
e -D-R148 990 COHESION IN COMPUTER TEXT GENERATION: LEXICAL
13

SUBSTITUTION(U) MASSACHUSETTS INST OF TECH CAMBRIDGE
LAB FOR COMPUTER SCIENCE R A GRANVILLE MAY 83

UNCLSSIFIED MIT/LCS/TR-3i N 4-8-C-5F/G 57 NL

mhhmhhhhhmmmlm
momhhmhhhmhhlo
mhmhhhhhhhhhhu
mhhhhhhhhhhmhl

§16

1.25 1111. 11 .

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

A4

-S%

S.e

mASSCHUETT
'E I NI EO

COMPTRSINETCNLG

MIaCST,1
44,

DTIC-

gftELET!7-i

JAN7 lrl'

T!, l~uTON SATEMNT

Approved~~~ foiulcrlc

Ditibto Unlimited

.B.

DTlC
-FLVCT'

UNCLASSIFIED __._,_"_,_.,._

SECURITY CLASSIFICATION OF THIS PAGE (When, Dota Entered) S

REPORT DOCUMENTATION PAGE EFAD ISUCT.ONS

1. REPORT NUMBER 12 tGOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

MIT/LCS/TR-310 A'.(r.i6"
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED - -

Cohesion in Computer Text Generation: Trip Report
Lexical Substitution

s. PERFORMING ORG. REPORT NUMBER
HIT/LCS/TR-310

7. AUTHOR(.) S. CONTRACT OR GRANT NUMSER(*)

Robert Alan Granville N00014-80-C-0505

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA A WORK UNIT NUMBERS

Massachusetts Institute of Technology 61153N 14, RR01408,
Laboratory for Computer Science RR0140801, NR 049-309
Cambridge, MA 02139 RR014001, N 049-39 o _-___'

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office of Naval Research (Code 433) May 1983
800 N. Quincy St. I. NUMBER OF PAGES

Arlington, VA 22217 118
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) IS. SECURITY CLASS. (of this repoft)

UNCLASSIFIED
1So. DECLASSIFICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, It different fre Report)

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue on ,everse side If necessary and Identify by block num ber)

Natural Language, Natural Language Generation, Utterance Realization,

Cohesion, Endophoric Reference, Lexical Substitution, Synonyms,
Superordinates, General Nouns, Pronominalization, Focus, Distance.

20. ABSTRACT (Continue on roverse aide If neceaary md Identify by block number) -

DD I OR1 1473 EDITION OF I NOV 65 IS OBSOLETE 0NLSSFE

* S 'N 0102- LF. 014. 6601 SECURITY CLASSIFICATION OF THIS PAGE (W~AR NZate L. -i0

, :.:.:--.- zK --K.:-:..:- .. '* . ,. . *-. - -. y:.- 'S

w- I. . -

Cohesion ini Computer Text Generation:
Lexical ~Sbsitution

by

- - Robert Alan Granville

May, 1983

©Massachusetts Institute of Technology 1983

0
Ibis research was supported (in part) by the Office of Naval Research contract N0014-80-C-0505 and

(in part) by the National Institutes of Health Grant No. 1 P01 LM 03374-04 from the National Library of

Medicine.

Laboratory for Computer Science

* MASSACtIUSMTS INSTITUTE OF TECHNOLOGY
Cambridge, Massachusetts 02139D T C--:

fELECTE * -

JAN?7 W953

Appived n uo~ =la

2

Cohesion in Computer Text Generation:
Lexical Substitution

by

Robert Alan Granville

Submitted to the Department of
Electrical Engineering and Computer Science

in Partial Fulfillment of the
Requirements of Master of Science

Abstract
ihis report describes Paul. a computer text generation system designed to create cohesive text. The

device used to achieve this cohesion is lexical substitution. Through the use of syntactic and semantic

information, the system is able to determine which type of lexical substitution will provide the necessary
information to generate an understandable reference, while not providing so much information that the "- -

reference is confusing or unnatural.

Specifically, Paul is designed to deterministically choose between pronominalization, superordinate 0

substitution, and definite noun phrase reiteration. The system identifies a strength of antecedence recovery

for each of the lexical substitutions, and matches them against the strength of potential antecedence of each

element in the text to select the proper substitutions for these elements. There are five classes of potential

antecedence, based on the element's curent(nd previous syntactic roles, semantic case roles, and the current

focus of the discourse. Through the use of thes exical substitutions. Paul is able to generate a cohesive text
which exhibits the binding of sentences through presupposition dependencies, the marking of old information -'

from new, and the avoiding of unnecessary and tedious repetitions.

Thesis Supervisors:

Peter Szolovits "---
Associate Professor of Computer Science

Robert Bierwick
Assistant Professor of Computer Science

Keywords: Natural Language, Natural Language Generation, Utterance Realifation, Cohesion,

Endophoric Reference, Lexical Substitution, Synonyms. Supero'rdinates, General Nouns, Pronominalization,

Focus, Distance

.X

Acknowledgments

I would like to thank everyone who contributed to this work, and everyone who aided, abetted,

encouraged, cajoled, or in any way assisted me during this project:

I would like to personally thank Pete Szolovits and Bob Berwick for their exceptional advice and

encouragement, their invaluable contributions in clearing my thinking processes and improving my writing
and for reading drafts with incredible speed when time was of the essence.

I owe a huge debt to the Clinical Decision Making Group for providing insights, encouraging me when
I needed it, putting me on the right track every time I strayed, and adding a little humor to the work day.

I would like to remember all my past co-workers over the past few years who have helped me in

* thinking about this work and the direction it should take. I especially thank Lance Miller, Amy 7warico.
Michal Blumenstyk, Mugsy. Lightfingers, Machinegun, Maddog, and the whole Heidorn gang.

I feel I owe a special personal debt to George Heidorn for his encouragement, his sacrifice of personal
time for my part, his keen insights and suggestions, and for his tolerance of the Kid's capricious whims.

Without personal friends to give me support and perspective, this thesis and I would not have survived J •

each other.

I would like to thank the Ashdown Irregulars for their sparkling conversational wit, their charming

dinner companionship, and their always just being there when I needed them. I especially would like to thank

Brian Oki, Richard Sproat, and Monty McGovern for tolerating me when I was silly, and supporting me -

when I wasn't.

I would like to thank the MIT Community Players for giving me an outlet and constantly reminding me

that the problem set will be there tomorrow, but this flat has to be built tonight. I owe a special debt to Amy

Schrom, Ronni Marshak, and especially Robin Nelson for providing me with wonderful shoulders to cry on

more times than I can remember.

I owe much to Corine Bickley for telling me that everything is going to be all right. and for keeping my

attitude properly adjusted.

-'o~-P "PI°,% -'

% % N-

'...-- . . N :-.;-:-: N .-- - -- . - . - /.. ; . - . .. ,...-,-. -.. •.,.,....;., ,,.......,-..,.-.,,

4S

My dictionary defincsfaiih as "belief without proof. confidence, relince, loyalty:"

To Karen Jensen, who had faith in me tong after I had ceased to, and who wouldn't let mc give up on

myself. I cannot express the depth of my debt toward, and thc magnitude of my appreciation and affection
for, Karen. If there is anything good in this thesis, it is directly attributable to hcr, while all shortcomings are

* due to the shortcomings of the author. Karen has been the best of teachers, advisors coworkers, confidants,

companions, and most importantly, friend&. AWL

To my parents, who believe in me and my work without understanding, which is the most profound act
of faith. This, and everything I do, is humbly dedicated to them.

Accession For
i NTIS -GRA&I
DTIC TAR
Unannounced Q 3

* I Ju3ti~ication
* ~By *I
* Distribution/

Availability Codes
Avail and/or

*Dist Special

%i % Lr -Z

S f

Table of Contents

1. Introduction. 10

1.1. Statement of the Problem .. 10

1.2. Cohesion... 13

1.3. Lexical Substitution ... 14

* 1.. The Approach of This Report: Paul 14

1.5. Outline of the Remaining Chapters 21

I 2 Cohesion ... 23

*2.1. Introduction .. 23

2.2. The Goals of Cohesion .. 23

2.3. Cohesive Relations .. 24

2.4. Cohesion vs. Coherence ... 25

2.5. Cohesive Devices ... 26

2.5.1. Reference .. 26

2.5.2. Substitution.. 27 *>..-

2.5.3. Ellipsis ... 28

2.5.4. Conjunction .. 29 ..

2.5.5. Lexical Substitution .. 30

3. Lexical Substitution ... 31

3.1. Reiteration.. 31

3.2. Synonyms ... 32

3.3. Superordinates .. 34

3.4. General Nouns .. 37

3.5. Personal Pronouns .. 38

6:6

3.6. Decfinite Noun Phrss..e.. 38

3.7. Controlling Lexical Substitution 39

3.7.1. Strength of Antecedence Recovery 39

3.7.2. Strength of Potential Antecedence 41

3.7.5. Endophoric Limitations 44

I3.8. Comparison with Another System. 45

4.3. Augmented Phrase Structure Rules 49

*4.4. Condition Specifications ... 51

4.5. Creation Specifications .. 59

4.6. The Complete NLP Rule... 63 ..-hi4.7. Named Records ... 64 .

4.8. Cover Attributes ... 64

4.9. Record Definitions .. 66 .

4.10. The Generation Algorithm ... 66

4.11. The Generation Paradigm ... 68

5. AnFExample... 77

6. R latd W rk- 8

7 . Relcated Wr...97

7..Clonribtion.....ul..93

7.1. Conitribtions of Paul .. 93 .-

**~ **..* .5... 5 5...5

7

7.3. Future Research .. 94

Appendix 1: from Alice's Adventures in Woadedarid................................ 95

Appendix fl: Trace of Control Variables....................................... 97

Appendix III: Additional Examples.. 104

Appendix IV: BNF for NLP.. 106 ..

Appendix V: NLP program for Past... 109

References.. 116

.~~~ ~ ~ ~

80

Table of Figures .

3-1: Fragment of a Semantic Hierarchy. 31-

3-3: Example of Uncontrolled Synonym Substitution 33

3-4: Classification of Synonyms by Connotation. 33

3-5: Another Sample Hierarchy 36

-. 3-6: Story with Uncontrolled Lexical Substitution 39

3-7: The Five Classes of Potential Antecedence 41

3-8: Mapping of Potential Antecedence Classes to Lexical Substitutions 42

3-9: Expected Focus Algorithm 43

3 3-11: The Simple Pronominalization Rule. 45

*3-12: Results of Simple Pronominalization Rule. 46

3-13: Paul's Version of Sample Story 46--

*4- 1: Fragment of an NLP Program 50

4-2: Generated Phrase Structure Tree... 50 -

4-3:Exa pleof LP R le 0

4-3: Example of NLP Rule...-

4-5: The Generation Algorithm.. 67

4-6: Cover Attributes for Example... 69

4-7: NLP Records for Example... 69.

4-8: NIP Rules for Example.. 70

4-9: Trace of Control Stack for Example....................................... 72

169

9

4- 10: Created Records for Example Sentence. 73

4-11:Ile GeneratedTree. 0

5-1: NLP Records for Examplc Story... 78

5-2: Example Story without Lexical Substitution.................................. 78 ~

5-3: Example Story with Uncontrolled Pronoun Substitution. 79

5-4: Example Story with Uncontrolled Superordinate Substitution 79

5-5: The World in which the Example Story Exists................................. 80

5-6: Expected Focus List.. 82

5-7: Control Variables After First Sentence 83 -

5-8: Control Variables After Second Sentence. 83

5-9: Control Variabics After Third Sentence..................................... 84

*5-10: Control Variables After Fourth Sentence................................... 85

5-11: Control Variables After Ninth Sentence 85

-7 .1 777--. 77--

10

1. Introduction

.u 1.1. Statement of the Problem

The need for computer systems to generate acceptable text in a natural language such as English is

constantly increasing. While computer text generation is an interesting problem in itself, other types of

systems have found a requirement for the ability to communicate in a natural language. This is especially true

U for computer systems that attempt to address human factor issues, that is, systems that strive to make

computers easier to use, or more "friendly," especially for people outside the field of computer science. One

obvious way to enhance this "friendliness" is to have the computer communicate in a language that is easy for

the user to understand, her own natural language, rather than in a language that is easy for the machine to

understand, a programming language, that requires an effort on the user's part to learn. If we hope to build •

systems that gain general acceptance and widespread usage, we must be willing to incorporate natural

language communication into these systems.

This report describes Paul, a computer text generation system designed to create cohesive text. The

device used to achieve this cohesion is lexical substitution. Through the use of syntactic and semantic

information, the system is able to determine which type of lexical substitution will provide the necessary

information to generate an understandable reference, while not providing so much information that the -

reference is confusing or unnatural. .

Specifically, Paul is designed to deterministically choose between pronominalization, superordinate

substitution, and definite noun phrase reiteration. The system identifies a strength of antecedence recovery

for each of the lexical substitutions, and matches them against the strength of potential antecedence of each -

-. element in the text to select the proper substitutions for these elements. There are five classes of potential

antecedence, based on the element's current and previous syntactic roles semantic case roles, and the current

focus of the discourse. Through the use of these lexical substitutions, Paul is able to generate a cohesive text

- • which exhibits the binding of sentences through presupposition dependencies, the marking of old information
from new, and the avoidance of unnecessary and tedious repetitions.

In natural language generation, there arc at least six criteria that computer output must meet before it

could be considered acceptable. "

1. The generated text cannot be canned.

2. The generated text must be based on an arguably correct semantic representation.

3. The generated text must exhibit cohesion.

.":!i: '.- :-

..,. o • o

11 0

4. " be generated text must be comprehensible.

5. The generated text must not have erroneous connotations.

6. The generated text must not violate the intended style and mood.

The use of previously prepared strings of text, known as canned text, is possibly die simplest and most

obvious way to have the computer respond in natural language. Having the computer merely display the

appropriate stored text is adequate in many applications, such as in error messages. However, in addition to

being a relatively uninteresting approach, the use of canned messages has severe limitations 130J. All possibly

desired messages must be anticipated in advance, which is not always (indeed not usually) a feasible feat.

While the use of slot filling, strategically placing variables in the text (such as the name and address of the

recipient of a form letter), allows an additional freedom, the general outline as well as the bulk of the text is

still dictated in advance, and therefore fixed. Each such invariant text must be composed by humans in

advance and permanently stored on the system. The occurrence of a new situation, or even just a new and

unexpected variation on an anticipated situation, would require the creation of an entirely new text. .

Furthennore, the computer cannot aid in any meaningful way in the creation of these texts, and the complete

lack of generality in this method prevents an implementor from gaining any benefits from economy of scale.-.

Having written and entered a score of error messages will not ease or affect the labor of writing and entering

an additional score. -

The current alternative to canned text is to translate knowledge structures into a natural language. The

temptation here is to follow the expedient of developing knowledge structures and translation rules that are

adequate for a chosen domain. While proper use of constraining one's domain is beneficial, and with the ---

current state of the art probably necessary, taking undue advantage of the constraints and avoiding generality "

for the sake of convenience will produce systems that apply only to their specific domains, and do nothing to -

further knowledge of natural language systems in general. Rather than being merely adequate, systems -*.
"

should be based on knowledge structures and translating rules that are general enough to adequately produce - -

text in several domains. In order to be able to achieve this goal, systems must have knowledge structures and "

translating rules that are linguistically justified [301. The generated text must be based on an arguably correct

semantic representation.

In order for a string of sentences to be considered a text in natural language, those sentences must

exhibit cohesion, an interdependence between the sentences created by causing the interpretation of some , .

elements to be dependent on other elements [11].
Sam Is upset. ft can't go to Gertrude's party. -

• The interpretation of he in the second sentence is dependent on San in the first.

- .- .C- . ."

12

Tlext without cohesion has the stilted and awkward feel of an elementary school primer, and certainly

doesn't sound intelligent. Such text would bc unacceptable for most systems today that require a natural

language capability. The generated tcxt must exhibit cohesion.

While cohesion is necessary for acceptable tcxt generation, it is not sufficient. It is possible through the.-

injudicious usc of certain cohesive devices (such as pronouns) to render a text completely unintelligible. If

elements appear whose interpretations depend on other elements that don't appear, either because the

program mistakenly neglected to put these elements in, or worse yet, replaced them with additional cohesive

devices, the resulting text will be ludicrous and serve no useful purpose. (The classic example of carrying this

problem to an extreme is the verse "evidence" read by the White Rabbit in Chapter X11 of Lewis Carroll's

AAlice's Adventures ini lf'onderlamat.) A computer generated text that no one can understand is simply not a

text. The generated text must be comprehensible.

Additionally, if the program has an option in word selection from its vocabulary, care must be taken in

this selcction process. In addition to meaning, most words in any natural language have connotations and .

implications associated with them. For instance, consider the synonyms one would find in a standard

thesaurus for the word "smell." Tbe synonyms listed could be of a favorable nature, such as "emanation,"

"fragrance," or "aroma"; they could be of a neutral sense, as in "odor," "smell," or "scent"; or they could

express distaste, as with "stench, ". .stink," or "foulness." All these words should be achievable from the

structure representing the concept SMELL, but clearly they are not interchangeable. The program must have

some means of selecting words with the desired implications, or at least avoiding words that have blatantly

wrong implications. The generated text must not have erroneous connotations.

In the same vein as connotation, words have senses of style and mood that must be considered. Certain- -

vernacular phrases, terms of endearment, and other ways of expressing familiarity would be inappropriate in a

medical diagnosis or a formal business letter, but they would not only be acceptable but expected in a close

personal communication. A letter to a good, steady customer who has apparently forgotten a small bill should

not have the same tone as a letter to a person who is considerably behind in her accounts and has ignored

several communications to that effect. Vocabulary selection and grammatical constructions can have a large

impact on the mood and style the text is going to have, and this impact needs to be taken into account. The-

generated text must not violate the intended style and mood. 9

LIMc text of this evidence appears as an appendix. ... 4..

13

1.2. Cohesion

A set of sentences must exhibit cohesion to be considered a wcll-ormed text. There are several

necessary functions that are provided by this cohesion. Thc first one, already mentioned briefly in the 0

previous section, is that without cohesion a text is awkward and appears unintelligent. An example might help

demonstrate this.

T1.1: John went to the store.
John bought a kite.John went home.

The sentences of TI.! appear to be isolated. As speakers of English, we want relationships between the

sentences, but there is nothing in TI.I to make these relationships clear. The average reader would be
0

unhappy calling TI.1 well-formed text.

However, this is not the only effect cohesion, or its lack, has on text. Th'lie spcaker2 wants her thoughts

understood, and the listener wants to understand the thoughts being conveyed. Cohesive devices can help -'

make this task easier by distinguishing old information from new 115, 16). Consider the following example, -.

which is TI. with a simple modification.

T1.2 A boy went to the store.
A boy bought a kite. -

A boy went home. .

TI.2 is even more objectionable to the average reader than was TI.I. Not only are the intersentential .

relationships not explicit, but the text is ambiguous. Are we referring to one boy who performed all the

actions in the text. or three separate boys, one who went to the store, one who bought a kite, and one who - 0

went home? TI.2 demonstrates that cohesion is more than a device to make text more elegant or pleasing. It is

necessary for marking old information from new, for distinguishing references to items and ideas that have

been already mentioned from those that are being introduced for the first time. Since the speaker's goal in

most discourse is to either elaborate the details of a specific idea or item, or to explain the relationship 0

between an item or idea known by the speaker to one that is new to the speaker 115, 17, 161, this ability to

distinguish new from old is essential. Obviously, a computer system that generates text must also be able to

perform cohesion in order to generate understandable text.

45
7. 0 :.

* ~~~20r wiiter. ror t krger pan, we ill not disunguid between writen and oral teat in this secUom .~;~.

.• e • •

-* -'- -.- -. . .~~-. -. -.. ..~ ~ . . ~

14

1.3. Lexical Substitution

The cohesive devices that will be discussed in this report are collectively known as lexical substitution

[11]. Lexical substitution includes general noun substitution, the replacement of a specific reference to an S

entity with one of the so-called general nouns 11] (such as man. woman, boy girl for humans, creature, beast

for animals, matter, affair for inanimate abstracts), synonymous substitution, the use of synonyms, and

superordinate substitutioiL the replacement of specific references with words with a more general meaning (i.e.
"vehicle" as a replacement for "car"). Pronominalization, the use of pronouns, is treated as a special form of 9

lexical substitution, and is included in this report. Finally, definite noun phrases; using the definite article

"the" as opposed to the indefinite article "a," can be used as a last resort when the four lexical substitutions

listed above cannot be applied.

Particularly in superordinate substitution, the danger exists that the word selected could have more than

one referent in the text. For example, if writing about a Volvo and a Ford, a reference to "the car" is

ambiguous. One way to handle this problem is by disambiguating the superordinate selection as much as is

necessary, but no more than is necessary [91. If we were writing about a green Volvo and a red Ford. while . •

"the car" would be unacceptably ambiguous, "the green car" or "the foreign-made car" would be clear.

However, "the green foreign-made car" would be blocked because it gives more information than is necessary

to disambiguate the reference.

Since the vocabulary hierarchy is semantically based, synonym substitution is fairly straightforward.

Care must be shown, though, in order that erroneous connotations are not created, nor style and mood

violated. Rather than simply having a list of words that express a concept and selecting from that list, the

words must be partitioned into distinct (and possibly disjoint) sets based on their connotations. Furthermore,

each distinct set must be further partitioned by the style and mood effects the individual words exhibit. Such

a partitioning yields lists of words that are truly synonymous and can be readily substituted in the text without

incorrectly impacting style, mood, or connotative considerations.

1.4. The Approach or This Report: Paul

Paul is a natural language generation program initially developed at IBM's Thomas J. Watson Research

Center this past summer as part of the ongoing Epistle project [14, 20). One of the ultimate goals of the Epistle

project is to generate business letters from a one or two sentence description of the topic, and access to a

knowledge base containing information about the recipient, the nature of the business, and related business

correspondence [141. Paul was designed as a first step to generate text from the appropriate knowledge

structures once these structures have been created. The system, written in NLP [131, accepts knowledge

. .

structures in the Irm of NIP records and translates them, through NIP rules, into multisentential text. Such

a natural language generation system following the six criteria explained above has been achieved by

expanding and refining the Paulsystem.

All NIP programs manipulate, alter, and create NLP records as the basic primitive data structure. These

records are very similar to frames [36].

The NLP rules that make up the program that translates the records into English text are based on

augmented phrase structure granmnar[13, 45]. Augmented phrase structure rules are very similar to the

concept of phrase structure rules [4] that linguists are familiar with. The chief difference is that specifications;

can be placed on the structures being manipulated. Since these specifications are created by the user and can

contain any information desired, the rules need not be strictly syntactic, but can reflect semantic and

pragmatic information as well. A subset of NLP, that which is necessary for natural language generation, has

been implemented at MIT in MACLISP for Paul.

The emphasis of the Paul system is in research of discourse phenomena, the study of cohesion and its

effects on multisentential texts 111, 38). Text generation can be divided into two distinct subtasks [30, 27, 35].
The first subtask is to create the knowledge structures that will be used. ensuring that these structures are

correctly ordered and contain the desired knowledge. In other words, this subtask is to determine what the

text is to say. This subtask will be called utterance3 planning in this paper. The second subtask is to take the *.-. .

created knowledge structures and translate them into the target natural language, taking care that the six --

criteria discussed above, especially those concerning style and cohesion and their effects, are met. In other
words, this subtask is to determine how to say it. This subtask will be called utterance realization in this paper.

Paul is an utterance realization system.

By the very nature of the fact that Paul translates knowledge structures into English, the system does not

make use of canned text in any form. Therefore, the first criterion that the generated text not be canned is met

by PauL

For a natural language generation system to be based on an arguably correct representation, its
knowledge structures must be linguistically motivated. In Paul. knowledge is represented in NLP records

through the use of a case frame [6] formalism, where each case corresponds to an NI.P record attribute.

Furthermore, records are used to set up a semantic hierarchy of vocabulary. Words are currently arranged in a

superset hierarchy, similar to AKO links [46]. The refinement of Paul has a fairly extensive overhaul of this

By uterance we again mean txxh spoken and written natural language production, rather than that rcAuictd to oral.

• • • • m • , e°................ . %,.•................°o•... ,. . %%..° ..

16

hierarchy. Rather than having words as the main entries in the vocabulary data base, coiiceptual or primitive

structures [39. 251 contain the semantic information necessary for initial selection of vocabulary. Separate

word entries contain morphological information, such as irregular plural or past tense formations. By keeping

conceptual information separate and distinct from morphological knowledge. two major advantages are

gained. First, the program is free to make vocabulary selections to express the desired concepts, rather than

have these selections made explicitly for the program. Second, by having morphological information separate,

generalities can be captured that otherwise might be missed. As an example, consider the word "have." .

"Have" has at least three very distinct meanings: as an auxiliary verb ("I have finished."), as a verb meaning to

possess ("I have it."), and as a verb meaning to cause someone to do something ("I have a maid come in twice

a week."). Each distinct meaning of "have" should have its own entry in the semantic hierarchy. However,

the word "have" has only one conjugation, regardless of its current semantic use. This irregular conjugation .

must be made explicitly known to an English language generation system. If a morphological entry for "have"

did not exist distinct from the semantic entries, the information would have to be repeated for each semantic

entry. Having a separate entry captures the necessary morphological generality. -

Deciding when lexical substitution would be proper, and which of the several devices should be used is

a difficult task, although controlling such a choice is a very important requirement for the use of any cohesive

device. Abusing the text by overusing cohesive devices will yield output suitable only for humorous purposes.

Intelligibility must be preserved. Furthermore, consideration must be given to the connotations behind any

words selected to create cohesion, as well as their effects on the desired style and mood of the text.

The problem in using these cohesive devices is that it is necessary to guarantee that they are

understandable. That is, since these items refer anaphorically [38, 11] to a previously mentioned item, called

the anaphor's antecedent [7, 24], it is required that the anaphor can be unambiguously related back to its

antecedent. Otherwise, unintelligible text may be generated.

Investigation into anaphora resolution has been performed in the pursuit of natural language S

understanding [5, 10,411. Many of these works propose using focus or theynefll] as a basis to restrict or

predict the eligible candidates for the antecedent of a given anaphor ([411 particularly). Informally, focus is

what a sentence is about, that is, the central point of the utterance. In [41], each noun phrase in a sentence is

ranked for its potential as the focus. Then, when an anaphor occurs, the ranked list is tested in order for

syntactic, semantic, and pragmatic acceptance. The first item in the ranked list that passes these criteria is

assumed to be the antecedent for the anaphor. and is confirmed as the focus.

Focus was also used rather successfully in generation, notably by McKeown [35]. Her TEXT system, ._AL-__

designed to address problems in utterance planning, uses focus to restrict the system's options in what should

ii::?-9-

* .* .*.% ... *. . .. O.,.,,.* * ,, ,'. -____

be said next. Focus is used to eliminate choices that have no bearing on the current focus of the discourse, and

* furthermore. focus is used and shifted to determine which of the various relevant items will actually be

generated.

Unfortunately. a theory of anaphora gencration involving only focus is inadequate. While a sentence

* has only one focus, every entity referred to within a sentence must be somehow marked as old information in

later sentences, not just the focus of the sentcncc. Consider the following example:

T1.3 1. John sent a letter to Mary.
2a. He wanted to see her.
2b. She was glad to receive it.
2c. He wrote it by hand.

The focus of the sentence in T1.3-1 is a letter, as it is the object receiving the action of being written. A lexical 0.

substitution theory which allows rcplacement of foci only would allow only the noun phrase a letter to be

pronominalized in a following sentence. But T.3-2a, TI 3-2b, and TI.3-2c are all acceptable sentences to

* follow TI.3-1, evcn though each has a pronominafization of noun phrases other than the focus of TI-3-1. In

fact, T11.3 demonstrates each possible pair of noun phrases pronominalized. Clearly, a theory for lexical 6

substitution based on such a narrow view of focus is inadequate.

Paul controls lexical substitution through the use of minimal feature& Each noun phrase that is a

candidate is identified, and the minimal amount of information that is required to make an understandable

reference is calculated. Paul then determines which of the various forms of lexical substitution (including no-
* lexical substitution) provides the minimal features to keep the text clear.

Rather than isolating one entity in a sentence and labeling that as the focus eligible for lexical

* substitution, all entities mentioned in the sentence are labeled as focal points of the sentence and therefore

* subject to lexical substitution. The distinction here is that the data base from which the semantic .

representation is created has a good deal more information than is being expressed in the sentence. For

instance, for sentence T1.3-1, the data base could conceivably have knowledge about the size of John, his age,-

* the color of his hair, etc., and of course, the same kinds of information would be stored in the entry for Mary.

However, most of these items were screened out during the utterance planning phase of generation. 'Ibese

items are not eligible for lexical substitution, and rcferences to them in future sentences must be explicit. The

* points from previous sentences are eligible for lexical substitution.

The various forms of lexical substitution, however, are not interchangeable, because they offer differing

levels of difficulty in antecedence recov'er. Pronouns are the most difficult to recover, because they convey the

least amount of information. ihe only knowledge explicitly given by a pronoun is number and gender (if
* singular). General nouns offer little more except for the general class the antecedent belongs to.

-". .- x,,- r.~ -..- . y-Z * r , r .v

Supcrordinate substitution is fairly explicit, especially with the proper choice of descriptive adjectives to

disambiguate the reference. Synonyms are the strongest reference, since they arc not true examples of

anaphor, but merely a device to avoid unnecessary and tedious repetition. And of course, since definite noun
phrases are not a form of substitution at all, there is no problem of antecedence recovery.

We can control the selection of lexical substitution devices by determining the minimal features

required to provide an understandable reference, and which lexical substitution will provide these minimal

features. This is done by ranking the focal points of a sentence by their sirength of potential antecedence. This

ranking is based on several factors, including both syntactic and semantic information. These factors are the

point's position in an expected focus list, the number and gender of the item as well as the numbers and

genders of all previously mentioned items. the distance between the current mentioning of the item and the - S

last previous reference, the syntactic role the item played in the last reference as well as its current syntactic

role, and whether an item is a part of a previously mentioned item or a member of a previously mentioned set.
These factors allow us to identify the various classes of strength of potential antecedence.

Paul identifies five classes of potential antecedence strength. These classes are:

Class 1: 1. The sole referent of a given gender and number (singular or plural) last mentioned
within an acceptable distance, OR

2. The focus or the head of the expectedfocus list for the previous sentence.

Class II: The last referent of a given gender and number last mentioned within an acceptable
distance.

Class III: A focal point that filled the same syntactic role in the previous sentence.

Class IV: 1. A referent that has been previously mentioned, OR

2. A referent that is a member of a previously mentioned set that has been mentioned
within an acceptable distance.

Class V: A referent that is known to be a part of a previously mentioned item.

The current focus and the expected focus list can be found by using the algorithm developed and

reported by Sidner in [41]. That rcport specifies a focus algorithm in detail (this algorithm appears in Figure

3-9 ahead), and Paul uses it to find the expected focus. Tnie algorithm calls for the ordering of the various

noun phrases in a sentence by their syntactic and semantic roles, as well as the order in which they appear in

the sentence. As these semantic and syntactic roles are determined, Paul creates and modifies the expected

focus list as the sentence is being generated.

.*..°.°°. °--. "..]

* <.. : ;.... :.:.:--,..,,,.... ,.-...

19

Distance is the number of clauses between the current one and the one which contains the most recent
reference to a specific item. To see why this is important, consider the following example.

T1.4 1. John sent a letter to Mary . 0
2. Fred found the letter and read it.
3. He told George about it.
4. George gave it to Pete.
5. Pete hid it.
6. She never got it.

The reader identifies that the subject she in TI.4-6 is Mary, after a moment's thought. But she has to refer to a
female, and in all of TI.4 the only female mentioned is Mary. Why, then, can't the reader immediately

associate this reference with its antecedent? The answer is distance. There are five clauses between sentences

TI.4-1 and TI.4-6. With so many referents introduced between the anaphor she and its antecedent Mary, the

reader loses track, and cannot make the immediate connection. While the reader is able to eventually trace

down the reference in this example, it might not be always possible since 20 or 200 or even 2000 clauses could

be between the anaphor and its antecedent.

Paul arbitrarily decides that a distance of two clauses is the maximum acceptable distance for natural

anaphor recovery. This is enforced by only keeping the relevant information about the focal points of the last 7-'" "

two clauses. The relevant information includes the gender and number of each focal point, as well as their

syntactic and semantic roles in the clauses they appear in.

Once the focal points have been classified as to their strength of potential antecedence, it is relatively
'. easy to determine which form of lexical substitution would be acceptable, based on these forms' strength of

antecedence recovery. The definite noun phrase has the strongest, because it is not really a lexical substitution.

It does, however mark the item being referred to as old information, and therefore provides a useful function

when no form of lexical substitution is appropriate.

Synonym substitution is also relatively safe in that it too does not generate true anaphora. However, it
doesn't by itself distinguish new information from old. Of the two previously discussed tasks for cohesion,

that of avoiding needless repetition, and that of marking new information from old, synonym substitution is

capable of obtaining only the first goal. Therefore, it is unsuitable as a means in creating anaphora to

distinguish previously mentioned items from new ones, and Paul doesn't include synonyms in its options for

lexical substitution.

That is not to say that synonyms have no place in a text generation system, nor that Paul ignores them
completely. Synonyms that arc members of the same partitioned set are interchangeable. This is not true only

in unusual circumstances where there is a need to use an exact word in the text. The decision that a specific

word must be used is one of utterance planning, not of utt'rance realization. If an item is marked as having to

... ~............. " ' -:-' .. . e.=.._.. ' '..' ,"J .."

..- .'. -. --- - -- °°%'°

20

be expressed by a specific word, then Paul is capable of generating the text using that specific word.

Otherwise. Paul randomly selects from the set of equivalent synonyms, thereby achieving variation in the text

without fear of incorrectly affecting the intended style and mood. ,

1he next easiest type of lexical substitution to recover is the superordinate substitution. This is true • -'

because not all the specific information about the antecedent is lost. Furthermore, because Paul insures that

all superordinate substitutions will be made unambiguous by adding sufficient modifiers to make the

reference unique, recovery from a superordinate substitution is not difficult at all.

Pronouns and general class nouns are the most difficult to recover. Because they provide so little

information, they could in general refer to several possible antecedents. The only information directly Jo

obtainable from them is gender and number. (And with pronouns, even gender is lost in English if the

pronoun is plural.) These forms of lexical substitution have the weakest strength of recovery.

There is an additional problem with general class noun substitution. General class nouns tend to be

very informal, extremely personal and familiar and often derisive and abusive. Obviously, using general class

nouns would have a severe impact on the generated text. Controlling the overwhelming effects general class

nouns would have on the style and mood of text is beyond the scope of this work. Therefore, while Paul can

generate general class noun substitutions, unless a text is specifically marked as informal and familiar, a S

pronoun substitution will be selected.

After a focal point has been found and its class identified, Paul has make the appropriate substitution.

Deciding which lexical devices can be used on which classes of focal points under which circumstances is a

difficult problem. There are issues in addition to achieving understandable cohesion. It is always possible to

choose a lexical substitution that has a stronger antecedence recovery than is required, and in fact this is

sometimes done by natural speakers. The decision of how to map the various classes of focal points to the

lexical substitutions is affected by the desired style of the text to be generated. As the style can change within

a text to emphasize something or make a specific idea clearer, this mapping decision must be modified.

Unfortunately, such an investigation into changing style and its effects on the selection of lexical substitution

is beyond the scope of this work.

Paul makes an arbitrary selection of style in choosing lexical substitution devices. Class I focal points are

replaced by pronouns. superordinate substitution is performed on Class 1I points, and those of Class IV and V

become definite noun phrases. Under most circumstances, Class Ill focal points are subject to superordinate

substitution. Howeier. if the previous reference to the item is a Class I focal point, the Class III instance also

becomes a pronoun. Intuitively, in order to properly match an clement with a lexical substitution to replace it,

.L A......

- -7.. -2.7 -70

21

as the strength of potential antcedcncc of the clement becomes weaker, the strength of anteccdcncc recovery

must become stronger.

The significant difference of this work from others is that it addresses the problem of lexical

substitution, and cohesion in general, in a methodical manner. Through the use of syntactic and semantic -. *.

information, the strength of potential antecedence of each focal point is made to determine the minimal

features required to generate an understandable reference. A lexical substitution is then selected, based on its

strength of antecedence recovery, to provide these minimal features. In this way, the dual tasks of cohesion,

the avoiding of repctition and the marking of new information from old, are both achieved.

A few words should be said on the limitations of Paul. First, and most obviously, Paul is strictly an

utterance realization system. There is no provision for utterance planning, and as a complete generation

system, Paul cannot stand alone. A second limitation is that Paul performs only lexical substitution, which is .

not the only cohesive device available in English. Other devices, such as ellipsis and conjunction, have not

been investigated to any depth in this work.

Another limitation is that while Paul addresses some of the issues of intersentential relationships, these

are fairly local issues. There is no attempt to generate text of more than a paragraph at a time. The effects of
cohesion, and lexical substitution as a particular device to achieve cohesion, on paragraph structure, and _

similarly the effects of paragraph structure on cohesion and lexical substitution are topics far beyond the

scope of this work. However, work on the paragraph, the level of text generation that Paul addresses, could

not be seriously attempted until isolated sentence generation had been mostly mastered. It is felt that work on

larger texts consisting of many paragraphs cannot be feasibly attempted without first addressing the issues of

single paragraph generation.

1.5. Outline of the Remaining Chapters

This chapter has served as a brief introduction to the problem of lexical substitution in computer text *

generation. The next chapter will provide a detailed discussion of cohesion in English, why it is necessary, and

various methods for achieving it. Chapter 3 describes lexical substitution as a cohesive device. In this chapter,

we will see what is gained by the inclusion of lexical substitution, as well as what the limitations of such

devices are. We will also see in detail how Paul incorporates lexical substitution into the generated text.

Chapter 4 gives an introduction to NLP, the language Paul is written in. Here we will also see the general

algorithm used in NLP to generate text. The chapter concludes with a discussion of the generation paradigm

used in Paul. (Readers interested only in Lhe linguistic results of Paul can skip most of this chapter. Except

for section 4.11, it is not needed to understand the system's underlying theory nor Pauls achievements.)

Chapter 5 presents an example text worked out in detail. The output will also be compared to "incorrect"

I "0

~~..

22

texts, that is, texts without any cohesion and with uncontrolled lexical substitution, in order to graphically

* illustrate the necessity of controlled lexical substitution. In Chapter 6, current work related to Paul will be

discussed. And finally, Chapter 7 will conclude this work, describing limitations to thc system and future areas

of research, as well as presenting the achievements of PauL

0

0

23

2. Cohesion

2.1. Introduction

The purpose of communication is for one person (the speaker or writer) to express her thoughts and .

ideas so that another (the listener or reader) can understand them. There are many restrictions placed on the -

realization of these thoughts into language so that the listener may understand. The speaker must organize her

ideas and present them in sentences that arc complete and grammatical. The sentences must be arranged and

realized in such a way that the thoughts naturally progress for the listener in the way that the speaker

intended.

One of the most important requirements for an utterance is that it seem to be unified, that it form a lext. 0 S

Utterances that are not so unified. that seem to consist of random sentences, are confusing and are usually -

dismissed as not being serious attempts at communication. Unfortunately, there are no codified rules for what

makes an utterance a unified text, the way there is for deciding whether a given sentence is grammatical.

While most people have little trouble identifying whether most passages are text or isolated sentences, there

are many instances where the answer is not clear. Text is a matter of degree, and what one might be willing to -

defend as intelligent text, another might insist on branding as a collection of isolated ramblings. However, we .. .

arc all sensitive to the presence---or lack---of text in an utterance, and we require it in our communications. -

The theory of text and what distinguishes it from isolated sentences that is used in Paul is that of of - "."

Halliday and Hasan [111. We have already implied that text is not grammatical, and indeed it is not."*- -'-

Sometimes text is seen as a kind of "meta-sentence" following grammatical rules. As a phrase is built from

words along strict rules, as a clause is built from phrases, as a sentence is built from clauses, so is a text built

from sentences. If this were true, there would be rules governing the order of the sentences and how they

appear within the text, but this is not the case [191. The text is not a grammatical or syntactic unit, it is a

semantic unit. A text isn't construcied with sentences, it is realized by them. Therefore, the understanding of

text will not be found by investigating their structure.

2.2 The Goals of Cohesion

If this unity found in text is not structural, there must be other factors that provide it. One of the items

that enhances this unity is cohesion. Cohesion refers to the linguistic phenomena that establish relationships . S

between sentences, thereby tying them together. There are two major goals that are ac:omnplished through

cohesion that enhance a passage's quality of text. The first is the obvious desire to avoid unnecessary

repetition. A section that referred to an item using the same words with no variety would soon become tedious

to read. .

-Z *
....................

.. :..= ,-'. • .'...,...... - . • ". :'.........................._ _...,._,..... ..-. :...-, -. , -.

24

Ieother goal is that ncw intjoflnatiofl must bc distinguished from old in order that die listener can

hully understand what is bcing said. One reason this is true is that it is neccssary to avoid ambiguity. If the

speaker refers to an item a second time without clcarly marking it as an elcmcnt that has been previously0

ment~ioned, the listener may interpret the reference as one to a complctcly ncw item.

T2.1 1. The room has a large window.
2. The room has a window facing east.
3. The room has a window overlooking the -

backyard.
4. The room has a window through which

the sun shines in the morning.

How many windows does the room have, four or one? If the room has only one, the speaker of T2.1 would be

accused of trying to deceive the listener, although strictly speaking, T2.1 might be completely true. The

problem is that the listener will want an indication that the windows referred to in the four sentences are

actually all the same window. The way the speaker would provide this indication is through the use of

cohesion.

T2.2 1. The room has a large window.
2. It faces east.
3. It overlooks the backyard.
4. It is located so that the sun

shines through it in the morning.

2.3. Cohesive Relations

Cohesion is created when the interpretation of an element is dependent on the meaning of another. The

element in question cannot be fully understood until the element it is dependent on is identified. The first

presupposes[11J the second in that it requires for its understanding the existence of the second. As an

example, consider the sentence 12.3.

T2.3: So he did.

Of course, by itself out of context, T2.3 is nonsensical. We know someone did something, but we have no idea

who that someone was, or what it was he did. Thbe problem is that the sentence has two items, he and did. that

presuppose the existence of previous information. Without this information, the reader cannot understand the
* sentence.

An element of a sentence presupposes the existence of another when its interpretation requires reference

to another. In T2.3, he refers to the someone we hypothesized, and did refers to that person's action. If the

sentence had been preceded by "John wanted to buy a kite," we could easily see that he now refers to John,

and that did refers to buying a kite. Once we can trace these references to their sources, we can correctly

interpret these elements in T2.3.

%

25

The very same devices that create these dependencies for interpretation help distinguish old

information from new. If the use of a cohesive element presupposes the existence of another reference of the

element for its interpretation, then the listener can be assured that the other reference exists, and that the

element in question can be understood as old information. Therefore, the act of associating sentences through

reference dependencies helps make the text unambiguous, and cohesion can be seen as a very important part

of text.

2.4. Cohesion vs. Coherence 0

We have seen how cohesion creates dependency relationships between sentences, allowing a passage

" both to avoid tedious repetitions and to clearly distinguish old information from new, thereby enhancing the

quality of text that the passage exhibits. However, we would be very wrong to assume that this is not all that is

required for a passage to be considered a text. Consider T2.4.

T2.4 1. Fred has a green car.
2. His elephant likes peanuts.
3. The car has whitewalls.

This passage exhibits all the features of cohesion that have been thus far discussed. There are interscntence

dependency relationships; his in 12.4-2 and the car in T2.4-3 refer back respectively to Fred and a green car of -. -.- ..

sentence T2.4-1. There are no unnecessary repetitions; the passage does not say "Fred's elephant" in 1"2.4-2 . .-

nor "Fred's green car" in 172.4-3. And old information is clearly marked, we know the person referred to in

T2.4-2 is the same Fred of T2.4-1, and that the car of T2.4-3 is the same as the one in T2.4-1. But one would

still be hard pressed to argue that T2.4 is a unified text.

The reason this is true is that T2.4 lacks coherence [15, 16, 17]. While the interpretations of the sentences

demonstrate the presupposition dependency of cohesion, the meanings of the sentences are unrelated, '--

eliminating any sense of texL The distinction here is important. The interpretation of sentences can be viewed

as understanding sentences individually. Cohesion creates presupposition dependencies so that the

understanding of the individual sentence is dependent on the other sentences of the passage. The meanings of

sentences can be viewed as the understanding of the contents of the sentences as they relate to each other.

Coherence involves such factors as relevancy (the factor T2.4 violates), temporal relationships, and contrasting

or parallel relationships. These factors are used to determine which of the myriad facts available should be

presented in the discourse, which order they should be presented in. and the manner in which they should be

presented. These are cxactly the problems of utterance planning, while the problems addressed by cohesion,

how to mark old information from new, how to avoid repetitions, and how to link sentences together once

their contents are known, are exactly the problems of utterance realization. ilierefore, coherence is the
phenomenon that enhances the quality of text at the utterance planning stage, while cohesion is the

phenomenon that increases the quality of text at the level of utterance realization.

% %.. ,..

26 2

2.5. Cohesive Devices

Several kinds of cohesive devices have been identified [Ill. A brief overview of these might prove .-,

useful. However, it should be remembered that these classes are not strongly partitioned and that a good deal 0

of overlapping exists. The following discussions will use the classifications defined by [111].

.5.1 Reference

Perhaps the most general and widely used form of cohesion is that of reference. As we have seen,

cohesion is created when the interpretation of an element is dependent on another. That is, the information

*[required to understand the current instance of the element must be obtained by retrieving the previous

instance. The class of devices known as reference are distinguished from other classes in that the information "

being retrieved is the actual identity of the current element. The cohesion occurs from the continuity of

reference. Reference can be further divided into three types, demonstrative, comparative, and personal.

The class of demonstratives is the demonstrative pronouns, this that, here now, today, etc.
This is my favorite song. -.
That is a mean thing to sayl
Here is your pen.
Now Is the time for all good men to come to the
aid of their country.
Toay is the first day if the rest of your life.

the general meaning of demonstratives is one of proximity (temporal proximity in the case of then now, etc.).

This, these here, now imply a nearness, while that those there, then imply a distance.

Demonstratives tend to be restricted to situational[38] or exophoric[ll] contexts. That is, the

demonstrative refers to an item (or location or time) in the physical world, rather to elements specifically - 0 --

mentioned in the text.

T2.5: When do you want to go?
Nowl

The now of T2.5 refers to the moment when the person was speaking, not the present time in which this report .0

is being written or read. If this report is put down for a few days and then picked up again, the actual present

time has changed, but the now of '2.5 has remained constant. This is what is meant by exophoric reference.

The opposite is endophoric reference [111, in which the referent is in the text. Of course, ultimately all

items refer to the physical world . The words Fred his elephant, and his carof T2.4 all refer to items in (some)

real world. However. they are not exophoric in that one does not have to consider the situation of that world

to understand the references, as one must do for T2.5. Demonstratives can be used in an endophoric role,

4Or at least some hypothetical world. The distinction is irrelevant here.

.
%.° °. . ,.. o , .,, ° °. °_ _ _ _ _ _ __"_ _ _ __""o_""_ __° ._._..°_ _._ _._._ _ __-_._._o_ _._o,._._ _j... •• "-"..

27 -

although it is less common. Generally, they occur when the demonstrative is used to refer to the discourse

itself.
This is what is meant by endophoric.

Comparative references are those of similarity. Same, identical equal, and their adverbial forms are

comparatives of identity, similar. additional and their adverbial forms are of similarity. other. different, else,

are difference, and better, more, less and all comparative adjectives and adverbs are for particular comparison.

Comparatives arc used to express the degree of likeness two items have (or lack). Particular comparatives are

used when the similarity with respect to a specific property is to be discussed.
That's the same thing I always say.
Other people like It.
New York has more people than Boston. .6

The last kind of reference is the personal reference. This refers to the class of personal pronouns,

including subjective, he, sh& it. the: objective, her. hi, it. them. possessive, its, his, hers, and reflexive,

herself itself himself themselve Personal pronouns are used to refer directly to a specific entity, either

endophorically or exophorically. While the other types of reference expressed relationships of proximity or

similarity, personal reference expresses a relationship of identity. Personal pronouns simply refer to the

element in question without additional meaning.

2.5.2. Substitution o

Substitution is the replacement of one item in the text with another. The distinction between

substitution and reference is subtle, but important. Both reference and substitution require the listener to find

another instance of the cohesive item in order to interpret it. The difference is in where that other instance can -A.--

be. With exophoric reference, we must look at the situational context, in the environment of the speaker.

Endophoric reference can be viewed the same way, if we accept the text as a special case of environment [11).

Out of context, a listener cannot tell if a specific usage of reference is exophoric or endophoric. Substitution,

on the other hand, can always be resolved within the text. -

The three types of substitution are nominal, verbal, and clausal. Nominal substitutes are one, ones. and

same.
These kites are expensive, but I want "nn. 0
The cherry pops are better than the orange ones.
I'll have the same.j

Nominal substitutions can be made for only the head nouns [38, 231 of noun phrases. Other elements of the

noun phrase. such as modifiers, can be replaced along with the head noun, but not without it.

T2.6 1. Mary has a blue dress with stripes.
:%2a. Susie has a red M.*

02b. Cathy has a red dress with g.U..

." .0

;- , -.-.. -.. .,-, .-..-... -.

28

Just as nominal substitutes can replace the head nouns of noun phrases, verbal substitutes can replace

head verbs of verb phrases. Thc only verbal substitution in English is do.
Who wants this? IJol "
Jane likes Wagner. and Vickie does. too.

As with the restrictions on nominal substitutions, verbal substitutions can be used only on the head verbs of

verb phrases. Modifiers can be replaced only along with the head verb.
*Sam likes to walk the dog, and Anastasia likes to dR. too.

0

Finally, clausal substitutions replace whole clauses. In English, the clausal substitutes are so and noL
George will be late. He told me ao.
Will it rain? I hope DIL.

2.5.3. Ellipsis

Ellipsis, as with the other two types of cohesive devices, creates a presupposition dependency. Rather

than replacing an element with some device which conveys less meaning, ellipsis completely eliminates the

reference. Actually, this could be thought of as a special case of substitution, one in which the zero or null

element is used to replace the specific referent. However. separating the classes is useful. Substitution uses a

variable (of sorts) for its replacement. This variable, while having less information than the actual referent,

- still contains some, such as number for nominals, and tense for verbs. Ellipsis. on the other hand, by replacing

the referent with nothing, offers nothing in the way of information. The proper referent must be identified in

order to gain any information.

Since ellipsis is a special case of substitution, the two types of ellipsis bear strong parallels to their

counterparts in substitution, and the same restrictions that apply to these substitutions apply to ellipsis.

, Nominal ellipsis allows the deletion of the head noun from a noun phrase.
John went to the store and {John ellipted} bought a kite.
I like this story. It's the best {story e...1itoA) I've
ever read.

It is important to note that while the head noun is ellipted, it still requires agreement with the verb when

in the nominative position.
Phyllis goes to the store and (Phyllis ellipted)
k• IU a cake.
Julie and Toni go to the store and (JulieandToni ellipted) -0
kni a cake.

In both of the second clauses of these sentences, the verbs must agree in number with the ellipted subjects.

Verbal ellipsis refers to ellipsis within the verb phrase. Again, the normal restriction is that the head

verb of the phrase must be ellipted, and other elements of the verb phrase can be ellipted only with the head

...
%

.........' - .. ' ', ,.-, ,".'. '- '-.' , ','.' -%"% . ' -... .,. -.. .- '%' ' ' "%-V..,%- ' ,

29

verb.
Who broke this vase? Glenn. (broke this vase elltnted)

Thcrc are also elliptical operators which are used to ellipt a verb. These operators consist of the modals, can.

could wilL would shall, should ma), might must.
Who will wash the car? I will. (wash the car ellipted)
Have you read this? You should. (readthis ellipted)

Note that do is not included in this modal lisL This is because do does not behave as a modal when used in

this context [38, 11, 11.

In addition to allowing the head verb to be ellipted, English allows some of the operators of the verb

phrase, modals and auxiliaries specifically, to be ellipted.
John was laughing and (John ellipted) (.s elloted}
crying at the same time. _.____________ .Fred should have been singing and Mary (should have been ellitted)playing the piano when Kirk walked in.

2.5.4. Conjunction• iS
Conjunction is the first kind of cohesive device that breaks away from the pattern of replacing some

element and creating a presupposition dependency. For this reason, conjunctive elements are not cohesive in
themselves, but indirectly. Conjunctions do not replace elements in the text, rather they connect them, and

this is where the dependencies arise. Since a conjunction spans the gap between two elements of a text, its use

creates the dependency that both the element being spanned from and the element being spanned to exist.

It is difficult to cleanly partition the various types of conjunction into distinct sets. Not only are the -:

differences subtle and the sets overlapping, but many words will fall into one category one time and another

the next, depending on their usage. However, four general categories for conjunction have been identified.

They are additive, adversative causal, and temporaL

Additive conjunctions continue thoughts by explicitly linking them, by explicitly stating such a link . .

doesn't exist, or by demonstrating possible alternatives. Simple additives include and and also. Negative .:

additives, those which show that a link doesn't exist, consist of negatives like not, nor. etc. Additives can be

" used for emphasis, furthernore, in addition, besides, to de-emphasize, incidently, by the way, to express

alternatives, such as or. or else, alternatively, and many other functions. 0

Adversative conjunctions link elements in some way that is contrary to expectations or desires. These

expectations may come from general knowledge of the real world (so-called "common sense") or from the

* specific context of the passage. Some example of adversative conjunctions are yet, though. but for simple
adversatives, actuall, on the other han~i in fact for contrastives, and in any case, anyhow, at any rate for

.. ,:,

*. . " ." "
;.? ..- ,: ,..-.....-.-.-....-.-.-.-.-.....-. :.-... ,.....................:.:......-.-.-.....-.-:-..:-...-.-.-....-...

30

dismissals. '2.7 has several examples showing how advcrsativc conjunctions violate expectations.

T2.7 1. It was raining. But we went out, anyway.
2. We went out, though it was raining.
3. We usually don't let the rain stop us. 0

However, this time we stayed in.

F2.7-1 and T2.7-2 demonstrate the violation of "common sense" expectations. We expect people to be -

intelligent enough to stay out of the rain. T2.7-3 violates expectations created by the previous two sentences.

Afer T2.7-1 and T2.7-2, the listener expects the speaker and her group to be people who frequently go out in 0

the rain. This is confirmed by the first sentence of T2.7-3, but this situational expectation is then violated by

the second sentence of T2.7-.:

Causal conjunctions express a causal relationship between elements. As with other forms of S

conjunction, causal conjunctions serve many functions. They can be used to state a forward flow of causality

with words like so. then. hence consequently. A reversed causal flow, where the second element is the cause of

the first, is possible, for. because, it follows from being examples. Conditional causality makes use of then, in

thai case. in such an event and others. 0

Finally, temporal conjunctions explicitly state the time sequence of tow elements. This temporal flow "

can be sequential, then, next, after that. preceding, previously, before that. or simultaneous, just then at oncc

interrupted, soon; aftera finmt to name some of the possibilities.

2.5.5. Lexical Substitution

Lexical substitution is the final category of cohesive devices. Lexical substitution achieves cohesion

through the proper selection of vocabulary, rather than through grammatical constructions, as did the O

previous cohesive devices. Cohesion is not created through referencc as it was with reference, substitution,

and ellipsis, nor through expressing links as it was with conjunction, but through repetition. Chapter 3

discusses lexical substitution at length, describing the various kinds of lexical substitution, and how they were

implemented in Paul

• .. ,

o ., . .

.

31

3. Lexical Substitution

3.1. Reiteration

With the exception of conjunction, all the cohesive devices we have looked at so far involve multiple

references to the same item. Reference, substitution, and ellipsis replace these references with specific

"variables" or "place holders" such as pronouns, or in the case of ellipsis, empty strings. lic propcr selection

of these variables is based on grammatical rules, and not on semantic information concerning the items the

variables are replacing. For instance, in choosing the correct personal pronoun, all we need to know is the

gender, number, and case of the item to be replaced. We do not need pragmatic information, such as the

general class to which the item in question belongs, what other kinds of things are similar to the item in

question, or how is the item in question used. Nor do we need semantic information, how d'-s the speaker or , "

the listener feel about this specific item, what overall role is the item playing in the text, what is its current role

in this sentence.

Lexical substitution, on the other hand, makes use of pragmatic and semantic information to correctly S

choose a replacement for the item. That is, rather than grammatically replacing an item to achieve cohesion,

lexical substitution lexically replaces the item [11]. We can call this lexical replacement reiteration [11].

Because the selection within grammatical cohesive devices is dictated by the grammar, there is no O

difficult decision process involved. This is unfortunately not true in the case of lexical substitution. The

options are much more varied, and the decision process is consequently more difficult. An example will help

demonstrate exactly what these options are.

VEHICLE

WATER-VEHICLE* *LAND-VEHICLEO *AIR-VEHICLE*

SHIP *SUBMARINE* *CAR* *TRUCK* *PLANE*

BOAT SHIP SUBMARINE CAR AUTO TRUCK PLANE

LEAKIN' LENA

Figure 3-1: Fragment of a Semantic Hierarchy

...-.. ...

32

Figure 3-1 shows a fragment of a possible semantic hierarchy. Let us assume that it is desired to make a

reference to the item BOA T If we want to use lexical substitution, we must find some semantic replacement

for BOAT. Given that our semantic structure is a two-dimensional hierarchical tree, we have several options

in how to move through the tree to find a suitable replacement. The first. and obviously easiest. way is to not

move at all, but stay at the node in the tree for BOAT. Another is to move across to a sibling node, in this case

to SHIP. A third is to move to up the hierarchy to a parent node. The immediate parent of BOAT is *SHIP. '

but we are not ruling out moving further up the hierarchy (at least for now), so we can also include
WATER- VEHICLE and *VEHICLE* We can move down the hierarchy to a child node, LEAKIN' LENA

in our example. Finally, we can move out of the hierarchy altogether, using some variable to mark the fact

that we've left the plane.

In fact, these very moves through the hierarchical structure arc what lexical substitution performs.

Synonymous substitution moves across the hierarchy to a sibling. Superordinatc substitution moves up the

hierarchy to an ancestor. General nouns and personal pronouns move us out of the plane of the hierarchy. And

definite noun phrases keep us at the same node. The next few sections will examine the various types of - 0

lexical substitution, how they move through the hierarchy, and how Paul incorporates them into the

generated text.

3.2. Synonyms

Synonymous substitution is the replacement of an item with another that has the same meaning. This

corresponds to the lateral movement across a hierarchy to a sibling. But not all the siblings in the tree in -.'.-.'-:

Figure 3-1 are synonyms. For instance, SHIP* and *SUBAIARINE* are clearly not synonymous. In PauL

the semantic hierarchy can be divided into two levels, a conceptual level and a lexical level. Nodes in the

conceptual level represent concepts in the abstract, modeled after the so-called primitive actions [391 and

primitive objects [251. In Figure 3-1, entries in the conceptual level are marked with asterisks. Entries in the

lexical level represent actual words in English. These are the words that can be used for the output. In Figure

3-1, these are the entries without asterisks. Only siblings of nodes in the lexical level are synonyms. Therefore, 0

SHIP and BOATare synonyms, but *SHIP* and *SUBAARINE* are not.

Obtaining siblings in a tree is a fairly straightforward task, and mechanically generating synonyms

presents no problems. However, that does not mean incorporating synonyms into a text generation system is a .

trivial task. "The difficulty comes in the fact that true synonyms may not actually exist at all. Two words rarely

mean the exact same thing in every context. Even when the literal meanings are identical, words can convey .-*.-,.

different moods and connotationx In addition to their meanings, words frequently have associated with them a -.'"-'-'-"

L sense of "goodness" or "badness," "pleasantness" or "unpleasantness." This is what is meant by connotation. -

.-....... . .

.......

'.7 7 .7 7%.

33 S

As an example, if one were to look up "odor" in a thesaurus, one might find the entries in Figure 3-2. If

a system tried to use these words interchangeably, ignoring their connotations, the sentences of Figure 3-3

could be erroneously generated as cquivalent. The problem is that while all the words of Figure 3-2 have the •

same general meaning, they clearly have different connotations. One possible classification of these words by - . '""

connotation is shown in Figure 3-4. -:

Odor 0
aroma

emanation
foulness
fragrance

odor
scent
smell
stench
stink

Figure 3-2: Synonyms for Odor .

The aroma of her perfume filled the room.
The emanation of her perfume filled the room.
The foulness of her perfume filled the room.
The fragrance of her perfume filled the room.
The odor of her perfume filled the room.
The scent of her perfume filled the room.
The smell of her perfume filled the room.
The stench of her perfume filled the room.
The stink of her perfume filled the room.

Figure 3-3: Example of Uncontrolled Synonym Substitution

PIY NEAETIV NEUTRAL
aroma foulness odor S
emanation stench scent
fragrance stink smell

Figure 3-4: Classification of Synonyms by Connotation

.-.,o.,9. -.°°-

If the lexical dictionary is arranged in such a way that synonyms are partitioned into distinct sets based

on their connotative qualities, then simple synonym substitution is possible. The decision to use a word with a

particular connotation is one of utterance planning, while the specific choice is one of utterance realization. - q

Paul performs this selection randomly from within the proper set of synonyms. Since one of the purposes of

-: "-'i2-" .. o~ o

34

synonym substitution in the first place is to avoid unlnecessary repetition, the random selection process uses a

global memory variable to "remember" the words ic has already selected. Given a list of words to randomly

choo~se from, thc system will not repeat itself unless every item on the list has already bccn used. If thc entire

list has previously appeared, then every member of the list is "forgotten" by being removed from the global

memory variable, and the whole process is begun again.

While we've been mostly discussing cohesive devices as they apply to substitutions for nouns, most of

these devices can also be used for verbs. This is especially true for synonyms. By setting up a hierarchy of

primitive actions [39], Paul can choose from the correct list of verbs that mean the desired action that have the

required connotations. The same mechanisms used for selecting synonymous noun substitutions are used for

selecting synonymous verb substitutions. In this way, Paul achieves a great deal of variety in the text it

generates without creating sentences with erroneous connotations.

3.3. Superordinates

Superordinate substitution is the replacement of an element with a noun or phrase that is a more

general term for the element. For instance, in Figure 3-1. the superordinate of LEAKIN' I.L4VA is BOAT. .
that of BOAT is 4SHlP*, and again for *SHIP* the superordinate is *lj/ATI.R-.JEHICLI* Finally, the

superordinatc for *WA TER- VEHICLE* is * VEHICLE. Superordinatcs can continue for as long as the :>

hierarchical tree will support.

As with synonymous substitution, the mechanics for performning superordinate substitution is fairly

easy. All one needs to do is to create a list of superordinates by tracing up the hierarchical tree, and randomly

choosing from this list. However, there are several issues that must be addressed to prevent superordinate

substitution from being ambiguous or making erroneous connotations. The erroneous connotations occur if

the list of superordinates is allowed to extend too long. An example will make this clear. Let us assume that

we have a hierarchy in which there is an entry FRED. The superordinate of FRED is MlAN, for MAN

HUMJAN, ANIAAL for HUM IAN, and THING for ANIAL Therefore, the superordinate list for FRED is
(MAN HUA1AN ANIMIAL THIlNG). While referring to Fred as the man seems fine, calling him the human

Seems a little strange. And furthermore, using Mhe animal or the thinig to refer to Fred is actually insulting. '. .-

* The reason these superordinates have negative connotations, even though Fred is of course an animal

* and a thing, is that there are essential qualities that humans possess that separate us from other animals.

* Calling Fred "animal" implies that he lacks these qualities, and is therefore insulting. The reason "human"~

* sounds strange is that it is the highest entry in the semantic hierarchy that exhibits these qualities. Talking

about "the human" gives one the feeling that there are other creatures in the discourse that are not human.

": "+++ -" " -" " '+ -" =+ -+ +° " ° -' " = -" +° +" + '" " +- " '" " -- " " " " . -+. -" " + -° + ° - " '° ." = " --+ " " ". > +,, " -° -'9-

* ... ' . .' *'*.. *.*, *,p**'''**.*~.-*~. -. *... -*"o.---. . .°.. . .,..-

4 35

Paul is sensitive to the connotations that are possiblc through superordinate substitution. The rsscntial

quality identified for superordinate substitution is intelligence. The system first sees if the item to be relaced

with a superordinate substitution is intelligent, either directly or by semantic inheritance. If so, a

superordinate list is made only of those entries that have themselves the quality of intelligence, again either

directly or through inheritance. If the item to be replaced doesn't have intelligence, the list is allowed to" -"

extend as far as the hierarchical entries will allow. Once the proper list of superordinates is established, Paul

randomly chooses one, preventing repetition the same way it did in the random selection of synonyms.

The other problem of superordinate substitution is that it may introduce ambiguity. Consider the

semantic hierarchy of Figure 3-S. If we wanted to perform a superordinate substitution for POGO we would

have the superordinate list (POSSUM AAAMAL ANIMAL) to choose from. But HEPZIBAII is also a .W
mammal, so the manmal could refer to either POGO or HLPZIBAH. And not only are both POGO and

HEPZIBAH animals, but so is CHURCH)Y so the animal could be any one of them. Therefore, saying the

mammal or the animal would form an ambiguous reference which the listener or reader would have no way to

understand. .6

Paul recognizes this ambiguity. Once the superordinate has been selected, Paul tests it against all the

other nouns mentioned so far in the text. If any other noun is a member of the superordinate set in question,

if the superordinate is an ancestor to any of the other nouns, the reference is ambiguous. However, by using a

feature of the element to be replaced as a modifier, the reference can be disambiguated. For instance, Figure ..

3-5 tells us that possums are grey, and that POGO is a possum. Additionally, neither HEPZIBAH nor

CHURCH Y are grey. Therefore, while the mammal and the animal are ambiguous, the grey mammal and the

grey animal are not. If the superordinate selection proves not to be ambiguous, such as if POSSUM were to be - S

chosen in this example, a disambiguating modifier is not necessary, and none is chosen.

The features that Paul recognizes for disambiguating superordinates in Pogo world are gender, size,

color, and skin type (furry, scaled, feathered). As with synonym selection and superordinate selection, choice S

of the disambiguating feature is random, using the same function to prevent repetition of a feature until the

entire list has been exhausted. Once the feature is selected, the proper value of the feature for this element is . -

found through inheritance.

However, there is the further complication that the disambiguating modifier doesn't disambiguate.

Since the feature is selected randomly, the one for our example could have been skin type. Thefurry animal is '

little better than the animal because both POGO and IE/IZIBAH are furry, both being mammals. And the

furry mammal is uselessly redundant because all mammals are furry in this world. Similarly, if size had been _

the feature selected, the results would have been either the small manunal or the small animal, and again the

..,° p° ° ° ° - °. . , -% - . ° , . ° % .-. ,. . °. ° , ° °% ° ,

•L . - '.- . .., '.','-,, . .o .,.. . - ..'.'.'. .,. .. '.. - .. - ,, . . ., , . ,.. ,.,..

36

ANIMAL

MAMMAL REPTILE

1. P0G0 IS A MALE POSSUM.

I S

2. HEPZII3AH IS A FEMALE SKUNK.

3. CHURCHY IS A MALE TURTLE.

4. POSSUMS ARE SMALL, GREY MAMMALS.

5. SKUNKS ARE SMALL, BLACK MAMMALS.

6. TURTLES ARE SMALL, GREEN REPTILES.

7. MAMMALS ARE FURRY ANIMALS.

- 8. REPTILES ARE SCALED ANIMALS.

Figure 3-5: Anothcr Sample Hierarchy

- N

phrase is as ambiguous as if no modification had occurred.

Paul avoids this problem by testing thc selcted modifier. Whcn thc choscn supcrordinatc is found to be

ambiguous, a list is made of all the problem nouns that it could refer to. After the disambiguating feature is

selected and the proper valuc determined. this value is checked against the values each of thc problem nouns

on this list would inherit for the feature. If any one of the problem nouns inherits the same value for the

feature, the feature is rejected, and a different one is randomly selected. 'Ibis process continues until a feature

is found which truly disambiguates the superordinate reterence.

JoI

. .I

- .. .".|

IP I

37

3.4. General Nouns

General nouns arc the first kind of Icxical substitution that move us out of the hierarchy plane. ihat is.

rather than attempt to find a nodc in the hierarchical tree that can be used as a substitute for the element in S

quesion, general nouns serve as "tokens" that replace the element.

General nouns consist of those nouns that can be used to replace the major noun classes. People, person.

man, wonam chila boy, girl are examples of general nouns for the human class. Creature, beast are 0

non-human animate general nouns. For inanimate concrete count nouns, we have thing, object, while for

inanimate concrete mass nouns we have stuff. Inanimate abstract nouns can be replaced by business affair.

matter. Nouns representing action have move for a general noun, while nouns of location have place, spot.

Finally fact nouns use question, idea for general nouns.
Tom doesn't look well. The old boy must be sick.
I Just danced with Grandmother. The dear girl still has It.
I Just love Paris. This place is so alive.

These are very close to superordinates, and in fact originally derive from them. But they are not 0

identical. Superordinates are used only when the element to be replaced is an actual member of the

superordinate set. General nouns are not as strict in that close approximations of the proper superordinate are

allowed. In the second pair of sentences of the above example, the speaker is not really stating that

Grandmother is a female child. Additionally, general nouns tend to have "empty" modifiers, adjectives that -

are not meant to be taken literally. In the first pair of sentences above, we are not being told that Tom is old,

and it would be a mistake to assume so.

This idea of using "tokens" or "variables" to replace elements of a sentence is very similar to the -

grammatical cohesive device of reference. With both, cohesion is formed because the interpretation of the
element is dependent on the successful retrieval of another element. The difference is in the type of "variable"

that is used. The selection of reference substitutes is purely grammatical. If one wants a personal pronoun for

Fred to serve in a subjective position, he must be used. General nouns, on the other hand, derive from the

superordinates hierarchy.

Another important difference between reference substitutes and general nouns is that general nouns

have connotations that reference substitutes do not. General nouns, especially those for the human class, give -

a strong impression of familiarity. In business correspondence, one would probably not want to refer to a

client as "the old boy" or "the dear girl." Additionally, general nouns can be used epithetically to be insulting,

whereas reference substitutions are semantically neutral. (Most expletives can be used as general nouns in this

way.)

• .. " ."• .-. ,..,.o, ".°.....................".*............'..........".........................".................,'~,''.°°..°%." o'°"".... . . =-.........................."...............- '-' -.'-. 2 -- -- -. .

38

3.5. Personal Pronouns

As do general nouns, personal pronouns represent movement out of the pline of t"ic hierarchy by using

a "variable" to replace the element. Strictly speaking, personal pronouns are not a device of lexical 0

substitution. They belong to the grammatical cohesion device of refcrence substitution. However, there were

several reasons for including pronouns in Paul. The first one, as explained above, is that reference substitution

is very close to general noun substitution, and the incorporation of general nouns while excluding personal

pronouns almost seems arbitrary. The second is that personal pronouns arc probably the most widely used of

any of the cohesive devices used in English. Any attempt to approach natural text without the use of

pronominalization is almost doomed before it begins. For these reasons, Paul incorporates personal pronouns

in its lexical substitution devices.

Because the selection of the personal pronoun is strictly grammatical. the mechanism to perform this

task is very straightforward. Once the syntactic case, the gender, and the number of the element in question

arc determined, the correct pronoun is dictated by the language.

3.6. Definite Noun Phrases

The final lexical substitution available in Paul is the definite noun phrase. A definite noun phrase is
simply created using a definite article, the in English, as opposed to an indefinite article, a or some. Of course,

definite articles are used with the other types of lexical substitutions, but they can also be used with a .

repetition of the exact same word for the element. This represents not moving at all in the hierarchy. In its

simplest form, the definite article refers to a specific known element. The way in which it is known can vary. It

could be exophoric, as in "the man over there," or endophoric, as in "I had a balloon, but the balloon broke."

When used endophorically, the definite article clearly marks an item as one that has been previously 7

mentioned, and is therefore old information. The indefinite article similarly marks an item as not having been

previously mentioned, and therefore being new information. Because English has only one definite article,

the, the mechanism for definite article selection is not an issue.

The capacity of the definite article to mark an element as old information makes its use required with

superordinates and general nouns.
My sheepdog is smart. The dog fetches my newspaper every day.
*My sheepdog is smart. A dog fetches my newspaper every day.

George worries me. The poor boy works too hard.
*George worries me. A poor boy works too hard.

...

- ,

.

39 -

3.7. Controlling Lexical Substitution
While the mechanisms for performing the various lexical substitutions are conceptually straightforward,

they do solve the entire problem of using lexical substitution. So far, we've only discussed how to use these 0

cohesive devices once they've been selected. Nothing was said about how the system chooses which cohesive

device to use. This is a serious issue in that lexical substitution devices are not interchangeable. Consider the

story in Figure 3-6. This story is unintelligible, and of course unacceptable as output for computer generated
text. The problem is that the cohesive devices were chosen randomly. If the selection of lexical substitution
devices is not carefully controlled, the resulting passage will not be understandable, and certainly will not be

acceptable text.

HE CARES FOR THE WOMAN. BETTY LIKES THE POLICEMAN, TOO. THE OLD BOY
GIVES ONE TO HER. THE NURSE LIKES THE RING.

Figure 3-6: Story with Uncontrolled Lexical Substitution

The reason why indiscriminately chosen lexical substitutions make a passage unintelligible is that lexical -".

substitutions, as do most cohesive devices, create text by using presupposed dependencies for their

interpretations, as we have seen. If those presupposed elements do not exist, or if it is not possible to correctly

identify which of the many possible elements is the one presupposed, then it is impossible to correctly

interpret the cohesive element, and the only possible result is confusion. A computer text generation system .

that incorporates lexical substitution in its output must insure that the presupposed element exists, and that it

can be readily identified by the reader.

Paul controls the selection of lexical substitution devices by conceptually dividing the problem into two

tasks. The first is to identify the strength of antecedence recovery of the lexical substitution devices. The second

is to identify the strength of potential antecedence of each element in the passage, and determine which if any
|S

lexical substitution would be appropriate.

3.7.1 Strength of Antecedence Recovery '

. Each time a cohesive device is used, a presupposition dependency is created. In order to correctly
interpret the element, the item that is being presupposed must be correctly identified. The relative ease with

which one can recover this presupposed item from the cohesive element is called the strength of antecedence

recovery. The stronger an element's strength of antecedence recovery, the easier it is to identify the

presupposed element.

r ,O

-p - . . . ° -

40 7

The lexical substitution with the highest strength of anteccdence recovery is the definite noun. This is

because the element is actually a repetition of the original item, with a definite article to mark the fact that it is

old information. There is no real need to refer to the presupposed element, since all the information is being

repeated.

The next highest is the synonym. Since property partitioned synonyms are semantically equivalent, they

can be treated as an extension of the repetition that occurs with the definite noun phrase. When used by

themselves, synonyms do not create the presupposition dependency that ties sentences together. Therefore

synonyms are not used by Paul to achieve cohesion between sentences. They are used to prevent repetition,

but this task is independent of the intersentential cohesion being controlled here. Therefore, synonymous

substitution is allowed to occur freely whenever possible.

Superordinate substitution is the lexical substitution device with the next highest strength of

antecedence recovery. Presupposition dependency does genuinely exist with the use of superordinates,

because some information is lost. When we move up the semantic hierarchy, all the traits that are specific to
the element in question are lost. The higher up we go, the more information is lost. To recover this, and fully

interpret the reference at hand, we must trace back to the original element in the hierarchy. Fortunately, the

manner in which Paul performs superordinate substitution facilitates this recovery. By insuring that the

superordinate substitution will never be ambiguous, the system only generates superordinate substitutions

that are readily recoverable.

The lexical substitution device with the next strength of antecedence recovery is the general noun.

These items provide almost no information. Since they move us out of the plane of the semantic hierarchy,

general nouns serve as little more than place holders for elements in the sentence. As we have seen, general

nouns have a large impact on the style of a passage, making it much more familiar and informal, and possibly

adding a derisive tone to the text. Since such considerations of style are beyond the scope of this thesis, Paul

has been designed to not choose general nouns as a possible lexical substitution, although the mechanism for

generating general nouns has been incorporated into the program.

The final cohesion device used by Paul. personal pronouns, has the lowest strength of antecedence

recovery. Pronouns genuinely are nothing more than place holders, variables that maintain the positions of

the elements they're replacing. A pronoun contains absolutely no semantic information, only syntactic. The

only readily available pieces of information from a pronoun are the syntactic role in the current sentence, the

gender, and the number of the replaced item. For this reason, pronouns are the hardest to recover of the "

substitutions discussed.

...

7 -7 -7-..

41

K 3.7.2. Strength of Potenatial Antecedence

While the forms of lexical substitution provide clues (to various degrees) that aid the reader in

recovering the presupposed element, the actual way in which the element is currently being used, how it was .. -.--.

previously used, its circumstances within the current sentence and within the entire text, can provide

additional clues. These factors combine to give the specific reference a strength ofpoten tial antecedence. Some '.- =

elements, by the nature of their current and previous usage, will be easier to recover independent of the 0,

lexical substitution device selected.

Strength of potential antecedence involves several factors. The syntactic role the element is playing in -

the current sentence, as well as the previous reference, the distance of the previous reference from the current

and the current focus of the text all affect an element's potential strength of antecedence. Paul identifies five

classes of potential antecedence strength, Class I being the strongest and Class V the weakest, as well as a sixth

"non-class" for elements being mentioned for the first time. These five classes are shown in Figure 3-7. .

Class I: 1. T'he sole referent of a given gender and number (singular or plural) last mentioned
within an acceptable distance, OR

2. The focus or the head of the expected focus list for the previous sentence. "

Class II: The last referent of a given gender and number last mentioned within an acceptable
distance.

Class III: A focal point that filled the same syntactic role in the previous sentence. . .'. .

Class IV: 1. A referent that has been previously mentioned, OR

2. A referent that is a member of a previously mentioned set that has been mentioned
within an acceptable distance.

Class V: A referent that is known to be a part of a previously mentioned item.

Figure 3-7: The Five Classes of Potential Antecedence

........."

Once an element's class of potential antecedence is identified, the selection of the proper lexical ..-.

substitution device is easy. The stronger an element's potential antecedence, the weaker the antecedence

".'- recovery of the lexical substitution. T'herefore, Class I elements, those with the highest strength of potential

antecedence, are replaced with personal pronouns, the substitution with the lowest strength of antecedence 0

recovery. Class 11 elements, with the next highest strength of potential antecedence, are replaced with ...

o..

...-.. 9*. .,'

42___

supcrordinatcs, the next lowest cohesive device. Class Ill elements arc unusual in that the device used to

replace them can vary. If the previous instance of the element was of Class I. if it was replaced with a

pronoun, then the current instance is replaced with a pronoun, too. Otherwise, Class Ill elements arc replaced

with superordinates, the same as Class If. Class IV and Class V elements arc both replaced with definite noun

phrases. These mappings from potential antecedence classes to lexical substitution devices is illustrated in

Figure 3-8.

Class I Pronoun Substitution

Class II Superordinate Substitution

Class Ill (previous reference Class)Pronoun Substitution 9

Class III. Supcrordinate Substitution

Class IV Definite Noun Phrase

Class V Definite Noun Phrase
Figure 3-8:

Mapping of Potential Antecedence Classes to Lexical Substitutions

The decision on which lexical substitutions would be used to replace which potential antecedence

classes was made fairly arbitrarily. This mapping intuitively makes sense. As the strength of potential

antecedence gets weaker by class, the strength of antecedence recovery gets stronger with the associated

lexical substitution. However, there is no formal justification to this exact mapping. The choice of which - -

lexical substitution to use for an element, once that element's class has been identified, is a question of style.

There is usually more than one type of lexical substitution that will serve the goals of cohesion. The

difference between them is that they will have different impacts on the style and mood, the "feeling," of the

text.

T3.1 1. Hank lost Robin's book.
2a. She was heartbroken.
2b. The girl was heartbroken.
2c. The poor girl was heartbroken.

Each of the responses of 13.1-2 are acceptable following T3.1-1, but they have different impacts on the overall

style of T3.1. T3.1-2a has a more informal, conversational tone, while T3.1-2b is more formal. And T3.1-2c is

very informal, and implies sympathy on the speaker's part. As was stated above, the investigation of style and

its impact on lexical substitution selection and vice versa is beyond the scope of this report. Therefore, an

arbitrary style was chosen for Paul. as reflected in Figure 3-8.

'.° ... °.. *... °.-• "
°
,

-" ,- . r r r r-- - i--:

43

3.7.3. Focus

One of the most important factors used in determining the potential antecdencc class of an element is

focus141. 35, 15, 16, 17]. Focus is what a discourse is about [381. It is ic central idca around which the

sentence revolves.

In order to identify the current focus or expected focus list, Paul uses the detailed algorithm for focus

developed by Sidner [41]. Figure 3-9 shows this algorithm.

Choose an expected focus as:
The subject of a sentence if the sentence is an is-a or a
there-insertion sentence.

The first clement of the default expected focus list, computed from
the semantic case relations of the verb as follows:

Order the set of phrases in the sentences using the following
preference schema:

affected case unless the affected case is a verb complement in
which case the affected case from the complement is used

all other semantic case positions with the agent last

the verb phrase

Figure 3-9: Expected Focus Algorithm

3.7.4. Distance

Another important factor in determining an element's class is distance. By this we mean the distance
between the current reference and the most recent previous reference for the same item. Distance affects our

ability to recover the antecedent for a lexical substitution. As the distance between the referent and its

antecedent increase, the number of possible referents is likely to increase, thus making the recovery a

confusing process. Additionally, as the distance increases, other elements are introduced and discussed. The

focus of these intermediate sentences is obviously not on the element in question. When this element is finally

brought back to the rcader's attention, it has to be re-introduced as something pertinent to the discussion.

Perhaps an example would help make this clear.

1 . . .

-. 9

• .:.. . . .- •
•-.. ..'..-.* . .- ,-

• % ~~~~~~~~~~~~~~~~~~~~~~~. . . .°. .%. .. %..- .-.. %. .-..--.........-...-.-.......-.......
-° "" " " " " °" " "" " "% • • "-" "-" -"- -"° °"" " "°. "'" ' . % ."% % ' . " ' "%"% 2- -Z" " -"%""" 2% ." -- "

4 44

T3.2 I1. John sent a letter to Mary.
2. Fred found the letter and read it.
3. He told George about it.
4. George gave it to Pete.
5. Pete hid it.
6. She never got it.

* The she in T3.2-6 must be Mary, since Mary is the only female mentioned in all of T3.2. However, there ame

five clauses between the initial reference of Mary in T3.2-1I and the pronoun in T3.2-6. With five sentences

consisting of six clauses, all of which have the letter as their focus, it seems strange to use the cohesive device

with the weakest antecedence recovery to refer to an element that was mentioned in passing (since Mary is not

* the focus of T3.2-1) six clauses ago.

On the other hand, not allowing any~ distance is too restrictive.

T3.3 1. John sent a letter to Mary.
2. The postman lost it.
3. She never got it.

Using the pronoun she in 1-3-3-3 seems perfectly natural and acceptable, even though the sentence it is in,

* T3.3-3. does not immediately follow the sentence in which the first reference occurred, T3.3-1. There must be

* some range in distance for which such pronominalization is acceptable, and beyond which it is not.

Unfortunately, linguists have not been able to determine the exact scope of this range. It seems that rather

than there being an exact cutoff line, there is a continuum of acceptability, as there is with most linguistic

features. An additional complication is that this continuum may be able to shift, extending the accepted range

for some contexts, and decreasing it for others. Unfortunately, investigation into this linguistic issue is beyond

* the scope of this report. In Paul the acceptable distance was arbitrarily set at two clauses.

3.7.5. Endophoric Limitations

A limitation of this use of focus and distance is that it assumes endophoric references. The possibility of'

shifting focus by simply gesturing at an object, the definition of distance based on an object's physical distance

to a referent, rather than its distance in the text, have been ignored. To appreciate the significance of this,.

* consider the following as the first sentence of an instruction manual.
First, loosen the top screw on the carburetor.

Neither screw nor carburetor have been mentioned before in the text, yet both are presented as definite noun

* phrases. This is correct because the references are meant to be exophoric. not endophoric. It is assumed that 9
the reader of this sentence has the proper engine in front of her, and can readily identify the carburetor and its

top screw by sight. Since Paul assumes cndophoric references, it would have incorrectly generated this

sentence.
First, loosen a top screw on a carburetor.

This one says to loosen any screw found on any carburetor, and implies that there are more than one of each,

45

a much different message from the first. While the definition of potential antecedence classes used in Paul is

adequate for strictly cndophoric contexts such as children's stories, it would have to be greatly modified

before exophoric contexts could be properly generated. S

3.8. Comparison with Another System

With all the elaborate mechanisms developed for Paul, and their theoretical justifications, as we have . -

been discussing, it may be difficult to judge just exactly what is gained by their inclusion. Therefore, this

chapter concludes with an example of a story generated by Paul and the same story as it would have been

generated with a much simpler algorithm for pronominalization. Figure 3-10 shows the sample story with no

form of lexical cohesion. (Figure 3-5 contained the semantic hierarchy for this world.)

POGO CARES FOR HEPZIIIAH. CHURCHY LIKES HEPZIBAH, TOO. POGO GIVES
A ROSE TO HEPZIBAH• WHICH PLEASES HEPZIBAH. HEPZIBAH DOES NOT
WANT CHURCHY'S ROSE. CHURCHY IS JEALOUS. CHURCHY PUNCHES POGO.
CHURCHY GIVES A ROSE TO HEPZIBAH. PETALS DROP OFF. THIS UPSETS
HEPZIBAH. HEPZIBAH CRIES.

Figure 3-10: The Sample Story

The simple pronominalization rule that will be compared with Paul is one that appeared in [221, and is S

presented here in Figure 3-11. The rule only allows pronominalization if the last reference to the element was .'.- -

in the last sentence. (In other words, this rule uses a maximum acceptable distance of one sentence.) The

previous-pronouns-lisi refers to the pronouns that would be used to replace the nouns of the previous

sentence. For instance, if the previous sentance were "Both Fred and George like Mary," the previous noun

list would be (Fred George Mary) and the previous-pronouns-list would be (he he she).

Pronomninalization Ru/e: A repetitive noun phrase in the
current sentence is replaced by its pronoun only if the pronoun is
unique in the previous-pronouns-list (that is, no other noun
phrases in the previous sentence has the same pronoun). '

Figure 3- 11: The Simple Pronominalization Rule

Let's see what the pronominalization rule of Figure 3-11 would do with the sample story of Figure 3-10.

With the first sentence, the previous nouns list is empty, as well as the previous-pronouns-list, and no . :-

pronominalization occurs. However, with the second sentence, the previous nouns list is (Pogo Hepzibah) and

the previous-pronouns-list is (he she). Since Churchj, of the second sentence is male, the pronoun for Churchy

.-..A .

is he. With another he on the prcvious-pronouns-list, pronominalization here is blocked. Iowever, Hepzibah

has the only she on the previous-nouns-list, and the final sentence is Church)' likes her. too. With the next

sentence, Pogo cannot be pronominalizcd because he is not on the list of previous nouns, and even if he were,

Church;' has a he on the previous-pronouns-ist, and no pronominalization would occur. Hepzibah is still on

the list of previous nouns, and is still the only she on the previous-pronouns-list, and the resulting sentence is --

Pogo gives a rose to her, which pleases her. Similarly, the other sentences would be processed, and the final

story is in Figure 3-12. •

POGO CARES FOR HEPZIBAH. CHURCHY LIKES HER, TOO. POGO GIVES
A ROSE TO HER. WHICH PLEASES HER. SHE DOES NOT WANT CHURCHY'S
ROSE. HEIS JEALOUS. HE PUNCHES POGO. CHIURCHY GIVES A ROSE TO

AIPZIBAH. PETALS DROP OFF.THIS UPSETS HEP/IIA. SHE CRIES.

Figure 3-12: Results of Simple Pronominalization Rule

--

The sample story as generated by Paul is in Figure 3-13. (The details of the generation of this story are

discussed at length in Chapter 5.)

P0G0 CARES FOR HEPZIBAH. CHURCHY LIKES HER, TOO. P000 GIVES A
ROSE TO HER, WHICH PLEASES HER. SHE DOES NOT WANT CHURCHY'S ROSE.
HE IS JEALOUS. HE PUNCHES POGO. liE GIVES A ROSE TO HEPZIBAH.
THE PETALS DROP OFF. THIS UPSETS HER. SHE CRIES.

Figure 3-13: Paul's Version of Sample Story

--

The differences between the two algorithms do not manifest until the seventh sentence, Churchy gives a rose

to Hepzibah. Because the sixth sentence mentions both Churchy and Pogo. the previous-pronouns-list during

the seventh sentence is (he he), and the algorithm does not allow Church)' to be pronominalized in this

sentence. With Paul. though, Churchy in the seventh sentence is Class III because the referent repeats the

syntactic role it had in the previous sentence, in this case subject. When the previous reference was realized as

'- a pronoun, Class III referents are also realized by pronouns, and the resulting sentence is He gives a rose to

p Hepzibah.

.,
S~o'

K°-

47

The next difference is in thc ninth sentcnce5. Because Hepzibah wasn't mentioned in the eighth

sentene, and the simple pronominalization rulc only allows a distance of one sentence for pronominali/zation,

the element is left untouched. Paul, on the other hand, uses a distance of two, and the referent is replaced

with the appropriate pronoun in Paul's version.

This brief example shows that Paul is much richer in creating pronominalization than the simple rule of A: .-

i Figure 3-11. And of course, providing other forms of lexical substitution and carefully controlling their use
allows Paul to generate a large variety of quite natural text. Appendix III contains several examples of actual

texts generated by PauL

I

O0f course, the eighth sentence is also different in the two versions. But this difference is because Paul identifies parts of p~reviously
mentioned elements, and classifies them as Class V. Sincc this is independent of pronominalization and the rulc we are cointrasting

%Jagainst Paul is one for only pronomninalization, a comparison for the eighth sentence wouldn't be fair. '0

%4'

I '1

r r r - c .- .. "° - - -.

48 0

4. NLP
4. 1. Introduction 0

This chaptcr presents an introduction to MYP (for Natural Language Processor) as it was implemented

for Paul. The reader is introduced to the major constructs of the language, and the syntax and semantics of

those constructs. A working knowledge of LISP is required to gain a complete comprehension of the
presented material, but programming expertise is not necessary---and the reader will certainly not be asked to
trace through lines of code. Additionally, after the description the algorithm used in NLP to generate

sentences will be discussed, and an example will be provided.

It should be understood that this chapter is not intended to serve as a manual or users' guide to NLP, 6

but simply an introduction to some of the concepts central to the language's use. Furthermore, opinions

expressed in this chapter are solely this author's and do not necessarily have the agreement or the approval of

my colleagues, nor of George Heidorn, the creator of NLP.

NLP is a language created by George Heidorn specifically for natural language processing. The

language allows the user to write and execute production rules on frame-like data structures which Heidorn

calls records. Since Heidom's original version of NLP as reported in 1972 [131 was supported by a FORTRAN

program, it reflected many of the constraints and special properties of a numerical computational language. O

By using LISP, a subset of NLP was implemented---essentially the instructions necessary for language -

generation---without the artificial numerical orientation of Heidorn's version. Consequently, the current

version of NLP used for Paul is not completely compatible with Heidorn's, and the following descriptions.of

NLP, while agreeing with Heidorn's for the most part, will be specifically based on Paul's version..

4.2. NLP Records

The primitive data structure in NLP is the record. Records are entity-attribute-value elements, largely

borrowed from the realm of system simulation [8]. NLP records are based on the belief that objects in the

world, entities can be adequately described by their distinguishing properties, attributes and the specific
values these properties have. In NLP, entities are referred to as records, while attributes and values keep their -

names.

This approach of entity-artribute-value data structure is very similar to the frame idea 136]. Records are

analogous to frames, attributes correspond to slots, and the notion of values is the same for both. Just as a .' -

given frame can have more than one slot, an NIP record can have an arbitrary number of attributes. And " "

because the value of a specific attribute for a given record can be another record with its own attributes and 0

values, it is possible to use NI.P to implement the information retrieval network speculated about in [361.

.j ..,,. °.o °•

49 0

Thcre are several ways to implement an entity-attribute-value data structure in I.SP. In, Paul, property

lists were chosen because they seem most natural for this application. "lereforc, each record can be thought

of as a property list where the attributes arc properties and the values arc of course the corresponding -

property values. Using property lists for records necessitates each record to have a unique name, either

supplied by the user, in which case the record is called a niamed record, or generated by the system when it .';-

creates the record. This requirement would not be found in a version that might use another implementation

of records such as association lists. However, it was found that having a name for every record was more of a

benefit than a burden. In the act of debugging, both of the code for the NLP system and of subsequent NLP

programs, it has often been necessary to examine the contents of specific records, and these records always

having readily obtainable names have made them immediately accessible.

4.3. Augmented Phrase Structure Rules

As mentioned earlier, NLP uses production rules [46] to manipulate and generate text. In many ways,

this is a logical choice of methods. Many linguistic theories of grammars, including transformational

grammars pioneered by Chomsky 141, employ phrase structure rules, which are generally replacement rules. If S

a specific set of elements is encountered under the proper circumstances, the set is replaced with another.

Production rules follow exactly the same format. If a certain situation exists, then a specific action is to be

performed. Therefore, production rules arc a natural choice for implementing natural language.

To reflect this natural correspondence between production rules and linguistic grammars, the syntax of

NLP is very similar to the syntax of phrase structure rules [4]. A typical phrase structure rule might be
SENTENCE: -NOUNPHRASE VERBPHRASE

which says that when a SENTENCE is encountered, replace it with a NOUNPHRASE followed by a

VERBPHRASE. The equivalent NLP rule might be

SENTENCE -- > NOUNPHRASE VERBPHRASE;

This rule can be read as: "If a record associated with the segment type6 SENTENCE is encountered, replace it

with a record of the segment type NOUNPHRASE followed by a record of the segment type

VERBPHRASE."

The syntax for NLP rules as explained up to this point is far too restricted to be useful. An example will

clearly demonstrate this, and help provide the motivation for the chosen solution in NI.P. If we were to write

a set of rules for generating "The boy flies the kite." we might try the following. Ignoring for the now the

problem of inserting the actual words into the structure, using the program fragment of Figure 4-1, we could

easily construct the following tree.

. . . • N- .

6Sgrt Opi in NI P corresponds to smbolin phrase structure rules. both tcniiinal and nonterminal. .-..,""".,"'

."..........."".......-.....'-";."..-....:.;'.. .. "....... - -;;. . ; i ;L-i

°---.'-.G ' ..'"..:....... *-;.......... *...% % ... :.:.-.-.i .-.... . - ;'? ; - -;- ; ==============

50 0

...::: ::

SENT --> NOUNPHRASE VERBPHRASE .

NOUNPHRASE --> DETR NOUN;
VERBPHRASE --> VERB NOUNPHRASE;

Figure 4- 1: Fragment of an NLP Program

SENT

NOUNPHRASE VERBPHRASE

DETR NOUN VERB NOUNPHRASE

DETR NOUN

THE BOY FLIES THE KITE

Figure 4-2: Generated Phrase Structure Tree

Now what happens if, instead of the example sentence, we wanted to say "John flies the kite."? Our

rules insist that every nounphrase consists of a determiner (DETR in the rules) and a noun. Therefore, if we

tried to generate this sentence, we would get "The John flies the kite.", which is not at all what we want. A -.-

possible solution would be to allow more than one rule for each nonterminal, and adding the following rule to " .," ."

ourset. .
NOUNPHRASE --> NOUN;

Now we could generate "John flies the kite." However, "The John flies the kite." is still possible from our

rules, and now such sentences as "Boy flies kite." can be generated. Adding more rules by themselves is not

the answer.

One might think that the problem comes from using the nonterminal symbol NOUNPHRASE for noun

phrases both with and without determiners, and that distinct nonterminal symbols for the two distinct

phenomena would provide a solution. In addition to losing significant generalities by using such a scheme, the

logical conclusion of this is to havc a separate nontcrminal for every possible terminal string, an impossible

feat since there are an infinite number of possible sentences. If one restricts the number of sentences to those

S"%."%:

51 0

anticipated as nccdcd, one is actually providing an elaborate systcm of canncd messages, which we have

already dismissed in Chapter One as impractical and linguistically uninteresting.

Somehow. we must be able to choose from among the various rules for each nonterminal symbol. NIP

does this through the use of augmented phrase structure rules [13, 451. A list of condition specifications is "

allowed aftcr the segment type to the lcft of the arrow, the one being replaced. The syntax for condition -

specifications is quite rich, allowing the user to test for the presence or absence of specific attributes, whether •

or not attributes have specific values, whether the attribute values of given records are the same or different

from the attribute values of other records, whether or not records can inherit specific properties, and just

about any other condition the user might care to test.

Furthermore, augmented phrase structure rules allow the user to specify how the records that will

replace the original will be created by using a list of creation specificationi Again, the syntax is rich, and the -

options are myriad. All this results in the fact that NIP rules are not merely rewrite rules, changing the

labeling of a ,ecord from one segment type to another, but that they create new records for the new segment J

types. A more complete example (which we will begin to understand as each syntactic option is explained)

might be

SENT(PASSIVE) --> NOUNPH(%GOAL(SENT))
VERBPH(%SENTNUMB:-NUMB(GOAL),-GOAL)
A, B Y NOUNPH(%AGENT(SENT)) .

Figure 4-3: Example of NLP Rule S

4.4. Condition Specifications

The condition specifications form a series of tests which the current record must satisfy before the rule

* can be triggered. These tests are mostly variations on determining whether specific attributes have desired

". values. The simplest test is whether an attribute has any value at all, which is specified by merely naming the

*" attribute to be tested. The example of Figure 4-3 demonstrates this. If the SENT record has any non-false

value for the attribute PASSIVE. the rule will be triggered. To understand why the value has to be "non- -

false" instead of simply "true," we must recall how Boolean logic works in LISP. Rather than testing for true

or false. .ISP conditional statements test for NIL (false) or non-NIL. Non-Nil, values are not restricted to 1

(true), but can have any value other than NIL. While the PASSIVE attribute could have a value of T. any

non-NIL value is sufficient to trigger the rule. *RECOR)* is a variable whose value will be the name of the 0

current record during execution time. It is through this variable that the system accesses the current record to

°. ". ..- .-

- •* .,

C, .,.r,,S .. . _...°_ ,-. . -.L :.L - -...-" ." ." ' •. .- .- .~.- . "-"- - ,

- 52

see if it has the appropriate attribute (by seeing if it has a non-NIL value for the appropriatc property).

The NIP syntax also allows the user to specify tests on records other than the One currently on the stack. S

Recall that the value for an attribute of a given record might itself be a record with its own attributes and ". '

values. The user is able to access this "nested" record and its attributes for tests, too. By following the test ."

attribute with a ran atite or value (or PV) to another record, the user informs the system that an

indirect test is to be performed. For example
EXAMPLE (ALPHA(BETA))

mi-ht be read as: "If the current record has a segment type of EXAMPLE and the ALPHA value of the

record which is the BETA value of the current record is non-NIL, then trigger the rule." In other words, the

BETA value of the current record will itself be a record, say RECORI)2. If the ALPHA value of RFCORD2, S

not the ALPHA value of the current record, is non-NIL, then the rule is to be triggered. This is implemented

in LISP through nested GET statements.

(GET (GET *RECORD* 'BETA) 'ALPHA)

The syntax is not limited to a single nesting of attributes. The user can specify as many levels as she

wants.
EXAMPLE(ALPHA(BETA(.. .(OMEGA)...)))

becomes

(GET (GET (...(GET *RECORD* 'OMEGA)...) 'BETA) 'ALPHA)

Notice that the nested hierarchy has originated with the current record *RECORD* in all of the above

examples. This is not required by NLP, but is the default origin. The user can specify a named record by

following the attribute with the parenthesized name enclosed in single quL,,es. Therefore the test •

* EXAMPLE(ALPHA('LETTERS'))

* is read as: "If the current record has a segment type EXAMPLE, and the named record LETTERS has a

non-NIL, ALPHA value, trigger the rule." Nested attribute references are also allowed with specific named

records, such as •

EXAMPLE(ALPHA(BETA(...(OMEGA('LETTERS'))...)))

Collccti'ely, these attribute calls are known as atiribute references.

In addition to determining %hether an attribute reference has a non-NiL value, the user can test for a S

spccific vdue. This is %kritten b. placing an equal sign between the attribute reference and the specific value,

%hich is enclosed in single quoics. !t doesn't matter \which precedes and which follows the equal sign.

Therefore
*.XAMPLE(ALPHA, 'BETA')

and

EXAMPLE('BETA'-ALPHA)

- S

:: __ _..........__ __ __ _ __ __ _ __ __ _

53 0

are logically equivalent. Any of the forms of attribute referencing discussed above are allowed in these

equality tests. Additionally, the user can tcst if the values of two attribute references are equal.
EXAMPLE(GAMMA-DELTA)

Again, any legal attribute reference may be used here.

There is only one standard attribute in NLP, the SUP attribute. Heidorn conceptually arranged his .--.

records into SUPersets, and each record's SUP attribute specifies the supcrset that record belongs to. A

superset is a more general class of entities to which a record belongs, and corresponds to the idea of

superordinates. For instance, a record representing "BRIDGET" could have a SUP attribute pointing to a

record for "FEMALE." The FEMALE record might have "PERSON" for its SUP attribute, and so on. Such

a series of SUP values is known as a SUP chain. This specific chain could be interpreted as saying BRIDGET 0

has FEMALE as a superordinate, FEMALE has a superordinate of PERSON, and so forth. 'he notion of

supersets and a specific attribute SUP to represent them is similar to the "AKO" or "a-kind-of' slot that has

been suggested for implementing frames [471.

Since the SUP attribute is so prevalent in record definitions, NI-P has several conventions for

facilitating their use. In attribute tests, rather than explicitly specifying that a value is to be compared to the

current record's SUP attribute by using the syntax described above, the user can simply give the value within

single quotes. NLP will assume the value is meant for the SUP attribute by default. Therefore .
EXAMPLE('ALPHA')

is exactly equivalent to
EXAMPLE(SUP-'ALPHA')

In addition to nested attribute referencing, NI-P allows indirect attribute referencing. Frequently, the

user may want to use the value of an attribute reference as part of another attribute reference. For example,

assume the value of the ALPHA attribute of the current record is either BEFA or GAMMA. If the ALPHA
value is BETA, the user wants to test the BETA value of the current record. On the other hand, if the ALPHA

value is GAMMA, the user wants to test the current record's GAMMA value. In LISP this would be
(GET *RECORD* (GET *RECORD* 'ALPHA)) -

The difference between this and the nesting discussed above is that before we were nesting the GET
statements along the first argument, the atom, while now we're nesting the GET statements along the second

argument, the property.

The user specifies this second kind of nesting by using the commercial at sign, "@". The @ symbol tells

the system that the following attribute reference, enclosed in brackets, is an indirect reference. Returning to
our previous example, the N1.11 statement that would represent is test is_.

EXAMPLE(OCALPHA])

................

... :-...-.... . .- , .
, - .- ° • • ° - _O .- .- . ,° . - . . - • .* % ° , . -% . . - -% ° o . • . . ,- .*o -•.- . -. , , • -, - .- . °..-° . °

54

Any legal attribute reference can be included between the brackets (including another indirect reference with

an @ symbol), and an indirect reference with an @ symbol may be used wherever an attribute is cxpected.

The C symbol completes the syntax for attribute references.

Another potentially confusing but cxtremcly important test is that of chaining. Recall that records are

conceptually arranged into supersets, with each record's SUP attribute specifying the superset that record

belongs to, and that a series of SUP values forms a SUP chain. Frequently, it is necessary to determine if the 0

current record belongs to a specific superset, that is, if the name of the superset is anywhere on the current

record's SUP chain.

A concrete example should clarify this. Returning to our record for BRIDGE!, we remember that its -6

SUP is FEMALE, and the SUP for FEMALE is PERSON. Assume that PERSON has a SUP of HUMAN,

that the SUP for HUMAN is MAMMAL, and that the MAMMAL record's SUP is ANIMAL. In other

words, we are saying that BRII)GET is a FEMALE, all FEMALES are PERSONS, all PERSONS are

HUMANS, all HUMANS are MAMMALS, and all MAMMALS are ANIMALS. We are now ready to test S

along this SUP chain.

The symbol for tests along chains is the dollar sign, "$". A test to see if the current record is a member

of the MAMMAL superset of the MAMMAL superset might be
EXAMPLE($-'MAMMAL')

When this test is executed, the SUP of the current record is compared to MAMMAL. If they are equal, the

test returns T. Otherwise, we move up one on the SUP chain, and test that record's SUP with MAMMAL. If

that test fails, we again move up one on the chain. This process continues until either a record is found on the

chain whose SUP is equal to MAMMAL, in which case the test succeeds, or until the end of the SUP chain is

reached by encountering a record with no SUP value, in which case the test fails. Conceptually in LISP what

we want is
(OR (EQUAL (GET (*RECORD* 'SUP) 'MAMMAL)

(EQUAL (GET (GET "RECORD* 'SUP) 'SUP) 'MAMMAL)
(EQUAL (GET (GET (GET *RECORD* 'SUP) 'SUP) 'SUP) 'MAMMAL)

As with any equality test, the ordering of the chaining reference and the value being tested for is not

crucial. Therefore,
EXAMPLE(S* 'MAMMAL')

and
EXAMPLE('MAMMAL' -S)

are equivalent. Furthermore, the value being tested for can take the form of any of the attribute references we

have already seen. Thus

~~~**~ *.°."...

.
. P . j 'A *,*:'...~* *~L'-% .,-.,. .*%

- .• . • • • .• ° -, . . - • • o ° °Ao*•. . .. * - • .* .- .* .,... .- .

55 0

EXAMPLE(S-ALPHA(BETA('LETTER')))

is completely lcgal. Additionally. we can specify the search to start elsewhere than the current rccord. TIhis is

done by placing the desired attribute reference immediately before the $. An example might be 0
EXAMPLE (ALPHA(BETA)$-ONE (TWO))

In addition to seeing whether a record is a member of a superset, it is often necessary to test whether the

record or any member of its superset has a specific value for an attribute other than the SUP attribute. This

brings in the notion of inheritance [47j. Returning to our BRIDGET SUP chain example, we know that

mammals exhibit certain traits that are not generally found in every animal. For instance, mammals are warm

blooded. Since Bridget is a mammal, she is also warm blooded. If we wanted to include this fact in our system,

we could add a BI.OOD attribute to the BRIDGET record with a value of WARM. However, we would then

have to explicitly iniude this attribute and same value for every record that is a mcmber of the MAMMAL

supcrset. It would be much more general to give the MAMMAL record the BLOOD attribute and the

WARM value. Then every member of the MAMMAL. superset could inherit this attribute and value. That is,

every member of the superset is known to have the attributes and values of the superset, including the

BLOOD attribute with the WARM value, unless we are told explicitly otherwise.

In order to test if the current record can inherit the value for the WARM attribute, the following NLP

syntax is used.
EXAMPLE(S['BLOOD']-'WARM')

The brackets inform the system that an argument is being given to the chaining function called for by the $. It

is important to think of this as a function with an argument. Notice that the BLOOD attribute in the example

is in single quotes. This is necessary because we want to use the literal BLOOD as the argument to the

chaining function. If BLOOD were not in quotes, the value of the current record's BLOOD attribute would

be given as an argument to the chaining function. As always, any attribute reference can be used within the

brackets.

Actually, the chaining function always has this argument. When it isn't supplied explicitly by the user,

as we saw when the $ was first introduced, the argument defaults to SUP. Therefore

EXAMPLE($-'MAMMAL')

0- and

EXAMPLE($['SUP']='MAMMAL')

are identical. Again, ordering around the equal sign is unimportant, and any attribute reference can serve as

the value being tested as well as the starting point for the chaining test.

In addition to having chains along the SUP attribute, there's no reason why the records can't have

chains along other attributes, and there's no reason why the chaining function can't use these other chains. By

'o

.* °. "°.. °

..,.. '..,, .' ,' . ' ..- ' -. .%.,.. '.-,-' .,- - -.'.. -.. ° . ,. . -. - . . - - .. .'-. . . -.. , .-.-

56 _

supplying the function with a second argument, the user can specify which attribute chain she wants to

exploit. An cxample might be
EXAMPLE(S['ALPHA', 'BETA']-'GAMMA') .

This says to chain along the BETA attribute, looking for a record whose AI.PHA value is equal to GAMMA.

Notice that the second argument is also in quotes for the same reasons that the first is (as explained above),

and that the arguments are separated by a comma. -

As with the first argument, the second argument is required by the chaining function, and when it is not

explicitly supplied, the argument defaults to SUP. Therefore,
EXAMPLE(S['BLOOD']-'WARM')

and . a
EXAMPLE($['BLOOD', 'SUP']-'WARM')

are equivalent, as are
EXAMPLE($-'WARM')

and
EXAMPLE($['SUP', 'SUP']-'WARM') . .

An important restriction on the second argument is that it can not be specified if the first argument is not. If

the user wants to specify the second argument, she imust supply the first, even if it is to be SUP.

Finally, the user can specify the record the chain is to start with by giving the appropriate attribute .

reference or literal before the dollar sign. As usual, if none is supplied, the system defaults to the current

record being tested.

This completes the syntax for chaining references. The first argument, whose value is the attribute being .

tested for along the chain, is known as the test attribute, while the second, whose value is the attribute being

chained along, is called the chain attribute.

Just as we could use attribute references without equal signs to test if they had any non-NIL value, we 0

can use chaining references without equal signs to test if they return any non-NIL values. In this case, the first

non-NIL value for the test attribute found along the chain specified by the chain attribute is returned. If none

is found, Nil, is returned and the test fails. If the BRIDGEI' record were the current record, execution of the -

test S
EXAMPLE(S['BLOOD'])

would return WARM, assuming none of the records between BRIDGET and MAMMAL. had a non-NIL

BI.OOD value. The same defaults and restrictions described abovc for chaining references apply for this use

of them. A good test to see whether chaining references and their defaults are understood would be to - _- _

- 9.-.-'i'"

-.. -....-

570

describe what is specified in the following test.
EXAMPLE(S)

0

Finally, two chaining references may bc used in the same equality test. An example could be
EXAMPLE($t'ALPHA', 'BETA']-$['ONE',' TWO'])

This says that if the ALPHA value inherited along the BEI'A chain of the current record is equal to the ONE

value inherited along the TWO chain, the test succeeds.

So far we have only seen tests consisting of a single condition specification. NLP allows the user to

combine an arbitrary number of condition specifications into a single test. One way is to separate condition

specifications by commas. This has the effect of inserting logical ANDs between each individual test. .
EXAMPLE(ALPHABETA)

becomes in LISP
(AND (GET *RECORD* 'ALPHA)

(GET *RECORD* 'BETA))

Any of the types of condition specifications discussed above are allowed, as well as any number of condition

specifications in a single test.

By placing a vertical bar "1" between two condition specifications, the user states that either the first test

OR the second is sufficient to trigger the test.
EXAMPLE(ALPHA IBETA)

As with AND, any number and type of condition specifications can be combined with OR. . .-'.

Logical ANDs and ORs may be combined in the same test.
EXAMPLE (ALPHA, BETA I GAMMA)

becomes
(AND (GET RECORD* 'ALPHA)

(OR (GET *RECORD* 'BETA)
(GET *RECORD* 'GAMMA)))

Notice that the vertical bar OR has precedence over the comma AND. This is true throughout condition

specifications in this NLP system. Heidorn's version did not explicitly address the question of precedence, and

79
7 ANSWER: With the defaults, this test becomes

EXAPLE($['SUP'.'SUP'])

and says to test the current record for a SUP value along the SL P chain. In other words, if the current record has any non-Nil SUP
value. the test succecds. Otherwise go to the recod specified by the current record's SUP value and repeat the test. continuing until either
a record is found whose SUP value (as the test attnbute) is non-NIL and the test succeeds. or until its StP value (as the chain attribute) is
NIL and the test lails. Obmiousl). either the current record has a non-Nil. SUP value for the test attribute. in which case the test
inimediatelv succeeds mithout chaining. or it has a NIL SLI vaclue for the chain amibute, in which case the test immediately fails because
it can't chain. In either case, no chaining is performed. Ibis test is therefore identical to

EXANPLE(SUP)

%S
--. :-:...

-'- ."-.-*.. .. *..

7- 7 7- I .7 1 1

P• 58 .

his resulting Boolean operators have an ad hoc precedence. When the current version of NI.P was developed,

it was felt that an explicit precedence would help create uniform rules.

While an explicit precedence exists in this system, the user can override it through the standard use of
parentheses. Therefore,

EXAMPLE((ALPHABETA) IGAMMA) "

becomes .

(OR (AND (GET *RECORD* 'ALPHA)
(GET *RECORD* 'BETA))

(GET $RECORD* 'GAMMA))

giving the comma AND precedence over the vertical bar OR. Superfluous parentheses are ignored, provided

they are correctly balanced. 0

Completing the Boolean entourage is the logical NOT. The current system allows two symbols, the

caret, "t", and the tilde, "-", to be used for NOT. Both the caret and the tilde perform the exact same

function. (In fact, the system converts all tildes to carets before processing rules.) The tilde was included to .

accommodate users who were accustomed to the tilde as the symbol for logical NOT. A NOT symbol before

any condition specification states that the test is to succeed if and only if the condition specification fails.
EXAMPLE(tALPHA)
EXAMPLE (t(ALPHA-BETA))
EXAMPLE(t$['ONE' 'TWO'])

NOT has precedence over AND and OR, but parentheses can again override this. So while
EXAMPLE(tALPHA, BETA)

becomes
(AND (NOT (GET *RECORD* 'ALPHA)) .

(GET *RECORD* 'BETA))

the following test
EXAMPLE(t(ALPHA, BETA))

becomes
(NOT (AND (GET *RECORD* 'ALPHA)

(GET RECORD* 'BETA)))

The Boolean operators complete the syntax for condition specifications as explained in the original report.

NLP has been extended since that report, however. One of the extensions included in Paul's version of •

NLP is the exclamation point "!". When the system encounters an !, the element immediately following it is .

treated as a LISP s-expression, not an NLP element. Therefore ..

EXAMPLE(ALPHAI(NUMBERP BETA))

becomes
(AND (GET *RECORD* 'ALPHA)

(NUMBERP BETA))

..

,-"". , .',.% " "..., ..'.- . - "-'-. -'< --. '..i.-.- - - "-,-. .- -U. ..- . -,- " . - . ..-. -- .' - .'.- .- . .- ,- . .--- - -. - ." : - . ' :,..,

59 0

Thc s-expression is inserted directly into the I JSP code just as it appeared in the rule.

Another addition that has been added is to allow explicit function calls in NLP rules. The system 0

'-'. recognizes function calls by the parameter list enclosed in angle brackets "<>" directly following the function

* name. The distinction between this kind of function call and the insertion of a LISP function directly into the

code through the use of ! is that the parameters in the angle bracket list are NLP attributes and are resolved in -.

the nonnal way. An example might help to make this clear. O .

EXAMPLE(I (NUMBERP ALPHA))

:' as we know, simply becomes
(NUMBERP ALPHA)

On the other hand. in our new function call,
EXAMPLE(NUMBERP<ALPHA>)

.- ALPHA is treated as an attribute, and the result is
(NUMBERP (GET *RECORD* 'ALPHA))

This allows the user to use function calls with attribute values as parameters without requiring her to know

these values ahead of time.

The user is also allowed to have a segment type without condition specifications. In this case, any record

i of this segment type would trigger the rule. The syntax for the condition part of NLP rules is now complete.

" 4.5. Creation Specifications

In addition to specifying the conditions under which a rule is to be triggered, augmented phrase

structure rules allow the user to designate the specifications for creating a new record. The first element of this . .-

part of an NLP rule is a segment type. This is the segment type that will be associated with the new record . .7

when it is placed on the control stack, and will be used when it's that record's turn to trigger rules.

Following the segment type is an optional list of creation specifications which spell out in detail how the

new record is to be created. ihe syntax for many of the creation specifications is similar to that for condition

*. specifications, but the meaning is slightly different. The simplest creation specification is once again the name

. of an attribute.
EXAMPLE(ALPHA)

However, rather than testing to see if the current record has a non-NIl, value for the ALPHA attribute, here .9

we want to assign a non-NIL value to the new record's ALPHA attribute. In other words, instead of retrieving

. a property value with a GET statement, we want to assign a property value with a PUTPROP statement. Since

the user hasn't specified the value to be assigned, only that it be non-NIL, the system uses the simplest " -

non-NIL value available, namely T. As with condition specifications, pointer values may be used.
EXAMPLE(ALPHA(BETA))

is legal and is read as "Create a new record ofsegment type EXAMPLE whose AILPIJA value of the record
,: ""~.. -%"*".

2" i'..iii-.? 9

60 0

which is this new record's BIi A value is T." In other words, thc BEl'A value of the new record is obtained,
and that record's A LPHA value is set to T. 'hc LISP code to do this is

(PUTPROP (GET *RECORD* 'BETA) T 'ALPHA) .
Of course, if the new record does not yet have a BPETA value, the nested GE7 will return NIL and the

command will put the value T and the property ALPHA on the property list of NIL, which is probably not

what the user intended. Notice that whether or not the new record has a BETA value, the property list of the

new record is not affected in any way. This means the rule would have no direct effect on the new record. 0

Since this kind of specification is usable on all types of attribute references, it can be used on those for

specifically named record, and with indirect referencing.
EXAMPLE(ALPHA('LETTERS'))

EXAMPLE(O[ALPHA])

There is one convention in creation specification attributes that is not found in those of condition " . -

specifications. In condition specifications, the default record was the current one being tested. In creation •

specifications, the default is the record being created. In order to use attributes of the record that caused the

rule to trigger, NLP has the convention of using the segment type of that record, the condition segment typ"

for the name of this triggering record. As an example, if we had a rule whose conditiofi segment type were
SENT, then -

EXAMPLE(I [ALPHA(SENT)])
would become

(PUTPROP *RECORD* T (GET *OLD-RECORD* 'ALPHA))

At the time of execution, the LISP variable *RECORD* will still contain the name of the record being

created, and *OLD-RECORD* will contain the name of the record that triggered this rule.

Just as NLP allows the testing of attribute references for specific values, the system allows the

assignment of specific values in creation specifications. The operator for assignment ":=," immediately 0

follows the attribute reference that is to receive a value, and the actual value to be assigned next appears. For

instance,
EXAMPLE(ALPHA: 'BETA')

says to create a new record of segment type EXAMPLE with an ALPHA attribute whose value is BETA. In

addition to literals, attribute references may be used, since they eventually return values.
EXAMPLE(ALPHA:mBETA) 7- .

Any legal attribute references, including arbitrary nesting, indirect references through the use of the .- '- ":'

@ symbol, and using explicitly named records are allowed, and these attribute references use the same syntax -

that condition specifications use.

*.

=~. ..,.-.........-..,....; .-.... ...-...... -%~ '....-..... ...-....,~-.... -.-. .. ,.,, ,.., .. .,. ,....,. ..

61

One significant difference, though, is that order around the assignment operator is crucial. Unlike

equality tests, where, as in all tests, no record is actually being altered, assignment clearly changes the value of

an attribute for some record. 'he left part of an assignment designates where a new value is to be stored, and S

the right part states what that value is. Thc two parts serve very different purposes, and the assignment

operator, unlike the equality operator, is therefore not symmetric. Furthermore, the left part of an assignment

must be able to receive a value. In other words, it must be an attribute reference, not a literal in single quotes,
a chaining reference, or an explicit function call. •

As there was a simplified syntax for testing a record's SUP value, there is a simplified syntax for

assigning a value to a record's SUP attribute. The syntax is the same, the literal value simply appearing within

single quotes. 6
EXAMPLE('ALPHA')

is equivalent to
EXAMPLE(SUP:-'ALPHA')

Chaining can also occur in creation specifications. '[he same symbol, the dollar sign, is used for

chaining, and the same syntax, defaults, and restrictions for chaining references in condition specifications

apply to their use in creation specifications. Additionally, since chaining references can only obtain values,

they can not receive values; they can only appear on the right side of assignments (unless they are being used

as an indirect reference within an

The exclamation point extension discussed above may be used in creation specifications as well as in

condition specifications. The LISP s-expression immediately following the ! is read in as such and is placed as ,

is directly into the LISP code being generated. The NLP system does not attempt to convert the s-expression
into LISP (it already is in LISP), nor is the s-expression evaluated at this time.

There is an additional creation specification operator that has no corresponding condition operator, the

per cent sign, "%'. Frequently, the user will want to give a new record all the attributes and values of some
other record. Listing each attribute assignment individually is too cumbersome, and there is no reason to

assume that the user will know at the time the rule is being written every attribute the record being copied will

have at the time of execution. 1'he % solves this problem. The % followed by any legal attribute reference tells

the system to copy into the new record all the attributes and corresponding values of the record pointed to by

the attribute reference. For instance,
EXAMPLE(%ALPHA('LETTERS'))

copies the entire record found at
(GET 'LETTERS 'ALPHA)

into the new record. That is, each property found on the plist of the item returned by (GET 'lE•rrERS

.. '..
•..o °o.o°-°O o .o

44 % ° •°°. "-"°-

- 4 ,244.4 1*4 *2 , i 4 * , 4

62 0

'AiIIIA) is put onto the plist of *IWCORI)* with the same property value.

There is also an automatic use of the copying function. If the segment type of the record being newly 0

created is the same as the segment type of the record that triggered this rule, the triggering record is

automatically copied into the newly created record as the first action of the crcation specification. T'he only -

time this doesn 't occur is when the creation specification of the new record has an explicit command to copy ." '

some record (signified by the use of the % operator).

More than one creation specification may be included in the same list by separating them with commas.

The actions designated by the creation specifications are performed sequentially from left to right. As an

example,
EXAMPLE('ALPHA' .BETA:-BETA('LETTERS'))

says the following: "Create a new record of segment type EXAMPLE, assign the value ALPHA to the SUP

attribute of this new record, and assign to its BETA attribute the BETA value of the named record

LETTERS." S

After copying an existing record into the new one, the user has no problem adding or reassigning

attributes to the new record.
EXAMPLE(%'LETTERS' .ALPHA:-'ONE')

copies the attributes of the record LE1TERS into the new record, then changes the new record's ALPHA

value to ONE. However, the user will frequently want to eliminate or "turn off" some attribute after copying -

a record. She can do this by using the minus sign or hyphen, "-". A hyphen followed by an attribute reference

tells NLP to remove that attribute reference, giving it a NIL value. Therefore
EXAMPLE(-ALPHA)

becomes .-..-.

(REMPROP *RECORD* 'ALPHA)

The hyphen can be used with any legal attribute reference.
EXAMPLE(-ALPHA(BETA))

EXAMPLE(-ALPHA('LETTERS'))

Earlier it was said that the list of creation specifications following the segment type is optional. If no list

of creation specifications is given, the segment type is pushed onto the control stack without creating a new

record to be associated with this segment type. When such a segment type is encountered, the system treats it as

a terminal symbol, and the segment type is placed directly into the output stream.

............. "......... -I

. "..- °.

.........

I 63

4.6. The Complete NLP Rule

Now that we know the syntax for the individual parts of an NIP nile. let's see what the format is for

putting these parts together. An NLP rule is made up of the condition part (consisting of a segment type

followed by an optional list of condition specifications). followcd by an arrow and then one or more creation -.- '-

parts (each consisting of a segment type followed by an optional list of creation specifications). A ne" -cord

is created for each creation part that calls for it (by having a list of creation specifications), and these records -

are pushed onto the control stack with the first one being created on top. The arrow consists of a greater-than

symbol ">" preceded by at least one hyphen "-". This arrow is not strictly necessary, since in a rule the only-. . -

thing allowed on the condition side after the segment type is at most one list of condition specifications

enclosed in parentheses, and the first element of the creation side of a rule must be another segment type,

there can be no ambiguity as to where the condition part stops and the creation part starts. However, the

arrow improves readability of rules, especially complicated ones in which both condition and creation

specifications take up several lines, and the arrow helps make the analogy between NLP rules and phrase

structure rules more apparent.

The exact nur ber of hyphens in the arrow is not important, as long as there is at least one. This allows

the user to line up her rules as she wants them, in effect permitting so-called "pretty printing." Additionally.
" spaces, line feeds, and returns are ignored by the input system, further enhancing the user's capability to

pretty print. In fact, spaces, line feeds, and returns are ignored throughout the NLP system. Consequently, the

user must tell NLP when a rule (or any input segment) is finished. She does this by ending each input

segment with a semi-colon. Ending a rule with an empty bracket list "]" tells NLP that not only is the rule

finished, but this is in fact the last rule to be processed.

NLP also allows the user to put comments in her rules. These comments are delimited by braces "(1"
and may appear anywhere within or between rules. Everything within the braces will be ignored by the

system.

Let's return to our first example of a complete NLP rule.

........°.....................-... o•

SENT(PASSIVE) --> NOUNPH(XGOAL(SENT)) •
VERBPH(XSENT,NUMB: -NUMB(GOAL), -GOAL)
0 B Y NOUNPH(%AGENT(SENT)) ,

Figure 4-4: Example of NLP Rule
............. ..°.....................o.. l

This says: "If the current record (call it TRIGGER) has a segment type of SENT and a non-NIL PASSIVE

.°°.
, .°.°•.. .~~-. . , . .'., .°.to... ... 'o . . t. . o . °o - i °... - - o - o ' . . .'° V ht ',. • . . - - •°- o i

° •

64 0

value, do the following. Create a new record (call it RECORDI) which is a copy of the record found in the

GOAL attribute of TRIGGER (recall that in the creation part the condition scgment type (SENT in this case)

is the convention for referring to the record that triggered the rule), and associate this record with a segment a
type of NOUNPH. Create a second record (call it RECORI)2) by copying TRIGGER, assigning to the

NUMB attribute of RECORI)2 the NUMB value of the GOAL of RCORI)2, next removing the GOAL :- .:.

attribute from RECORD2 (note that the order in which these operations are performed is critical), and

associate RECORD2 with the segment type VERBPIt. Insert each of the segment types, #8, B, and Y onto 0

the stack without creating records for them. Create a last record (call it RECORD3) by copying the AGENT

value of TRIGGER, and give RECORD3 a segment type of NOUNPH. Finally, insert a period onto the stack

without a record." If the control stack consisted of
((SENT TRIGGER)) a

before executing this rule, it would be
((NOUNPH RECORDI) (VERBPH RECORD2)
(#) (B) (Y) (NOUNPH RECORD3) (.))

after execution.

4.7. Named Records

In aduition to writing rules to test, create, and manipulate records, NLP allows the user to explicitly

define named records for her program to use. Since this action is in reality the creation of records, it is

virtually the same as the creation part of an NLP rule. Therefore the syntax for creating records is nearly

identical to that of the creation part of NLP rules. The main difference is that the record definition starts with

the name for the record rather than an associated segment type. Therefore if the following were a record

definition
EXAMPLE('ALPHA' .BETA: -'GAMMA');

the named record EXAMPLE would be created with a SUP value of ALPHA and a BETA value of GAMMA.

The specifications for a record definition are identical to creation specifications. As with rules, record

definitions must end in either a semi-colon or an empty bracket list.

4.8. Cover Attributes

Finally, the user is allowed to define what are called cover atributei Frequently a set of attributes can -. -:

be logically grouped together. For instance, the attributes MALE, FEMALE, and NEUTER all refer to . .

GENDER. While specifications could be explicitly written to deal with each of these, it would be more 6

convenient when the same action is to be performed on each of these attributes if we could write one

specification to perform all these operations. Additionally, it would make clear the fact that these attributes .-

are associated in some way.

08As we shall see latet, Nil1' uscs this symbol in thc outiput stream to represent a space.

._r -A,
.. "

i,€,'',"',',"'q,'-,'" '...'........,.......".",.".,"....".."."."........."....,." ," ,'',*',L.'',.',',,',.'-,''.-

65 S

lly defining cover attributes, the user can associate attributes this way. Thc user defines cover attributes

by gi% ing the name of the cover attributc followed by a list of the attributes to be grouped together undcr this
"cover." Again, each definition ends with a scmi-colon except the last, which ends with an empty bracket list.

Any attribute name is allowed in this list, including another cover attribute.

GENDER (MALE FEMALE NEUTER);
PRONOUNS (GENDER NUMBER CASE);
COVERI (ALPHA BETA GAMMA);
COVER2 (ONE TWO THREE)[] S

When NI.P encounters a cover attribute in either a rule or a record definition, the specification is replaced by

specifications containing each of the attributes being covered. For instance, using the COVER I and COVER2

examples from above,
EXAMPLE(COVER1)

as a creation specification becomes
EXAMPLE(ALPHA, BETAGAMMA)

That is, in the newly created record, the attributes ALPHA, BETA, and GAMMA will each have a value of 1.
EXAMPLE(COVER2: -'NUMBER')

would become
EXAMPLE(ONE :' NUMBER', TWO :-' NUMBER', THREE:- ' NUMBER')

In condition specifications, cover attributes are handled slightly differently. A creation specification test

involving a cover attribute will succeed if the specified test succeeds for any one member of the cover

attribute. That is,
EXAMPLE(COVERI)

will succeed if ALPHA is non-NIL, or if BETA is non-NIL, or if GAMMA is non-NIL. Instead of replacing

COVERI with its member attributes separated by commas, which signifies ANDS, COVERI is replaced by - .

these attributes separated by vertical bar ORS.
EXAMPLE(ALPHAI BETAjGAMMA)

If the cover attributes appear on both sides of an equality test or an assignment, first one cover attribute,

then the other is expanded, resulting in every possible pairing of the attributes.
EXAMPLE(COVERI-COVER2)

would be expanded into nine tests, and
EXAMPLE(COVER1: -COVER2)

would become nine separate assignments. An exception to this is when the same cover attribute is used on

both sides. Then, rather than expanding to every possible combination, only the pairings of the same attribute

on both sides are used.
EXAMPLE(COVER1:-COVER1('LETTERS'))

becomes

•,.*...,!

66

EXAMPLE(ALPHA:=ALPHA('LETTERS'),
BETA: =BETA(' LETTERS'),
GAMMA: =GAMMA('LETTERS'))

Note that in the above example the second use of the cover attribute referred to a named record. Cover ,

attributes can be used wherever a regular attribute name is allowed.

Because cover attributes affect the meaning of rules and record definitions that they appear in, any

cover attributes to be used must be defined before rules or records.

4.9. Record Definitions

NI.P allows the user to create records very easily . Each record definition consists merely of the name of

Lai the record followed by a list of attributes and their values in parentheses. Since we are creating records, which

is exactly the same function performed by creation specifications of rules, we would want record definitions to

have the same syntax and meaning as creation specifications. This is precisely the case. All the syntax for

creation specifications, including assignment of attributes, default assignment for SUP, use of %, @', $, ! and

cover attributes, is allowed in record definitions with exactly the same meaning. S

As an example, suppose we wanted an record to represent our friend Bridget. We might want to note

that she is female, that she has blond hair, that her age is four, and that she is alive. The following record

definition would accomplish this:
BRIDGET ('FEMALE',HAIRCOLOR:-'BLOND',AGE:-'4',ALIVE);

This definition would create a record BRIDGET with a SUP attribute whose value is FEMALE, a

HAIRCOI.OR with a value of BLOND, an AGE attribute with a value of 4, and an ALIVE attribute whose

value is T. S

A typical program first defines the cover attributes to be used. Next the actual rules to be executed are

given. Then any named records the user wants are defined. The control stack is initialized with record(s) and

their associated segment types. Finally, the user invokes her NLP program to encode or generate text. The

command BYE then leaves the NI.P system and returns the user to the host environment. Appendix IV

contains a BNF for NI.P, and Appendix V contains the complete NIP program for Paul

4.10. The Generation Algorithm

Now that we know how to write NIP rules, we can see how the system executes these rules, and

examine the control mechanisms which determine the order in which the actions of the rules will be

performed. The central control mechanism for NI.P is a stack of segment types and associated records. As tie

generation process proceeds, the stack is popped one item at a time. The appropriate action based on the

specific item is taken, and the results are either pushed back onto the stack or inserted into the output stream.
When the stack is finally empty, the process is finished.

D..0

.......-

67 0

Tlc generation algorithm used in Paul is the one found in the original NI.P report [13]. 'Ibis algorithm

is repeated here in Figure 4-5.

1. Put a segment type name and a record on the stack to begin.

2. Take the top segment type name and associated record (if
there is one) off the stack, and examine the segment type:

a. If it is a terminal segment type (known by there not
being an associated record), put its name into the
output stream.

b. if it is one of the special OUTPUT segment types.
perform the specified output operation. 0-

c. otherwise, examine each rule that has this segment type
on the left as the condition segment type until either
a rule is found for which the conditions specified in
parentheses are met, or until the list of rules is
exhausted:

i. if a rule is found, create segment records
according to the specifications given in
parentheses on the right side, and put the segment
type names, along with their newly created
associated records, onto the stack.

ii. otherwise, put into the output stream the value of
the SUP attribute of the record which was taken
off the stack.

3. Repeat step 2 until the stack is empty.

Figure 4-5: The Generation Algorithm

As is readily apparent, the control algorithm is conceptually simple. The system basically searches

through the ordered rules sequentially until it either finds one to use (determined by the condition

specification tests applied to the segment record), or the list of rules is exhausted. The associated segment type

is used to restrict this search by limiting the rules that are considered to only those that have the correct

condition segment type. The first rule of the correct segment type whose conditions are satisfied by the

segment record is applied.

It is important to realize that these rules are not merely rewrite rules. The significant difference is that

this algorithm uses augmented phrase structure grammar, which deals with segment records in addition to the

segment types, instead of just manipulating and replaciiig nonterminal and terminal symbols. ihe difference

between augmented phrase structure rules and context free phrase structure rules is similar to the difference

.

,. o°. oO.° . •.. .. ,.-..

..- ..- ,°.-..°- .. •.-.-°-.- '",°-

, 4'.-..'...'... ' -.. '.''.'.... '. ,-.'.'...... ... ,....'' ,'% . ' . .. '-..

68

between AINs and R'INs 145]. Just as anl Al N has fcawure registers associated with thc nodes of thc trec it is

building, an augmented phrase structure system has records associated with the nodes of the tree it is

building. AI'Ns have conditions and actions associated with their arc. which can test and modify the contents 0

of feature registers, and augmented phrase structure rules have condition and creation specifications which -

can modify the contents of the records. These characteristics, which are the chief properties that distinguish -"

ATNs from RTNs, are similarly the main properties that distinguish augmented phrase structure rules from -

context free phrase structure rules. 4

In (2b) of the algorithm, special OUTPUT segment types are mentioned. Currently, Paul has three such
segment types. The first one, also appearing in the original NI.P report, is the sharp sign "#". This is used in -j

rules to represent a space in the output. Recall that the NLP system ignores spaces. linefeeds, and returns in

its input. If the user wants to have a space inserted into the output stream, she cannot simply put a space in

the appropriate place in the rule; it will be ignored. Instead, she should put a # there. When this symbol is -

popped off the control stack by Paul, section (2b) of the generation algorithm applies, and a blank is inserted

into the output stream. Similarly, if the user wants a linefeed in her text (if she wants to start on a new line, for

instance), she again needs a special output segment type, LINE. 'his will insert a linefeed into the output

when encountered. Finally, the special output segment type NULL inserts a NULL string into the output.

This is used for rules for "zeroing out" some item, that is, replacing some npnterminal symbol (a segment type

and its associated record) with nothing.

4.11. The Generation Paradigm

It is important to distinguish the generation algorithmn from the generation paradigm- The former is the

control mechanism behind the selection of the rules, and as such, is an integral part of NLP. But NLP is only - .

a programming language, and as with all programming languages, it can be used in many different ways to
perform many different tasks. While an understanding of the language of NLP and the control mechanism

that drives it is important, it is not a goal onto itself, but a means for seeing how the language is used. The -

generation paradigm, on the other hand, is the theoretical base from which Paul converts conceptual

representations into surface language.

Paul uses augmented phrase structure grammar to construct a syntactic tree in a strict left-right top . .* ,

down fashion. Perhaps the best way to proceed is to present an example, then discuss the various aspects of

the paradigm.

N.

................... . .. *

S ..*

69

COVER ATTR;
NUMB (SING PLUR);

PERS (PERS1 PERS2 PERS3); .- ;..-

TENSE (PAST PRESENT FUTURE);
DET (DEF INDEF DEM POSSESS); -
ENDING (ED ING)[]

Figure 4-6: Cover Attributes for Example

RECORDS;

(vocabulary records)
BUY1 ('ACQUIRE'.WORD:='BUY'); .WJOHN ('BOY',GENDER:-'MALE',PROPER); . .

KITE ('TOY');
TOY ('THING');
THING (GENDER:-'NEUTER');
BOY ('HUMAN');
BUY (PAST: = 'BOUGHT');

(sentence records)
Al ('BUY1',AGNT:='A2',AFF:='A3');
A2 ('JOHN'); "'
A3 (KITE)[]

Figure 4-7: NLP Records for Example

Figures 4-6 through 4-8 contain a small NLP program to generate the sentence "John buys a kite." One

thing that we notice right away about the rules of Figure 4-8 is that they are recursive. That is, some rules

replace segment types with the same segment types. For instance, rule {5},
VP(tNUMB) --> VP(SING);

replaces a VP (verb phrase) with a VP. Ilie thing that prevents this rule from endlessly looping is the fact that

it is augmented with both condition and creation specifications. It is not allowed to apply to any record that

has a VP segment type. The record must also not have a non-NIL value for either of the attributes that are

members of the NUMB cover attribute (SING and PLUR). If this is true, then a new record is created and

associated with the VP segment type. This new record, in addition to having all the attributes of the triggering "-"

record (recall that when a segment type on the creation side is the same as the segment type from the - S

condition side. an automatic copy is performed), has the additional attribute of SING with the value T.

S *° o

706

RULES FOR ENCODING;0

(SENT Is Sentence)
(1) SENT--------------------> NP(7%AGNT(SENT))

VP (E NT
NUMB:-NUMB(AGNT),
-AGNT).

(NP is Noun Phrase)
(2} NP(tDETtS['PROPER'J) ->NP(INDEF);

(3) NP(DET.iDETR)----------- > DETR(%NP) NP(DETR);
(4) NP----------------------> NOUN(%NP);

(VP is Verb Phrase)
(6) VP(tNUMB)---------------) VP(SING);
(6) VP(tPERS)---------------> VP(PERS3);
(7) VP(tTENSE)--------------> VP(PRESENT);
(8) VP(AFF)-----------------> VP(-AFF)

NP(XAFF(VP)); .

(AFF is for the AFFECTED case role)
(9) VP----------------------> VERB(%VP);

(DETR Is Determiner)-
(10) DETR(INDEF.PLUR)-------- > NULL;
(11) DETR(INDEF)------------- > WORD('A');
(12) DETR(DEF)---------------> WORD('THE');

(13) NOUN--------------------> NOUNP(%NOUN); -

(14) VERB--------------------> VERBP(%VERB,SUP:uWORD(SUP));

(NOUNP is Noun Part)
(15) NOUNP(PLUR)------------- > WORD(%NOUNP) S;
(16) NOUNP-------------------> WORD(%NOUNP);

(VERBP is Verb Part)
(17) VERBP(PLURIPERS2)------- > WORD(%VERBP);
(18) VERBP(PERSI)------------ > WORD(%VERDP);
(19) VERBP-------------------> WORD(%VERBP) S;

(20) WORD(INULL')------------ > NULL;
(21) WORD(E(SUP),tENDING) --- > # OUTPUT(%WORD) E;
(22) WORD--------------------> # OUTPUT(%WORD)(J

Figure 4-8: NLP Rules for Example

....

71

l1'hcrcforc. RIc il 151 is noi truly recursive. In fact, none of the rules of Figure 4-8 arc, nor arc thcy in Paul (as

* ~can bc secn iii Appendix V). -

That is not to say that augmented phrase structure rules can't be recursivc. Consider the following rule
SENT -- > 1IDAM #VERY #LONG #SENT;

If this wcre the first rule of segment type SENT and a record of segmient type SENT ever entered the stack,

this rule would be executed without ever halting, resulting in the output, I A/ti VER Y L.ONG 1 AM VER YS

LONG I AAI VER Y LONG I A/ti VER Y... It is only because the rules of Paul are carefully defined that such

types of recursion, and subtler versions where the recursion loops through several rules, are avoided.9

Figure 4-9 is a trace of the stack and rules that would be used in running this program. The stack is

* intialized with the segment type SENT and the associated record Al. Al is the deep case structure for the

* sentence, and contains all the semantic information needed for generation. Figure 4-10 shows the contents

(plists) of the records that would be created.

9Asa cnseuene o ths rstrctin, ertin cfthrachig sntecescanot e gnertedby aulAn xamle f sch setene i

"Jon'scosins ried' brthr'sneghbr now,\ar~n insy.

720

RULE OUTPUT STACK
((SENT Al)) 0

I((NP A2) (VP *1*) ()

4 ((NOUN A2) (VP I)()
13 ((NOUNP A2) (VP *l*)()
16 ((WORD) A2) (VP *1*) ()

22 ((#)(OU'PUT A2) (VPl)()

((OUTPUT A2) (VP *1*) ()

JOHN ((P *1*) ()

5 ((V P *2*)()
6 ((P *3*) ~
7 ((P *4*) ()
8 ((P *5*) (NP A3) (.)

9 ((V-iB *5*) (NP A3)()
14 ((Vl:RIP *6*) (NP A3))
19 ((WORDl *6*) (S) (NP A3).)
22 (()(OUTPUT *6*) (S) (NP A3) ()

#((OUTPUT 06*) (S) (NP A3) ()

BUY ((S) (NP A3) 0.)
S ((NP A3).)

2 ((NP *7*))
-' 3 ((DETIR *8*) (NP *9*))

11 ((WORI) *10*) (NP *9*))
22 (#(OUTPUT' 10*) (NP -9-))

#((OUTPUT *10*) (NP *9*) ~
A ((NP *9*) ~

4 ((NOUN *9*) ~
13 ((NOUNP *9*) 0)
16 ((WORD *9*) ~
22 ((#) (OUTPUT *9*))

((OUTPUT *9*) ~
KITE 0

Figure 4-9: Trace of Control Stack for Example

~~~~~~~~~...... .................................................................................................



73 0

............. °.......... ...................................... ..................... ..............................................-.-.

14 (SUP BUYI AFF A3)
•2* (SUP BUY1 AFF A3 SING T)
030 (SUP BUY1 AFF A3 SING T PERS3 T)
$4* (SUP BUY1 AFF A3 SING T PERS3 T PRESENT T)
"6 (SUP BUY1 SING T PERS3 T PRESENT T)
*6* (SUP BUY SING T PERS3 T PRESENT T)
'70 (SUP KITE INDEF T)
: 80 (SUP KITE INDEF T)
e90 (SUP KITE INDEF T DETR T)
010 (SUP A)

Figure 4-10: Created Records for Example Sentence

-- --

These rules can be thought of as building a tree from the top down to achieve the proper syntactic

surface structure. Figure 4-11 shows the tree for our example sentence.

Because the generated tree has records containing additional information associated with the

appropriate nodes, augmented phrase structure rule systems are able to achieve indelibility[32, 34]. That is,

once a decision has been made and a node is incorporated into the tree, it cannot be taken back. When a . -

decision point is arrived at and not enough information is available at the time to choose the proper path, one

of two approaches is commonly taken. The first is to arbitrarily choose one path over the others and proceed. - .

If this decision proves later on to be wrong, the steps taken since then are retraced to that decision point, and .-.

another path is selected. This is known as backtracking. The other alternative is to explore all the paths

simultaneously, abandoning only those which prove to be dead ends, until finally one is discovered as the true

way. An indelible system is one that avoids both backtracking and parallel expansion by insuring that all the

necessary in formation is available at the time the decision has to be made.

Computationally, an indelible system is to be preferred. In memory considerations, an indelible system

is obviously more efficient than one that runs choices in parallel because competing paths do not have to be - -

maintained until the correct one is found. Indelible systems are also superior to backtracking systems in this

respect. Backtracking systems typically need to remember decision points and the options available at each

one. Furthermore, they need to remember the stale they were in at each decision point, and must undo all

actions after the decision point when backtracking. The solutions to these problems require both memory and

computational time, while indelible systems avoid the problems altogether,

There are two chief reasons why Paul is able to maintain indelibility. The first is that its augmented

phrase structure rules generate trees augmented with records associated with each node. hese records'

contain important semantic information that can be used during the decision process. Furthermore, since

S'lemg •'e



74 O

(SENT Al)

(NP A2) (VP *1") (.)

(NOUN AZ) (VP *2*)

.9

(NOUNP A2) (VP *3*)

(WORD A2) (VP .4.)

(#) (OUTPUT A2) (VP "5*) (NP A3)

# JOHN (VERB 050) (NP *7*)

.l

(VERBP *6*) (DETR *8*) (NP *9*)

(WORD *6*) (S) (WORD *10") (NOUN "90)

(#) (OUTPUT 06") S (#) (OUTPUT *100) (NOUNP *9*)

# BUY # A (WORD 090)

(N) (OUTPUT *9*)

# KITE

0
Figure 4-11: The Generated Tree

........................................................................................................................................ ::::i:!
Paul is an utterance realization system, most of the difficult decisions are not of issue here. Paul does not have

to try to find a tree structure that will fit a given sentence, as do parsing systems, nor does it have to attempt

the selection and ordering of sentences to convey a desired message, as do utterance planning systems, and

these are where the difficult decisions tend to lie.

Additionally, Paul exhibits the constraint of locality [32, 341. Each decision can only make reference to _

information which is local to it. 'The system is not allowed to search through the existing tree for desired .

. . . .. . . . . . . . . . . . . . . . . . . .':--. . . . . . .
. . . . . . . . . . . . . . .•..-]



75 0

information. Relevant information must be explicitly passed on through local variables. A distinction between

the use of locality here and its use in the MU M IL.F system 1321 is that in M U MI .E. pltysical locality was

used, whereas in Paul. conceptual locality is used. Rather than using a node's position in a tree to determine 0

what information is local to it, Paul uses the records associated with the tree nodes. 'hesc records contain the

information local to their nodes. Nodes that represent more general structures have a wider scope of locality. -7.

For instance, the root node (representing the entire sentence) has all the semantic information known about - .

the sentence local to it. As an example, assume we wanted to have a rule for sentences starting with

subordinate clauses such that if the subject of the subordinate clause is the same as that for the main clause,

the element should be pronominalized in the subordinate clause.
Because hi doesn't like dogs. Bill kicked Carol's puppy.

Because MUMBLE depends on physical locality, it could not perform this rule unless it was explicitly

stated to do so in the message. At the time the first reference to Bill is to be made in the subordinate clause,

only those items that are physically located near this node in the tree are accessible. The subject of the main

clause is not, and the decision whether to pronominalize based on this rule cannot be made. The only way S

MUMBLE could perform this task would be if the message explicitly stated that the subject of the

subordinate clause were available for pronominalization. This would mean that the decision were no longer in

the utterance realization stage, but forced upon the utterance planning stage.

* Paul. on the other hand, uses conceptual locality. Before the tree is split up into the subordinate clause

and the main clause, all the information that is local to the abstract node representing the sentence is

available. This is true because the record representing the entire semantic information for the sentence

already exists and is associated with this sentence node. (This would also be true with MUMBLE's message if ...

it weren't processed strictly sequentially.) Therefore, it is an easy matter to check the element that will become

the subject of the subordinate clause and compare it with that of the main clause. If they are the same, the

subordinate clause can be marked to pronominalize its subject, and the desired sentence will be generated.

Thus Paulis able to keep the decision within the realm of utterance realization.

The fact that Paul has semantic records associated with each of its nodes as it builds the tree allows the

system to avoid the necessity for the constraint-precedes stipulation that is required for MUMBI.E. The
D constraint-precedes stipulation dictates that the enumeration order of a sentence must be such that any

element that causcs constraints on other elements must be realized first. Paul doesn't require this because the .

information that such constraints exist is conceptually local to the node at the level where the decision has to .

be made. Thus, the concept of indelibility is maintained without adding the burden of the constraint-precedes

stipulation.

V- .

. . . ° . .

... ... ... .. ...... ... .. ... ... ... .. ... ... ... . . ~ ..... .. . o° .



,, - . -, . - -'.. . . - - ' • - " - -. -. . - ' . - . - -. - -. . -- :' 
- - . - 

. 7 -
-

76

By following the constraints of indelibility and locality, Paul also has the feature of running in bounded

time between each output token. The number of operations required on a record before it is realized by

surface output is fixed, and bears no relationship to the final length of tie output sentence. In our above 0

example, each rule can be applied only once to a record or its direct descendants. No looping occurs because

the rules were carefully defined to avoid recursion. Therefore, there is a maximum of 22 rules that can be

applied to any given record before it is realized into surface output. This time bound, which is stronger than a

linear time constraint,10 reflects the intuition that the generation process should proceed at a constant rate. •

In summary, the generation paradigm for Paul is a bounded time, left-right, top down generator using .: " "

an augmented phrase structure grammar. A surface structure tree is created of syntactic nodes with associated

records. These records provide conceptually local semantic information, and allow the process to be indelible ,
without the constraint of the constraint-precedes stipulation. This allows the process to proceed with a

bounded number of operations between each entry into the output stream that is independent of the length of

the final sentence.

~0

1belincar time constraint states that the entire sentence must he proces~sed within a time proporional to the length or the sentence.
I Other than this, there is no restrictioni to the amount ofrtime spent between the output ofreach token Ihe difference between linear time0

and boundcd time between each token is most evident on sir ucurcs like left branchii'g sentences ]bhe linear time s5stcn1 would have a
lonp period outputting nothing, and then it would output thc ertirc left-hranching structure at one. 'Me bounded time System would
output each token at a relatively steady rate.

. . .. i

.....

02':'i "



77 0

5. An Example

To help make the ideas discussed so far more concrete, an example is provided. 'te following is an

actual example of text generated by Paul In order to clearly demonstrate the system's ability at lexical

substitution, the text to be generated should contain numerous references to various entities, both animate

and inanimate. Therefore, Paul generates so-called children's stories, rather than something of more .

i ,mediate applicability, such as explanation generation for an expert system or business letter generation, as •

was the original intention for Epistle. Unfortunately, these media generally do not offer the wealth of

references to entities that is desired. Business letters typically refer to only the author of the letter, the

recipient, the companies they respectively represent, and possibly some items sold by one or the other

company. Justifications for expert systems are obviously restricted to the domain of expertise for the system. 0

The explanations basically consist of causal links that form the knowledge of the system. Neither form of text

offers the opportunity to describe several entities in varying manners, the way children's stories do. Therefore,

the children's story is the most appropriate form of text for Paul to generate in order to demonstrate the full

extent of its capabilities in lexical substitution. S

The example discussed here is one about characters from Walt Kelly's Pogo comic strips. Of the

characters mentioned in this example, Pogo is a male possum, Churchy is a male turtle, and Hepzibah is a

female skunk.

Figure 5-1 contains the semantic representation for the example story to be generated, in the syntax of

NLP records. After this comes Figure 5-2, showing the example story generated by Paul without any lexical

substitutioa. While the version of the story in Figure 5-2 would be unacceptable as the final product of a text •

generator, it is shown here so that the reader can more easily understand the story represented semantically in

Figure 5-1.

Even though this story is without lexical substitution, some simple forms of cohesion are exhibited. 0

Because synonym substitution is not one of Paul's options for lexical substitution, the system uses synonyms

throughout generation. This is demonstrated in the first two sentences. Note in Figure 5-1 that while the first

two sentences of the story have the same primitive action as their heads ('like' in records al and bl), they are

realized by different words, "carcs for" in the first sentence, and "likes" in the second sentence. This also S

shows that Paul takes advantage of the fact that synonyms exist in all parts of speech, not just for nouns. ' - -

Additionally, when two consecutive sentences have the same primitive action as their heads, the system checks

to see if any of the thematic roles, agent, affected, recipient, and attribute, are filled by the same entity. If any

are, the word "too" is appended to the end of the second sentence, as the example demonstrates.

7."



78

al ('Iike'.cxp: = 'a2Xrccip: = 'a3',stativc);
a2 ('pogo');
a3 ('hcpzibah'):

bi ('Iike',cxp: = 'b2',recip: = 'a3',stative);
b2 ('churchy');

ci ('give',agnt: = 'a2',aff: = 'c2',rccip: = 'a3'.active,effcct: = 'c3*);

c3 70;jyV ,recip: =a3,stative);

dl ('wait\',gn: = '2',fT: = '2',cge); e

A d~~~2 ('rose');ses:=W)

hl2pt',art: = 'g2o',entir);

il ('upsetV,rccip: = 'a3',cause: = 'hl'stative);

j1 ('cry\',agnt: ='a3',activeX]

Figure 5-1: NLP Records for Example Story

POG0 CARES FOR HEPZIBAH. CHURCHY LIKES HEPZ[BAH,,TOO. P0G0 GIVES
A ROSE TO H-EPZIBAI I, WHICH PLEASES HEPZIBAH. HEP7IIBAH DOES NOT
WANT CHURCHY'S ROSE. CHURCHY IS JEALOUS. CHURCHY HITS POG0.
CHURCHY' GIVES A ROSE TO HEPZIBAH. PETALS DROP OFF. THIS UPSETS
IHLPZIBAH. HE-PZIBAII CRIES.

Figure 5-2: Example Story without Lexical Substitution
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .S.

Figure 5-3 is thc story generated with pronoun substitution indiscriminately performed, and Figure 5-4

is the same with supcrordinatc substitution. Just as with Figure 5-2, these versions arc not acceptable text, and

should not be mistaken to be thc final output of' Paul. Rather, they arc presented here to dramatize the effects

uncontrolled lexical substitution can have.



79 .

POGO LIKES IEPZIBAH. CHLJRCIlY CARES FOR HER, TOO. III: GIVES A ROSE
TO HER, WHICH PI.EASES HER. SHE DOES NOT WANT IllS ROSE. HE IS
JEALOUS. HE SLUGS HIM. HE GIVES A ROSE TO HER. PETALS DROP OFF.
THIS UPSETS HER. SHE CRIES.

Figure 5-3: Example Story with Uncontrolled Pronoun Substitution

POGO LIKES HEPZIBAH. CHURCHY CARES FOR THE FEMALE ANIMAL, TOO.
THE POSSUM GIVES A ROSE TO THE SKUNK, WHICH PI.EASES THE BLACK
MAMMAL. THE BLACK ANIMAl DOES NOT WANT THE REII'LE'S ROSE. THE
TURTLE IS JEALOUS. THE SCALEI) ANIMAL PUNCHES THE MAI.E MAMMAL.
THE REPTILE GIVES A ROSE TO THE SKUNK. PETALS FALL OFF. THIS
UPSEI'S THE FEMALE MAMMAL. THE BLACK ANIMAL WEEPS.

Figure 5-4: Example Story with Uncontrolled Superordinate Substitution

For superordinate substitution, Paul assumes that its hierarchical database about the characters is

common knowledge. Since this might not be true for all readers in this case, Figure 5-5 gives the pertinent

information. S

Once the system has determined that a superordinate substitution is to be made, several tasks must be

accomplished. First of all, the superordinate must be selected for the referent. Paul searches up the

hierarchical chain from the original record, making a list of all the records that are encountered along the way.

For most types of entities, the chain stops with the record THING. However, this is not always the

appropriate place to stop. Often going that far will produce superordinate substitutions that will sound

insulting. For instance, referring to one's brother as "the boy" is not the same as referring to him as "the

animal" or "the thing." The distinction seems to be that important attributes are lost with the last two, leaving 0

the reader with the impression that these attributes are not to be found in the brother. The distinguishing

attribute in the Pogo World is intelligence, and it is assumed that all animals in this world are indeed

intelligent. Therefore, when going through the hierarchical chain, Paul will not go past the last attribute that

has or can inherit the intelligence attribute. S

After the list of acceptable superordinates has been created, one is selected randomly. Now Paul checks

this supcrordinate against the other entities that have been used to date in the text. If none of the other 0

entities arc members of this superordinate set, or superset [13], the reference is unambiguous as it stands, and

...~. .. . ..............-... •...... •... ... . ..... -... . = ...- .. :i °

.. ..,.-' .. ..- - - - - --. - -,- -.-•... -._• ... . . . A, . - . .. -. - -. °.. .. -*st V ,_ .- , .,. . - . -S __, _ . .o . _



80

ANIMAL

MAMMAL REPTILE

POSSUM SKUNK TURTLE

POGO HEPZIBAH CHURCHY

1. POGO IS A MALE POSSUM.

2. lIIPZIBAH IS A FEMALE SKUNK.

3. CIIURCHY IS A MALE TURTLE.

4. POSSUMS ARE SMALL, GREY MAMMALS.

5. SKUNKS ARE SMALL, BLACK MAMMALS.

6. TURTLES ARE SMALL. GREEN REPTILES.

7. MAMMALS ARE FURRY ANIMALS. "

8. REPTILES ARE SCALED ANIMALS.

Figure 5-5: The World in which the Example Story Exists

.. it is generated without modification. The first clause in the third scntence of Figure 5-4, THE POSSUM

GII"IS A ROSE TO THE SKUNK..., is an example of this. Since this world contains only one possum, Pogo,

and only one skunk, ltcpiibah, these supcrordinates can only refer to them, and Paul has generated them

with no attempt to further disambiguate them.

However, if it turns out that entities other than the focal point being replaced are members of the

" chosen superset, the substitution must be modified to disambiguate the reference. Paul achieves this by

selecting a physical attribute of the entity to be used as a modifier of the supcrordinate. TPie physical

*'i attributes that Paul looks for in the Pogo World are gender, color, size, and skin (furry. calcd. or feathered). -

....................................................................................................



81

One of these attributes is randomly selected, and the focal point's inherited value for G... attribute is

generated as an adjective before the superordinate. The second phrase of the third sentence in Figure 5-4,

... WHICH PLEASES THE BLACK AIAM,'AL. is an example of this. After MAMMAL. has been selected

as a superordinatc substitution for Hepzibah, the system checked the remaining entities mentioned in the

discourse so far. These were Pogo, Churchy, and a rose. Of the three, Pogo is a member of the Mammal -

superset, so the reference must be made unambiguous. The color attribute is randomly selected, and -.

Hepzibah inherits the value black for this attribute. The system then generates the modified, and now •

unambiguous, noun phrase.

There is a problem, though, in that the attribute selected may not disambiguate the superordinate. For

instance, what would have happened if, instead of selecting color as the disambiguating attribute, the system •

had chosen size? Rather than generating THE BLACK MAMMAL., the phrase THE SMAI.L MAMMAL ..

would have been produced. Sinct. Pogo is small, he is also a small mammal, and the modifying attribute has

done nothing to disambiguate the superordinate. Similarly, a choice of skin as the modifying attribute would i.

have led to the generation of THE FURR Y MAMMAL., which is not only still ambiguous, but redundant, 0

since in this world all mammals are ffirry. Paul avoids this problem by testing the inherited value for the

selected attribute before generating it. If any of the previously mentioned entities that are members of the . -

superset have the same value, this attribute is rejected, and another one is selected. This insures that the final - .

result will be an unambiguous superordinate substitution. O

Figure 5-6 is the example story without any lexical substitution again, but with each sentence's focus or

expected focus list, obtained through the use of the Sidner algorithm. Now we are ready to follow Paul in the

generation of this story with lexical substitution. 0

We start by initializing all the control variables to NIL. Then the first sentence is generated. Because - -

there are no previously generated references, there can be no focal points, and the sentence Pogo cares for

Hepzibah. is out put. Additionally. the relevant facts about these references are stored, as shown in Figure 5-7. S

When the next sentence is generated, the first noun phrase encountered is Church. Since this is not a

member of the list of noun phrases mentioned in the text, it is not a focal point, and not subject to lexical

substitution. When the system comes to Hepzibah, however, we do have a focal point, since Hepzibah is a

member of the NMENTIONID IN THE TEXT list, and Iaul must determine the class of this focal point.

Since Ilepzibah is the last female to have been mentioned within an acceptable distance, the focal point is

Class I. (Note that because Hepzibah was also the focus of the previous sentence, this would also make it a

Class I focal point.) Thcrefore, a pronoun substitution is required...

. . . . . . . . . . . . . . . . . . . . . . . . ..- . .. .. - - - - -



82

1. POGO LIKES HFiPZIBAH.

expected focus list: "Hcpzibah ""Pogo"

2. Ci-!URCHY LIKES HEPZIBAH-,T'oo.
expccted focus list: "Hepzibah', "Churchy"

3. POGO GIVES A ROSE TO HEPZIRAH,

expcctcd focus list: "a rose". "Hepzibah '"Po go"

4. WHICH PLEASES HEPZIBAH.

expected focus list: "Hepzibah" "Pogo gives a rose to Hepzibah"

5. HEPZIBAI-I W)ES NOT WAN'I'CHURCHY'S ROSE
expected focus list: "Churchy's rose". "I-i pzibah"

6. CHURCHY IS JEALOUS.
focus: "Churchy"

7. CHURCHY HITS POGO.
expected focus list: "Pogo", "Churchy"

8. CHURCHY GIVES A ROSE TO HEPZIBAH.
expected focus list: "a rose". "Hepzibah ""Churchy"

9. PETALS FALL OFF.

focus: "petals"

10. THIS UPSETS HEPZ1BAH.

expected focus list: "Hepzibah', "Peta's fall off"

11. HEPZIBAH CRIES.

focus: "Hepzibah"

Figure 5-6: Expected Focus Lists

With the third sentence, we have have three entities, Pogo, Hcpzibah. and a rose. which we will refer to

as rose]. Of these, Pogo and llepzibah are focal points. Hepzibah is still tic only femnalc mentioned within two

*sentences, and is still the focal point of the previous sentence, so it is still a Class I focal point, subject to

pronominalization. Pogo, howevcr, is neither of these, and is not Class 1. Nor was it the last male mentioned,

so the focal point is not Class 1I. Similarly. Pogo fails the criteria for Class Ill, leaving us with Class IV. and J
allowing only a definite noun phrase to be generated. In the case of proper nouns, they already arc definite

. . .. .. . . .0



83

SENTENCE GEN[RATED): POGO CAXRES FOR HEPIIAH.

LAST MALES: P~OGO NIL LAST FEMALES: IrIEI7AH NIL
LAST NEUTIERS: NIL NIL LAST PLURALS: NIL NIL

AGENT: POGO AFFECTED: NIL
RECIPIENT: HEPZJBAH ATTR IBUTE: NIL

FOCUS: HEPZIBAH

MENTIONFI) LAST SENTENCE: NIL
MENTIONED) THIS SENTENCE: POGO HrPZIBAH

MENTIONED IN THE TF~cr: POGO HEPZIBAH

Figure 5-7: Control Variablcs After First Sentence

SENTENCE GENERATED: CHURCHY LIKES HER, TOO.

LAST MALES: CHURCH Y POGO LAST FEMALES: HEPZIBAH HEPZIBAH
LAST NEUTERS: NIL NIL LAST PLURALS: NIL NIL

AGENT: CHURCHY AFFECTED: NIL
RECIPIENT: HEPZIBAH ATTRIBUTE: NIL

FOCUS: I'EPZIBAH

MENTIONED LAST SENTENCE: POGO HFPZIBAH
MENTIONEI)THIS SENTENCE: CHURCH V HEPZJBAH

MENTION ED IN THE TF ,'T: POGO HEPZIBAH CHURCH V
Figure 5-8: Control Variables After Second Sentence

.. .. .. .. .. ... .. .. .. .. ... .. .. .. .. ... .. .. .. .. ... .. .. .. .. ... .. .. .. .. ... .. .. .. .. ... .. .. .. .. .



, -.?-. ,U . --. -. -- - - ._Z-. ' -_-. .V- .-r.:-_ . -o - -L - -S '- . .- .-. - " . ....

84

noun phrases, so "Pogo" is simply generated.

SENTENCE GENERATED: POGO GIVES A ROSE TO HER,

LAST MALES: POGO CHURCHY LAST FEMALES: HEPZIBAH HEPZIBAH
LAST NEUTERS: ROSEI NIL LAST PLURALS: NIL NIL

AGENT: POGO AFFECTED: ROSEI
RECIPIENT: HEPZIBAH ATI'RIBUTE: NIL

FOCUS: ROSEI

MENTIONED LAST SENTENCE: CHURCHY HEPZIBAH
MENTIONED THIS SENTENCE: POGO ROSEI HEPZIBAH

MENTIONED IN THE TEXT: POGO HEPZIBAH CHURCHY ROSE)

Figure 5-9: Control Variables After Third Sentence

The second clause of this sentence (which for our purposes constitutes a distinct sentence) starts with a

relative pronoun. When a record has an effect attribute (such as cl in Figure 5-1) which is itself another clause

(such as c3 in Figure 5-1), the second clause is generated as a relative clause, and the result is in Figure 5-10. - ..

The details of the next few sentences are similar enough that it would be worth our while to skip

forward a bit to the ninth sentence. The only entity mentioned in this sentence is petals, which have not yet

been mentioned in the discourse. However, if we look at record h2 in Figure 5-1, we see that these petals are

part of the rose from sentence 8. Therefore, we are not really referring to a new entity, but rather a part of an

old one, and our generated text should make this clear. We actually do have a focal point, even though the

entity is not on the MENTIONED IN THE TEXT list after the previous sentence. In order to determine if an

entity is a Class V focal point, Paulchecks each member of the MENTIONEI) IN T'HE TEXTI list. If the item - 0

is a part of one of the members, we genuinely do have a Class V focal point. If not, then we simply have an

item that is being mentioned for the first time, and it can be treated in the usual fashion. Figure 5-11

demonstrates how the Class V focal point was handled in this specific example.

16.. ............ ....-.-..... .



85.

SENTENCE GENERAT1ED: WVHICH PLEASES HER.

LAST MALES: NIL POGO LAST FEMALES: lIEPZIAJI HEPZ IBAH
LAST NEUTERS: NIL ROSE) LAST PLURALS: NIL NIL

AGENT: NIL AFFECTED: NIL
RECIPIENT: HEPZIBAH ATTRIBUTE: NIL

FOCUS: HEPZIBAH

MENTIONED LAST SENTENCE: POGO ROSEI HEPZIBAH
MENTIONED) THIS SENTENCE: HEPZIBAH

MENTIONED IN TH E TEXT: POGO HEPZIBAHI CHURCH Y ROSE)
Figure 5-10: Control Variables After Fourth Sentence

SENTENCE GENERATED: THE PETALS DROP OFF.

LAST MALES: NIL CHURCHY LAST FEMALES: NIL HEPZIBAH
LAST NEUTERS: NIL ROSE) LAST PLURALS: PETALS NIL

AGENT: PETALS AFFECTED: NIL
RECIPIENT: NIL ATTRIBUTE: NIL

FOCUS: PETALS

MENTIONED LAST SENTENCE: CHURCH Y ROSE) HEPZIBAH

MENTIONED THIS SENTENCE: PETALS

MENTIONED IN THE TEXT:
P0G0 HEPZIIIAH CHURCIIY ROSEl ROSE'2 ROSE) PETALS

Figure 5-11: Control Variables Aftcr Ninth Sentcnce

... .. .. .. . .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. .. ..



.~~ ~ ~ .~~. . ... . .

86

'is should bc sufficient to provide the rcadcr with an understanding of how lexical substitution is

* controlled in Paul 'I'hc "snapshots" of IJIC control variables after each scnztencc can bc found in Appendix II.

The final complete text for this story is: 6,
P~OGO CARES F'OR IIlEPZIBAH. CHURCHY' LIKES HER, TOO. P000 GIVE.S A
ROSE TO HEF'R. WHICI I PLEASES HER. SHE D)OES NOT WANT CHURCHYS ROSE.
1-IEIS JEALOUS. HE PUNCHES P000. HE GIVES A ROSETO IIPZIIIAH. -. :

THE PFTALS FALL OFF.T'HIS UPSETS HER. SHE CRIES.

Appendix IlI] contains additional examplcs of text generated by PauL



.. . . . . . . .- - .

87

6. Related Work
While natural language processing has been a subject of investigation for decades, text generation has

only recently enjoyed serious research endeavors [30]. 'liat is not to say that work in text generation did not

exist before a few years ago. In 1969. 1-larper and Su reported a system that composed paragraphs in Russian

on topics in the domain of physics [12]. The system was designed to demonstrate the development of the

chosen theme and exhibit cohesion between the generated sentences. All this was achieved with the random

selection of constituents.

The system first randomly chooses a syntactic sentence pattern which has restrictions as to what can

appear in each of its slots. Then based on those restrictions, words of the proper syntactic categories are

randomly selected to fill the slots and create a sentence. The weights of elements for future random selections

(both sentence patterns and words) are altered based on previous selections. This way, the system favors

constructions that the authors feel reflect development of theme and cohesion between the sentences. The

words for this system are arranged into syntactic classes. Additionally, some semantic information is stored in

that each word entry has pointers to other words that are synonyms, antonyms, and superordinates.

An important shortcoming of this system is that it has no semantic representation of what has been or

should be said. After randomly selecting a sentence pattern, words are randomly selected and fitted into this

pattern. Cohesion is attempted by weighting random selections to favor those words and constructions that .- . -

seem to provide reference preference, and style isn't considered at all. While the system's dictionary is . ...

arranged in a superordinate hierarchy, the semantic information the dictionary contains is very limited and

inadequate. The entries consist of the words themselves, rather than the conceptual actions and objects these

words represent. This approach violates almost all of the six criteria for natural language generation. While it

is an important first step in the field, it is impractical for further development.

The HAM-RPM system [44] is an interesting advance in natural language generation. HAM-RPM was

designed to be a question-answer system about visible scenes. Given an appropriate internal representation of

some scene, its objects, and their spatial relationships to each other, HAM-RPM will answer questions about

this scene. For its generation component, the research emphasis was on noun phrase generation, specifically,

the generation of noun phrases that would not be ambiguous to a human witnessing the scene.

HAM-RPM was designed to give single sentence responses to queries. Therefore, most of the issues of .'

cohesion generally don't apply to the problem the system addresses. What cohesion it did express was only for

noun phrases, and was heavily based on spatial relationships, which is part of exophoric reference. However,

exophoric reference can only be used in conversational applications, where both parties are present and

• S ., .

......................... ~~~~~~~~~~~~ ...............................................- ~- -



88

witnessing the same scene. In a context such as business letters or medical diagnosis based on test results,

exophoric reference cannot be used, and endophoric reference 1111 must be used to achieve cohesion. HAM-
RPM is an interesting system, but it addressed a problem that is significantly different from the problem Paul

attempts to address, and the approach of HAM-RPM is incompatible with Paul.

Since HAM-RPM, Jameson and Wahlster have reported the development of HAM-ANS [18], a

dialogue system designed to employ a user model in anaphora generation. The system is a question/answering

system in which the program plays the part of a hotel clerk answering questions about available rooms. In

order to make the responses seem more natural, a capability for anaphora in the form of ellipsis and definite

description has been incorporated into the system. Before an elliptic response is generated, the proposed

answer is passed back to the system's parser by what is known as an anlicipation feedback loop. If the response

can be unambiguously parsed, it is actually given as output. If, however, the response proves to be ambiguous,

a less elliptic response is created and fed to the feedback loop. This way, the system ensures that the user will

not be confused by ambiguous answers. The generation of definite description is based on both the

occurrence of previous references to the object in question, and a desire of the system (in its role as hotel ,

clerk) to describe the available room to the user (in her role as potential customer) in a manner designed to

maximize the apparent desirability of the room, based on the system's model of the particular user.

HAM-ANS is once again a strictly conversational language generator. The ellipsis it employs is not one S

designed to avoid tedious repetition, as is proposed by the syntactic transformation of Equi NP Deletion [1].

Rather, this ellipsis reflects the natural tendency of people to use incomplete, though acceptable and

unambiguous, sentences. The use of definite description that the system demonstrates also does not have

cohesion as its main goal. The user model gives the system a basis in order to describe hotel rooms in the best ..O

possible light according to a specific user model. Instead of trying to be completely clear and unambiguous.

the system will often use a definite description where one isn't appropriate or deliberately not use one where
it should be so that the user can be misled without the system actually lying. Of course, this is not a linguistic

phenomenon, but a psychological one that employs language.

CES [26] is another system that attempted some cohesion in generation. CES recognized that text

generation consists of the two subtasks mentioned above, and the authors chose to concentrate mainly on the

first one of utterance planning. The system works very hard at determining the minimum that is required to

be said and still be unambiguously clear. This is achieved by giving the system a representation of the context

in which a single sentence is to be generated. While only single sentences are being generated. by being in a ..-.-

context the sentences can exhibit cohesion suitable for that context.

. . .....



89

Unfortunately, the only cohesive deviccs that were explored at all were pronominalization and ellipsis.

While context is used to achieve some cohesion, no stylistic considerations are made. Furthermore, the system

has been only partially implemented.

The GEN system [221 divides text generation into three subtasks. The first is to create the knowledge

structures representing what is to be said. (Katz calls these structures kernel phrase markers.) The second is to

determine which linguistic transformations [1] are to be performed on the kernels, based on syntactic and

thematic considerations. The final step, which is the one GEN is designed to perform, is to perform the

transformations specified in the second step and translate the transformed kernel phrase markers into the

target natural language. It is assumed that all semantic and pragmatic knowledge is represented as a set of

frames. S

Because GEN is heavily based on the syntactic aspects of transformational grammar, it exhibits all the

limitations of this approach to linguistics. Transformational grammar is designed to take as input a syntactic

tree, representing the deep structure of a sentence, to perform syntactic transformations on this tree, and 6

translate the transformed tree into a surface sentence. This is exactly the approach GEN takes. Therefore,

little semantic knowledge is incorporated. Cohesion is shown only through the use of pronouns, and only one

,ale of pronominalization is employed.

Another system based on transformational grammar is the transformational generator described in [2].

Designed to generate examples of good English as an aid in teaching the deaf and learners of English as a

second language, the generator is divided into three parts. First, a set of context free rules, called the base

component, creates a tree structure. A transformer then applies transformational rules to the trees to derive a 0

* surface tree. A multilevel control mechanism helps constrain the tasks of the other two components. A

dictionary and semantic network prevent the generation of syntactically correct but semantically meaningless

sentences, such as "Colorless green ideas sleep furiously."

As with GEN, the transformational generator has severe limitations in semantic applications. The

emphasis on this work is in generating grammatically correct English sentences, and the semantic meaning

behind those sentences is completely ignored. Furthermore, isolated sentences are once again being

generated, so the problems of cohesion and style, which are more important for multisentential text, have not S

been addressed.

The XPLAIN system 1431 proposed a solution to a significant problem to text generation as it is applied

to expert systems. It has long been recognized that expert systems must be able to explain their conclusions S

and how these conclusions were derived. However, XPLAIN realized that in addition, expe-rt systems need to

..... ..... .... .*-.* .... .o... ....

mq. . .% ..% .

• "a " ~~. .
•

..............." %'d - .... . ... •.......... ......... %° -°



90

justify their methods for arriving at their conclusions, rather than merely giving these methods as an

explanation. Ibis was achieved by having the system generate its own rules and then applying those rules to

specific cases. In essence, in addition to knowing what to do in a given situation, XPLAIN knows why it

should be done.

Swartout states that the focus of XPLAIN is in utterance planning based on the information the system

has behind its rule base creation, although some cohesive devices are used in the system. Relative clauses can

be created to describe causal chains. However, these devices are used only in specific circumstances in a very

ad hoc manner. Style is addressed to some extent in that the system is able to generate explanations at

different levels of complexity. But this is done strictly by first generating different knowledge structures at

different levels of complexity. Once the structures are created, no further consideration is given to the impact S

of vocabulary selection on style.

KDS [28, 291 is a recent system that proposes a new paradigm for natural language generation. This

approach, called the fragment-and-compose paradigm, takes a semantic data structure, fragments it into little

pieces, each of which could represent a simple sentence, and composes full sentences and paragraphs from

these pieces. The system selects from all the myriad ways of expressing a concept by creating each of the

possible abstract representations (which the authors call prolosenences) and evaluating each one. Eventually,

a final set ofprotosentcnces is created and fed to a generator. The generator produces sentences one at a time

with very little consideration of the previously produced sentences.

Obviously, the center of research for KDS is utteiance planning, and once again the authors admit little

work in utterance realization. Some cohesion is achieved through pronouns and incomplete descriptions, but .

the possibilities have not been fully explored. While one of the modules of KDS is responsible for selec, aa a

text presentation style and organizing the fragmented pieces into a text content consistent with the selected

style, no consideration is given to style during the actual generation.

One system that addressed the problems of utterance realization is the MUMBLE system [32, 341.

MUMBLE again divides the natural language task into two separate subtasks. An expert program, known as

the speaker, performs the subtask of utterance planning by creating messages representing what needs to be

said, and the generator, consisting of a dictionary and a linguistic compo, i, turns these sentences into surface .

English. The representation of these messages should be determined by the speaker, not the linguistic

component. The linguistic component should he able to accept and process messages in the representation

that is most natural for the domain of the speaker, rather than dictating an arbitrary representation for all

speakers in all domains. The dictionary is the component that contains the knowledge for translating the - -

domain specific representation into English, and therefore each representation must have its own compiled

. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .

A 4 , *.-".,?..:'......-'.



91 •

dictionary. This scheme allows the generator to be driven by the goals of the speaker, rather than by the

structure of the grammar. he speaker is able to state explicit goals (such as emphasizing a specific point or

contrasting two items) in its messages, and the linguistic component is driven to achieve these goals.

Additionally, MUMBI.E exhibits several constraints included to provide both efficiency in generation and a

theory that was grounded on psycholinguistically plausible hypotheses. These constraints include indelibility.

locality, and running in bounded time, as they have been discussed in Chapter 4.

The chief emphasis of MUMBLE was the idea of driving the linguistic component by the explicitly

stated goals of the expert system speaker. Cohesive devices were used as one of the means for achieving these

goals, but they were not the central issue of the work. Nor were they used to specifically perform the two

major tasks of cohesive devices, the avoidance of boring redundancy and the distinction of new information •

from old. Furthermore, no theory was offered to provide control over the use of cohesive devices such as

lexical substitution.

The differences between MUMBLE and Paul concerning their uses of computational constraints have
already been discussed in Chapter 4. To briefly recap, by using an augmented phrase rule grammar, Paul is

able to maintain the constraints of indelibility and locality. Furthermore, the notion of locality has been

extended to define locality as conceptual instead of physical. This, with the proper use of augmented phrase

structure rules, frees Paul from some of the limitations exhibited in MUMBLE, such as the constraint- 7-i
precedes stipulation.

A recent system that made significant progress towards fulfilling the six criteria for natural language

generation is TEXT [35]. In this work, the language generation process is again divided into the utterance

planning and the utterance realization tasks. TEXT addresses the problems of what to say and how to

organize it effectively, using the principles of discourse structure, discourse coherency, and relevancy criteria.

The system was developed to respond to data base queries. Once a question is received, a relevant knowledge

pool is constructed. This is a subset of the data base and contains all the information that can be included in

the response. Next a schemna is selected, based on the type of question and the information in the relevant

knowledge pool. The schema dictates the stncture of the response, and is used to determine the order in

which the sentences are to be generated. Finally, focus is used to obtain an overall coherency in the generated -.- ---

text. .0

A significant difference between TEXT and Paul is their use of foct ~.TEXT uses focus for coherency in

text, making the text seem to have a logical flow in it. Paul uses focus with other factors to achieve

cohesiveness in the text, making the sentences of the text to be interconnected and part of a larger unit.

Furthermore, the emphasis on TEXT is again in utterance planning and the problems of that realm. Cohesive
• $ " °°..° -

°• .5 '.°.



92

devices such as lexical SU1)StitUtiOl atrc used to) achieve thc goals of the specific schcmia and thc general ones of

controlling focus. The utterance realization aspects of cohesion, of a~oiding redundancy and marking of new

* in formation through diec controlled usC of lexical substitution, are not discussed.

* In conclusion, none of thc above systems addresses all six of die criteria ncessary for good natural

languagc generation. This is true because for the most part these systems have focused on utterance planning

rather than on utterance realization and the problems associated with this task. In particular, none of these

systems address the problem of cohesion in a methodical manner. As we have seen, Paul is a system that

specifically addresses the utterance realization problem of cohesion by presenting an orderly approach to

lexical substitution.



93

7. Conclusions
7.1. Contributions of Paul

!S
Paul is one of the few text generation systems designed specifically to address issues of utterance

realization. As such, several advances in the field were made with this work.

1. This is the first system to perform a full range of lexical substitutions. No other existing system
offers synonymous substitution. superordinate substitution, pronominalization. and definite noun
phrases. This was achieved by identifying the minimalfeaiures of the elements, and determining
the least amount of information required to generate unambiguous references.

2. Paul is the first system that offers a theory for controlling the selection of lexical substitutions.
on 1This theory identifies five classes of potential antecedence, and associates a strength of

antecedence recovery with each type of lexical substitution. Paul is capable of determining the S
potential antecedence class for each element in the discourse, and selecting the appropriate lexical
substitution based on this class.

3. Paul is able to use these lexical substitutions to generate cohesive text. Specifically, Paul avoids
unnecessary repetition and marks old information from new by the judicious application of lexical
substitutions. These functions are required before a passage can be recognized as text.

4. Paul uses augmented phrase structure rules to achieve indelibility in generation. By associating
records of semantic information with each node in the syntactic structure tree as it is being
created, decisions can be confidently made that would otherwise require backtracking or
expansion in parallel. "

5. Augmented phrase structure rules are also used in Paul to fulfill the constraint of conceptual
locality. In order to avoid searches throughout the entire syntactic structure tree (which might not
completely exist at the time of the search), the locality constraint dictates that a decision at a node

r-M can only use information local to that node. But rather than defining local information as that
physically near in the tree, Paul defines local information conceptually, through the use of the
semantic records associated with each node. Tlhis way, locality is achieved without further
constraints.

6. Paul is able to run in bounded time. There are a fixed number of steps that will be taken before
the next word is generated. This was achieved because Paul is indelible and follows the locality S
constraint, while avoiding recursive rules through careful application of condition and creation
specifications.

7.2. Limitations of Paul

No program can do everything, and Paul is certainly no exception to this rule. There are several 5

limitations exhibited in PauL

1. Paul performs utterance realization only. It is completely incapable of performing utterance
planning tasks. The system takes semantic records of what to say as input. Currently these records
have to be created by hand.

"o, ..- . -.

S. ,.-.-.



94

2. Of the many cohesive devices discussed in this report, Paul only perforns those of lexical
substitution. Ellipsis, conjunction, reference and substitution are beyond the ken of this system.

3. Paul assumes an endophoric context when selecting cohcsi ic devices. The system cannot correctly
generate exophoric references. It cannot talk about its world.

4. The system does not have a user model of the reader's knowledge and beliefs. Paul currently
assumes that the user kn:ows what it knows, that the facts in its data base are common knowledge.

7.3. Future Research

1. One important issue not addressed in Paul is the question of style. Especially when the
applications of text generators move toward more serious fields, such as expert systems
explanations and justifications, and business correspondence, it will be necessar) to be able to vary
the style and mood of the text being generated. As we have seen with general nouns, lexical
substitution can have a very great impact on the style, and maintaining a specific style will add
unexplored constraints on the lexical substitution selection process.

2. As we have stated above, the theory used for controlling lexical substitution in Paul has been
applied onby to lexical substitution. It remains to be seen if this theory can be extended to control
the selection of other cohesive devices, and whether a general theory can be found to control all S
cohesive devices. This extension would hopefully include exophoric reference. 'Ibhis would require
the program having a sense of the "world" it "exists" in.

3. Paul only generates texts of single paragraph size, and the cohesive devices discussed apply to
binding sentences together within that paragraph. The issues of multi-paragraph text generation
remain to be researched. Are the cohesive devices that tie sentences together be used to associate
paragraphs? Are there other cohesive devices that are used only to bind paragraphs? Do
paragraphs have an ordered surface structure, the way sentences have? These questions remain to
be answered.

In conclusion, the field of text generation, and especially the branch dealing with utterance realization,

is rich with interesting topics to explore. With the growing necessity for expert systems to be able to explain

themselves, and the increasing demand for programs with human factor considerations, the need for good text

generators is one of the most dynamically expanding fields of artificial intelligence.

,as&d

............................. .... . .. , .



D-i.4B 999 COHESION IN COMPUTER TEXT GENERTION: LEXICL 
2/2

SUbSTITUTION(U) MASSACHUSETTS INST OF TECH CAMBRIDGE
LAB FOR COMPUTER SCIENCE R A GRANVILLE MAY B3

NCLASSIFIED I IT/LCS/TRi i F/G 5/7 N

EEEEEEE



I
I

.11



11 .5 1W14 1.

NAIOA BUEUOFSADAD-19,-

U.______~ ~ z5-... .-.

_____ %.



95

APPENDIX I

0"

fro Alce' Adentresin f'oderandby cwi Carol



"The White Rabbit put on his spectacles. 'Whcre shall I begin, please your Majesty" he asked.

'Begin at the beginning,' the King said, very gravely, 'and go on till you come to the end: then stop.'

There was a dead silence in the court, whilst the White rabbit read out these verses:

-icy told me you had been to her,
And mentioned me to him:

She gave me a good character,
But said I could not swim.

He sent them word I had not gone
- (We know it to be true):

If she should push the matter on,
What would become of you?

I gave her one, they gave him two,
You gave us three or more;

They all returned from him to you, ..

Though they were mine before. i 7.--4

If I or she should chance to be
Involved in this affair,

He trusts to you to set them free,
Exactly as we were.

My notion was that you had bee-
(Before she had this fit)

An obstacle that came between .
Him, and ourselves, and it.

Don't let him know she liked them best,
For this must ever be

A secret, kept from all the rest,
Between yourself and me.'

'That's the most important piece of evidence we've heard yet,' said the King& rubbing his hands..

A n I
o°9

Appen.-'.x-.

• .°%s-S *



97 ~

Appendix 11

Trace of Control Variables for the Example Story

AD.



98

SEN'I'ENCE GINERATEFD: IXOCARES FOR HEPZIRAH.

LAST MALES: POGO NIL LAST FEMALES: HEPZIBAM NIL0
LAST NEUTERS: NIL NIL LAST PLURALS: NIL NIL -

AGENT: POG0 AFFECTED: NIL
RECIPIENT: IIEPZIBAH ATTRIBUTE: NIL

FOCUS: HEPZIBAH

MENTIONED LAST SENTENCE: NIL
MENIONED)THIS SENTENCE: POGO HfPZIBAH

MENTIONED IN THE TEXT: POGO HEPZIEAH

Control Variables After First Sentence

SENTENCE GENERATED: CHURCHY LIKES HER, TOO.

LAST MALES: CHURCH V POGO LAST FEMALES: HEPZIBA H HEPZIBAH
LAST NEUTERS: NIL NIL LAST PLURALS: NIL NIL

AGENT: CHURCHY AFFECTED: NIL
RECIPIENT: HEPZIBAH ATTRIBUTE: NIL

FOCUS: HEPZIBAH

MENTIONED LAST SENTENCE: POGO HEPZIBAH
MENTIONED THIS SENTENCE: CHURCHY HEPZIBAH0

MENTIONED IN THE TEXT: POGO HEPZIBAH CHURCH V
Control Variables After Second Sentence

Appendix 11



99

SEN'IENCE GENERATED: POG0 GIVES A ROSE TO HER,

*LAST MALES: POGO CHURCH V LASTF , ALS: HEPI-IBAII HLPIA
LAST'Niu'rERS: ROSE! NIL LASTI PLURALS: NIL NIL

AGENT: POGO AFFEC'I ED: ROSE)
RECIPIENT: HEPZIBAH AT'IRIBUTE: NIL

FOCUS: ROSE!

* MENTIONFI- AST SENTENCE: CHURCHY HEPZ1DAH
MIENTIONED) THIS SENTENCE: POGO ROSE! HEPZ-IBAH

MENTIONED IN THE TEXT: POGO HE PZIBAH CHURCH V ROSE!
Control Variables After i'hird Sentence X

* SENTENCE GENERATED: WHICH PLEASES HER.

LAST MALES: NIL POGO LAST FEMALES: HEPZIBAII HEPZIBAH
*LAST NEUTERS: NIL ROSE) LAST PLURALS: NIL NIL

z AGENT: NIL AFFECTED: NIL
*RECIPIENT: HEPZIBAH AlTRIBUTE: NIL

* FOCUS: HEPZJBAH

MENTIONED) LAST SENTENCE: POGO ROSE! HEPZIBAH
MENTIONED) THIS SENTENCE: HLPZIBAH

MENTIONED IN THE TEXT: POGO HLP/IBAH CHURCH V ROSE)
Control Variables After Fourth Sentence

Appendix 11



100.

SENTENCE GENERATED): SHE DOES NOT WANT CHURCHY'S ROSE

LAST MALES: CIIURCH Y NIL LAST FEMA LES: HEPZIBAH HEPZIBAH
LAST NEUTERS: ROSE2 NIL LAST PLURALS: NIL NIL

AGENT: HEPZIBAH AFFECTED: NIL
RECIPIENT: ROSE2 AITRIBUTE: NIL

FOCUS: ROSE2

MENTIONEl) LAST SENTENCE: HEPZIRAH
ME~NTIONED THIS SENTENCE: HEPZ-IBAH ROSE2 CHURCHY

MENTIONED IN THE TEXT: POGO HEPZIBAH CHURCHY ROSE)I ROSE2

Control Variables After Fifth Sentence

SENTENCE GENERATED: HE IS JEALOUS.

LAST MALES: CHURCH V CHURCHY LAST FEMALES: NIL HEPZIBAH
LAST NEUTERS: NIL ROSE2 LAST PLURALS: NIL NIL

AGENT: CHURCH V AFFECTED: NIL
RECIPIENT: NIL ATI'RIBUrE: NIL

FOCUS: CHURCHY

MENTIONED LAST SENTENCE: HEPZIRAH ROSE2 CHURCHY
MENTIONED THIS SENTENCE: CHURCH V

MENTIONED IN THE TEXT: POGO HE.PZIBAH CR URCH V ROSE) ROSE2

Control Variables After Sixth Sentence

Appendix 11



101

SNTrNCF.GEN ERATH: III PUNCHES POGO.

L-AST MALES: POG0 CIUuRCHY LAST FEMAI.FS: NIL NIL
LAST NIU'IERS: NIL NIL LAST PLURAL.S: NIL NIL

AGENT: CHURCH V AFFECTED): POGOS RECIPIENT: NIL ATTRIBUTE: NIL

FOCUS: POG0

MENTIONED LAST SENTENCE: CHURCH V
M ENTIONED THIS SENTENCE: CHURCH Y POG0

* ~MENTiONE D IN THE TEXT: POGO HEM~BAlICHURCIY ROSE) ROSE2
Control Variables After Seventh Sentence

SENTENCE GENERATED): HE GIVES A ROSE TO HEPZIBAH.

LAST MALES: CHURCH V POG0 LAST FEMALES: HEPZIBAH NIL
LAST NEUTERS: ROSE3 NIL LAST PLURALS: NIL NIL

AGENT: CHURCHY AFFECTED; ROSE3.-**
RECIPIENT: HEPZIBAH ATTRIBUTE: NIL -

lb-.

* FOCUS: ROSE3

MENTIONED LAST SENTENCE: CHURCH Y P0G0
MENTIONED THIS SENTENCE: CHURCH)' ROSE3 HEPZIRAH

MENTIONED IN THE TEXT: POGO HEPZIBAH CHURCH V ROSE) ROSE2 ROSE3

Control Variables After Eighth Sentence

Appendix 11



102

SEN'IENCE GEN FRATlEI): THE PF lAIS FALL OFF.

LAST MALES: NIL CHURCHY LAST FE.MAILES: NIL. HEPZIBAH
LASI'NEUTERS: NIL ROSE3 LAST PLURALS: PETALS NIL

AGENT: PETALS AFFECTED: NIL
RECIPIENT: NIL ATTRIBUTE: NIL

FOCUS: PETALS

MENTIONED LAST SENTENCE: CHURCH Y ROSE3 HEPZIBAH

MENTION ED THIS SENTENCE: PETALS

MENTIONED IN THE TEXT:
POG0 HEPZIBAH CHURCH)' ROSE) ROSE2 ROSE3 PETALS

Contcrol Variables After Ninth Sentence

SENTENCE GENERATED: TIlS UPSETS HER.

LAST MALES: NIL NIL LAST FEMALES: HEPZIBAH NIL
LAST NEUTERS: NIL NIL LAST PLURALS: NIL PETALS

AGENT: NIL AFFECTED: NIL
RECIPIENT: HEPZJBAH ATTRIBUTE. NIL P

FOCUS: HEPZIBAH

MENTIONED LAST SENTENCE: PETALS
MENTIONED THIS SENTENCE:- HEPZIBAH

MENTIONED IN THE TEXT:

POG0 HEPZIBAH CHURCHY ROSE) ROSE2 ROSE3 PETALS

Control Variables After Tenth Sentence

Appendix 11



103

SENTENCE GFNERATEI): SHE CR IES.

LASTr MALES: NIL NIL LAS'I FEMALES: HEPZIBAH HEPZIBAH
LASI'NEUTERS: NIL NIL LAST PLURALS: NIL NIL

AGENT: HEPZIBAH AFFECTED: NIL -

RECIPIENT: NIL ATTRIBUJTE: NIL0

FOCUS: HEPZIBAH

MENTrIONED LAST SENTEFNCE: HEPZIBA H
MENTIONED)THIS SENTENCE: HEPZJBAH

MENTIONED IN THE TEXT:
POGO HE.,PZIIIAH CHURCHY ROSE) ROSE2 ROSE3 PETALS

Control Variables After Eleventh Sentence

Appendix 11



104

Appendix III

I -. 0

Additional Eramplcs of Generated Stories



105

POG0 CAR ES FOR HEPZI BAH. CHURCI IY LIKES HER. TOO. P0G0 GIVES A
ROSE TO H1ER, W I IC I PL-EAS ES H ER. S HE DO ES NO'' WA NT C IU R CH Y'S ROSE.
HE IS JEALOUS. HIE PUNCHEIS P0G0. HE GIVES A ROSE TO HEPZIBAH.
THE PET*ALS l)ROP OFF. THIS UPSET'S HER. SHE CRIES.

CHURCHY IKES HEPZIBAH. SHE DOES NOT CARE FOR HIM. TIlS UPSETS
HIM. HE KISSES HER. SHE WEEPS. THIS ANGERS P0G0. HE HITS CHURCHY.

P0GO AND CHURCHY GO fO THE STORE. CHURCHY PURCHASES A KITE. HE
GIVES IT TO P000. THE POSSUM GIVES IT TO IIEP/.IIAH, WHICH PLEASES
HER. SHE KISSES HIM. THIS UPSE 'S CHURCHY. HE WEEPS.

CHURCHY AND POGO GO1'O THE STORE. HEPZIBAH GOES. TOO. POG0 BUYS
A KITE. HE GIVES ITrTO HER. WHICH PLEASES HER. SHE KISSES HIM.
THIS ANGERS CHURCHY. HE TAKES THE KITE. HE BREAKS IT. THIS UPSETS
HEPZIBAH. SHE CRIES. P000 SLUGS CHURCHY.

0

Appendix III..l



106

Appendix IV

BNF for NLP



107

<COMMAND> :: (LEFT> --> (RIGHT> <END>

<LEFT> ::= <SEG-TYPE> I <SEG-TYPE> ( <TEST>)

<SEG-TYPE> ::z <IDENTIFIER>

<TEST> ::= (ATTR-CONDITION> I <TEST> < (TEST> I <TEST> <OR> <TEST>
(<TEST>) < (TEST>

<ATTR-CONDITION> ::< ATTRIBUTE> PV> I <VALUE> = <VALUE>
! <S-EXPRESSION> I <FUNCTION-CALL> I
<$REFERENCE> ' (IDENTIFIER>

(ATTRIBUTE> :< (IDENTIFIER> I [ (ATTRIBUTE> PV ] @ *[ <$REFERENCE

PV> ::= (0> I ( <VALUE> )

<VALUE> : ' (IDENTIFIER> ' I <ATTRIBUTE> PV> I <$REFERENCE>

<RIGHT> :: <SEG-TYPE> I <SEG-TYPE> ( <CREATION> ) I <RIGHT> <RIGHT>

<CREATION> ::= <ATTR-CREATION> I <CREATION> , <CREATION>

<ATTR-CREATION> ::= <ATTRIBUTE> <PV> I <ATTRIBUTE> <PV> : <VALUE>
<$REFERENCE> I % <ATTRIBUTE> PV> I
- <ATTRIBUTE> (PV> I ' <IDENTIFIER> '

<ATTRIBUTE> PV> : <$REFERENCE>
<ATTRIBUTE> (PV> : <FUNCTION-CALL> I
I <S-EXPRESSION>

($REFERENCE> ::z ($LEFT-PART> $ <$RIGHT-PART>

<$LEFT-PART> ::< 0> < (ATTRIBUTE> PV>

<$RIGHT-PART> :< (0> I [ <VALUE> <J [ (VALUE> , <VALUE> ]

<FUNCTION-CALL> ::= <IDENTIFIER> < <PARAMETERS> >

<PARAMETERS> ::= <VALUE> I <PARAMETERS> . <VALUE>

<IDENTIFIER> ::z any LISP atom not containing a <DELIMETER>

<S-EXPRESSION> ::= any legal LISP s-expression

<DELIMETER> ::- I 1 I ' I S I Z I t I C I ) I I I
-I < I > I I I I 11(1 (1)1 0 1 1 1
1 I I I <OR> I <BLANK>

<OR> ::= the vertical bar "1"

<BLANK> ::a the blank space " "

(0> ::a the empty string, a zeroing out

<RECORD> ::= <RECORD-NAME> (<CREATION> )

Appendix IV

.
" 

. . . . .. . . o. . . . . . . .. . o, . • .. . . .-' .. ' . ° - o , ° ' ° ' ' ' ' . ° . '

,.'.-........................ . . . . . . . .
• " - *., -. ,.. .* . I, - . I .- - '- '- 

-

'- % ', % ', '° " o° ' , m=*' " , ,'%*.*Q' ' ' .



108 * -4-----S

<RECORD-NAME> <IDENTIFIER)

0

0

0.

S

-S__

S

-9

* . 4,.**

* . . .4'...

*0
.4

44 * *4,

.4 4-

Appcndiz IV

.4

*4*4*'*** .*. ... ... .. .. * 4..- . . . . - . . C * * . ., * * .4 4-.
4-. a-a.

.4 *4*
.4 * * * ... . *4~. ~ * ... ~ *~ .4 4-

*4*4.'...-



1096

Appendix V

NLP Program for Paul



-.- J

110

COVER ATTA;
vform (main auxil);
main (numb nonfinite pars tense flog);
numb (sing plur);
nonfinite (inf prespart pastpart);
pers (persi pers2 pers3);
tense (past present future);
auxil (passive prog perfect);
det (def indef do, possess);
case (common genitive);

* commuon (subjective objective);
* roles (agnt aff recip attr dest);

syntaxroles (subject dobject iobject prepobject genitive);
mode (active stative entity);
ending (ed ing);
sub (relative submark)[] 6

RULES FOR ENCODING;
(agnt is "agent," aff is "affected," recip is "recipient."
and attr is "attribute")

story(para) ->paragraph(%top~para(story)>) line story(para:-rest<para>);

* story -- > null;

* paragraph(concepts) -- > concept(%top<concepts(paragraph)>,
ref:ztop<concepts(paragraph))

paragraph(concepts: =rest<concepts>);
paragraph -- > null;

* concept(tprocessed)-)
concept( processed.

focus('previous'):zfocus('current'),-focus('current'),
male( 'previous'):=

list<nale('current').top~male('previous')>>,-
-male( 'current').
female( 'previous' ):-

list<femalo('current'),top<female('previous') .,
-female( 'current'),
neuter( 'previous'):.

list~neuter('current'),neuter('previous')>>,
-neuter( 'current')'
plur( 'previous'):w

1 ist.(plur( 'current') ,top<plur( 'previous'))>,
-plur( 'current'),
syntaxroles('previous'):.syntaxroles('current'),
-syntaxroles( 'current'),
pronoun('previous'):=pronoun('current').
-pronoun( 'current'));

concept(tsub)-)
concept(submark~idea('prevlous'):-idea('current'),idea('current'):-ref);

* concept(supzsup(idea('prevlous')).roles-roles(idea('previous')).
neg-neg(idea('previous')),1effect~tmarked) --

Appendix V



concept(marked) ,word('too');

concept(stativo.stative(sup))->
clause(%concept.sup:=myrandom~stative(sup(concept)))):

concopt(stative) ->clause(%concept.sup:amyrandom~active(sup)>.passive);

concept(ontity) ->clause(%concept.'bel'.subject:-sup(concept),

focus( 'current' ):usup(concept));
concept -- > clause(%concopt.sup:zmyrandom~active(sup)>,active); ..-

clause(cause~causeidea('provious')) -- > pronoun(sentontial) vp(%clauso);
clause(relativo) -- > , pronoun(relative) vp(%clause);
clause(subject) -- > np(%subject(clauso).ref:usubject(clause).

subj Oct ( 'cu ,ront' ) uref subj oct. subj ective)
vp(Xc lau so *numb :=unumb( sub j ct).

pers:zpors(subject));
clause(passive, recip) -- > clause(subject:zrecip,-recip);
clause(passive) -- > clause(subject:=aff.-aff);
clause(stative,cause) -- > clauso(subject:-causo,-cause); . S

clause(stativo,exp) -- > clause(subject::exp.-exp);
clause(stative) -- > clause(subject:mrecip.-rocip);
clause -- > clause(subject:=agnt,-agnt);

np(tclass) -- > np(class:=classify~ref>):
np(tremembered,plur) -- > np(rememberod.plur('current'):Zrof); S

np(tremembered) -- > np(remembered.S[refS['gondor']]('current'):-rof);
np(modo) -- > concept(%np.prespart~sub);
np(tmember~ref.nouns('said')>.tflaggod) -- >

np(nouns( 'said'):=cons<rof.nouns( 'said')>,flagged);
np(and,greaterp~length~and>.!2 >) -- > np(%top~and(np)>,remembered)

np(and:zrest~and(np)>);
np(and) -- > np(%top<and(np)>,remembered~class:class(lp))

word( 'and')
np(%bottom<and( np)> remembered. class: .class(np)

np(classI1) -- > pronoun(%np~pronoun('current'):-rot);
np(class='III',pronoun('previous').ref)-)

pronoun(%np,pronoun( 'curront'):-rof);
np(tdet,tS['properi].tclass-'NONE') -- > np(det);
np(tdet.t$['proper'J) -- > np(indef);
np(det,fdetr) -- > detr(%np) np(detr);
np(class=IIllclass'II',S['intlligent'J,tflaggod)->

np(sup:=randomchain~sup(sup)'intllgnt'>def.flaggdsuibst);
np(class='II' Iclass='III' ,tflaggod) -- >

np( sup: =randomcha in~sup( sup) .tnil> ,dot ,flagged. subst);
np(subst.ambiguous&superordinate&test<sup. rof>) -- > ..

adj(sup:zdisambiguate<ref(np).sup(np)>) np(-subst);
np -- > noun(%np.-flagged.-remembered);

vp(aff~tfocus('current')) -- > vp(focus('current'):zaff);
vp(recip~tfocus('current')) -- > vp(focus('current'):-reclp);
vp(agnt.tfocus('current')) -- > vp(tocus('current'):=agnt);
vp(oxp,ttocus('current')) --> vp(focus('current'):-exp);
vp(subject.tfocus(Icurrent')) -- > vp(focus('current'):-subject);
vp(tnumb,tnonfinite) -- > vp(sing):
vp(tpers,tnonflnite) -- > vp(pers3);
vp(ttenso.tnonfinits) -- > vp(present);
vp(neg~tauxil,t'dol') -- > vp('dol'.-auxll,-roles) vp(-maln~lnf);

Appendix V



112

vp(perfect) ->vp(lhavel'.-auxil,-roles) vp(-main.-perfect~pastpart);
*vp(prog) -- > vp('bel .-auxil.-roles) vp(-main,-prog.-prespart);
* vp(passive) -- > vp('bel'.-auxil.-roles) vp(-main.-passive~pastpart);

vp(char) -- > vp(-char) adj(sup:-char(vp));
vp(effect) -- > vp(-effect) concept(%ettect(vp).relative);
vp(agnt.agntprep(sup)) ->vp(-agnt)

pp(%agnt(vp) ,ref: =agnt(vp). :
prep:-agntprep(sup(vp)));

vp(agnt) -- > vp(-agnt) pp(%agnt(vp),ref:-agnt(vp),prep:-'by');
vp(recip.recipprep(sup)) ->vp(-recip)

pp(%recip(vp) ,ref:-recip(vp), 1
prep:-recipprep(sup(vp)),dobject);

* vp(reclp~active) ->vp(-recip)

pp(%recip(vp) ,ref:-recip(vp).
prep:u'to' ,iobject);

vp(recip) ->vp(-recip)

np(%recip(vp) ,ref:-recip(vp).
objective~dobject( 'current') :-ref);

* vp(dest,destsdest(idea('previous'))) --> vp(-dest);
* vp(dest) -)vp(-dest)

pp( hdest( vp )ref: =dest( vp),prep : ' to'.dest);
*vp(aff) ->vp(-aff)

np(Xaff(vp) ,ref:-aff(vp),objectlve,
dobject( current' ):-ref);

* vp(phrasalprep(sup),tmarked) ->vp(marked)

prep(sup:-phrasalprep(sup(vp)));
vp(neg.S='auxiliary') ->vp(-neg) word('not');
vp ->verb(%vp);

pp(dobject) ->prep(sup:-prep(pp));

pp~loj~ct)np(%pp.-prep,objective,dobject('current'):-ref);
pp~ioject) prep(sup:-prep(pp))

np(%pp.-prep.objecttve.iobject(Icurrent'):-ref);
pp -- > prep(sup:mprep(pp)) np(%pp.-prop~objective);

* noun(word(sup)) -- > nounp(%noun~sup:-word(sup(noun)));
noun ->nounp(%noun);

verb ->verbp(%verb.sup:=word(sup(verb))):

adj(det) --> detr(%adj) adj(-det);
adj -- > word(%adj);
detr(possess.tclass) -- > detr(class:uclasslty(sup>);
detr(possessclassu'I') -->

pronoun(sup:-possess(detr) .genltive,
genitive( 'current'):-sup.
*[supS('gender']J( 'current'):ssup,
pronoun( 'current'):-ref);

detr(possess) --) np(sup:.sup(possess(detr)),ref:-possess(detr),
genitive,genltive( 'current' ):uret)

morpheme( 'possess'); N
detr(indef.plur) --) null;
detr(indef~vowel(sup)l(tconsonant(sup),vowel<sup>)) -- word('an');
detr(indef) -- > word('&');
dotr(def) -- > word('the');

* prep --> word(%prep);

Appendix V

V's %



.71 7..0.. . . . .1 j

113

pronoun(relative) ->word('which'):

pronoun(sentential) ->word('thisl);

pronoun(pers2.common) ->word('you');

pronoun(pers2) -> word(lyour');

pronoun(persl~plur,subjective) -- > word('we');
p ronoun(persl~plur,objective) -- > word('us');

Z pronoun(persl~plur) -> word( 'our');
pronoun(persl~subjective) ->word('i');

pronoun(persl,objective) ->word(Ime');

pronoun(persl) -- > word('my');9

pronoun(plur,subjective) -- > word('they');
pronoun(plur,objective) ->word('them');

pronoun(plur) --) word('their');
pronowi(subjective) ->word(sup:=B[S['gender']]('subjective'));

pronoun(objective) ->word(sup:=@[$['gender'JJ('objective'));S

pronoun ->word(sup:=@(S('gender']]('genitive'));

nounp(plur.plur(sup)) -- > word(%nounp,sup:zplur(sup));
nounp(plur) -- > word(%nounp) s;

* nounp -- > word(%nounp);
IL~

* verbp(inf) -- > word(7%verbp);
* verbp(past.plur,pastplur(sup)) ->word(%verbp,sup:=pastplur(sup));

* verbp(past,past(sup)) -- > word(%verbp,sup:=past(sup));
verbp(pastpart.pastpart(sup)) -- > word(%verbp~sup:=pastpart(sup));
verbp(pastlpastpart) -- > word(%verbp~ed) ed;
verbp(prespart) -- > word(%verbp,ing) ing;
verbp(plurlpers2,plur(sup)) -- > word(%verbp~sup:=plur(sup));
verbp(plurlpers2) -- > word(%verbp);
verbp(persl~persl(sup)) -- > word(Xverbp~sup:npersl(sup));
verbp(persl) ->word(%verbp);

* verbp(pers3,pers3(sup)) ->word(%verbp,sup:*pers3(sup));

verbp(pers3,es(sup)) -- > word(%verbp) es;
verbp -- > word(%verbp) s;

word('null') -- > null;
* word(ending~fincon(sup)) -- 0 word(-ending)

output(sup: mdouble~sup(word)>):
P (FINCON and DOUBLE are for doubling the final consonant)

wordle(sup),tending) -- > # output(%word) a;
* word -> # output(%word);

* *morphome('possess') -> 's[]

RECORDS;

(verbs)
anger% ('feelbad',statfve:slist('angerl'>);
angeri (langer\' ,word:u'anger');
bel ('auxiliarylword:='be');
break\ ('destroy',active:.list~lbreakl'));

.,breaki ('breakV',word:z'break); *

Appendix V



114

buy\ ('acquire',active:ulist('purchasel','buyl'));
buyl ('buy\',word:=ubuy');
caret ('like'.word:.'car',recipprep:-'for');
cryl ('cry\',word:z'cry');
cry\ ('selfexpress' ,active:ulist('cryl'.'weepl'>);
dol ('auxiliary',word:.'do');
dropI ('drop\',word:u'drop',phrasalprep:u'off');
drop\ ('tumble' ,stativo:ul ist<'dropl', 'faill'));
enjoyl (Ienjoy\'.word:='enjoy');
enjoy\ ('teel+'.active:ulist('enjoyl').stative:ulist('pleasoI'));
fall ('drop\',word:='fall',phrasalprep:-'off');0
give ('transfer' ,active:slist<'givel'>,stative:zlist('receivel'));

* givel ('give'.word:z'giv');
* go\ ('move',active:=list('gol'>);

gol ('go\'.word:='go');
havel ('auxiliary'.word:-'hav');
hiti ('hit\',word:z'hit');
hit\ ('phys\abuse',active:.llst<'hitl','punchl'.'slugl));

* kissi ('klss\',word:z'kiss'):
like ('feel.'.stative:ulist<'likel'.'carel')
likel ('llke',word:*'lik');
pleasel ('enjoy\',word:u'pleas');

* punchi ('hit\',word:*'punch'):
purchasel ('buy\',word:u'purchas');
recelvel ('give' .word:m'receiv',agntprep:a'fron');

* slugi ('hit\',word:z'slug');
take ('acqulre',active:.list('takell));
takel ('take'.word:z'tak'):

* upseti ('upsetV.word:-'upsetI);
* upset\ ('feelbad'.stative:alist('upsetl'));
* want\ ('desire\' ,stative:alist('wantl'),active:ulist('lustl));

wanti ('want\',word:-'want');
weepI ('cry\',word:w'weep');

(nouns)
animal ('living'.intelligent~animate);
bird ('animal',skin:x'feathered',blood:u'warml);
boombah ('chicken'.siz.:u'large.'color:ard'goflder:u'f*UalC'.propI');
chicken ('blrd',color:-'brown',size:u'small');
churchy ('turtle',gender:.'male',prope'); ~0

* hepzibah ('skunk'.gender:-'temale',proper);
howland ('owl',gender:u'male',proper);
kite ('toy');

*living ('thing');...
* mammal ('animal',skin:u'furry',blood:.'wa'm');

owl ('bird',color:='brown',size:u'small');
* petal ('living' ,partof:u'rose'):
* place ('thing');
* plant ('living');

pogo ('possum' ,gender:u'male',proper)'
possum ('mamal',color:a'grey',size:='small');
reptile ('animallskin:u'scaled',blood:.'cold');
rose ('plant');
skunk ('mammal'.color:u'black',featuro:a'whitestriped'.sizS:ulsmall');

Appofdj V



115

store ('place');
thing (gender:u'neuter');
toy ('thing');
turtle ('reptill'color:a'green',feature:u'hardshelled'.sizB:-'sEall');

(morphological entries)
be ('bel',past:a'was',pastplur:in'were',persl:-'aU'.pers3:-'is'.

plur:='are'.pastpart:='been');
break (past:u'broke'.pastpart:a'broken');
buy (past:a'bought' ,pastpart:.'bought'):
car (e); 9
cry (past:-'cried',pastpart:-'cried',pers3:s'cries');
do (past:='did',pastpart:a'did',pers3:u'does');
drop (fincon):
fall (past:-'fell ,pastpart:-'fallen');
giv (e~past:x'gave' .pastpart:a'given');
go (es~past:z'went' .pastpart:x'gone');
hay (e.past:s'had' ,pastpart:='had' ,pers3:a'has');
hit (past:z'hit',pastpart:u'hit');
kiss (es);
11k (e);
pleas (e);
punch (es);
purchas (e);
recelv (9);
slug (fincon);
tak (e.past:.'took' .pastpart:u'taken');
upset (past:u'upset'pastpart:x'upset',fincon);
weep (past:-'wept',pastpart:a'wept');

(pronominal knowledge)
subjective ('pronoun',,ale:u'he',female:u'she',neuter:u'lt');
objective ('pronoun',female:.'her'.neuter:='it'.male:a'hiE');:- *<

genitive ('pronoun',neuter:z'its'.malo:m'his',feualo:a'hor')(]

CLOSE IN[]

Appendix V



116

Rererences

1. Akmajian, Adrian, and Frank W. Heny. An Introduction to the Principles of Transfonnational Syntax. The
MIT Press, Cambridge, 1975. A

2. Bates. Madeline, and Robert Ingria. Controlled Transfornational Sentence Generation. Technical Report,
Bolt Beranek and Newman, Inc., and Department of Linguistics, MIT, Cambridge.

3. Charniak, Eugene, Christopher K. Riesbeck, and Drew V. McDermott. Artificial Intelligence
Programming. Lawrence Erlbaum Associates, Inc., Hillsdale. N.J., 1980.

4. Chomsky, Noam. Syntactic Structures. Mouton & Co., The Hague, 1957.

5. Ehrlich, Kate. Search and Inference Strategies in Pronoun Resolution: An Experimental Study. Technical
Report, Department of Psychology, University of Massachusetts, Amherst.

6. Fillmore, Charles J. The Case for Case. In Universals in Linguistic Theory Emmon Bach and Robert ,
T. Harms, Ed., Holt, Rinehart and Winston. Inc., New York, 1968.
7. Fromkin, Victoria, and Robert Rodman. An Introduction to Language. Holt, Rinehart and Winston. Inc.,

New York, 1978.

& Gordon, Geoffrey. System Simulation. Prentice-HalL Inc., Englewood Cliffs, N.J., 1978.

9. Grice, H. P. Logic and Conversation. In Syntax and Semantics: Speech Acts. Volume 3. P. Cole and J. I..
Morgan, Ed., Academic Press, New York, 1975.

10. Grishman, Ralph, and Ngo Thanh Nhan. Resolution of Noun Phrase Anaphora. Technical Report,
Courant Institute of Mathematical Sciences, New York University, New York.

I1. Halliday, M. A. K., and Ruquaiya Hasan. Cohesion in English. Longman Group Limited, London, 1976.

12. Harper, Kenneth E., and Stanley Y. W. Su. A Directed Random Paragraph Generator. Tech. Rep. ....-

Memorandum RM-6053-PR, The Rand Corporation, Santa Monica, Cal., 1969.

13. Heidorn, George E. Natural Language Inputs to a Simulation Programming System. Tech. Rep. --
NPS-55HD72101A, Naval Postgraduate School, Monterey, Cal, 1972.

14. Heidorn, G. E., K. Jensen, L. A. Miller, R. J. Byrd, and M. S. Chodorow. The Epistle Text-Critiquing
System. IBM Systems Journal 21, 3 (1982).

15. Hobbs, Jerry R. Coherence and Coreference. Tech. Rep. 168, SRI International, August 4, 1978. 

16. Hobbs, Jerry R. Why Is Discourse Coherent? Tech. Rep. 176, SRI International, November 30, 1978.

17. Hobbs, Jerry R., and Jane J. Robinson. Why Ask? Tech. Rep. 169, SRI International, October 6, 1978.

18. Jameson, Anthony and Wolfgang Wahlster. User Modelling in Anaphora Generation: Ellipsis and
Definite Description. Germanisches Seminar der Universitat Hamburg, Hamburg, 1981.

19. Jensen, K., R. Ambrosio, R. Granville, M. Kluger, and A. Zwarico. Computer Generation of Topic
Paragraphs: Structure and Style. Proceedings of the 19th Annual Meeting of the Association for
Computational linguistics. Association for Computational Linguistics, 1981.

...... '.'". '....... °."-.'.......,. -......



117

20. Jensen, Karen, and George E. Heidorn. The Fitted Parse: 100% Parsing Capability in a Syntactic
Grammar of English. Tech. Rep. RC 9729 (#42958), IBM Thomas J. Watson Research Center, 1982.

21. Kaplan, Ronald M., and Joan W. Bresnan. Lexical Functional Grammar: A Formal System for
Grammatical Representation. In The Mental Representation of Grammatical Relation% J. W. Bresnan, Fd.,
The Mrr Press, Cambridge, to be published.

22. Katz, Boris. A Three-Step Procedure for Language Generation. Tech. Rep. Artificial Intelligence Memo ":-' -

No. 599, MIT, Cambridge, 1980.

23. Langacker, Ronald W. Fundamentals of Linguistic Analysis Harcourt Brace Jovanovich, Inc., New York, 6
1972.

24. Leggett, Glenn, C. David Mead, and William Charvat. Prentice-Hall landbook for Writers Prentice-
Hall, Inc., Englewood Cliffs, N.J., 1965.

25. Lehnert, Wendy G. The Process of Question Answering. Erlbaum Associates, Hillsdale, N.J., 1978. 9

26. Levin, James A., and Neil M. Goldman. Process Models of Reference in Context. Tech. Rep.
ISI/RR-78-72, Information Sciences Institute, Marina del Rey, Cal., 1978.

27. Luria. Marc. Dividing Up the Question Answering Process. Proceedings of the National Conference on
Artificial Intelligence, National Conference on Artificial Intelligence, 1982.

28. Mann, William C. Two Discourse Generators. Proceedings of the 19th Annual Meeting of the
Association for Computational Linguistics, Association for Computational Linguistics, 1981.

29. Mann, William C., and James A. Moore. Computer Generation of Multiparagraph English Text.
American Journal ofComputational Linguistics 7, 1 (January-March 1981).

30. Mann, William C., Madeline Bates, Barbara J. Grosz, David D. McDonald. Kathleen R. McKeown, and
William R. Swartout. Text Generation: The State of the Art and the Literature. Tech. Rep. ISI/RR-81-101, , -.. *.-

Information Sciences Institute, Marina del Rey, Cal., 1981. Also University of Pennsylvania MS-CIS-81-9.

31. Matthiessen, Christian M. I. M. A Grammar and a Lexicon for a Text-Production System. Proceedings - .
of the 19th Annual Meeting of the Association for Computational Linguistics, Association for Computational
Linguistics, 1981.

32. McDonald, David Daniel. Natural Language Production as a Process of Decision Making Under
Constraints. Ph.D. Th., Massachusetts Institute of Technology, 1980. ".

33. McDonald, David D. Language Production: The Source of the Dictionary. Proceedings of the 19th
Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics,
1981. '..-

34. McDonald, David D. Natural Language Generation as a Computational Problem: An Introduction.
Tech. Rep. COINS Technical Report 81-33, University of Massachusetts at Amherst, 1981. •

35. McKeown, Kathleen Rose. Generating Natural Language Text in Response to Questions about Database
Structure. Ph.D. Th., University of Pennsylvania. 1982. *'.'..',

36. Minsky, Marvin. A Framework for Representing Knowledge. Tech. Rep. Artificial Intelligence Memo
No. 306, MIT, Cambridge, 1974.

Al.



.37. Patil. Rameshi S. Caia~,, Representation of Patient Illness for Electrolyte and Acid-Base Diagnosis. Tech.
Rcp. M 1rr/LCS/I'R-267, m IT. Cambridge, 1981.

38. Quirk. Randolph, Sidney Greenbaum. Geoffrey Leech, and Jan Svartik. A Grammar of Contemporary
English. Longman Group Limited. London, 1972.

C- 39. Schank, Roger C. Identification of Conceptualizations Underlying Natural Language. In Computer
AModels of Thou ght and Language, Roger C. Schank and Kenneth Mark Colby, Ed., W. H-. Freeman and
Company, San Francisco, 1973.

40. Sherman. Donald. A Semantic Index to Verb Defnitions in Webstes Seventh New Collegiate
Dictionary. Department of Linguistics, Stanford University, 1979.

41. Sidner, Candace Lee. Towards a Computational Theory of Definite Anaphora Comprehension in
English D~iscourse. Te-ch. Rep. AI-TR 537, MIT, Cambridge, 1979.

42. Smith, Brian Cantwell. How Is a Knowledge Representation Like a Piano? Tech. Rep. Artificial
Intelligence Uiboratory Working Paper 174, MIT, Cambridge, 1978.

43. Swartout, William R. Producing Explanations and Justifications of Expert Consulting Programs. Tech.
Rep. MIT/LCS/TR-267, MIT, Cambridge, 1981.

44. Wahlster. W., A. Jameson, and W. Hoeppner. Glancing, Refering and Explaining in the Dialogue System S
HAM-RPM. Gcrmanisches Seminar der Universitat Hamburg, Hamburg, 1978.

45. Winograd, Terry. Language as a Cognitive Process, Vol 1: Syntax Addison-Wesley Publishing
Company, Reading, Mass., 1983.

46. Winston, Patrick Henry. Artificial Intelligence Addison-Wesley Publishing Company, Reading. Mass.,
1977.

47. Winston, Patrick Henry, and Berthold Klaus Paul Horn. LISP. Addison-Wesley Publishing Company,
Reading. Mass. 1981.

%.



FILMED

1-85

DTIC












