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DESCRIPTIVE SUMMARY

ol -
PR RIS

The purpose of this research was to develop a computer code for pre-
dicting the performance of the flow in a dump combustor. It was felt

that current elliptic Navier-Stokes calculations(for example, the

STARPIC program) represent an inefficient approach to such problems.

-

This is because elliptic calculations are time-consuming and only a '-f
portion of the flow field actually requires the elliptic approach.

: Accordingly, a combined elliptic/parabolic scheme was developed 1in ’

which STARPIC was only used for the recirculation region. Downstream of

the recirculation region the parabolized form of the Navier-Stokes

equation was used. The code written for this region used an architec- ’ y

ture similar to that found in STARPIC. These programs were then com- ?]

bined producing what we call a hybrid code. Calculations were run in a

dump combustor having an area ratio of approximately four. Comparisons

were made of the radial profiles of velocity and turbulence kinetic

energy with both the totally elliptic calculations and with experiment.

In all cases the hybrid method agreed with the experiments at least as
well as the elliptic calculations, and in most cases showed even better
agreement. Results indicate that an order of magnitude savings in both
computational time and machine storage can be achieved if the hybrid

method is used.
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PUBLICATIONS, PERSONNEL, AND INTERACTIONS T

o
At the present time, this work has not resulted in any journal publica- 'A:
tions. It is planned to publish this work in the next twelve months, 1,1
however, most likely in the form of an AIAA conference paper. ;43

Pader it ik )

Mr. A. A, Hale assisted with this research, and with the financial sup-

POy A

port provided by this grant, received his Master's Degree in Mechanical -

Engineering from the University in June of 1984, The title of his

EREERAE ~

e e

thesis was "A New Method for Calculating the Flow Field in a Dump Com-~ :

Aod

bustor”,

-
‘P

On Tuesday, June 12, 1984 I had a discussion of this work with Dr. F.D.

Stull, and Dr. R.R. Craig of AFWAL/PORT and Dr. P, Vanka of the Argonne S
National Laboratory. This discussion took place during the -
AIAA/SAE/ASME Joint Propulsion Conference in Cincinnati, Ohio, I gave

a brief review of the research and in the course of that discussion ]

»
distributed copies of Mr. Hale's thesis. 1
As a follow-on to this research I will shortly present to AFOSR a pre-
proposal for base flow combustion research which makes use of the com- !;1
putational technology developed here. T
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Coefficient in finite difference equations
Turbulent modeling coefficients
Coefficient of the pressure gradient term
Integration constant

Source term for turbulent modeling, defined in Table 1
Turbulence kinetic energy

Length of dump combustor

Net inflow of mass

Pressure in the axial momentum equation
Pressure in the radial direction

Reynolds number based on pipe diameter
Radial coordinate

Radial distance from the centerline to the center of a
control volume

Radius of the dump combustor
Radius before sudden expansion
Source term, defined in Table !l

Coefficients for the lihearized source term, defined in
Table 1

Temperatura

Turbulent intensity

Axial velocity before expansion

Friction velocity, defined in Appendix A

Axial velocity nondimensionalized by friction velocity
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NOMENCLATURE (continued)

u Velocity component in the axial direction
v Velocity component in the radial direction
v Volume

™

Turbulence energy dissipation rate

Ar Radial grid mesh spacing
Ax Axial step size
r Diffusion property
y Radial length from the wall to the centerline, defined ]
in Fige 3 ®
&l Reynolds number based on friction veloecity
p Density
< Von Karman constant !‘j
e
T Shear stress 2
T4
T Shear stress In the 1inertial region, defined in .
1 1
Appendix A 1
L
{ T, Wall shear stress ' 1
. ;] A general dependent variable .
{ :
- My Dynamic viscosity o
] | B
3 u Turbulent viscosity, defined by Equation 5 -
8 Meridional coordinate ]
v Kinematic viscosity 'f}
« °
' ]
[ Superscripts ‘71
3
-1
Pru,v,k, = Corresponding dependent variables
' L
) General dependent variable
-
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L‘ Subscripts o
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f Centerline
D Downstream station
| max Maximum over the pipe cross section o
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g E,W Corresponding points, defined in Figure 1 1
b s
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lo INTRODUCTION

lel Problem Description

A dump combustor 1is a sudden expansion which makes use of the
sudden increase in area to produce a flame holding effecte The flow
in dump combustors has been solved by a number of investigators over
the past few yearse. Examples of these solutions can be fouand in
Gosman et ale (1), Lilley and Rhode (2), Novick et al. (3), and Syed
and Sturgess (4)e A common characteristic of these solutions 1s the
nathematical modeling of the flow using the Navier-Stokes equationse.

The flow in a dump combustor may be viewed as having two distinct
reglons with very different characteristicse The first region, which
starts at the sudden expansion and extends to the point of
reattachment, is the recirculation region. Because of the presence of
the separation region the pressure field exerts a stroang upstream
influence and therefore the flow i{s said to be elliptice

The second region, after reattachment, is the pipe flow regilon.
Ia this region the flow is "one-way"” (5) meaning:

a) there i{s no backflow in the main direction of flow,

b) the streamwise diffusion of energy, momentum, and mass {s

negligible, and
¢) the upstream flow conditions are unaffected by a downstream
pressure field.

In this region the elliptic effect of the Navier-Stokes equations
disappears and the £low becomes parabolic in natures The purpose of

this thesis {s to describe a new computational wmethod for dump

DAL A O

e

Ce

-
4
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combustor calculations which takes advantage of this characteristice
In particular it 1is proposed to replace the solution of the Navier-
Stokes equations with the solution of the parabolized Navier-Stokes
equations in this regione. It will be shown that this results in a
considerable savings of computational time and computer storagee.
References 1ianvolving solutions of the parabolized Navier-Stokes

equations are aumerous and can be found, for example, in Patankar and

Spalding (5,6) and Spalding (7).

The solution technique for the elliptic and parabolized Navier-
Stokes equations are very differente The elliptic method is implicit
so each dependent variable calculated in the flow field will have a
value stored at each computational nodes A line relaxation technique
i3 used to calculate the flow field iteratively until the flow field
calculated is within a desired tolerances A disadvantage of using the

Navier-Stokes equations 1is the large computational time required to

PR

carry out these iterationse Often a grid that expands in the axial

directon is used to decrease not only the computational time but the
computer storages Sometimes the consequence of using this coarser x-
grid mesh 1s the presence of a serious decrease in accuracye

The parabolized Navier-Stokes equations are obtained from the

Navier-Stokes equations by neglecting the streamwise diffusion

| - B

termse This allows the equatioas to be solved by a streamwise

marching 1integration procedure, Clearly only a small amount of

computer storage is needede Since the flow fileld 1s not obtained by

iteration the computation time 1is shorte.
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';‘ The combined elliptic and parabolic procedure just described I 1
I call the hybrid methode The purpose of this thesis will be to discuss .—1
P how this hybrid method was developed, to discuss the interfacing which :
must take place between the two methods of solution, and to compare ".'"
the results of the hybrid solution with the elliptic calculations and .__j
experimental data. :::-::
®
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2., CODE DEVELOPMENT PR
]
An elliptic code called STARPIC, written by Lilley and Rhode (2), ]
{3 used to calculate the flow field in the entrance of the dump i ]
combustore This elliptic code solves the Navier-Stokes equations on a ¢
staggered grid control volume shown in Figure le The TEACH code and
SIMPLE algorithm described in Patankar (3) are usede This program was )
made available to me by the Ramjet Technology Branch, Aero Propulsion ¢ 1
Laboratory, at the Wright-Patterson Air Force Bases A parabolic code, 4
however, was not available, therefore a considerable amount of time B *
was spent developing such a code patterned after STARPIC. This ..__'}
section will be mostly concerned with the development of this codee :
The calculations are restricted to incompressible, axisymmetric, :f"-.'_‘
steady flowe. ._,:..
n
3
2,1 Differential Equations 31
The set of governing equations for the parabolic method are . 7
conservation of mass, the axial Navier—-Stokes equation (axial momentum
equation), the transport equation for turbulent kinetic energy, and ]
the transport equation for turbulent dissipation ratee. These 5—1
equations are presented below in cylindrical coordinates (5)e.
.- :
3
4
,‘1
L4 1
4
®

oo NG ) .- . . e - L . - e Te L . . e « e
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Fig. 1. Interior Elliptic Control Volume
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Continuity: ;
$
13 (reu) | 3 (rov)y _ ]
r (3x + ar ] 0 (1) o
- -
® 5
Axial Momentum: S
-1
L3 (rouu) | 3 (rpve) _ 3 uduy _ _ 3 au o
r [ax * ar or (rI‘ 3r) Ix *Ss (2) o y
1
Turbulent Kinetic Energy, k: ]
.
1 (3 (rpuk) ., 3 (rpvk) _ 3 k 3k ok ®
1l 3 (rou 9 (rpovk) _ 3 L X

: I * o e (7 3p)= =8 £

Turbulent Dissipation Energy Rate, e: o 1

53_5_)- - a€

s (4)

- % [B_,(rptw) + 2 (rpve) _ 3 (er

x ar or

The parabolized computational procedure means that the diffusion terms

13 u N 13 k 13 € 3¢€
?&-(rl‘ ‘a;'); T (er js"); and ;-a;(rt‘ 3;) (5)

normally present 1if the elliptic calculations had been carried out

have been eliminated from the above equationse The rational for

eliminating these terms 13 that they present a mechanism by which
upstream diffusion may take place which 1s coatrary to the definition T
of a paradbolic flowe The u, k, and € superscripts refer to specific

terms unique to the axial momentum, turbulence kinetic energy, and
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turbulence dissipation rate equations raespectivelye The »

Pu, Fk, and Fe represent the diffusion coefficients of axial )
momentum, turbulence xinetic energy, and turbulence dissipation rate -.;
respectivelye The diffusion coefficlents and the linearized source

terms appearing in these equations will be defined once the finite

difference form of these equations has been developed.

242 Pinite Difference Equations
The finite difference equations for the parabolic method use

control volumes based on a semi-staggered grid system {illustrated in -

NPy ST

Figure 2. The radial velocity (v) is calculated midway between nodes

S and P but stored on node Ps The axial velocity (u), like all other

P

dependent variables, is stored on node Pe The semi-staggered grid
improves and simplifies the convection term calculation by calculating NS
the velocities at the center of each coantrol face where needede The :i}
governing equations of the parabolic method (l-4) may be written in a
form such that ¢ represents any property which can be convected or j'“

diffused (5), giving:

13 (ourd) _ 3 (pvrd) _ 3 6 3¢yy _ 3%
r [ax * or Jr (rP 3r)] S (6) )

From this equation ¢ may take on the values 1, u, k, and & thereby

recovering the conservation of mass, axial momentum, turbulence

respectivelye A general differeantial equation in $ 1s convenilent for
pregsenting the finite difference equationse.

]

kinetic energy, and turbulence dissipation rate equations 1
The development of the flaite difference equations make 1

‘
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assumptions on the change of ¢ between grid points (5).

4

a) In the axial direction ¢ is a stepwise propertye ¢ = aD at

the downstream face of a control volume up to, but not

| S

including, the upstream face of the same control volume.

tmadh

b) The upstream and downstream face of each control volume
falls on the rf9 planes The ¢ assoclated with an r9 face of
a control volume 1is stepwise. This neaas ¢P remaias fixed
on the face of the control volume but suddenly changes 1
to ¢v or ¢S when exiting radially to an adjacent control
volume,.

e) The radial top and bottom face of each coatrol volume is an
x8 surfaces The numerical value of ¢ coavected on a radial
control volume face will be the arithmetic mean of the
adjacent radial ¢ values. i

d) In che diffusion of ¢ across the same x9 surface of a

control volume a 1linear profile in ¢ between adjacent

radial ¢ values will be assumed.
The finite difference equations based on the above assumptions are

developed by integrating Equation 7 over the control volume, giviag:

e aaiaaa ,_l a4 as aadl
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+ (r oxp V)n,U ( 5 ) (rg &x p v)s’U ( 5 ) .
(N - 4
. 6 0 " %00, _ 6 2,0 ~ %D
(r, &x T Da,u ( N ) (rg & T 4 ( = ) %
a s )
.-i:i
+S¢?Ar Ax '_-';'4
)
]
1
See Table I for one definition of the diffusion coefficlents, F°, and 1
source term S¢. The coefficient (T Ar p u) multiplied by % p in )
P,D ,D i
the axial convection term must be rewritten to eliminate the unknown Aﬁ
downstream influence on axial velocity (5)¢ To eliminate this problem )
4
the continuity equation 1is written in finite difference form and _ ]
)
integrated over the control volume. The continuity equation is solved ‘_Q
R
for the troublesome coefficient just discussed. ]
9
4
(t T '
= - +
r Ar p u)P,D (r & o u)P,U (rn &x o v)n,U (rs &x p v)s’U (8) i
o
Making this gubstitution and rearranging the terms {a the ]
]
general ¢ finite difference equation produces the following general ",i
discretization equationse. 1
R
»
? - a® $ ¢ '
bpute "N AT UK T %) -
where ]
’ 1
]
)
1
S . ]
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TABLE I

Diffusion Coefficients and Source Terms
(s rArm-sf¢p+sz)

¢ r? éf s?

e L

k u/crk -CuCDp%t/u G

/-
€ W -Czpe/k CICquk/u f

IN THIS TABLE CERTAIN QUANTITIES AND
CONSTANTS ARE DEFINED AS FOLLOWS: 1

0409 1.0 1o 44 1,92 1.0 1.2174 R
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+ (r Ar p u)P,U - (rn Ax p v)“’U + (rs Ax P v)s’U

]
(rn Ax T )nlU (rn Ax p v)nLU

o . -
AN, U i 7 . (10)

)
(rs Ax T )s,U (rs &x p V)s,U

6 . _
A5.0 5 )

% o (T - ¢
BU (r Ar p u)P,U ¢P,U +r Ar & S2

The symbol U used as the second subscript on the coefficients of & {n
the above equations satisfies the fact that coefficients are to be
evaluated using  upstream (U) conditions which of «course {is
necessitated by the parabolic nature of the calculationse This
general equation takes on the following specific form for ¢ = 1, u, k

and ¢ where PQ, S¢, and S¢

1 , are defined in Table I,

Let ¢ = 1, then

(r ar p “)P,D - (r ar ¢ “)P,U + (rn & o v) + (r, & p V)s U (i)

n,U ] R

Let ¢ = u, then

u u u u
/ 3 D ey
= ANJU u, * AS’U u, + | (gg) (12)
Yp u N u S u u ax
A?DU AP,U &P,U AP,U
: . TR ST O T AT AIT Sk SR AU
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Let 3 = k, then

k k k
. .iﬂk A R (13
P N k S k

Let ¢ = g, then

€ € €
AN As g 8y

T &t st (14)
Ap,u 4p,U Ap.u

The pressure term in the axial equations will be discussed in the
boundary condition section (2.3)s The ¢ coefficients and the Bg terms
of the discretization equations are based only on upstream influence
as indicated by the U subscripte The unknown ¢'s in the
discretization equations are to be solved at a downstream station by

the tri-diagonal matrix (TDM) algorithme

23 Boundary Conditions

In the previous section the finite difference equations were
developed for the interior of the flowe This section describes
gpecial forms of these equations used on the boundarve Since the flow
is axisymmetric, only the top half of the flow fileld 1s considered
with the boundaries being the top wall and the centerline. The
special forms for the axial velocity, turbulence kinetic energy, and
turbulence dissipation rate will be presented collectively at the
centerline and individually at cthe wall. The calculation of radial

velocity will be discussed in the next section.
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At the centerline since the flow {3 axisvmmetric the variables u,
k, and £ have a zero radial gradient,. The coefficients
A;,U’ A:,U’ and A;,U belongi~g to the centerline discretization
equations are set equal to zero to satisfy this boundary conditione.

In preparation for coasidering the conditions to be applied along
the combustor w#all, {t {s {important to keep in mind that the axial
velocity, turbulence <xinetic energy, and turbulence dissipation rate
equations apply only for high Reynolds numberse. Near the wall,
however, the flow i3 dominated by the laminar viscosity (10). To
provide appropriate modeling in the near wall region, u and k
equations will be modified by a wall function and the & equation will
force € to be a fixed value. These near wall equations will use the
control volume shown 1in PFigure 3 and the wall function defined in
Appendix Ae. The coefficients A;,D' A:,D’ and AS,D associated with
the u, k, and € discretization equations will be set equal to zero so
that the influence of the wall is handled entirely by the source terms
s, Sk, and s, The source terms for each near wall equation
supplement the source terms assoclated with these equations for an
interior control volume.

The source term needed to modify the axial —velocity

discretization equation at the near wall region follows (9).
U
S = [ T 4v (15)
vw

where

XTI
o
.

i
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u,{uy, = uy)
AP N s ¥ < 11,63
yP
T, = A (16)
p xC l/ kl/z (uP - u\‘) +
- = - ; ¥ > 11463

+
log, (EY )

and

T
[/ S 1/4, 1/2
s YV Ypcik

T - - (7
B

The source term necessary to modify the near wall turbulent

kinetic energy equation follows (9)

K= [ G-Cp o (18)
v

The calculations of this expression may be broken into

t (u, - u,)
[ Gav « 2B N 4y (19)
v p
and
Cp c3/4(k1/2 K _ k3/2)U+ v
y_ SNP,O "P,D N,U
Jy Cp pedv = - (20)
P
T, 13 calculated from Equation 17 and Ut s calculated from
4l for Y5 < 11.63
+
v o= (21)

-t;loge (=) for ¥ > 11.63
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The value of e, unlike value of %k, reaches a much higher value near
the wall than anywhere else (9). The control volume for ¢ that
extends up to the wall is very difficult to model due to “shear
ignorance” (9) of e's near wall profile. To eliminate this
problem ¢ is given a fixed value which 1is not a function of * (9)e

The initial sublayer allows e to be expressed as

c3/4k3/2

-u_B,0U (22)

KYP

244 Solution Technique

The axial velocity can be obtained from the axial momentum
equation if the axial pressure is “nown from Equation 13. The guessed
pressure gradient used in this equation 1s obtained from the upstream
statione. In general, the estimated flow rate based on the guessed
pressure will not satisfy conservation of masse The following
equations developed in Appendix B will be used to correct pressure

gradient and the axial velocitye.

3P 3 3P
D} =
* °y 3P
up = up = — (a—x') (24)
Ap U
- N - . . e - .

P YR

| =
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7 ifl"i Uy ry &y = 151 py Uy ry &y
) [ ] ] (25)
u
151 Py Dui ry Ay

The * in the above equations represents axial velocity based on the
previous pressure gradiente A numerical procedure for stabilizing the
axial velocity calculation is presented in Appendix Dl,

The discussion of radial velocity delayed earlier will now be
presented. Radial velocity 1is calculated from Equation 12, The
boundary conditions for v are zero at the wall and centerlines Since
the radial grid {is highly nonuniform, the control volumes vary in
sizes In order to reduce the numerical error of the calculations the
radial velocity is calculated iaward from the wall and outward from
the centerline to the largest control volume. The radial velocity
calculated by the conservation of mass 1s stabilized by a numerical
procedure presented in Appendix D2.

The turbulence kinetic energy is calculated from Equation 1% and
then the turbulence dissipation rate {s calculated from Equation 15
From the value of k and € the turbulent viscosity is calculatad from

Equation 5 in preparation for taking the next downstream stepe
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PIPE FLOW TEST CASE

In order to check out the parabolic code, a simple test case was

rune The test case coasists of laminar flow of air in a circular

pipee This {s a well known problem called Poiseuille flow (ll) for

which there is an exact solutione

3ol Problem Description

The data used in this test case was:

Variable Value
Dynamic Viscosity «1711 X 10 N s/m2
Density le19 kg/m3 )
Diameter 00964 m .
Temperature 293,0 K -:':4
umax 0630 m/s -'J
’ 4
1
This results in a Reynolds number of 2000 which, since this is a 1
laminar calculation, 13 necessarily less than the commonly accepted 1
critical Reynolds number for pipe flow of 2300s The results of the .
analysis are represented by the following equations: 7 i
|
o
o
dP 1 2 2 »
YT i Ga ( &) (26) i
2 |
]
du dP r ‘
TTMidr T dx 2 (273 |
.‘_.1
-“l
S
19 R
¢ L
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20
u 4y
dP _ _ _max 2
dx RZ (28)

At the {nlet to the pipe the axial velocity profile given by
Equation 27 was input along with the value of the pressure gradient
given by Equation 29. The value of the radial velocity at' the inlet
was set equal to zeroe From these calculations the axial velocity,
the radial wvelocity, and the axial ©pressure gradient were
calculatede The axial mesh spacing from the calculations was 0.005

me The pipe was 0.6 m long.

3¢2 Results

The initial velocity profile along with the velocity profiles of
every tenth station are plotted in Figure 4. The ordinate represents
the radial grid spacing from the centerline to the walle The abscissa
indicates the magnitude of the axial velocity which increases from 0.0

m/s at the wall to u = 0,30 m/s at the centerline. There i3 no

max
change in the axial velocity profile from the initial station to the
final station just as would be expected from the exact solutione.
Therefore in Figure 4 only a single curve is plotted which 1in fact
represents the 1initial velocity as well as the velocity profile at
each of the 120 axial stations at which calculations were made.
Although aot specifically shown here, the radial velocities
remain effectively zeroe The radial velocity 1is between 4 and 5

orders of magnitude less than u with the sizn being alternately

max

positive and negative with each successive stepes
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Fig. 4, Axial Velocity Profile Calculations for Fully Developed
Pipe Flow
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Lt Of particular {interest {3 the pressure gradient presented in

)

Table Il The pressure gradient calculations are presented at the

initial x station and every following tenth axial station. The value

. ' -
3 . o
[P O SRy U WUy W S

o

of each axial pressure gradient 1s virtually the same as the exact
: 9
solution ("0.008825). K
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23 ’ K
TABLE Il .
Axial Pressure Gradient Calculatiouas ’ 1

at Every Tenth Axial Step
(Step Size of 04005 m)

Station x(m) Axial Pressure Gradient N -

-]

1 «00 -.008825

10 .05 -+008866 *
20 .10 -.008854 ’

30 15 -.008849 L

40 20 -.008848 |

50 25 -.008845 b,

60 30 -.008842 _ ;3

70 035 -.008843
80 <40 -.008843 '
90 45 -.008841 .
100 50 -.008840

110 o55 -.008841 ’

120 .60 -.008841 f i
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4. INTERFACING

The ultimate utilization of the parabolic code 1s 1in conjunction
with an elliptic code. This necessitates a procedure for .4
transitioning £from the elliptic calculations to the parabolic
calculationse The radial velocity, turbulence xinetic energy,
turbulence dissipation rate, and the dynamic viscosity are calculated
and stored in exactly the same location in the elliptic and parabolic
codese Therefore, no special procedure will be needed to transfer
these dependent variables from the elliptic code as initial conditions
for the parabolic codee A special procedure, however, will be needed
in conjunction with the axial velocity. The axial velocity calculated
upstream and downstream of the parabolic starting station from the
elliptic code 1s averaged to obtain a value of axial velocity at the

station where the parabolic calculations begin:

— PR
PRI ET GG {

. (29)

e A oh B

A special procedure 1is also necessary to obtain the 1initial pressure B

and axial pressure gradient for the parabolic code. Since the =
elliptic radial pressure 1s approximately the same at each radial R
location, the pressure at node 12 (a point approximately halfway
between the wall and the centerline) is taken as the starting pressure -~ 4
for the parabolic codes The axial pressure gradient is also obtained
at node 12 by subtracting the pressure of the elliptic station

e immediately following the elliptic/parabolic 1interface from the 1

24 .
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pressure at the interface station and dividing this differeance divided
by the axial distance between these two stationse

In order to take full advantage of the hybrid wmethod, the
parabolic code should start as soon after the reattachment point as
possible, thereby saving the most computational time and machine
storagees Although such a procedure 13 desirable from the standpoint
of saving computational time and reducing storage, the parabolic
calculations starting too close to the recirculating region run the
danger of decreasing accuracy since the parabolizing assumptions
neglect the streamwise diffusion termse. Consequently an 1interface
location must be sought which represents a desirable tradeoff between
accuracy, computational time, and machine storage.

One of the original purposes for carrying out this work was to
perform numerical experimentation to provide some guidelines for
selecting an appropriate starting location for the parabolic
calculationse However, the expanding grid used by the elliptic code
results in such a coarse mesh spacing downsteam of the reattachment
point that the elliptic calculations of the flow field in this region
were poore These results made it impossible to carry out a systematic
investigation of the proper location for the interface of the two

codese More will be said on this in the next sectione
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i 5¢ RAMJET COMBUSTOR CALCULATIONS

Sel Geometry and Test Conditions

E In order to test the accuracy of the hybrid calculations the flow
in the dump combustor was calculated and compared with the flow
resulting from an elliptic calculation and with experimental data.

j The dump combustor 13 shown in Figure 5 The value of R| was chosen
to be 040482 m and the value of R, was chosen to be 0.0254 me The
inlet velocity (Uo) prior to opposition was taken to be 25.1 m/se Air

: i3 the working fluide The diameter, density, dynamic viscosity, and
temperature for the calculations are the same as that used in the pipe

flow test case (Section 3).

; 5¢2 Calculatioms ?_ﬁ
In a production-type application of the hybrid method, the ii

. parabolic calculations would be initiated by a partial solution of the =
! ramjet combustor with the elliptic code. For the calculations !':
: described here, however, the entire dump combustor geometry was solved . 1
;_ with STARPIC to provide the 1initial conditions for the parabolic ) ;
2 calculationse. The elliptic code predicts reattachment just after ? ?
statfon 35 (x = 0418 m) on an 117 expanding grid which extends from x  3

= 0,0 m (station 1) at the entrance to x = 0.67 m (station 48) at the ‘:j

‘. exite The farthest upstream station at which the parabolic ' 1
calculations could begin was at station 35. This section will %

| describe these calculations and compare the results of the parabolic ]
‘ calculations carried out to station 40 and 43 with the elliptic .AJ
26
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STATION x(m) ):0)

35 0.18414 7.25

40 0.30481 12.00

43 0.43183 17.00

48 0.67249 26 .48

iz. 5. Dunp Combustor Axial Grid Spacing Used for the

Elliptic Method (A) and the Hybrid Method (B)
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calculations and experimental data. The parabolic calculations use a

constant x grid mesh spacing of 0001 me

S5¢3 Results

The solution of the equations presented in Section % allows the
calculation of the axial and radial velocities, the local static
pressure, the turbulence %inetic energy, and turbulence dissipation
rate at each poiat in the flow fleld. In the comparison presented
hera, however, only the axial velocity, and turbulent intensity are
shown since these are the only quantities for which experimental data
was available.s The experimental data was obtalned from Craig et al.
(12) and Stevenson et xls (13)e The axial locations at which these
data were taken correspond to station 40 and 43 in the present
calculations (see Figure 5)s The calculations at station 40 are shown
in Figures 6 and 7, The axial velocity and turbulent intensity are
nondimensionalized by the velocity just before expansion (Uo) and
plotted as the abscissa in Figures 6 and 7 respectively. The ordinate
of both figures represents the radius nondimensionalized by the radius
of the pipe before expansion (RZ)'

The results in Figure 6 indicate as expected an 1increase in
velocity as the centerline {s approacheds Clearly the presence of the
recirculating zone is strongly felt at this station and as expected is
far from a fully developed turbulent proiilee It 1is interesting that
the parabolic calculations are iIn much better agreement with the
experimental data than the elliptic calculationse The result is quite

encouraging. There 1s, however, a disappointing nature to this
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Fig. 6. Axial Velocity Results for the Hybrid Method, Elliptic Method, »
and Experimental Data at Station 40 h

>
;
4

[
-




'y MATE 0 ae e Aie P e Al 0 0 e Bt Warie 0 A Pt i S Vet G A7 At (i A R g A CSM AR B el RN S e et SR EN

30

C‘—l
o
Q.—
w0
w—
N7
O
- 35
@~ :
Q‘ U-:
%+ {
0 40 48
(0 ELLIPTIC CALCLLATIONS START AT O A o
O | PARRBOLIC CALGULATICNS START AT 35
RESULTS SHOWN AT 40 4
< A
o [u]
© STEVENSON ET AL.
A CRAIG ET AL.
N ————  ELLIPTIC 4 5
e —  HYERID
+ .
Q T T ; T T e
o 0.Co 0.c4 0.08 C.12 0.i86 Q.20
TI/UO

Fig. 7. Turbulent Intensity Results for the Hybrid Method,
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discoverye It was initially plaaned to use station 40 to begin a
second set of parabolized calculationse The poor agreement between
the elliptic results and the experimental results at station 40
clearly point out the futilicy of such calculationse Therefore
parabolic calculations beginning at station 35 will be the only
calculations shown in this thesise The excellent performance of the
parabolic calculations at station 40 compared with cthe elliptic
calculations requir.es an explanatione Since the elliptic code used
the full Navier-Stokes equations and the parabolic code used an
abridged form of the Navier-Stokes equatlons, how 1s it that the
parabolic code out performs the elliptic code? This poor prediction
of the flow fileld from the elliptic code 1is blamed on the highly
expanded elliptic gride In Figure 5A 72.9% of the nodes occur in the
first 28432 of the combustore This high resolution allows an accurate
description of the flow field to be obtained at station 35. Between
station 35 and 48, however, the remaining 71.7% of the combustor has
only 27.1% of the nodese This highly expanding x grid is blamed for
the severe loss of accuracy by the elliptic code in predicting the
flow field around station 40. In contrast, the success of the
parabolic calculations 1is attributed to the very high axial grid
resolution of the calculationse

In Figure 7 the results of the turbulent intensity calculations
are showne Here even though the agreement of the parabolic
calculations of experimental data 1s not as good as the case of the
axial velocity they still agree much better with the experiments than

do the elliptic calculationse. The poor agreement of the elliptic
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calculations with the experimental turbulent intensity agaia poiats
out the futility of choosing station 40 to begin the parabolic
calculationse

Figures 8 and 9 are similar to Figures 6 and 7, however, the
calculations and experimental data are compared at station 43 rather
than at station 40 The axial velocity and turbulent intensity are
shown on the same axes and with the same nondimensional parameters as
in PFigures 6 and 7. By the time this station 1s reached the
distortions of the flow produced by the recirculating zone are largely
diffused and dissipated. The resulting flow calculations closely
resemble turbulent pipe flowe Although from Figure 8 it {s difficult
to judge whether the better performer is the elliptic or the hybrid
calculation, in Figure 9 it is quite clear that the hybrid results are
superior in terms of predicting the turbulent intensitye. The results
which we have just seen are certainly gratifying from the standpoint
of accuracye

Given the 1nability of the elliptic calculation at station %0 and
43 to adequately predict the flow field one may be justifiably
susplicious of the accuracy of the elliptic calculatioans at station 35
where the parabolic calculations begane An examination of Figure 10
should alleviate this concerns. Figure 10, unlike Figure 9, shows only
the turbulent intensity on the centerlines As previously indicated at
stations 40 and 43 the agreement 1s poor, however, at station 35 where
the parabolic calculations begin the agreement of the experimental

data with the elliptic calculations 1is excellent.
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Although no experimental data 1s available it 1s nevertheless
interesting to look at the calculations of radial velocitye The
results are shown in Figure !l where the radial velocity profile is
plotted as a function of radius at station 35 and station 43. 1In

-addition, calculations at every twentieth station are plotted between
station 35 and 43« The results are reasonables As station 43 is
approached the radial velocity continually decreasese This Is to be

expected since the region of fully-developed pipe flow 1is being

approachede. Another method for calculating the radial velocity can be
found in the Appendixe It uses the radial momentum (Navier-Stokes) 1
equation. This method {s discussed in Appendix C with some 4

1

stabilizing numerical procedure developed in Appendix D3.

5¢4 Computational Savings
The original motivation for the hybrid method was to save
computational time and machine storage but still maintain an

acceptable degree of accuracye The amount of computational time saved

will be considered firste

ke dimat

Let us consider the requirements for the hybrid calculations

PRI

firste The elliptic code which must be run to provide initial -
conditions =o the parabolic calculations was run on the grid shown in
Figure 5Ae This required 3488 wminutese The parabolic calculations
required O¢l7 minutese. The total time for the hybrid method was L 1
accordingly 4.05 minutese

Let us now turn to the time required to make a similiar elliptic

calculatione In order to present a fair comparison it is necessary to '
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run our elliptic calculations on the grid shown in Figure 5Bs This 1a

fact was never done. Therefore an estimate for the required
computational time was madee The required computational time will be
calculated by multiplying the time required to solve the flow field
elliptically using the grid shown {n Figure 5A (3.88 minutes) by the
ratio of the number of axial stations used in the hybrid method to the
number of axial stations used in Pigure 5A (523/48)¢ The resulting
estimate for the elliptic calculations on the same grid as that used
by the hybrid method is 42.3 minutes. This estimate of computer time
is admittedly conservative because it 1is a well known characteristic
of iterative schemes that the computational time does not increas at a

linear rate with mesh points but rather Increases with the number of

mesh points squared and in some cases cubedes As can be clearly seen
by comparing the estimated 423 minutes required by the elliptic 1
method to the 4¢05 minutes required by the hybrid method there 1s at
least an order of magnitude savings in computational time by using the

hybrid methode.

NPTy

Let us now consider the machine storage saved by using the hybrid

method instead of the elliptic methode This is accomplished by first

Lo

calculating the machine storage of the hybrid methode The required

storage {3 that of the elliptic code (needed as initial conditioms for

NPT N |

the parabolic calculations) and the parabolic calculations

themselvese The machine storage used by the elliptic code 1is obtained
from multiplying the 5 dependent variables (u, v, p, k, and &) by the
radial locations (24) and the 48 axial planese The elliptic code

therefore requires 5752 storage locationse The machine storage needed
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for the parabolic code is determined by multiplying the % dependent
variables (u, v, k, and &) by the radial locations {24) and the (only)
2 axial stations (an upstream and a downstream station)s This results
in 192 storage locationse Therefore, a total of 5952 machine storage
locations are aneeded for the nybrid method.

To compare with the machine storage calculated for the hybrid
method the same grid system will be used to obtain the machine storage
needed to calculate the flow field with the totally elliptic method.
An estimate of the number of storage locations 1s obtained by
multiplying the 5 dependent variables (u, v, p, k, and €) by the 24
radial locations and the 523 axial stations used in the hybrid mesh
shown in Figure 5B, This multiplication shows a need for 62,760
machine storage locations using the totally elliptic method. A
comparison of the 5952 machine storage locations needed for the hybrid
calculations shows over an order of magnitude savings in the machine

storage of the hybrid methode.
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6e CONCLUSIONS AND RECOMMENDATIONS

The accuracy at which the parabolic code predicted the flow fileld
is very satisfying. Unfortunately, a detalled study of the optimum
location of the interfacing point could not be carried out; however, a
satisfactory calculation was made. Savings 1{a computational time and
@achine storage of more than one order of magnitude was achieved with
no preceivable decrease In the accuracy of the calculations compared
with elliptic calculations made with the same axial resolution.

By way of a recommendation I feel that the comparisons just
reported should be repeated with adjustments made to the elliptic code
to reduce the mesh spacing downstream of the reattachment pointe This
would allow the optimal starting location of the parabolic code to bde
founde. The paraholic code should also be extended to handle

compressible and reacting flowse
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{ APPENDIX A

The Wall Function Definition

In the near wall region the local Reynolds aumber ol increases
rapidlye. In order to accurately model the wall shear stress 1in this
region 1t 1is necessary therefore to define a wall function. The
development of the wall function is guided by the one-dimensional
Couette flow analysis in the reglon close to the wall where the shear
stress can be assumed to be a constante The Navier-Stokes (axial
momentum) equation can be reduced by these assumptions to the

following very simple nondimensional form (9).

T uooau” 1
-t_ - (1 + ‘u—') —+ (Al) ]
w L dy .
®
where
+ u J
U = (A2) °
T ]
A i
P
and
®
vt .l . = :."!. (A3) ]
r Yt Ye ) )
The general wall functions based on Y" are broken into three regions: °®

u
a) Viscous sublayer (0 < ¥t ¢ 5) where u—l >l.

P S o S sy et S B oy P W S S V. e [ WO S S




vy v vy

- e

v Xy Tvw

>

N il Wf M4 S S e s 7 Rar —m—w o -
OB A0 e b e S 5 2 At e e Yt S M A SR VAR AN S A A N A Pl S o, BANSA SN Ao N A R

o~
FaS

b) Buffer 2zone (5 < ¥t o< 30) where laminar viscosity and
turbulent viscosity are of the same magnitude such that
neither dominates the flowe

¢) Outer sublayer (30 < y+ < 400) where ;3- K 1,

The approach taken by STARPIC and adopted by the parabolic scheme is
to eliminate the buffer zone by assuming the flow is purely viscous
from the wall to * < = 1163« For Y > 11,63, the flow 1s assumed to
be fully turbulent (2),. " undergoes a step change between two wall
functions (9)e Equation Al may be integrated in these two regions to

obtain a calculation of ut as a function of Y+.

T, 1F Y < 11463
- (A4)

-']'('loge &), 1£ ¢t > 11.63

The integration constant, E = 9,793, depends on shear stress in the
viscous sublayer and pipe roughness. The von Karman constant x =
064187,

In the inmertial region (0 < * < 400) mean velocity is considered
to be independent of y so the time averaged convection and diffusion
terms 1in the energy transport equations average to zero. The
turbulence equations reduce to Production = Dissipation (l4). This
assumption in the inertial region formulates the basis for the near
wall shear stress (rw) calculations as a function of turbulent kinetic

energye An isotropic viscosity assumption (2) further reduces the k

equation to

'
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where Wt and the ¢ equation to .
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g = (A6)
€ - 1/2
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APPENDIX B o

Correction for Axial Velocity and Pressure

A pressure correction equation 1s needed to correct the axial )
velocity and update the pressure gradiente. Equation 2, rewritten

below for convenience, is used to calculate the axial velocity with

the correct pressure gradient. 'Y
u u u u 1
A B D —-
. v A B D ) (1) |
u R u S u u ax 1
4p,u 4y A0 YU )
._ 4
However, the pressure gradient 1s wunknown sSo a guessed pressure 7.3
gradient will be used to obtain an estimate to the axial velocity as B
indicated by the * in the following equation. ° '
u u u u * S
A B D - s
* * * 1 -
o, s e, B L D Z, (32) 2
Yp AU b S u u ax
P,U A U A0 U
®
[ In general the axial velocity profile obtained from this guessed .
¢ pressure field will not satisfy the following conservation of mass
r
| equatione _
b q . B
: hd J 3 .
[ m =27 I o, uy T, Ar, (33) SN
s {=]
b S
. 0
| .
! The difference between Equation Bl and Equation B2 would represent the :
* error assoclated with calculating the axial velocity from the guessed .
prassure as shown by
°®
46 .
L
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u u u .
; AV D -— H r. .
* h * .
\ u,uP+A_N_£(uv-u)+._¢_U_(u -un) + =2 (i‘.’.) (B4) .
X P u D ) u S u ax ‘
- Ap,u AU AU :
L o
P where i "
-
q 5B 3B\ . 3By
\ = &) G (33)
( *
‘ For the above equation to function as a velocity correction equation o
: it must be explicit, therefore, the second and third terms on the .
L right are eliminated. Y 1
3 1
g u
D -_— !
* U )
- up = Up + m (ax] (B6)
{ AP,U
- The explicit axial velocity correction equation shown above 1is .
substituted into Equation B3 to calculate the following pressure s

: gradient correctione » E

| b
y h| b * . :
’ 5! L opguyry bey = L oppuyry oy
E_ (_Q_P_) - [ i=1 1=1 ] (87) o

. 3x i a ®__
g ifl g DUi £ Ary
E. 7. :
! This equation gives the required (—:—;) necessary to update the .

. -

guessed pressure gradient (—;P—‘) from Equation B5 and to correct the '
axial velocity from Equation B6e.
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APPENDIX C

Radial Momentum Equation for v R

An alternative to the conservation of mass equation for the

calculation of the radial veocity (v) is the following radial momentum

Luj.‘." .

(Navier-Stokes) equation:

TR

L3 (rpuv) 3 (roww) _ 3 v vy __ 3 v ]
: [ TS e T gl =S (¢ 3
The radial momentum equation may be written in finite difference form I

and integrated over a control volume to produce the following

discretization form:

v v v v
v -ANJUv +P§*Uv +-EH-+ DU (P - P ) (C2) )
P v N v v P S

4,0 Ay S &y &g

A
e A g g

As in the calculation of v from the conservation of mass the radial
velocity calculations follow the axial velocity and pressure gradient

calculationse Since the radial pressure field is unknown a guessed

radial pressura field 1is substituted into Equation C2 to obtain an

—~
estimate for v as shown belowe "

[ v v v v
; E A B D -
: Ao ox Ay o» By U x % -
Vp v YN + v 's + + v (Pp PS) (€3) 3

° Ap.U dp.u A;,u .U -4

The * indicates the calculated radial velocity 1is based on a guessed

radial pressure field (P*). The radial velocity based on the P* will

not satisfy in general the conservation of mass equation by producing

[ . i
® . - . . - . - Ty ' S L . e e
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St
a net gain or loss in masse A procedure to annihilate this net mass () %
{s to create a pressure correction from ]
* ! - 4
]
' -
where P is the pressure correction, P is the guessed pressure, and ? »
T

is the actual pressures The radial veloecity correction equation will [
4
be derived by subtracting the actual radial veloecity equation ]
9
(Equation C2) based on the actual radial pressure field from the -
radial velocity equation (Bquation C3) based on the guessed radial . 1
. ‘1
pressure fieldes The following radial velocity correction =
S
v v v -4
D A _

« Dy v e Ay R x ,

= - — e - ——te -
vp = Vvp * (PP Ps) + (vN vu) + = (vs vs) (€5) ®

A,y A,y 4,0 B

is reduced to

* ' "4
P P (PP - Ps) (c6) ‘ f

by dropping the last two termse The last two terms must be dropped in

n 2

e ' . -,
"‘ o 2 ' }, N t
PRI AR U

order to reduce Equation C5 from enplicit to explicit Equation Cbh.
The above corrected radial velocity equation 1s substituted i{nto the

finite differenced conservation of mass equation (Equation 12) to

]
1] - ._1
develop the following P correction equation '_"}
P P '
AL As .y v .p o
P @ =i p 4 =P +3 (C7) |
AP N 4 S U »
P,U Ap g :

R 4
Tloa
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This equation i{s solved by a TDM procedura to calculate the P',se.
With the P',s known, the radial pressure may be updated from Equation
C4 and the radial velocity may be corrected from Equation C6.

The dump combustor calculations described in Section 5 were
recalculated with the radial velocity obtained from the radial
momentum equation instead of the conservation of mass equatione The
radial velocity calculation were essentially the same as that

calculated from the conservation of masse
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APPENDIX D f
Some Stabilizing Numerical Procedures

The calculations of axial velocity and radial velocity requirad '

some stabilizing numerical procedures suggested by Mrse Joan Mooree

l. Axial Momentum ‘ f

The calculation of axial velocity obtained from the solution tech-
nique section was found to oscillate about the correct axial velocity
from one axial step to the nextse The axial velocity oscillation was
eliminated by dividing the pressure correction term ia Equation 25 by 2

as shown below: )

() (p1)

2 Continuity

1) When the expressions

(ev), = 5 2 (D2)

and

(ov)g = 5 (D3)

are substituted into the following finite differenced conser-

vation of mass equation O

51 R
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r {ev) =r [pv pu) - pu)
n( )n s( )3 .+ [ ( P,D ( P, U =0 (D4)
Ar Ax
and solved for Vpe @ numerical instability resultse. This

problem 1is eliminated by assuming (pv)n and (pv)s are located
at downstream stationse

The radial velocity was obtained from a highly nonuniform
radial grid by solving the conservation of mass equation for
radial velocity from the wall to the centerline. At the
centerline the numerical round off error was significant. The
solution was to solve the coanservatioan of mass equation for
radial velocity by calculating inward from the wall and outward
from the centerline to the largest control volumee. The largest
control volume absorbed the numerical errore.

The radial velocity was found to oscillate about the correct
radial velocity profile form one axial step to the nexte This

radial velocity oscillation was eliminated by:

A 3 (DS)

Radial Momentum

L.

A pressure correction equation needed to correct the radial
velocity 1is obtained for each control volume. However, since a

global pressure correction has already been obtained to correct
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‘
|
t
"‘ the axial velocity and update the axial pressure a full set of
2
b pressure correction equations would be indeterminates This is

due to the presence of one too many pressure correction

h ’ equationse To eliminate this problem the pressure correction )
3 assoclated with the largest control volume 1s set equal to
Zeroe

2o The radial velocity was found to oscillate about the correct »

T

radial velocity at each axial stepe The correction is the same

as that developed earlier in Equation DS.
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