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A FREE ELECTRON LASER WITH A ROTATING QUADRUPOLE WIGGLER

I. Introduction

1,2

Free electron lasers are devices which are designed to produce

coherent radiation by passing a relativistic electron beam through some sort

of spatially periodic perturbation.3

Commonly, a periodic magnetic field,
called a wiggler, is used.
In general, the wiggler field varies transversely as well as axially.

However, in most experiments the initial beam radius, Rb is a small fraction

of the wiggler period, A“ and the transverse variations of the wiggler are
neglected. For example, the field of a periodic helical winding of two wires
around a drift tube to lowest order in ¢ = thb (kw - 2!/1') is commonly

represented by a simple periodic function of axial distance alone
!d = Bod[cot (kdz)ix + sin (kdz,)iy]. (1)

We provided the notation of this field with subscript "d" in order to indicate
that such a field has a dipole character.

Generally, a second field in the axial direction is added to confine the
beam of particles against their natural repulsion.

In principle, one can generate a periodic magnetic field by a helical
winding of 2t wires (£ = 1,2...). A magnetic field of this kind exhibits
helical symmetry and it is convenient to describe it by means of a scalar
potential that satisfied Laplace’s equation.‘ This potential depends only

on dimensionless coordinates p = ar and u, = ﬂw a2 and has a form

1
’ a Il(zp) sin tu . 2)
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;? Where I‘ is a wodified Bessel function of order £, the pitch of the helix :
) [
” a, is defined by, rn
; N
N a, = k,/t (3) e
®
and 0 is the polar angle. By definition the components of the corresponding Il-i;
magnetic field can be deduced from S
'
B = grad 9,. -(4)
b A
p.""."

Consider now that the periodic magnetic field is generated by a helical

winding of four wires as shown in Fig. 1 (the current flow is the same as in a
stellerator configuration).

We expand I, to second order in € and from Eq. (4) we obtain

‘ B =B krsin (20 - k 2)
b r,q o0q q q

. » 8 -
: Be’q Boq qu cos (2 qu)
2 kr
2 -
B =« 20 -
- 2q Boq(-%—) cos ( qu) (5)
i where Boq is the value of the magnetic field at r = kq/21, and the subscript

q indicates that the field is quadrupole in nature. To lowest order in ¢ from

Eqs. (5) we obtain for the magnetic field components in cartesian coordinates




qu = Boqkq (y cos qu - x sin qu)

= +
Byq Boq kq { x cos qu y sin qu)

Boq = 0 (6)
One can show that the field lines of the above magnetic field, Eqs. (6), are
similar to the line forces of a quadrupole magnet continuously rotating along
the z axis. Quadrupole fields are known in accelerator physics for their
focusing ability of the beam current.’
In this paper, we investigate the feasibility of using a quadrupole

magnetic field as a wiggler in free elelctron laser devices as well as a

focusing field to confine the beam. We assume, that if Rb/Xq << 1, the actual

field can be good represented by Eqs. (6)., Because of the strong focusing
property of the field, one might expect that large beam currents could stably
propagate. However, because the field is zero on the axis, the free electron

laser mechanism might be weaker. Here we investigate these issues.

II. Particle Orbits and Stability Analyses

The physical model we develop will consider a relativistic non neutral
electron beam with radius Ry propagating in the quadrubole magnetic field
given by Eqs. (6). We assume that the beam is solid and has a uniform density
nb(t) = n,. The expressions for the equilibrium self-electric and self-
magnetic fields associated with the beam space charge and axial current

I = ~en v, (vb-bean axial velocity) are given by,

.......
.....
...................................................
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E a - 2%)ejn x
xs o

Eys - - 2w|e|n°y

Bxs = Zwlelnosby,

and

. .
Bys = - anelnoﬁbx, @)) :.j}

L2, 2172

for 0 <r=(x"+y) 4 Rb ;;}.

where |e| is the electron charge and Bb = vb/c. The electron orbits within i;jaf

the beam are determined from the equations of motion

[+ 7
e

1 2
va) 2 wb(l - Bzﬂb)x + vzﬂqkq(x cos qu + y sin qu)

1 2
(Yvy) -3 mb(l - Bzﬂb)y + vznqkq(x sin qu - y cos qu)

[N
&la

d 1 2 '
i (sz) =3 Bb(xsx + yay) +'nqkq|vy(y cos kyz - x 8in qu)

= v ( x cos kgt v sin qu)] (8)

where w: = éwnoezln is the beam plasma frequency and Qq - |e|Boq/mc is the

cyclotron frequency. From the above equations and the assumption of this

analysis (kqx (qu) = ¢ ¢{1) 1is evident that vx/vz ~ ¢, and vy/vz ~ €, C e
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therefore to lowest order in € the system (8) reduces to a simple system of

equations describing the transverse motion of an electron.

dvx 1 “: 21
"z_d?'f—3"+vz 5 kq(x cos qu-!-ysin qu)
Yb o
4 2
v 1% %
v, _35.- 5';5 y+v, T, kq(x sin qu =y cos qu) 9)
. [+]

. d _ d
where v = Yo = const. and Bb = Bz = const., hence, at vz e

We introduce dimensionless variables; the distance is multiplied by kq

and frequency is divided by (ch). Then the normalized Eqs. (9) have a form

2
- '§:§ = a(x cos z +y sin z) + 8x
e -—%»- a (x sin z - y cos z) + 8y (10)
dz
where
53 a = ﬂq/(Yoﬂquc).
¥
2 L 2,,..3.2 2
" § = Ub/(ZYoch ) a1

@ measures the strength of the quadrupole fields and § measures the beam
o density. Although we did not change the notation for x, y and z, one should
regard these variables as dimensionless.

In order to solve the system of Eqs. (10) it {s convenient to introduce

”i new variables u and v related to x and y by the following transformation




x = u cos (z2/2) + v sin (2/2)

y = u sin (z/2) = v cos (z/2). (12)

In the new variables, Eqs. (10) becomes a system of homogeneous equations with

constant coefficients, namely

2
d—‘2l+%!-(a+%+6)u-0

dz z

ﬁ-ﬁ‘.+<a-l+s)v-o (13)
dz2 4z 4 :

The solution of this system of equations has, in general, the following form
u = A exp ikz
and
v = B exp ikz. (14)
Inserting this solution into Eqs. (13), we obtain a system of two

algebraic equations to determine the coefficients A and B. Non-triviality of

the solution of that algebraic system provides the equation for k
k2+ ;+ 8)2 - a2 - k2 = 0, (15)

The four independent solutions of the bi-quadratic equation, (15), are given

by
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1/2

ko= |z -6t [2-611/2 ", (16)

If one of the ks has a3 non=zero imaginary part the solutions (14) become

:j : unstable. Therefore, for Im ks = 0, the following conditions are required

v-
e S

[}
Sats!

V8§ < a< (§+ 1/4) (17a)

or equivalently,

T 3
AR
R Rl

2 2 2 2132
2y Q (2w, + k~ 7))
R P LA am
Bo 870 kq c

In the limit of negligibly small self fields (§ + 0) the stability conditions
(17) become

a <'%.

Equation (17) indicates that a quadrupole magnetic field should be strong

enough to overcome the repulsive forces due to self fields of the beam, but

not too strong.

The stable region in the parameter space cz and § is shown in Fig. 2
between the two solid lines, az = § and 02 = (8§ + 1/4)2. It is convenient to

relate the parameter § to the beam current. The relation is

2 2
Ly/1, = 8/2 (8,7))° (kRy)

where Ia - mc3/eszvo is the Alfven-Lawson current.




If From Eq. (17) it follows that the theoretical maximum for § in the stable
region is determined by 6 = (&8 + 1/4)2 and is equal to 1/4., Therefore, in

principle, the maximum electron beam current which is able to propagate in a

0
]

quadrupole magnetic field is

.‘l'..l_.‘ _"." ‘

1.2 2
Iy nax = § Y5 (&R0 I, (18)

1

For example, 1if Yo - 4, qub T kq =3 cm I = 8.5 kA, which

b,max
require B = 3,5 kG.
oq

It 1is also interesting to compare the maximum beam density which can be
confined by a rotating quadrupole field with that which can be confined by a

uniform axial magnetic field. It is not difficult to show in the latter case

§ that the condition for stable orbits 1is
2
- Y0
- 2 S C
a mb < 2 (19)
N
.; where Qc is the cyclotron frequency in the axial field. Comparing Eq. (19)

with Eq. (17b), it is apparent that the quadrupole field with nq - nc can

confine four times the beam curreat.

. III. Single Particle Analyses of a Free Electron Laser with Quadrupole Wiggler

In the previous section we investigated the stability of the electron

o orbits in a relativistic electron beam propagating in a quadrupole magnetic o
field, Eqs. (6), Here, we will ghow that such a field can be used as a ,{;; X
wiggler in a free electron laser device to produce coherent radiation with ;3.{i
wavelength xr = xq/ZY:. Henceforth, a subscript r denotes the radiation ;:a};
s field. ﬁ——«‘
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In our analyses we will use a single particle approach to describe the
interaction of a relativistic electron with the periodic quadrupole magnetic 'fi;i

field and a plane circulary polarized electromagnetic wave. This is analogous

)

to the calculation of Colson” of free electron laser gain in a conventional

wiggler (Eq. (1)), oscillator configuration with a specified radiation

field. The radiation is represented by a circularly polarized electrdmagnetic -
wave
| - . @
E =E |cos (k.z -w .t +¢)i -sin(kz—uwt+¢) iy] o
B =1xE (20)
-r z -r
. @
with 1x’ 1y and iz being unit vectors in x, y and z direction, respec:ively, ;fgf&

and w_ = k c.
r T

The equations of motion for the relativistic electron in the combined

electromagnetic wave (20) and pump wave (wiggler) (6) are given by é;;;;i
v Ee-e -8+ 8,5y (21a) -.._-
v Ee-e -8 -8 (211) .
3%'Y %% = - (By(bqx - pry) - Bx(bqy + prx)- (21¢) iﬁ%é%
#?5-

As before, we kept only terms of lowest order in ¢ and we introduced

normalized variables. We also denoted

e, = e lcos (k(z - 1) + o)1= sin (x(z - 1) + 6‘iy (22)




b, " bqa[[y cos z - x sin z)1_ + (x cos z + y sin zliy] (23)

where
e, " |e|E°/(mcch)

=Q /(k 24
bqa q/( qc) (24)
and x = kr/kq, 1= (ch)t X, ¥y and z are also dimensionless (note that

2
K o= ZYO » 1.

The orbit equations (21) describing the motion transverse and parallel to
the electron stream are coupled, due to the x and y dependence of the pump
field. This fact makes direct integration difficult, even making a linear
approximation. The principal complication is that the orbit has two very
different frequencies, a forced oscillation at the doppler shifted pump or

radiation frequency, and a slower evolution at the beat frequency. To proceed

we will average over the fast oscillation and calculate the motion only on the

slow time scale.

IV, Multiple-Time Scale Analyses

In order to find the solution of the set of the nonlinear coupled

equation (21), we will utilize multiple-time scale analyses.7 This gives the

same result as a similar derivation making use of the covariant structure of

the equations of motion.8 We introduce two time scales, one fast - Ty RS

another slow - T The fast time scale To is associated with the pump field

"frequency" - (ch)-l, and the slow time scale T, is proportional to kqv ’

which in turn is proportional to Qq—l and (|e|E°/mc)-l. Also, in the slow
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time equations we retain as a low frequency term the beat frequency
mr - (kr + kq)vzo

We assume that variations on fast time scale are periodic, and both
variables T and T, are treated as independent variables. To introduce the
difference between fast and slow time scales we consider a formal procedure

consisting of assuming a perturbation expansion of the form

x(to,tl) = xo(To,tl) + xl(To,Tl) + xz(to,tl) + eee

and

d ) ]
at = k13 + T (25)
0 1
from which follows
_d—z-- 32 + 2 32 + 32
de? aro2 ML ael

where we denoted the order of the quantities with a subscript o,l,..., hence

2
X, and 3%—, x; and 3%: and Xy and ;%—7 are zero, first, and second order
1

quantities, respectively.

Substituting Eqs. (25) into Eqs. (21) for zero order equations we obtain




The solutions to Eqs. (26) are

x (1),7) = x (1))

Yo (T1sT,) = ¥, (1))

z (1),7) = zo(rl) + Bo(rl)ro (27)
where azo/azo = Bo(rl) and axolaro = ayolaro = 0, since we assumed that zero

order transverse motion doesn“t exist. The quantity Bo(rl) as expressed in

Eq. (27) is undefined because any velocity which is nearly equal to the

particle velocity will render zo(Tl) and Bo(tl) slowly varying functions of

e

time. To be more specific, we define Bo(rl) = volc in terms of the resonant

velocity, so that

- r _

. Vo kK +k° (28)

- - q

; Since no quantity on the right-hand side of Eq. (28) depends on time, Bo(rl) fj;ji
- is independent of 7. We will now show that this is consistent. 'f

- The first order part for Eq. (21c) is given by

9z 8z
9 1 ] ] ) o
- — P— — P mm— P m— —) = -
- ato (Yo aro) + arl (Yoso) aro (Ylso) aro (Yo 311) 0 (29)

Upon averaging over the fast time scale we have,

% 3

i (v,8,) = 0. (30)

S .-\ »-._

. ot ” >’
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Note that Y, depends only on By» therefore Eq. (30) requires
B, (Tl) = const.

Thus our assumption that Bo is independent of T is consistent. Making use of

this fact we return to Eq. (29) and integrate it once in Toe The resulting

equation is given by ;fd:;ﬁﬁ
3z, 23z 7.. :?

— P } - o0

Yo et 3 * 78, = C(r)) (31) o

o 1 ‘;q

where C(t,) is a constant of the integration. oo

Expanding Y to the first order and utilizing Eq. (27), we find that

3 320 321
Y - YOBO ('5T+ ﬁ:" (32)

Substituting it into Eq. (31) we obtain

321 azo _ C(tl) )

+ 0. (33)
aro 311 Y3

Q

The last two terms do not depend on Ty therefore by averaging Eq. (33) over

To we obtain

azo i} C(rl)
a1t B
1 Yo

Substituting this result back into Eq. (33) we find that
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follows, that

3
Yl(Tl) = Yoaosz.l(rl) (34)
where 3z°/at1 = Bz’l(tl).
Consider now the first order transverse motion. The left-hand side of
the Eq. (2la) becomes
3 x X ax axl

S 4 3 o 0, 3

at_ o 3t 3t (Yo at, T Y137 ) Y3 Yoir®
o o o 1 o o o

Since X, does not depend on To’ the above expression reduces to

ox

? 1
_— (35&)

aro o aro

and correspondingly, for left-hand side of Eq. (21b)

3y
3 1
3t Yo 37 _° (35b)
o o

The radiation and wiggler field expressions have the following form

Zr,1 " era[cos [K[(Bo - l)To + zo) + "1x

- sin [x((Bo - 1) Tt zo) + ¢)1y,] (36)
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- - +
Eq,l bqa [(yo cos (z_ + soro) x sin (z +8 1 )

+ [x cos (z, +B,1) + 7y sin (z + Boro)!iy]. (37)

Combining Eqs. (21), (35)-(37) we obtain first order equations for the

transverse motion

3%y ®ra
312 - - ;7—-(1 - 8,) cos [r((Bo - l)ro + zol + 6]
. + -;;3— [xo cos (z +8 1) +y sin (z, +8 7)] . (38)

and

2

2 1 eta

3_ =5 (1 -8)) sin |k(B = Dt +«z + 4]
T
o
Bob a

-._;:1- [yo cos (z° + Boro) - X sin (zo + 3016)]. (39)

Integrating Eqs. (38) - (39) one finds

e .
xl(To,Tl) - ra 5 cos [t((Bo - Dt + 2z + ¢
Y, (1 = 8« .

bqa

- ;iE: [xo cos (z +8 1) +y sin (z, +8 1) (40)
®ra
V1€t 7y) = = 5 sin [x((B, = 1+ 2z ] +4]
Yo (1 =8 )«

P |

+ R [y° cos (zo +8,1) - x, sin (z° +8,1)]. (41)

15
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The dependence of the right-hand side on T, is through z, which {s a function
of T We proceed with the multi-time expansion procedure. To do so, we
write the second order equations for Eqs. (21). The expressions for the

wiggler field, evaluated along the first order orbit, and therefore correct to

RO

second order are given by

qu - bqa[yo cos (zo + Boto) +y, cos (z° + Boro) - 2,7, sin (z° + Boro)

- x, sin (z, + Bt ) = x; sin (z +8 1) - z;x cos (z, + Boto)] (42)

= - +
bey bqalxo cos (z, + B,T,) + x) cos (2, + 8t )) - z)x, sin (z, + B )

+y,sin (z, +8,7) +y, sin (zo +B8,1,) + 2y, cos (z, + Boto)]. (43)

- However, we are interested in deriving equations governing the particle motion
on the slow time scale Tl‘ Therefore we perform an average over the fast time
scale. We denote this averaging process by < > brackets, for example, Eq.

(20a) becomes
<(3% Y %%)2> == <le,, (1 -8+ <(azbqy)2'> . (44)

For the left-hand side of Eq. (44) after averaging we obtain (32x°/8112).

Thus the second order equation becomes

32x

o = -
Yo -a_tl_f <Bz,l(°rx,1 + bqy,l» <erx’2> + Bo (e‘m’2 + bqy,2>' (45)
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Inserting Eq. (43) into Eq. (45), using the fact, that ﬁz | ad z, do not
1 ]

depend on T, and the assumption, that 3°rx,axo - a‘rylayo = 0, we obtain

321

o -
Yo ;:-f Bobqa <x, cos (z° + Boto) + 7, sin (z° + 8°t°)>. (46)

Analogous to Eq. (46) we can write an equation for the y~component

2

y
0o

2 Bobqa <xl sin (z° + Borc) y, cos (zo + B°T°)>. (47)

Yo
311

Making use of the expressions for x; and y, (Eqs. (40)-(41)) and averaging

over the fast time scale we obtain

2 2
“x e_b b
2 m 228 o |(k+ 1)z + ) -2,
T 2 YZK [+ YZ [+
1 o o
2 2
iy e b b
0 ra qa a
5" 2‘1 sin |[(x + l)zo +¢) - + Ve (48)
atl Yo~ Yo

In writing Eqs. (48), we have utilized the resonance condition, Eq. (28),
which here is expressed as Bo = x/(x + 1), Consider now the second order
equation for Eq. (2lc). The left-hand side of Eq. (2lc) after averaging

becomes yg(aazl/atl), here we also used relation (34). Tﬂuﬂ we can write,

that

2

"z
3 o
3 <8

b - - + .
KEv e SEC AT AL SRS S

To obtain the expressions for By,l and Bx,l we differentiate Eqs. (40)-(41),

respectively. Then utilizing Eqs. (36)-(37) and averaging over the fast time

17
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scale we obtain the z-component of the equation of motion on the slow time

scale, namely

2
- 9 z
: Y3 _L‘-Bﬁély cos | (x + 1)z + ¢
. 3,2 Yoto
i - x_ sin [(x + Dz_ + 4]} (50)
(Recall that z, is not the unperturbed orbit, but is the orbit minus the
I resonant velocity times time, see Eq. (27).)

Denoting
e__b
YoX
. ©raPqa
lz = JTBJ—,
YoPo
az bJA (51)
=5 o
o

the final set of equations of motion on the slow time scale is

dzx 2_ -
—3=acos [(c+ Dz +¢| -a'x (52a)
de
dz 2
—%-asin[(x+l)z+¢]-ay (52b)
dr

g-l-az{y cos |(x + 1)z +¢) ~ x sin | (c + 1)z + 8]}. (52¢)

drz

18
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For convenience, we have dropped the subscripts o and 1, since for the
following analyses we will use only the Eqs. (52). When necessary we will

return to the original notation.

v. Linear Analyses

In order to solve the non-linear coupled system of Eqs. (52) we will
employ a perturbation analysis. We assume that E, (a, a,) is small and the
electron displacement and energy change can be expanded in powers of Eg.

For convenience of the analysis we introduce a complex variable

E=x+ 1y, in which case Eqs. (52) become,

2

d_;-_. a exp (1x) - aZE (53)
dt

2 a

$2a-E |t exp (- 10) - £ exp (1)) G4
dt

~ *
where X = (k + 1)z + ¢ = xz + ¢ and £ {s the complex conjugate of £. The

equations to zero order in the radiation field are

dZE(O)
2

dt

2.(0)

dZzéo) .
T- 0. (55)

The general solution of the first, harmonic oscillator, equation is given by

(o)

£ - p+e1(ar +0) , p_e-i(at +0)) (56)

where the real quantities o, p_, 8 and 6_ are obtained from the initial
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conditious. In Appendix A we derive these quantities {n terms of the
parameters describing the injection of the electron beam into the wiggler
field. The oscillation corresponds to betatron oscillations in the strong
focusing wiggler field.

The solution of the second equation in (55) is

2(9) . z, + (8, - BT (57)

where z; and 81 are the position of the electron along the z axis and its

velocity at the moment (T = 0) of entering the interaction region,

(o)

respectively. (Recall that 2z in Eq. (57) varies slowly in t. The actual

fast variation is obtained by adding a (BOT) to z(o).)

We denote
bw = x(B, - 8 )
using the resonance condition we can reexpress
Aw = w, = (kr + kq)vi.
Thus the zero order expression for x becomes

x(o) = °o + AwTt (58)

where Oo = kz, + ¢
We now calculate § to first order in Eo' It obeys a forced oscillator

n

equation with £ de(l)/dt = 0 at T =0 as initial conditions, so it has a

20




L form

[+ 3
._ e = 2 exp (10,)/(a,0 ) exp (Laum) - 3 F exp (am)
1 %
g -3 5 exp (- iar)} (59)

where a, =a + Awe

The first order expression for z is obtained by integrating Eq. (54) with

N E = E(O) and y = x(o)’ the result is given by

o .

E.‘. 1. az{_'z. lsin (a v+ +86_) - sin (6_ +0 ) - a,7 cos (8_ +0 )]
e,

- p+

o -3 |sin (a_t - o + 6,) - sin (8_ - 00) -a_tcos (8 - 00)]}. (60)
N a_

The equation for the second order term in the expansion of 2z

2_(2) a
: zz = ii {;z(l)lﬁ(o) exp (- ix(o)) s g exp (1x(°))]
dr
f;- + [E(l) exp (- 1x(°)) - E(l)* exp (1x(°))]}. (61)

The first two terms on the right-hand side are similaf to those of a
conventional free electron laser, in that only zero order transverse motion in
1 ) the wiggler comes into play. However, the frequency of this term is shifted
- due to the betatron oscillations of the electrons. The second two terms on

ﬂ: the right-hand side have noc analog in the standard one-dimensional treatments.

They describe a resonant beating of the first order transverse oscillation

. with longitudinal motion. These last two terms on the right-hand side of Eq. s
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(61) after inserting Eqs. (58)-(59) will take the following form

a a

(a_sin a, T = a, sin a_1).

200, a_ + +

+

Inserting Eqs. (58) and (60) into the first two terms in the right-hand side
of Eqs. (61) will result in an expression which will include terms dependent
on 00. We assume that particles are injected uniformly in z, so that an

average over Oo can be done. Thus, the average expression for the right-hand

side is given by

2 ~
a_ x p._po_
2 3 hs (—% -'-%) sin (2at +6_+6_)
al a

- |p cos (a_t+86) +p_cos (a1 +8)]

P o_

x [—% (sin 9+ + a_t cos 9+) - (sin 6_ + a,T cos 8_)]
a_ a,

+ |p, sin (a_t+8,) = p_ sin (a 7t +6_)]
oy o_

x | (cos 8, —a_t sin 9+) +-—E (cos 6_ - a,.t sin A_)]. i
a_ a+ _"

At that point we introduce an additional assumption by taking po_ = 0,
this simplifies the last expression considerably. In Appendix A we show that
this assumption represents initial conditions for an electron whose
cylindrical radius remains constant in time and rotates in azimuthal angle
with angular velocity a. An analysis utilizing more general initial
conditions will be performed in the future.

Thus Eq. (61) reduces to the following




2.(2)  a’re?
dz z  + o
5 = 7 (sina 1t - a 1 cos a_1) :
dr 2a_ e
aa sin a.t sin a_t o

a a, a_

Integrating Eq. (62) once we obtain

@ _ aa (l - cos a.T ) 1 = cos a_r,
B, %a 2 2 e
* %+ R
“:;"i 1 *
+—3-(l-cosat-3aTsina1). (63)

Lona - .y,
R [ RERC P P R

Qa

VI. Single Pass Gain Calculation

Following the usual procedv.n:e6 the gain G(t) is defined by

v, - ¥ nV o
G(t) = i SR Yimc2 -%— (64) —
Yy ECV R
2 R
4n o
where V is the volume of a section of the beam with number density n_, ::"-jﬁj:;‘
7(t)mc2 is the average over oo of the electron energy. i—-—
The averaging of vy = Yo + yil) + YgZ) + eee¢ over 450 eliminates the first .¢
order contribution in (64), therefore inserting Eq. (63) into Y(IZ) = yzaosiz)l f-':?_-
.

and the result into Eq. (64) ylelds the following expression for the gain .

(o) = lume y3mc28 {a a [(l-cosa_r) (1-cosa+t)]
E2 o o' 2a 2 2
o a- %+

2~ 2 "

a kP, 1 Ry
- —3— (1 = cosa_t - 5 (a_t)sin a_t}}. (65) A
e o
ey
R

Utilizing the definitions for a, a,,a and § we obtain ®
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; - {Bi [(l-cosc_t) (1-cosa_ 1)
- G(t) = -
8art (a_r)z (a+T)2
- {9212 (1 - cosa_t - z-a_T sina_r)/(a_r)3} (66)

- where
&(1) = c(r>/[a<;§) a?(at)3).

We denote the first curly bracket in Eq. (66) ab(r) and the second ap(T). thus
& = &b + 69. The expression for &p(f) is similar to the formula for gain
obtained in single particle analyses with a dipole wiggler (see Eq. (16) in
Ref. (6)). The main difference is that the resonance i{s at Aw = a instead

b of Aw = 0. Thus the beat frequency resonates with the betatron frequency.

Had we chosen instead the other initialization, p_#* 0, P, = 0, p_#* 0, the

particles would rotate in the opposite sense and the resonant condition would

o have been 4w = - a. G, is an additional term associated with the transverse

%' bunching in the FEL with a quadrupole wiggler, however it is smaller in

% magnitude than G (t). In Fig. 3 we show the (& /82) as a function of (a 1)

for different at and in Fig. 4 we present (G /p Y ) as a function of (a_t1).

k; A plot of the normalized gain is shown in Fig. 5. The maximum of Gp(r)

o appears at a_T = 2.6 and is given by,

) L 8 3, 2

- This is nearly equal to the maximum value of G. Defining t = L/cBo, where L

i is the interaction region length, the maximum gain is given by

T 42 NA 5 2R, B
> = 0, ALY
: Cpax = 027 (e'B 02 ) mcz) = (67) %
4 Yo 9 !'—'-1
. ¢ RN
N AT
3 3
5 . ess
. .‘s._‘...\

Y S
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where N = L/Aq is the number of wiggler periods in the interaction region.

From Eq. (67) we see that Gmax for an FEL with a quadrupole pump has the

same functional dependence as an FEL with a dipole pump, provided Bod' Boq(qub). .,-
Conclusions

We have shown that relativistic electron trajectories in a rotating ',
quadrupole periodic magnetic field are stable even if large space charge ;NH

forces are present. This is not the case for the electron trajectories in a

dipole periodic magnetic field. In the last case to improve the stability a

constant magnetic field is introduced in addition to the periodic field. ’

- However, analyses have shown that the orbits are not stable for all initial

h- conditions.9’ 10 In the case of a quadrupole field the stability conditions
:‘»‘j' and the theoretical maximum value for the electron beam current depends on the
: beam energy, density and radius and, in principle, can be close to the Alfv;n-
b Lawson limiting current.
The linear, low gain analysis indicated that by utilizing a quadrupole
periodic magnetic field as a wiggler in an FEL we obtain a positive gain. The
u maximum value of this gain has the same parametric dependence as for an FEL
E operating with the usual dipole wiggler, provided the same value of the E
t amplitude of magnetic field at the beam position can be produced. \
b Therefore, an FEL with rotating quadrupole pump represents an interesting
[ new concept to obtain high~power, coherent radiatfon in the millimeter and !,
sub-millimeter regime.
b, ' In a future work we will investigate the feasibility of such devices by
‘ performing single-particle nonlinear analyses in Compton regime and an !; .
analysis of the device in Raman regime,
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Fig. 2 Shows the stability region, where the upper line {is uz = (8 + 1/6)2

L

1
0.22

and the lower line 1is nz = §, where a = (nq/yokqC) is normalized

strength of the wiggler field and § = u;‘:/(zvg si kicz) is normalized

beam plasma oscillations.
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Fig. 3 Presents the dependence of (Gblﬂg) on a_7 = (a - Aw)T, where Gb is
the normalized gain produced by transverse bunching and 4w = x = ;Bi°
The solid, dashed-dotted and dotted lines shows Gb as a function of

at for ar = 10, 20 and 30, respecively.
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normalized gain produced by longitudinal bunching and P, is the
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Appendix A

We are interested in relating the parameters Pys Py 9+ and 6_ in Eq.
(56) with the {nitial conditions of the electron beam injected into quadrupole
periodic magnetic field. Electron position is described in cylindrical

coordinates by its radius R and angle 8, radial velocity | and angular

velocity Ve. From Eq. (56) follows that
x(°)(0) = p,cos8 + p_cosd =R cos 8

y(o)(O) =- p+sin6+ - p_sin6_ = R sin @

(A-1)
. v{®)(0) = -a(p,sind, + p_sind_) = V cosd - V,sind
A x a(p,sinb  + p_sind_ RCOS gsin
©)g) = - -
Vy (0) = a(p,cos8, - p_cos8_ ) = V.sind + V,cosb
then
v \/
1 ] R
p+cose+ -3 [(R + 3 ) cosd + S siné]
v \/
1 -2 -R
p_cosd_ = 5 [(R = ==) cosé - —= sin6]
(A-2)

1 Ve VR
- = R + == - ——
p+sin0+ 2 ¢ s ) sin6 p" cosf ]

Ay ;

1 Vo R
- 2 a a

. :,'.. ',"l

elelelels
" a.

Introduce a following notation
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b — =
R a Ulcombl

v

R
3 = - Upsiny, (A-3)

and

Vo
R - re = ‘.)2(:.03132

vR
5 = U,sinv, (A-4)
from (A-2) we obtain

1
p,cosd = > U, cos (e + Wl)

1
p+sin6+ = 7-U1 sin (0 + wl)

(A-5)
p_cosd_ = é-Uz cos (0 + wz)
p_sind_ = - 4 U, sin (8 + ¥,)
with constraint
Uz sin wz - - Ul sin wl. (A-6)

Thus we can express P, P_, O and 6_ in terms of R, 8, V, and ¥,» namely from

(A=5) follows




L RN

o -l
- p7Th)
-] o
- (A-7)
RN
‘ 8, = 8+ ¥

S 6_ =~ 8=y,

For example, if Vp = 0 then U, = 0, therefore *1 =0, £7, *s+, In this case
p_=0, Ve = ak, o, = R and 6+ = B, which are the conditions for an electron

orbit with constant radius.




