




le 74 ... . 7 T

Table of Contents

1. Introduction I
2. Multiprocessor Systems 2

2.1 Introduction 2
2.2 Hardware 2
2.3 Common Software 3
2.4 Multiprocessor Languages 5
2.5 The Medusa Operating System 6
2.6 The StarOS Operating System 7
2.7 The TASK Specification Language 8
2.8 Applications 9
2.9 Annotated Bibliography 10

3. Image Understanding Systems 12

3.1 Introduction 12
3.2 Overview of JUS Research 12
3.3 Knowledge Representation and Search 13
3.4 Image Feature Analysis and Segmentation 13
3.5 3-0 Modeling 14
3.6 Architectures for Image Processing 14
3.7 Annotated Bibliography 15

4. Machine Intelligence 16

4.1 Introduction 16
4.2 Production Systemis 16
4.3 ZOG Applications 19
4.4 Heuristic Search 20
4.5 Speech Understanding 20
4.6 Annotated Bibliography 21

5. Software Technology 31

5.1 Introduction 31
5.2 Production Quality Compiler-Cmie 31
5.3 Algol68 34
5.4 Annotated Bibliography 37

r746. System Architectures for Archival Memories 47

6.1 Introduction 47
6.2 Current Research 47

7. Signal Understanding in Distributed Systems 49

7.1 Introduction 49
7.2 Project Overview 49
7.3 Language and systems studies 49
7.4 Annotated Bibliography 50

4 . Appendix: Publications 52





2

2. Multiprocessor Systems

2.1 Introduction

Most large multiprocessor systems utilize rigid hardware structures that pre-allocate

specific functions to specific processors. This CMU research group is developing alternate

general purpose systems that will enable dynamic allocation of functions to processors, while

also providing fault tolerance and graceful system degradation in the event of hardware
failures. Such systems could conceivably run for long periods of time without a total failure.
They would also provide a reliable hardware base for multilevel secure operating systems.

Cm* is an extensible, multiprocessor system with a hierarchical switching structure that in
principle offers indefinite extensibility of processing power, memory capacity and

communication bandwidth. The cost of its interconnection structure grows approximately

linearly with system size. The addressing architecture presents to the programmer a uniform,

system wide, segmented address space. Effective use of the structure of this system

depends upon an object oriented, capability based operating system to support it and upon

suitable decompositions of application which drive it (Swan 1978).

Since the first semi-annual report, the Cm* system has been successfully expanded from its
10 LSI-11 processor prototype to the complete 50 processor system. Multiple operating

system and application program efforts have proceeded in parallel.

2.2 Hardware

During the past six months there were quite a few achievements in the hardware sector of

the Cm* project. Design revisions were completed on the computer module backplanes, the
initialization board and the local switch (Slocal) which connects the computer module with the

interprocessor communication structure. These changes improved the manufacturability of

the system and augmented the error recovery information preserved by the hardware, based

on experience with the 10 processor version of Cm*.

Also finalized was the design of a 4K word (by 80 bit) writable control store for the Kmaps

(inter- and intra-computer module communication controllers) which replaces the 1K boards
previously used. This allows additional architectural experimentation and exploits recent
static MOS memory developments.

Primarily used for Cm* operating system development, the link from Cm* to the
". department's PDP-KL1O has been installed. Both hardware and software aspects of this

project are now functional. Five DA Links, used for high bandwidth connection between Cm*

L



3

and the CMUA, were constructed and tested over the past few months. CMUA's TOPS-1O

operating system was modified to accommodate the link. User levei programming was written

to support primitive file transfers from the POP-10 to Cm*. More sophisticated bidirectional

transfer protocols have been defined and are partially implemented. At present, software

development is continuing both on Cm* and on the POP-10.

-Several other things were accomplished along the lines of hardware expansion. As an aid

to performance evaluation, the design of a I microsecond resolution clock with a battery

backup was completed. Six used RP04 (80 megabyte) disk drives were made operational.

The preliminary design of a custom disk controller for Cm* was drawn up. This new

controller design offers a powerful yet inexpensive way of interfacing secondary storage into

Cm*. The design emphasis is on providing a high level of error checking and fault recovery

without sacrificing performance.

Unquestionably, the greatest hardware achievement in the past semester was the hardware

expansion of Cm* from 10 processors to 50. The major steps which lead toward this goal are

enumerated below:

1. Revised 10 existing computer modules.

2. Built and tested 40 new computer modules (includes backplane, modified LSI-1I
processor, Slocal, initialization board).

3. Constructed two additional map bus monitors.

4. Revised 3 existing Kmaps and built 2 additional Kmaps.

5. Current system has 7.4 M bytes of primary memory.

The hardware development is now essentially complete. The only major outstanding item is

the disk controller. Cm* should have at least five 80 megabyte disk drives interfaced one per

cluster. There will be minor revisions of existing hardware and possible addition of primary
memory and measurement facilities as dictated by the needs of the operating systems and

applications. Also anticipated is continued experimentation with architectural features

alterable in microcode.

2.3 Common Software

This section covers the development of utility software utilized by most of the research

groups associated with Cm*.

Now that Cm* has expanded to 50 processors, the operating system, the Cm* Host, has



A00

CY

0 0

I A



5

been reconfigured for this upgrade.

The Shepherd system, a tile management and documentation system to aid development of
large software systems, has stabilized. Now it is also used by non-Cm* related projects.

DA Link software support on the CMUA is now implemented and operational, as mentioned
previously in the hardware section.

An operational microcode compiler, called Mumble, permits a programmer to write
microcode for Cm* using high level constructs. An initial inspection shows that compiled code

is at least 80- as efficient as if it were hand-generated.

Freshly implemented is a new Auto Diagnostic system for Cm*. This one automatically loads

and runs diagnostics on computer modules which are not in use. Its presence has greatly

assisied the staff in providing effective hardware maintenance. Also vital to this end are the
hardware diagnostics, new or revised for: DA link, Slocal, Parity, disk and Kmap.

We are looking towards continued enhancement of existing software, particularly the

enhancement of the file transfer system from the CMUA. A desirable new facility would be

support of terminal interactions via the DA Link. This would allow full access to Cm* via the
ARPAnet.

2.4 Multiprocessor Languages

Research in high level programming languages for multiprocessors previously led to an

implementation of Algol68 on Cm* with a novel mechanism for detecting and exploiting

parallelism at runtime. Present efforts concern development of a new language and operating

environment which will adapt automatically to resource availability and provide error

recovery.

The design of LO, a language based loosely on the Steelman Requirements for a common

high order programming language, has been accomplished. It stresses a variety of process

communication primitives to allow exploration of various methods; Ada is not a multiprocessor

language, even though it has tasking facilities.

A compiler has been partially completed. It includes the following: parser, scanner,

semantic routines (moderately modularized to accept table input), table generating routines.
TCOL (tree based corimon language for compiler-compiler input and inter-phase

communication) generation routines have also been designed and partially implemented. The
intention is that when TCOL and Ada Runtime systems are mature, the compiler will be

installed with them.



6

Implementation studies were conducted of multiple message sends and receives across a

network, and of incremental garbage collection across a network.

The overall goal is an investigation of issues in providing an environment for developing

large applications on a range of multiprocessor structures. The target application domain is

image understanding, highly applicable at CMU.

LO implementation will wait until TCOL.Ada, the tree based common language for Ada, is

finally designed, and until the Ada runtime system has stabilized. It now appears likely that

the LO runtime system will have a greater similarity to the Algol68 runtime system, without

automatic eventing, than it will be to the authorized Ada runtime system.

During the next semester, we will be working on a design and partial implementation of

high-level language environment which addresses transparent handling of hardware

configuration changes and provides good monitoring and debugging facilities.

2.5 The Medusa Operating System

This project is an investigation of the design of a fully distributed operating system based

on a simple structure with low overhead and very fast message communications primitives.

This is the second operating system for Cm*. The first system, StarOS, has been concerned

with making Cm* programmable at a high level by users. Thus the StarOS system embodies a

general object addressing mechanism and a set of tools for manipulating parallel programs.

For Medusa we have chosen to emphasize problems of structure, rather than facilities.

The structure of Medusa results from a consideration of the questions of partitioning and

communication in light of the three general goals (moduilarity, robustness, and performance)

and their interaction with the architecture of Cm*. The resulting structure has two significant

characteristics:

7 The control structure of the operating system is distributed. The functionality of
Medusa is divided into disjoint utiities. Each utility executes in a private
protected environment, and implements a single abstraction for the rest of the
system. Boundaries between utilities are crossed only by messages.

Parallelism is implicit and expected in Medusa. All programs are organized as
*l task forces, each of which is a set of cooperating actiuities. By making it the

central unit of control, Medusa makes it possible for very fine-grain interactions
to occur within a task force. Each Medusa utility is a single task force.

Over the past six months, this group completed the design and began the implementation of

the operating system. Approximately 75. of microcode for Medusa has been written,

1I



7

including a distributed name management system that is consistent, deadlock-free, and
starvation-free without the use of a central authority.

Microcode has been newly designed to supply a message system that is an order of
magnitude more efficient than existing systems: the cost of sending a message in Medusa is
approximately the same as a high-level language procedure call.

Detailed design work was also done on the Medusa utilities. Actual programming of these
was also initiated. Unfortunately, none of the code can be tested until the microcode is
complete. The utilities include a memory manager, a file system that implements a Unix-like
hierarchical structure, a task force manager, and an exception reporter that provides for
cooperation among concurrent programs in handling exceptional conditions.

MACE is a recently designed and partially implemented debugging and measurement
program oriented towards distributed environments like that of Cm*.

It is anticipated that the primary development and evaluation of Medusa will be completed
within a year. Specific items include:

- Complete microcode implementation.

- Test utilities and debugger for Medusa.

- Transport simple Unix primitives including shell, C compiler, and file utilities.

- Experiment with error recovery to test out modularity and robustness of

Medus a.

42.6 The StarOS Operating System

The object of the StarOS project is to produce an operating system of general utility for
users of Cm*, and to provide a vehicle for experiments in program design and implementation
for multiprocessors. StarOS is a capability based operating system that provides for multiple
user task forces, each of which is composed of multiple processes executing concurrently.F, Each process or environmenzt can address any memory of the machine uniformly, and all
objects represented in the memory can be shared among the executing environments
arbitrarily. StarOS provides for multiplexing the processors, communication among the
various environments, and the transmission of information between Cm* and other resources,
including user terminals.

In keeping with the recent Cm* hardware expansion, the one-cluster version of StarOS, a
message-based operating system, has been expanded to multi-clusters. Also the microcode Is



8

substantially complete and has been stand-alone tested using one cluster, in preparation for
performing cross cluster operations. The microcode includes operations for capability
addressing, as well as operations on stacks, queues, deques, and mailboxes.

The StarOS nucleus code, which executes in privileged mode, has been programmed and
substantially tested on one cluster.

Among the goals for this group are to have, operational, a one-cluster StarOS system this
summer and a multi-cluster StarOS system this year.

We also hope to determine the performance attributes of message-based operating

systems, in contrast with monolithic (extant) systems.

Investigations of software structures for communicating process failure information will be
initiated. We hope to determine whether the bailout mailbox mechanism, by which failing
processes communicate failure data, provides an adequate mechanism to cope with the
expected high failure rates of a multiprocessor structure.

We will also study whether capability addressing provides the 1: tor tailoring protected
addressing domains so that each of the multiple processes involvec' ir computation has

* access to only that data which it needs to know.

Also planned is experimentation with distributed memory allocation processes and a
distributed garbage collection algorithm.

* 2.7 The TASK Specification Language

4 Distributed software, called task forces, is a collection of communication parallel processes
that cooperate to solve an application problem. One of the substantial hurdles that must be
overcome to utilize a multiprocessor effectively for large applications is that one must be
able to specify and then maintain task forces that consist of a multitude of components. The
specification language TASK has been designed to assist in such an effort.

TASK permits a task force author to incrementally specify the various modules that provideF the various functions of the task force.

This specification is to be compiled to a sequence of commands to the StarOS loader which

t instantiates each of the various components of the task force, based on the creation and
* initialization parameters specified in the TASK description.

Task forces, by their very nature, vary more than uniprocessor software. For example, the
number of partitions into which a data file needs to be partitioned varies with the amount of



9

data. The number of processes varies with the available resources.

TASK provides a high-level language in which to describe such dimensions of variability.
For example, one may specify that the number of processes instantiated be the same as the

number of computer modules in the cluster being used by the task force.

In addition, TASK provides the user with syntax to express resource usage directives,
These directives constrain the allowable resource allocations. For the most part task force
authors indicate the Proximity Relation between two comoonents, whether the components

are software or liardware. For example, one might state that two processes should be
'CmApart' so that they cannot compete for processor cycles.

Heuristics in the TASK compiler will accept such directives together with a current

description of Cm* hardware and make resource allocation decisions, i.e. it will assign
processors to processes, and it will place each object representation in some Cm memory.

A paper entitled 'TASK Forces: Distributed Software for Solving Problems of Substantial

Size' has been accepted for presentation at the 4th International Conference on Software
Engineering in the fall.

2.8 Applications

Due to the variety of departmental 'interests, and the work on several different operating

systems for the multiprocessor,. four unique application tasks have evolved. They are briefly
itemized below:

A Power systems

-A simulation of electrical networks consisting of passive devices (resisters,
capacitors, and inductors) runs on the one-cluster version of the StarOS
operating system.

-GOAL: measure performance aspects of simulation of power networks that
include complex devices (e.g. power transmission lines) using a one- cluster
system, then a multi-cluster system.

Monte Carlo Simulation of Molecular Movement

- Runs using 25 processors on a 25 particle water sample. The effective speed is
21 processors.

- GOAL: Determine where the equivalent of 4 processors are being expended, and
improve performance of the simulation, We intend to expand the simulation to



10

involve more particles, more processors, and perhaps alternative simulation
algorithms.

Molecular Orbital Calculations

- Some initial work, e.g. development of floating point library, has been completed.

- GOAL: Implement and evaluate representative stages of a molecular orbital
calculation system that can be directly compared with existing implementations

- on CDC 7600s and DEC VAX/780s.

Image Understanding

- An initial study of how to decompose existing image understanding algorithms for
- Cm* has been made.

- GOAL: Implement an initial image understanding system by direct transfer and
parallelization of existing POPI 1/40 system.

- GOAL: When LO language system is available use it for a more elaborate
implementation which will be fault tolerant and potentially transferable to other
multiprocessor structures.

2.9 Annotated Bibliography

Fuller, S. H., Ousterhout, J., Raskin, L., Rubinfeld, P., Sindhu, P. and Swan, R. J.
Multi -microprocessors: An overview and working example. In

Cqmputer Engineering: -A DEC View of Hardware Systems Design.

(C. G. Bell, J. C. Mudge and J. E. McNamara, Ed.) Digital Press,

Bedford, MA, 1978. Also CMU-CSD Technical Report 1977.

An interesting phenomenon over the past several years has been

the spontaneous growth of interest in multiple- microprocessor

computer systems in many universities and research laboratories.
This interest is not hard to understand given the inexpensive

computational power offered by microprocessors today and the

cost -performance improvements promised by those to be delivered
in the near future. Microprocessors have had a dramatic impact on

applications that require a small amount of computing. They have

been used in instruments, industrial controllers, intelligent terminals,

communications systems as special function processors in large

computers, and more recent, in consumer goods and games. The



('> 11

question naturally arises as to whether the microprocessor, which

has proved so successful in these diverse applications, can be used

O' as a building block for large general purpose computer systems. In

other words, can a suitably interconnected set of microprocessors

be used for tasks rat currently require large uniprocessors capable

of executing millions of instructions per second At present, there is

no definitive answer to this question, but there are several reasons

to believe that multiple-microprocessor systems might indeed be

viable.

Siewiorek, D. P., McConnel, S. R. and Tsao, M. The measurement and analysis of

transient errors in Digital computer systems. Proceedings of the

1979 International Symposium on Fault- Tolerant Computing,

Madison, WI, June, 1979. Also CMU-CSD Technical Report May 1979.

Experimental data on transient faults from several digital computer

systems are presented and analyzed. This research is significant

because earlier work on validation of reliability models has

concentrated only on permanent faults. The systems for which data

have been collected are the DEC PDP-1O series computers, the Cm*

multiprocessor, and the C.vmp fault tolerant microprocessor.

Current results show that transient faults do not occur with

constant failure rates as has been commonly assumed. Instead, the

data for all three systems indicate Weibull distributions with

decreasing failure rates.



12

3. Image Understanding Systems

3.1 Introduction

This research is developing automation aids for the interpretation of aerial imagery and is

tied most closely to intelligence and cartographic requirements. The approach is to relate

- known apriori knowledge of an area to the photo being interpreted. This knowledge-based

approach is applying current state-of-the-art techniques from the artificial intelligence field

to the image interpretation problem. This work is also closely coupled to the parallel
processing work at CMU. Image interpretation problems require the large number of low cost

- computer cycles promised by the evolving multiprocessor systems. The image domain also
provides realistic constraints for the multiprocessor research task.

3.2 Overview of IUS Research

The primary objective of this research effort is to develop techniques and systems which
will lead to the successful demonstration of image understanding concepts over a wide

variety of tasks, using all of the available sources of knowledge. We are focusing our

attention on three areas of research:

1. development of an integrated concept demonstration of an image understanding
system

2. development and validation of concepts for computer architectures used in image
understanding

3. development of interactive aids for tasks in image understanding

First, we are evolving an integrated concept demonstration of an image understanding

system. The long-term goal of this research is to understand how knowledge can be used in
the image interpretation process to produce systems which are 2 to 3 orders of magnitude

more cost-effective than current systems. Over the next three years we expect to

investigate how knowledge of maps, size and shape of landmarks such as buildings and rivers,

and contextual relationships can be used in the interpretation of satellite images of the

Washington, D.C. area and color scenes of downtown Pittsburgh.

The second area of research is the development and validation of concepts for computer

architectures used in image understanding. The long-term objective of this research is to

develop new computer architectures which will make low-cost image processing a serious

possibility. We plan to evaluate the desirability of new processor designs and new

instruction sets for image processing applications.



4 13

The third area is the development of intelligent interactive aids for tasks such as photo

F.interpretation and map generation. Many of the same techniques which are useful in
automitic interpretation are applicable in this area, except that in this case the human being
provides the goal direction. The availability of intelligent assistants capable of examining
large image data bases and retrieving desired information is expected to significantly improve

human productivity in tasks such as photo interpretation and cartography.

The following is a brief summary of our work during this past semester.

3.3 Knowledge Representation and Search

During the past six months we have concentrated on the detailed performance analysis of
the ARGOS Image Understanding System (Rubin, 1978) using hand segmented data. Problems
with inaccuracies in the camera model used to generate the adjacency network and omissions
in the knowledge network were identified and corrected. Further work is being done on
mechanisms to resolve pointer conflict in the backtrace of the LOCUS search. These conflicts

arise frequently due to the maintenance of multiple interpretations, each generated by the
application of knowledge to different portions of the errorful signal data. One technique is to
apply the Locus search technique to the backtrace to determine the *best' label.

We have begun to experiment with the use of a modified relaxation technique within the

ARGOS Image Understanding System as an alternative to the LOCUS search. We use the same
optical match, contrast, location, and adjacency knowledge producing results comparable to

LOCUS bult at a factor of 2 to 4 loss of speed. A report on this work is forthcoming in "An

Experiment with Search Strategies for an Image Understanding System", (Smith, 1979).

3.4 Image Feature Analysis and Segmentation

A new approach to deriving three-dimensional surface orientation from image textural

properties is described in "Shape from Texture: A Computational Paradigm* (Kender, 1979).

Introduced is a new representational and computational tool, the normalized textural property

map, which unites and exploits a large class of low-level image heuristics. An example of an

application of the paradigm to an abstract textured image is given, and the relation of this
work to existing work on shape is discussed.

We are continuing to study the effective use of knowledge in image segmentation. The

KIWI segmentation program (Shafer and Kanade, in prep.) has incorporated a fast algorithm
for extracting descriptions of regions resulting from a possible segmentation. The region

extraction algorithm used in the KIWI program is being extended to perform other related



14

tasks. Shafer is using this procedure to eliminate noise regions, and has found it faster than

"smoothing" techniques which accomplish the same task. The procedure is less sensitive to

the size of the image than smoothing, and allows more flexible definitions of "noise". The

phenomenon of "degenerate histograms" has been dealt with by the same algorithm, and we

are able to identify "busy" (textured) areas of an image during segmentation without
preprocessing. We have solved the problem of the large data tables required by this

technique, and are extending it to gather additional statistics about the regions processed.

3.5 3-D Modeling

It is a common experience for us that, given a single 2-dimensional picture of an object, we

have one (or a few) definite idea(s) about its 3-0 shape, in spite of the fact that a large

number of possible shapes exist which produce the same picture. This fact indicates that we

use some assumptions or knowledge about the objects and about the image formation.

Kanade (Kanade, 1979) has been working to identify some of these assumptions, mostly in

the geometrical aspects, by demonstrating how the theory and techniques which exploit such

assumptions can provide a systematic shape-recovery method. The method consists of two

parts: qualitative shape recovery and quantitative shape recovery. For the qualitative shape

recovery we use a model of the Origami world (Kanade, 1978), together with edge profiles of

lines taken across the line in the image in order to constrain line labels in the search of

plausible interpretations.

For the quantitative shape recovery, we adopt a technique of mapping image regularities

(in particular, the parallelism of lines and the skewed symmetry) into shape constraints, which

is developed in (Kaniade and Kender, 1979). Actual shape recovery from a single image is

demonstrated for the scenes of an object such as a box and a chair. Given an image, the

shape-recovery process generates a 3-D shape description of objects in terms of plane

surfaces, and the description is supplied to a display program which can synthesize images of

the same object as we would see it from other view directions.

3.6 Architectures for Image Processing

SPARC, the high speed processor being jointly designed by Control Data and CMU, has

completed the design phase and begun layout and fabrication. Currently the four major

component boards which contain the bulk of the custom LSI circuitry are being routed and

fabricated. We expect that the processor will be delivered to CMU in the fall of 1979.

Current gate level simulations indicate that instruction speeds in the order of 20ns can be

expected.

.



15

Our collaboration with Texas Instruments (Eversole et al., 1978) to jointly design and

develop an all-digital programmable VLSI chip set for several low level vision operations has

begun to result in breadboard designs for several important operators: a programmable sum

of products operator and a 5x5 median operator.

Work with our own Cm* group has produced an initial study of how to decompose existing

* image understanding algorithms. The goal is to implement an initial system by direct transfer

and parallelization of the existing PDPII/40 system. When the LO language system is

avail' able, a more elaborate implementation which will be fault tolerant and potentially

transferable to other multiprocessor structures will be attempted.

3.7 Annotated Bibliography

Reddy, D. R. Pragmatic aspects of machine vision. In Computer Vision Systems.

(A. Hanson and E. Riseman, Ed.) Academic Press, New York, NY, 1978.

Over the lest decade some aspects of machine vision such as edge

detection, segmentation, and shape representation have received

relatively more attention than other aspects of the machine vision
problem. In this paper we examine some of the many different

choices available to the designer of a machine vision system and

discuss how lack of attention to any of these could seriously affect

the research progress. We provide specific examples by drawing on

current research in the CMU environment.



15

Our collaboration with Texas Instruments (Eversole et al., 1978) to jointly design and
develop an all-digital programmable VLSI chip set for several low level vision operations has

begun to result in breadboard designs for several important operators: a programmable sum
of products operator and a 5x5 median operator.

Work with our own Cm* group has produced an initial study of how to decompose existing

k image understanding algorithms. The goal is to implement an initial system by direct transfer

and parallelization of the existing PDP11/40 system. When the LO language system is
avail' able, a more elaborate implementation which will be fault tolerant and potentially

* transferable to other multiprocessor structures will be attempted.

3.7 Annotated Bibliography

Reddy, 0. R. Pragmatic aspects of machine vision. In Computer Vision Systems.

(A. Hanson and E. Riseman, Ed.) Academic Press, New York, NY, 1978.

Over the last decade some aspects of machine vision such as edge
detection, segmentation, and shape representation have received

relatively more attention than other aspects of the machine vision
problem. In this paper we examine some of the many different

choices available to the designer of a machine vision system and
discuss how lack of attention to any of these could seriously affect

the research progress. We provide specific examples by drawing on
current research in the CMU environment.



16

4. Machine Intelligence

4.1 Introduction

This research is developing technology that is well suited to man/machine interaction

questions. The rule-based systems technology (known as Production Systems) was invented
at CMU as a cognitive psychology model for the human mind which is used in the computer to
provide an interf ace to human thought processes. Rule-based systems have self-organizing
properties that make them more flexible and easier to interact with than rigid tree programs.

Instruct able rule-based systems, a major thrust of the CMU effort, enables the user to modify

the system without reprogramming. Another aspect of the CMU research is to build very

large rule-based systems. That is, systems of the order of 3000 rules, as opposed to current

technology which allows only 200 to 300 rules.

4.2 Production Systems

Research in production systems at CMU can be classifed as follows:

- Language and architecture design

- Efficiency of execution

- Possibilities and properties of very large production systems

- Study of how production systems can be built incrementally and automatically
through nat ural -language -level interactions with an expert "instructor"

- Application of production systems to narrow problem solving domains, in order to
better explicate the knowledge of that domain

- Exploration of the effectiveness of production systems as a candidate model for
the mechanism underlying human cognition

Efforts and accomplishments in the last six months in the areas mentioned above by this
research group are described below. For more details, the annotated bibliography at the end

of this chapter will provide the titles of relevant technical reports and published papers.

RETE: algorithm and architecture for efficient implementation

The effort at CMU to improve the efficiency of production system interpreters has included
several projects. One project is the study of the RETE Match Algorithm. In most previous
production system interpreters, the productions (i.e., the statements in the program) were
represented in the computer in a form that was isomorphic to the original productions. In

this project a different approach was taken: a class of virtual production system machines



17

was defined and methods were developed for compiling the productions into the virtual

L - machine language. The instructions for the virtual machines are similar to the instructions of
a conventional von Neumann machine; they are quite unlike the productions in the original
production system program. A recently published paper (Forgy 1979) details the latest

results of this project. The important results include:

- The description of a particularly efficient virtual machine. The time cost of
executing a production system on this machine varies with the logarithm of the
number of productions in the system. The paper shows that (under some quite
reasonable assumptions about the production system) this logarithmic time cost is
the best attainable.

- Empirical and analytical studies of this class of production system interpreters.
qW These studies determined how the time and space costs of interpreting

production systems vary with the size of the production system and the amount
of data processed by the system. Perhaps the two most important results are
that the time cost varies with the logarithm of the size of the production system
(provided the virtual machine is defined appropriately) and that the space cost
varies directly with the size of the production system.

- The description of methods for implementing the virtual machine. It was shown
that microp'ogramrning could be used to obtain a speed increase of about 100
times over the interpreters currently used at CMU. An unexpected result was
that while bpecial hardware is certainly possible, it is not really necessary when
these implementation methods are used.

Language design has been an evolutionary process. While the present languages are
certainly more powerful and easier to use than earlier languages, there have been no sudden
breakthroughs, only steady improvement. Another evolutionary step was taken this spring:

OPS4, the most reccnt member of the OPS family of languages, was released. The first
member of the OPS family of production system languages was developed at CMU in 1975,
this language being based on several earlier CMU production systems.

IPMSL & XCON: computer configuration experts

Two of the issues that must be faced in order to develop an instructable production system

are:F. 1. how to translate knowledge given to the system in (perhaps stylized) English into
an appropriate set of productions (rules).

2. how to organize the knowledge in such a way that as more knowledge is added it
does not interfere with (e.g., mask) knowledge that is already there.

Most of our work over the past year has addressed the second of these issues.



18

Two systems, IPSML and XCON, have been developed that can represent and manipulate

computer descriptions (Rychener, McDermott). The knowledge in each system is highly
modular and can be eas.ily refined and extended. Though the work on XCON is currently

being funded by CMU and Digital Equipment Corporation, it is a straight-forward application

of the knowledge gained in earlier attempts to build instructable production systems. The

IPMSL system of Rychener's represents and manipulates information at the PMS
(processor -memory -swit ch) level; PMS is a high-level hardware description language invented

by C. G. Bell and A. Newell. Its ultimate aim is to become an aid to design and analysis of

computer systems. At the start of this period the system contained basic description, editing,

and display capabilities; its size was 316 rules. A DEC VAX-11 computer description was

formulated and entered into IPMSL as a test and demonstration of its capabilities. The system
4 -is quite general; VAX-i1I is a typical medium-scale modern computer system, for which da ta

was readily available. Information about computer components is represented as a semantic

network, in which objects and their parts are described in terms of a set of attributes and

values, and in which objects are interconnected by various sorts of relational links. The

network representation is achieved directly within the production system architecture by a

set of conventions, first developed in IPMSL, that allow fragments of the network to be

stored as production rules. The system started out with an orientation towards closely

interactive, natural -language instruction, but a shift has been made in strategy away from

instruction issues and tow~rds an exploration of the properties of large systems of rules, and

* in particular towards a system with the kinds of application that IPMSL has. As a result, rules

are now entered directly in their complete form, and there has grown up a body of

supporting software for managing this activity.

4 IP1MSL has now grown to a size of 610 rules, with the addition of a number of new display,

editing, inference, and data-checking capabilities. The system understands considerably more

about the abstract attributes and values that are used to describe computers, and is able to

* interactively expand and correct that body of data as new computers are described. This

new understanding has been applied to updating parts of the VAX-Il description that was

initially entered to test the basic capabilities described above. The next step in developing

IPMSL involves general methods for configuring (synthesizing) computer systems, given

certain needs expressed by a user in terms of devices, memories, etc. While these methods

are general, it is the intention to apply IPMSL to a specific configuration problem, that of
configuring VAX-I Is. This will involve adding a number of heuristic rules whose purpose is

to criticize and guide the~ development of configurations by the general methods. That is,

additional rules --re needed to make sure that VAX-specific constraints remain satisfied.

These specific critics can be added in a completely modular way, thus maintaining full

generality of the underlying configuring methods, and leaving them open for application to



19

other domains. Note that IPMSL is a radically different approach from that of McDermott's

XCON system. Information and assistance from the computer industry is central to this

application. Another application of IPMSL that is getting under way also involves

configuration, but of a different sort of object: the heat exchanger subsystems in chemical

processing systems. This is a joint project, with a member of the CMU Chemical Engineering

Department acting as a consultant.

The recent growth of IPMSL to a fairly large size relative to our PDP-1O computer has

resulted in increasing slowness of operation, due to the heavy load of other jobs on the

time-sharing system. This and other factors have led to the design and the start of

implementation of a parallel processing version of the underlying production system language

(OPS3) on CMU's multi-mini-processor, C.mmp. The design promises to be effective on a

broad class of such computers, including CMU's Cm*. The initial implementation on C.mmp

aims to confirm the basic properties of the design. The implementation is expected to take

between three and six months, and some care will be taken to ensure that it is easily

transferable to other computer systems.

4.3 ZOG Applications

ZOG is a rapid response, large network, menu selection system used for man-machine

communication. ZOG is used in a number of task domains to explore and evaluate the limits

and benefits of the communication philosophy. The rapid response and large network

demands imply bandwidth requirements which stretch those available in commercial

time-shared systems and architectures.

The papers in the bibEiography by Mantei, McCracken and Robertson describe the system

architecture, design considerations, and tools for building the information networks. In the

past six months there have been two significant applications of the ZOG system relevant to

our research efforts. The first is the Ada management net which we use for coordinating and

tracking the progress on the Ada charette project (described in the Software Technology

section). Any member of the group may update information within it relative to his own area

of involvement. Any department member may retrieve information from it to arbitrary depth

in any facet. The second is the BROWSE library net by Fox and Palay. This network permits

on-line "browsing" access to the CMU Computer Science library as well as a parameterized

approach to searching.



20

4.4 Heuristic Search

This research directed by Berliner has been principally concerned with how to structure
evaluation function-, that are to be used to discriminate desirability among elements of a very
large set. The domain in this case is backgammon, however the techniques being used are
general. Several very useful principles have been discovered concerning the use of

non-linear functions in such a domain, resulting in evaluation functions that are quite sensitive

to global conditions without being volatile. We have also identified two previously unknown

effects, the Blemis;h Effect and the Suicide Construction, which have impeded the usefulness

of previous work by other researchers. This research has resulted in the greatly increased

strength of the backgammon program that we are developing. It is far stronger than any

other such program and has been invited to participate in the World Backgammon

championships in July 1979.

This group is also con'inuing analysis and experiments with the 6* search algorithm and

continue to find evidence that is is a very powerful search method, given sufficient

knowledge support.

Gaschnig's work applies analysis of algorithm techniques to measure and analyze the

performance of certain search algorithms and to the study of certain combinatorial problems.

Some new algorithms are devised based on insights obtained from the performance

evaluations.

4.5 Speech Understanding

Speech understanding research at CMU has been on-going for quite a few years now. This
research has continued on a secondary level during the past semester. Several papers were

published in this area; their abstracts may be found below.

We are also attempting to implement the Harpy speech recognition system on a special

purpose computer archtccture (i.e., multi-micro). Measurements of the current

implementations (on PDP-10 and UNIX) have indicated that a great deal of the computer

power required to execute the algorithm is used in storing and retrieving intermediate
results. Therefore, it is reasonable to build a multiprocessor system using current (MOS)
microprocessors and having:

- low cost

- equal or better performance (compared to the current systems)



21

More information may be found on the Harpy architecture in the technical report on the

Harpy speech understanding system, whose abstract is below (Lowerre, 1976).

The Harpy algorithm has been decomposed such as to be runnable on multi-micro

computers. It was restructured into sub-parts of equal complexity. At present, an

operational simulator exists on the PDP-1 1, but no timings have been measured yet.

4.6 Annotatec Bibliography

Berliner, H. J. The B* tree search algorithm; A best-first proof procedure.

Artificial Intelligence 12 (1979).Also CMU-CSD Technical Report April

1978.

In this paper we present a new algorithm for searching trees. The

algorithm, which we have named 8*, finds a proof that an arc at the

root of a search tree is better than any other. It does this by

attempting to find both the best arc at the root and the simplest

proof, in best- first fashion. This strategy determines the order of

node expansion. Any node that is expanded is assigned two values:

an upper (or optimistic) bound and a lower (or pessimistic) bound.

During the course of a search, these bounds at a node tend to

converge, producing natural termination of the search. As long as

all nodal bounds in a sub-tree are valid, B* will select the best arc

at the root of that sub-tree. We present experimental and analytic

evidence that B* is much more effective than present methods of

searching adversary trees. The B* method assigns a greater

responsibility for guiding the search to the evaluation functions that

compute the bounds than has been done before. In this way

knowledge, rather than a set of arbitrary predefined limits can be

used to terminate the search itself. It is interesting to note that the

evaluation functions may measure any properties of the domain,

thus resulting in selecting the arc that leads to the greatest quantity

whatcver is being measured. We conjecture that this method is that

used by chess masters in analyzing chess trees.

Carbonell, J. G. Counterplanning strategies: Computer models of human

reasoning in conflict situations. Proceedings of the First

International Symposium on Policy Analysis and Information Systems,

Durham, NC, June, 1979. Also CMU-CSD Technical Report February



22

1979.

- A heuristic model of human reasoning is discussed where the

reasoner must contend with dynamically -changing goals and actions

of other actors in the world. A process model based on heuristic

strategies is presented for decision making in obstructive and

-constructive counterplanning situations. The former situation is
characterized by an actor striving to thwart the goals and plans of a

second actor. The latter is the dual situation; it provides general

means for an actor to pursue his goal in spite of attempts by others

to block his plans. The model has been implemented as part of the

- POLITICS system, a computer program that understands simple

natural language accounts of international political conflicts.

Forgy, C. L. On the efficient implementation of production systems. Technical
Report, Carnegie-Mellon University, Computer Science Department,

Pittsburgh, PA, February, 1979.

It is not uncommon for an Artificial Intelligence program to spend

most of its time evaluating patterns in order to locate either
subprograms or entries in a data base. This is particularly true of

production systems si nce, unlike other programs, they have no

alternatives to pattern evaluation. Other programs may call some
functions by riame or access some data by retrieving the bindings of

variables, but a production system uses pattern evaluation to select

every procedure it executes and to locate every piece of data

operated upon by the procedures. In this thesis, methods are

described which can greatly reduce the amount of time that Artificial

Intelligence programs like production systems spend in pattern

evaluation. The thesis is concerned both with the algorithms used

by a production system interpreter and with the hardware on which

the algorithms are executed. The thesis contains a detailed

description of a method for evaluating a set of patterns which (1)
notes the similarities in the patterns so that it can avoid performing

the same test more than once; (2) takes advantage of the fact that
both the set of patterns and the set of objects change slowly by
saving information from one evaluation to the next; and (3) allows a

high degree of parallel activity during the evaluation. This method

involves the use of a compiler which translates the patterns into a



23

program for a virtual pattern-matching machine. It is shown in the

thesis that, although the instructions for this machine appear quite
different from the instructions for a conventional processor, they

can be interpreted efficiently on a conventional microprogrammed

computer. If a microprogrammed computer were augmented with
some inexpensive hardware described in the thesis, it would be able

to interpret the virtual machine instructions as fast as it interprets

conventional instructions. Without the special hardware, the
computer would interpret the virtual machine instructions about

three times mor? slowly. This thesis contains an analytical study of

the pattern- matching algorithm and an empirical study of an

interpreter which uses a Lisp implementation of the algorithm. These

studies showed that the time required to evaluate the patterns
would vary with the logarithm of the number of patterns. An

interpreter running on a microprogrammed processor should be

about two orders of magnitude faster than current interpreters; an
interpreter running on the proposed special hardware should be

about two and one-half orders of magnitude faster than current
interpreters. The studies showed also that the space required to

store the compiled patterns would be a linear function of the
number of patterns. The compiled patterns would be smaller than
the uncompiled patterns by a factor of perhaps two.

Gaschnig, J. Performance measurement and analysis of certain search algorithms.

Technical Report, Carnegie-Mellon University, Computer Science

Department, Pittsburgh, PA, May, 1979.

This thesis applies the methodology of analysis of algorithms to

study certain combinatorial problems and search algorithms

originating predominantly in the Al literature, and extends that
methodology to include experiments in a complementary role.

Chapters 2 and 3 combine experimental and analytic techniques

respectively to measure and to predict the performance of the A*
* "best- first search algorithm, which solves path-finding problems

defined in terms of finite strongly connected graphs. In this domain,
we make numerous experimental performance measurements varying

the heuristic function, the size of the problem, a weighting

coefficient, and the performance measure; we derive general
formulas in a simpler worst case analysis model that purport to



24

predict the experimental observations when evaluated at particular

argument values that correspond to the experimental observations.

-" The experiments use as case study a randomly generated set of

instances of the "Eight" puzzle of varying size (depth of goal). The

analysis in Chapter 3 extends the worst case tree search model of

Pohl and others to arbitrary heuristic functions, resulting in cost

formulas whose arguments include functions. Chapter 4 reports

experimental results for a second problem domain, that of a class of

satisfying assignment problems. Here we measure and compare

under varying conditions the performances of four functionally

equivalent algorithms -- the so-called backtrack algorithm, a version

of the so-called "network consistency" or constraint satisfaction

algorithm of Waltz, and two new algorithms BACKMARK and

BACKJUMP. The experiments span four case studies: two sets of

N-queens problems and two sets of randomly generated problems

whose characteristics are specified by the values of certain

parameters. Note that we are not interested primarily in the

8-puzzle or in the N- queens problems per se, but rather as

relatively simple yet non-trivial case studies in which to explore

general issues with rigor, principally the issue of predicting

algorithm performance. The results take a number of forms: they

variously confirm, disagree with or qualify hypotheses about

algorithm performance found in the literature; tens of thousands of

algorithm executions reveal new phenomena about algorithm

performance; new algorithms are "devised based on insights obtained

from performance evaluation.

Lowerre, B. and Reddy, D. R. The Harpy speech understanding system. In

Trends in Speech Recognition. (W. A. Lea, Ed.) Prentice- Hall, Inc.,

Englewood Cliffs, NJ, 1979. Also CMU-CSD Technical Report April

1976.

The Harpy connected speech recognition system is the result of an

attempt to understand the relative importance of various design

choices of two earlier speech recognition systems developed at

Carnegie-Mellon University: The Hearsay-I system and the Dragon

system. Knowledge is represented in the Hearsay-I system as

procedures and in the Dragon system as a Markov network with

a-priori transition probabilities between states. Hearsay-I uses a



25

best-first search strategy of the syntactic paths while Dragon

searches all the possible syntactic (and acoustic) paths through the
- network in parallel to determine the globally optimal path.

Hearsay-I uses segmentation and labeling to reduce the effective

utterance length while Dragon is a segment at ion-f ree system.
Systematic performance analysis of various design choices of these

two systems results in the H-ARPY system, in which knowledge is
represented as a finite state transition network but without the

a-priori transition probabilities. Harpy searches only a few "best"
syntactic (and acoustic) paths in parallel to determine the optimal

path, and uses segmentation to effectively reduce the utterance

length, thereby reducing the number of state probability updates

that must be done. Several new heuristics have been added to the
Harpy system to improve its performance and speed: detection of

common sub-nets and collapsing them to reduce overall phonemic

types at every time sample, and semi- automatic techniques for

learning the lexical representations (that are needed for a

steady-state system of this type) and the phonemic templates from

training data, thus automatically accounting for the commonly

occurring intra-word coarticulation and juncture phenomena.

Inter-word phenomena are handled by the use of juncture rules

which are applied at network generation time, thereby eliminating

the need for repetitive and time consuming application of

phonological rules during the recognition phase. State transition

probabilities are calculated dynamically during the recognition phase

from speech dependent knowledge rather than a-priori from

statistical measurements.

Mantei, M. M. and McCracken, 0. L. Issue analysis with ZOG, a highly interactive

man-machine interface. Proceedings of the First International
Symposium on Policy Analysis and Information Systems, Durham, NC,

June, 1979.

Policy decisions are made to resolve problems arising in complex,

rapidly changing environments. This paper proposes a new type of

information system, called ZOG, to analyze issues in such

environments. ZOG is a large- network, rapid-response,
menu-selection system which has some novel properties as a

man-machine interface that make it a feasible tool for the



26

representation and management of large bodies of knowledge. The

paper explores the development of a particular kind of ZOG network

called an issue net: a hierarchically structured exposition of the

arguments, evidence and counter-arguments associated with some

policy issue. Two issue nets were built within ZOG, and one of

these was used for a pilot study in public use of issue nets. The

paper describes what was learned from this study and proposes

further studies, both to substantiate ZOG's supposed benefits for

policy analysis and to make progress on the problems with such

uses of ZOG.

McCracken, D. L. and Robertson, G. Editing tools for ZOG, a highly interactive

man-machine interface. Proceedings of the International Conference

on Communications, Boston, MA, June, 1979.

The ZOG project at Carnegie-Mellon University is investigating a

novel man-machine interface predicated on a large, rapid-response

menu-selection network, with each node in the network being a

display-screen-sized menu called a frame. This paper begins by

introducing ZOG: its basic operation and its essention properties.

Editing of frame networks (including their creation) has a major role

in ZOG use cue to the need for large networks. This is particularly

true ior an application called the ZOG Project Management Net,

which is a large, shared frame network used as a communication

medium by ZOG project members. Some initial data from

Management Net use leads to observations on use of the ZOG

editing tools. The existing ZOG editing facilities are then briefly

described, followed by discussion of three separate approaches for

obtaining advanced editing tools.

Rich, E. Building and exploiting user models. Technical Report, Carnegie-Mellon

University, Computer Science Department, Pittsburgh, PA, April,

1979.

This thesis addresses the problems that must be considered if

computers are going to treat their users as individuals with distinct

personalities, goals, and so forth. It first outlines the issues, and

then proposes stereotypes as a useful mechanism for building

models of individual users on the basis of a small amount of

. i -i--..-.-.-."-.----"-'------.-."" ... ..-". '-- 'i .- -.. - - - - - . -- . .- . - "-"- '



T W-w." F.: T- V

27

information about them. In order to build user models quickly, a
large amount of uncertain knowledge must be incorporated into the

models. The issue of how to resolve the conflicts that will arise

among such inferences is discussed. A system, GRUNDY, that builds,
with the aid of stereotypes, models of its users, and then exploits
those models to guide it in its task, suggesting novels that people

- may find interesting, is described. GRUNDY's performance is
analyzed to provide some insight into how effective the user models
are. The techniques that were developed for GRUNDY are shown to
be appropriate for at least two other domains. The tradeoffs

involved in designing such a user modeler for an arbitrary system
are discussed. The issues involved in the modification of the data

base of stereotypes to better describe the system's actual users is
discussed. Some new questions raised by the ability to model
individual users are raised.

Robertson, G. Some design considerations for the ZOG man-computer interface.

Proceedings of the Third NATO Advanced Study Institute in

Information Science, Chania, Crete, Greece, August, 1978.

This paper examines some of the issues in the design of

man-computer interfaces. It discusses the evolution of these

interf aces and presents a brief survey of the hardware and

software mechanisms used to implement them. It discusses two
particular interfaces in detail, including a discussion of their

applications. The evolution of the technologies surrounding the
computer has been dramatic during the last twenty years. However,
it has not been at all uniform. The hardware designers, particularly

for processors and memories, have clearly lead the way with
continuous expansion of capability and reduction in cost, size, and

power consumption. Software design has also gone through

considerable evolution, but not nearly as rapidly. Although
operating systems and programming languages are well understood,

the programming methodologies in use still yield unpredictable
results. The technology that has evolved most slowly has been the

interface between the user and the computer. This is largely
because few people have been willing to radically change the ratio
between computing power spent on the interface and on the actual

computation. In the early days, when processing power was a



28

scarce resource, the power spent on the interface was minimized.

That has changed some, but not nearly as fast as the change to the

processing power itself. This paper provides a brief survey of the

hardware and software technology used in man-computer interfaces.
The basic goals of these interfaces are discussed, including the

nature of data transmitted, the interaction rate, ease of use,

accuracy, and cost. A number of interactive input and output

mechanisms are then presented. Output mechanisms discussed
include linear text, split screen text, graphics, and audio. Input

mechanisms discussed include typing, coded typing, pointing in

several different ways, and speech. Each mechanism is discussed in

terms of the general goals of man-computer interfaces. Two

particular man-computer interfaces are discussed in detail. PROMIS
is a medical information system being developed at the University of

Vermont. It uses a novel interface based on a touch input, rapid
response, menu selection system moving through a large network of

knowledge states. ZOG is a general purpose interface being

developed at Carnegie-Mellon University. It uses the same basic

interaction philosophy as PROMIS, but is augmented-with several

features. It acts as a communications agent between a number of

sources and destinations connected in a network. Its selections can
perform arbitrary actions in addition to the normal function of

moving through the knowledge base. It is also dynamic, in that it is

user modifiable, and users are encouraged to adapt the system to

their own needs. A number of applications of ZOG-like systems are

discussed. These include guidance, instruction, cont-ol, management,
and documentation. Finally, the experience of PROMIS and ZOG are

discussed in relation to more global design issues for man-computer
interfaces.

Yegnanarayana, B. Pole-zero decomposition of speech spectra. Technical

Report, Carnegie-Mellon University, Computer Science Department,

Pittsburgh, PA, January, 1979.

A new method for determining the parameters of a pole-zero model

for speech spectra is proposed in this paper. In this method the

cepstral coefficients of a signal are split into two parts, one

corresponding to poles and the other to zeros. The decomposition
is achieved by using the properties of the derivative of phase



29

spectra of minimum phase signals. Parameters of the model are

derived recursively from the cepstral coefficients for poles and
zeros separately. Since poles and zeros are treated alike and

derived independently, there is no effect of one on the other. The

method is illustrated with several examples of speech spectra. It is

shown that in all cases the envelope fit is equally good at peaks as

well as at valleys in the spectrum. Results of this paper suggest a

method of obtaining a linear system model for a given signal using a

criterion different from the conventional minimization of mean

squared error criterion. Although the method is described for

minimum phase signals only, extension of the method to mixed phase

signals is trivial, since a mixed phase signal can be split into

minimum and maximum phase components using complex cepstrum.

Yegnanarayana, B. and Ananthapadmanabha, T. V. Design of digital filters by

pole-zero decomposition. Technical Report, Carnegie- Mellon

University, Computer Science Department, Pittsburgh, PA, February,

1979.

A new technique for design of digital filters based on a pole-zero

model is proposed. The technique is capable of realizing any desired

magnitude response specified in discrete frequency domain to the

required degree of accuracy without significantly increasing the

complexity for the computation of filter coefficients. It is shown that

excellent characteristics for all types of the standard filters can be

realized. The distinct features of the technique are: (a) Both the

passband and the stopband have nearly flat characteristics; (b) A

highpass (bandstop) filter can be realized as the reciprocal of a

lowpass (bandpass) filter; (c) A high degree of flexibility exists in

the choice of design parameters permitting trade-off between the

realized response and the number of filter coefficients. The

coefficients for the pole part and the zero part of the model are

obtained in an identical manner using FFT algorithms and recursive

relations, without the need for solving complex nonlinear equations.

These features in the design are a result of application of a

pole-zero decomposition technique for digital filter design. The

technique, which was developed for modelling speech spectra, is

based on the properties of the derivative of phase spectrum of a

minimum phase signal.



30

Yegnanarayana, B. and Ananthapadmanabha, T. V. On improving the reliability of

cepstral pitch estimates. Technical Report, Carnegie-Mellon
li, University, Computer Science Department, Pittsburgh, PA, February,

1979.

Identification of relatively high SNR regions in the short- time

spectrum of a speech segment is very useful in speech processing

applications. Such regions usually occur around the peaks in the

spectral envelope. In this paper we propose a method for

determining such regions automatically for a given speech segment.

The method is based on a recently developed technique for

pole-zero decomposition of speech spectra. It is shown that by

selectively processing the high SNR regions of the spectrum, an

unambiguous pitch peak in the high frequency portion of the

cepstrum can be obtained. The processing involves computation of

Hilbert envelope of the selectively filtered cepstrum. Several

examples of speech segments are considered to illustrate the

improvement provided by the proposed method.

Yegnanarayana, B. Speech analysis by pole-zero decomposition. Preprint of

Papers on Speech Communication, Acoustical Society of America,

Cambridge, MA, June, 1979. Also CMU-CSD Technical Report

September 1978.

This paper describes a new method of speech analysis based on a

pole-zero decomposition technique. The method overcomes the

limitations of the widely used all-pole models for speech spectra. It

is shnwn that a pole-zero model for the vocal tract system provides

an accurate description of the spectral envelope. The model also

provides a means of obtaining an accurate estimation of the source

characteristics.



K 31

5. Software Technology

5.1 Introduction

This research is specifically concerned with obtaining "high quality" systems which are

produced on time, which are produced to budget, which are correct, which are efficient, which

can be maintained and enhanced, and which are tolerant to their human users. This effect

emphasizes the previously neglected problems of generating optimized code for target

machines whose instruction sets are symbolically described. The compiler -compiler and

software verification efforts at CMU are contributing to DOD's goal of more cost-effective

software tools and more portable software environments. These efforts can have a major

impact on DOD software reliability.

5.2 Production Qbality Compiler-Compiler

* PQCC has concentrated on two areas during this past semester.

In the first set of work the structure and decomposition of the October compiler was

carefully re-examined. The result was a greater understanding of the inter-relationship of

the compiler phases. A list of the new compiler phases was then composed. Also developed

were careful input-output specifications of the phases so that each phase would know what

to expect from the previous phases, and would document what its output was for subsequent

phases. This careful specification is intended to remove many of the interface

misunderstandings that delayed the last compiler by several weeks.

-Also investigated in depth were the issues of costing for code sequences. This is an

important aspect, since it impacts not only the code generation, but also the assignment of

result locations to physical machine locations. We introduced here the concept of Temporary

Name TNs which are records used to hold all the information about the results of the register

* allocation that must be available to the code generator. They are used to represent entities

that must be allocated storage, such as variables or the results of expressions. The

TNASSIGN phase determines the correspondence between TNs and program entities. A

subsequent phase is packing which establishes the correspondence between TNs and target

machine storage locations. The evaluation centers primarily around the phases known as

TNASSIGN and PACK (see previous reports).

The code generator was completely redesigned due to the redesign of TNASSIGN and

PACK. The current design has the particular property that it will choose, whenever possible,



32

the actual lowest-cost code sequence, where costing is a complex function based on the

"cost" of an instruction (i.e., in time, space) and the total amount of the target tree it absorbs.

The search strategies are such that no backup is required in the search. The input-output

specifications of the code generator have been finished except for minor revisions, but

implementation will not start until the optimizing Ada compiler effort begins in July.

A tree-transformation language was designed, discussed, and is currently being modified in

some minor ways. This will be used to implement many of the phases of the PQC which are

implemented as tree transformations. The code generation implementation was largely

influenced by the work described in Cattell's thesis on the formalization and automatic

derivation of code generators for the optimizing compiler. He provides an explanation of

TCOL (tree based common language) and its application as a base for the derivation of

translators.

TCOL program

Source PQC - - - - PQC Object

program phase I phase n program

tables

phase 1 phase 2 phase n

gen. gen. gen.

description

Machine
description

Figure 5-1: Detailed box diagram of PQCC system

The other major area of work was planning for the construction of an optimizing Ada

compiler, a proje to start in July 1979 and to continue for 18 months. While much of the

retrospective analysis of the October compiler was clearly oriented towards this goal as well,

several specific pieces of work were directed this way.



33

The TCOL.Ada paper describes a possible intermediate representation for Ada, the

language designed to meet the Steelman requirements of the DOD standard language. This
report has been written and is now being re-drafted because the Ada language has been

chosen; we are able to make specific decisions about issues which could not be decided until
Ada was chosen. Certain other details that were ignored initially will now be covered.

Statement (Source Language) TCOL tree

S- j (Fortran)

i- j (Algol 68)
j- .j (Bliss) SYMBOL DEREF

a - j (Fortran)

a :- j (Algol 68)
or

a :-REALW YEjL FL)

Figure 5-2: Examples of TCOL trees

Many of our support tools are being modified or re-written as we move from BLISS-10 to
Common Bliss, the DEC supported and commercially distributed version of this implementation
language. Common Bliss will allow us to write programs which can run on either our TOPS-1O
PDP-10 systems or under VAX/VMS; the main goal of this is to enable us to utilize the VAX

for development (the VAX systems will not be heavily used initially, while our PDP-1O is
saturated). The PQC for Ada will be written in Common Bliss and will compile for either the
PDP-10 (BLIES-36) or VAX (BLISS-32). Other support tools that were oriented towards a
BLISS PQC compiler (e.g., the symbolic tree-printer) will be recoded in Common Bliss for an
Ada PQC. This effort is currently under way.

- 2 , . . .- - . . . -



34

In addition, we have been working with Intermetrics, who will be the subcontractor in the
Ada effort. Intermetrics has already adopted, for their own use, several pieces of the PQCC
technology; they are developing a language-independent Linear Graph LG support package
for (initially) Pascal and PL/I, and are investigating the machine description technology of
PQCC and the code generator-generator technology.

A new PQCC User's Manual is being produced, which will include all of the new features
added to LG support since the previous edition. This manual now exists in draft form.

Ada projects

Members of this department (Wulf, Habermann, Shaw) have long been involved in the DOD
High Order Language Commonality program which began in 1975 with the goal of establishing
a single high order computer programming language appropriate for DOD embedded computer
systems. An early effort here was the development of TARTAN, a language designed as an
experiment to see whether the Ironman requirement for a common high order programming
language could be satisfied by an extremely simple language. The results substantially met
the requirements. Language description and low cost enhancements are described in the
reports by Shaw et al.

Since the selection of the Green language for Ada, CMU has committed to two companion
projects to support its other research efforts.

Pieces of the PQCC technology will be utilized to build an in-house Ada compiler, referred
to as the Ada "charette"'. The compiler will eventually be written on the PDP-10's to

generate code for a DEC VAX-i 1/780. The linear graph LG intermediate representation will
be used to support the implementation of this compiler in Common Bliss. As indicated in the
goals of this other project, it will not produce an optimizing compiler, but rather one which
produces "conventional compiler quality" code. Certain simple optimization phases of the
October PQCC may be usable in this compiler however. Code production is anticipated by Fall
1979.

We have also initiated a task which crosses the PQCC/Charette project boundary; it is to
specify details of the runtime environment of Ada. This project, under Peter Hibbard and
Paul Knueven two of the architects of the Algol-68 run time environment will investigate
representation issues for stack frames, data structures, and other issues such that the run

IThe chareffe was a small cart used during plagues to carry off the bodies of the dead It later was used in the
French national school of art to collect the projects as the time came to turn them in. The projects, which were
feverishly and frantically worked on as their deadlines neared, were eventually called chareffes by association.



35

time support will conform to the semantics of the Ada requirements.

Instruction set processor investigations

The work of Barbacci and Dietz in specifying, evaluating and validating computer

architectures using their instruction set processor descriptions continues. Their primary tool

is ISPS, a system which starts with a machine's ISP description, then compiles that to

generate code for an artificial machine. The ISP simulator is then simply a software

implementation of the artificial machine. The ISPS system was developed as part of the

DARPA SMCD program. Their papers describe the application of these facilities to the

Military Computer Family (MCF) and to the certification of architectures for the Computer

Family Architecture (CFA) project.

5.3 Algo168

The Algol68 project has matured and is working toward its final stages. Some effort went

into transferring the Algol68 system to UNIX, so that the investigations of the runtime system

and the language can continue there.

One of the activities on the Algo168 system has been to build and incorporate an Adaptive

Storage Allocator. The runtime system uses heap storage for all allocation of memory. This

solves many of the memory management problems inherent in any language which declares

and handles complex data objects, but its value is limited by the efficiency with which

memory can be allocated and deallocated. The overheads of the memory allocator and

deallocator, and the cost of storage fragmentation, have the biggest impact on this. An

adaptive storage allocator tunes itself during the execution of a program to have optimal

allocation and deallocation strategies, and to minimize fragmentation, for the particular

memory request patterns which the program has. Analyses show that the technique has a

significant impact on reducing distributed overheads and in avoiding unbounded housekeeping

costs during execution. (Hibbard, Leverett in prep.)

The principle research activity has centered on the problem of linkage editing. Some

background on this may be helpful.

A high-level language is implemented upon a "virtual machine" (VM): this machine has as

its primitive operations the basic actions needed to support the language: parameter passing,

procedure calls, assignments, etc. Its primitive data *objects are those definable in the

language: records, arrays, etc. Depending upon the level of the language the VM may be

more of less close to the host computer hardware. For example, a low-level systems

implementation language will have a VM which is more or less identical to the hardware,



36

supplemented by a few conventions about the placement of parameters, etc., and a high-level

language will have a VM which is some distance from the hardware. The techniques for

constructing the VM in software vary; furthermore several implementations of each VM may

exist, each with the same external specification. They may be implemented by direct

open-coding of the VM actions (which, in the case of an optimizing compiler may be done so

abstrusely that the derivation of the compiler writer's possibly unconscious image of the VM

may be difficult to abstract); they may be implemented by an interpreter acting upon some

artificial instruction set; or they may be implemented by some intermediate technique.

In all cases, however, the VM design will impose some structure on the way that the

physical resources of the host computer can be used; in particular on the way that memory

W addresses are allocated statically, when the program and its initial data are loaded, and

dynamically while the program is executing. Even for the most machine oriented languages

such conventions are used, and for high level languages assumptions as to the way the

resources are used may be spread implicitly throughout the VM implementation, so that all

other forms of access to the machine resources must be preempted, if the integrity of the

language system is to survive. (Thus it may only be possible to access memory via the

access mechanisms in the VM, since the positions of objects may be changed as a result of

storage compaction.)

In order to have programs which comprise modules written in several different languages,

it is necessary that the V~is of these languages are either compatible, or are able to coexist

without interference. This either requires that conventions are imposed upon all language

implementations, or that some languages are required to obey the conventions of the other

languages. The first strategy has obvious disadvantages -- the design of the VM for a

language is one of the most difficult and least structured parts of language implementation,

and one in which large perturbations occur for seemingly trivial language features; the

pre-specification of the features that all VMs must have hinder rather than assist in the

construction of the VM. The second strategy similarly fails in the case ct language systems

which all impose their own strong brand of VM upon the host computer -- this is especially

likely to be the case in languages intended for embedded applications, since fewer universal

conventions are imposed by operating systems, etc.

Cases do exist, though, where such dissimilar VMs must be made to coexist -- Fortran

routines called from a Lisp environment and vice versa, Algol68 called from Bliss and C, etc.

For each such case either one builds an interface by hand, and defines, for each case, how

the VMs shall coexist, or one cops out and uses gross features of the host machine, such as

separate address-paces for the VMs, separate processes for the modules in the different

languages, and pipes or message to pass parameters between them, with a resultant loss of



37

efficiency and flexibility.

The linker which is now an integral part of the Algol68 system has been designed to

explore these issues. It is, in fact, not specifically an Algol68 linker, or indeed any other

language linker, but is more properly termed a multi-language linker. VMs may be defined as

a part of the linking process; these are specified by defining the layout and properties of the

segments of memory associated with each VM, and by libraries of low-level routines which

support the primitive actions of the VM. Several different implementations of any particular

VM miy be used during a linking action: using in-line code expansion or out-of-line routines,

by different representations of data objects, or with inbuilt monitoring actions, etc. The units

of separate compilation are "modules" - the linking action causes the linker to insert the

appropriate primitive action of the VM, using some specified implementation. Thus the linker

acts in many respects like to code generator of a simple compiler; however, it delays the

binding of the implementation of the primitive actions until as late as possible. This allows

the linker to make more optimal decisions as to the placement of the code for these routines.

Several VMs may be supported during linking; these form a nested hierarchy, allowing actions

common to languages to be kept in common VMs. Additionally, since the linker is designed to

produce code for a machine whose address space is potentially much smaller than its physical

memory, it automatically handles the generation of overlays for code and data, thus allowing

programs which are indefinitely large to be created.

5.4 Annotated Bibliography

Barbacci, M. R. An |SPS primer for the instruction set processor notation. In

Computer Engineering: A DEC View of Hardware Systems Design. (C.

G. Bell and J. C. Mudge and J. E. McNamara, Ed.) Digital Press,

Bedford, MA, 1978. Also CMU-CSD Technical Report May 1979.

The ISPS computer description language is an evolutionary step

toward the formalization of the digital design process at the higher

or behavioral levels. ISPS is the second implementation of ISP as a

computer language and has been used as a design tool which covers

a wider area of application than any other hardware description

language. Thus, besides simulation and synthesis of hardware,

software generation, program verification, and architecture

evaluation and control are amongst the current applications based

on ISPS. The range of current and contemplated application areas

are proof of the usefulness of the notation and its extension

mechanisms. This paper is divided into two parts. The first part



38

describes the notation, its intended use, and the extension

mechanisms which allow multiple applications or areas of research to

co-exist and share machine descriptions. The second part briefly

describes some of the current applications for ISPS; only enough

detail is presented to illustrate the highly diverse set of problem

areas that depend on a formal machine description. The appendix
presents some language features not often found in programming

languages (or machine description languages, for that matter).

Topically, the appendix belongs after the first part. However, it is

not critical to the understanding of the applications for ISPS and has

been postponed to allow a smooth transition between thew

description of the notation and the description of its uses.

Barbacci, M. R, Dietz, W. and Szewerenko, L. Specification, evaluation, and

validation of computer architectures using instruction set processor

description. Technical Report, Carnegie-Mellon University, Computer

Science Department, Pittsburgh, PA, April, 1979.

Since early 1975, the Center for Tactical Computer Sciences

(CENTACS) of the U.S. Army Electronics Command has been

supporting an effort to develop a family of military computers based

upon a common instruction set architecture. This Military Compute

Family (MCF) will make available to DoD projects a series of

computers which feature both an established software base and

current hardware technology. The fundamental premise of the MCF

project is that software compatibility should be achieved by the

adoption of an existing, proven computer architecture for the MCF,

thereby minimizing the risks inherent in the design of a new

computer architecture and permitting the "capture" of an existing

and evolving software base. In this context, computer architecture

is distinguished from implementation considerations, and is defined

as the structure of a computer which a machine level programmer

needs to know in order to write any time independent programs

which will run correctly on the computer. As part of this effort,

Carnegie-Mellon is employing an ASP description and simulation

facility for use in specifying, evaluating, and controlling these

architectures. The overall goal is to provide the ability to precisely

specify the selected architectures and to validate the correctness of

hardware implementations.



39

Barbacci, M. R. Instruction set processor specifications for simulation, evaluation

and synthesis. Proceedings of the 16th Design Automation

Conference, San Diego, CA, June, 1979.

Formal descriptions of digital computers have been used

traditionally for pedagogical purposes. Recent developments,

however, illustrate that a formal computer description is highly

useful in the simulation, evaluation, and synthesis of computers and

other digital systems. In this paper we shall review the use of the

ISP notation at Carnegie-Mellon University. The paper is organized

into three sections that deal with the language, its use in the

-simulation and evaluation of computer architectures, and finally, its

use in computer aided design. In this paper we emphasize the

commonality between these seemingly disjointed applications. The

reader is invited to consult the specific references for additional

information on any particular subject.

Cattell, R. G. G. Using machine descriptions for automatic derivation of code

generators. Proceedings of the Third Jerusalem Conference on

Information Technology, Jerusalem, Israel, August, 1978. Also

CMU-CSD Technical Report April 1978

Progress has been made in the design of compiler-compilers and

translator writing systems, particularly with respect to automating

the parsing of programming language text into internal notations.

Much less progress has been made in automating the second part of

the compihition process: translating the internal representation into

instructions for the target machine. I believe this failure is primarily

due to inadequate formalization of machines and the code generation

process, rather than fundamental difficu!ties in automating the

process. The goal of this paper is to study and formalize machines

and code generators, and using these formalizations, to automatically

derive code generators.

Cooprider, L. W. The representation of families of software systems. Technical

Report, Carnegie-Mellon University, Computer Science Department,

Pittsburgh, PA, April, 1979.

Programming languages are notations for the representation of



40

algorithmic inf or mat ion, they are tools for

"programming-in-the-small"(DeRe 76). System description languages

are notations for "programming-in -the -large". Because software

systems often exist in several versions simultaneously, a system

description language must accommodate parallel versions of systems

and permit the natural expression of the information sharing among

-those versions. The construction of software systems involves

sequences of construction processes such as text editing,
compilation, document production, linkage editing, and

cross-reference generation. Automation of these processes has
been impeded by the use of inadequate models of software
construction and maintenance. As a result, the enforcement of design

decisions described in a system description language has been left

to human agencies. We develop a notation for describing the

subsystem interconnections of entire systems, the differences

between versions of those systems, and the mechanisms by which

the systems are constructed. Subsystems are objects which provide

a set of resources to other subsystems and require a set of

resources that are supplied by other subsystems. Each

interconnection network can be instantiated in several versions.

Versions are organized hierarchically so that similar versions share

part of their descriptions. Detailed system construction processes,

such as text editing, compilation and document generation, are

expressed in a functional form. Resources and source files are

combined according to construction rules to create the concrete

objects that are the tangible (executable or readable) form of a

software system. The construction processes are controlled by the

interconnection structure and version specifications in which they

are defined. This representation is the basis for the design of a

software construction database. The database manager

automatically performs system construction processes, propagates

modifications to system components, and maintains construction

histories. The database user can establish invariants in the

database by attaching policies to each database object; the policies

supply a set of actions to be performed when events in the
database affect the object (e.g. a component has been modified). An

extended example is presented to demonstrate the applicability of

this representation to a real system. Several types of system



41

construction problems are discussed, and directions for
improvements to the notation outlined.

Habermann, A. N. Implementation of regular path expressions. Technical Report,

Carnegie-Mellon University, Computer Science Department,

Pittsburgh, PA, March, 1979.

Path expressions define sets of permissible operation sequences on

typed objects. Path expressions specify process synchronization at

a conceptual level instead of in terms of its implementation, which is

the case if P,V operations or critical regions are hand-coded into the

program text. A compiler takes care of translating path expressions

into the necessary synchronization statements. This paper

describes the compilation of regular path expressions which

correspond to either deterministic or undeterministic finite state

machines.

Leverett, B., Cattell, R. G., Hobbs, S., Newcomer, J., Reiner, A., Schatz, B. R. and

Wulf, W. A. An overview of the production quality compiler-compiler

project. Technical Report, Carnegie- Mellon University, Computer

Science Department, Pittsburgh, PA, February, 1979.

The Production Quality Compiler-Compiler (PQCC) project is an

investigation of the code generation process. The practical goal of

the project is to build a truly automatic compiler-writing system.

Compilers built with this system will be competitive in every respect

with the best hand- generated compilers of today. They must

generate highly optimized object code, and meet high standards of
reliability and reasonable standards of performance. The system

must operate from descriptions of both the source language and the

target computer. Bringing up a new compiler, given a suitable

language description and target architecture description, must be

inexpensive and must not require the assistance of builders or

maintainers of the compiler-writing system itself. This paper

describes the goals and methodology of the PQCC project.

Oakley, J. 0. Symbolic execution of formal machine descriptions. Technical

Report, Carnegie-Mellon University, Computer Science Department,

Pittsburgh, PA, April, 1979.



42

As a tool having broad application to the growing area of

automatically performing machine -dependent tasks, the symbolic

execution of formal, procedural machine descriptions poses some

difficult and fundamental problems not encountered in normal

symbolic execution of algebraic languages. This thesis had two

specific goals: (1) to identify the noteworthy problems of Machine

- Symbolic Execution (MSE) and to provide solutions for them, (2) to
demonstrate, by an appropriate implementation, the feasibility of

using the tool of MSE on a real life task - obtaining the input/output

assertions for a machine's instruction set and creating from them
what is called an assertion description. (This is a formal,
non-procedural description of a machine, suitable as input to

programs that require knowledge of the components of a target
machine - instruction set, addressing modes, register complement,

etc.). The research resulted in the following accomplishments: -A
rigorous method was developed for symbolically evaluating

algebraic-like expressions clef..,cl over the domain of
variable-length bit-strings. A new, mixed integer/bit -string

representation was devised which permitted the elimination of

superfluous bit-lengths (by conversion to an integer-valued

expression); non- superfluous bit-lengths were represented
explicitly. A formal proof was given of the equivalence of this mixed

representation with the original. Appropriate simplification

techniques were introduced. -A technical definition of "Instruction"
was introduced, determined from the execution paths through the

ISPS description. -A number of problems arising from commonly

observed characteristics of real machines were resolved: optional
independent execution of address-calculation routines was permitted

(i.e., symbolically separate execution of operand- referencing and

instruct ion-execution), including the possibility of certain types of

side effects; the two most common mechanisms used on real

machines for implementing variable-length instructions were
incorporated; many issues were resolved concerning memory

overlays, where multiple names can refer to the same parts of
memory. -A program was written, in LISP, to symbolically execute a

machine description and produce an assertion description as output.

The output format and structure used was defined externally by an



43

existing research application for the automatic generation of code

generators. The results above were all incorporated. The thesis
WO describes a large example run on the symabolic executor, the DEC

PDP-11I computer; appendices giving input and output are included.

The work in this thesis was performed in the specific context of
ISPS, a machine -readable successor to Bell and Newell's ISP

- language. The results obtained, however, have application to other

machine description languages at the same general level of

abstraction as ISPS. Finally, the thesis presents some conclusions on

the use of the ISPS language for MSE.

Saunders, S. E. Compiling customized executable representations and
interpreters. Technical Report, Carnegie-Mellon University,

Computer Science Department, Pittsburgh, PA, June, 1979.

This dissertation presents a view of the issues that, arise in the

design of executable representations --DELs-- for programs, and a
compiler implementation which embodies both old and new

responses to these issues. It focuses on methods of tailoring a DEL
to fit a chosen combination of source language and host machine,

and of customizing a tailored DEL to the specific needs and
properties of particular source programs. An experimental compiler

implement at ion incorporates several customizing methods, including

a novel tree pattern search for specialized instruction synthesis.
The measured performance of the implementation gives a promise
that the methods presented will prove to be of value in the future.

A tailored DEL provides better performance than more conventional
10general-purpose" DELs (instruction sets) by taking account of the
operation semantics, data types, name scope conventions, and

control structures of a single source language or family of
languages. The close match possible between source and DEL means

that both the compiler and object code can be simpler, smaller, and
faster. Customizing a DEL to a particular program takes advantage
of ways in which the source fails to use the full generality of the
language, or has different frequency distributions of usage from
those assumed in the tailoring. A DEL can be customized by (1)
omitting unused operations and facilities, (2) restricting ranges of
values to those that actually appear, (3) adding new, specialized

combination operations, (4) adjusting the encoding of instructions,



and (5) providing for encodings to vary between parts of the DEL
program. The compiler must construct the DEL interpreter, or
modify a kernel interpreter, to correctly handle each feature added

or altered by the customizing. A customizing compiler and DEL were

designed and implemented to test and demonstrate these ideas. XP

compiles Pascal programs into a DEL intended for efficient
- interpretation on the Palyn EMMY computer. XP DEL instructions

begin with a format code which specifies whether operands and
result are on the stack or are explicitly named, in any combination.

The completeness of the format set makes overhead instructions
that simply move data to and from registers or the stack nearly

unnecessary. The basic DEL code, simply customized by omitting

unneeded opcodes and by restricting name fields (address offsets)

and operation fields (opcodes) achieves a space performance slightly
better than a carefully hand-tailored Pascal DEL on a range of
sample programs, and much better than the PDP-10 Pascal compiler

and Pascal "P". New instructions are synthesized and added to the
interpreter based on patterns of operations and names in the

parse-tree representation of the source program. The tree-pattern

search algorithm uses depth-first search through the upper

semi-lattice of patterns under the subsumes relation. That is, the

search starts with patterns which match almost any piece of the
tree and refine them recursively, guided by what actually appears in

the program tree. The patterns found are ranked by an estimate of
the profit that would result from installing each as a new operation.

Customizing by searching for patterns in the tree leading to creation

of specialized operations yields code 48 per cent to 60 per cent of

the basic size, at moderate cost in interpreter growth and added

compilation time. The object code sizes estimated by an

independently developed compiler quality measurement procedure

are respectively 0.64 and 0.36 times that of Bliss-i 1, a highly

optimizing compiler.

Schatz, B. R., Leverett, B., Newcomer, J., Reiner, A. and Wulf, W. A. TCOLAda: An

Fintermediate representation for the DOD standard programming
language. Technical Report, Carnegie-Mellon University, Computer

Science Department, Pittsburgh, PA, March, 1979.

This document describes TCOLAdla, a possible intermediate



45

representation for ADA -- the language being designed to meet the

Steelman requirements. The purpose of this description is to

provide enough information about this representation so that

potential implementors of Ada can assess the feasibility of producing

this representation at some intermediate stage of their compilers. Of

course, Ada is not yet fully designed, and a choice between the two

competing designs has not been made; thus, this document can only

be considered tentative. It should, however, provide enough of the

"flavor" of TCOLAda that an assessment can be made.

Shaw, M., Feldman, G., Fitzgerald, R., Hilfinger, P., Kimura, I., London, R. L.,

Rosenberg, J. and Wulf, W. A. Validating the utility of abstraction

techniques. Proceedings of the ACM National Conference,

Washington, DC, December, 1978.

A number of recent research efforts have been based on the

hypothesis that encapsulation techniques, formal specification, and

verification lead to significant improvements in program quality. As

we gain experience with the language facilities produced by this

research, we should attempt to validate that hypothesis. This paper

poses this validation as the next major task in this area and outlines

some ways to address it.

Shaw, M., Hilfinger, P. and Wulf, W. A. TARTAN language design for the ironman
requirement: Notes and examples. ACM SIGPLAN Notices 13, 9

(September 1978). Also CMU-CSD Technical Report June 1978.

The Tartan language was designed as an experiment to see whether

the Ironman requirement for a common high-order programming

language could be satisfied by an extremely simple language. The

result, Tartan, substantially meets the ironman requirement. We

believe it is substantially simpler than the four designs that were

done in the first phase of the DOD-! effort. The language definition

appears in a companion report; this report provides a more
expository discussion of some of the language's features, some

examples of its use, and a discussion of some facilities that could

enhance the basic design at relatively little cost.

Shaw, M., Hilfinger, P. and Wulf, W. A. TARTAN language design for the ironman

requirement: Reference manual. ACM SIGPLAN Notices 13, 9



46

(September 1978). Also CMU-CSD Technical Report June 1978.

Tartan is an experiment in language design. The goal was to

determine whether a "simple" language could meet substantially all
of the ironman requirement for a common high-order programming
language. We undertook this experiment because we believed that

all the designs done in the first phase of the DoD effort were too
large and too complex. We saw that complexity as a serious failure
of the designs; excess complexity in a programming language can

interfere with its use, even to the extent that any beneficial
properties are of little consequence. We wanted to find out
whether the requirements inherently lead to such complexity or
whether a substantially simpler language would suffice. Three
ground rules drove the experiment. First, no more than two months
would be devoted to the project. Second, the language would meet

all the ironman requirements except for a few points at which it
would anticipate Steelman requirements. Further, the language
would contain no extra features unless they resulted in a simpler
language. Third, simplicity would be the overriding objective. The

resulting language, Tartan, is based on all available information,
including the designs already produced. The language definition is
presented here: a companion report provides an overview of the
language, a number of examples, and more expository explanations

of some of the language features. We believe that Tartan is a
substantial improvement over the earlier designs, particularly in its
simplicity. There is, of course, no objective measure of simplicity,

but the syntax, the size of the definition, and the number of

concepts required are all smaller in Tartan. Moreover, Tartan

substantially meets all of the ironman requirement. (The exceptions
lie in a few places where we anticipated Steelman requirements and
wher-e details are still missing from this report.) Thus, we believe
that a simple language can meet the ironman requirement. Tartan is
an existence proof of that. We must emphasize again that this

effort is an experiment, not an attempt to compete with DoD

contractors. Tartan is, however, an open challenge to the Phase III
contractors: The language can be at least this simple!



44

6. System Architectures for Archival Memories

6.1 Introduction

Many advanced memory device techniques are evolving f or the storage of extremely large
data files. Most of these involve unique constraints, such as write once/read only. This
research will evaiuate the feasibility of alternative software and hardware architectures for

U interfacing these large memories to conventional computers and is a shared local network

resource.

6.2 Current Research

To further understand the potential for a write-once read-only optical disk, CMU had

several interactions with Philips Lab. Current capacity is 2 x 1010 bits per disk, with a

potential for 1011 bits per disk. A carousel was described which might extend capacity to
1014 bits. The data rate with error correction is 5.24 Mbit/sec, with a maximum random

access time of four seconds. Unfortunately, the cost is high (8200,000 for one read/write
station and two read stations) and the availability is questionable (only five prototypes exist).

A strategy was developed for attacking the storage and retrieval problem. A set of design

C- goals and a top level design was developed for a central file system for the CMU Computer

Science Department. This file system will serve several purposes:

1. It will be a prototype of the multi-level file system needed for introduction of
large archival memories.

*2. It will be used for validation of archival system models.

3. It will provide a needed facility for our environment.

The basic design is for a transparent multi-level cache-like structure, with automatic

V - migration between levels.

F The principle objective is the completion of the design and initial implementation of the
central file system. This will be the kind of file system architecture that currently appears

necessary for graceful introduction of large archival memories. Since no such file system

0 architecture currently exists, it is critical that we build one and understand its potentials and

limitations. This objective is the key to work on the storage and retrieval problem.

The modeling problem, the memory hierarchy problem, and the system configuration

problem all require a fairly complete data base of existing and proposed memory system

* characteristics and a complete survey of existing and proposed uses of large memory



48

systems. We intend to complete that data base and survey in fiscal year 1980.

Since optical memories appear to be the best near term technology for large archival
memories, we intend to acquire one of the five Philips prototypes, interface it to the

computer on which our central file system will be running, and attempt to integrate it into the

central file system. The write-once characteristic and the limited lifetime of plastic disks (two
years) make it unclear how such memories can best be used. We intend to explore several

alternative strategies for their use.

A functional specification of the Archival Memories central file system has been completed.

It will be published as a technical report with alternative design specifications by Summer

1980.



49

7. Signal Understanding in Distributed Systems

7.1 Introduction

Distributed sensor problems have always been an important aspect of defense problems.

The technology now exists, however, to have widely distributed sensors share information

and thereby function more effectively as an integral unit than was heretofore possible. CMU

will be developing dist,-ibuted software concepts that can operate successfully in a

distributed sensor network.

W 7.2 Project Overview

This research will ultimately result in a concept demonstration system exploring the issues

and problems of integrated distributed sensor networks (DSN). The operating scenario, or

problem space, is for the system to locate, identify, and track in real time, a set of objects

moving through a simulated terrestrial environment. An array of highly directional acoustic

sensors (microphones) is used as the perceptual mechanism. The objects may vary in both

type and number. Typical objects represent vehicles such as tanks, trucks, or trains. A

complete set of situation displays is maintained for each area scanned by a sensor, integrated

- territory, and the entire domain.

The system is intended to r~un continuously and unattended. For these reasons the system

is required to be highly fault tolerant, continuing to function even as a significant fraction of

its components are intentionally disabled. Dynamic modification of both hardware and

software is necessary for continuous operation and will be fully developed.

All programming is to be done in Ada, the DOD-adopted high level language, permitting an

evaluation of the language for programming complex DOD applications and insuring

development of a modular, easily modified software system.

7.3 Language and systems studies

The efforts expended in the last six months have concentrated in the areas of languages

and systems suitable for the task domain. A complete specification for a DSN language is be
being prepared and should be available as a technical report within six months. There is a

requirement to extend Ada in order to make it usable for the specification of algorithms in

distributed systems. Some of this analysis has been done for ALGOL68 and LO (see the

Multiprocessor Systems section), but the mapping to Ada is not direct.

There is also a study underway on techniques for modifying large complex programs on a



50

distributed sy',tem without having to interrupt the entire system. The results of this work

will provide techniques to permit dynamic modification and debugging of time critical,

distributed function systems, of which DSN is only an example.

As a runtime s,.,tem is being constructed for the Ada charette, cons.,,-ration is being given

in the design to its application to distributed systems. A prototype version should be

operational by Fall 19S0 for a VAX-i1.

Domain Pc

i , I

I

wz

Terrirtory Pc's 7,

Area Pc's
(with sensors) A :A

I I

Ill I

AiA A A

Figure 7-1: The logical structure of a pyramid sensor net architecture

7.4 Annotated Bibliography

Lesser, V. R. and Erman, L. D. An experiment in distributed interpretation.

Technical Report, Carnegie-Mellon University, Computer Science

Department, Pittsburgh, PA, May, 1979.

The range of application areas to which distributed processing has



51

been applied effectively is limited. In order to extend this range,

new models for organizing distributed systems must be developed.

We present a new model, in which the distributed system is able to

function effectively even though processing nodes have inconsistent

and incomplete views of the data bases necessary for their

computations. This model differs from conventional approaches in

its emphasis on dealing with distribution- caused uncertainty and

errors in control, data, and algorithm as an integral part of the
network problem- solving process. We show how this new model can

be applied to the problem of distributed interpretation. Experimental

results with an actual interpretation system support these ideas.



52

8. Appendix: Publications

This is a cummulative listing of Computer Science Department publications from July 1,

1978 to June 30, 1979. They have been categorized according to area of research. The

titles marked with an asterisk (*) indicate those publications whose abstracts are printed in

this report.

Multiprocessing Systems

Fuller, S. and Harbison, S. The C.mmp multiprocessor. Technical Report, Carnegie-Mellon

University, Computer Science Department, Pittsburgh, PA, October, 1978.

- Fuller, S. H., Ousterhout, J., Raskin, L., Rubinfeld, P., Sindhu, P. and Swan, R. J.

Multi-microprocessors: An overview and working example. In Computer Engineering: A

DEC View of Hardware Systems Design. (C. G. Bell, J. C. Mudge and J. E. McNamara,

Ed.) Digital Press, Bedford, MA, 1978. Also CMU-CSD Technical Report 1977.*

Oleinick, P. The implementation and evaluation of parallel algorithms on C.mmp. Technical

Report, Carnegie-Mellon University, Computer Science Department, Pittsburgh, PA,

November, 1978.

Raskin, L. Performance evaluation of multiple processor systems. Technical Report,

Carnegie-Mellon University, Computer Science Department, Pittsburgh, PA, August,

1978.

Siewiorek, D. P., Kini, V., Mashburn, H., McConnel, S. and Tsao, M. A case study of C.mmp, Cm*,

and C.vmp--I. Experiences with fault tolerance in multiprocessor systems. Proceedings

of the IEEE, Vol. 66, October, 1978.

Siewiorek, D. P., Kini, V., Joobani, R. and Bellis, H. A case study of C.mmp, Cm*, and C.vmp--I.

Predicting and calibrating reliability of multiprocessor systems. Proceedings of the

IEEE, Vol. 66, October, 1978. Also CMU-CSD Technical Report September, 1978.

Siewiorek, D. P., McConnel, S. R. and Tsao, M. The measurement and analysis of transient

errors in Digital computer systems. Proceedings of the 1979 International Symposium

on Fault- Tolerant Computing, Madison, WI, June, 1979. Also CMU-CSD Technical

Report May, 1979.*

Swan, R. J. The switching structure and addressing architecture of an extensible

multiprocessor: Cm*. Technical Report, Carnegie- Mellon University, Computer Science

Department, Pittsburgh, PA, August, 1978.



53

Image Understanding Systems

Allen, G. R. an Juetten, P. G. SPARC - Symbolic processing algorithm research computer.

Proceedings: Image Understanding Workshop. Carnegie-Mellon University, Computer

Science Department, Pittsburgh, PA, November, 1978.

Eversole, W. L. et al. Investigation of VLSI technologies for image processing. Proceedings:
Image Understanding Workshop. Carnegie-Mellon University, Computer Science

Department, Pittsburgh, PA, November, 1978.

Kanade, T. A theory of origami world. Technical Report, Carnegie- Mellon University,

Computer Science Department, Pittsburgh, PA, September, 1978.

Kender, John R. Shape From Texture: A brief overview and a new aggregation transform.
Proceedings: Image Understanding Workshop. Carnegie-Mellon University, Computer

Science Department, Pittsburgh, PA, November, 1978.

Reddy, D. R. Pragmatic aspects of machine vision. In Computer Vision Systems. (A. Hanson

and E. Riseman, Ed.) Academic Press, New York, NY, 1978.*

Rubin, Steven M. The ARGOS image understanding system. Proceedings of the DARPA
Workshop on Image Understanding, Pittsburgh, PA & Arlington, VA, November, 1978.

Also CMU-CSD Technical Report, November, 1978.

Shamos, Michael i. Robust picture processing operators and their implementation as circuits.
Proceedings: Image Understanding Workshop. Carnegie-Mellon University, Computer

Science Department, Pittsburgh, PA, November, 1978.

Machine Intelligence

Berliner, H. J. The B* tree search algorithm; A best-first proof procedure. Artificial
Intelligence 12 (1979).Also CMU-CSD Technical Report April, 1978.*

Carbonell, J. G. Counterplanning strategies: Computer models of human reasoning in conflict
situations. Proceedings of the First International Symposium on Policy Analysis and
Information Systems, Durham, NC, June, 1979. Also CMU-CSD Technical Report

February, 1979.*

Forgy, C. L. On the efficient implementation of production systems. Technical Report,

Carnegie-Mellon University, Computer Science Department, Pittsburgh, PA, February,
1979..

. , . .. ,. , . -. :, ". .



54

Gaschnia, J. Performance Measurement and Analysis of Certain Search Algorithms. Technical

Report, Carnegie-Mellon University, Computer Science Department, Pittsburgh, PA, May,

,- 1979..

Lesser, V. R. and Erman, L. D. An experiment in distributed interpretation. Technical

Report, Carnegie-Mellon University, Computer Science Department, Pittsburgh, PA, May,

1979.*

Lowerre, B. and Reddy, D. R. The Harpy speech understanding system. In Trends in Speech

Recognition. (W. A. Lea, Ed.) Prentice- Hall, Inc., Englewood Cliffs, NJ, 1979. Also

CMU-CSD Technical Report April, 1976.*

Mantei, M. M. and McCracken, D. L. Issue analysis with ZOG, a highly interactive man-machine

interface. Proceedings of the First International Symposium on Policy Analysis and

Information Systems, Durham, NC, June, 1979.*

McCracken, D. L. and Robertson, G. Editing tools for ZOG, a highly interactive man-machine

interface. Proceedings of the International Conference on Communications, Boston, MA,

June, 1979.*

McDermott, J. ANA: An assimilating and accommodating production system. Technical Report,

Carnegie-Mellon University, Compute Science Department, Pittsburgh, PA, December,

1978.

Newell, A. Harpy, production systems and human cognition. Technical Report, Carnegie-Mellon

University, Computer Science Department, Pittsburgh, PA, September, 1978.

Oakley, J. D. Symbolic execution of formal machine descriptions. Technical Report,

Carnegie-Mellon University, Computer Science Department, Pittsburgh, PA, April, 1979.*

Rich, E. Building and exploiting user models. Technical Report, Carnegie-Mellon University,

Computer Science Department, Pittsburgh, PA, April, 1979.*

Robertson, G. Some design considerations for the ZOG man-computer interface. Proceedings

of the Third NATO Advanced Study Institute in Information Science, Chania, Crete,

Greece, August, 1978.*

Schatz, B. R. The computation of immediate texture discrimination. Technical Report,

Carnegie-Mellon University, Computer Science Department, Pittsburgh, PA, December,

1978.,

Yegnanarayana, B. Pole-zero decomposition of speech spectra. Technical Report,



55

Carnegie-Mellon University, Computer Science Department, Pittsburgh, PA, January,

1979.*

Yegnanarayana, B. and Ananthapadmanabha, T. V. Design of digital filters by pole-zero

decomposition. Technical Report, Carnegie- Mellon University, Computer Science

Department, Pittsburgh, PA, February, 1979.*

Yegnanarayana, B. and Ananthapadmanabha, T. V. On improving the reliability of cepstral
pitch estimates. Technical Report, Carnegie-Mellon University, Computer Science

Department, Pittsburgh, PA, February, 1979.*

Yegnanarayana, B. Speech analysis by pole-zero decomposition. Preprint of Papers on

Speech Communication, Acoustical Society of America, Cambridge, MA, June, 1979. Also

CMU-CSD Technical Report September, 1978.*

Software Technology

Barbacci, M. R. An ISPS primer for the instruction set processor notation. In Computer

Engineering: A DEC View of Hardware Systems Design. (C. Q. Bell and J. C. Mudge and
J. E. McNamara, Ed.) Digital Press, Bedford, MA, 1978. Also CMU-CSD Technical Report

May, 1979.*

Barbacci, M. R. The symbolic manipulation of computer descriptions: An introduction to ISPS.
Technical Report, Carnegie-Mellon University, Computer Science Department,

Pittsburgh, PA, August, 1978.

Barbacci, M. R., Dietz, W. and Szewerenko, L. Specification, evaluation, and validation of

computer architectures using instruction set processor description. Technical Report,

Carnegie-Mellon University, Computer Science Department, Pittsburgh, PA, April, 1979..

Barbacci, M. R. Instruction set processor specifications for simulation, evaluation and
synthesis. Proceedings of the 16th Design Automation Conference, San Diego, CA, June,

1979.*

Cattell, R. G. G. Using machine descriptions for automatic derivation of code generators.
Proceedings of the Third Jerusalem Conference on Information Technology, Jerusalem,

Israel, August, 1978. Also CMU-CSD Technical Report April, 1978.*

Cooprider, L. W. The representation of families of software systems. Technical Report,r
Carnegie-Mellon University, Computer Science Department, Pittsburgh, PA, April, 1979.*

Habermann, A. N. Implementation of regular path expressions. Technical Report,



56

Carnegie-Mellon University, Computer Science Department, Pittsburgh, PA, March,

1979.*

Jones, A. K. and Lipton, R. J. The enforcement of security policies for computation. Journal of

Computer and System Science 17, 1 August, 1978.

Leverett, B., Cattell, R. G., Hobbs, S., Newcomer, J., Reiner, A., Schatz, B. R. and Wulf, W. A. An

overview of the production quality compiler-compiler project. Technical Report,

Carnegie- Mellon University, Computer Science Department, Pittsburgh, PA, February,

1979.*

Reid, B. K. SCRIBE introductory user's manual. Technical Report, Carnegie-Mellon University,

Computer Science Department, Pittsburgh, PA, August, 1978.

Saunders, S. E. Compiling customized executable representations and interpreters. Technical

Report, Carnegie-Mellon University, Computer Science Department, Pittsburgh, PA, June,

1979.*

Schatz, B. R., Leverett, B., Newcomer, J., Reiner, A. and Wulf, W. A. TCOLAda: An intermediate

representation for the DOD standard programming language. Technical Report,

Carnegie-Mellon University, Computer Science Department, Pittsburgh, PA, March,

1979.*

Shaw, M., Feldman, G., Fitzgerald, R., Hilfinger, P., Kimura, I., London, R. L., Rosenberg, J. and

Wulf, W. A. Validating the utility of abstraction techniques. Proceedings of the ACM

National Conference, Washington, DC, December, 1978.*

Shaw, M., Hilfinger, P. and Wulf, W. A. TARTAN language design for the ironman requirement:

Notes and examples. ACM SIGPLAN Notices 13, 9 (September 1978). Also- CMU-CSD

Technical Report June, 1978.*

Shaw, M., Hilfinger, P. and Wulf, W. A. TARTAN language design for the ironman requirement:

Reference manual. ACM SIGPLAN Notices 13, 9 (September 1978). Also CMU-CSD

Technical Report June, 1978.*

System Architectures for Archival Memories

Barbacci, M. R. and Sproull, R. F. System organizations for archival memories. Proceedings:

Workshop on Archival Memory Technology. Carnegie-Mellon University, Computer

Science Department, Pittsburgh, PA, September, 1978.

Sproull, R. F. and Barbacci, M. R. File system strategies for archival memories. Proceedings:



57

Workshop on Archival Memory Technology. Carnegie-Mellon University, Computer

Science Department, Pittsburgh, PA, September, 1978.

Distributed Sensor Networks

Habermann, A. N. Dyna~mically modifiable distributed systems. Proceedings: Workshop on

Distributed Sensor Nets. Carnegie-Mellon University, Computer Science Department,

Pittsburgh, PA, December, 1978.

Hibbard, Peter G. Language design for distributed systems. Proceedings: Workshop on

Distributed Sensor Nets. Carnegie-Mellon University, Computer Science Department,

Pittsburgh, PA, December, 1978.

4 Sproull, R. F. and Cohen, Dan High level protocols. Proceedings: Workshop on Distributed

Sensor Nets. Carnegie-Mellon University, Computer Science Department, Pittsburgh,

PA, December, 1978.


