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ABSTRACT
Let
n :
Pn(z) = zn +“22n-2 +seet a, = 11[ (Z"Zj) ~
be a polynomial in ¢€{z] having the origin as the center of gravity of its
zeros 2z;. We call
2 n y N
1y 2\ »
rRRy) = (21 ]2.]%) | —_—
h n, J Aczession For
the quadratic radius of P,(z). We also consider the derivative ! fgf? h?ﬁ&{ %EF?—_qffif
PaTIH TAR e
3 n-1 . Lannounced i1 e
Pi(z) = nz® ! + (n-2)ay,2™ 3 +..4 2 = n 2 (z=w,)! Snstigleation . 127
and its quadratic radius ‘ By.
Distribution/
et [ Avallability Codes |
R(BY) = (== L Iw )2 . AR
1 Avail and/or
Dist Special
The main purpose of this note is to state
gonjectyre 1. We have the inequality H I
,E-z
’ —
(1) R(Pp) £ =1 R(Pn) ¢ /,::\\
e W
with the equality sign if and only all the zeros z4 of P,(z) are real, or : ¢,
— ‘4,‘9’ :’
equivalently, all z; are on a straight line of C. \\:(";/
We prove (1) for n = 3. Also for binomjial polynomials of the form
P (z) = 2" + akz“’k (2 < k ¢ n). We prove directly other consequences of
Conjecture 1.
AMS (MOS) Subject Classifications: 30C10, 30C15 :
Key Words: Zeros of polynomials in C[z], Analogue of Rolle's theorem. ]
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// SIGNIFICANCE AND EXPLANATION
|

\\\
’JThe main purpose of this note is to state a conjecture which may be
Sub h

regarded as an analogue of Rolle's theorem for arbitrary polynomials P*(z)

with real or complex coefficient, having the origin 2z = 0 as the centroid of
‘Iwb n
the zeros of P‘(z). How the zeros z4 of Pn(z) crowd around their

centroid is measured by the gquadratic mean

1 ¢ 24
R(P) = (-% |21 )2

n

of their distances from their centroid 0. If

-1
1 n= 24
R(PY) = (=% % v, 12)72 S

is the similar quantity for the derivative Pj(z) having the zeros

Wisese,Wo_q, it is conjectured that g

R(Pp) ¢ 22 Rrep )

with the equality sign if and only if the zeros zj are all real, or

equivalently, all z4 are on a straight line.

This is proved if n = 3 and also for binomial polynomials.

N
T
Y. 4

-
f
e
. RN
Lotd el doal s o

’
.

.
2.2

14

-l

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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Q. JUE.QUARRATIC. MEAN. EDRIVE. OF. A ROLYNOUIAL IN..Cl2l

I. J. Schoenberg

iutkoductiQu. let c¢4,C3,¢+.,c, Dbe n non-negative reals. We call the quadratic

mean of the 4 the quantity n(cj) defined by
1
n /2
1 2

R Mtey) = (1<) -

1
Moreover, let
2

(2) Pp(z) = 2" + 82" +oob 2, (m22) ,

be a polynomial with real or complex coefficient with a4 = 0. 1If

n
(3) Pp(z) = I (z-zj)
1
exhibits its zeros zy then clearly
(4) 21"‘!2 toaet zn-o .

which implies that in the complex plane the origin O ig the center of gravity of the

zj4. We define the guadratic mean radius of P, by

1 P 2,72
(5) R(P,) = H(lzj|) - (;-% |zj| ) .
We are here concerned with the effect of the operation of differentiatjion of Pn(z)

on its R(P,), which we also aimply call the quadratic radius of P,. Concerning this

effect we have a conjecture. We consider the derivative

n~1

(6) Pi(z) = nz""' 4 (n-2)azz“'3 teeet ap g = n N (2w,
1

having the zeros wy, and we wish to compare the quadratic radii R(P,) and R(P}),
looking for some analogue of Rolle's theorem,

The main purpose of the present note is to state

Conigctuke 1. The quadratic radii R(P,) and R(P;) satisfy the inequality

n-2 ,
(7) R(P}) & /?FTT R(Pn) ’

with the equality sign if and only if all the zeros zj of P(2z)

are real or,

equivaiently, all zeros zy areon a straight line of C.

sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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A trivial example
R(z"-1) =1 , k(nz"V) =0 . .

The necessity of the equation

n-1 n
1 2 -2 (1 v 2
() n-1 )i l'k' = :.1 (;):' l‘jl )

for the reality of all zexos of Pn(z) is quite trivial, and this is the original source
of the conjecture: As in this case the z4 and w, are all real, we can remove in (8)
all the absolute value signs. Moreover,

(9} Wy twy teeetw, =0

From (4), (9), (2), and (6) we have

Le2e2 )

2, = =2 z.z , = -2a .

;3 jagr 373 2

(10)
n=1
: 2 n=-2
)4'--21 w. W ® e e ¢ 2Ja R
1 k k<k® k k' n 2

and eliminating a, Dbetween these equations, we obtain
n=1 n
1 - 2 -2 1 v

“n n-1 % *x T n=i ;'% £

3
(W N
-

which is equivalent with (8), as the 24 and w, are all real.

In the sequel we establiash Conjecture 1 for the case where n = 3, and we derive some
consequences of Conjecture 1, which are of course, only conjectured. In §2 we establish
Conjecture 1 for binomial polynomials.

FPred W. Sauer, of the MRC Computing Staff, has verified the strict inequality (7) for
some 25 numerically given complex P,{(z), and in the last §5 we record three of his
examples. For this I am very much obliged to Fred. I am also much impressed by the speed
and precision of the Jenkins-Traub algorithm used in solving the equations Pp{(z) =0

and Pp(z) = 0.

-




1. Bpeoof of.Coniectuke.l.whep .n.I.3. Let

(1.1) T~ (24,25,23)

be the triangle of the complex plane having the zeros of P3(z) as vertices. By our
assumption (4) the centroid of T 4is in the origin 0. We are now using the following

theorem of van den Berg ([1], or (3, Chap. 7]).

xhgg;g‘ 1 (van den Berg). Let E be the Steiner ellipse of the triangle T. This ias

the ellipse which is inscribed in T such that E is tangent to the sides of T in their

1]
nidpoints. Then the zeros of P3(2) are identical with the foci w; and w, of the

‘
-
[
‘

ellipse E. (See Fig. 1).
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PRVRPEN

Fig.l

With z = x +iy and z,

"%y + iyj we place T y E so that the major axis vyvy

of E is on the real x-axis, its center being at the origin. Let a and b be the semi-
axes of E and a2 - . w% = wg. We now subject the plane to the affine

transformation

o x(t) = x

At :

yit) =ty , (0 gtgn ,

%i: which contracts E toward the x-axis. As the semi-axes of E(t) = A E are a and bt,
o
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we find that the foci of E(t), which we denote by wy(t) and wa(t), are
wylt) = 462~b2t2 + v

and similarly w,(t) * =v,. This shows, by continuity as t + +0, that 3(z-v{)(z-v;) is

1° as t+0 ,

the derivative of the real cubic

{1.2) (z=xq) (z=x3) (z=x3) .
2..2 2..2,.2

By (10) we have (vj+v3)/2 = (x7+x5+x3)/6, and therefore

3 3
17 2 Y2 12
{1.3) E% |zj| > ]

-t
x
]
!
<

A comparison of the extreme terms of (1.3) gives the desired inequality (7) which, for
n=3, \is

(1.4) R(P}) £ v/%— R(P3) .

Finally, the equality sign between the extreme terms of (1.3) implies that lej|2 = txg,

and therefore zy = xj(j-l,z,a), so that the zeros of Pa(z) are real.

2. Verifvipg.Coniectyxe.l.for.bincwial. polynomigla. There is a simple case when the

quadratic radii R(P,) and R(P;) can both be evaluated very simply explicitly. This is

the case when the polynomial (1) is binomial, i.e. of the form P,(z) = z" + .k‘n-k vith

2 ¢ k ¢ n. Without loss of generality we may assume that ay = 1, hence
(2.1) Pz) =2" + 2"k |, 2¢x¢m ,
whence
Pa(2) = 02! + (n-k)2Pk-!
We find for P,(z) = 2"K(z% 4+ 1) ana, by (5), that
2:k

(2.2) (R(P))“ = n
Likewise Pj(z) = nztk=1(zk 4 {n-k)/n), and therefore, by (5), that

1112 ok (n=k)2/k
(2.3) (reppN? = =2 ()
The desired inequality (7) now easily reduces to proving

18558 V- We have the inequality

(2.4) (n=2)K > nk"2(n =32 3f 2 ¢xg¢ n .

-4=




K

-

= Proof: This is trivial if k=2, or if k = n, and we may therefore assume that

L]

(2.5) 2<¢k<n

': and prove

o jooma 1'. We have the inequality

l {2.6) n-2)%>pk"2(n 2 Kx)2 1 2¢ke¢n .

This we will derive from the more general
leona 2. Let the reals Xyseee,Xy, Dnot all equal to each other, have the mean

o 1 K
- (2.7) 2=xlxy . R
o then -
- k 0
o (2.8) x~a)®> I (x = xp) Af x> xy (3% k) S
T Proof of Lemma 2. Taking logarithms, (2.8) is equivalent to
-~— 1 x
!-—- (2.9) log(x - a) > ¥ ), log(x - x4) if x > max x .
e k 3 3
From (2.7) we have
. X
x-a-;%(x~xj)

i and (2.9) amounts to
a Lk X
(2.10) IOQ(K ?'. (x = xj)) > % ;1: log(x = xy)

- which follows from the strict concavity of log x in 0 < x < ». Indeed, for any strictly

- concave function £(x) in (0,®), and for positive quantities

. Py ™ X = xj, not all equal to each other ,
we have the well known inequality
k k
1 1
(zle) >l tey .
1 1
~ For f(x) = log x this amounts to (2.10).

Proof of lLemma 1'. We specialize Lemma 2 by choosing

x'sx-...-xk_z-o, xk_1-xk-k, and x=n .

"; For the mean value (2.7) we find

o | K

:.. a= -; ), X = —9° 2k =2 , !:

R \: 1 J s

‘..' '_.-

:\- :»:“:l.:

. :, -5= -:\-:.
."'.-:
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while

k~2

2 (x = x3) = k"2, (x - X )(x = x) = (n - K2 .

Now (2.8) goes over into the desired inequality (2.6).

3. on_pppell sequences:._B corollary of Copjecture.l- We start from Pg(z) = 1 and
integrate it successively with arbitrary constants of integration, obtaining a so-called

Appell sequence of polynomials

1 -1 -2

(3.1) Polz) = — (2" + (P2 + e,z 4t o), (n= 1,2,
Here

(3.2) (cn), (c0 = 1; n = 1,2,e04)

is an arbitrarily prescribed sequence of real or complex constants. Evidently
(3.3) Pplz) = P _q(2), (n = 1,2,...) .
Conversely, (3.3) and Pglz) = 1 imply (3.1).

lLet

n
1

(3.4) Pplz) = o7 n (z - zgn))

j=1

describe the zeros of these polynomials. Without loss of generality we may assume that

(3.5) cp =0 ,

which implies that
n

(3.6) R S R CIU IR PE PRER
i=1

Because of the relation (3.3) we wish now to apply Conjecture 1, hence the inequality
(7), to any two consecutive pair of polynomials of the sequence (3.1). Of course, the
results will only be conjectured, as Conjecture 1 has not been established. Since (7) may

be written as

1 ool 2 n-21 2 2
= L
or
n-1 n
1 2 1 2
(n=11(n-2) % ,"k, = nin-1) % lzy1¢ .
-6-
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BT AR LR TN
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we obtain for the pair P (z), Py, ,(z), with the notations of (3.4), the inequality

k k+1
1 (k),2 1 : (k+1) 12
(k-1 } l271° S T b 1=

By iterating this recurrent inequality we obtain

k n
1 (k)2 1 : (n)2
YOeTT ) lzj | < T 1 Izj | for n> 32 .
This we may write in the final form

(3.7) (R(e,IZ 2 77 (R(BIZ « (n=1)  (n>k32) .

An immediate (conjectured) consequence is the

Gopigctured.Coyellaxy 1. 1f the polynomials (3.1) are

(3.8) P tz) = z"/nt for n = 1,2,... ,

then clearly
(3.9) R(P,) = 0 for all n .

Let us now assume that

(3.10) Py(z) = 2"/n! for n=1,2,...k-1 (k3 2) ,
while
LI
(3.11) Pk(z) =TI {(a # 0) .
then
1
(3.12) R(P,) 2 C/n-1, where C = [u[/(k—1ré ., for n>k .

Indeed, if in (3.7) we choose for k its value that appears in (3.11) we obtain the

lower estimate (3.12), because R(P,) = {af.

f_of (3.12) if_ _k_= 2. Our belief in the truth of a conjecture is

strengthened if we can prove directly a consequence of the conjecture. This is immedijate:

If k=2 in (3.11), then in (3.1) we have ¢4 = 0, and cs # 0., On the other hand, by

integrating P,(z) = (xz - 02)/2 (n-2)-times we obtain

n 2 n~2
z a z 1 n 2 n(n-1) n~2
B —— ———— o, 4 T e - ——— L
P, (2) Py 2 o3l =1 (z > z }

and (10) shows that

-7-
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s (4.1) = Gzn(n-1) .

Il 1

. This implies by (4.1), that

. n
). (z;n))z

2.1
(R(P4)) = —

-ty

n
P N VP b IE TR ST R
b 1 J
or

(4.2) R(P) 2 |a] /n=1, (n 2 2) .

This, however, is precisely (3.12) for k = 2.
If the zeros of all polynomials (3.1) are real, then we have an Appell sequence of the
so-called Laguerre-Polya-Schur class (for references see [3]). In this case we have the

equality sign in (4.2) for all n. An important example are the Hermite polynomials

[n/2) r n-2r
-1 2
Hp(z) = n! ,Eo L;Tl—-%zgé;rr- , (see [4, page 105]) ,

when (4.2) becomes the equation

-1
R(H,) = 27 2/n57
This seems the place to mention the different behavior of the two quantities R(P,)

and
(4.3) max |2{™]
3 b]

Indeed, observe that we may express any Appell sequence (3.1) as

z xl xn-1
Pp(z) = / (n) ¥y / (n-1) P2 =+ ) (4 ¥y -
z z z
1 1 1
Here
-
24F) (r = 1,2,000) (]

can be an arbitrarily chosen sequence of points of the complex plane. This implies that
the sequence (4.3) may grow as fast as we wish ags n + =,

An open question: How fast can the quadratic radius R(P,) grow as n + =?

5. Ered.Sausk.8.00pskical.cxapples 9f.CoDigctuEs 1. As already mentioned Fred F_

verified the inequality (7) in some 25 cases. We record here three of these examples: -’

.
0
SR .

3
’r
3
b

-
R

"

D

LI P P
r &t te e te e

..':




T

- - o e ey -
n P, (2) R(P,) R(P}) /{n-2)/(n-1} R(P,)
5 25 + i2%2 + 52 - 2 1.35871 1.16038 1.17668
4 24 - iz vz -1 1.07753 68454 .87980
4 24 + (1421)22 - z + (1-4) 1.27456 .86366 1.04068
The last two columns illustrate the inequality (7).




(A. 1) zy = x5+ 1yj o Wy = boivye .

3

b hpeendix- A_Conjecture. 2 equivalept _to_Conjecturg.]l. Let

We rewrite Conjecture 1 replacing the inequality (7) by an obviously equivalent one

Dt
Cel

gonjectyre 1. We have

. e 2 n et 2
(A.2) ) Izjl 2 =3 2 l"kl .
1 1
4 with the equality sign iff the zj are real, or on a straight line.
An equivalent conjecture is
Conjecture 2. We have
n n-1
2 n . 2
(A.3) % X 253 )i oo,

with the equality sign iff the zj are real, or on a straight line.

1. Conjecture 2 implies Conjecture 1. Applying Conjecture 2 in the two directions

Ox and Oy we obtain

2 n 2 2 n 2
(A.4) Ixj2ogly « Dyj235ivy

and adding them we obtain the inequality (A.2). Moreover, the equality sign in (A.2)

implies the equality in both relations (A.4), hence the zy are real or on a line.

2. Conjecture 1 implies Conjecture 2. 1Indeed, by (11) from our Introduction we have,

using (A.1), the equation
. 2 n 2 2
+ 2 mmma + .
T (xj 1yj) - Z(uk ivk)

Equating the real parts of both sides

n 2 n
e = i~ L
whence
2 n 2 _ 2 _n 2
(A.5) L xj o~ L u L yj = L Vi (=) ,

XA denoting the common value of both sides of (A.5).
¥from (A.S5) we obtain
2 n 2
z - — = R
(A.6) |z]| n-2 r‘lwkl 2X

Now (A.2) shows that A 2 0, and from (A.5) we see that the inequalities (A.4) hold.

Moreover, the equality sign in (A.2) shows that A = 0 in (A.5) and therefore we have

equality in (A.3) iff the z, are real or rectilinear.

-10=-

i
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