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DESCRIPTIVE SUMMARY

The purpose of this research was to develop a computer code for pre-

dicting the performance of the flow in a dump combustor. It was felt

that current elliptic Navier-Stokes calculations(for example, the

STARPIC program) represent an inefficient approach to such problems.

This is because elliptic calculations are time-consuming and only a

portion of the flow field actually requires the elliptic approach.

Accordingly, a combined elliptic/parabolic scheme was developed in

which STARPIC was only used for the recirculation region. Downstream of

the recirculation region the parabolized form of the Navier-Stokes

4 equation was used. The code written for this region used an architec-

ture similar to that found in STARPIC. These programs were then com-

bined producing what we call a hybrid code. Calculations were run in a

dump combustor having an area ratio of approximately four. Comparisons

were made of the radial profiles of velocity and turbulence kinetic

energy with both the totally elliptic calculations and with experiment.

In all cases the hybrid method agreed with the experiments at least as

well as the elliptic calculations, and in most cases showed even better

agreement. Results indicate that an order of magnitude savings in both

computational time and machine storage can be achieved if the hybrid

method is used.
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PUBLICATIONS, PERSONNEL, AND INTERACTIONS

At the present time, this work has not resulted in any journal publica-

tions. It is planned to publish this work in the next twelve months,

however, most likely in the form of an AIAA conference paper.

Mr. A. A. Hale assisted with this research, and with the financial sup-

port provided by this grant, received his Master's Degree in Mechanical

Engineering from the University in June of 1984. The title of his

thesis was "A New Method for Calculating the Flow Field in a Dump Com-

bustor".

On Tuesday, June 12, 1984 I had a discussion of this work with Dr. F.D.

Stull, and Dr. R.R. Craig of AFWAL/PORT and Dr. P. Vanka of the Argonne

National Laboratory. This discussion took place during the

AIAA/SAE/ASME Joint Propulsion Conference in Cincinnati, Ohio. I gave

a brief review of the research and in the course of that discussion
p

distributed copies of Mr. Hale's thesis.

As a follow-on to this research I will shortly present to AFOSR a pre-

proposal for base flow combustion research which makes use of the com-

putational technology developed here.
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1. INTRODUCTION

1.1 Problem Description

A dump combustor is a sudden expansion which makes use of the

sudden increase in area to produce a flame holding effect. The flow

in dump combustors has been solved by a number of investigators over

the past few years. Examples of these solutions can be found in

Gosman et al. (i), Lilley and Rhode (2), Novick et al* (3), and Syed

and Sturgess (4). A common characteristic of these solutions is the

mathematical modeling of the flow using the Navier-Stokes equations.

The flow in a dump combustor may be viewed as having two distinct

regions with very different characteristics. The first region, which

starts at the sudden expansion and extends to the point of

reattachment, is the recirculation region. Because of the presence of

the separation region the pressure field exerts a strong upstream

influence and therefore the flow is said to be elliptic.

The second region, after reattachment, is the pipe flow region.

In this region the flow is "one-way" (5) meaning:

a) there is no backf low in the main direction of flow,

b) the streamwise diffusion of energy, momentum, and mass is

negligible, and

c) the upstream flow conditions are unaffected by a downstream

pressure field.

In this region the elliptic effect of the Navier-Stokes equations

disappears and the flow becomes parabolic in nature. The purpose of

this thesis is to describe a new computational method for dump

QI
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combustor calculations which takes advantage of this characteristic.

In particular it is proposed to replace the solution of the Navler-

Stokes equations with the solution of the parabolized Navier-Stokes

equations in this region. It will be shown that this results in a

considerable savings of computational time and computer storage*

References involving solutions of the parabolized Navier-Stokes

equations are numerous and can be found, for example, in Patankar and

Spalding (5,6) and Spalding (7).

The solution technique for the elliptic and parabolized Navier-

Stokes equations are very different. The elliptic method is implicit

so each dependent variable calculated in the flow field will have a

value stored at each computational node. A line relaxation technique

is used to calculate the flow field iteratively until the flow field

calculated is within a desired tolerance. A disadvantage of using the

Navier-Stokes equations is the large computational time required to

carry out these iterations. Often a grid that expands in the axial

directon is used to decrease not only the computational time but the

computer storage. Sometimes the consequence of using this coarser x-

grid mesh is the presence of a serious decrease in accuracy,

The parabolized Navier-Stokes equations are obtained from the

Navier-Stokes equations by neglecting the streamwise diffusion

terms. This allows the equations to be solved by a streamwise

* marching integration procedure. Clearly only a small amount of

computer storage is needed. Since the flow field is not obtained by

iteration the computation time is short.

0

I "'I
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The combined elliptic and parabolic procedure just described I

call the hybrid method. The purpose of this thesis wili be to discuss

how this hybrid method was developed, to discuss the interfacing which

must take place between the two methods of solution, and to compare

the results of the hybrid solution with the elliptic calculations and

experimental data.



* - * -* -" *-*

2. CODE DEVELOPMENT

An elliptic code called STARPIC, written by Lilley and Rhode (2),

is used to calculate the flow field in the entrance of the dump

combustor. This elliptic code solves the Navier-Stokes equations on a

staggered grid control volume shown in Figure 1. The TEACH code and

SIMPLE algorithm described in Pataukar (8) are used. This program was
S

made available to me by the Ramjet Technology Branch, Aero Propulsion

Laboratory, at the Wright-Patterson Air Force Base. A parabolic code,

however, was not available, therefore a considerable amount of time

was spent developing such a code patterned after STARPIC. This

section will be mostly concerned with the development of this code.

The calculations are restricted to incompressible, axisymmetric,

steady flow.

2. Differential Equations

The set of governing equations for the parabolic method are

conservation of mass, the axial Navier-Stokes equation (axial momentum

equation), the transport equation for turbulent kinetic energy, and

the transport equation for turbulent dissipation rate. These

equations are presented below in cylindrical coordinates (5).

7.'
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Continuity:

0.3 (rpu) + (rpv) (1)

Axial Momentum:

3.(rpuu) + r (rpvu) + -rru  (2)+ r - r r au) " 3P § u (' 2)

Turbulent Kinetic Energy, k:

- (3 (rPuk) + a(rovk) _ (rr L ).- (3)
r x r -a.) 3r

Turbulent Dissipation Energy Rate, e:

) a(rpv¢c) a rr(4)± + r -L (rre .(). 4)

The parabolized computational procedure means that the diffusion terms

( (rru  -L t (rr k  k); and - (rr ) 5)

normally present if the elliptic calculations had been carried out

have been eliminated from the above equations* The rational for

eliminating these terms is that they present a mechanism by which

upstream diffusion may take place which is contrary to the definition

of a parabolic flow. The u, k, and e superscripts refer to specific ]

terms unique to the axial momentum, turbulence kinetic energy, and

"' " " ; . ." - " " -" - " " "' ' ' ' " ' " " "'- ' " " -. ' . .. -
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turbulence dissipation rate equations respectively* The m

ru ,r k, and r represent the diffusion coefficients of axial

momentum, turbulence kinetic energy, and turbulence dissipation rate

respectively. The diffusion coefficients and the linearized source

terms appearing in these equations will be defined once the finite

difference form of these equations has been developed.

S

2.2 Finite Difference Equations

The finite difference equations for the parabolic method use

control volumes based on a semi-staggered grid system illustrated in

Figure 2. The radial velocity (v) is calculated midway between nodes

S and P but stored on node P. The axial velocity (u), like all other

dependent variables, is stored on node P. The semi-staggered grid

improves and simplifies the convection term calculation by calculating

the velocities at the center of each control face where needed. The

governing equations of the parabolic method (1-4) may be written in a

form such that * represents any property which can be convected or

diffused (5), giving:
- W. (rrO -L (6)

From this equation * may take on the values 1, u, k, and e thereby

recovering the conservation of mass, axial momentum, turbulence
ID

kinetic energy, and turbulence dissipation rate equations

respectively. A general differential equation in 0 is convenient for

presenting the finite difference equations.

The development of the finite difference equations make



n n-- - - - - - - T,
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* * assumptions on the change of 0 between grid points (5).

a) In the axial direction 0 is a stepwise property.* 0 0at

the downstream face of a control volume up to, but not

including, the upstream face of the same control volume.

b) The upstream and downstream face of each control volume

falls on the r8 plane. The *associated with an ri face of

a control volume is stepwise. This means Sremaias f ixed

on the face of the control volume but suddenly changes

to 4 or OSwhen exiting radially to an adjacent control

volume.
0

c) The radial top and bottom face of each control volume is an

x@ surface. The numerical value of 0 convected on a radial

control volume face will be the arithmetic mean of the

adjacent radial 0 values.

d) In the diffusion of *across the same x9 surface of a

control volume a linear profile in 0 between adjacent

radial *values will be assumed.

The finite difference equations based on the above assumptions areI

developed by integrating Equation 7 over the control volume, giving:

0

0
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r r p u)PD OP,D- ( r r u) Up,U p U

+ (r Ax P v) OND , )P, - (r Ax P V)sU ',D Os,Va ,U2 SU2

(7)
D(r X r), , - ' rD) r(r xP,D - OsD

r A rs SU AY
s

+5 so Ax

See Table I for one definition of the diffusion coefficients, r9, and

source term S. The coefficient (; &r p u)p,D multiplied by OD in

the axial convection term must be rewritten to eliminate the unknown

downstream influence on axial velocity (5). To eliminate this problem

the continuity equation is written in finite difference form and

integrated over the control volume* The continuity equation is solved

for the troublesome coefficient just discussed.

(r Ar P u)PD ( Ar P u)p U  (r n Ax P V)n U + (r s Ax U v) 98)

Htaking this substitution and rearranging the terms in the

general * finite difference equation produces the following general

discretization equations.

ApU O A.,' U + S+ BU (9)

where



TABLE I

Diffusion Coefficientsarnd Source Terms

p 2

10 0 0

k -C CDp 'k/ p GU/ a

S cs -C2 pe/k C C Gpk/

IN THIS TABLE CERTAIN QUANTITIES AND
CONSTANTS ARE DEFINED AS FOLLOWS:

C p k
2

aqv 2  V 2 (au 2
G 2 7 + I+(~. 7r- I

C CD C C2c D  1 I 2

0
0.09 1.0 1.44 1,92 1.0 1.2174

..S. " ., . -ii -- . _ : ; , • - ::::;: _ _. : . - ; ::.::- :::: ., : :! :::: . . ii:
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N, +  - r Ar Ax

+ (Ar p u)PU - (r n Ax p V)n, U + (r s Ax p V)s, U

(r Ax r)nu (r Ax P V)U (0n, n_ U n) .
ANU AY 2 (

a

(r 9Axr )S rs5cPVsU
ASIU AY 2, r i )

SSBO - (r Ar P u)p. U o.p, + r 6r x s

The symbol U used as the second subscript on the coefficients of * in

the above equations satisfies the fact that coefficients are to be

evaluated using upstream (U) conditions which of course is

necessitated by the parabolic nature of the calculations. This

general equation cakes on the following specific form for * - 1, u, k

and e where r , SI, and S are defined in Table I.

Let - 1, then

S
(r Ar o u)PD - ar P u) + (r Ax p v) + (rAx v), ()PDPU n v),U (in5

Let € u, then

U u U
41U (M (12)U P A,u S Du ax

-;. - , .-. ,-- .- -.. ..

nlS
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Let , - k, then

= 4-U k + k(13)P k N k S k .
Ap'U Ap, A,

Let - c, then

4-U eN + A U (14)

ep A;, A, ;

The pressure term in the axial equations will be discussed in the

boundary condition section (2.3). The * coefficients and the B terms
0 U

of the discretization equations are based only on upstream influence

as indicated by the U subscript. The unknown *'s in the

discretization equations are to be solved at a downstream station by

the tri-diagonal matrix (TDM) algorithm.

2.3 Boundary Conditions

In the previous section the finite difference equations were

developed for the interior of the flow* This section describes

special forms of these equations used on the boundary. Since the flow

is axisymmetric, only the top half of the flow field is considered

with the boundaries being the top wall and the centerline. The

special forms for the axial velocity, turbulence kinetic energy, and

turbulence dissipation rate will be presented collectively at the

centerline and individually at the wall. The calculation of radial

velocity will be discussed in the next section.

0 <.
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At the centerline since the flow is axiymetric the variables u,

k, and e have a zero radial gradient. The coefficients

AS, u ,k-and A E belongi.-g to the centerline discretization
S,u UAS, s ,U

equations are set equal to zero to satisfy this boundary condition.

In preparation for considering the conditions to be applied along

the combustor wall, it is important to keep in mind that the axial

velocity, turbulence kinetic energy, and turbulence dissipation rate

equations apply only for high Reynolds numbers. Near the wall,

however, the flow is dominated by the laminar viscosity (10). To

provide appropriate modeling in the near wall region, u and k

equations will be modified by a wall function and the e equation will

force e to be a fixed value. These near wall equations will use the

control volume shown in Figure 3 and the wall function defined in
u k E

Appendix A. The coefficients DD " and , associated with

the u, k, and e discretization equations will be set equal to zero so

that the influence of the wall is handled entirely by the source terms

Su ,  Sk , and S €  The source terms for each near wall equation S

supplement the source terms associated with these equations for an

interior control volume.

The source term needed to modify the axial velocity

discretization equation at the near wall region follows (9).

wh . f Tw dV (15)
V

where

4 S
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z _ Y~u + N 11.63

J (16)
p 1/ k"4 1/2 (u -U)1~ IN_____ +

+ ,Y > 11.63
log (EY)

e

and

S1/4k 1/2 (7

The source term necessary to modify the near wall turbulent

4 kinetic energy equation follows (9)

S f (G C P c) dV (8

The calculations of this expression may be broken into

'r (u -ut,

f G dV- w dV (19)
V yp

and

-C~ C c3 /4 (k 1/2 k k 3/2 )U+ dV
C p £dV *(20)

T is calculated from Equation 17 and U4+ is calculated from

Yfor Y 11.63

U +

{ loge (EY+) for Y+> 11.63 (1

0C*
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The value of e, unlike value of k, reaches a much higher value near

the wall than anywhere else (9). The control volume for e that

extends up to the wall is very difficult to model due to "shear

ignorance' (9) of 's near wall profile. To eliminate this

problem e is given a fixed value which is not a function of Y+ (9).

The initial sublayer allows e to be expressed as

13/4 3/2
C 11k U.- yPU (22)= yp

2.4 Solution Technique

The axial velocity can be obtained from the axial momentum

equation if the axial pressure is '.nown from Equation 13. The guessed

* pressure gradient used in this equation is obtained from the upstream

station. In general, the estimated flow rate based on the guessed

pressure will not satisfy conservation of mass. The following

equations developed in Appendix B will be used to correct pressure

gradient and the axial velocity.

x ) + (17) (23)

u -

U u i- - -:) (24)

u- ,U
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I - i Z  ~ iU i r  pil Ui r  j r

Z U ri Ar E P r
(P) [i11 (25)

i  D5 
ri Ar]

The *in the above equations represents axial velocity based on the

previous pressure gradient. A numerical procedure for stabilizing the

axial velocity calculation is presented in Appendix DI.

The discussion of radial velocity delayed earlier will now be

presented. Radial velocity is calculated from Equation 12. The

boundary conditions for v are zero at the wall and centerline. Since

the radial grid is highly nonuniform, the control volumes vary in

size. In order to reduce the numerical error of the calculations the

radial velocity is calculated inward from the wall and outward from

the centerline to the largest control volume. The radial velocity

calculated by the conservation of mass is stabilized by a numerical

procedure presented in Appendix D2*

The turbulence kinetic energy is calculated from Equation 14 and-

then the turbulence dissipation rate is calculated from Equation 15.

From the value of k and e the turbulent viscosity is calculated from

Equation 5 in preparation for taking the next downstream step*

S

[S
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3. PIPE FLOW TEST CASE

In order to check out the parabolic code, a simple test case was

run. The test case consists of laminar flow of air in a circular

pipes This is a well known problem called Poiseuille flow (1.1) for

which there is an exact solution.

3.1 Problem Description

The data used in this test case was:

Variable Value

Dynamic Viscosity .1711 X 10 N s/m2

Density 1. 19 kg/m 3

Diameter 0.0964 m D

Temperature 293.0 K

Ueax  0.30 m/s
S

.1

This results in a Reynolds number of 2000 which, since this is a

laminar calculation, is necessarily less than the commonly accepted

critical Reynolds number for pipe flow of 2300. The results of the

analysis are represented by the following equations:

* ~dPi
---)- (r2 _ g2  (26) 0dx 44

T du dPr (27)

.9
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dP muax (8
dx R 2  (8

At the inlet to the pipe the axial velocity prof ile given by

Equation 27 was input along with the value of the pressure gradient

given by Equation 29e The value of the radial velocity at the inlet

was set equal to zero* From these calculations the axial velocity,

the radial velocity, and the axial pressure gradient were

4calculated. The axial mesh spacing from the calculations was 0.005

m, The pipe was 0.6 m long.

6 3.2 Results

The initial velocity profile along with the velocity profiles of

every tenth station are plotted in Figure 4. The ordinate represents

the radial grid spacing from the centerline to the wall. The abscissa

indicates the magnitude of the axial velocity which increases from 0.0

rn/s at the wall to u 0.30 mi's at the centerline. There is no -

0 change in the axial velocity profile from the initial station to the

final station just as would be expected from the exact solution.

Therefore in Figure 4 only a single curve is plotted which in fact

4 represents the initial velocity as well as the velocity profile at

each of the 120 axial stations at which calculations were made.

Although not specifically shown here, the radial velocities

*remain effectively zero. The radial velocity is between 4 and 5

orders of magnitude less than umax with the sign being alternately

positive and negative with each successive step.
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Of particular interest is the pressure gradient presented in

Table 11. The pressure gradient calculations are presented at the

initial x station and every following tenth axial station. The value

of each axial pressure gradient is virtually the same as the exact

solution (-0.008825).
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TABLE II

Axial Pressure Gradient Calculatioas
at Every Tenth Axial Step
(Step Size of 0,005 m)

Station X(in) Axial Pressure Gradient

1000 -.008825

10 .05 -,008866

20 .10 -.008854

30 *15 -,008849

40 .20 -.008848

50 .25 -,008845

60 .30 -,008842

70 .35 -,008843

80 .40 -.008843

90 .45 -,008841

100 .50 -.008840

110 .55 -.008841

120 .60 -,008841



4. INTERFACING

The ultimate utilization of the parabolic code is in conjunction

with an elliptic code. This necessitates a procedure for

transitioning from the elliptic calculations to the parabolic.

calculations* The radial velocity, turbulence kinetic energy,

turbulence dissipation rate, and the dynamic viscosity are calculated

and stored in exactly the same location in the elliptic and parabolic

codes. Therefore, no special procedure will be needed to transfer

these dependent variables from the elliptic code as initial conditions

for the parabolic code. A special procedure, however, will be needed

in conjunction with the axial velocity. The axial velocity calculated

upstream and downstream of the parabolic starting station from the

elliptic code is averaged to obtain a value of axial velocity at the

station where the parabolic calculations begin:

uP'U 2 *(29)

A special procedure is also necessary to obtain the initial pressure

and axial pressure gradient for the parabolic code. Since the

elliptic radial pressure is approximately the same at each radial

location, the pressure at node 12 (a point approximately halfway

6 between the wall and the centerline) is taken as the starting pressure

for the parabolic code. The axial pressure gradient is also obtained '
at node 12 by subtracting the pressure of the elliptic station

*ismnediately following the elliptic/parabolic interface from the

24
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pressure at the interface station and dividing this difference divided

by the axcial distance between these two stations.

In order to take full advantage of the hybrid method, the

parabolic code should start as soon after the reattachment point as

possible, thereby saving the most computational time and machine

storage* Although such a procedure is desirable from the standpoint

( of saving computational time and reducing storage, the parabolic

calculations starting too close to the recirculating region run the

danger of decreasing accuracy since the parabolizing assumptions

neglect the streamwise diffusion terms* Consequently an interface

location must be sought which represents a desirable tradeoff between

accuracy, computational time, and machine storage.

One of the original purposes for carrying out this work was to

perform numerical experimentation to provide some guidelines for

selecting an appropriate starting location for the parabolic

calculations. However, the expanding grid used by the elliptic code

results in such a coarse mesh spacing downsteam of the reattachment

point that the elliptic calculations of the flow field in this region

were poor. These results made it impossible to carry out a systematic

investigation of the proper location for the interface of the two

codes* More will be said on this in the next section*



5. RAMJET COMBUSTOR CALCULATIONS

5.1 Geometry and Test Conditions

In order to test the accuracy of the hybrid calculations the flow

in the dump combustor was calculated and compared with the flow

resulting from an elliptic calculation and with experimental data.

The dump combustor is shown in Figure 5. The value of Rwas chosen

to be 0,0482 m and the value of R2was chosen to be 0.0254 m. The

inlet velocity (U 0) prior to opposition was taken to be 25.1 m/s. Air

is the working fluid. The diameter, density, dynamic viscosity, and

temperature for the calculations are the same as that used in the pipe

flow test case (Section 3).

5.2 Calculations

In a production-type application of the hybrid method, the

parabolic calculations would be initiated by a partial solution of the

FdI
ramjet combustor with the elliptic code. For the calculations

described here, however, the entire dump combustor geometry was solved

with STARPIC to provide the initial conditions for the parabolic

calculations. The elliptic code predicts reattachment just after

station 35 (x -0.1.8 m) on an 11% expanding grid which extends from x

-0.0 m (station 1) at the entrance to x -0.67 m (station 48) at the

exit. The farthest upstream station at which the parabolic

calculations could begin was at station 35. This section will

describe these calculations and compare the results of the parabolic

calculations carried out to station 40 and 43 with the elliptic

26
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350.18414 7.25

40 0.30481 12.00

43 0.43183 17.00

48 T0.67249 26.48

Fig. 5. Dump Combustor Axial Grid Spacing Used for the

Elliptic Method (A) and the Hybrid Method (B)
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calculations and experimental data. The parabolic calculations use a

constant x grid mesh spacing of 0.001 m.

5.3 Results

The solution of the equations presented in Section 4 allows the

calculation of the axial and radial velocities, the local static

pressure, the turbulence kinetic energy, and turbulence dissipation

rate at each point in the flow field. In the comparison presented

here, however, only the axial velocity, and turbulent intensity are

shown since these are the only quantities for which experimental data
I

was available. The experimental data was obtained from Craig et al.

(12) and Stevenson et al. (13). The axial locations at which these

data were taken correspond to station 40 and 43 in the present

calculations (see Figure 5). The calculations at station 40 are shown

in Figures 6 and 7. The axial velocity and turbulent intensity are

nondimensionalized by the velocity just before expansion (U0) and

plotted as the abscissa in Figures 6 and 7 respectively. The ordinate

of both figures represents the radius nondimensionalized by the radius

of the pipe before expansion (R2).

The results in Figure 6 indicate as expected an increase in

velocity as the centerline is approached. Clearly the presence of the

recirculating zone is strongly felt at this station and as expected Is

far from a fully developed turbulent profile. It is interesting that

the parabolic calculations are in much better agreement with the

experimental data than the elliptic calculations. The result is quite

encouraging. There is, however, a disappointing nature to this

j
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discovery. It was initially planned to use station 40 to begin a

second set of parabolized calculations. The poor agreement between

the elliptic results and the experimental results at station 40

clearly point out the futility of such calculations. Therefore

parabolic calculations beginning at station 35 will be the only

calculations showdn in this thesis* The excellent performance of the

parabolic calculations at station 40 compared with the elliptic

calculations requires an explanation* Since the elliptic code used

the full Navier-Stokes equations and the parabolic code used an

abridged form of the lavier-Stokes equations, how is it that the

parabolic code out performs the elliptic code? This poor prediction

of the flow field from the elliptic code is blamed on the highly

expanded elliptic grid. In Figure 5A 72.9% of the nodes occur in the

(first 28.3% of the combustor* This high resolution allows an accurate

description of the flog field to be obtained at station 35. Between

station 35 and 48, however, the remaining 71.7% of the combustor has

4only 27e.1% of the nodes. This highly expanding x grid is blamed f or

the severe loss of accuracy by the elliptic code in predicting the

flow field around station 40. In contrast, the success of the

parabolic calculations is attributed to the very high axial grid

resolution of the calculations*

Ia Figure 7 the results of the turbulent intensity calculations

are shown. Here even though the agreement of the parabolic

calculations of experimental data is not as good as the case of the3

axial velocity they still agree much better with the experiments than

do the elliptic calculations. The poor agreement of the elliptic
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calculations with the experimental turbuleant intensity again points

out the futility of choosing station 40 to begin the parabolic

calculations*

Figures 8 and 9 are similar to Figures 6 and 7, however, the

calculations and experimental data are compared at station 43 rather

than at station 40. The axial velocity and turbulent intensity are-

shown on the same axes and with the same nondimensional parameters as

in Figures 6 and 7. By the time this station is reached the

distortions of the flow produced by the recirculating zone are largely

dif fused and dissipated. The resulting flow calculations closely

resemble turbulent pipe flow. Although from Figure 8 it is difficult

to judge whether the better performer is the elliptic or the hybrid

calculation, in Figure 9 it is quite clear that the hybrid results are

superior in terms of predicting the turbulent intensity. The results

which we have just seen are certainly gratifying from the standpoint

of accuracy.

Given the inability of the elliptic calculation at station 40 and

43 to adequately predict the flow field one may be justifiably *
suspicious of the accuracy of the elliptic calculations at station 35

where the parabolic calculations began. An examination of Figure 10

should alleviate this concern. Figure 10, unlike Figure 9, shows only

the turbulent intensity on the centerline. As previously indicated at

stations 40 and 43 the agreement is poor, however, at station 35 where

the parabolic calculations begin the agreement of the experimental

data with the elliptic calculations is excellent.
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Although no experimental data is available it is nevertheless

interesting to look at the calculations of radial velocity* The

results are shown in Figure 11 where the radial velocity profile is

plotted as a function of radius at station 35 and station 43. In

addition, calculations at every twentieth station are plotted between

station 35 and 43. The results are reasonable. As station 43 is

approached the radial velocity continually decreases* This is to be

expected since the region of fully-developed pipe flow is being

approached. Another method for calculating the radial velocity can be

found in the Appendix. It uses the radial momentum (Navier-Stokes)

*equation. This method is discussed in Appendix C with some

stabilizing numerical procedure developed in Appendix D3*

5.4 Computational Savings

The original motivation for the hybrid method was to save

computational time and machine storage but still maintain an

0acceptable degree of accuracy. The amount of computational time saved

will be considered first.

Let us consider the requirements for the hybrid calculations

*first. The elliptic code which must be run to provide initial

conditions to the parabolic calculations rwas run on the grid shown in

Figure 5A* This required 3.88 minutes. The parabolic calculations

*required 0.17 minutes. The total time for the hybrid method was

accordingly 4.05 minutes.

Let us now turn to the time required to msake a similiar elliptic

*calculation. In order to present a fair comparison it is necessary to
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run our elliptic calculations on the grid shown in Figure 5B. This in

fact was never done* Therefore an estimate for the required

computational time was made, The required computational time will be

calculated by multiplying the time required to solve the flow field

elliptically using the grid shown in Figure 5A (3.88 minutes) by the

ratio of the number of axial stations used in the hybrid method to the

*number of axial stations used in Figure 5A (523/48)o The resulting

estimate for the elliptic calculations on the same grid as that used

by the hybrid method is 42.3 minutes. This estimate of computer time

is admittedly conservative because it is a well known characteristic

* of iterative schemes that the computational time does not increas at a

linear rate with mesh points but rather increases with the number of

mesh points squared and in some cases cubed. As can be clearly seen

by comparing the estimated 42.3 minutes required by the elliptic

method to the 4.05 minutes required by the hybrid method there is at

least an order of magnitude savings in computational time by using the

0] hybrid method.

Let us now consider the machine storage saved by using the hybrid

method instead of the elliptic method, This is accomplished by first

*calculating the machine storage of the hybrid method. The required

storage is that of the elliptic code (needed as initial conditions for

the parabolic calculations) and the parabolic calculations

* themselves. The machine storage used by the elliptic code is obtained

from multiplying the 5 dependent variables (u, v, p, k, and e) by the

radial locations (24) and the 48 axial planes. The elliptic codeI

* therefore requires 5752 storage locations. The machine storage needed
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for the parabolic code is determined by multiplying the 4 dependent

variables (u, v, k, and c) by the radial locations (24) and thie (only)

2 axial stations (an upstream and a downstream station). This results

in 192 storage locations* Therefore, a total of 5952 machine storage

locations are needed for the hybrid method*

To compare with the machine storage calculated for the hybrid

method the same grid system will be used to obtain the machine storage

needed to calculate the flow field with the totally elliptic method.

An estimate of the number of storage locations is obtained by

multiplying the 5 dependent variables (u, v, p, k, and e) by the 24

radial locations and the 523 axial stations used in the hybrid mesh

shown in Figure 5B. This multiplication shows a need for 62,760

machine storage locations using the totally elliptic method. A

comparison of the 5952 machine storage locations needed for the hybrid

calculations shows over an order of magnitude savings in the machine

storage of the hybrid method.
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6.CONCLUSIONS AND RECOMMENDATIONS

The accuracy at which the parabolic code predicted the flow field

is very satisfying. Unfortunately, a detailed study of the optimum

location of the interfacing point could not be carried out; however, a

satisfactory calculation was made. Savings in computational time and

machine storage of more than one order of magnitude was achieved with

4no preceivable decrease in the accuracy of the calculations compared

with elliptic calculations made with the same axial resolution.

By way of a recommendation I feel that the comparisons just

reported should be repeated with adjustments made to the elliptic code

to reduce the mesh spacing downstream of the reattachment point. This

would allow the optimal starting location of the parabolic code to be

found. The parabolic code should also be extended to handle

compressible and reacting flows.

4 40
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APPENDIX A

The Wall Function Definition 0

In the near wall region the local Reynolds number Y+ increases

rapidly. In order to accurately model the wall shear stress in this

region it is necessary therefore to define a wall function. The

development of the wall function is guided by the one-dimensional

Couette flow analysis in the region close to the wall where the shear 0

stress can be assumed to be a constant. The Navier-Stokes (axial

momentum) equation can be reduced by these assumptions to the

following very simple nondimensional form (9). 0

+
- l + dU+ (A,

w X dy

where

+ U (A2)
U (A2 -

P

and

Y YU ;U _ (A3)
r T  u

+
The general wall functions based on Yare broken into three regions:

a) Viscous sublayer (0 < Y+ < 5) where -- >Mt

43
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b) Buffer zone (5 < Y+ < 30) where laminar viscosity and

turbulent viscosity are of the same magnitude such that

neither dominates the flow.

c) Outer sublayer (30 < y+ < 400) where << 1.

The approach taken by STARPIC and adopted by the parabolic scheme is

to eliminate the buffar zone by assuming the flow is purely viscous

+ +from the wall to Y < - 11.63. For Y > 11.63, the flow is assumed to

be fully turbulent (2). Y+ undergoes a step change between two wall

functions (9). Equation Al may be integrated in these two regions to

obtain a calculation of U+ as a function of Y+.

if Y 11.63

U+ - (A4) S

{ loge (EY+), if Y+ > 11.63

The integration constant, E - 9.793, depends on shear stress in the

viscous sublayer and pipe roughness. The von Karman constant ic

0.4187.

In the inertial region (0 < Y+ < 400) mean velocity is considered

to be independent of 7 so the time averaged convection and diffusion

terms in the energy transport equations average to zero. The

turbulence equations reduce to Production - Dissipation (14). This

assumption in the inertial region formulates the basis for the near

wall shear stress (r ) calculations as a function of turbulent kinetic

energy. An isotropic viscosity assumption (2) further reduces the k

equation to

S
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where Tw T and the e equation to

a (C 2 _ CI)C/ 2  
(A6)

e 1/2

c 2 c I )



APPENDIX B 

Correction for Axial Velocity and Pressure -.j

J

A pressure correction equation is needed to correct the axial

velocity and update the pressure gradient. Equation 2, rewritten

below for convenience, is used to calculate the axial velocity with . 4

the correct pressure gradient*

u+ u u

u u + + ' 
(

Aju Apu ApU Ai,,u

However, the pressure gradient is unknown so a guessed pressure

gradient will be used to obtain an estimate to the axial velocity as

indicated by the * in the following equation.

u u u *
UU A Bu Du a*

u uP -u M u u

In general the axial velocity profile obtained from this guessed

pressure field will not satisfy the following conservation of mass

equation.

J
m 27 Z Piuiri Ari (33)

i-I

The difference between Equation B1 and Equation B2 would represent the

error associated with calculating the axial velocity from the guessed

pressure as shown by

46
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P IN u , u
AU, U DU

AU U- ~(4
Up", ) + L"s - Us T '

where ,

-7r7* - '

For the above equation to function as a velocity correction equation

it mist be explicit, therefore, the second and third terms on the

right are eliminated.

up - up + u  (w) (B6)

Aj SU

The explicit axial velocity correction equation shown above is

substituted into Equation B3 to calculate the following pressure

gradient correction. S

P u r Ar P u r Ar

axi *1~' (B7)
PDu r~ Ar

i Du

i-. u£ r  r I .2

This equation gives the required (&J necessary to update the

guessed pressure gradient ( ) rom Equation B5 and to correct the

axial velocity from Equation B6.

. ,. . .'.



APPENDIX C

Radial Momentum Equation for v

An alternative to the conservation of mass equation for the

calculation of the radial veocity (v) is the following radial momentum

(Navier-Stokes) equation:

. [..(ruv) + 3(rpvv) P +( C)

The radial momentum equation may be written in finite difference form

and integrated over a control volume to produce the following

discretization form:

+v N vv v 

As in the calculation of v from the conservation of mass the radial

velocity calculations follow the axial velocity and pressure gradient

calculations. Since the radial pressure field is unknown a guessed

radial pressure field is substituted into Equation C2 to obtain an

estimate for v as shown below.

P v N v S v v S

A. U, .U , AU SU

The * indicates the calculated radial velocity is based on a guessed

radial pressure field (P*). The radial velocity based on the P* will

not satisfy in general the conservation of mass equation by producing

48
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a net gain or loss in mass. A procedure to annihilate this net mass

is to create a pressure correction from

, I
P P + P (C4)

where P is the pressure correction, P is the guessed pressure, and P

is the actual pressure. The radial velocity correction equation will

be derived by subtracting the actual radial velocity equation

(Equation C2) based on the actual radial pressure field from the

radial velocity equation (Equation C3) based on the guessed radial

pressure field. The following radial velocity correction

* V VAU 4,UV2=v, -U- (P; - % ) + -,- (v, vN) + , Cvs  vs) (C5)

is reduced to

. Dr 1 ,
v V+ -DvK(P P3 ) (C6)vp P vp+

by dropping the last two terms. The last two terms must be dropped in

order to reduce Equation C5 from enplicit to explicit Equation C6.

The above corrected radial velocity equation is substituted into the

finite differenced conservation of mass equation (Equation 12) to
tI

develop the following P correction equation

P P

P P N S 3 u (C7)A ~ A ,U
?4

• ,: ' •i • , . ! ::: ::i:: :-: :!ii , , . •• .. ..:i .: , . : : . • : • : : , , - : - ::
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This equation is solved by a TDM procedure to calculate the P',s.

With the P',s known, the radial pressure may be updated from Equation

C4 and the radial velocity may be corrected from Equation C6.

The dump combustor calculations described in Section 5 were

recalculated with the radial velocity obtained from the radial

momentum equation instead of the conservation of mass equatione The

radial velocity calculation were essentially the same as that p

calculated from the conservation of mass.

I
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APPENDIX D

Some Stabilizing Numerical Procedures

The calculations of axial velocity and radial velocity required

some stabilizing numerical procedures suggested by Mrs. Joan Moore.

I. Axial Momentum

The calculation of axial velocity obtained from the solution tech-

nique section was found to oscillate about the correct axial velocity

from one axial step to the next. The axial velocity oscillation was

eliminated by dividing the pressure correction term in Equation 25 by 2

as shown below:

Uup - )P u (DI)
,g 2

2. Continuity

1) When the expressions

0~(P' V)n,D + (pv)n,u
(P")n ( 2 (D2)

and (PV)s,D + (pv)s,U
(pv) " 2 (D3)

02
S7

are substituted into the following finite differenced conser-

vation of mass equation.

51
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a rv) - rspv) . [ ulp, - (pu), - - 0 (D4)
Ar Axr

and solved for VD, a numerical instability results. This

problem is eliminated by assuming (pv) and (p)5 are located

at downstream stations.

2. The radial velocity was obtained from a highly nonuniform I

radial grid by solving the conservation of mass equation for

radial velocity from the wall to the centerline. At the

centerline the numerical round off error was significant. The

solution was to solve the conservation of mass equation for

radial velocity by calculating inward from the wall and outward

from the centerline to the largest control volume. The largest

control volume absorbed the numerical error.

3. The radial velocity was found to oscillate about the correct

radial velocity profile form one axial step to the next. This

radial velocity oscillation was eliminated by:

U DVD " - (D5)j
2

3. Radial Momentum

1. A pressure correction equation needed to correct the radial

velocity is obtained for each control volume. However, since a

global pressure correction has already been obtained to correct
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the axial velocity and update the axial pressure a full set of p

pressure correction equations would be indeterminate. This is

due to the presence of one too many pressure correction

equations. To eliminate this problem the pressure correction

associated with the largest control volume is set equal to

zero*

2e The radial velocity was found to oscillate about the correct

radial velocity at each axial step. The correction is the same

as that developed earlier in Equation D5.

1 32
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