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yields such solutions.

Finally, we consider the ergodic problems. Zﬂ
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In this paper, we present a notion of viscosity solutions

Jacobi equations for Neumann type boundary conditions (or more generally

Hamilton-Jacobi equations, viscosity solutions, Neumann
conditions, oblique derivative, vanishing viscosity method,

optimal control, differential games, dynamic programming,
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Next, we check that value functions of control
problems or differential games problems for reflected dynamical processes are

. solutions in that sense of the associated Bellman or Isaacs equations.
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Introduction: :-‘.'.:.'

In this paper, we consider the classical first order Hamilton-Jacobi equations

(1) H(x,u(x),Du(x)) = 0 4in Q
where u is a scalar function on 8 bounded smooth open set of X', wvhere Du denotes
the gradient of u and H - the Hamiltonian - is a given continucus function on
Txnxn. .

We want to study how is is possible to define for solutions of (1) Neumann type
boundary conditions that is
(2) $8-0 on 20
where n is the unit outward normal to 3. However, as it is remarked in P. L. Lions

{25), A. Sayah [35]), such a boundary condition is not always possible and has to be relaxed

somehow.

Recently, M. G. Crandall and the author [#), [9) introduced a general notion of
solutions of (1) (requiring only u € C(R)) and proved various properties of these
solutions -~ called yiscosity solutions - including stability and uniqueness (provided
boundary conditions of Dirichlet type are imposed}. This led to a complete treatment of
(1) with, possibly, Dirichlet boundary conditions and we refer to M. G. Crandall, L. C.
Bvans and P. L. Lions (7] P. L. Lions [26]); P. E. Souganidis (37]; G. Barles (3]; H. Ishii
(22], (23]7 W. G. Crandall and P. L. Lions [10], {111, (121, (¥31¢*)...

Our goal hers is to adapt the notion of viscosity solutions of (1) in order to take

into account boundary conditions of the form (2). Moughly speaking, we will present some

1
CEXIMADE, Thiversité Paris-Dauphine, Plece da Lattre ds Tassigny, 75775 Paris Cedex 16,
rrance.

Sponsored Dy the United States Army under Contract No. DANG29-80-C-0041.

(*) '
The reader should be aware that this list is by no means complete!
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:,' weak formulation (in "viscosity style”) of an equation combining (1} and (2) on 98 and
= this will be interpreted as the relaxed form of (2). The precise definition is given in
section I where we also motivate and explain this definition in the light of the so-called ¢
¢\ vanishing viscosity method which here consists of finding ue solution of the equation (3)
5 below and letting € go to O,
* du,
. (3) -l:Auc + Hc‘x'“e'm:) =0 in 8, e 0 on 30 ,.::; -1
3 where H * H as ¢ *+ 0, (one can take H. = H as well).
':: In section II, we give some properties of these viscosity solutions of (1) - (2) '
o including stability, and adaptations to Cauchy problems like
.:\ %%# H(x,t,u,Du) = 0 4in Rx)0,T(
g 4
j %E- 0 on 3I0x)0,T[, u(x,0) -no(x) in Q@ .
i Sactions III and IV are devoted to uniqueness, comparison and existence results which
will be of a comparable level of generality to the case of viscosity solutions of (1) with
2= (no boundary conditions).
: In section V, we adapt the preceding results to more general boundary conditions ‘
‘ () $2-0 on 2
_ where Y is a smooth vector field on 38 pointing outward i.e. ' .
(6) >0, vx €30, (n(x),¥(x)) >V . :
= As 1t was remarked in P. L. Lions [25) for exit problems in optimal deterministic i
control theory, the dynamic programming arguments easily yield the fact that value E
. functions are viscosity solutions of the related Bellman (or Hamilton-Jacobi-Bellman) E.::z?j
‘ equations -~ see also P. L. Lions [27], [28). This remark was also applied to differentiasl ::::?,.::?
games by P. E. Souganidis [38); L. C. Evans and P. E. Souganidis ([18); N. E. Barron, L. C. -
:: Pvans and R. Jensen [4]. We want to showv in section VI that the value function of control 9"‘:?1
problems (or differential games problems) for solutions of ordinary differential equations
‘ with reflection at the boundary are indeed the viscosity solutions of (1) = (2) (for the
.
Hamiltonian R occurring in Bellman or 1lsaacs equations).
) -2-
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Pinally, section VII is devoted to the study of the so-called ergodic problems: here,
we study the limit as € goes to 0 of, say, (cnt.u‘ - “c("o” wvhere x5 is any point

in 8 and u; is the viscosity solution of
3\1‘
(7) l!(x.bu‘) +eu = 0 in Q, M 0 on 3G .

We would like to conclude this introduction by explaining our motivation for studying
(1) -~ (2): The first one concerns optimal control theory where state constraints are
imposed on the system. Then reflection at the boundary of the domain defining the
constraints is one possible wvay to "realize the constraints® and in many applications this
is actually done (specially in optimal stochastic control p!oblﬂ.l which correspond to (3)
and ¢ going to 0 corresponds to the intensity of the noise going to 0). But also from
the PDE view point it is quite natural to try to analyze what happens when ¢ goes to O
in (3). And this is very much related to the question of large deviations of reflecting
diffusion processes (see Anderson and Orey [1] for some results on this problea and L. C.
Bvans and H. Ishii (17], W. H. Fleming and P. B. Souganidis [19) for relations between the
vanishing viscosity method, large deviations and viscosity solutions).

We want also to emphasize that solutions of problems like (1) = (2) lead to solutions

of hyperbolic systems of conservation laws and that boundary conditions like (2), (5)

correspond then to some Dirichlet type condition. 1Indeed if u solves (formally)

@, wix,t,Du) = 0 in 8x10,7(, —;- 0 on 20x)0,T(

[T
-~ where Y may even depend on t if we wish -, then p = Du solves

:' 3,1

7 — 4 T‘ (H(x,t,p)) = 0 in 8x]0,TI
Te

X (p,Y) = 0 on 38x)0,T(

and since such boundary conditions for hyperbolic systems are natural, this motivates the

Al

study of Neumann boundary conditions for Ramilton-Jacobi equations. let us mention at this

stage that the case of one~dimensional scalar conservation laws is studied in C. Bardos,

Le Roux and Wedelec ([2).
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N Let us also mention that sowe particular cases of (1) = (2) sre studied in Burch and

\

Goldstein [6), P. L. Lions ([25], A. Sayah [3S5].

- Pinally, we would like to point out that we restricted our attention to the case of .

;; bounded domains 8 but we could as well treat unbounded domains (as for example half-

" -.\‘-

-: spaces) with similar ideas, combining (if necessary) the techniques below with those ' _:-

concerning unbounded viscosity solutions in % (see M. G. Crandall and P. L. Lions [10),

(1), [12]); H. Ishii (22), (23]).

I. Definition and justification
lLet 2 be a bounded smooth open set in #' and let H(x,t,p) € ol x mx l'). e

:} denote by n the vector field of unit outward normal vectors to 3 and we are going to
define "viscosity solution of (1) = (2)%.

b, Definitions: let u € C(G). We say that

1) u is a vicosity subsolution of (1) - (2) if for all ¢ € C' (®) the following

tA N

property holds: let x; be a local maximum of u - ¢ in T then we have

T
<8 s

!(xogn(xo)'b.(xo)) €0 if xo e «

(8)

H(xg,ulxg),Dé(xy)) €0 if x €30 ana $(x) >0 .

i11) u is a viscosity supersolution of (1) ~ (2) if for all ¢ e c‘(i) the following

AN PLIS PN

property holds: let xg be a local minimum point of u =~ ¢ in '5 then we have

!(xo,u(xu),m(xo)) >0 if xo e

-
N 9 ? .

2 Hixg,ulx,),Dh(xg)) >0 if x e ana 32 (xpp <o .
% 1i1) u 4is a viscosity solution of (1) - (2) if u is both a viscosity sub and super-

» solution of (1) - (2).

: ]
v

d Remarks: 1) Of course, (8) = (9), vhenever =x; & 2, are nothing but the usual viscosity
)Y formulation of (1).

p i1) It is a straightforward exercise to check that one obtains equivalent formulations if
v

: ~

> &
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we replace ¢ € ! by ¢€ c2 or ¢ c" and local maximum (resp. minimum) by local
strict, global strict, or global maximum (resp. minimum).
111) As we will see below, an equivalent formulation of (8) = (9) which allows g% (xg) ¢ O

(oxr > 0) 4is possible (in addition it is intrinsic in the sense that no test functions are

necsssary). -

' Theores 1: lat u e c2 (Ti) be a solution of (3), assume that !e converges uniformly
| to B on 8 x [-R,#+R] x ;R (VR < ®*) and that for some sequence €, going to 0 u,
n

converges uniformly on 2 to scme u. Then, u is a viscosity solution of (1) - (2).

Proof: We already know from the usual properties of viscosity solutions of (1) (see [9])
that u 4is a viscosity solution inside . Therefore, we only have to prove (8), (9) in
the case vhen xg @ 3. We are going to prove (8) with x4 € 3R, the proof of (9) being
similar. Thus, let x; be a local strict maximum point of u - ¢ wvhere x, € |,

¢ e cz(n'), -;-% (xo) > 0. We then choose $ @ cz(a) satisfying

%*-1 on 9, ¥=0 on M, $¥>0 in 8 .

Obviously, for any § > 0, u ~ ¢ = 8§y still has a local strict maximum point at x,.

Hence, for n large enough, u, = ¢ = §¢ has a local maximum point x, in 2 and
N n
X, 3 Xge Ve claim that x, € Q. Indeed, if it were not the case, we would have

n
3\:‘

n )
O-T(xn)aﬁ(xn)+6
and the last quantity is strictly positive for n large. Next, since x, © R, we deduce

M (kpug (5,),D8(xy) + 8D¥(x,)) € € (B4(x,) + Ba90x,))

\ where we used the relations D¢(x ) + 8D¥(x ) = “’cn"‘n" Auen(xn) < Ad(x ) + 88b(x ) .
i letting n go to *, and then letting & go to 0,, we conclude.
| ]

We now present some equivalent formulations of (8) - (9). To this end, we consider

(following (7)) the subdifferential and the superdifferential of v & c(ﬁ) at x € R

. given respectively by
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D vix) = (§ e B, lim ing (v(y)=v(x) = (E.y=x)} lyx|~1 > 0}
y*x yeQ

pvix) = (£ e A, 1im sup {v(y)-v(x) - (E-y-x)}ly-xl" <0} .
y*x yeQ

Observe that (as in (7]), if v = ¢ has a local maximum at x; € 2 whera ¢ is
differentisble then D(x;) € D'vix,) and that if £ € D'v(xg), there exists ¢ e '@
such that v - ¢ has a global strict maximum at x5 and Do(xo) =£.
We have the
Theorem 2. let ué€ C(a). Then, u is a viscosity subsolution (resp. supersolution) of
(1) = (2) if and only if
vx € @, & € D' u(x), Hix,u(x),) <0
(8*) + -
vx € 38, V€ € D u(x), inf H(x,u(x),E+0(E,n) n) € O
0<o6<t
(resp.
vx € Q, ¥ @ D u(x), H(x,u(x),E) > 0
(9*) - +
vx e 3Q, v e D u(x), sup H(x,u(x),E-0(E,n) n) >0 .
0<0<1

Equivalently, u is a viscosity subsolution (resp. supersolution) of (1) ~ (2) if and only

if we have for all ¢ ec'@

at any local maximum point x of u=-¢, we have

(8™ n(xo,u(xo),w(xo)) €0 if x, e ]

9 -
o:::‘mxo,u(xo),nuxo) + 0§ (x))m) <0 1f x, €30

(resp.
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at any locsl minimum point %y of u-4¢, we have

b b B

H(x,,u{x,),Dé(x,)) > 0 1if x, e
(9% 0% 0 0 !

“ !. .‘l
AAA

9 +

sup B(x ,o{x.),D¢({x ) =~ 0(3-'- (x,)) n) 0 4if x e3f) . i
IS Tt Mt n 0 0 ]
1Y

Remarks: &k.ﬁd

1) As usual, we may replace ¢ € ¢' by ¢ € c?, c” and local by global strict, local _Eij: 3
strict, or global.
11) In what follows, we will obtain use of the function d(x) = dist(x,3Q) which is

smooth - say C2 - near 32 and which satiafies V4 = =n on 38 - gee for instance

J. Serrin [36), D. Gilbarg and N. 8. Trudinger [20]). When we deal with points x of 3g
the fact that 4 ia not smooth globally on I will never create any difficulty since one
can always smoothe d in the interior, while keeping it positive.

111) Let us cbserve that if € @ D*u(xg), xy @ 33 then E-An € D'u(x)) for all A > 0.
.

The proof of Theorem 2 relies on a general extension lemma of viscosity solutions of
(n
lesma 3: let u @ C(B) be a viscosity subsolution (resp. supersolution) of (1). LlLet
Xg @€ 30 and let [ e D’\l(xo) {resp. D™u(x5)). We then set
(10) Ao = sup{ >0 / E+An(x,)) @ D+u(x°))

and thus o¢x°<«-

(resp.
; (“n A" sup{) > 0, E-An(x,) e D'u(xo)} .
E Then, if Ao <», we have
Rixg, ulxg), € + \on(xo)) <0
{resp.

H(xg, ulxg), & = Agnixg)) > 0) .
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We first apply Lemma 3 to prove Theorem 2, and then prove lemma 3. It is clear that
(8%) (resp. (9")) is equivalent to (8') (resp. (9')). Hence, we just have to prove that
(8) implies (8'). Thus, let xp @ 3@ and let £ @ D'ulxg). If (£,n) > 0, we have
nothing to prove, hence we assume (E,n) ¢ 0. Two cases are then possible: first, if
A 2 (£,n)7, we see that £+ (E,n)E e Du(xy) and we conclude applying (8). Notice that
in this case (8') holds with 8 = 1. If A < (£,n)", we apply Lemma 3 and we conclude
since in this case
€+ Agn(xy) = € + 0(E,n)"n
where O € {0,1[ is given by 0 = xol(i,n)' .
We now prove lemma 3: as xo <® and D"u(xo) is closed, Eﬂon(xo) e D’\l(xo). et
vec'@ be such that
¥(x,) = ulx,), DR(xy) = § + Aynixy) , ¥(x) > u(x) ¥x #x, .
Then, for § > 0 small we set
03 = Bixg,8) 0 8, u(§) = inf(¥(x)-uixi/|x-xy| = 8, x e T .
Choosing a(a) = Min(8, p(8)/28), we claim that u - y + a(8)d has a 1local ainimum
inside Q;. Indeed let xg be a maximum point of u - ¢ + a(S§)d over 66‘ If x; e m,
then _u(xa)-t(xs) > u(xo)-'(xo) and thus x5 = xg. But this would yield that
D¥(x,) + a(é)n(x,) € D'u(x,) contradicting the choice of ). Therefore, x, f# 33, If
lxc-xol = §, this woald imply
ulxg) = #(xy) € ulxg) = ¥ixg) + c(&)d(xc) < -u(8) + 8a(d) ¢ o0
again a contradiction. And we have proved that x‘ e Q‘o Since u is a viscosity
subsolution of (1) we deduce
H(xG,u(xs).Dt(xc) - c(G)Vd(xc)) <0

and we conclude letting & go to 0,.

I1. Properties and extensions.
Pirst of all, we would like to mention that many of the properties of viscosity

solutions proved in M. G. Crandall and P. L. Lions (9] M. G. Crandall, L. C. Evans and

P. L. Lions [7); P. L. Lions [25] have their counterparts in our setting. We will only
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make two remarks: the first one concerns differentiability points of a viscosity sub-
solution lying on 3. More precisely assume u € c(H) is a viscogity subsolution of
(1) = (2) and that u is differentiable at x; € 3. We then cbserve that

+ - -

DTulxg) {Du(xo) An(xg) / X 2 o} .

Therefore if we denote by Dpu(xg) = Du(xg) = -:% (xg)n(xg), we deduce from condition (8)

if g% (xy) > 0, Bix ,u(x)), Dulxy)) < 0
(12)

if -‘5’-;’-i (xy) < 0, inf{ACx,ulx ),Dalx ) + Anlxg)/A € [%'2‘ (x,),01} < 0 .

Clearly, if u is a viscosity subsolution of (1), u e c(h-), u is differentiable at each

point x5 of 30 and if (12) holds for all xg € 30, u is a viscosity subsolution of -® .

1) - (2). X
We now turn to a stabjlity result ;

Proposition 4: let (uyl, e C(E) be viscosity subsolutione (resp. supersolutions) of
3
(13) By(x,uy,Dup) =0 in 8, 5—=0 on W .

Assume that u, converges unformly on % to u and that H, converges uniformly on

Q x [~R,*+R] x ;n(vn <®) to H. Then u is a viscosity subsolution (resp. supersolution)

of (1) - (2).
.

Proof: It is basically the same as in [9], (7). We just have to prove (8") when x, € af
- 1 -—
is & local strict maximum point in @ of u - ¢ with ¢ € C (R). Por k large enough,

uy = ¢ has a local maximum point x, in a and e ¢ Xg° Therefore, we find

nk‘*k'“k("k)'b’("k” <0 1if x, € Q

(14) 3 -
B, (x,,0, 06),D80x,) + 8 (32 (x ) 7nx ) <0 if x e
for some Ok e [0,1). Without loss of generality we may assume that ek 4 8 e (0,1] and

we find (8") passing to the limit in (14).
L]

Ve next want to explain how one adapts to the definitions to cover situations like

problem (4): 1let H(x,t,s,p) € c(@ x [0,7] x R x RN), we wish to define viscosity

-
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solutions of

(15) %‘tl+ H(x,t,u,bu) = 0 in 8x)O,T( , g%- 0 on 23fxjO,?[ .

Before giving the easy analogues of the preceding definitions, let us point out that (15)
is a very special case of (1) coupled with a Neumann type boundary condition on some part
only of the boundary, while on other parts Dirichlet boundary conditions sre assumed (here
initial conditions). Let us mention that we could treat in much greater generality these
mixed problems but we will skip here these straightforward extensions.
Definitions: Let u € C(@x]0,T[). We will say that u is a

1) viscosity subsolution of (15) if for all ¢ € c1 (Qx10,T() the following property

holds: at any local maximum point (xg,tgq) of u - ¢ on Exlo,'l'[ then we have

k1 ]
5t (xo,to) + H(xo,to,u(xo,to),l»(xo,to)) <0 1if x, efl

(16)
3 (v )+ mixt Sutx e ), Dex e ) + 03 (x e ) a(x ) <0 if x e 0
for some 9 e [0,1).
ii) viscosity supersolution of (15) if for all ¢ € (:1 (3 x [0,T]) the following property
holds: at any local minimum point (xg,t;) of u - ¢ on axlo,!'( then we have

3

-3-3- (xgety) + Hixg,t ulx .t )uDb(xy, e 1) 2 0 if x €@

0
7

3 (xyet ) + mOxg utx L), De0x Lt ) - 032 (xyet N *n(x 1) > 0 1f x e 0
for some 0O e [0,1].
11i) viscosity solution of (15) if it is both a viscosity subsolution and supersolution of

(15). -

Remark: Exactly as before we may replace c! by c?, c.. or C‘ a x (0,T]); local by
global, global strict or local strict.. . We could also use the analogues of (8) - (9).
Finally, one can give a definition in terms of sub and super differentials only as in

(8') - (9°)ee. &
[}

Exactly as in [9], (7]}, its is useful to extend (16), (17) on n x {7} as follows

Proposition S5: lLet u e c(axlo,'r]) be a viscosity subsolution (resp. supersolution) of
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(15). Then for any ¢ € C1(axlor'!'])o if (x,T) is a local maximum (resp. minimum) point

of u=¢ in 0Ox]0,T] then have

%:- (x,T) + BH(x,T,u(x,T),Dé(x,T) >0 if xe€Q
(18)

@

-a-% (x,T) + H{x,T,u(x,T),Dé(x,T) + 0(%-:- (x,T)) n(x)) €0 if x e 32

for some 6 € [0,1] (resp.

3 (x,1) + BUx,7,u0x,T),Db(x, ™) > 0 if xeQ

(19)
-:-% (x,T) + R(x,T,u(x,T),Dé(x,T) - 0(-:-"; (x,T) ' n(x)) >0 if xe8

for some O € [0,1]).

Proof: Again, it is almost the same proof as in (9], (7] so we will just sketch it.
without loss of generality we may assume that (x,T) € 30 x {T} is a local strict maximum
point of u ~ ¢ on axlo,'l'] where ¢ € c'(‘dx)o,-m. Then for € small enough

u-¢- e has a local maximum point (xc,te) in ﬁx]o,'r[ such that x. z x, t: T.

T-t
Using (16), we find

(14

___e__+ re (x ot J4H(x ,tc,u(x ,tcl,m(xe,tcn <0 if xe el
('r-t )

£ *-a-’- (x_,t )+H(x e'te ulx .t ), Dé(x e'te )+0 (—’- (x T n(x )) €0 if x e 23R
(r-t, )2 t € €

for some Ot e {0,1]. and we conclude easily letting ¢ go to O.
]

Remark: Exactly as in section I one may prove that if there exists u e C (nxlo T()

solution of

3ue Sut
% - cAue + “e(x't'“e'mt) =0 4in Qx]o,T(, o 0 on d0Qx]0,T(

where ﬂe converges uniformly c¢n compact subsets of 'fi‘::]l),'l'["lbﬂN to H and if u,
n

converges uniformly to u on compact subsets of axlo,'r[ for some sequence en ; 0

then u is a viscosity solution of (15).
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IIl. Uniqueness results.

1 We begin with uniqueness results concerning viscosity solutions of (1) - (2). we will
! use the following assumptions
»
Ez (20) B(x,t,A(x=y)) = hiy,t,A(x-y)) > -Ol(llx-ylz + |x~y|)ox,y @ Q,
R for |t| <R, A > 1, and whexre “wis) +0 it s+ 0
-
(21) VR <o, Yn > 0, H(x,t,p) ~ hix,s,p) > Yn(t-.) if =-R<g< t <R
k for all xeq, pexy R
l
i (22) sup{|Rix,t,p) - H(x,t,@)l/x @38, |t) <R, lpgq] <€} + 0 as e+ 0
for all R ¢ =, “
[ S S
Then our main unigqueness and comparison result is the . -4
X Theorem 6: Let H € C(O x [-R,+R] X B )(VR < =) satisfy (21). Let u, v e C(@) be N

respectively viscosity subsolution of (1) = (2), viscosity supersolution of (1') -~ (2) S

vhere (1') is the equation given by

(1*) Hix,v,Dv) + £(x) = 0 in

and f € c(?i). Then, if we assume either that (20) holds and R is convex, or that (20),

(22) hold or that u (or v) e "".(ﬂ): we have

nax (u-v)* < -;--u !*

where Y = Ya and Ro = max(lud_,ivl_) .
0 a

Proof: Of course the proof follows the corresponding proofs in (7], (9] the main changes

being at the boundary. Hence, we consider as in (7], [9]: M > Rer B @ c.(l),
2
0GB 1, B(0) =1, B(t) =1 -7:,- for t small, B(t) <1 if t ¥ 0, Supp 8 < [-1,41]s

B (p) = 8tlpl/e) for pe M, € > 05 wix,y) = u(x) - v(y) + 3 B (x-y) for x,y eqR. W

may assume that L = max (u-v) > 0 s0 that max w > 34 + L > 3M. Hence, if (;,;) is a
7 o e
maximum point of w(x,y) on £ x ] we deduce

;-y-emppﬂc and thus |;-y-|<c .

In fact, we have




AR Bt e (e I e-a Bl Sy, -3 ) R aran d " asen 3 —y -
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M B (x-y) + u(x) = w(x) +w () > Max w2 M+ L
q
where w, is a modulus of continuity of v, and thus we deduce easily from the property
of 'c that
(23) I%¥| ¢ c8(e), V8, (x-p) = ~(=-y)/e® .
As in the usual uniqueness proofs, we observe freezing y at -y-, resp. x at x that
-— + - - - -— -
Ec - -3uvsc(x-y) €D u(x) n Dv(iy) (even if x or y e 3Q). Therefore applying the
definitions and assumptions

H(x,ulx),E) €0 if xe8

(24) - - -
li(x,u(x),Ec + O(ES,n(x)) n(x)) €0 if x e 30, for some o € [0,1)

By, v(y),) >0 1t yeQ

(25)
| HEw(T).E - 0E (TN 'n(¥)) >0 4f Y e, for some 6 e [0,1) .

Next, if 2 is convex, we observe that

(E (X)) = M(x—y,n(x))E >0 1f xedq, yel

(§g/miy)) = My aPIEZ<co 1f o, yenm .

Hence the casas vhen x or ; belong to 38 do not modify the usual proofs and we
conclude.

On the other hand if £ is arbitrary, then as it was observed in P. L. Lions (29},
P« L. Iions and A. S. Sznitman [33] there exists C, » 0 such that for all =z,,zp @ 2
(26) (24-23,n(29)) » Coleq=z;12 if zq e 20 .
Using this remark we deduce from (23)

e2(E, n(x)) > =C8te) 1f X e, (E (e < cdte)’ 1 yeaw .
Therefore we see that the additional terms in the Hamiltonians due to the possibility of

finding x or ; on 3R go to 0 and using (22), the usual unigueness proofs still

apply.
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Pinally, if u (for example) is Lipschitz on -5, then we observe that

L+ M8 (xy) + Clx-y] > w(x,y) = Max v > Max w(x,x) > M + L
Xey xeq
and this combined with the properties of Bc yields
I=-y] < cc® .
. - - -
Therefore E‘ - Ju(x-y)/cz remains bounded while “c'n(x” (resp. (Cc.n(y)) ) go to
0 |if ; e 30 (resp. ; e 33) as €t goes to 0 as we saw before. It is then easy to

complete the proof. -

Remark: It is not surprising to see that in such problems the convexity of & seimplifies
matters. Since (1) - (2) is intimately connected with control problems of reflected
processes (see section VI below) such simplications have to be expected in view of the
works of A. Pensonssan and J. L. Lions {S); H. Tanaba [39); P.L. Lions, J. L. Menaldi and

A. S. Sznitman [34].
[ )

We have proved the comparison result under three sets of assumptions: it is possible,
however, to unite them in a single statement involving and rather technical conditiom.
With the notations of Theorem 4, let & be a modulus of continuity of u (or v, choose
the best onel), denote by te the maximum solution in )0, of
(27 wie,) = - e2

1

observe that tce' +0 as € goes to 0. Then we will assume

lim sup((y,t, ZXL - 6" (ZL,n(y) *n(y)) - mix,e, ZL o
€40

(28) + 8(=XL,n(x)) n(x))/(x,0) € Bx(0) or (x,0) € 38 x (0,1

{y,0') € Qx(0) or (y,0') @ 30 x {0,1)s |x-y} ¢ te lt] « B =0

for all R < @, The proof above gives then
Corollary 7: Llet R @ C(R X [-R,+R] x B )(VR ¢ =) satiefy (21). Llet u,v € C(@) be
respectively viscosity subsolution of (1) - (2), viscosity supersolution of (1') - (2).

lat feC(l) and set Ry = max(ful_,dvl ), Y =Y, and let ® be a modulus of
0
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continuity of u (or v). Then, if (28) holds, we have

(29) max(u=v)* ¢ %m et .

Q Q | ]
Remarks: Of course (28) is awkward. On the other hand it holds if (20) holds (condition

which was introduced by R. Jensen) and 8 {s convex, or if (20), (22) hold, or if u |is

Lipschitz since in that case |t€| < Ce. In addition if u e c®® for some a € jo, 11

1/(278),  4or example if H(x,t,p) = ¢(x)|p|™ + vt with m > 1,

0,0
v

then e | < ce
¢ e I".(ﬂ) then (22) holds only if ¢ 2 0 on 38 while if uecC {28) holds if

a> (m=1)/m.
]

We will not state any results on Cauchy problems like (15): let us mention that if

u,v € c(?i x [0,T]) are respectively viscosity subsolution of (15), viscosity supersolution

of
(30) :_: + H(x,t,v,Dv) + £(x,t) = 0 in @ x 10,7[, %—E -0 on 38 x 10,7

then provided the analogues of (20), (21) (with now Ya > =®w), (22) (or even (28), where
the inequalities are uniform in t € [0,T), hold then the following inequality holds

rax(u=v)*(£) ¢ 7% maxtu-v)*(0) + [7 max £¥(0)e %8 .

Q Q Q

IV. Existence results.

ror problem (1) - (2), the main existence result is the following:
Theorem 8: Let R € C(8 x [-R,+R] X ;R)' assume there exist u,u € C(R) viscosity
supersolution, resp. subsolution of (1) - (2) and assuwme that H satisfies (21) and either
(20) and 9@ is convex, either (20) and (22), or that
(31) H(x,t,p) + +» as |p| * +=, unformly in x € 2, t bounded .

Then there exists a unique viscosity solution of (1) - (2).

e
.
.
. )
”
aes °\

v’

e Remarks: 1) If in (21), is bounded away from 0 independently of R then one may

YR

waw v
)

',‘I.' ”
S

choose ; = ¢, u=-c for some large constant c.

-
.
.

e
b
A
* »
e

11) The uniqueness part of the above result is contained in Theorem 4 since (31) yields

o —
::.: that any viscosity subsolution (in £) of (1) belongs to w'T(2) (see {91, (25) for a R
s':\ Ry
- N
SN .-‘.‘
X -15- RO

Riu




proof of this fact).

Proof: To simplify the presentation, we will make the proof only in the case when
H(x,t,p) = H(x,p) + At, with H satisfying (20) (or (20 - (22), or (31)...) and A > 0.
Our first observation concerns a priori estimates on solutions u of (1) - (2). By
comparison with ; and u we obtain uniform bounds. Now, exactly as in H. Ishii (23)
and M. G. Crandall and P. L. Lions [11], one may obtain an estimate of the modulus of
continuity of u: indeed one checks easily that v(x,y) = (u(x) - u(y))* is a viscosity

subgolution of

(B(x,bxv) - B(y,-byv)) A0 +Av<€0 in @ xg

Eao on 22w .
Then we claim that under the assumptions of Theorem 6, we can find for all € > 0
constants C = C(e) > 0, Y =Y(e) € ]0,1[ such that
g (x,y) =€+ Elx-le
is a viscosity supersolution of (32), where vy € )0,1], E depend only on the moduli

involved by (20), (22). Formally, one checks this claim by computing

(H(x,D 2.) - "‘Y""y'c”- +z_ 32+ AT|x-y]Y +

- o@rlxy|" + lx=y) ., vxyen
and if for example x € 30, y e
3zc -
ntgf“(oun(x,oxze + e(,n—) n(x)) - ﬂ(y,-byz‘))} +)z, >
> Ae + AT|x-y|Y - w(Cy|x=y|” + |x=y|), if @ is convex

> Ae + AT]x-y|Y = w(@r|x=y|" + |x~y|)-u(C°Y|x-y|Y)

where Co 1is given by (26) and 1 {s the modulus given by (22). The remaining cases
xefl, yedd or x,y € 38 are estimated in a similar way. Then, one concludes easily as

in M. G. Crandall and P. L.Lions [t11]. In conclusion, if 2 1is convex and (20) holds, or
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if (20) and (22) hold, we have obtained bounds and a modulus of continuity for any solution
of (1) = (2) which depend only on the moduli in (20), (22).

Therefore, by easy approximation arguments, we may assume that H(x,p) is smooth and
that H 1is Lipschitz on ax ‘H. If (31) holds, since one deduces from (9], {25] easy
Lipschits estimates, getting existence in that case is also enough to conclude (as usual
for existence results in Ramilton-Jacobi equations). Then, the particular case is treated

via the vanishing viscosity method

du
{32) -cA\nt + n(x,mc) + Auc =0 4in qQ, u, [ ] Cz(u'), ‘-ni =0 on 3 .

The existence of v, is insured by standard results on quasilinear equations (see for
example {20]): recall indeed that H has bounded derivatives in (x,p) on ax l'.
Using maximum principle, one obtaine uniform bounds on u.. To obtain l“.(ﬂ) bounds, we
may use the methods of P. L. Lions (30], {31] based on Berngtein ideas: indeed, if
vec?@ satisfies (2) then
) 2 2
(33) T [9vi® < c1l9v| on
where C, depends only on % and ¢y =0 if 8 is convex. Then, we consider a function
e ¢:2 ) satisfying
(30) ¢>0 1n T, §2e <, on a0
cyd

{take for example ¢ v ¢ where 4 = Aist{x,38) nearby 0982). We finally set w =
QIVuclz and we compute

3R 2 2

“thw + 3= Vv + 2w < ~2¢¢|0%u | € - 4aco, 3,‘\\‘3 il *

+ 2w in 9, §5¢oman

IH oH
where M depends only on 2, l-;;'. and C depends only on @ and ix=d_. Applying
Cauchy=Schwars inequalities and using the maximum principle, we see that for A > A1
w€¢K on F
vhere K is independent of ¢ and ), depends only on 1, '%'E'-' Using Theorem 1, we

deduce from these estimates the existence of a viscosity solution u of
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N
A
> R(x,Du) + (A¥d_Ju = A f ua"‘-o on M
. 1 1 *n

N

where f @ ""(ﬂ)o But then Theorem 6 yields that if uy, uy are the solutions
.: corresponding to f4, £ we have
» x1
S naxla,uyl € gy maxle, -1l .
o} Q 1 8

Therefore, by an easy application of the usual iteration method, we finally obtain the
existence of a solution u of (1) = (2).
4 ]
‘; We now turn to some regularity results:
' Corollary 9: let N @ C(8 x [-R,+R] X B )(VR < ®) satisfy (21), let ue C(@) bea
i viscosity solution of (1) ~ (2). Set Ry = lul,, Y =y, . We finally assume that W
o 0
- satisfies
- (35) IH(x,t,p) - Hiy,t,p)| € ¢ylx-y| |p| + clx-y|, ¥x, y @ 8, wp

for all |t| € Ry, for some constants Cy, C > 0; and that Q is convex or that N
'j satisfies
:: (36) In(x,t,p) = A(x,t,@)] € Colp~ql, ¥x € 38, vp, q & #*, ¥|t| < »y .
- In the first case we set O = Y/C, if Y < Cy, 0 arbitrary in 10,1[ if y=Cy, 0 = 1
. 1f Y > Cy while in the second case we set 0 ~ V/(C,4C,Co) 1if Y < Cy9C3Cp, O arbitrary
2 in ]O,11 1f ¥ = Cy4CC, 8 = 11f Y > Cy4CCo - where Cqy 1is given by
L]
oy (26).
N Proof: One just checks that clx-yl° is a viscosity supersolution of
5 (A(x,u(y),D,v) = B(y,uly), =D v) A0 + Yv >0 in @xQ
N
> a0 on @)
X wvhile (u(x) - u(y))’ is a viscosity subsolution of the same probles. We then conclude by
:: an application of Theorem 4.
. -
L
: Ve now conclude hy stating the corresponding results for the Cauchy problem (15).
; let T e )0,°[, we will say that H(x,t,s,p) € C(T x [0,7] x R x X') satisfies (20), (22)
&
"
-
X =-18-
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if (20), (22) are satisfied uniformly in t @ (0,T]. Pinally, we will replace (21) by

(21*) dy > -., H(x.t,lz,p) - H(x,t,s,,p) > Y (-2-l1)

‘.
Ad »

for all x @ E, tef[0,T], sy <sy, pe 2 and we will use the assumptions

A
N

(35') |B(x.t,8,p) = Hy,t,8,p)] € Cqlx=y| |p| + cR\ wxy,t.p

PR
)

for |s| <R,

(36*) [A(x,t,8,p) = B(x,t,8,q] € Cylp-ql, ¥x € 30 vp,q,t ,

. - -
T ]
ot

for 'l’ < R, where c‘:, CR, cg are various positive constants.

¢
W
(R
’

: Theorem 10: et uy € C(M), let R e c@ x [0,7) x Rx R') satisfy (21'). We assume in

addition either that (20) holds and £ is convex, or that (20), (22) hold, or that H

satisfies
(37) H++ as [p[ +* uniformly in x €%, t € (0,7], & bounded
(3e) H(x,tq,s,p) - H(x,t;,8,p) > <Cpltqy=ty)* for [s] <R

for all x e 3, pe R, te {0,T]. Then there exists a unique solution u of (15) in

C(E x [0,T]) satisfying: u(x,0) = ug(x) in f. 1In addition, if we assume either (35')
and @ convex, or (35') and (36'), or (37) and (38), and if ug € W''"(3) then

wew' ' @x 0,70,

V. _More general boundary conditions.

We consider now the case of the general houndary condition (5) where Y is smooth
(say c3) and Y satisfies (6). We first define viscosity solutions of (1) - (5).

Definition: u @ C(a) is said to be a viscosity suhsolution (resp. supersolution) of (1) =~

(5) if we have for all ¢ € c (D)

at each local maximum point xq of u-=-4¢ in ﬁ, we have

- (39) H(xg,u(xg),D8(xy)) € 0 if xg e @

X H(x,,ulxg),D8(x,)) € 0 if x, € 30 and 3-3- (x)) > 0

E {resp.

-

s .

< -19-
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sy
v
- "at esch local minimum point Xy of u=-¢ in 2, we have
(40) H(xo,u(xo),no(xo)) >0 if xg e
¥ H(xy,u(x,),D(x,)) > 0 if x €28 ana 3% (x) < 0) .
< 0’0"’ 0 0 Y o0
Finally, u is a viscosity solution if it is a viscosity sub and supersolution.
K| [
‘f Remarks: i) One obtains equivalent formulations replacing D¢ by £ € D‘u(xo) (resp.
~ D7u(xqg)), or ¢ e cl by ¢@c2, pe c”, or local by global, global strict or local
. 1.5 )
o, strict. Finally, one may consider only ¢ € C () such that s$-> 0 on 38 (resp.
: %$-< 0 on 32). Arguing as in Theorem 2, we also remark that u is a viscosity sub-
v solution of (1) ~ (5) (resp. supersolution) if and only if we have
vx € 2, v e ptu(x), H(x,u(x),§) < 0
(39%) + - n
vx e 90, v @ D u(x), Inf H(x,u(x), £ + 6(£,Y) ———=) € O
{n,Y)
. 0<0<1
v\‘.
. (resp.
N
o vx € 8, VE B u(x), A(x,ulx),f) > 0
” (40°) _ + n
. vx € 3Q, vt € D u(x), Sup H(x,u(x),§-0(E,Y) 7;;—-4 >0) .
R 52)
K 0<6<1
: (11) Exactly as in sections I, II, one may prove stability results and the relations of the
by
g above definition with the vanishing viscosity method.
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_: We now turn to existence and uniqueness results: firat of all, following P. L. Lions
' [29), P. L. Lions and A. S. Senitman (33), we introduce a;4(x) = ay;(x) (smooth on v,
o ’

5‘: say Gg(i‘)) satisfying

Wy

N

i‘-; . (41) v>0, wer', (a,0x)) > 1,

)

i (42) x €90 a(aY,(x) = n(x) for 1C1CN .

o Clearly if we had Y = n, we would just take a;4(x) = §,,. Next, the matrices a;4(x)
.
: induce a metric on R defined by

o 1
‘. alx,y) = int(f;[au(ﬁ(t))e‘(t)éj(t)]édt/ﬁ ec'io, 11

.
o

(43)
£(0) =y, £E(1) = x}

e and Lix,y) = dz(x,y) satisfies

Lix,y) = m(I; au(E(t))éitjdt/E e ¢'(10,11:2",
(43')
£(0) =y, E(1) = x} .

Then it is well-known that for |x-y| small (say |x~y| ¢ €), L is c', there exists a
unique minimizer in (43) or (43') Eo and

1
v, (3 Lix.y)} = aulx)eo(i)

(4 'vx{% L(x,y)} - .ij(x)(xj.yj)l < clx-ylz

a,8 >0, alx-y| ¢ L(x,y) € B]x-y] .

with these notations, we introduce the following assumptions:

o, H(x,t,AV_L(x,y)) ~ Hly,t,-A9 Lix,y)) »
IN.‘I x y

N (48) 2 -

- - UR(AIx-yI + |x=y]) for x,y %, |x-y| small, A >0, |t] <R

o
[N

vhere wp(s) +0 if s * 0y

(46) ZA >0, Hix,t,p) - Hix,s,p) > A(t-s), ¥x €T, vt > s, e ' .

AN Y Y

We then have the

Theorem 11: 1) Uniqueness. Assume that H satisfies (46). Let u, v € C(R) be

respectively viscosity subsolution, resp. supersolution, of (1) = (5), resp. (1') - (5),

In addition assume that either (45) and (22) hold, or ulor v) € V".(ﬂ)- In both cases,
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(29) holds.

2) Existence. Assume that H satisfies (46) and that either (45) and (22) hold or (31)

holds. Then there exists a unique solution u € C(a) of (1) = (5).
a

Remarks: i) Analogous results holds for the Cauchy problem. One just makes similar

uniformly in t @ [0,T) (replacing A > 0 in (46) by A > -=), 1In addition, we may

consider as well vector fields depending on ¢t.

- i1i) We could treat in a similar wvay more general boundary conditions such as

. -:% + f(x,u) =0 on 2%

- wvhere f(x,t) € C(38 x R) is nondecreasing with respect to t.

ﬁ 111) Of course, vhen (31) holds, the solution u belongs to W''"(2). And if
satisfies (35), (36), one may prove that u € c°'°(§) where 0 depends only Y, 8, Cq,

C3, A« In particular 6 = 1 if A is large.

iv) Clearly if Y = n, choosing ag4(x) = 6“, we £ind d(x,y) = |x-y|, L(x,y) = Ix-yl2

and (45) reduces to (20). -

PSS

Proof: The proof of this result is very much similar to the ocnes of Theorems 4 and 6. The

1
uniqueness is proved using B_(x,y) € c1(§x§) satisfying for |x-y| € 3 €, B_(x,y) =
€ 2 €

1 -sz.(x,y), B, 50 if Ix-y| €, 0€ B, <1 if x#y. We then observe that in view
2¢

of (44)

R N XL N

(T,LEx,y), Y(xD) > &, (Y, (x) (x,=y,) = ¢|x-y|2 E:l

> (n(x), x-y) = clxyl? > ~(cocy) |xy|?

O
+ AT

for x € 30, y € 3, |x-y| small. This allows us to mimick the proof of Theorem 4.

For the existence, we also observe that replacing |x—v|Y by L(x,y)*l2 we ohtain

exactly as in the proof of Theorem 6 estimates on the modulus of continuity of a solution

u of (1) - (5). Therefore, we just have to show uniform w"'(m estimates on the

PR AP AN

solution v, of
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':A“c + “("'“:'D“c) =0 4n 1N, w " 0 on A

where H is smooth, Lipschitz in (x,t,p) and satisfies (46). Again, this is achieved as
in the proof of Theorem 6 using the ideas of I L. Lions (30], (31]: if v e sz), %—:— -0

then

-— A vay) < Cl"vl2 + 2a

a (A A
F (91j 1y 13 Y( 1v) v

3

< ¢:|"v|2 + 2,2 (R V)3,

3

3
< clvv)2 + 2gijn1?jv '5%

13

vhere C denotes various constants independent of v. If we choose g,_j(x) - (‘13("”-1'
we obtain gy4my Yj and thus
L) 2
i 2 va < c|™ < A vd o
ay <qij v jv) c|v]| C(qij v jv)
This allows us to argue as in the proof of Theorem 6.
In fact, it is possible to extend Theorem 11 (and Theorems 6, 8, Corollary 7) by

considering the distances relative to 5 i.e.

L'(x,y) = 1nz{!; (r(:))Pitjae | eeccto,11:8),F(0) =y, EC(1) = x ,

Bij
F(e) e we e (0,1} .

Replacing L by L' in (45) enables us to get rid of (22); on the other hand checking

{45) then become difficult.

VI. Applications to optimal control and differential games.

We begin with optimal control prohlems of reflected deterministic problems: let A
be a metric space, we consider systems whose state is governed by the solution X, of the

following ordinary differential equation with reflection on the boundary

. t _ ot
X, =%+ 10 b(x_,a_)ds 'o Y(X )dA_ for t >0

with xt e 3-, ¥t >0, A is continuous, nondecreasing and

(47) t

t
A= !0 19q(%g )4, for t >0

“23=
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here and below a_ is the control process i.e. any measurable function from ([0,#{ into

t
A. Heuristically, this dynamic problem corresponds to a usual controlled ordinary
differential equation (with dynamics determined by b(x,a)) while X, 1lies in Q, when
X, crosses 38 X, is “pushed back in a» along the direction Y(xt) with a "force"
dAy. This is one way of realizing state constraints (here X, € a vt > 0) by specific

boundary actions on the system: the above one is probably the simplest possible.

Provided convenient Lipschitz conditions on b are assumed (see below) problem (47)

admits a unique solution (X.,A,) - see for instance {33]. We then introduce the cost

function and the value function

L ] =t -_—
(48) I(x,a,) = [o £0X, ,a0e at, vx e @ l"
(49) u(x) = inf J(x,a,), ¥x € Q o
a .
t v
where the infimum is taken over all possible control processes. We will assume that i

A >0 and that f, b satisfy -
Ib(x,a) - bly,a)| < clx-y|, ¥x,y € Q, va € & ; -
(50) { |b(x,a)| + |£(x,a)] € c,¥(x,a) @ W x a; b, £ are continuous on Qxa;
tix,a) - £fly,a)] < ¢ m(Ix-y]), ¥x,y €8, va € A, and m(t) + 0 as ¢t + o, .
The above control problem is an infinite horizon problem; we could treat as well time-
dependent finite horizon problems (which in some sense are simpler hut involve heavier
notationsl!).

The usual argument of dynamic programming yields that

- -y —
(51) ux) = ine{[E £0x_,0)e %8 + uixe ™}, vx e T
. %
. where t > 0 (we could even choose t depending on the control process). In addition,

u e c(R). Both statements are proved exactly as in P. L. Lions (25) (see {29] for a
proof); let us just mention that the continuity is easily derived from the following

1: x2 e H and let

observation: let xg, X;‘: be two solutions of (47) corresponding to x
aij("’ be the matrix introduced in the preceding section. We consider ¢ € c1(5) such

that %%"1 on 32, and we set
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1 2
¥, = exp M{$(X) + 4(X\)} for t 20

where M 1is to be determined. Then for t > 0

&Y
o2t

1
d[ilt(aij (xt) + .13

2 1 2 1 2
(xt))(xt - xt)i(xt - xt)j] <

a ale ga
LI 2 B

. 1_ 202, 1 _ 212, .1 2
c(n)lxt xtl dt Mv¢t|xt x| “tan, + al) +

1 212, .1 2 1 1,1 2 1
+ cvt|xt xtl (dA_ + aAy) 2vt.1j(xt)yj(xt)(xt X, ) A,

2, .2 2
(xt)(xt -X )1dAt

-

2
-2y a (xt)Y

t i) 3

where C does not depend on a,. x!, xz, t, M. Next since dA: charges only the set

where X% e 3, we see that the last two terms may be bounded by

t
- 1 2,2 1 2
.o zcolxt xtl $ (A, + an) .
Therefore, choosing M large enough so that: Mv > C + 2co, we deduce easily from
k Crinwall's lemma that

At
‘anlx‘-x

1 2,2 2

Ix, - x| | + w20 T

wvhere Ao depends only on the Lipschitz constant of b and on Q, Y. :»‘_-
Once we have the continuity of u, the following result is to be expected ::-::

(4
.

Theorem 12: Assume (50). Then the value function u & C(H) and u is the unique

viscosity solution of (1) = (5) where the Hamiltonian H(x,t,p) is given by

(52) H(x,t,p) = sup [-b(x,a).p - £(x,a)] + At .
aeA

Purthermore, we have

¥x e 3, v e D+u(x) (resp. ¥E € D u(x))

(53)
sup[-b(x,a).§ + (b(xgd),n(x))+(Y(x).n(x)) 1(€.Y(x)) - f(x,a)] + du(x) € 0

GEA
(resp. > 0) .

Proof: We already know from [25) that since u satisfies (51), u is a viscosity

solution of (1) in Q. Hence, we just have to check that u satisfies the viscosity

properties on 30. To do this, we will first check (53). We will only prove the case

when x @ 3R, £ @ D u(x) (the other case being simpler). let ¢ € C‘(m, $(x) = ulx), o]

.
L
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o
[
.

.
PR SN )

TC 0, 0 e e
DA AT
S04 50




Vé(x) = £, ¢(y) < uly) for y e 5. y ¥ x. Following the proof in [25]), we deduce from

(51)

A -xt}
’

#(x) > tne([7 £0x_,a )e”

%

%as + $(x,)e v >0 .

And we deduce easily as in [25]

supl=(§, £ [% bix,a)a8) + (5, 7 [Evix an ) - £ [E £ix,a )as}
(54) %

4+ Au(x) > ~€(t) + 0 as t + o, .
In addition, from the results of P. L. Lions and A. S. Sznitman (33]) we obtain
+ -1
(55) o< a, < (b(xt.ct). n(xt)) (n(x,),v(x.)) ‘ac .

Now if (E,y(x)) > 0, it is easy to deduce (53) combining (54) and (55). On the other

hand if (§,Y(x)) < 0, we argue by contradiction and we assume that there exist § > 0,

a € A such that
(53*) =(b(x,a),f) + (b(x.u).n(x))+(n(x),Y(x))-1(E.Y(x)) - f{x,a) + Au(x) < =8 <0 . ( }
We may assume that (b(x,a),n(x)) > 0 since if this is not true (54) and (55) easily yield

a contradiction. Now, if we choose a, Z x, and if Y, is the solution of

* -1
Y, = b(Yt.G) - (b(Yt,G).n(Yt))(n(Yt),Y(Yt)) Y(Yt)' t>0
Yo - X
then Y, 32 for all t > 0 and setting By = [ (b(¥,,a),n(¥ )N(n(Y ). Y(Y )) a8 we
see that B, is increasing for t small and thus by the uniqueness of the solution of
(47) we have for t small: X, = Y., A, = By. Then, (53') yields for t small
1 ¢t [
-(E,b(x,a)) + (€, [ VX )OA) - £(x,a) + Aulx) € - =
and this contradicts (54). Therefore, (53) is proved.
To prove (39), we consider x e 38, £ @ D+u(x) and we introduce XO(E) = gup(A > O,
€ + An(x) e ptu(x)): recall that if XO(E) <® then H(x,u(x), £ + Ag(§)n) € 0. There-

1

fore we may assume that AO(E) > (E,¥(x)) T (n(x),y(x))" ' = X‘. Of course, if (E,y(x)) > 0

i.e, X, = 0, then (53) immediately yields (39). Now if (£,Y) < 0, we observe that
£+ X‘n(x) e D*u(x) and using the fact that u 4{s a viscosity solution of (1) one deduces

from the extension technique to the boundary of M. G. Crandall and P. L. Lions (9],

o

['4 -f.::l X

l. l. ‘. -
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M. G. Crandall and R. Newcomb [14) (see also [27))
sup{-(b(x,a),E + X‘n(x)) - f(x,a)/a € A, (b(x,0),n(x)) € 0} + Au(x) € 0 ;
on the other hand, (53) yields

‘:‘ sup(-b(x,a).§ = (b(x,a),n(x))"A, = £(x,0)] + Au(x) € 0 .
o . @A
Combining these two inequalities we conclude.

We now turn to differential games: we will consider Aifferential games for reflected

.78 .
x; 5
A processes and we will use Elliott-~Kalton's formulation [15), [16], thus following the T
’ approach of L. C. Evans and P. E. Souganidis [18]. lLet A, B two compact Betric spaces, we :
- will controls and strategies for both players by =
-
- A = {a, measurable from [0,®[ to A} e
B = {St measurable from [0, to B} -':::'
. A=1{a:B*A a nonanticipating} ':':::
. B={8:A+>B, 8 nonanticipating} ,_,_,1
- 2
L where a nonanticipating means: GIB:) = GIB:] a.e. on [0,T) if B: - Bt a.e. on
- [o,T). For a, €A, Be B (resp. Bt eB, ae A) we define the state of the system by .
the solution of L
- r ——
- t - [t .
o X, =x+ I bix .0, ,Bla ))ds - [; V(X )aK , 1
. E
: < xt e 5,'& > 03 Kt is continuous, nondecreasing on [0,»[ ; {;'-‘
- kxt = [} 15qX, 08K for t >0 -
o o
' (resp. 14
- r i
R
- t - [t -8
' Y, = x+ [ b(x_,al8_],8 )ds 4 Y(x )dr, oo
- - =
4 Y, e a,ve > 0y L, 1is continuous, nondecreasing on [0,»[ ;

PR
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We next define the upper value and the lower value functionsa by
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-— - At -
u(x) = sup inf [, £(X_,a_,Bla ])e ot el
éeB a.ea 0 £ e )

u(x) = inf sup I; f(Yt,a[Bt].Bt)e-“dt , el .
aeh Bten

And we assume the analogue of (50) on f(x,a,B), b(x,a,8). Combining the methods
introduced above and those of L. C. Evans and P. E, Souganidis [18] we obtain

Theorem 13: The value function ;, ue C(E) and are the unique solutions of (1) - (S)
where H 1is given respectively by

H,(x,t,p) = sup inf [-b(x,a,B8).p - f(x,a,B)] + At
aeA fep

Bz(x,t,p) = inf sup (-b(x,a,8).p - f(x,a,8)] + At .
BeB a€A

Furthermore, ;, u satisfy the analogues of (53).

VIl. Erqgodic problems.

In this section we consider an Hamiltonian H(x,p) satisfying
(31') H(x,p) »= as |p| + +», uniformly in x e @
(and H e c(Q x IN)). let Y be a vector field satisfying (6). We know from the

preceding sections there exist unique viscosity solutions u, e W‘ '.(Q)'

uew ™Qx 10,T)(Yr < ®) of

du
€
(56) H(x,me) + t:ue =0 in R, W- 0 on 3R

38, j(x,bu) =0 in 8x 10,2, 2B =0 on 33 x J0,=(
ot Eh |
(57)
o -
u(x,0) = u (x) in @
where u® e w''®(Q) (for example).

We want to explain in what follows the behaviour of €u., u. as ¢ goes to 0, or

u(',i:).-g-::l as t goes to +=,




Theorem 14: Under assumption (31'), €u, converges uniformly to the unique up @ R such

that there exists v e c(-ﬂ.) viscosity solution of

k

dv s
(S9) H(x,DV) + ug = 0 in &, w" 0 on 38 . i
In addition, if x, € E. Ve = Ug - “c("o) is bounded in w""(m and any convergent sub- \.-'
- O
sequence of Ve (in ¢(8)) converges to a viscosity solution of (58) satisfying e

V(xo) = 0., Furthermore %u(x,t) converges uniformly on q to ug as t + 4, .
. T
Remarks: 1) We 4o not know if Ye CONVArgen . ‘
11) In general, there is no uniqueness of solutions of (58) even up to the addition of a '_'._ ‘_ll‘.
1

constant. 1Indeed, consider H(x,p) = (|p|=-1)*. fThen clearly uy =0 and v=0 isa
solution of (52). But so is any C (3) function v satisfying: |Dv] < 1, % =0 on

M.

111) Similar ergodic problems are considered in F. Gimbert [21], J. M. lasry [24], P. L.

Lions and B. Perthame [32] but they all involve elliptic equations or inequalities.

(]

o

’
S8
[N

iv) If we keep the notations of the preceding sections, assuming that H(x,p) is given by

Y3

one of the formulas in Theorems 12 - 13, we cbtain the following formulas for ug

o
v ) -

. =
B 4

u, = lim ¢ int [Q £(x, 0,00 et
[ 244 a

t
(resp. ‘::-':.
s - -ct o
U, = lim € sup inf jo £(x 0 ,B{alle "dr , e
€*0 fEB a €A A
t KON
8
8, = lim € inf sup f.o ”xt'“[stl'et)'-“dt) !
€+0 aeA B €p ~—
1 T oy
u, = lm = inf [ £(X_,a )at o
0 el gy 'O t't
t
1 (T 4
- :nf lim o fo £(X .0, )at —
(resp. t T y

u, = lin% sup int I: £(x 0, ,Bla )l
T+ © BeB ateA

[

e , .
= 1im T inf sup !0 t(xt,ufﬂtl.ﬁt)dt) .

T Q€A BtGB
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Proof: By a straightforward use of the comparison result (Theorem 6) we see that

leu ! < 1mtx,000, in T .
Then using (56) and (31'), one deduces *

jou. | €c¢ in @
€

A (in viscosity sense) and thus A is bounded in w".(ﬂ). Now, if for some sequence ‘

-
€r " 0, Ve + Fple
n n

converge uniformly to Vv, ug; clearly ug doss not depend on X
and by the stability results for viscosity solutions v is a viscosity solution of (58).

To prove the uniqueness of ug: we argue ag follows. Let uy, :0 @ R be such that
there exist v, v viscosity solutions of (58) corresponding to ug. :o respectively.
Since v, v are clearly defined up to a constant we may always assume if u, :o

u°<;° ' v<; in a .
Thus, for ¢ small enough so that ug = €v < ;0 - c; on 5, we see that v is a
viscosity supersolution of
H(x,Dv) +\-:'o +€v=¢v in n,%-o on 8 .

Since v is clearly a viscosity solution of this problem, Theorem 6 yields that v > ;

and this contradicts our choice. Thus uy is unique. ‘

Finally, observing that -:% is bounded on £ x }0,%[, we see that Du, :—: are

bounded on & x ]0,%{., Next, we consider w(x,t) = u(x,t) - ugt: w 4is a viscosity '
solution of

F 4 uxon) +ug =0 dn A x 10,00 a0 on 30 x 10,50, wlewg = 0 -

0
On the other hand, if v is a solution of (58), v £ C are respectively viscosity super

: and subsolutions of this problem and they satisfy for large C: v + C > uo > v=C 4n a.
Thus, by the comparison results, we deduce that w € H".(n x }J0,»[). In particular

1 u(x,t) = u

re -%w(x.t)*o as t+ = in c@ .
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