of operations and algorithms possible lems, and eigensystems were selected as the most funda-

en optical systolic processors for advanced signal process- mental problems. It is quite significant that one optical
trg applications. systolic architecture can achieve all of the basic operations

required. Efficient digital systolic architectures have thus far
\II DISCUSSION, SUMIARN. AND CONCLUSIONS required a new mesh connection for different functions

The use of various indirect and direct algorithms and associ-
The accuracy and performance of any optical processor is ated optical systolic architectures to realize each were de-

alwsays an issue of concern If the ;)erformance of the scribed and discussed. Several specific applications were
analog architectures described is not sufficient, they can be detailed to demonstrate the many diverse linear algebra
estended to digital-optical architectures as noted earlier problems and operations that emerge. These included the
and elsewhere. In ,,1 instances, the error source modeling solution of partial differential equations, adaptive noise 0
and performance measures used merit attention The con- cancellation, and the basic operations required in state
\entional roundoff error analysis available for many digital estimation and Kalman filtering.
linear algebra algorithms is not appropriate for optical sys- The field of optical systolic processors is quite young and
tolic processors whose errors (such as spatial nonuniformi- active. Many architectures, parallel algorithms, and systems
ties in the input, AO cell and detector planes, plus detector with potentially high computational rates above 10' multi-
noise) are considerably different in nature. Initial modeling plications per second have been suggested. In several in-
of such error sources in optical processors has been accom- stances, prototype systems have been fabricated, and in
plished [25], and the results are applicable to both analog or other instances commercially available architectures are
digital optical systolic processors The appropriate perfor- being fabricated. Considerable system fabrication, algo-
mance measure used is also of ,roncern This will depend rithm, and application-directed research remains. All pre-
on the purpose of the processor For general systolic array sent indicators promise a bright future for this newest topic
processors, the average or maximum error in any one ele- in optical computing Optical systolic array processors
ment of the computed matrix or vector is one performance achieve the flexibility and general-purpose features (that
me.sure In specific applications, different performance have escaped prior systems), the accuracy and performance
measures can be defined For the LQR example defined in (that have eluded prior approaches to optical computers),
Section VI-C, the accuracy of the closed-loop poles of a and such architectures can be fabricated with available
controlled system matrix is an appropriate performance components (at competitive cost, size, weight, and power
measure (since these poles describe the transient response dissipation specifications)
of the closed-loop system). In some cases, such as many
adaptive noise cancellation applications, the set of adaptive ACKNOWLEDGMENT

weights may only need to be computed to 1-percent accu-
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ABSTRACT

Direct and indirect solutions to linear algebraic eauations (LAEs) are considered with
attention to the use of optical acouito-optic (AO) systolic array processors. Specific at-
tention is given to error sourcei in one-AO systolic processor. A case study of an LAE solu-
tion is conducted. The first error source model for an optical systolic array processor is •
advanced. Using this and digital computer modeling, a direct solution is found to te less
sensitive to various optical system error sources than is an indirect solution. Acoustic
attenuation is found to be the dominant error source in the AO systolic array processor con-
sidered. Related error source remarks on different bipolar data representation schemes and
on optical versus digital solutions to a triangular system of equations are also advanced.

1. INTRODUCTION

Optical linear algebraic processors are currently receiving considerable attention l-1f].
These architectures vary from simple optical systems that compute matrix-vector products [1-
2] to iterative optical processors 13-4] that solve matrix-vector equations or LAEs. Newer
architectures using AO light modulators [5-7] are more attractive and can be fabricated with
presently available components. These architectures 15-7] and more advanced ones using 2-D
CCD-addressed liquid crystals 18] represent yet another class of optical linear algebra
systems known as optical systolic array processors. This paper focuses on only

- the discussion of one specific architecture. We have selected the frequency-multiplexed AO
architecture [7] for our specific case study in this paper. Extensions of thisfreouency-
multiplexed AO architecture have been described for the optical solution of: nonlinear
matrix eauations [9-10], LAE solutions by matrix-decomposition [11-13] and the solution of
the resultant lower or upper triangular system of equations 114].

In this paper, we consider only AO systolic processors and specifically only the frequen-
cy-multiplexed optical system (this decision is made because the architecture allows more

J2 flexibility in the data format possible and in the operations achievable on the system). In
this paper, we concentrate on various possible optical and dioital solutions to LAEs. Atten-
tion is specifically given to the error sources present in optical systems. This subject
has not received attention previously. Other techniques to achieve increased accuracy by
encoding of the data to be processed using various methods are not addressed (such architec-
tures generally result in a significant reduction in the number of operations possible per
second and in an increased complexity in the output detector array). Similarly, vector-outer
product optical processors are not addressed (since they reouire the readout of an entire
2-D output matrix of data every bit time TB).

In Section 2, we briefly review th' AO frequency-multiplexed architecture and several of
the different operations that it can achieve. Attention is given to iterative (or indirect)
and direct (specifically matrix-decomposition) solutions to LAEs. When direct techniques are
used, the final step reauired is the solution of a triangular system of equations. In Sec-
tion 2, we note that this is also possible both optically and digitally. In Section 3, we
advance the first error source and component model fo7 an optical systolic array processor
using AO devices. In Section 4, we discuss how this model is incorporated into a digital
simulator to model and analyze the effects of the different error sources present in such
adva ced data processors. We also advance initial remarks on the effects of different data
encoding schemes for representation of bipolar data (with attention to the effect that opti-
cal system and component error sources and noise have on the resultant performance and accu-
racy). In Section 5, we present initial results obtained for an optical direct and indirect"
solution of a system of LAEs. We also consider a hybrid optical and digital direct solution
toan LAE problem. we quantify the dominant system and component error sources found and the
performance and accuracy achievable. Conclusions, guidelines and a summary are then advanced
in Section 6.

2. FREQUENCY-MULTIPLEXED AO SYSTOLIC PROCESSOR

The basic frequency-multiplexed systolic AO ar-ay processor (SAOP) [7] to be considered

is shown schematically in Figure 1. It consists of a linear array of point modulators



4 3.h2"

imaged through separate spatial regions of an AO cell with the Fourier transform of the re-
sultant data collected on an output linear detector array. The point modulator inputs can
be time and space multiplexed and the AO cell inputs can be time and freauency-. Jltiplexed.
This enables this system to perform matrix-matrix multiplications with one matrix-vector
oroduct (one column or row of a matrix-matrix product) produced in parallel every bit time
TB . The bit time TB is the time required for the AO cell data to propaate between two spa-
tially adjacent regions of the AO cell. This time TB also represents thje rate at which new
data can be fed in parallel to the AO cell and to the linear point modulator input array.

LDs/ 'ELL LN

LEDs |""

SHIFTED 4- f2 -mn

5 - f3 c (tlt.:A B

b nm b(tf)

FIGURE 1 Schematic diagram of a freouency-multiplexed
AO systolic array processor.

To describe the operation of this system most simply, w consider its use in the calcula-
tion of the 3 x 3 matrix-matrix product
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For now, we consider the case when time and space multiplexing of the rows and columns of A
and time and frequency-multiplexing of the rows or columns of B is performed, as noted in
(1). After 3TB, the entire B matrix is present in the lower 3TB of the AO cell. Point modu-
lator inputs 3-5 are now pulled on with the first row of A. The first row of the matrix-
matrix product A B - C is then produced imediately on thi output detector array in parallel.
At the next TB, tTe dita input to the AO cell is shifted up by TB. We now pulse on point
modulators 2-4, with the data input being the next row of the matrix A and immediately ob-
taining the second row of C at the output of this system. This procedure is repeated until
all rows of the matrix-matFix product have been produced.

We now briefly describe several other data formats and applications of this basic matrix-
matrix or matrix-vector processor architecture. In general, with 2N -l LEDs and with an AO
cell with a time-aperture TA-(2N-1)TB we form N vector inner products on N element vectors
every TB (all in parallel). As we have previously shown 17,12-16], pipelining and the flow
of data and operations is quite ideal in this system architecture.

2.1 INDIRECT (ITERATIVE) SOLUTIONS OF LEs

For an indirect or interative solution to the LAE equation

Ab - c (2)

for

b-A-Ic, (3)

we prefer the iterative Richardson algorithm 14,6,7,15). In this case, we use the basic
optical matrix-vector multiplication system in Figure I in conjunction with a parallel analog
adder and feedback of the output directly into the AO cell. This configuration, described in
(7], realizes the iterative algorithm

b(j+l) - b(j) - u) Ab(j) 4 wc, (4)

where J denotes the iterative index or time-step, and where w is the acceleration parameter,



which is selected as described in (4]. When b(j+l) = b(j), equation (4)converges to (2) and
the output b is the desired solution in (3). -To achieve this [7], we freqvency-multiplex the
rows of A and time-sequentially multiplex the co2 nns of B. As'we will see later, recycling S
of A within an AO cell of length TA = NTB is preferable to the use of a longer AO cell length
TA a (2N-l)TB .

2.2 BANDED MATRIX AND TRIANGULAR SYSTEM SOLUTION

If we feed the vector b output back to the AO cell and if one row of A is fed to the LEDs
in parallel at one time (14], then the same architecture in Figure 1 is Tdeal for the solu-
tion of banded matrix problems and a triangular LAE solution. 0

2.3 DIRECT SOLUTIONS (MATRIX-DECOMPOSITION)

If we frequency-multiplex the columns (rather than the rows) of the matrix A and if we
feed one column (rather than one row) of the matrix B to the LEDs in parallel, then we form
the matrix-matrix product B A at the output (rather than the matrix-matrix product A B) [7].
This data encoding approacE -is ideal [12,13] for matrix-decomposition algorithms (tEe-basic
step in a direct solution of an LAE). In [12] and [13], we detail this matrix-decomposition 0
procedure for the cases of LU (Gauss elimination), QR, and Cholesky decompositions.

2.4 rATA FLOW

Moreover, we showed earlier that the pipelining and data flow in such an approach
is attractive (the same remarks apply to the indirect algorithms described in Section
2.1). Specifically, every bit time TB, one time-slot of data leaves the AO cell and a new
time-slot of data must be entered into the AO cell. With the aperture time TA of the AO cell •
properly chosen for a given problem, we find that the parallel output detected data can be
operated upon and fed back immediately to the AO cell input. Thus, in the realization of all
of the algorithms we describe, the output data are immediately fed back into the system as
they are produced.

2.5 MATRIX INVERSION

The data encoding in Section 2.1 is also appropriate to allow matrix inversion on this
system. This aspect of this processor was fully detailed in [7]. It is thus not discussed
in further detail here.

3. ERROR SOURCE MODEL

Our :omponent error source model is summarized in Table 1. We consider calculation of
the matrix-vector product A b - c. We separate all component errors into: input plane, AO
cell plane and detector plnie errors, and we denote each by a separate superscript as noted
in Table 1. We denote the spatial coordinates of the input plane and the AO cell by the sub-
script i and the frequency coordinate of the AO cell and the output detectors by the sub-
script j.

ERROP SOURCE NOTATION ERROR SOURCE NOTATION

Spatial Errors Subscript i AD CELL PLANE ERRORS

Frequency Errors Subscript j Amplifier Errors I + 6 (2)

Input Plane Errors Superscript 1 Spatial Response j 1 6 (2)

AO Cell Errors Superscript 2 AO Transfer Function H(fj)

Detector Plane Errors SuperFcript 3 Acoustic Attenuatior exp(-ox)

INPUT PLANE ERRORS DETECTOR PLANE ERRORS

Point Modulator Spatial Response I + 6!3)

Spatial Gain 1 + 6 1')  Dark Current dj

Nonuniform 1 + 6(1) Time-Varying Noise nj(t)
Response 

-x2
Coupling (Spatial) 1 + 6Cre

TABL 1i3

TABLE 1. SAOP ERROR SOURCE MODEL
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For the input plane, we note that the light intensity incident on the AO cell with all
errors included can be described by the factor

bi(l + (1) + 6) (1))
ii 1 ii i2 i3'(5

where b is the point-modulator vector input data. Similarly, the space i and frequency j
transmittance of the AO cell for the matrix element aji is described b,

r&ji " ajil I + (2 ) + 012))H(f )exp(-axi) (6)

Likewise, the actual detector plane output B (the observed output) is related to the exact

s' value and the other error source parameters by

ft. - . (3)nt-Ujs~ + 6 1 d j (7)

C-nbining all of these factors in (5) - (7), we note that in general all of the error
sources must be small (this is realistic and necessary to obtain reasonable accuracy in such
a proce.sor). In this case, we can describe the observed detector output 6 in terms of the
exact inputs aj, and bi as

L% ajb.(lp )(16 )H(f.)e + d. + n.(t), (8)

where

v 1 i() + 6(l) + 6(1) + (2) 8(2) (9)1i il i2 i3 "

For a (2x 2) matrix, the observed outputs [8_1, 2 ]Tare related to the various component error
sources in Table 1 byFcl H'l °I '

Lej (3) 0][H ][ 1)Lb d2 fl0 ., 0 H Lt 2] L° 0 " L 0 - [dL [n____JL __r [IL
LET SPAT AO FREQ RESP DATA SPAT AO ATTN DATA DET DET
ERRORS MATRIX ERRORS b DARK NOISE

INPUT I

If we assume that the acoustic attenuation a is small, then (10) reduces to

[:ji] ]* [ 6] [n ]e c 62  n 2

EXACT SPATIAL TEMPORAL

This latter formulation in (11) is attractive because it shows that spatial and temporal
errors can be separated in such an AO systolic processor. This is useful, since all spatial
errors can then be reduced to any desired level by applying the associated fixed correction
factors to the input point lioht-modulator input and to the output detector elements. In
closing our remarks on error sources, we noted that the new spatially-multiplexed bipolar-
data representation scheme we advanced earlier 17) is very attractive since it does not re-
sult in the magnification of system errors. The various biasing and scaling techniques pre.-
viously proposed to accommodate bipolar data in such an optical matrix-vector processor re-
sult in a magnification of any residual system errors (by a :actor equal to the dynamic range
of the matr.). In general, such errors rapidly become quite intolerable.

* 4. SIMULATION OF SAOP ERROR SOURCES

To determine the dominant error sources, to quantify the degree to which the vb.-ious error
Lources must be reduced, and to quantify the performance to be expected as a function of all

6.



of the various system parameters, digital simulation techniques are essential and were em-
ployed. In this section, we discuss several of the details rssociated with our digital
modeling and simulation of the SAOP system error sources and model noted in Section 3. From
(10), we note that the SAOP system and component errors are multiplicative and are a matrix
cascade. This is distinguished from the error source analysis anO modeling we conducted for
the fixed-mask iterative optical processor (lOP) system. In the case of the lOP system, we
found the error sources bf this architecture to be additive 1101, rather than multiplicative.
we also note that.for the matriA-matrix multiplication required in the LU decomposition (one
approach to the direct solution of LAEs), the matrix cascade of errors is reversed since row-
wise multiplication (rather than column-wise multiplication) is employed (see Section 2).
However, the same basic results are expected for both systems. We also note that we assume

-p (in our analysis) that the residual spatial errors (for the input, AO cell and detector sys-
tem) are reduced to a significantly low level, but are present even after correction. Our
intent is to quantify the amount to which correctable spatially-fixed errors must be reduced
and the amount of time-varying detector noise and acoustic attenuation that is allowable in
such a processor.

In our digital modeling, we represent residual spatial errors (input, AO, and detector
plane) by Gaussian random variables with 3a maximum deviations equal to the fractional residual error
remaining after corrections. These residual errors are included as fixed-multiplicative
factors that we apply to the point-source inputs and the detector outputs at each matrix-
vector multiplication. Detector plane temporal errors (noise versus dark current spatial
variations) are also modeled by similar Gaussian random variables applied to each vector out-
put produced on the detectors. However, a different seed-value is used to produce uncorrela-
ted noise that is added to each matrix-vector output product at each TB time to appropriately
model detector system time-varying noise. This approach models the time-varying detector
noise and distinguishes the fixed spatial errors from the time-dependent noise errors.
Acoustic attenuation effects are handled by directly including the necessary exponential at-
tenuation factor into the input data to the AO cell (and the associated transmittance of the
AO cell). Acoustic attenuation is dispersive. However, our initial tests included only a
fixed attenuation m which can thus be transferred to the point-modulator input plane (and
subsequently corrected to the degree necessary).

As performance measures, we use three quantities. First, the Euclidean norm of the error
Sin the calculated vector b is used; i.e.,

IIbj avg ( D( -b.)2 ]11 2. (12)

This error measure corresponds to the average error in the calculated vector output E. If we
divide j1Lbij by the norm of the exact b* vector, then

I Lbti vg - (100 x(I Ibl1/IIb II) (13)

defines the average percent error in the elements of the calculated vector. In (12) and (13),
I ( ) I denotes the Euclidean norm of the -.>rresponding vector, 6 denotes the measured value
of the vector, and b* denotes the exact value of the associated vector.

The second performance measure we use is the maximum error in any single element of a
calculated vector. This corresponds to a very worst-case error. This performance measure
is described analytically by

ILbmax% - maxfloo(S .b)/b*j (14)Smax, .m ~lO i

This error measure is an extremely worst-case one. The final error-measure we con.iidered
was the maximum error in the closed-loop poles uf the resultant system. This error measure
is simply defined by

-&X max (100 ( ~1/1
max i 1 1 1

where 1i denotes the calculated poles and X denotes the location of the exact pole values.
This particular error-source measure is most appropriate for optimal control applicaticrn
It is also most appropriate to provide a s2ecific case study and application of a zituatin

0 in which a large error in one element of the vector output does not appreciably affect the
net performance of the system.

In general, different performance measures are appropriate for different problems and
applications. Attention to the worst-case element error in (14) is not an apFropriate meas-
ure of an optical LAE solution for many specific cases and applications. When the applica-
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tion can be specifically defined, other performance measures are more appropriate than this
worst-case one. For certain specific case-studies and applications, we note the fact that
the following performance measures are appropriate for t!,- various indicated applications:
locations of the closed-loop poles of this system (this is appropriate for control applica-
tions), SNR (this is appropriate for adaptive filtering applications),and symbol error rate

(this is appropriate for communication applications). For Lur present studies, we use
the three performance measures noted above: (12) [average error), (14) [maximum percentage
error in any element of the computed vector], and (15) [the taximum perzent error in the lo-
cation of the closed-loop poles of this system.

5. INITIAL EXPERIMENTAL RESULTS

The purposes of our initial simulations were: (1) quantification of the amount of allow-
able residual spatial errors in the input and detector planes (these are entered as percent-

ages in our table); (2) quantification of the amount of allowable time-varying detector noise
(this time-varying detector noise parameter is also entered as a percentage in our tables of
data presented); and (3) quantification of the amount of AO cell acoustic attenuation possi-
ble (this is entered in units of dB/cm in our tables of data. Only the results for 0.1dB/cm.
or approximately 61 spatial errors across the AO cell are shown and considered in the data
presented. This was necessitated by the fact that the use of larger a values yielded un-

acceptable performance and no convergence for the algorithm in many instances). Data for
the three performance measures in (12), (14) and (15) are given in the tables.

Tte specific LAE solution case-study used arose from the final outer-loop solution of
an LOR (linear quadratic regulator) design with the algebraic Ricatti equation for an F1O0 air-
craft with three states and three controls (9,10). This situation corresponds to an LAE of
order N - 9. The matrix associated with this matrix-vector solution has no specific struc-
ture and is essentially full. It is characterized by a condition number C - 2.48 and a
dynamic range - 47.7. The acceleration parameter w - 1/mx -0.044 was selected as we
described earlier 14,61. For this specific problem 1H1bI - 0.4f is the average output plane
value. This parameter can be used to express the average error Il b~l as a percentage of the
indicated system performance.

Our tests were intended to quantify the component performance of an indirect (or iterative)
solution using the Richardson algorithm and a direct solution (using LU decomposition). For
the iterative solution, we used J = 10 iterations. This value was determined from four times
the condition number of the matrix as described in [161.

TABLE 2. ERROR SOURCE EFFECTS IN AN INDIRECT LAE SOLUTION

RESIDUAL TIME-VARYING OCLL RROR MASRES
TEST SPAT (A DETECTOR ATTENUATIONNUMBER EROS() NOISE (t)

INPUT DET NS/cE b Ja 11 b (t) IL Imx)

1 0 0 0 0 F.28x10 0.39 0.26x10 3

2 0 0 1 0 0.7x10
3  2.8 0.52xl0

2

3 1 1 0 0
2

4 1 1 1 0 0.39x10 - 2 1.36 0.26

5 1 1 1 0.1 0.16 61.8 15.8

6 0 0 0 0.1 0.16 60.4 16.1

In Table 2, we show the results of an indirect solution for six different sets of syste'
and component errors. The error and noise-free results in Test 1 were obtained with 36-bit
digital accuracy. As seen, excellent accuracy was obtained in these experiments (the per-
formance obtained is limited by the finite word-length and number of iterations performed).
Test 2 shows the effects of 1% detector noise error-source alone. The accuracy obtained is
better than 0.10 even though one element of the matrix-vector output was in error by 2.8%.
The effects of It spatial input errors and It spatial output errors (Test 3) alone show that
better than It accuracy is still possible on such a system. However, the maximum error in
one element of the computed matrix is 1.71. In Test 4, both soatial errors and detector
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noise were present. The results of these tests confirmed the implications advanced by our
earlier findings on similar tests performed on our lOP optical matrix processor. Specifical-
ly, we found that the presence of both spatial and temporal errors did r. t appreciably affect
the accuracy obtained in this system (compared to the case when only one type of error was
present). Zn Test 6, we used the value a - 0.1dB/cm for the acoustic attenuation present.
From the results obtaintd and from the results in Test 5 (when acoustic attejzustion and all
other error sources are present), we see that acoustic attenuation is the dominant error
source effect and tha' the a value used must be significantly reduced if wc are to obtain
adequate performance from such a matrix-vector processor.

ra TABLE 3. ERROR SOURCE AND NOISE EFFECTS ON DIRECT AND INDIRECT 0
AND OPTICAL AND DIGITAL TRIANGULAR SYSTEM SOLUTIONS
TO LAEs.

TEST NO. RESIDUAL TIME-VARYING AO CELL ERROR MEASURES - -
K) SPATIAL DETECTOR ATTENUATION

SUS INPUT DT dD/cm I Ibt I ibnax (1) Ivnax(1)

N 0 0 0 0 0.28xl1
3  0.39 0.26x10

3

INDIR

DIRECT 0 0 0 0 0.11x100.19x10
2  0.10X10

- 4

? (VAX) 0 0 1 0 0.8x16
3  1.27 0.98x10

2

4(SAOP) 0 0 1 0 1.0x16
3  1.47 0.22x10

1

s5(SAOP) 1 1 0 0 l.nxl6 2  6.0 0.34

6(SAOP) 1 1 0 0.1 1.0x16 2  8.8 0.39

7(SAOP) 1 1 1 0.1 l.lxl6 2  9.2 0.37

I (VAX) 1 1 1 0.1 1.4x10- 2  8.7 0.57

In Table 3, we compare direct and indirect solutions to LAEs. The error and noise-free
results in Tests 1 and 2 show that better accuracy appears to be obtainable with a direct
solution. However, this is misleading since, if the number of iterations 3 were increased
to 50, then both algorithms would yield similar error and noise-free performance. In Tests
3 through 8, we included various amounts of spatial errors, temporal noise, and acoustic
attenuation. As seen, a direct algorithm yields better accuracy and performance than an in-
direct algorithm. Specifically, 0.5-2% accuracy is obtained (the maximum error in one ele-
ment is 8-91) even with It input spatial error, It output spatial error, It detector noise
and 0.1dB/cm acoustic attenuation all present. We also note from this data that in a direct
solution, acoustic attenuation is no longer necessarily the dominant error source. Further
tests on various implementation: of the direct LAE solution were also conducted and are in-
cluded in Table 3. These involve performing the matrix decomposition optically followed by 0
the solution of the resultant triangular system of equations digitally to 36-bit accuracy
(this is denoted by VAX in parentheses in Table 3) or optically using our triangular system
solutions algorithm 114] (this is denoted by SAOP in parentheses in Table 3). Comparing the
results of the VAX tests (3 and 8) and the SAOP tests (4-7), we find negligible difference
in performance whether the triangular system was solved optically or digitally. This is
expected due to the nature of the simpler vector inner product calculations required in a
triangular system solution. S

6. SUMMARY, CONCLUSION AND GUIDELINES

In this paper, attention was given to one optical systolic array architecture, the fre-
quency-rultiplexed SAOP. The flexibility possible in formatting data in this architecture
was noted together with examrLes of how the same architecture can be used for many different
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operations. This flexibility plus the reduced component requirements (fewer point light
modulators and detectors and lower per-channel data rates are required to achieve perform-
ance comparable to other architectures) appea S to make this system more attractive than
others. Hence, we restricted attention to it. Extensions of this basic architecture using
multi-channel AO cells are also obvious and direct. In this paper, we also advanced the first .

component error-source model for an optical systolic processor and we noted that many system
and component errors are spatially-fixed and hence are correctable. To quantify the level
to which various errors and noise must be reduce' and to quantify the perfoimance expected,
we detailed the digital model for the SAOP architecture and its system and component error
and noise sources, By simulation, we tested an indirect algorithm solution and found that
acoustic attenuation was the dominant error source, that 1t accuracy could be obtained; but
to do this the acoustic attenuation must be below 0.1dB/cm. We compared direct and indirect
solutions and found that direct solutions yielded significantly better accuracy and perform- S
ance. Finally, we compared direct solutions in which the triangular system of equations
that resulted was solved optically and digitally. Negligible difference was found if either
approach was used. Using a direct solution, accuracy and performance approaching It appears
to be possible using realistically achievable component quality and detector noise.

Further tests, experimental verification, and more general analyses and trends and quan-
tification for other specific applications is necessary before definitive general conclusions -

should be advanced. However, qualitative explanations for all of the results obtained have
been advanced and thus the trends observed appear to be representative of a general matrix-
vector LAE problem solution.
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. Optical Kalman filtering for missile guidance

David Casasent, Charles P. Neuman, and John Lycas

1,.*1

Optical systolic array processors constitute a powerful and general -purpose set of optical architectotre, with
high computational rates. In this paper. Kalman filtering, a novel application for these architecture, is in-
vestigated. All required operations are detailed; their realization by optical and special-purpise analog elec-
tronics are specified; and the processing time of the system is quantified. The specific Kalman filter appli-
cation chosen is for an air-to-air missile guidance controller. The architecture realized in this paper meets
the design goal of a fully adaptive Kalman filter which processes a measurement every I msec. The vital
issue of flow and pipelining of data and operations in a systolic array processor is addressed. The approach
is sufficiently general and can be realized on an optical or digital systolic array processor.

I. Introduction We note recent publications on systolic Kalman fil-

A multitude of optical systolic array processors1-  ters, which appeared as our work was reaching corn-
have recently been proposed. These processors corn- pletion. A steady-state analysis of finite word-length
prise a broad class of optical linear algebra processors. effects, roundoff-error propagation, stability and esti-
Numerous engineering applications of these processors mation sensitivity is detailed in Ref. 10 for a systolic
have been described, including adaptive phased array Kalman filter architecture. Our fully adaptive optical
radar,6 optimal control,,-8 and Kalman filtering.3.9 In systolic Kalman filter (which processes a measurement
this paper, we detail the realization of a discrete-time every 1 msec) incorporates the automatic updating of

r extented Kalman filter (EKF) for air-to-air missile the Kalman filter gain and covariance matrix of the
guidance using optical systolic array processors. This error of state estimation and thus differs appreciably 5
application provides a specific case study of the use of from this work. Extended Kalman filter algorithms for
an optical systolic linear algebra processor in a full optical implementation are proposed in Ref. 11, but
problem application. This case study leads to a novel implementation details are not provided. In this paper,
discrete-time EKF algorithm with sufficient parallelism we detail the design and realization of a complete dis-
for realization on an optical or digital systolic array crete-time EKF optical systolic array processor.

- Uprocessor. Our approach results in a novel algorithm A. Motivation
and novel operations that are possible on optical systolic
processors. We realize an EKF because the missile and Proportional navigation guidance (PNG)2 is the
target are modeled by linear differential equations in traditional guidance law used for air-to-air missiles. In
Cartesian coordinates, whereas the measurement model this controller, noisy measurements of the target's po-
is nonlinear. Linearizing the nonlinear measurement sition and velocity are fed to the PNG computer, which

equation about the most recent relative motion esti- estimates the line-of-sight rate and calculates the mis-
mates results in an EKF. Discretization of the con- sile acceleration for the steering autopilot, which is then
tinuous-time Kalman filter leads to a novel discrete- applied to the missile's actuators (the fins) to control
time algorithm. Such a discrete-time algorithm is es- the missile's position and velocity. These estimates are
sential for realization on optical or digital systolic pro- fed back to the PNG computer, new target measure-
cessors. ments are taken, and the process is repeated. Of the

PNG assumptions, removing the assumption of a con-
stant relative missile-to-target velocity provides the
largest improvement," especially for the case of evasive -
targets. For advanced guidance laws to be practical,
enhanced target motion estimates are required. -

The authors are with Carnegie-Mellon University Department Mtf
Electrical & Computer Engineering. Pittsburgh. Pennsylvania Modern filtering algorithms, such as the Kalman filter,

15213. can provide such estimates. The Kalman filter pro-
Received 20 January 1984. vides the optimum estimate (in a least-mean square or
0003-6935/84/121960-07$02.00/0. maximum likelihood sense). Such algorithms use the
C 1984 Optical Society of America. kinematics and dynamics of the missile and the target,
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plus the statistics of the noise in the measurements and za) = hjx~t l + w.tl. (21
in the dynamic process disturbances. We model the sensor noise vector w,(t) by a zero-
B. Overview mean Gaussian white-noise vector with covariance .+

matrix R. In Eq. (2) we note that z(t) is the measure-
In Sec. II, we highlight the missile-target and mea- ment; h[x(t)] is nonlinearly related to the state vector

surement models, and review the conventional contin- x (since Cartesian coordinates rather than polar coor-
uous-time Kalman filter and EKF formulations. A dinates are used). The angles 0 and 0 are the directly

r novel discrete-time EKF is then introduced (in Sec. III) measurable quantities (because of the sensors used and
7 and the linear algebra operations required in each step the techniques available). We chose Cartesian coor-

are defined. The major operation required is the so- dinates since the target-missile model is linear and its
lution of a quadratic matrix equation. In Sec. IV, we propagation is easier to realize. Since the measurement
review optical systolic processors with attention to one model in Eq. (2) is nonlinear, we linearize the nonlinear
specific architecture 3 and to the variety of achievable function h[xi by the matrix-vector product H(t)x(t),
operations by format control. A new optical system where H is the gradient of h. This approximation leadsr solution to a quadratic matrix equation is then ad- to the EKF (Sec. III).
vanced in Sec. V and the required operations are noted.
These include a new optical systolic system for calcu- C. Continuous-Time Extended Kalman Filter
lation of the Jacobian matrix. In Sec. VI, the realization The objective of the extended Kalman filter (EKF) • .-
of all operations required in our EKF is summarized, is to produce an estimate i(t) of x(t) for each 0 and ( • .
and the load time and calculation time for each step in measurement z(t). We linearize h(x), about the most

our algorithm are detailed. Our full system architecture recent estimate (t) of the relative spatial coordinates,

is advanced, the critical time path is isolated, and the and approximate hli(t)J by the matrix-vector product

processing time required for our EKF is quantified. H(ta (t), where the gradient matrix is

Our summary and conclusions are then advanced in Sec.

VII. Ht
oftt 110

II. Continuous-Time EKF for Dynamic Systems We thus realize an EKF from the conventional KF.

In this section, we highlight the missile-target and The three steps and three equations which define an
measurement models and review the continuous-time EKF follow' 5:
Kalman filter and EKF formulations. i(t) -= Fi(t) + K(t)lz(t)I - hli(t)] I + u(t), (3)

A. Missile-Target Model P(t) = FP(t) + P(t)F7+ Q(t) - P(t)HTtR- 1 (t)Hit)Ptt).

The linear dynamic system model for the missile and (41

target is described by the matrix-vector differential Kit) P(t)HT(t IR-I ). (51
equation The state-estimate equation in (3) propagates the

Fz(t)-Fz(t) + u(t) + w(t), (i) estimate t(t) of the state vector. From Eq. (3) we see

where x(t) = (9 X 1) missile-target state vector (the that the next state estimate is the weighted sum of the

state variables are the Cartesian coordi- output of the process or system model, plus the inno-

nates of the relative target-to-missile vations process (the difference between the measure-

position and velocity and the target ac- ment z and the nonlinear transformation h of the state
celeration); vector), plus the control vector u. The second term in

F = (9 X 9) missile-target state matrix; Eq. (3) is an estimate of the measurement noise. If the

u(t) (9 X 1) missile acceleration control vector; system noise increases, the present measurement is
and weighted more heavily (i.e., the KF gain K is large). We

w(t) f (9 x 1) missile and target dynamic dis- note that the feedback of the current state estimate

turbance vector; w(t) is modeled as a (including the KF gain) is included via the control

zero-mean Gaussian white-noise uncor- vector and the iteration implied in Eq. (3). Thus, the

related vector with covariance matrix Q, system model is updated with the current state-estimate
i.e., w(t) - N[0,Q]. information from the KF.

The error covariance matrix P, which is a measure of
B. Target Measurement Model the uncertainty of the i estimate, is defined by

We assume that a passive sensing system estimates
* the elevation (0) and azimuth (H) of the target.I4 These P(t) - Eli(t) - x(t)1[im) - x](tl7' (61

polar coordinates are related to the relative Cartesian Propagation of P is the major aspect of the KF and is
position coordinates by a nonlinear transformation. defined by Eq. (6). The KF gain K is defined by the
We denote the relationship between the measured matrix product in Eq. (5). From Eqs. (4)-(6), we see

quantities and the relative spatial coordinates by the that P increases if the system noise (Q) increases (this
elements h, and h ,of a vector h. The target measure- is logical). Thus, if Q increases, K increases and hence 1
ment model is thus described by the nonlinear vector we weight the present measurement more. If the
algebraic equation measurement noise R increases, K decreases, and we

15 June 1984 / Vol. 23, No. 12 / APPLIED OPTICS 1961
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IV. Optical Linear Algebra Systolic Array Processors
Numerous optical systolic array processors have been

described and some have been analyzed.' The ac-
oustooptic (AO) optical systolic array processor we
chose to detail for this EKF application is the fre-
quency-multiplexed system shown schematically in Fig.

,. I.;' The system consists of a linear input array of point
S, .modulators, each imaged through a different region of

Fig.l. Schematic diagram of a frequency-multiplexed acoustooptic an AO cell, and the Fourier transform (FT) of the light

systolic array processor. :1  leaving the AO cell formed on the output linear detector
array. This specific system was chosen because it is the

weight the system more heavily. Thus, the next esti- most documented and analyzed one and because its
mate relies on the last estimate (if R is large) and relies flexibility leads to the realization of a spectrum of linear
on the present measurement z (if R is small). algebraic operations by format control of the input data.The operations required in the EKF thus include: In this section we summarize the operations heretofore 0
calculation of the KF gain in Eq. (5), propagation of the documented that are required for our present EKF
error covariance matrix P(t) according to Eq. (4), and application, and we detail how each is realized on this
propagation of the state estimate t(t) according to Eq. system.
(3). The inputs to the point modulators, light emitting

diodes (LEDs) or laser diodes (LDs), are space (x) and
Ilii Discrete-Time Extended galman filter time (t), while the inputs to the AO cell are time (t) and

In this section we develop our new discrete-time EKF frequency (f). The time variable is converted to space
algorithm. The need for a discrete-time EKF arises as the contents of the AO cell travel across the aperture
because of the systolic processor realization (which re- in time. We achieve the matrix-vector (MV) multi-
quires pulsed data). Any time-sampled processor plication Ab = c on this system as
(digital or optical) requires a discrete-time formulation.
We used the forward Euler method to discretize the I 'a11 012 033 cIb,] I[C1]
state and update equations in(1)and(3)andthetrap- / 02, a22 a I b2  = x (11)-
ezoidal rule to discretize the error covariance matrix 1 32 a32 J 4Lb3J [C3J
propagation equation in (4). These algorithms de- point detector
couple the update equations. The resultant discrete- AO cell modulators outputs
time EKF algorithm becomes To see how the operations described in Eq. (11) occur,

K, -P,,HTR;' (GO we define the bit time TB as the time it takes data in the

11 + TF11*, + TKIz,, - h(10I + T1k,, (8) AO cell to move from the region illuminated by the 0
i,. T T -input point modulator N to the region illuminated by
P,+ 1M, +1P, + IP, ,LT + LP,* 1d + Ch - 0. (9) the point modulator N + 1. We consider a (3 x 3)

Our discrete-time EKF algorithm is thus novel and matrix example as in Eq. (11). At time 1TB,we load the

differs from prior applications of discretization first column of the matrix into the AO cell with each

schemes' 6 (e.g., explicit algorithms and Runge-Kutta element present on a different frequency (f). At times

methods) to Kalman filtering. In all our equations, the 2TB and 3 TB, we load the second and third columns of

subscript k refers to the time-index or the KF iteration the matrix into the AO cell. At 3TB, the full matrix is
count. Equation (7) defines the KF gain, Eq. (8) present in the AO cell, with its columns opposite point

characterizes the state-estimate update, and Eq. (9) modulators 3, 4, and 5, respectively. At this point, the

describes the error covariance update. In Eq. (8), T is elements of the vector b are fed in parallel to the point

the measurement sampling interval. The matrices modulators 3-5. Each element of b multiplies the
corresponding columns of the matrix A. The output

wih+ e H n FT sums the proper elements of the product in each 0
-H,+,R;.1 H,,. row; and on the output detectors, the MV product Ab

L - [(1/rTl - Fl, (10) appears in parallel. For an (N X N) element matrix,the MV product appears in parallel in zero time (after
C, = PMP - P,[(1/T)I + FIT - [(1/T)l + FIP, - 2Q. a load time NTB, during which the matrix is loaded into

Equations (7)-(10) outline the steps and identify the the AO cell). .

linear algebraic operations (matrix-vector, matrix- Matrix-matrix (MM) multiplication for a (3 X 3)
matrix, and matrix-matrix-matrix multiplication) example is realized as
which are required in each iteration to realize our dis- - .,_,__
crete-time EKF. The solution of the symmetric qua- r a 012 0331 b1 61 b1]  ir. c1. c331
dratic matrix equation in (9) is the major computational El 0 12 022103 b2, b " b23 lr C': C .C' 2 .C2)

operation required. In Sec. V we detail our new solu- , 3 03 033 b , 22 b IJ ]2 ..

tion to the symmetric quadratic matrix equation in (9) point detector
for this application. AO cell modulators outputs 0

1962 APPLED OPTICS / Vol. 23, No. 12 /15 June 1984
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K This MM multiplication is a direct extension of the MV CJALCAT ,(D TR

product in Eq. (11), repeated N times. At each suc-
essive TH of time (after the load time), N vector inner
products of N-element vectors are formed in parallel on
the N output detectors. A MM product thus requires
NTq of time (plus NT of time to load the matrix into 0
the AO cell). One row of the MM product emerges in
parallel on the output detectors every TB time in- E
terval.

Matrix-matrix-matrix (MMM) multiplication is a SOLVE G. 0 FOR !.1 10.:

further extension of the MM multiplication in Eq. (12).
We realize ABD - E by forming AB = C, feeding C to --- :A, ,
the AO cell as it is formed (one row at a time), and then A " (D
producing CD =E one row at a time in parallel. As we ACLI [.

have shown, :' operations and data flow ideally in this -
architecture (i.e., as one row of the matrix is produced,
one T4 of the cell becomes vacant, and we immediately SOLVE J( .]S• -I[P, ,

feed the row of the MM product produced to the vacant . ,

slot in the AO cell). -
Iterative MV algorithms for the solution of linear - - -

algebraic equations can *ilso be realized on this system. S I -_
To solve Ab = c, we feed one iterate bk of b to the point s,
modulators and A to the AO cell. We form Abk at the

output, subtract c, add bk to the result, and feed this IV

sum back to the point modulators as the next bk+ I it-
erative input. To solve Ab = c for b, we thus realize the
Richardson algorithm,' 61 7

Fig. 2. Triple-nested discrete-time EKF algorithm.bi n ff-w(Abk - 0) + bA, (13)

where w is the acceleration parameter chosen for sta- We thus convert Eq. (15) into a system of N2 = 81 si-
bilitv. When bk a bk+ , Eq. (13) produces the solution multaneous quadratic equations (for a 9-state prob-
to Ab c; i.e., lem). The elements (p, ... psi) of Pk+1 are the desired

b = A-1c. (141 solution. The Newton-Raphson algorithm to solve Eq.

The operations in Eqs. (11)-(13) realize all the steps (15) is) 8

required to implement our discrete-time EKF with the Pn+I = p, - J(pnI-'glpdI, (161

exception of the solution of the symmetric quadratic where the Jacobian matrix J[pI is defined by
matrix equation in (9). Our prior approaches to solving
a quadratic matrix equation used two iterative loops to J(ij) = Odg,/lpI.. for ij = 1, .... 81. (171
implement the Kleinman and Richardson algorithms, The Jacobian in Eq. (17) is thus an (N2 x N 2 ) = (81
respectively. 7 In Sec. V we introduce a new optical X 81) matrix. We chose this algorithm because it is
solution to the symmetric quadratic matrix problem and quadratically convergent and is a single-step algorithm
detail its implementation. This novel algorithm has (i.e., J[p,] is computed from the nth iterate p,, alone
many advantageous features compared with those and not from prior iterates of p).
which we previously reported.7  The four steps in each iteration of the algorithm in

V. Optical Systolic Algorilhms Eq. (16) and the operations required to implement it

In this section, we apply the Newton-Raphson algo- (i) Calculate the constituent matrices in Eq. (15) and
roithm to introduce an optical systolic solution to the form the N2 vector g9p].
symmetric quadratic matrix equation in (9) and high- This step requires matrix-matrix and matrix-ma- "

light the efficient calculation of the Jacobian matrix. trix-matrix multiplication.

A. Optical Systolic Solution to a Ouadratic Matrix (ii) Calculate the N2-= 81 elements of the Jacobian4Equation matrix J(ij) in Eq. (17). In Sec. V.B we describe a-o

novel optical or digital approach for this step. S
The optical solution we introduce to solve the sym- (iii) Modify Eq. (16) and solve Eq. (15) in themetric quadratic matrix equation form. .

Gk = PA+,M4,,Pk.l + IPj, L1 + LP,.,I + CA 0 (Ii S)p,,, - -gtp, 1l11

for P;+I is the Newton-Raphson "algorithm. We write for s,,, where
Eq. (15) as the lexographically ordered vector g(p,..
p O,) 0. where p,, contains the N 2  81 elements of P,. ,,+ = - p 119)
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Fig 3 Optical random-access AO storage/multiplier/summer for calculation of the Jacobian.

To solve the system of linear algebraic equations in (18), For an N-state problem, A in Eq. (22) is (N X N) and
we apply the iterative Richardson algorithmt- in Eq. the full-order Jacobian J in Eq. (21) is (N X N2).
(13) in the form Because the matrices M, P, C, and G and the quadratic

- matrix equation in (15) are symmetric, there are N(N
s,. 5, + ,-lg P,+ JtP,,)s. (2W + 1)/2 = 45 unknown elements in P (rather than N =

(iv) Compute p,+ I from Eq. (19). 81). Thus, we can reduce the size of the Jacobian from
This formulation is attractive since it circumvents the (81 X 81) to (45 X 45). This simplifies the calculation
need to invert the Jacobian matrix in Eq. (16). of J and reduces the number of elements of A that must

We illustrate our discrete-time EKF algorithm in the be addressed. The number of states or dimension (N
block diagram of Fig. 2. Our algorithm thus incorpo- 9) of the problem and the symmetry of the matrices 0
rates three nested iterative loops. In the innermost loop determine which elements of A form which elements of
(index r), we apply the Richardson algorithm in Eq. (20) J. Since N is fixed, the same elements of A are ad-
to solve Eq. (18) for s,+t. The iterations in Eq. (20) dressed in each Newton-Raphson iteration. Although
continue until Sr+I t Sr,. When the iterative Rich- P, and hence A, change with the index n, the elements
ardson algorithm converges, we set Sr+ I = sn and form addressed remain the same. Thus, we need only form
p,,+ from Eq. (19). If Is, I > t, we begin a new New- a new A, matrix and use the same processor to calculate
ton-Raphson loop (index n), calculate gjp,,] in Eq. (15) the new J, matrix from this An matrix. Since s,n is a 0
and Jp,j in Eq. (17). We then repeat the Richardson combination of p, (the lexographically ordered ele-
iterative algorithm in Eq. (20) for the new glp,, ] vector merits of P"), S is symmetric (i.e., s,, = sj,). By
and Jacobian J[p, ] matrix. This two-loop Newton- applying this property and the fact that J multiplies s"
RaphsoniRichardson iterative procedure is repeated in Eq. (18), we can delete and combine redundant rows
until Is,, I < c, at which point we set P,+1 = Pk+ 1 . We of J and the corresponding elements of s,. We find
now return to the KF loop (index k) and calculate a new that only 405 elements (or one-fifth of the 2025 elements
Kk and ik+ I. The next measurement zk can then be of the reduced-order J) are nonzero and must be cal-
accepted. In Sec. VI we detail our full system archi- culated. The system of Fig. 3 can compute J using this
tecture and quantify the processing time for our table look-up technique and the aforementioned algo-
EKF. rithm. In this system, the matrix A is fed to the AO cell.

At successive instants of time, the proper point modu-
B. Efficient Calculation of the Jacobian lators are pulsed-on. This accesses the correct elements

The calculation of the Jacobian matrix is a crucial of A. By varying the strength of the point modulators, 0
step in a Newton-Raphson solution. We have devel- different weights or multiplictions of an element of A
oped an efficient technique for J calculation using the can be achieved. By pulsing-on two point modulators
table look-up method of Blackburn 19 (developed for the simultaneously, the sum of two elements of A can be
solution of the algebraic Riccati equation) and modified produced. By this technique and architecture, J can
the table look-up method for an optical or digital sys- easily be produced (one element at a time). The point
tolic parallel processor and its application in our dis- modulators addressing each TB are determined from a
crete-time EKF algorithm. We rewrite the Jacobian look-up table (and this table is fixed for an Nth order 0
matrix in Eq. (17) as problem).

J A T I + 10 AT, (21 Vi. Systolic EKF Architecture and Processing Time

where For our AO cell we assume an aperture time TA = 35
Asec, which is divided into 100 time slots. i.e., Th = 350

A ffi M 1P~. + L. (22) nsec (for a 3-MHz data rate per channel). Calculation

and ® denotes the Kronecker product. i.e., of J in Fig. 3 (which incorporates 81 point modulators)
requires Tj = 20.7 psec using this system. The non-

Me® P = IfKP),, '2" linear functions hI1I and [H] require evaluation of the

Equations (21) and (23) illustrate that the Kronecker arctangent and magnitude and are thus best formed in
product reorders the elements of A. Thus, calculation nonlinear analog modules. The calculation times for
ofl can be simply achieved by addressing the proper h and H (using conventional available off-the-shelf
elements of A. analog modules) are th = 20 psec and tt = 30 psec. re-
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Table I. Componwet Requremeo n an Performance for the Linear Algebraic Operaltim Required in Our EKF Algorithm

Number of'
Multiplication point Number of Load ('a'lial in

Size operation modulators frequencies Remark, time I T t I I i, t "u) Sl lh..I

19 x 9) Bipolar M-V 19 9 2N - 1 2 M\
(9 X 9) Bipolar M-M 35 9 Extend number iii 2N - I 2.N MM

point modulators

(9 x 9) Bipolar MM + MM 5: 9 4N-I 2N MM * MM

_,r -- I-I'
(45 X 45) Bipolar M-V 91 9 Partition (no 2N 2 N + 9

partial sums) 9

SMSTE i'STE- 2

Fig. 4. Optical systolic discrete-time EKF processor architecture.

spectively. Faster computation of all these parameters must be performed on (9 X 9) matrices. To represent
is possible with a different AO cell, a higher data rate bipolar data, we use 18 elements (space or time-multi-
per channel and different analog modules. The per- plexed) to represent 9 bipolar values. The number of
formance goal (a 1-kHz measurement sample rate) can point modulators required in each case is noted (in all
easily be achieved with these present components and cases only 9 frequencies are used). The time to load the
the parameters noted above. Consequently, additional data into the AO cell of the system and the calculation
effort was not directed toward improving further the time (once the data are loaded) are noted separately in
speed obtainable, units of the bit time TB and as a function of the di-

mension N of the matrix. In general, the load time does
In the design of the optical system in Fig. 1, we re- not enter into the full processing time, since the oper-

stricted the number of frequencies to be a maximum of ations can be pipelined to allow new data to be loaded
ten (to simplify the electronic support required) and we as calculations proceed. The symbols used for each
assumed an AO ceil with a time-bandwidth product of operation are noted in the last column of Table I.
1000 maximum (this value is compatible with present In Fig. 4 we display the architecture of our final EKF
off-the-shelf components). In Table I we list the linear design. We employ two of the optical systolic proces-
algebraic operations which are required, and the system sors depicted in Fig. 1. The first system uses 35-input

=- design parameters and performance specifications as- point modulators and the second uses 91-input point .2
sociated with each operation. The first three operations modulators. Each system employs 9 multiplexed

Table U. Operatn and Timig fr Ow EKF IPoceaer (*Deflne Critia Cclc#aton Time Path)

System 1 System 2

Calculation Operation time Calculation Operation Time

K, M-M 18TR Ck M- M 18Th

"TKsiz* - hhth)l M-V 2T, M-M 18Th -

M-V + M-V 19Tp M-M + M-M mT"

h(t5 ) NL 20 psec

"Hk+i NL 30 sec

*M* M-M-M 22T,9

P** (Newton-R aphson) 18T0 *s (Richardson) 18 TA
M-M M-M

Jacobian 20.7 psec
BPMV 4.,TF4
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frequencies within the AO cell. This allows optimal use The support of our optical systolic processor research
of parallelism in the operations required in our EKF by NASA Lewis Research Center (grant NAG-3-5) and
algorithm, the support of the Air Force Office of Scientific Re-

In Table II we compile the operations and load and search (grant AFOSR-79-0091) for missile guidance
calculation times for the sequence of steps (for each applications of this technology are gratefully acknowl-
time-sample k) in our optical systolic discrete-time EKF edged.
processor (Fig. 4). The asterisks in the table label the
critical time paths in our processor.

We summed the load and calculation times delin-
eated in Table 11 and found the total calculation time
for one time-sample k in our EKF processor to be

T, = 42T + 30 usec + n[18TR + 20usec + r 455T,91. (24)
Fill where n and r denote, respectively, the number of References
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Reprinted from Applied Optics, Vol. 23, page 376, February 1, 1984
Copyright 4 1984 by the Optical Society of America and reprinted by permission of the copyright owner.

State estimation Kalman filter using optical pled intervals kTs, where k is the iterative time index. We
processing: noise statistics known assume that the system noise vector w and the measurementnoise vector v are uncorrelated and Gaussian-distributed and

James Jackson and David Casasent that the noise statistics (Q and R) and the system model

Carnegie-Mellon University, Department of Electrical & (Wr,H) are known. Thus the error covariance matrix P and

Computer Engineering, Pittsburgh, Pennsylvania 15213. the extrapolated error covariance matrix M can be precom-
Received 18 August 1983. puted, and hence the Kalman gain matrix Kk can be pre-

0003-6935/84/030376-03$02.00/0. computed and stored for each input time sample.
yof America. With these assumptions, we now consider the state of the

filter and system and the calculations required after receipt
Kalman filtering and state estimation are major tech- of a new measurement sample zk at time kT,. From the

niques used in many control and signal processing applica- previous Kalman filter cycle, we have an extrapolated state
tions.1 .2 A Kalman filter produces the optimum least mean estimate Rk, and from the known noise statistics we have
square or maximum-likelihood estimate of the state of a linear precomputed the Kalman gain matrices. In many cases, the

* system driven by additive noise. In Kalman filtering, a sys- noise statistics (and the matrices describing the system model)
* tem or process model with additive noise and a sensor mea- change sufficiently slowly that the storage requirements and

surement system with additive noise are assumed. The updating requirements for Kk and the other n-cessary system
Kalman filter provides estimates of the state of the system, and noise matrices (4O,, r. H,, Qk, and Rk) are not excessive.
the accuracy of the most recent estimate, and the control for When a new measurement sample zk is obtained at time k T5,
the system. This is achieved, assuming that the system and the new state vector estimate i, must be calculated from Eq.
measurement noise are known (zero-mean Gaussian statistics (c), and then the new extrapolated state estimate vector lk + I

are assumed), by recursive curve-fitting to estimate the state must be evaluated using Eq. (ld). Thus, with known noise
of the system. The next state estimate is a linear combination statistics and a known system model, the required Kalman
of the prior control and the prior estimate and the uncertainty filter state estimate calculations required for each new input
measurement of the sensor's noise. Depending upon the sample are simply Eqs. (ic) and (Id) of Table I. Combining
amount of process and sensor noise, more weight (through the these equations, we describe the simplified Kalman filter and
Kalman filter gain matrix) is given to the present estimate or the calculations required by
the present measurement.

In Ref. 3, we described a frequency-multiplexed acous- Y**i (t - #AKAHkik + OkK~k + rW. 2a 

tooptic (AO) processor and detailed how it was capable of Z,, = AAI, + BA, + r.w, (21)
performing all the individual operations (matrix-matrix-
matrix multiplication, matrix inversion, etc.) required for Since the matrices (Ok - IN Kk Hk) and OkKj can be pre-
Kalman filtering. However, the data flow and organization computed, we denote the associated matrices required in Eq.
of all required operations were not detailed. In this Letter, (2a) by At and Bk as noted in Eq. (2b) to simplify notation.
we consider specifically a simpler Kalman filter state esti- If we had included the assumption of zero-mean system noise
mation problem. We assume that the measurement vector (Wk - 0), the equation would simplify even further.
zk is received serially and is sampled at regular intervals. We
now consider the problem of calculating the state estimation
vector 1k and the extrapolated state estimation vector k+ I.
assuming that the system's noise statistics are known. The TWO. I. Discroe-Thn (ki) Kalkn FMUt Equatins
data flow is found to be quite ideal in the iterative optical Description Defining Equations
processor we devised for this Kalman filtering state estimation
problem. System model xk4 j ' OXk + rkwk Ila)

In Table I, we list the discrete-time Kalman filter equations. z = H, x, + v, (l b)
For more details and a derivation of these equations, Refs. 1-3 State estimate itk = 14 + K* (Z, - H, ki (I c)
should be consulted. We assume equally spaced time-sam- Extrapolated state estimate IfI - 0 1k, + r w, (I di
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F chosen tobe (2N - 1)Tand (2N - 1) LEDSare used. Thus.

6 , _ after NT,, a new extrapolated state estimate vector T4 .1 has
been produced and loaded into the cell (together with the new

DVT measurement vector zk + 1). The above iterative cycle can
then be immediately repeated on the new sampled data. As

.L /seen, data flow in such a system is ideal. (As soonw an output
DO CELL is produced, it is loaded directly into the newly vacant slot at

the transducer end of the AO cell.) The time history of the
!k 14% output from the adder is the new extrapolated state estimate, -

__ __ which can then be used for various control applications and
!{> - ** <I other on-line adaptive processing functions depending upon

the application. Many variations of this basic architecture
are possible, such as the use of a linear CCD shift register

Fig. 1. Schematic diagram of an optical systolic processor for Kal- detector readout system as in Ref. 4. frequency-multiplexing
man filter state estimation, of the LED or AO cell data as in Ref. 1. These different sys-

tems may be preferable for specific applications such as when
the number of states is large, but the input data sampling rate

We consider the use of optical systolic array processors is slow. The system of Fig. I appears to be the best general
employing acoustooptic (AO) transducers to perform the solution at present.
necessary computations in Eqs. (2). Only single-channel We now briefly consider the extension of this system to
optical systolic array processor architectures 4 have been allow it to operate on bipolar-valued matrix and vector data.
described thus far in the literature. This class of optical linear Many possibilities exist. The one we have found to be most
algebra processors is quite general purpose. Attention, attractive is a direct extension of the system of Fig. 1. We
however, must be given to the flow of data and operations in frequency-multiplex the inputs to the AO cell (and thus use
such systems; and for high computational efficiency one must both its bandwidth and delay time). For matrices and vectors
avoid analog-to-digital conversion and the storage of inter- with bipolar values, we enter the positive Y and negative Y;

mediate data results. To perform efficiently the calculations parts of the vector !A = ik+ - l'- into the lower channel of the
necessary in Eqs. (2), we found that a multichannel optical AO cell in parallel on two separate frequencies. We separate
systolic array processor yielded the best results. One reali- the positive and negative parts of the input matrices and time
zation with such a system is shown in Fig. 1. multiplex the LED outputs (first pulsing them on with the

This architecture is a new two-channel iterative optical positive-valued matrix data and then with the negative-valued
systolic array processor. In the system of Fig. 1, two linear matrix data). A similar time and frequency division multi-
LED arrays are imaged onto two separate channels of an AO plexing is used for the measurement data and the upper AO
cell. This forms the separate product of the corresponding cell channel. With the LEDs pulsed at twice the input data
input LED data and the contents of the AO cell. Since all the rate to the AO cell, the system thus operates properly with no
data in the AO cell are present at the same frequency, all the reduction in the input data rate it can handle. At the output,
light distribution leaving both channels of the AO cell will be we determine the magnitude and sign of i,+, and appro-
deflected in the same direction and will thus be focused by lens priately feed this data back to the AG cell iteratively as before.
L1 at the same horizontal location in the output plane. Lens The sign of !k+1 is determined from the time slot in the de-
L 1 also vertically integrates and focuses the light leaving both tector output with a nonzero value. From the sign of k+ 1.

channels of the AO cell. The size of the detector is chosen to we select the multiplexed frequency input to the AO cell to
collect all this light. Thus the summation of the total light be used. The data in such an achitecture still pipeline ideally
distribution leaving both channels of the system is formed on from the output detector back to the AO cell. Extensions of
the single-output photodetector (DET). The upper AO cell this technique to handling complex-valued data by the use of
channel is fed with the measurement vector zk, and the lower three frequencies to encode complex data by their projections
AO cell channel is fed with the prior state estimate lk. The on the 0, 120, and 2400 axes in complex space6 also follow di-
upper LED array is fed with one row of the matrix Ak in par- rectly.
allel, and the lower LED array is similarly fed sequentially These techniques for handling bipolar data increased the
with the rows of Bk. Subsequent rows of A5 and Bk are en- required LED source modulation rate by a factor of 2 above
tered every T. in parallel. For an N X N matrix, the leftmost the input data sampling rate. (However, the number of LEDs
N LEDs (1 to N) are addressed with the first row of Ak and required is not increased.) More important, the bipolar data
Bk at time step T".. At 2T., LEDs 2 to N + 1 are addressed handling technique requires a quadruple increase in the AO

with the next row of Ak and BA. Since the data in the AO cell cell's bandwidth and in its time-bandwidth product (a factor
move horizontally by a time step 7,, it is necessary to stagger of 2 due to the two frequencies used and a factor of 2 due to
the LEDS being addressed at each kTU, tin.e as detailed in Ref. the doubling of the LED modulation rate). Despite these
3. disadvantages, this technique is more appropriate than the

At each T, time step. the output from the photodetector will use of various biasing methods or the use of two cycles to
be one element of the matrix-vector product and vector process bipolar data (one cycle for positive data and one for
summation given by the first two terms in Eq. (2a) or (2b). negative data) because of the complicated detector postpro-
After NT,. the vector data have reached the end of the AO cell, cessing that results and/or the intermediate data storage re-
and the entire matrix-vector product has been produced as quired. Thus the reduced amount of data shuffling and
the time-history output from the detector. As each element postprocessing that results with the technique described above
of the output vector is produced, the corresponding element seems to make it preferable. If the dimension of the ma-
of r. w, Ithe last term in Eq. (2)1 is added to it (using a simple trix-vector problem becomes too large (i.e., if the entire vector
resistor adder) to produce one element of the new state update will not fit into 1/2 of the AO cell at one time), matrix-parti-
vector x5 , i. As this vector is produced, it is fed back directly tioning techniques on several simple system modifications are

* into the lower AO cell. The aperture time of the AO cell is required. These are simple conceptually and require using
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more than two AO cell channels plus time-division multi-
plexing of the LED inputs and the single detector output. We
will detail such issues in a later publication.

The use of multichannel AO cells (together with proper
time-division multiplexing of the inputs and outputs of the
system) represents a major extension to this class of optical

If systolic array processor. Their applications to Kalman fil-
tering. state estimation, and handling bipolar and complex-
valued data appear to be quite significant.

The support of the Air Force Office of Scientific Research
(grant AFOSR 79-0091) and NASA Lewis Research Center
(grant NAG-3-5) for this aspect of our optical data processing
research program is gratefully acknowledged.
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ABSTRACT 0.

An iterative algorithm for the solution of a quadratic matrix equation (the algebraic
Ricatti equation) is detailed. This algorithm is unique in that it allows the solution of
a nonlinear matrix equation in a finite number of iterations to a desired accuracy. Theo-
retical rules for selection of the operation parameters and number of iterations required are
advanced and simulation verification and quantitative performance on an error-free processor
are provided. An error source model for an optical linear algebra processor is then ad-
vanced, analyzed and simulated to verify and quantify our performance guidelines. A com-
parison of iterative and direct solutions of linear algebraic equations is then provided.
Experimental demonstrations on a laboratory optical linear algebra processor are included
for final con firmation. Our theoretical results, error source treatment and 9 uidelines are
appropriate for digital systolic processor implementation and for digital-optical processor
analysis.

1. INTRODUCTION

Optical linear almebra processors (OLAPs) represent a most general and attractive use of
the parallelism and real-time processing features of optical systems [1]. The frequency-
multiplexed acousto-optic (AO) processor [2,3] of Figure I represents a most general-purpose
OLAP architecture with ease of fabrication (4] and competitive computational rates [2,4].
In this architecture (Figure 1), N point modulator inputs are imaged through N separate
regions of an AO cell. These individual regions are separated by TB of time (for propagation
of the acoustic wave) and by a physical distance dB. In [2], the use of this processor in
iterative algorithms, direct LU and QR matrix decomposition algorithms, and triangular sys-
tem solutions was detailed.

FT
POINT AO LENSMODS :ELL -

A mn
a a(t,x) 3

(SHIFTED) 4-' f2 = cmn
~~ --31 3 -c(t,x)

=AB

B bri b(t,f)

FIGURE 1
Simplified schematic of a frequency-multiplexed optical linear

algebra processor [3]

In this paper, we consider the use of this processor for the solution of anonlinear matrix
equation (Section 2). The specific application chosen is the solution of the algebraic
Ricatti equation (ARE). This nonlinear equation is similar to the expressions to be snlved
in Kalman filtering and other advanced modern signal processing algorithms. An iterative
solution is necessary for such problems and for eigensystem solutions. Our proposed non-
linear ARE solution is quite unique since it requires a finite number of steps to achieve
a s2ecific accuracy and performance. In Section 3, we summarize selection of the operation-
al parameters for such an iterative algorithm and the theoretical basis for our choice ofi'S



the fixed number of iterations to be used. Section 4 presents initial error-free simulation
data. In Section 5, we advance our error source model. In Section 6, we review our itera-
tive and direct solutions to systems of linear algebraic equations (LAEs). This represents
the fundamental operation required in advanced linear algebra algorithms. Section 7 con-
tains simulation data to quantify the dominant error sources and the accuracy expected from
such algorithms. We conclude in Section 8 with the experimental verification and quantifi-
cation of our theoretical results. Our summary and conclusions are then advanced in Section
9.

2. NONLINEAR MATRIX SOLUTION

In reference [5], we detailed a solution to the linear quadratic regulator control problem to
minimize a quadratic performance index for a linear system. Computation of the regulator
feedback gain matrix K that defines the optimal controls u involves the solution of the ARE

SF + F T S 5 L S + = 0(I

for S. To achieve this, we used the Kleinman algorithm [5] and the solution of the vector-
ized-Lyapanov equation to format the solution of 1) as a solution of the set of LAEs

H(k)s(k) = x(k), (2)

where s and y are the vectorizations of S and SLS- Q respectively and H is a Kronecker for-
matted-matrix. This system of LAEs must be solved successively with different matrices H
and vectors y with the results of one cycle used to compute the matrix H and vector y for
the next cycle. To achieve this, we employ a two-loop iterative algorithm described by

s(r+l,k) [I - L(k)H(k)]Ws(r,k) + w(k)y(k). (3)

In solving (2) using (3), we solve (2) for one outer loop iteration k, update H and Y and
solve the next LAE. This procedure continues until s is of sufficient accuracy. The algo-
rithm in (3) implies an iterative solution for each 1AE. Direct solutions are also possible
as we discuss in Sections 6 and 7. The indices r and k in (3) refer to Richardson (inner)
and Kleinman (outer) loop iterations respectively.

3. OPERATIONAL PARAMETER SELECTION

In an iterative algorithm such as (3), various operational parameters must be selected.
The initial selection s(0,0) for S and the choice s(O,k) for each LAE solution are required.
For s(0,0), we use 0 to insure outer loop convergence (a stability matrix). For s(0,k), we
use the obvious choice of the prior s(0,k-1) estimate. The acceleration parameter L. in (3)
is chosen to be uj = n/Amax ; 3/I H(kTI . This insures inner loop convergence [2,5]. Stop-
ping the inner loop ierations (index r) for each LAE solution and stopping the number of
outer loop iterations (index k) is a major decision.

In reference [5], we derived bounds for the inner loop error, the outer loop error and
their coupling. From this analysis, we derived the selection of a fixed number of inner
loop iterations R to solve each LAE given by

R nC = Clog a a 1. 5C to 3.OC. (4)

where Ilx*(0)-x*(1) JJ < a and [1 - I/C]R a exp(-n) < 1/a is chosen. This follows from our
analysis of the error in an iterative solution (due to a fixed number of iterations R),
which showed that the norm of such an error is '1

I!(r,k) - s*1 I - 1 - ,H(k) llr _ (1 - 1/C(k)]r, (5) -1

where C is the condition number of H. Since r is expected to increase with C, we set r - nC
0 and thus select n such that the error between the computed solution s and the exact solution

s* in (5) is as small as is required. For the fixed number of outer-loop iterations K, we
Use K - 5 or 6, which can be theoretically derived (and appropriately modified) for otherapplications with matrices with specific features. These iterative operational parameter
selections are summarized in Table 1.

4. ERROR-FREE SIMULATION RESULTS

The performance measures we adopted to assess performance of the algorithm in Section 2
implemented using the operational parameters in Table 1 are the maximum percent error in any
element of the matrix K (i.e. AKmaxt) and the maximum error in the location of the closed-
loop poles of the system (Wmax"). We expect &K >> LX and note that 6A is the more
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appropriate error measure for this specific application and that similar error measures
should be used to evaluate the performance of other specific case studies. In
Figures 2 and 3, we show the variation of these two error measures with the number of outer
loop iterations k for a fixed number of inner loop iterations for two case studies. These
case studies are the fifth (Figure 2) and third (Figure 3) order models of an F100 engine.
As seen from the data for these two case studies, the use of a fixed number of iterations
results in a monotonic decrease in the solution error with the LK error being approximately
ten tines that of the 6X error. From these results, we conclude that the use of a fixed
number of iterations can yield adequate results when the number of iterations is properly
chosen. Our parameter selection guidelines in Table 1 have thus all been verified and dis-
cussed.

. cusTABLE 1
Operational Parameter Selection Guidelines [5]

SYMbOL PARAMETER PREFERRED CHOICE

s(0,0) Initial Initialization s(O,O) = 0

s(0,k) k-th Kleinman Loop Initialization s(0,k) s(0,k-l) S
R Number of Inner Loop Iterations R = 1.5C to 3.OC

K Number of Outer Loop Iterations K = 5- 6

W(k) Acceleration Parameter w(k) = 3/11H(k)I

.04 4

3 3

2 
2
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0

10- max &K%;max A%; -2 r 10- 4  Curve A
= *Curve A -

-2 max AX%; £r .10-7  max 9;a Curve B -31 1ax Curve B
max A1%; R a 100

-3 * Curve C -4 max ax%;R - 10 - Curve C
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2 3 4 5 2 3 4 5 6 7

NO. OF OUTER LOOPS NO. OF OUTER LOOPS

FIGURE 2 FIGURE 3
Variation of the error measures LKmax('V) Variation of the error measures &Kmax(%)
and LAmax(%) with the number of outer- and tAmax(%) with the number of outer-
loop iterations K for different inner- loop iterations K for different inner-
loop iteration stopping criteria for the loop iteration stopping criteria for the

fifth-order HPG3 F100 model third-order HPG3 F100 model

5. ERROR SOURCE MODEL

In earlier publications [7,8], we detailed the first system and component error source
model for an OLAP and the general issue of errors in such an architecture. In this section,
we review this OLAP error source model. In this model, we distinguish input, AO cell and
detector plane errors separately. Spatial errors include: input and detector response
variations and errors in the interconnections between the input modulators and the AO cell,
and detector dark current. The spatial variations are fixed (time-independent) and are
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correctable to small residual levels as required (by adjusting the gain of the input point modu-
lators, the detector amplifiers, and the input matrix and vector data). Detector noise is
the only time-varying error source considered. Acoustic attenuation produces a deterministic
exponential variation of the data in the AO cell. This effect is dispersive, but its fre-
quency dependerce is not included in our present model. Acoustic attenuation can be corrected
at one freauency and is thus an input spatial error. The product of an input matrix A and vector
b thus yields a final output d given by

r Daectr K) cell ][ai [AO Cel Dat Detecto TMmod

d eS Repos I ~tattenuation nterconnection' Veto nt Dak6)yn-- Respone sjxnespoe mesm A ettenurorJ[Detectorj(
arion VariationsL Variations L - t

As seen, the different types of system and component variations are described by error ma-
trices that multiply the input data vector or input matrix data. Thus, the system errors
are described by the corresponding variations in the data matrix and vector. The detector
dark current and noise appear additively in the output vector as shown in Eq. (6).

6. DIRECT AND INDIRECT SOLUTIONS OF LAEs

The sclution of a system of LAEs, A x = b is the fundamental operation required in most
linear algebra processors and signal processing applications. Thus, we concentrate on this
function. The two major types of LAE solutions are direct or matrix decomposition solution
and an iterative or indirect solution.

The preferable iterative algorithm is (2,9]

x(r+l) = x(r) + c[b - Ax (r)], (7)

where - is an acceleration parameter chosen to insure convergence. The iterations (described
by the iterative index r) continue until x(r) - x(r+l). Then, (7) reduced to A x - b and
the system's output x is the desired solution. To implement (7) on the system of Figure 1,
the matrix data is fed to the AO cell one column at a time in parallel with the rows of the
matrix frequency-multipleyed, i.e. with the matrix elements amn encoded in time and fre-
quency as aff,t) and with the vector data x spatially-multiplexed as x(x) and fed in parallel
to the input point modulators. The matrix-vector product A x is formed, operated upon in
analog or digital post-processing electronics to produce te-right-hand side of (7) and hence
the new x iterate input to the point modulators. Thus, the detector output is fed back to
the input point modulators. The length of the AO cell NTB is chosen to be just as suffi-
cient to accommodate the matrix data. Each TB , as one column of the matrix leaves the AO
cell, it is reintroduced into the bottom of the cell. This recycling of the matrix data is
more efficient for system fabrication and reduces the effects of acoustic attenuation.

In direct solutions, the matrix A and the vector b are multiplied by a decomposition
matrix Pl to generate new Al and b1. Each such matrix-matrix and matrix-vector multiplica-
tion generates one row of The final A' matrix and one element of the final b' vector.
After each matrix-matrix multiplication, the order of the matrix and vector-are reduced by
one and the new reduced order Al and bl are multiplied by a new P2. This procedure is re-
peated N-1 times (for an N x N matrix) and yields a new upper-triangular matrix U and a new
vector b'. This simplified upper-triangular system of equations U x -b' is t~en easily
solved by back-substitution. The matrix-decomposition can be reaTiled either as an LU de-
composition (this is the technique" we use when the matrix is positive-definite or diagonally-
dominant, as is the case here, since pivoting is then not required) or as a QR orthogonal
decomposition (this technique is more general and stable, but is more difficult to realize).
The detailed implementation of LU [2,10] and QR [2,11] decomposition and back-substitution
[2,12] have been described elsewhere. To implement the Gaussian-elimination algorithm (LU)
used in the present application on the system of Figure 1, we feed one row of the matrix A
to the AO cell in parallel (with the columns of A frequency-multiplexed, i.e. with the
elements amn of A frequency and time encoded as a(t,f)) and with one rw of the decomposition
matrix Pj fed to the input point modulators in parallel (with the elements Pmn of P time
and space encoded as p(t,x)). To facilitate data flow and for speed, we simultaneously
operate on A and b by using an augmented matrix. One row of the augmented matrix A' is
produced in parallel as a'(t,x) on the output detector during each of the N cycles: The new
Pj matrix is easily calculated from the elements of the j-th column of the augmented matrix
in dedicated electronics.

7. SYSTEM ERROR EFFECTS ON THE SOLUTION OF LAEs

The direct solution requires an AO cell of twice the length of the matrix, but achieves
the decomposition in a fixed number of steps. However, as noted in Section 3, iterative -*
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algorithms can be operated with a fixed number of iterations to achieve a given desired
accuracy and iterative algorithms are essential [21 for eigen-systems solutions and the
solution of nonlinear matrix equations such as the ARE [5) and in Kalman filtering 113]. In
our new results (Sections 7 and 8) ,e camare [61 the performance of direct and iterative algo-
rithms in the solution of the LAEs that arise in a specific ARE solution for the F100 engine.

The two cases considered are third and fifth-order F100 models. These give rise to 9 x 9
and 25 x 25 matrices. Bipolar data is handled by space-multiplexing [3] and this doubles
the size of the matrices and vectors required. For the third-order problem, C - 2.48, the
dynamic range is 47.7 and from (5), j - 10 iterations are required to solve each LAE. For
the fifth-order problem, C - 56.9, the matrix dynamic range is 1117 and from (5), j = 100
iterations are required to solve each LAE. We consider three solutions: an iterative algo-
rithm, direct LU Gaussian-elimination with the back-substitution performed optically and
direct Gaussian-elimination with the back-substitution performed digitally with high accuracy.
We consider two problems: the solution of A5 x5 = b5 for the fifth and last outer loop in
(2) and (3) for the solution of the ARE in IT witH A 5 and b5 digitally calculated exactly,
and the solution of all five LAEs for all outer loop iterations.

TABLE 2
Performance of Three Algorithms for Two Data Sets in the Solution of One System of LAEs

FlOO RESP. VARIATIONS ACOUSTIC
ALOITMTEST DT PonATE. DET RMS c.NO.DATA Point ATTEN. NOISE(%) a M max

NO. SET Mods(%) Dets(%) (dB /cm)

(M) Iterative 1 3 1 1 0.1 0.6 2.49 0.2x10 -3

2 5 1 1 0.001 0.06 4.31 1.3 

(II) LU and 3 3 1 1 0.1 0.6 2.39 0.52

Optical Back-
Substitution 4 5 1 1 0.1 0.006 9.77 0.93

(III) LU and 5 3 1 1 0.1 0.6 3.04 0.33

igital Back-
Substitution 6 5 1 1 0.1 0.006 6.78 0.71

TABLE 3
Performance of Three Algorithms for Two Data Sets in the Solution of the Nonlinear ARE

TEST FI00 RESP. VARIATIONS ACOUSTIC DET RMSNO. DATA Point ATTEN. NOISE(%) max
SET Mods(%) Dets(%) (dB / cm) __ _-_

(I) Iterative 7 3 1 1 0.1 0.6 2.98 0.77

8 5 1 1 0.001 0.06 5.24 1.62

(II) LU and 9 3 1 1 0.1 0.6 4.56 0.72

Dptical Back- 4
Substitution 10 5 1 1 0.1 6x0 "4  11.34 1.44

(III) LU and 11 3 1 1 0.1 0.6 4.12 0.5

igital Back-
Substitution 12 5 1 1 0.1 6x10- 4  10.17 1.17

In Table 2, we show the results for the solution of the singlefifth set of LAEs. Our •
results for the full set of five LAEs, i.e. the full ARE solutions are included in Table 3.
Data sets 3 and 5 refer to the third and fifth-order F100 matrix problems respectively. The
performance measures used in evaluating each approach are the average norm ljLxij of the
error in the calculated vector x and the maximum error txmax in the location of the closed-
loop poles of the final system. The spatial, detector noise, and acoustic attenuation
errors noted earlier were selected to produce approximately equal output errors for each
error source treated separately.

In Tests 1 and 2, we see that our theoretical operational parameters (Table 1) are also
valid when noise and system errors are present. Comparing the results for Algorithm I and
II, we see that acoustic attenuation is the dominant error source for an iterative algorithm
and detector noise dominates the performance of a direct algorithm. This is expected
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because of the cyclic data flow of the matrix in the AO cell during the iterative algorithm.
This alters C for the matrix. In the direct algorithm, detector noise on one cycle is fed
back to both the inputs and the AO cell and thus changes the noise distribution and its
effects accumulate. Also, detector noise affects the small vector elements and this effect
also compounds on successive cycles. From the results of Algorithms II and III, we see that
optical back-substitution yields comparable performance to digital back-substitution. This
is expected, since the operations required in back-substitution are only vector inner prod-
ucts and only N-1 of these are required. This is a substantially lower computationally in-
tensive set of operations than those required in the matrix decomposition. Thus, the
accuracy of the matrix decomposition determines the final accuracy in our results. Comparing
the results for data sets 3 and 5 and the corresponding data in Tables 2 and 3, we see that
the larger matrix size and the increased number of steps required in the ARE versus the LAE
solution causes the required accuracy to increase for direct algorithms more than for iter- P
ative algorithms (e.g. a lower acoustic attenuation constant a is noted to be required for
the iterative ARE solution than for a direct LAE solution). We have derived a theoretical
expression [6]

a < (1/2.3LC) (7)- ' i

for the amount of acoustic attenuation a in dB/cm allowed for convergence of an iterative
algorithm, where L is the length of the AO cell in cm. From the last two columns in both
tables, we see that 6i>max errors are significantly less than 6x errors as expected. The
results in Tables 2 and 3 are in agreement with the theoretical guidelines in (7). From
'7est 1 and all other tests, we find that spatial errors are additive and that for small errors
the percent performance scaled with the magnitude of the error. In Tables 2 and 3 and in
(7), we assume that each TB of the AO cell corresponded to 1mm and we assumed new input data
to the point modulators in the AO cell to be introduced every TB . To achieve more practical
a levels, closer spacing of data packets in the cell is necessary. This can easily be
obtained by scaling the values given in Tables 2 and 3. Operation of the input point modula-
tors at a higher rate than the AO cell data [2] can also improve the a and detector noise
values found in Tables 2 and 3. These initial test results are intended to provide guide-
lines for the efficient use of various algorithms, efficient solutions to linear and non-
linear matrix equations, and quantitative data on performance expected. Our theory, guide-
lines, and modeling are also appropriate for digital-optical linear algebra architectures.

8. REAL-TIME LkZORATORY EXPERIMENTS

In Figure 2, we show the nine outputs from a laboratory system to iteratively solve the
fifth set of LAEs for the third-order F100 model (Test 1, Table 2). The outputs are shown
after 80, 400 and 640 iterations. The laboratory system used a fixed 2-D photographic mask
for the matrix in place of the AO cell and 2-D space-multiplexing in place of frequency-mul-
tiplexing. To accomodate bipolar data, the matrix and vector were biased positive. This
increased C to 120. The laboratory system was operated at a 10MHz data rate per channel.
To facilitate easy monitoring of the system, we used = -0.125. The number of iterations
3 - nC required for 0.6% accuracy was calculated from (3) to be 613 iterations. Our experi-
mental value of 640 iterations at which convergence occurred is thus in excellent agreement
with theory. In the laboratory system, the maskerrors were t7.2% and these dominated other
spatial system errors. The detector noise was measured as 0.4%. With these errors included
in our simulator, the solution vector x was calculated, compared to the ideal theoretical x
value and to the x vector calculated on the laboratory system. The locations of the closed-
loop poles of the system in each case were calculated and compared. The results in Table 4
show excellent agreement (0.5% accuracy or better) in the location of the poles and with the
nature of the poles preserved (e.g. complex-conjugate pole pairs).

TABLE 4
Comparison of the Closed-Loop Poles Computed Theoretically and Using

the Optical Laboratory System

THEORETICAL POLE OPTICAL LABORATORY ER
LOCATIONS COMPUTED POLES % ERROR

-20.45 + j6.26 -20.74 + j5.68 0.5

-20.45 - j6.26 -20.74 - j5.88 0.5

-4.53 -4.53 10-3

* "- "" " . . - ".'- .. T. • .
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(a) 80 ITERATIONS (b) 400 ITERATIONS (c) 640 ITERATIONS

FIGURE 2
The nine photo-detectors outputs from a fixed mask OLAP at selected cycles in the iterative

solution of the system of LAEs A5x 5 = b5 that arise in the final loop of
the solution of the nonlinear ARE

9. SUMMARY AND CONCLUSION

We have detailed a two-loop solution to the nonlinear ARE. In the iterative solution, a
fixed number of iterations can be employed to achieve a given performance accuracy. A
direct solution of each LAE can also be employed, however the iterative solution is faster
10OTB vs. 975TB). Selection of the operational parameters for the two-loop algorithm were
theoretically derived, verified by noise-free simulations and shown to be appropriate when
system noise and errors were present. The implementation of direct and iterative solutions
of LAEs on a frequency-multiplexed OLAP was detailed. A theoretical analysis of both algo-
-ithms showed that acoustic attenuation was the dominant error source in iterative algorithms
and detector noise dominated direct algorithms. Our simulations verified these theoretical
predictions and quantified the performance obtained with each. Our theoretical values for
the amount of acoustic attenuation allowed to permit convergence of an iterative algorithm
was verified by simulations. We confirmed and quantified by simulations that optical back-
substitution yields comparable performance to its digital realization. Experimental verifi-
cation on a laboratory system was obtained. The guidelines, and theory provided are appro-
priate for various other systolic processors (optical and digital) and for high-accuracy
digital-optical linear algebra processors. Our nonlinear matrix solution using a fixed num-
ber of iterations is appropriate for realization on any linear algebra processor.
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ABSTRACT

The number of multiplications per second and fabrication issues associated with several
different acousto-optic systolic processors are discussed and the flexibility in the opera-
tions achievable by format control are briefly reviewed. Emphasis is given to the effects
of divergence of the optical input beam. Various input sources and interconnection schemes
are considered. These include: fiber and GRIN optics, multi-channel acousto-optic cells
and individually collimated laser diodes. Quantitative theoretical and experimental data
are provided. A new architecture using spatial-multiplexing of the input sources and fre-
quency-multiplexing of the acousto-optic cell data is described and used for handling bipolar
and complex-valued matrix and vector elements.

1. INTRODUCTION

Optical matrix-vector processors (1,21 represent a most general-purpose class of optical S
system. Optical systolic array processors, especially those using acousto-optic (AO) cells
[3-5,13] represent very practical systems that can be fabricated with present technology.
Many interested people feel that the optics community should fabricate an optical systolic
array processor rather than continue paper studies of such systems. In this paper, we ad-
dress several fabrication and architectural issues associated with AO systolic array proces-
sors. In Section 2, we provide a quantitative assessment of the performance (in terms of
mults/secs) possible on two different basic AO systolic processors. A new architecture using
a multi-channel AO cell is described for use in cases when a higher computational rate is 0
required. Other more advanced multi-channel AO systolic processors have been advanced else-
where [13] and their use with digitally-encoded data for higher accuracy has also been de-
scribed. In Section 3, we briefly review some of the different operations required in line-
ar algebra and how all of the basic operations needed are possible (via format control) on
the same generic optical systolic array processor.

Our initial remarks and comparisons of different architectures (Sections 2 and 3) are also
flavored with practical fabrication considerations. In Section 4, we specifically address
and quantify the effects of optical beam divergence on the performance of various input
to AO cell interconnection techniques (Section 5) suitable for a wide variety of AO systolic
array processors. In Section 6, we address several architectural issues associated with
handling bipolar and complex-valued matrix and vector data. A new optical systolic array
architecture is advanced for such practical applications. Our summary and conclusions then
follow in Section 7.

The computational rate of an optical systolic array processor is the most discussed per-
formance parameter of such systems. However, the flow and pipelining of operations and data
in these systems is of equal importance [3], as is the ease of fabrication and the flexibil-
ity of a given architecture (Section 3). Another vital factor is that the operations possi-
ble on a given architecture must be properly arranged to solve a given problem. This gen-
erally involves much more than simply a matrix-vector multiplication. Examples of the de-
tailed linear algebra operations required in various applications are available in the lit-
erature. The examples thusfar published include adaptive phased array radar [6], Kalman
filtering [3,7], and optimal control [8]. The need for parallel algorithms suitable for
optical architectures [9,10] is also of vital concern. The accuracy of optical linear alge-
bra processors is yet a final issue requiring attention in many applications.

In this present paper, we restrict attention to AO-based systolic array processors, since
they are the most easily fabricated architectures. We further consider only vector inner
product (VIP) and matrix-vector (M-V) architectures, since such systems have 1-D output de-
tector arrays. The high data rates from optical matrix processors are such that optical
linear algebra systems requiring 2-D detector output arrays (such as vector outer product
systems and certain matrix-matrix processors) pose severe output detector fabrication re-
quirements. Specifically, a 2-D parallel readout detector array with high data readout rates
is required. We also consider in this present paper only optical architectures operating on
analog data. These systems represent those architectures with the highest throughput. By
the use of multi-channel AO cells and various architectural changes, these basic systems we
consider can be extended to operate on digital and other encoded data. Other authors have



addressed various approaches to achieving high-accuracy optical systolic array processors
using various architectures and data encoding schemes. In this present paper, we will also
consider only optical systems capable of operating on general matrices with no special struc-
ture. This class of system represents the most general-purpose architecture. Different
architectures [3,4) are suitable for matrix problems with special matrix structure.

Our results are sufficiently general to be applicable to many AO systolic processors. The
new architectures we describe can be extended (by the use of multi-channel cells and addi-
tional linear modulator arrays) to handle encoded data (for applications where higher accu-
racy is required). The computational rates possible from all optical systolic processors is
so large that one dimension of the multiplexed systems shown can easily be used for data
encoding. In such cases, the performance of the system is only reduced by a factor of 16-32
and still yields a quite significant number of mults/sec with a significantly more accurate
system with fewer dynamic range constraints.

2. COMPUTATIONAL RATES

As noted in Section 1, the computational rate (mults/sec) possible is a favorite criteria
(but not the panacea) for comparing optical systolic array processors. Following the termi-
nology and motivation in (11], we now briefly compare the performance obtainable from the
two generic clacses of optical systolic array processors. Rhodes ill distinguished between
two types of AO systolic processors by the manner in which the AO cell was used. Hc refers
to these AO operating modes as a modulator (Figure 1) and a deflector/modulator (Figure 2).
Both approaches are self-explanatory.

Pi P2  P3  P1 P2 L P3

POINT AO DET POINT AO ONE

MODS CELL ARRAY MODS CELL DET

(A) Integrating Detector System. (B) Single Detector Architecture.

FIGURE 1: Two Basic Acousto-Optic Modulator Vector Inner Produc, Processors.

The architectures in Figure I perform the basic operation of a VIP with one vector fed to
the AO cell and the other vector fed to the input point modulators. The output from the sys-
tem is the VIP. In the system of Figure IB, the full VIP appears on one detector. In the
system of Figure 1A, the product of each correspondliig element of each vector is formed on
separate detectors. The output detectors in Figure IA can accumulate data or their contents
can be shifted and added. These operations can be used in performing matrix-vector multi-
plications on a VIP processor. In the system of Figure 2, data is fed to the AO cell time
and frequency-multiplexed, i.e. the cell contains 2-D or matrix data and the basic operation
of the system is a matrix-vector multiplication.

*P 1  P, L1  P3

* POINT AO FT DET
MODS CELL LENS ARRAY

FIGURE 2: Frequency-Multiplexed Modulator/Deflector Acousto-Optic Matrix-Vector Processor.

We denote the transit time in the AO cell between two adjacent spatially-illuminated re-
gions by the bit time TB and the full aperture time of the cell by TA. In all cases, effi-
cient use of the system requires a cell with TA = 2NTB and 2N- 1 point modulators (where N
is the order of the vector or the matrix). To see this, recall that NTB of time is required
to load data into the cell and that NTB of the cell's aperture time is required for this
data. After ITB of time, the entire contents of the cell are no longer useable (since one
element of the vector has now left the cell). We could recycle this element into the bottom

S
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of the cell, but this requires additional complexity, memory and complicates data flow and
feedback in general applications. Thus, we consider operation of all systems by initially
(at ITB) pulsing on the bottom N point modulators with one input vector, forming one VIP. 0
Then (at time 2TB) pulsing on the point modulators 2 to N+l with new vector data, etc. In
this way, we multiply the vector in the cell by N different vectors before data reaches the
end of the cell. Every TB, we input new data to the cell and thus maintain full throughput
in the system. In all systems, we thus assume TA = 2NTB. The architectures of Figures 1A
and lB thus perform one VIP on N element vectors every TB or N VIPs in T = NTB (where TA=2T).

The operation of the system of Figure 2 can most easily be described by viewing the con-
tents of the AO cell as N1 vectors (each of length N1 ) with each vector on a separate fre- 0
quency carrier. The data leaving the AO cell in the system of Figure 2 thus consists of Na
VIPs on N1 element vectors. Since the data leaving the AO cell is Fourier transformed onto
the output plane in Figure 2, proper frequency-multiplexing and arranging of data can allow
each of these separate Nl VIPs to be produced in parallel on N1 separate output detectors.
When the input data to this system is properly multiplexed, a full matrix-vector multiplica-
tion is performed each TB (this is compared to one VIP per TB for the architectures in Figure
1). We will denote the time bandwidth product (TBWP) of the AO cell as TBWP = 2N. Thus, the
systems in Figure 1 can operate on N element v~ctors, whereas the system of Figure 2 can S
operate on an N, x N1 element matrix (where N1 = N). Furthermore, TB for the systems of
Figure I satisfies T = NTB or N = TA/2TB, whereas the system of Figure 2 requires T = TBNI
or a larger TB -oince N1 < N, specifically N11 = N.

To quantitatively compare the performance and fabrication issues for these architectures,
we assume an AO cell with TA = 40-sec (T = 20-sec) and TBWP = 2000 (i.e., N = 1000). The
systems in Figure 1 can thus perform

NB 'B mults/T = 1 M-V mult/T (1)

i.e., one VIP every TB or one matrix-vector (M-V) multiplication every T. This results in

1000 2/20wsec = 5 x 10 0 mults/sec = 50 GOPS. (2)

The system of Figure 2 performs •

N VIPs/T B = 1 M-V mult/T B N N mults/TB = N mults/TB = NN mults/T, (3)

where T = N TB was used. This yields a computation rate for the system of Figure 2 of

1000(32)/20wsec - 1.6 x 109 mults/sec. (4) 0

It is possible to pulse on each point modulator, in Figure 2, N = 32 times per TB. In this
case, (4) becomes

5.1 x 1010 mults/sec, (5)

and thus both architectures can achieve the same performance for the same I/O data rate (as
expected).

However, let us consider the hardware and fabrication requirements of these architectures
to achieve the computation rate in (5). The architectures of Figure 1 require 2000 point
modulators all packed very densely and all addressed in parallel at

TB = 20wsec/1000 - 20nsec, or at 50MHz. (6)

This is a quite high data rate (and precludes A/D and D/A conversion, at a large number of
bits). The very large number of sources required represents a considerable fabrication
achievement. Conversely, to achieve the same performance, the system of Figure 2 requires
only 64 point modulators, 32 detectors and a much lower bit time

TB = (T = 0.625Lsec, or 1.614Hz. (7)

As seen, the bit time is significantly reduced, as is the data rate 1.6MHz versus 50MHz at
which data must be fed in parallel to each channel. Thus, the ease of fabrication (64 vs.
2000 point modulators) for the frequency-multiplexed modulator/deflector matrix-vector pro-
cessor of Figure 2 is quite attractive compared to the VIP architectures using AO modulators
in Figure 1.* S
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Should a given application require a higher computational rate above 50 GOPS, a multi-
channel AO cell can be used (Figure 3). Practical considerations dictate that the number of
multiple channels (rows of the matrix A) will be less than the TBWP of each channel (the
number of columns of the matrix A). Frequency-multiplexing and matrix partitioning are thus
quite essential to redistribute The TBWP of the multi-channel AO cell. If we have M2 AO
cell channels (each iTB = TA long), Ml frequencies, 2N1 point modulators, and M 1 output arrays
of M2 detectors each, the architecture of Figure 3 realizes MI matrix-vector multiplications per 1B
(where the matrix is M2 xNj, i.e. one matrix per frequency, and the vector is of length N1 )
i.e.

M1 M-V mults/TB = M1M 2N1 mults/T B. (8)

Assuming reasonable parameters: 2N]M 1 =TBWP - 2000, M1 = N1  32 and M2  100, we find

105 mults/TB - 10 5/0.625psec= 1.6 x 10 1 mults/sec (9)

or with 32 pulses per TB, we obtain

5.1 x 1012 mults/sec. (10)

This is equivalent to 3200 VIPs every 0.6psec. The computation rate in (9) or (10) can be
achieved with only 64 point modulators and a data rate of 1.6MHz. With vertically-oriented
detector arrays, the system of Figure 3 can perform M2 matrix-vector multiplications on MjxN1 matrices.

MULTI-
CHANNEL AO

00

Z MODS II-

A

FIGURE 3: Multi-Channel AO Modulator/Deflector Frequency-
Multiplexed AO systolic processor.

Many variations of the basic architecture of Figure 3 are possible and obvious. The in-
put point modulators can be replaced by a second multi-channel AO cell. The second dimen-
sion of either modulator can be used to encode the data in digital or other reprerentations.
Alternatively, the system can be made to perform M1 correlations per channel (this achieves
M1 digital multiplications on Nl-bit words). Finally, partial products can be ac-mulato by
time integration on the output detectors. All of these techniques provide methods to in-
crease the accuracy of the system and reduce dynamic range requirements (at the expense of a
reduced number of mults/sec). Since few applications require the large number of operations
possible in (9) and (10), such tradeoffs appear quite attractive and realistic. A detailed
analysis of the architecture of Figure 3 (or similar ones) shows that such architectures are
only appropriate for matrix-matrix multiplication, operation on partitioned larger-order ma-
trices, or similarly more complicated linear algebra operations.

3. FORMAT CONTROL AND DATA FLOW FOR FLEXIBILITY

As noted in Section 1, given practical problems require far more complex operations than
a VIP or even a M-V multiplication. In Table 1, we list various operations, the associated
matrix and vector formatting of the data to the AO cell and the point modulators, plus where
the output proeuced is fed back to achieve more complicated operations and applications.
Each of these operations has been fully detailed in different publications, e.g., the solu-
tion of banded matrices (4], the solution of triancular systems of equations [12], general
linear algebraic equation (LAE) solution by iterative or indirect algorithms [5], matrix-
matrix-matrix (M-M-M) multiplication [5], matrix decomposition [9,10] for direct LAE solu-
tions, etc. An attractive feature of the architecture of Figure 2 and all of the operations
noted in Table I is that the data and operations flow ideally with no dead time in the sys-
tem. From these brief remarks, data flow and format control are seen to provide consider-
able flexibility.



TABLE 1. Format Control or Data Flow for Flexibility and Data Flow.

OPERATION NOTATION ENCODING (ROW, COL) FEEDBACK APPLICATION

AO CELL POINT MODS TO

M-V Multiplication Ab b - b(t) A = a(t,x) Solve Banded M-V
(-row per TB) AO and Triangular M-V(I rowpeTOAO(One 

Detector)

4-V Multiplication Ab A a(f,t) b = b(x) Point Solve LAE
G col per TB) - Modulators

4-M Multiplication BA A = a(t,f) B = b(t,x) AO MMM = CBA 

MMM = A B C
4-M Multiplication AB A a(f,t) B b(x,t) AO M Decomposition

A--af) - tM Inversion
Solve M Eon

4. OPTICAL BEAM DIVERGENCE CONSIDERATIONS

As seen in Sectioj 2, the bit time TB is a key parameter affecting the system computation
rate. As we will show below, TB also quite significantly affects fabrication. The center-
to-center spacing TB of packets of data in the AO cell should be largely filled with the
information packet (a fill ratio of 0.5 is quite practical). If we denote the physical size
along the AO cell (associated with TB) by dB, we find

dB = vsTB ,  (11

where vs is the velocity of sound in the AO cell. For TB - 0.1usec (a 10MHz data rate per
channel), dD = 62wm (for a TeO2 AO cell) and dB - 657wm (for a LNB AO cell). These quanti-
tative parameters significantly affect fabrication of the system. For N1 - 200 and TeO 2
ith TA a 40wsec, the above dB parameters are appropriate. Larger N1 values (or cells with

Tl ower TA values) will require quite smaller dB values and will thus introduce quite signifi-
cant practical fabrication problems.

Even with the above dB values, typical point modulators have physical sizes or center-to-
center spacings dS larger than the required dB. Thus, a demagnification of the input point
moeulator array (by a factor M) is required when imaging the input sources onto the AO cell,
i.e. we require

dB ' ds/M. (12)

Another vital and practical fabrication issue of concern is the divergence teD of the input
light incident on each TB packet of data in the AO cell. It is well-known that the diver-
gence eD of the input light affects the frequency resolution of an AO spectrum analyzer. In
the frequency-multiplexed deflector system, this affects the spacings Lf and center fre-
quency fC of the data. In the modulator architecture, this affects the spacing TB of the S
data bits or packets. In the following paragraphs, we quantify the effect of OD on the per-
formance of AO systolic processors with specific attention to different point modulator
choices and different point modulator to AO cell interconnection techniques.

All AO modulators require a separation of the zero and first-order beams. This separation
is 2 eB (where 6B is the Bragg angle). If the input light has a divergence AD, the zero and
first-order beams will also have a divergence eD. Thus, separation of the two beams requires

eD 1 eB.  
(13)

Since eB satisfies
2 0B a X0/A= 0fc/vs ,  (14)

where A is the optical wavelength, A is the acoustic wavelength and fc is the center fre-
quency 9f the AO cell. Thus, we require

D ' O/vs (15) .

D-.. Oc, 5
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Thus, as OD increases, a larger fc is required. Acoustic attenuation effects now increase.

To quantify these issues, we note that for a LNB AO cell at A0 = 820nm

1!
2eD(max) a 2.30 to 6.10 (16)

as fc varies from 300 to 800MHz. For TeO2, as fc varies from 40-100MHz, we require

2 eD(max) - 3.00 - 7.60. (17)

Next, we consider the effects of a divergence teD or 6e6 
2 8D on the frequency resolution

Lf and the minimum bit separation TB. A beam divergence 6 is equivalent to a spread 'f in
the input RF frequency where

Af - 2(Me )vs/A0 - 2 eDdB/A0TB, (18)

where eL is the divergence of the source and Mtm - D is the divergence of the optical beam
as it enters the AO cell. This effect in (18) limits the Lf between multiplexed frequencies.
Similar effects appear to be present on the minimum TB allowed. In the conventional proces-
sors of Figure 1 (using the AO cell as a modulator), the nominal TB is set by TA/2 = T = NTB,
i.e. N packets of data can be used (where 2N -TBWP). However, when 8D is included, the in-
teraction length L, the size of the AO transducer, the thickness of the AO cell and the
Bragg sensitivity all enter. In general, it appears that the TBWP or the number N of bit
times T4 allowed in this system is affected similarly by the presence of a LB. Specifically,
the Lf increase reduces the number of resolvable frequencies to BW/Lf (where BW is the band-
width of the device) and this correspondingly reduces the number of bit times allowable.
Thus, when 6D is present, the number of bit times allowed in the AO modulator architectures
is also reduced. Since the frequency-multiplexed architecture uses a larger TB, it is
far less susceptible to this effect than are the AO modulator architectures where N (ana
hence the computation rate) are directly reduced as eD effects are included.

To quantify the magnitude of this effect, we note that for TB - 0.1user and X0 = 0.82Lm,
we find for LNB that e - 10 - 17.45mrad requires a Lf - 250MHz and for eD - 3mrad we require

- Lf = 47MHz. For TeO 2 (slow shear), eD - 17.45mrad corresponds to Lf - 25.2MHz and eD - 3mrad
corresponds to Lf - 4.5MHz. For LNB and TeO2 cells with typical bandwidths, a large diver-
gence angle of 10 thus has quite severe effects. As noted earlier, these effects on TB are
comparable. The eD and TB effects are less significant for the frequency-multiplexed AO
modulator/deflector architecture however.

5. SOURCES, INTERCONNECTIONS AND EXPERIMENTAL RESULTS

One attractive technique for demagnifying a linear array of point modulator sources (LEDs
or laser diodes) onto the AO cell, while maintaining low divergence 8D at the cell, is shown
in Figure 4. As depicted in this figure, the point modulators are first focused into fiber
optics using graded index (GRIN) optical elements (Gl). The fiber optic (FO) interconnec-
tions allow the source spacings (which are generally quite large) to be reduced to the cen-
ter-to-center spacing of the GRIN elements (G2) placed at the opposite end of the FO assembly
as shown in Figure 4. The primary purpose of the Gl elements is to provide high-coupling
efficiency from the point modulators to the fibers. The primary purpose of the FO link is
to increase the packing density of the sources and to reduce the center-to-center source
size. The G2 elements have the function of producing well collimated separate optical
light channels incident on the AO cell. The GRIN optical element we have used have an 0.29
pitch and a Imm diameter (for GI) and an 0.25 pitch, a 1mm center-to-center spacing with an
active optical output beam diameter of 0.4mm and a fL - 1.1mm (for G2). Such an intercon-
nection system provides parallel output beams from G2 from separate input point modulators
with a corresponding dB - 1.0mm and an active beam diameter of 0.4mm. These parameters are
quite compatible with the requirements for several of our AO cell systems. Additional beam
reducing optics can be included between the G2 outputs and the light to the AO cell (as
shown in Figure 4) to further reduce the center-to-center spacing (if this is required by
the AO cell and its TB or dB value).

The portion of each 1.0mm diameter GRIN lens that contains light is the active source
size from G2. This is set by fL - 1.1mm of G2 and N.A. - 0.19 of the fiber. With multi-
mode fibers, with a 50um core, the core diameter d sets the divergence from G2. For such a
system, we find an active source diameter (at the input to the AO cell) of

d s 2(N.A.)" L a 400um (19
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and a beam divergence given by

tan6 D e D (D2/ 25wjm/l.1mm -22mrad. (20)

For a single-mode fiber (SMF) with a 64jm core, we obtain

d; 350pm, and 6Da 3mrad. (21)

Our experimental tests have verified all of the above theoretical parameters of the two in-
dicated interconnection architectures. Other experiments we performed verified the associ-
ated theoretical Af associated with the various given L~e values noted above.

Other possible linear point source alternatives include the use of a multi-channel AO
cell (Figure 5) and the use of laser diodes with separate individual collimating optics
(Figure 6). Each of these architectures represents most attractive alternatives that are
appropriate for various applications. The multi-channel AO input cell architecture requires
demagnification optics. It has the advantages of a very low divergence angle; however its

* performance is generally limited by the optical and electrical isolation achievable between
the separate AO channels. The use of such an input to an optical matrix-vector processor is
thus probably restricted (within the near-term) to systems employing data encoding for re-

* duced dynamic range and improved accuracy. As multi-channel AO devices mature, such systems
may become more appropriate for analog matrix-vector applications. The use of separate
laser diodes with individual collimating optics for each source is quite attractive since

* several such units are commercially available. The divergence angle obtainable from such
systems appears to be adequate to allow simple beam-reducing optics to be employed (without
the need for the GRIN-FO-GRIN system in Figure 4).

6. BIPOLAR AND COMPLEX-DATA HANDLING

The issue of handling bipolar and complex-valued data in optical systolic processors has
often not been detailed. In Figure 7, we show a new architecture that is appropriate for
such data. For the input point sources, we spatially-multiplex two linear arrays of point

*modulators. With such an arrangement, we can represent bipolar data by inputing positive
valued vector elements on one input array and negative valued vector elements on the other

*input array. Thus, which input array contains non-zero elements will determine whether the
*input data is positive or negative valued. For complex-valued data, three linear input

arrays would be employed. As shown in Figure 7, the light from each input array passes
through the AO cell at a different angle and hence the matrix-vector product of the corres-
ponding input vector and the matrix within the AO cell appears on a separate linear output

* detector array (in a different vertical location). We now direct attention to the data in-
put to the AO cell in Figure 7. In this figure, we show three multiplexed frequency inputs
to the AO cell. These can be used to represent complex-valued data (by encoding such data
with its projections on the 00, 1200 and 240* projections in the complex plane). For the
architecture shown, a bipolar input vector is multiplied by a complex-valued matrix and the

* corresponding matrix-vector product is formed on separate linear output detector arrays.
The post-processing required to convert this output data for feedback to the system in a
compatible form is quite simple.

7. SUMMARY AND CONCLUSION

In this paper, we have described many practical fabrication issues associated with opti-
cal systolic array processors. The performance (mults/sec) of several different architec-
tures have been quantified and compared. A frequency-multiplexed architecture was shown to
require greatly simplified fabrication and to yield equivalent performance to that achieved
on other architectures. We noted that by format control, many different linear algebraic
operations were possible on the same architecture and that all such operatiors provide quite

* ideal data and operational flow. The effects of the bit element size at the AO cell and the
divergence of the optical beam entering the AO cell were noted and quantified. Three new
architectures were suggested that appear appropriate for fabrication of a realistic and prac-

* tical optical systolic array architecture. These systems include the detailed issues of
* source size, source spacing, and fill-ratio, as well as the details of the source-to-AO-cell
* coupling, and the aforementioned issues of bit sire and divergence. Finally, a new spatial
* and frequency-multiplexed architecture was described to allow handling of complex-valued and

bipolar matrix and vector data.
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FIGURE 7: Bipolar and Complex-Valued Data Handling Using Space and Frequency-Multiplexing.
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16. D. CASASENT, C.P. Neuman and J. Lycas, "Optical Kalman Filtering for Missile Guidance",
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ICALEO'83, Laser Institute of America, Vol. 41, pp. 70-78, Los Angeles, California, November
1983.

17. D. CASASENT, C.P. Neuman and J. Lycas, *Optical Kalman Filtering for Missile Guidance",
Applied Optics, Vol. 23, pp. 1960-1966, July 1984.

18. J. Jackson and D. CASASENT, *A State Estimation Kalman Filter Using Optical Processing:
Noise Statistics Known =, Applied Optics, Vol. 23, pp. 376-378, February 1984.

19. J. Jackson and D. CASASENT, "Optical Systolic Array Processor Using Residue Arithmetic',
Applied Optics, Vol. 22, pp. 2817-2821, September 1983.

20. D. CASASENT, A. Ghosh and C.P. Neuman, "Iterative Solutions to Nonlinear Matrix
Equations Using a Fixed Number of Steps", Proc. SPIE, Vol. 495, August 1984. " -

21. D. CASASENT and J. Jackson, wFabrication Considerations for Acousto-Optic Systolic
Processors", Proc. SPIE, Vol. 465, pp. 104-112, January 1984.

22. D. CASASENT, *Linear Algebra Techniques for Pattern Recognition: Feature Extraction
Case Studiesm, Proc. SPIE, Vol. 431, pp. 263-269, August 1983.

23. D. CASASENT, "Coherent Optical Pattern Recognition: A Review", Optical Engineering, 24,
Special Issue, January 1985.
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16. PUBLICATIONS AND
PRESENTATIONS -

16.1 PUBLICATIONS (AFOSR SUPPORTED, 1979-DATE)

Publications from 30 September 1979 - 30 September 1980 on work performed under

AFOSR-79-0091 are listed in Section 16.1.1. Publications during 30 September 1980 - 30 September 1981

follow in Section 16.1.2, and publications in FY82 and FY83 continue in Sections 16.1.3 and 16.1.4. New

publications from September 1983 - September 1984 follow in Section 16.1.5. A list of presentations at " -

conferences, companies, and seminars on our AFOSR research conducted during the prior year then

follow.

18.1.1 PUBLISHED PAPERS UNDER AFOSR SUPPORT (30 SEPTEMBER 1979 - 30

SEPTEMBER 1980)

1. "Photo-DKDP Light Valve in Optical Data Processing", Applied optics, 18,

3307-3314, October 1979 (Casasent, Luu).

2. "Coherent Optical Pattern Recognition", Nikkei Electronics, 150-181,
October 1979 (in Japanese) (Casasent).

3. "Optical Data Processing for Advanced Missile Guidance Needs", AIAA,

October 1979 (Casasent). 0

4. "Spread Spectrum Optical Signal Processors", Proc. EOSD, 333-342, October

1979 (Casasent, Psaltis).

5. "Space Blur Bandwidth Product in Correlator Performance Evaluation", JOSA, 1
70, 103-110, January 1980 (Kumar, Casasent). 0

6. "Optical Image Processing", EOSD, Tokyo, January 1980 (in Japanese)

(Casasent).

7. "Optical Signal Processing", EOSD, Tokyo, January 1980 (in Japanese)

(Casasent). 0

8. "Beyond Hatched Filtering", Opt. Engr., 19, 152-156, March 1980 (Caulfield
et al).

! 0
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9. "Multivariant Technique for Multi-Class Pattern Recognition", Applied

optics, 19, 1758-1761, June 1980 (Psaltis, Casasent).

10. "optical Fourier Transform Techniques for Advanced Fourier Spectroscopy",

Applied Optics, 19, 2034-2037, June 1980 (Casasent, Psaltis).

11. "Nonlinear t-E Curve Effects in an Optical Correlator", Opt. Comnmun., 34,

4-6, July 1980 (Kumar, Casasent).

12. "Correlation of Images with Random Contrast Reversals", SPIE, 238, 156-
165, July 1980 (Barniv, Mostafavi, Casasent).

13. "A Laser Diode Lensless MSF-HOE Correlator", Applied Optics, 19, 2653-
2654, August 1980 (Caimi et al).

I~

14

i

16.1.2 PUBLISHED PAPERS UNDER AFOSR SUPPORT (30 SEPTEMBER 1980 - S0

SEPTEMBER 1981)

14. "Hybrid Processor to Compute Invariant Moments for Pattern Recognition",
Opt. Lett., 5, 395-397, September 1980 (Casasent, Psaltis).

15. "Optical Word Recognition, Case Study in Coherent Optical Pattern
4 Recognition", Opt. Engr., 19, 716-721, September 1980 (Casasent et al).

16. "Lensless Matched Spatial Filter Correlator Experiments", Opt. Cormun.,
34, 311-315, September 1980 (M. Shen et al).

17. "HOE/Lensless Matched Spatial Filter Correlator Experiments", Opt. Commun.,
34, 316-320, September 1980 (M. Shen et al).
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18. "A Laser Diode/Lensless MSF Optical Pattern Recognition System", EOSD, 46-
52, NovL..Lber 1980 (Casasent et al).

19. "Optical Pattern Recognition: Matched Spatial Filter Processors", EOSD,
33-39, November 1980 (Casasent).

20. "Optical Pattern Recognition: Beyond Matched Spatial Filtering", EOSD,
39-47, March 1981 (Casasent).

21. "Pattern Recognition: A Review", IEEE Spectrum, 28-33, March 1981
(Casasent).

22. "Processing Flexibility by Hybrid Optical/Digital Techniques", Proc. Work-
shop of Future Directions in Optical Data Processing, Texax Tech. Rept.,
1 March 1981, 17-23 (Casasent, Kumar).

23. "Beyond Holographic Matched Filtering", Israel Journal of Technology, 18,
255-260, March 1981 (Casasent).

24. "Binarization Effects in a Correlator with Noisy Input Data", Applied Optics,
20, 1433-1438, April 1981 (Kumar, Casasent).

25. "Correlation of Images with Random Contrast Reversals", SPIE, 238, 156-
165, July 1980 (Barniv, Mostafavi, Casasent).

26. "Image Quality Effects in Optical Correlators", SPIE, 310, 183-192, August
1981 (Casasent, Eiva, Kumar).

27. *Multisensor Image Registration: Experimental Verification", SPIE, 292,
160-171, August 1981 (Barniv, Casasent).

28. "Intra-Class IR Tank Pattern Recognition Using SDs", SPIE, 292, 25-33,
August 1981 (Hester, Casasent).

29. "Inter-Class Discrimination Using SDFs", SPIE, 302, 108-116, August 1981
(Hester, Casasent).

_ _ _ _ _ _ _-__- 1
16.1.3 PUBLISHED PAPERS UNDER AFOSR SUPPORT (30 SEPTEMBER 1981 - 30

SEPTEMBER 1982)

30. "An Iterative Optical Processor: Selective Survey of Operations Achievable",
Proceedings NASA Langley Conference on Optical Information Processing, •
Publication 2207, August 1981, 105-118 (Casasent, Neuman).

* " - -- } - . • .---- - .'
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31. "A Review of Optical Signal Processing", IEEE Comun., 40-48, September
1981 (Casasent).

32. "Optical Signal Processing II: Applications, Systems and New Techniques",

EOSD, 41-47, September 1981 (Casasent).

33. "The Soviet Priz Spatial Light Modulator", Applied Optics, 20, 3090-3092,
September 1981 (Casasent, Caimi, Khomenko).

34. "A Laser Diode/HOE Pattern Recognition System", Acta Optica Sinica, 1,
401-410, September 1981 (Casasent et al).

35. "Eigenvector Determination by Iterative Optical Methods", Applied Optics,
20, 3707-3710, November 1981 (Kumar, Casasent).

36. "A New Soviet BSO Light Modulator for Optical Data Processing", Proc. EOSD,
297-303, November 1981 (Casasent, Caimi).

37. "A Correlator for Optimum Two-Class Discrimination", Proc. EOSD, 321-330,
November 1981 (Casasent et al).

38. "Test and Evaluation of the Soviet Prom and Priz Spatial Light Modulators",
Applied Optics, 20, 4215-4220, December 1981 (Casasent, Caimi, Khomenko).

39. "A Microprocessor-Based Fiber-Optic Iterative Optical Processor", Applied
Optics, 21, 147-152, January 1982 (Carlotto, Casasent).

40. "Principal Component Imagery for Statistical Pattern Recognition Correlators",
Opt. Engr., 21, 43-47, January/February 1982 (Kumar, Casasent).

41. "Adaptive Phased Array Radar Processing Using an Optical Matrix-Vector
Processor", SPIE, 341, May 1982 (Casasent, Carlotto).

42. "New Research in Holographic Pattern Recognition", Proc. SPIE, 353, 6-11,

August 1982 (Casasent).

43. "Synthetic Discriminant Functions for 3-D Object Recognition", Proc. SPIE,

360, 136-142, August 1982 (Casasent, Kumar, Sharma).

44. "Multidimensional Adaptive Radar Array Processing Using an Iterative Optical

Matrix-Vector Processor", Opt. 1ngr., 21, 814-821, September 1982 (Casasent,

Carlotto).
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18.1.4 PUBLISHED PAPERS UNDER AFOSR SUPPORT (30 SEPTEMBER 1982 - 30

r SEPTEMBER 1983)

45. "Advanced Acousto-Optic Signal Processors", Proc. SPIE, 352, 50-58, August
1982 (Casasent).

46. "A Fisher Discriminant Approach to Distortion-Invariant Pattern Recognition

Using Autocorrelations", Lasers and Electro-Optics, 34, 18-23, September
1982 (Casasent, Chang).

47. "Realization of a Sobel Operator by Coherent Optical Techniques", Lasers and
Electro-Optics, 34, 24-30, September 1982 (Chen, Casasent).

48. "Applications of the Priz Light Modulator", Applied Optics, 21, 3846-3854,

November 1982 (Casasent, Caimi, Petrov, Khomenko).

49. "Frequency-Multiplexed and Pipelined Iterative Optical Systolic Array Pro-

cessors", Applied Optics, 22, 115-124, January 1983 (Casasent, Jackson,
Neuman) .

50. "Optical Linear Algebra", SPIE, 388, January 1983 (Casasent, Ghosh).

51. "Nonlinear Local Image Preprocessing Using Coherent Optical Techniques",
Applied Optics, 22, 808-814, March 1983 (Casasent, Chen).

52. "Performance of Synthetic Discriminant Functions for Infrared Ship Classification", IOCC
Conference, Boston, Massachusetts, April 1983, IEEE Cat. No. CH1880-4/83, SPIE Vol.

422, pp. 193-196 (CASASENT, Sharma).

53. "Guidelines for Efficient Use of Optical Systolic Array Processors", IOCC Conference, Boston, -.

Massachusetts, April 6-8, 1983, IEEE Cat. No. CH1880-4/83, SPIE Vol. 422, pp.
209-213 (CASASENT).

54. "Recent Advances in Optical Signal Processing", CLEO Conference, May 17-20, 1983, Baltimore,
Maryland (CASASENT).

55. "Developments in Acousto Optic Signal Processing", Trends and Perspectives in Signal Processing,
Vol. 3, No. 2, pp. 1-6, June 1983 (CASASENT). S.

56. "Generalized Chord Transformation for Distortion-Invariant Optical Pattern Recognition", Applied
Optics, 2 pp. 2087-2094, July 1983 (CASASENT, Chang).

57. "LU and Cholesky Decomposition on an Optical Systolic Array Processor", 2ptics Communications,
46, pp. 270-273, July 1983 (CASASENT, Ghosh).

58. "Direct and Indirect Optical Solutions to Linear Algebraic Equations: Error Source Modeling", Proc.
SPIE, 431, pp. 201-208, August 1983 (CASASENT, Ghosh, Neuman).

59. "Linear Algebra Techniques for Pattern Recognition: Feature Extraction Case Studies", SPIE, 431, 0
pp. 263-269, August 1983 (CASASENT).
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60. "Shift-Invariant and Distortion-Invariant Object Recognition", SPIE, 442, pp. 47-55, August 1983
(CASASENT, Sharma).

16.1.5 PAPERS PUBLISHED AND SUBMITTED UNDER AFOSR SUPPORT

(SEPTEMBER 1983 - SEPTEMBER 1984)

61. "Fourier Transform Feature-Space Studiesm, Proc. SPIE, 449, pp. 2-8, November 1983 (CASASENT,
Sharma).

62. "Direct and Implicit Optical Matrix-Vector Algorithms", Applied Optics, 22, pp. 3572-3578,
November 1983 (CASASENT, Ghosh).

63. "Optical Kalman Filtering for Missile Guidance", ICALEO'83, Laser Institute of America, 41, pp.
70-78, Los Angeles, California, November 1983, (CASASENT, Neuman, Lycas). |

64. "Recent Advances in Optical Pattern Recognition", Proc. SPIE, 456, January 1984 (CASASENT,
Fetterly).

65. "Fabrication Considerations for Acousto-Optic Systolic Processors", Proc. SPIE, 465, pp. 104-112,
January 1984 (CASASENT, Jackson).

66. "A State Estimation Kalman Filter Using Optical Processing: Noise Statistics Known", Applied
Optics, 23, pp. 376-378, February 1984 (Jackson, CASASENT).

67. "Unified Synthetic Discriminant Function Computational Formulation", Applied Optics, 23, pp.
1620-1627, May 1984 (CASASENT).

68. "Direct and Implicit Optical Matrix-Vector Algorithms: Addendum", Applied Optics, 23, p. 1450,
May 1984 (CASASENT, Ghosh).

69. "Acousto-Optic Linear Algebra Processors: Architectures, Algorithms and Applications", Proc.
IEEE, Special Issue on Optical Computing, 72, pp. 831-849, July 1984 (CASASENT).

70. "Optical Kalman Filtering for Missile Guidance", Applied Optics, 23, pp. 1960-1966, July 1984
(CASASENT, Neuman, Lycas).

71. "Time-Integrating Acousto-Optic Correlator: Error Source Modeling", Applied Optics, 23, pp.
3230-3237, September 1984 (CASASENT, Goutzoulis, Kumar).

72. "Acousto-Optic Processor for Adaptive Radar Noise Environment Characterization", Accepted for
publication, Applied O2tics, 1984 (Goutzoulis, CASASENT, Kumar).

73. "Feature Extractors for Distortion-Invariant Robot Vision", Optical Engineering, 23, pp. 492-498,
October 1984 (CASASENT, Sharma).

74. "Projection Synthetic Discriminant Function Performance", Optical Engineering, 23, pp. 716-720,
November 1984 (CASASENT, Rozzi, Fetterly).

75. "A Quadratic Matrix Algorithm for Linear Algebra Processors", Submitted, IEEE Trans. SMC,
Submitted, August 1984 (CASASENT, Ghosh, Neuman).
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76. "Image Segmentation and Real-Image Tests for an Optical Moment-Based Feature Extractor",
Optics Communications, 51, pp. 227-230, September 1984 (CASASENT, Cheatham).

77. "Hierarchical Pattern Recognition Using Parallel Feature Extraction", Proc. ASME, August 1984 0
(CASASENT, Cheatham).

78. "Hierarchical Fisher and Moment-Based Pattern Recognition", Proc. SPIE, 504, August 1984
(Cheatham, CASASENT).

79. Olterative Solutions to Nonlinear Matrix Equations Using a Fixed Number of Steps", Proc. SPIE, 0

495, August 1984 (CASASENT, Ghosh, Neuman).

80. "SDF Control of Correlation Plane Structure for 3-D Object Representation and Recognition", Proc.
SPIE, 507, August 1984 (Chang, CASASENT, Fetterly).

81. "Iterative Optical Vector-Matrix Processor", S 373, 111-116, February 1981 (Carlotto,
CASASENT).

82. "Optical Linear Algebra Processors: Noise and Error Source Modeling", Optics Letters, Submitted
September 1984, (CASASENT, Ghosh).

16.2 SEMINARS, CONFERENCES, ETC. PRESENTATIONS OF AFOSR

RESEARCH (1 SEPTEMBER 1983 - 30 SEPTEMBER 1984)

October 1983 0

1. Washington, D.C., "Acousto-Optic Research Possibilities'.

2. DARPA - Washington, D.C., "Advanced Optical Pattern Recognition Algorithms,
Architectures, and Systems".

3. Carnegie-Mellon University, Sophomore Seminar - Pittsburgh, Pennsylvania, "Optical
Information Processing".

November 1983

4. SPIE Conference - Cambridge, Massachusetts, "Fourier Transform Feature-Space Studies". 6

5. SPIE Conference - Cambridge, Massachusetts, "Direct and Implicit Optical Matrix-Vector
Algorithms".

6. Laser Institute of America Conference - Los Angeles, California, "Optical Kalman Filtering for 0
Missile Guidance".

7. VOIS Inc. - Binghamton, New York, "Optical Pattern Recognition".

8. Carnegie-Mellon University, ECE Department Pittsburgh, Pennsylvania - "Optical
* Information Processing". 0
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9. Carnegie-Mellon University, Presented to NASA Lewis - Pittsburgh, Pennsylvania, "Optical
Linear Algebra".

December 1983

10. Stanford University - Stanford, "Optical Systolic Processors".

11. Chevron Oil Field Research Co. - La Habra, California, "Optical Information Processing".
I

12. University of California at Santa Barbara - Santa Barbara, California, "Optical Information
Processing*.

January 1984

13. SPIE Conference Los Angeles, California, "Recent Advances in Optical Pattern
Recognition.

14. Teledyne Electronics - Newbury Park, California, "Optical Signal Processing*.

15. SPIE Conference - Los Angeles, California, *Fabrication Considerations for Acousto-Optic
Systolic Processors".

February 1984

16. Polytechnic Institute - Brooklyn, New York, "Optical Processing for Robotics".
S

17. Robotics Institute, Carnegie-Mellon University Pittsburgh, Pennsylvania, "Optical

Information Processing". .1
March 1984

18. Washington, D.C., 'Optical Data Processing".

19. Carnegie-Mellon University, Professional Education Program - Pittsburgh, Pennsylvania,
"Optical Pattern Recognition".

20. Carnegie-Mellon University, Professional Education Program - Pittsburgh, Pennsylvania,
"Optical Signal Processing".

April 1984

21. Carnegie-Mellon University, Professional Education Prograc Pittsburgh, Pennsylvania, p
"Optical Information Processing".

May 1L984

22. Air Force Office of Scientific Research - Washington, D.C., "Optical Information Processing".

23. NASA Langley - Hampton, Virginia, "Optical Linear Algebra".
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June 1984

24. Carnegie-Mellon University, Presented to Westinghouse R & D - Pittsburgh, Pennsylvania,
"Center for Excellence in Optical Data Processing".

August 1984

25. SPIE Conference - San Diego, California - "Iterative Solutions to Nonlinear Matrix Equations
Using a Fixed Number of Steps".

26. SPIE Conference - San Diego, California - "Hierarchical Fisher and Moment-Based Pattern
Recognition.

27. SPIE Conference - San Diego, California - "SDF Control of Correlation Plane Structure for

3-D Object Representation and Recognition".

September 1984

28. Philips Laboratories - Briarcliff, NY - "Optics and Pattern Recognition in Robotics".

29. Optical Society of America - Pittsburgh, PA, "CMU Center for Excellence in Optical Data
Processing".

30. Carnegie-Mellon University - Pittsburgh, PA, "Signals and Systems Research in ECE". 0

31. Westinghouse Corporation - Baltimore, MD, "Center for Excellence in Optical Data

Processing".

16.3 THESES SUPPORTED BY AFOSR FUNDING (SEPTEMBER 1980 -

SEPTEMBER 1984)

1. Hiroyasu Murakami, M.S. Dissertation, "Matched Filter Statistical Correlator (February

1981).

2. Saulius Eiva, M.S. Dissertation, "Image Quality Effects in Optical Correlators" (May 1981).

3. Charles Hester, PhD Dissertation, "Synthetic Filters for Multi-Class Pattern Recognition"

(May 1981).

4. Yair Barniv, PhD Dissertation, "Multi-Sensor Image Registration" (May 1981). .

5. Mark Carlotto, PhD Dissertation, "Iterative Electro-Optic Matrix Processor" (May 1981).

6. Andrew Sexton, M.S. Dissertation, "Digital Analysis of Space-Variant Optical Processors"
0 (July 1981).

7. Bernard Szymanski, M.S. Dissertation, "A Computer-Controlled Film Recorder for Optical
Processing" (July 1983).
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8. Vinod Sharma, PhD Dissertation, Design and Analysis of Algorithms for Distortion-Invariant
Object Recognitiono (January 1985).

9. R. Lee Cheatham, PhD Dissertation, "Moment-Based Object Recognition Using a Two-Level
Classifier" (April 1984).

10. Anjan Ghosh, PhD Dissertation, "Performance Evaluation of Optical Linear Algebra
Processors" (April 1984).

11. Eugene Pochapsky, M.S. Dissertation, "The Simulation of Optical Pattern Recognition
Systems" (August 1984).

12. William Rozzi, M.S. Dissertation, "New Distortion-Invariant Correlator Research" (Expected
in December 1984).

p
13. Bruce Thomas, M.S. Dissertation, "Moments for Distortion Parameter Estimation" (Expected

in December 1984).

14. Wen-Thong Chang, PhD Dissertation, "Shift-Invariant and Distortion-Invariant Pattern
Recognition Techniques" (Expected in February 1985).

16.4 PATENT DISCLOSURES (SEPTEMBER 1980 - SEPTEMBER 1984)

1. Multiple-Invariant Space-Variant Pattern Recognition System.

2. Pattern Recognition by Invariant Moments.

3. Synthetic Discriminant Functions for Multi-Class Pattern Recognition.

4. Equalization and Coherent Measure Correlator.

5. Multi-Variant Technique for Multi-Class Pattern Recognition. 0
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