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PREFACE e
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CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT }:}

f:]

Non-SI units of measurement used in this report can be converted to SI (metric) .

b
R}
@

units as follows:

Multiply By To Obtain s
degrees (angle) 0.01745 radians 17;{
feet 0.3048 metres ;.;h
grains per foot 0.212594849 grains per metre )
inches 2.54 centimetres
inches per second 0.0254 metres per second
kilotons 4,184 megajoules °
pounds (force) 4.448222 newtons
pounds (force) per inch 0.1751268 kilonewtons per metre
pounds (force) per square inch 6.894757 kilopascals
pounds (mass) per cubic foot 16.01846 metre °
tons (force) per square foot 95.76052 kilopascals
pounds (force) per square inch- 6.894 kilopascal-seconds

second

square inches 6.4516 square centimetres
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RESPONSE OF EARTH-COVERED SLABS IN CLAY
AND SAND BACKFILLS

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Test results from the Shallow-Buried Structures (SBS) Research Program at
the U. S. Army Engineer Waterways Experiment Station (WES) (References 1-7)
indicate that a relatively shallow earth cover over a flat-roofed structure
can significantly decrease structural response in a high-overpressure environ-
ment. Data indicate that a pressure redistribution produced by a system of
shear stresses in the soil is responsible for most of the increased structural
hardness. This phenomenon is generally referred to as ''soil arching" and can
occur in both static and dynamic load cases. Soil arching is defined as the
transfer of loads from one location to another, through a system of shear
stresses, in response to relative displacements within the soil. Soil arching
has been studied in some detail, at least in the static case, and experimental
data are reported in References 1-12. However, except for the SBS research,
most of the static experiments were conducted on relatively small models, and
prior to the SBS research there were almost no data on dynamic soil arching.
The mitigating effects of soil arching are generally ignored in the design of
shallow-buried protective structures, and this approach can result in costly,
overly conservative designs. It would be equally misleading to ignore soil-

arching effects in a targeting calculation.

1.2 OBJECTIVE

The objective of this study was to evaluate the effects of soil cover

on the static and dynamic capacity of earth-covered reinforced concrete

slabs.

1.3 SCOPE

Five tests were conducted in this study, three static and two dynamic.
Every effort was made to vary only one parameter, backfill type, between

tests. All test slabs were made from the same concrete pour. They were
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2 feetl square with l-percent total principal reinforcement. The reaction
structure was designed to eliminate in-plane thrust loads from lateral earth
pressures which vary with backfill type. Two backfill types were used, a 3
low-shear-strength clay and a high-shear-strength sand. Static tests were o .“3
conducted on one slab flush with the surface to serve as a baseline, and on ]
two slabs buried 1 foot deep. One was buried in clay and the other was J
buried in sand. The two dynamic tests repeated the clay and sand backfill R
conditions. Weapons simulated in the dynamic tests were approximately 0.027 ®
and 0.010 KT which, assuming a prototype span of 16 feet, scale up to approx-
imately 14 and 5 KT, respectively. Peak pressures in the dynamic tests were ﬁ
about 3,500 and 860 psi, respectively. o

2 g

“'Vv'rro—_v.v'r"r ‘.?

‘ 1A table of factors for converting from non-SI to SI (metric) units of °
measure can be found on page 5.
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CHAPTER 2

STRUCTURAL DETAILS AND MATERIAL PROPERTIES

The structures tested were reinforced concrete slabs with span-to-
effective-depth ratios of 10. The slabs were 24 inches long, 24 inches wide,
and 2.9 inches thick overall, including 0.5 inch of concrete cover on the
tension steel. Principal reinforcing steel was 0.5 percent for both tension
and compression and shear reinforcement was 0.25 percent. Structural details
and dimensions are shown in Figure 2.1, and details of the shear reinforcement

are shown in Figure 2.2.

2.1 CONCRETE

Type 1 Marquette cement was used in the concrete mixture which was de-
signed to produce a 28-day strength of 6,000 psi for cylinders cured simi-
larly to the structure. Three cylinders were tested to determine the 28-day
strength. The strength varied from 6,050 to 6,450 psi with the average
strength equal to 6,260 psi. Results of concrete cylinder tests, performed

on the day of each slab test, are shown in Table 2.1.

2.2 REINFORCEMENT

All reinforcement steel was small-diameter wire. The wire was first
cleaned with acid and then allowed to -ust to obtain a surface roughness. The
principal flexural steel was 0.177-inch-diameter deformed wire with an average
vield strength of 90,200 psi. The temperature and shear steel were 0.125- and
0.08-inch~-diameter wire, respectively, with average yield strengths of 97,500
and 84,300 psi, respectively. Results of static tensile tests for the rein-

forcing steel are given in Table 2.2.

2.3 REID-BEDFORD SAND

In all tests conducted in a sand backfill, a locally available sand called
Reid-Bedford model sand, which has been used for several test programs at WES,
was used. Reid-Bedford model sand is a uniform fine sand classified as SP in
the Unified Soil Classification System and has a coefficient of uniformity
<, of 1.5. 1Its specific gravity, GS , 1s 2.66, and its maximum and minimum
laboratory dry unit weights are 104.2 and 87.2 1b/ft3, respectively. Consol-

idated drained direct shear tests on this sand at initial dry unit weights

Ag
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from 94 to 105.0 lb/ft3 revealed that the friction angle increases from 30.0 -
to 36.0 degrees with increasing dry unit weight. The initial dry density for fﬁffat

R
these tests was about 192 1b/ft3. For a thorough description of Reid-Bedford R
®

model sand, see Reference 10. IR

2.4 CLAY BACKFILL

Tests using a clay backfill were conducted in z locally available clay

called Vicksburg buckshot clay. An analysis of the mineral content of the
minus-74-micron (No. 200) fraction of this clay (Reference 8) yielded the

following approximate breakdown:

Montmorillonite 25% ;

Illite 25%
Quartz 20%
Feldspar 20%
Fe203 2% f
Organic matter 1%

The specific gravity of the grains is about 2.70. Reference 8 also gives

the following properties for clay consolidated to pressures of 8.2 tsf:

10

Coefficient of permeability = 3.94 X 10" in/s L
Coefficient of consolidation = 3.1 X 10-6 inz/s T
Compression index = 0.52 £ 0.04 e
The clay, classified as CH in the Unified Soil Classification System, is .;’_;
highly plastic with a liquid limit of 64.5 percent and a plasticity index ’f)
of 36.0 percent. It is described in some detail in References 8 and 9. -
o _
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Table 2.1. Concrete compressive strength and modulus of elasticity,
day of test.

w NN = =

4 and 5
4 and 5

Catl mt gne o

Test No.

Sample No.

N o= N = N = N

Compressive

Strength fé

_psi_
6,590
6,890
6,590
6,950
7,130
6,710
7,020
6,840

Modulus of
Elasticity E

10" psi
4.29

4.50
.39
.50
.73
.28
.62
.50
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Table 2.2. Static tensile test, steel wire reinforcement.

Ultimate Ultimate Yield Yield Diam- Area Elongation for

Sample Load Stress Load Strength eter 8-in gage length
No.2 1b psi 1b psi in in2 %
1 2,400 97,561 2,200 89,431 0.177 0.0246 5.0
2 2,440 99,187 2,225 90,447 0.177 0.0246 4.2
3 2,440 99,187 2,210 89,837 0.177 0.0246 4.6
4 2,490 101,220 2,260 91,870 0.177 0.0246 5.4
5 2,420 98,374 2,200 89,431 0.177 0.0246 4.5
6 1,480 118,400 1,250 100,000 0.126 0.0125 3.6
7 1,490 119,200 1,220 97,600 0.126 0.0125 3.5
8 1,470 117,600 1,180 94,400 0.126 0.0125 5.0
9 1,480 118,400 1,220 97,600 0.126 0.0125 3.9
10 1,500 120,000 1,225 98,000 0.126 0.0125 3.4
11 528 105,600 435 87,000 0.080 0.0050 3.1
12 515 103,000 413 82,600 0.080 0.0050 3.4
13 512 102,400 420 84,000 0.080 0.0050 3.4
14 503 100,600 415 83,000 0.080 0.0050 2.2
15 517 103,400 425 85,000 0.080 0.0050 2.4

aSamples 1-5 =
6-10 =
11-15 =

main steel

temperature steel

shear steel
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CHAPTER 3

EXPERIMENTAL PROCEDURE

3.1 TEST FACILITY FOR STATIC TESTS

The surface-flush test was conducted in the Small Blast Load Generator
(SBLG) at WES (Reference 13). The two remaining static tests (Tests 2 and 3)
were run in the 6,000-psi test chamber with the reaction structure buried
under 1 foot of sand for Test 2 and 1 foot of clay for Test 3.

The 6,000-psi test chamber uses the central firing station (CFS), a
massive posttensioned concrete structure, as a reaction structure.
chamber itself is a cylinder 46-3/4 inches in diameter and 40 inches high.
It has a piston~type lid that seals the top and rests on a steel plate with
an O-ring to seal the bottom. A detailed drawing of this chamber is shown in
Figure 3.1. When the test chamber is inside the CFS, it is sandwiched between
the upper bearing block and the spacer blocks. The entire assembly of bearing
block, test chamber, and spacer blocks rests on a platen which can be rolled
in and out of the CFS with the assembly on it.

The SBLG can produce static pressures up to 2,000 psi. The generator has
a cylindrical steel shell and an elliptical dome top. The shell is composed
of a series of stacked rings of various widths, all 46-3/4 inches in inside
diameter, that can be bolted together according to the depth of the sample
being tested. An air-driven pump loads the test sample by means of water
pressure, the water being separated from the soil-structure system by a
flexible rubber diaphragm. A more complete description of these test facil-
ities, their performance, and their calibration is given in Reference 13.

The reaction structure for the concrete slab elements was a steel box
with a concrete inner lining. Six studs which were located on each end of the
box were used, together with two steel plates, to clamp the elements in place.
The reaction structure, used for both the static and dynamic tests, was de-
signed to ensure one-way action of the test slabs. A photograph of the reac-

tion structure is shown in Figure 3.2.

3.2 TEST PLAN FOR STATIC TESTS

In each test, sand was placed around the reaction structure until flush

with the slab surface. Test 1 was a surface-flush test with a flexible rubber

14
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diaphragm separating the slab, reaction structure, and sand from the pressur- ]
ized water. For Test 2, 1 foot of sand was placed over the slab. A 1-foot i
layer of buckshot clay covered the slab for Test 3. The sand in Test 2 was _ 1
vibrated to ensure uniform density. The clay in Test 3 was pounded with a - @ .
mechanical "whacker." Material properties for the sand and buckshot clay are
given in Chapter 2.
4
3.3 INSTRUMENTATION . @
PLAN FOR STATIC TESTS ?
ay
Detailed instrumentation plans are shown in Figures 3.3 through 3.5 for .4

a'l three static tests. A Norwood pressure gage was mounted in the pressure
chamber to measure static water pressure exerted on the soil-structure system.
A Transtek Model 245-000 deflection gage, with a maximum range of 4 inches,
was placed under the slab inside the reaction structure in all three static
tests to measure the midspan slab deflection. Instrumentation for Static
Test i is shown in Figure 3.3. For Static Tests 2 and 3, three Kulite VM 750
interface (IF) gages with a maximum range c¢f 2,000 psi were mounted in the
test slabs to measure surface stress, and soil stress (SE) gages were buried
in the soil 2 inches above the slabs. The SE gages, developed at WES, are
double-diaphragm gages with semiconductor sensing elements and a maximum range
of 2,000 psi. Instrumentation plans for Static Tests 2 and 3 are shown in

Figures 3.4 and 3.5.

3.4 TEST FACILITY FOR DYNAMIC TESTS

Both dynamic tests were conducted at the Big Black Test Site southeast of
Vicksburg on the Big Black River. This facility is used by WES for various

types of explosive testing.

3.5 TEST PLAN FOR DYNAMIC TESTS

Two nuclear weapon simulation tests using high explosives (HE) were con-

v

ducted using pentaerythrite tetranitrate (PETN), commonly known as primacord,

_. made into 400-gr/ft strands of detonating cord. Both tests employed a Foam -

f HEST (High-Explosive Simulation Technique) to generate the dynamic overpres- oy
sure. Figure 3.6 shows the layout of the reaction structure, charge cavity,
and soil overburden for both dynamic tests. The Foam HEST used in this study

¢ can simulate the overpressure component of the airblast generated by a nuclear

{ 15
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detonation. This technique makes it possible to produce a uniform dynamic
pressure over a large area for a sufficient duration to simulate the impulse
associated with a nuclear weapon. Discussions of the foam HEST are given in
References 14, 15, and 16.

In the first dynamic test (Test 4), the structure was buried in sand to
a depth of 1 foot. The sand was compacted first using a hand compactor and
later vibrated to ensure uniform backfill density. The 6- by 6-foot by
4.5-inch charge cavity (Figure 3.7) was then centered over the reaction struc-
ture. A charge density of 1.37 1b/ft3 was used in the cavity. Finally, a
32-inch uncompacted native soil overburden, with an approximate density of
110 1b/ft3, was placed over the charge cavity.

The size of the test bed, depth of burial, depth of soil overburden, and
charge cavity for the second dynamic test (Test 5) were the same as for Test 4.
However, the reaction structure was buried in a clay backfill and the charge

density was reduced to 0.43 lb/ft3.

3.6 INSTRUMENTATION
PLAN FOR DYNAMIC TESTS

Detailed instrumentation plans are shown in Figure 3.8 for both dynamic
tests. The Transtek Model 245-000 deflection gage used to measure midspan
slab deflection in the static tests was also used for these two tests. Air-
blast pressure gages with four 1/4-inch-diameter baffle holes were employed
to measure the airblast pressure inside the charge cavity. Three of the same
Kulite VM 750 interface gages used in the static tests were used in the
dynamic series. Both dynamic tests employed two SE gages placed 2 inches
above the slab surface. The airblast gages were positioned at grade level

inside the charge cavity.
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Figure 3.2. Reaction structure.
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CHAPTER 4

TEST RESULTS

4.1 DATA

Three static tests and two dynamic, Foam HEST, tests were conducted. The
static tests conducted were surface flush, and buried 1 foot deep in either a
high-shear-strength sand backfill, or a low-shear-strength clay backfill.

The two dynamic tests repeated the sand and clay backfill conditions. Tests
similar to these were conducted in the SBS Research Program at WES and are
reported in References 1-7.

All data were recorded on magnetic tape and later reduced to a digital
format. A "sample and hold" technique was used to digitize the static test
data. The water pressure, as recorded from gage P1, was chosen as the refer-
ence channel and all static test data are displayed with P1 as the ordinate.

The dynamic test data were digitized at a rate of 100,000 Hz.

4.2 STATIC TEST DATA

4.2.1 Surface-Flush
Static Test (Test 1)

This test was conducted with no soil cover on the slab in order to ex-
perimentally determine its ultimate capacity without the complicating effects
of soil-structure interaction.

The test was interrupted at approximately 163 psi and the slab was un-
loaded. The applied pressure (water pressure) as a function of centerline
deflection is shown in Figure 4.1. The poor data record in Figure 4.1 re-
sulted because the measured deflections were very small relative to the cali-
bration value of 3.80 inches. The measured deflection of the center of the
slab at 163 psi was approximately 0.11 inch. Inspection of the slab following
this initial loading revealed tension cracks near each supporting edge and the
beginning of a compression failure along the top center of the slab. A photo-
graph of the slab in the test chamber following the initial loading is shown
in Figure 4.2.

This same test slab was then loaded to its maximum capacity of 174 psi
as shown in Figure 4.3. The deflection at ultimate capacity is found from

Figures 4.1 and 4.3 to be approximately 0.21 inch; i.e., 0.11 inch from
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Figure 4.1 plus 0.10 inch from Figure 4.3. The second loading was discon-
tinued at approximately 110 psi and the slab was unloaded.
In a third loading, shown in Figure 4.4, the slab was loaded to collapse.

Note that the permanent deflection from the first two loadings, approximately

0.25 inch, should be added to the deflections measured in the third loading
(Figure 4.4) to determine the total displacements.

The slab failed in a classic three-hinge mechanism as shown in Figure 4.5.
Centerline deflection was approximately 4.5 inches where it came to rest on
supports inside the reaction structure (see Figure 4.14 for similar failure
in Test 2). The bottom reinforcing steel was broken along the entire width

of the center of the slab.

4.2.2 Static Test in Sand (Test 2)

Test 2 was a static test of the slab buried 1 foot deep in the nonco-
hesive sand backfill described in Section 2.3. The centerline deflection of
the slab as a function of the water pressure over the soil surface is shown
in Figure 4.6. The ultimate capacity of the soil-structure system was
approximately 835 psi, an almost fivefold increase over the ultimate capac-
ity of the surface-flush slab. This dramatic increase in capacity is due to
the soil-structure interaction phenomenon known as soil arching. Soil arch-
ing, again, is the ability of a soil to transfer loads by means of a system
of shear stresses from one location to another in response to a relative dis-
placement between the locations. Data reported in Reference 1 from a similar
test on a reinforced concrete box structure also showed an approximately
fivefold increase in capacity due to soil arching.

Data from the interface pressure gages IF1, IF2, and IF3 are shown in
Figures 4.7, 4.8, and 4.9. IF1 (Figure 4.7) was located at the center of the
slab, IF2 (Figure 4.8) at the quarter point of the slab, and IF3 (Figure 4.9)

approximately 11 inches from the center of the slab as shown in Figure 3.4.
Comparing these interface pressure data records clearly shows the effect of
soil arching on the pressure transmitted to the slab. The maximum pressure
occurring at the center of the slab (Figure 4.7) was approximately 93 psi
and decreased to almost zero before the slab collapsed at an applied surface
pressure (water pressure) of 835 psi. The maximum pressure occurring at the
quarter point (Figure 4.8) was approximately 550 psi, and near the edge of

| the slab (Figure 4.9) the maximum pressure was 972 psi. Thus, the effect of
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soil arching was to transfer the load away from the relatively flexible center ': f:i
of the slab toward the relatively stiff supports. 53

Soil stress gages were placed just over the slab in positions similar to ) ..f
the interface gages (Figure 3.4). Data records from these gages (SEl, SE2, :
and SE3) are shown in Figures 4.10, 4.11, and 4.12, respectively. These data i
show load distribution on the roof similar to that shown by the interface ]
pressure data. The relatively low stress recorded on SE3 (Figure 4.12) is ‘ j
unexplained; however, stress recorded by SE1 (Figure 4.10) over the center, SN
SE2 (Figure 4.11) over the quarter point, and SE4 (Figure 4.13) over the 'hj_';
support indicates that soil arching did occur. Data from SE4 (Figure 4.13) i
indicate a maximum pressure over the support of approximately 1,600 psi, al- °
most twice the applied surface pressure. Load was being transferred, through )
soil arching, from the area over the slab and from the free field near the
relatively stiff reaction structure.

A posttest photograph of the slab is shown in Figure 4.14. The three- ° ;
hinge failure mechanism was very similar to the failure mechanism in Test 1. )
Again, the slab came to rest on supports inside the reaction structure at a ]
deflection of about 4.5 inches. .

Note the compression failure along the bottom of the slab near each
support in Figure 4.14. This was typical of all of the tests and occurred ._:
because the rigidly clamped supports created large compressive membrane :;,;;j
stresses as the slab began to deflect. These compressive membrane stresses ;i?i
acted to significantly increase the ultimate capacity of the slab and to .
cause the relatively rapid decrease in strength after the maximum capacity ' .‘f
had been attained. :
4.2.3 Static Test in Clay (Test 3) ]

Test 3 was a static test of the slab buried under 1 foot of the cohesive, . .‘T
low-shear-strength clay backfill described in Section 2.4. A clay backfill i
was chosen for this test to investigate soil-structure interaction in two 7“.;
extremes of soil materials, i.e., high-shear-strength sand in Test 2 and a Y
low-shear-strength clay in Test 3. As shown in Figure 4.15, the ultimate *
capacity of the soil-structure system was approximately 174 psi, the same as
it was in the surface-flush case, Test 1. This indicates that much less soil
arching occurred in the clay than in the sand, and the interface pressure o
data records in Figures 4.16, 4.17, and 4.18 confirm this. 1In Reference 5, a )
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similar test on a box-type structure in a clay backfill indicated that very
little soil arching had occurred. Maximum pressures on the slab occurred at
maximum surface pressure (water pressure) and were approximately 156 psi at
the center, 174 psi at the quarter point, and 181 psi near the support, as
shown in Figures 4.16, 4.17, and 4.18, respectively. The soil stress directly
over the slab support is shown in Figure 4.19. These data clearly indicate
that some soil arching did occur.

The slab failed in a three-hinge mechanism as did the slabs in Tests 1
and 2. A posttest photograph of the slab is shown in Figure 4.20. The slab
again came to rest on supports inside the reaction structure at a centerline

deflection of approximately 4.5 inches.

4.3 DYNAMIC TEST DATA

Two dynamic tests were conducted at the Big Black Test Site near Vicks-
burg, Miss. Both tests employed the reaction structure used in the static
tests (Figure 3.2). The simulated nuclear airblast overpressures in these
tests were generated with the Foam HEST described in Section 3.5 (Figure 3.7).
Similar dynamic tests on box-type structures are described in References 2

and 5.

4.3.1 Dynamic Test in Sand (Test 4)

The test element for Test 4 was identical to the slabs tested statically
and was buried under 1 foot of sand as shown schematically in Figure 3.6.
Peak airblast pressure was approximately 3,300 psi. A charge density of
1.37 lb/ft3 was used in the Foam HEST. The airblast data measured in the
charge cavity by blast pressure gage No. 1 (BP1) are shown in Figure 4.21.
Data from BP2 were not recovered.

The nuclear weapon yield and overpressure simulation were determined
by comparing nuclear overpressure-time histories as defined in Reference 17
with 2 and 10 ms (taking time equal to zero at peak pressure) of the air-
blast pressure-time history recorded during the experiment. Best-fit nuclear
overpressure-time histories for the airblast records were determined in a
least-squares sense using the computer code described in Reference 18. The
approximate nuclear weapon yield and overpressure simulated in Test 4 were
0.027-KT and 3,300 psi, respectively. The airblast and impulse data records

with the best-fit nuclear pressure-time and impulse-time histories
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superimposed on the data are shown in Figure 4.22.

Posttest photographs of the slab are shown in Figures 4.23 and 4.24.
Note that in the dynamic failure mechanism three hinges formed as they did
in the three static tests. The damage level in this test was higher than
in the static tests, i.e., more concrete was broken up and crushed, indicat-
ing that the dynamic pressure level may have been higher than the minimum
collapse pressure. However, since catastrophic collapse of the slab at both
supports did not occur, it was not a significant overtest. The center of the
slab came to rest on struts inside the reaction structure at a deflection of
approxiinately 4 inches.

Interface pressure records are shown in Figures 4.25, 4.26, and 4.27.
Note that IFl (Figure 4.25) was broken very early in the test; however,
since a partial data record was recovered, the data are included. The
data records for the three gages are very similar, showing approximately
2,000-psi peak pressure across the "roof" of the structure, if the initial
spike is disregarded. The pressure across the roof fell to zero in approx-
imately 1 ms. Since the natural period of the structure is approximately
4.3 ms, it is unlikely that a flexural failure occurred during the first
millisecond. The closeup photograph in Figure 4.24 indicates that a partial
shear failure may have occurred. An early-time shear failure (occurring
during the first millisecond of loading) could have caused the load to be
arched from the deflecting roof onto the slab supports. The data from the
soil stress gage (SE2) positioned over one support as shown in Figure 4.29
does not show as sudden or as great a drop in pressure as was seen across the
roof on the IF gages. It measured significantly more impulse over the roof
support than the IF gages measured over the roof. Also, the impulse recorded
by the free-field soil stress gage (SE1, Figure 4.28) was much less than the
impulse recorded over the slab support on SE2. This indicates that soil arch-
ing did occur, probably from both the free field around the structure and from
the deflecting slab area onto the relatively stiff slab supports. Data indi-
cating the phenomenon of dynamic soil arching are well documented in Refer-
ences 2, 4, 5, and 6.

The centerline deflection of the slab shown in Figure 4.30 does not show
a sudden early-time shear failure. However, the maximum frequency this gage
can respond to is approximately 100 Hz. The gage is a relatively long slender

probe primarily designed for static testing and cannot respond to deflection
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occurring in the millisecond range; thus, it would not have registered an
early-time partial shear failure. The maximum deflection of approximately
3 inches indicated in Figure 4.30 is most likely where the gage probe bent

and the gage failed.

4.3.2 Dynamic Test in Clay (Test 5)

The test element design, reaction structure, test configuration, and
instrumentation for Test 5 (dynamic test in clay) are shown in Figures 2.1,
3.2, 3.7, and 3.8, respectively. The slab was buried under 1 foot of the same
low-shear-strength clay backfill used in Test 3. Material properties for the
clay backfill are given in Section 2.4. Because very little dynamic soil
arching was expected in the low-shear-strength backfill, the HEST test for
Test 5 was designed to produce a lower pressure than that for Test 4. The peak
airblast pressure recorded in Test 5 was approximately 860 psi. A charge
density of 0.43 lb/ft3 was used in the Foam HEST. Electronic noise occurred
on most data records in Test 5; therefore, in most cases, both unfiltered and
filtered versions of the data are given. Airblast data measured in the charge
cavity are shown in Figures 4.31, 4.32, and 4.33. Data from BP2 were not
recovered and BP3 (Figure 4.32) appears to have recorded more reliable data
throughout the test than BP1. The nuclear weapon yield and overpressure that
best fit (in a least-squares sense) the first 10 ms of data from gage BP3 were
determined using the procedure described in Reference 18. As shown in Fig-
ure 4.33, the weapon yield simulated in Test 5 was approximately 0.010 KT at
a peak overpressure of about 860 psi. Impulse-time histories comparing the
integration of the measured data with the simulated weapon are shown in Fig-
ure 4.34. C(Clearly, the yield and overpressure combination shown in Fig-
ure 4.33 is a good fit to the data. However, it should be noted that many
other yield-overpressure combinations were also well simulated in this experi-
ment. For example, a best fit in the sense of Reference 18 is shown for 2 ms
of data from BP3 in Figure 4.35; i.e., a yield of 0.047 KT at a peak over-
pressure of 447 psi. In general, the best fit will vary with the length of
data record chosen. Also, very good (but not best) fits exist at larger
yields with lower pressures and at smaller yields with higher pressures than
the best-fit weapon. See References 14, 15, and 16 for more information on
using the Foam HEST for nuclear overpressure simulations.

Posttest photographs of the Test 5 slab are shown in Figure 4.36. The
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classic three-hinge failure mechanism is again evident. Maximum deflection
was 0.82 inch and occurred at about 10 ms, as shown in Figure 4.37.

Data from interface pressure gages IF1, IF2, and IF3 are shown in Fig-
ures 4.38, 4.39, and 4.40, respectively. These data, along with soil stress
data (Figure 4.42) from gage SE2, which was over the slab support, indicate
that almost no dynamic soil arching occurred in the low-shear-strength clay
backfill. Soil stress gage SE1 measured the free-field soil stress, as shown
in Figure 4.41. The data record in Figure 4.42 from SE2 was discontinued at

about 6 ms because the gage malfunctioned.
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CHAPTER 5 S
ANALYSIS
Two important parameters affecting the maximum capacity of the elements

used in these tests were soil arching and compressive membrane stresses imposed ' i

by the rigid support conditions of the reaction structure. Support conditions,

and thus compressive membrane stresses, were the same for each test; and the L
rigidity of the reaction structure prevented active lateral earth pressure, i 1
another possible variable, from contributing to the in-plane thrust in the
test slabs. Therefore, the only parameter variation between tests was soil

arching. Similar tests on box elements are reported in References 1-7. T

5.1 MAXIMUM RESISTANCE

The maximum resistance to a uniformly applied load for a one-way fixed

slab, from Reference 19, is

_ 2
Po=7.2(p_ + pe)fy(d/L) (5.1)

where

= uniform load resistance based on flexural capacity

P
p = tensile reinforcing steel ratio at midspan
p_ = tensile reinforcing steel ratio at end

. fy = reinforcement steel yield stress

E. d = depth to center of reinforcing steel

b L = clear span of the slab

From Equation 5.1, the ultimate capacity of the slab element is 65 psi. How-
ever, Equation 5.1 does not account for the compressive membrane action pro-
duced by the rigid support conditions in these tests. This compressive -
membrane stress can dramatically increase ultimate capacity by forcing the -
concrete near the supports to crush. This effect can be important in slabs
with relatively low reinforcement ratios but is negligible for heavily rein-
forced slabs. The effect of this compressive membrane stress on ultimate
capacity is investigated in some detail by Keenan (Reference 20) and by

Parks (References 21-23).

The ultimate capacity, q, of the test slabs, including compressive

membrane effects, from Reference 20 is
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t
where
Zu L 2
< =1 - 1-1/2(;) [S(l + Su) + Su]
Zu = midspan deflection at crushing strain of the concrete (0.206 inch)
t = thickness of slab
L = clear span of :lab
s = ratio of total horizontal edge movement to clear span
€, = crushing strain of concrete
- 1ot
N_u—f"K S_pfs Pfsg
t 1 (t) b t
Nu = self-generated thrust at middepth in the slab when the concrete

crushes (5,992 1b/in.)

fg = 0.85fé = compressive strength of concrete in flexure

K, = ratio of average stress to peak stress, fg , in concrete
¢ = depth to neutral axis when concrete crushes (1.40 inches)
p = ratio of tension reinforcement = As/d

f = stress in tension reinforcement when concrete crushes
d . .
= - - < = =
Es £, <c l> < fy 85,934 psi (fy 90,000 psi)

p' = ratio of compression reinforcement = A;/d

f' = stress in the compression reinforcement when concrete crushes

= E £<l-g—>\f = 77,097 psi
U u -y

A = area of tension reinforcement

{ d = distance from compression edge of slab to centroid of tension
b reinforcement

[ ] A' = area of compression reinforcement

~ oo n(3) -
. 5
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~Cd

ES = modulus of elasticity of reinforcing steel

d' = distance from compression edge of slab to centroid of compression TS
reinforcement :

Mu dy\ /d 1) c 1 C d 1 d'

g = haed b Y 1" * L >~ tet = 2 . 2

2 pfs(t)(t 2, chl<t)(2 K2t>+pfs(t)<2 t)

Mu = moment resistance of hinge sections under a thrust Nu = (7119 in-
1b/in)

K2 = coefficient-defining fraction of the depth measured from the extreme

fiber to the resultant force in the concrete

The ultimate capacity of 180 psi predicted for the slab by Equation 5.2

agrees very well with the capacities as determined experimentally in Tests 1

and 3 (static surface flush and clay backfill tests). Under conditions where
little or no soil arching could occur, the compressive membrane forces acted
to almost triple the capacity of the slab in its unrestrained condition

represented by Equation 5.1.

5.2 SOIL ARCHING

Soil arching may act in a large sense and cause a stress change through-
out a volume of soil because the structure located therein exhibits a differ-
ent compressibility than does the surrounding soil; or it may act in a local
sense, as around a tunnel, and cause a redistribution of stress as various
elements of the tunnel attempt to move into or away from the surrounding soil.

Embedded structures that are much stiffer than their surrounding medium will

tend to attract load. On the other hand, stress will be diverted away from
or around embedded structures that are less stiff than their surrounding
medium. It is generally called '"passive arching" when the load on the struc-
ture is greater than the free-field stress and "active arching” when the load
on the structure is less than the free-field stress. Experimental data on
soil arching can be found in References 1-12.

In Reference 10, McNulty derives an expression for the arching ratio

(i.e., the ratio of average pressure on the buried structure to the applied

PREARAEEN N SRS R

surface pressure) by assuming that a vertical column of soil directly above
the structure deforms with the test element. In Figure 5.1, this approach is

[ adapted to a rectangular element to obtain
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P P WL
s
where
PB = average pressure acting on the roof
PS = surcharge pressure acting on the soil surface
K = coefficient of lateral earth pressure (ratio of horizontal to
vertical pressure in the soil)
¢ = the angle of internal friction in the soil
W = width of the roof
L = length of the roof
H = depth of burial

Equation 5.3 does not include cohesive forces in the soil or the weight of
the soil. As suggested in References 11 and 24, ¢ should be increased as
the ratio of depth-of-burial to span increases, to account for the additional
lateral restraint provided by the soil at increasing depth. The variation of
¢ with depth can be represented by the ratio of ¢f/¢ , where ¢f is the
angle of friction at depth. This ratio varies from 1.0 for structures placed
at the ground surface where there is small lateral constraint to 1.5 for a
depth of burial (DOB) equal to the width of the structure. At greater depths,
the value of ¢f/¢ is assumed to remain approximately 1.5.

For a DOB equal to 0.5L (assuming a linear variation),

¢
f _
o - 125

Therefore, for Test 2 in a sand backfill,

¢ = 1.25 (35.5 degrees)
= 44.38 degrees
Using
K = 0.5 (from Reference 9) and ¢ = 44.4 degrees

Equation 5.3 gives

g

P
s

= 0.38

Therefore, at a maximum surface pressure of 840 psi, the average pressure pre-

dicted by Equation 5.3 on the element is 320 psi. As discussed in References 1

60

. . . . <t . - - S At 4T e o
A alea PR UPUR VU VUL P S UL W UL IR V. WP 7 W, W T, W G VD WLAPU L S W A e . o RPN A U ST S it S/

2

A

C e

PP B Sy

4




- T T T T R e T T T T o L Y v T

and 7, soil arching produces a nonuniform distribution of pressure on the
structure, very low in the center and high near the supports. As shown in

Figure 4.7, the interface pressure in Test 2 at the center of the roof when

;‘ the structure failed was less than 20 psi. This can explain the difference
between the ultimate capacity observed in Test 1 (surface flush)} of about

174 psi and the average pressure in Test 2 of about 320 psi. In fact, in a
- fully plastic response mode, a one-way slab, responding in flexure, will re-
Ii sist twice as much total load if it is distributed parabolically as it will

resist if the load is uniformly distributed (Reference 7).

3 5.3 WEAPON SIMULATION

The objective of this study was to investigate the effect of earth cover
on structural response to nuclear-type overpressures. Therefore, it is impor-
tant that the Foam HEST produce a structural response similar to that producs!
by the simulated nuclear overpressure. In Figures 5.2, 5.3, and 5.4, dynamic
load factors computed from blast pressures measured in the tests are compared
to dynamic load factors computed from pressure time histories for the weapons
simulated. [n general, the load factors agree within 10 percent at frequen-
cies below 500 Hz. If the structure being tested has important response fre-
quencies above 500 Hz, the high-frequency pressure oscillations in the HEST
cavity may cause a problem with nuclear blast simulation. However, as shown
by the soil stress data records, most of the high-frequency oscillations in

the Foam HEST are damped out in the soil overburden.

5.4 DYNAMIC RESPONSE

A single-degree-of-freedom analytical model was used to compute struc-

tural response from the simulated weapon overpressures. Analytical procedures

described in Reference 24 were used to attenuate the overpressure through the
overburden and compute structural loading. The bilinear resistance function
j had an elastic deflection of 0.15 inch and a maximum resistance of 180 psi

(Equation 5.2). Maximum computed deflection from a 0.027-KT yield at a

{ 3,300-psi peak overpressure (Test 4 simulation), was 128 inches, and from
a 0.010-KT yield at an 860-psi peak overpressure (Test 5 simulation) the
computed deflection was 13.2 inches. Either of these computed deflections
‘ implies total collapse of the slab. The deflection resulting from Test 5 was
! 0.8 inch rather than the predicted 13.2 inches and the significant overkill
- 61
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(128-inch deflection) predicted for Test 4 did not occur. Therefore, the
analytical procedures described in Reference 25 significantly overpredict
structural response under the conditions present here. Analyses of the test
data for these and similar experiments using a nonlinear finite element code

are given in References 26-28.
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Figure 5.1. Soil-arching ratio.
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CHAPTER 6

CONCLUSIONS

The redistribution of pressure on the test slab, i.e., soil arching,
caused an approximately fivefold increase in the surface pressure at failure -

in the static sand-backfill test compared to the static surface-flush and

clay backfill tests.
The ratio of the peak surface pressure to the average pressure on the ..j
slab, i.e., the arching ratio, was about 0.38 in the static sand-backfill test. ifﬁii:
Because of the nonuniform pressure distribution, the average pressure on \ ij
the slab in the static sand-backfill test at failure was approximately 80 per- o L

cent greater than the ultimate capacity measured in the surface flush and clay

backfill static tests.

Almost no soil arching occurred in the low-shear-strength clay backfill

}' in the static and dynamic tests.
> Dynamic soil arching in the sand backfill increased the impulse and the
L late-time pressure (after about 1 ms) over the slab supports and decreased the

late-time pressure on the slab.
‘I Compressive membrane stresses generated by the rigid support conditions
produced an approximately threefold increase in the ultimate capacity of the
t_ slab over the capacity of a similar less-rigidly restrained slab.
Dynamic load factors computed from the measured airblast data in the Foam
ii: HEST and the simulated weapon pressure-time histories compare very well up to
about 500 Hz.
Vulnerability analysis methods that do not include dynamic soil-structure

interaction effects (i.e., dynamic soil arching) significantly overpredict

® structural response for flat-roofed shallow-buried structures and underpredict
r their hardness.
i
o
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DEPARTMENT OF THE ARMY (Continued) DEPARTMENT OF THE NAVY (Continued) o

Commander, U. S. Army Materials and Mechanics Director, Strategic Systems Project Office .
Research Center ATTN: NSP-43, Technical Library °
ATTN: Technical Library s
DEPARTMENT OF THE AIR FORCE
Commander, White Sands Missile Range R

A a4

ATTN: STEWS-TE-AN/Mr. Del La Paz COL Joe Allen, AFOSR )
4
Commander, U. S. Army Tank-Automotive Research Commander, Air Force Armament and Testing e 4
and Development Command Laboratory, AFSC - 3
ATTN: DRDTA-NR/Mr. R. Siorek ATTN: Technical Library
DLYV, G. R. Griner
Commander, U. S. Army Materiel Development and DLYV, R. L. McGuire
Readiness Command (DARCOM)
ATTN: Technical Library AFESC/RDCS
2 ¢y DRCRD-WN ATTN: LT Tom Hilforty, WN
Dr. Paul Thompson
Commander, U. S. Army Missile Command
ATTN: Technical Library Air Force Cambridge Research Laboratories, AFSC
DRCPM-PE/William K. Jann ATTN: LwW, Dr. Ker Thompson
SUOL AFCRL, Research Library
Commander, U. S. Army Mobility Equipment Research
and Levelopment Center Air Force Institute of Technology
ATTN: Technical Library ATTN: Technical Library
Commander, U. S. Army Nuclear and Chemical Agency AFRCE-MX (DEEC)
2 cy ATTN: Technical Library ATTN: Mr. George Pace
MONA-WE
MONA-WE/COL Lowrey U. S. Army Corps of Engineers, CEMXPA
ATTN: ED-TS/Mr. Tash Tatsugawa
Commander, U. S. Army Armament Command, MXPED-T/Mr. Robert Kelly
Rock Island Arsenal
ATTN: Technical Library Commander, Ballistic Missile Oftice
ATTN: ENBF/LTC James N. McCallum
DEPARTMENT OF THE NAVY ENBF/LT Chris D. Ruff
’ ) - B ENSN/LT Dave Steinfield
Chiet ot Naval Operations, Department of the Navy
ATTN: 0P-985F Commander, Air Force Weapons Laboratory
ATTN: DEV-S/Dr. T. Ross
Otficer-in-Charge, Civil Engineering Laboratory, SUL, Technical Library
Naval Construction Battalion Center NTE/Dr. M. A. Plamondon
ATTN: Mr. R. J. Odello
W. A. Keenan Headquarters, Air Force Systems Command,
R. Murtha Andrews Air Force Base
Technical Library ATTN: Technical Tibrary
Commander, Naval Facilities Engineering Command Commander, Armament Division
ATTN:  Technical Library, Code 0911C ATTN: DLODL/Technical Library
Superintendent, U. §. Naval Postgraduate School Commander, Foreign Technology Division, AFSC
ATTN: Library, Code 2124 ATTN: TD-BTA Library
Mr. Stan Spring
Director, Naval Research Laboratory
ATTN: Code 2027, Technical Library Commander, Rome Air Development Center, AFSC
[ ATTN: EMTLD, Documents Library
A Commander, Naval Surface Weapons Center
ATTN: Technical Library, Code X211 Space and Missile Systems Organization
Code 1224, Navy Nuc Prgms Off ATTN: MMH/Hard Rock Silo Development
PY MMH/Engineering Division
Commander, Naval Weapons Center
ATTN: Code 533, Technical Library Commander, Strategic Air Command
ATTN: NRI-STINFO Labrary
r Commander, Naval Weapons Evaluation Facility
ATTN: Technical Library AF Office of Scientific Research
i ATTN: Jerry Bieleck
L Chief of Naval Research
ATTN: Technical Library HQ SAC/XPFS
® ATTN: MAJ K. L. Mills
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APO and FPO DEPARTMENT OF DEFENSE CONTRACTORS (Continued) --® )
Landa Division, Infrastructure Branch General American Transportation Corp. N ]
ATTN: COL Jack Sullivan General American Research Division ot
ATTN: Library o
USAFE EUROPE/DEXX "
ATTN: MAJ H. Dean Bartel IIT Research Institute 3
ATTN: Mr. A. Longinow °
DEPARTMENT OF DEFENSE CONTRACTORS
Institute for Defense Analyses
University of California ATTN: 1IDA Librarian, Ruth S. Smith |
ATTN: Joseph A. Smith/L-122 . )
Kaman Sciences Corporation o
University of Florida ATIN: Gunning Butler, Jr. ’ k
ATTN: Dr. C. Allen Ross L
Mason & Hanger, Silas Mason Co., Inc. 4
University of Illinois ATTN: A. T. Papp ®
, ATTN: Dr. J. D. Haltiwanger Larry L. Skeen
Prof. A. H. S. Ang :
Physics International Company )
University of Minnesota ATTN: Technical Library

ATTN: Technical Library

R&D Associates

University of New Mexico ATTN: Dr Harold L. Brode
ATTN: J. W. Jeter Technical Library
H. L. Schreyer Mr. J. G. Lewis
Northwestern University Science Applications, Inc. ..
ATTN: Dr. Ted Belytchko ATTN: Dr. Michael D. McDonnell ST
Aerospace Corporation Scientific Services, Inc.
ATTN: Mr. Larry Selzer ATTN: Dr. B. L. Gabrielsen
Mr. Martin Eskijian
Mr. John Crawford Southwest Research Institute
ATTN: Mr. A. B. Wenzel
Agbabian Associates Mr. Phil Nash
ATTN: Dr. M. S. Agbabian
Stanford Research Institute
Applied Research Inc. ATTN: Dr. G. Abrahamson
ATTN: Technical Library Jim Gran
Dr. A. Florence
Boeing Company
ATTN: Mr. P. A. Krastins Terra Tek, Inc. ]
ATTN:” Mr. S. J. Green
California Research and Technology, Inc. K
ATTN: Marvin Ito TRW Defense and Space Systems Group )
L Fred M. Sauer ATTN: Dr. Richard Cramond .
- Mr. C. F. Buckey (523/300) co
'] Consulting and Special Engineering Services, Inc. Technical Information Center/S-1930 o
*f ATTN: Dr. J. L. Merritt Mr. Norman Lipner . E
Mr. Paul Chen - R
Electromechanical Systems of New Mexico, Inc. E— :
ATTN: R. A. Shunk Weidlinger Associates, Consulting Engineers -
- ATTN: Dr. Melvin L. Baron ..
Dr. J. Isenberg
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