DEMONSTRATION OF A CAPSULE PLASMID IN BACILLUS
ANTHRACIS(U) ARMY MEDICAL RESEARCH INST OF INFECTIOUS
DISEASES FORT DETRICK MD B D GREEN ET AL. 16 NOV 84

UNCLASSIFIED
Demonstration of a Capsule Plasmid in *Bacillus anthracis*

Brian D. Green¹, Laurie Battisti¹, Curtis B. Thorne¹*, and Bruce E. Ivins²

Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003¹

and

U.S. Army Medical Research Institute of Infectious Diseases
Fort Detrick, Frederick, Maryland 21701²

Telephone: 413-545-1356

Running title: Capsule plasmid in *B. anthracis*

The views of the author(s) do not purport to reflect the positions of the Department of the Army or the Department of Defense.

Approved for public release; distribution unlimited.

16 November 1984
Title: Demonstration of a Capsule Plasmid in Bacillus anthracis
Running Title: Capsule plasmid in B. anthracis

Authors: Brian D. Green, Laurie Battisti, Curtis B. Thorne, Bruce E. Ivins

Performing Organization Name and Address: United States Army Medical Research Institute of Infectious Diseases, Bacteriology Division, Fort Detrick, Frederick, MD 21701-5011

Contract or Grant Number:

Program Element, Project, Task Area & Work Unit Numbers: 91C MCDC

Report Date: 16 November 1984

Number of Pages: 22

Security Class. of this Report: UNCLASSIFIED

Security Classification of this Page: UNCLASSIFIED

Determination Statement: Approved for public release; distribution unlimited

Supplementary Notes: Submitted to ASH Publications Office, 1913 I Street, NW, Washington, D.C. 20006

Key Words: Anthrax, Bacillus anthracis, capsule, plasmid, bacteria, virulence factor

Abstract: Virulent and certain avirulent strains of Bacillus anthracis harbor a plasmid, designated pXO2, which is involved in the synthesis of capsules. Two classes of rough noncapsulated (Cap−) variants were isolated from the capsule-producing (Cap+) Pasteur vaccine strain 6602: those which were cured of pXO2 and those which still carried it. Reversion to Cap+ was demonstrable only in rough variants which had pXO2. By means of a mating system in which plasmid transfer is mediated by a Bacillus thuringiensis fertility plasmid, pXO12, pXO2 was transferred from B. anthracis to Bacillus cereus. B. cereus transciipients which...
acquired pXO2 produced capsules under the same conditions required for capsule synthesis by *B. anthracis*.
Virulent and certain avirulent strains of Bacillus anthracis harbor a plasmid, designated pXO2, which is involved in the synthesis of capsules. Two classes of rough noncapsulated (Cap⁻) variants were isolated from the capsule-producing (Cap⁺) Pasteur vaccine strain 6602: those which were cured of pXO2 and those which still carried it. Reversion to Cap⁺ was demonstrable only in rough variants which had pXO2. By means of a mating system in which plasmid transfer is mediated by a Bacillus thuringiensis fertility plasmid, pXO12, pXO2 was transferred from B. anthracis to Bacillus cereus. B. cereus transciipients which acquired pXO2 produced capsules under the same conditions required for capsule synthesis by B. anthracis.
INTRODUCTION

Bacillus anthracis requires two virulence factors to cause disease. One of these is a toxin composed of three different proteins known as edema factor, lethal factor, and protective antigen (8, 13). Mikesell, et al. (6) and Robillard, et al. (N. J. Robillard, T. M. Koehler, R. Murray, and C. B. Thorne, Abstr. Annu. Meet. Am. Soc. Microbiol. 1983, H54, p.115) demonstrated that a 112 Mdal plasmid, formerly referred to as pBA1, but now designated pXO1, is associated with toxin production; and Vodkin and Leppla (14) showed by cloning experiments that pXO1 carries the structural genes for protective antigen. The other virulence factor is a capsule composed of D-glutamyl polypeptide (5, 9, 12). When virulent strains of *B. anthracis* are grown on media containing serum and/or bicarbonate, they produce capsules and colonies appear mucoid. In the absence of serum or bicarbonate they fail to produce capsules and colonies appear rough. Thus, mutants which cannot make capsules can be easily distinguished from colonies of the capsulated parental cells and are readily isolated by selecting rough sectors or outgrowth from mucoid colonies grown on medium containing bicarbonate.

In an earlier paper it was reported that the heat-attenuated Pasteur vaccine strains of *B. anthracis*, which form capsules but which are avirulent because they are unable to produce toxin, were devoid of plasmid DNA (6). With the improvement of plasmid DNA extraction procedures, we have recently shown that the Pasteur vaccine strains do contain a plasmid which we have designated pXO2. We report here that pXO2, which is present in all encapsulated strains of *B. anthracis* examined, carries information for capsule production.
MATERIALS AND METHODS

Organisms. The organisms used in this study are listed in Table 1.

Media. NBY medium contained 8 g of nutrient broth (Difco Laboratories, Detroit, Mich.) and 3 g of yeast extract (Difco) per liter, pH 6.8. For capsule production, NBY medium was supplemented with NaHCO₃ (sterilized by filtration of a 9% solution) at a final concentration of 0.7% (w/v), and with horse serum (GIBCO Laboratories, Grand Island, New York) at a final concentration of 10% (v/v). BHI medium contained 37 g of brain heart infusion (Difco) per liter. L broth contained 10 g of tryptone (Difco), 5 g of yeast extract (Difco), and 10 g of NaCl per liter with the pH adjusted to 7.0. Min IC contained the following (in grams per liter, with the pH adjusted to 7.2 with NaOH): (NH₄)₂SO₄, 2; KH₂PO₄, 6; K₂HPO₄, 14; MgSO₄·7H₂O, 0.2; FeCl₃·6H₂O, 0.04; MnSO₄·H₂O, 0.0125; trisodium citrate·2H₂O, 1; thiamine hydrochloride, 0.01; L-glutamic acid, 2; vitamin-free acid-hydrolyzed casein (Nutritional Biochemicals Corp., Cleveland, Ohio), 5; glucose, 5. R medium has been described previously (7). Phage assay medium contained the following (in grams per liter, with the pH adjusted to 6.0 with HCl): nutrient broth (Difco), 8; CaCl₂·2H₂O, 0.15; MgSO₄·7H₂O, 0.2; MnSO₄·H₂O, 0.05; NaCl, 5. For solid medium 15 g of agar was added per liter. Soft agar contained 5 g of agar per liter.

Immunosassay agar plates contained 12 ml of R agar plus 2 ml of antiserum prepared in goats by immunization with viable spores of the Sterne strain of B. anthracis.

Capsule production. The ability of B. anthracis and B. cereus to produce capsules was determined by growing cells on R agar or on NBY agar containing bicarbonate and serum. Plates were incubated in the presence of 5% or 20% CO₂.
at 37°C for 24 to 48 h.

Toxin assays. Lethal factor and edema factor activity were assayed as previously described (6).

Detection of plasmid DNA. Plasmid DNA was extracted by a modification (L. Battisti, B. D. Green, and C. B. Thorne, manuscript in preparation) of the method of Kado and Liu (2). Electrophoresis was carried out at 70 volts in 0.7% agarose gels prepared and run in Tris-borate buffer (0.089 M Tris base, 0.089 M boric acid, and 0.0025 M EDTA at pH 8.2 to 8.3).

Plasmid curing. Strains cured of pXO2 were found among spontaneous rough variants (see below) or isolated from cultures treated with novobiocin. For novobiocin treatment, 10 to 100 CFU of *B. anthracis* were inoculated into 250-ml flasks containing 50 ml of L broth plus novobiocin (1 μg/ml) and incubated three days at 37°C with gentle shaking. Cultures were diluted and 0.1-ml samples were spread on plates of immunoassay agar and incubated at 37°C for 24 h in 5% CO₂. Rough colonies of noncapsulated cells were isolated and tested for loss of pXO2. Strains were cured of pXO1 by serial passage at 43°C (6, N. J. Robillard, T. M. Koehler, B. D. Green, and C. B. Thorne, manuscript in preparation).

Isolation of spontaneous rough mutants of *B. anthracis* 6602. Cells were plated for single colonies on NBY agar containing bicarbonate and serum and incubated at 37°C in 20% CO₂. After several days rough outgrowth appeared at the edge of some of the mucoid colonies. These were picked and purified by streaking on fresh plates of the same medium.

Propagation and assay of bacteriophage Wo. Bacteriophage Wo (3) was obtained from *B. cereus* W (ATCC 11950). It was propagated on *B. anthracis* 6602 R1 in soft overlays of phage assay agar incubated at 37°C for 17 to 20 h. It was assayed against the same strain in soft overlays of phage assay agar incubated at 30°C.
Isolation of capsulated revertants of rough mutants. To demonstrate reversion, approximately 1×10^5 spores of a rough mutant were spread with 1×10^8 PFU of phage Wo on NBY agar containing bicarbonate and serum. The plates were incubated at $37^\circ C$ in 20% CO$_2$ for two days and examined for mucoid colonies.

Transfer of plasmids by mating. Matings were performed as described by Thorne (11).

RESULTS

Plasmid analysis of B. anthracis strains. A number of virulent and avirulent strains of B. anthracis were analyzed for plasmid content. All virulent strains examined, which included NH, Ames, Colorado, Buffalo, and Vollum 1B, carried two plasmids, as demonstrated in Fig. 1, lane 1, for Vollum 1B. In addition to pXO1, they contained a second smaller plasmid which we have designated pXO2. Strains could be cured of pXO2 by growing them in the presence of novobiocin. Three thousand to 5000 colonies each of strains NH, Ames, and Vollum 1B obtained from cultures treated with novobiocin were screened for capsule formation and protective antigen synthesis on immunoassay agar. All colonies produced protective antigen as evidenced by the halos surrounding them. However, approximately 1% of the colonies were rough (nonmucoid), indicating failure to produce capsules. Two rough colonies from each strain were subcultured and examined for plasmid content and the capacity to synthesize toxin and capsules. These strains were designated Vollum 1B VNR-1 and -2, NH NNR-1 and -2, and Ames ANR-1 and -2. They produced biologically active toxin, failed to produce capsules in 5% or 20% CO$_2$, and contained only one plasmid, pXO1 (Fig. 1, lane 5). They were identical to the toxinogenic noncapsulated
Sterne veterinary vaccine strain with respect to phenotype and plasmid content (Fig. 1, lane 2).

Growth of toxigenic strains of *B. anthracis* at 43°C has been shown to result in the elimination of the toxin plasmid, pXO1 (6, 11). After virulent strains, including NH, Ames, and Vollum 1B, were cultured at 43°C, variants were selected on immunoassay agar which were cured of pXO1 but still carried pXO2. Such variants, represented by the Pasteur vaccine strain (ATCC 6602) and Vollum 1B-1 in Fig. 1, lanes 3 and 4, produced no toxin. They synthesized capsules on R agar during growth in 20% CO₂ but not in 5% CO₂.

Isolation of rough (noncapsulated) variants of the Pasteur strain, ATCC 6602. When strains of Cap⁺ *B. anthracis* are grown on agar for several days under conditions conducive to capsule formation, mucoid colonies frequently have areas of rough outgrowth. Such areas of rough growth have been shown to yield reverting and nonreverting noncapsulated mutants (4, 10). To demonstrate further a correlation between capsule formation and the presence of pXO2, we isolated spontaneous rough variants of *B. anthracis* 6602. Fig. 2 and 3 illustrate the differences in colony and cell morphology between the wild-type mucoid strain and rough variants of strain 6602 grown under conditions required for capsule formation. Strain 6602, like virulent strains of *B. anthracis*, failed to produce capsules when grown in air (in the absence of bicarbonate and serum) and was indistinguishable in both colony and cell morphology from rough variants grown either in air or CO₂. Upon analysis of several rough variants of strain 6602 for plasmid content, two classes were found. Some of them were cured of pXO2 and contained no detectable plasmid DNA (Fig. 4, lane 2), and others still carried pXO2.

We reasoned that if pXO2 is involved in the formation of capsules, it should be possible to demonstrate reversion to Cap⁺ among rough variants which
retain pXO2 but not among rough variants that are cured of the plasmid. Both classes of rough variants were tested for reversion to Cap+ by exposing them to bacteriophage Wα. The use of this phage, which can lyse noncapsulated cells but not capsulated cells, affords a convenient means of detecting small numbers of Cap+ revertants in populations of Cap− cells (4). As predicted, no Cap+ revertants were found among three independently isolated (pXO2)− variants, whereas Cap+ revertants were found in each of three independently isolated rough strains which had retained pXO2.

Transfer of pXO2 to B. cereus. To transfer pXO2 to B. cereus, we made use of the Bacillus mating system in which plasmid transfer is mediated by the fertility plasmid, pXO12 (11). A B. anthracis 6602 donor strain carrying pXO2 and pXO12 was constructed by mating B. anthracis M23 cur1 tr60B-1 (pXO1)−(pXO12, pBC16)+ Ura− with strain 6602(pXO2). The mating mixture was plated on Min IC containing 5 μg of tetracycline per ml to select cells of strain 6602 which had acquired the TcR plasmid, pBC16. (The absence of uracil prevented growth of the M23 donor strain). The transciipients were then screened by phase microscopy for the presence of parasporal crystals, a phenotypic characteristic of (pXO12)− cells (11). One such transciipient, B. anthracis 6602 trl72B-2, which was shown to carry pXO2, pXO12, and pBC16 (Fig. 4, lane 3), was mated with B. cereus 569R M20 str-2 Ant−. The mating mixture was plated on NBY agar plates containing bicarbonate, serum, streptomycin (200 μg/ml), and tetracycline (25 μg/ml) to select B. cereus transciipients that had acquired pBC16. The plates were incubated in 20% CO2 for 18 h and examined for the presence of mucoid colonies. An average of one TcR colony out of 500 was mucoid and produced Cap+ cells on NBY agar plates containing bicarbonate and serum and incubated in 20% CO2. The Ant− and StrR markers of the original B. cereus recipient were retained, and sporulating cells contained parasporal crystals
characteristic of (pX012)+ cells. Capsule production by B. cereus(pX02)+ is demonstrated in Fig. 5 and 6. As with B. anthracis 6602, capsules were produced by B. cereus only when cells carrying pX02 were grown in CO2. The two plasmids, pX02 and pX012, when present in B. cereus lysates, separated poorly if at all under the conditions used for electrophoresis (Fig. 4, lane 5). However, when Cap+Cry+TcR B. cereus was used as the donor in matings with B. anthracis M23 cur 1 Ura- as the recipient, both Cap+Cry- and Cap-Cry+ cells were found among the TcR transciipients.

DISCUSSION

The results presented here demonstrate that the plasmid, pX02, is involved in the formation of capsules by B. anthracis. All capsule-producing strains, both virulent and avirulent, examined thus far have been shown to harbor pX02. The recent development of a mating system effective for transferring plasmids among B. anthracis, B. cereus, and B. thuringiensis (11) made it possible to transfer pX02 from B. anthracis 6602 to B. cereus 569R, which is normally noncapsulogenic. The transfer of pX02 was mediated by the fertility plasmid, pX012, which has been shown to be involved in the synthesis of parasporal crystals in B. thuringiensis and strains of B. anthracis and B. cereus to which the plasmid has been transferred (11). B. cereus transciipients were obtained which produced capsules when grown in CO2 and parasporal crystals upon sporulation, indicating that both pX02 and pX012 were present. Interestingly, the two plasmids did not resolve upon gel electrophoresis of B. cereus extracts, although they did resolve when B. anthracis extracts were tested in the same manner. One possible reason for the inability to resolve the two plasmids from
B. cereus is that they were present in the form of a cointegrate or recombinant plasmid. A more likely reason for the failure to see a pXO2 band in electrophoretic gels of B. cereus Cap Cry extracts is that pXO2 was present in very small amounts compared to pXO12. Extracts of Cap Cry B. anthracis produced a relatively strong band of pXO12 compared to the pXO2 band, which was barely visible.

Novobiocin was determined to selectively cure strains of pXO2 when both pXO2 and pXO1 were present. Approximately 1% of colonies grown from novobiocin-treated cultures were cured of pXO2, but none of several thousand colonies was observed to be cured of the toxin plasmid, pXO1. All strains cured of pXO2 failed to produce capsules under conditions which normally promote capsule synthesis in (pXO2)+ strains.

When spontaneous rough variants were isolated from the avirulent Pasteur strain of B. anthracis, both (pXO2)+ and (pXO2)− types were found. Rough variants that retained pXO2 were able to revert to Cap+, but those cured of the plasmid were not revertible. This observation explains earlier reports by Thorne (10) and Meynell (4) that some noncapsulated variants of B. anthracis were stable, while others were able to revert to Cap+. This also explains why the avirulent Sterne vaccine strain, which produces toxin but not capsules, has not been observed to revert to the capsulated virulent type. The Sterne strain carries pXO1 but not pXO2, and is therefore unable to revert to Cap+.

In view of the demonstration that rough variants which still carry pXO2 are able to revert to Cap+, it will be interesting to determine whether the mutations that engender the rough phenotype are chromosomal- or plasmid-borne. We plan to test this by taking advantage of the B. anthracis mating system to move pXO2 from rough (pXO2)+ variants to strains that have been cured of the plasmid.
ACKNOWLEDGMENTS

We thank C. D. Cox for his help in preparing the photographs.

The portion of this work carried out at the University of Massachu
supported by contract DAMD17-80-C-0099 from the U. S. Army Medical Rese
Development Command.
LITERATURE CITED

FIG. 1. Agarose gel electrophoresis of plasmid DNA from strains of *B. anthracis*. Lane 1, Vollum 1B (virulent); Lane 2, Sterne (avirulent); Lane 3, Pasteur vaccine strain, ATCC 6602 (avirulent); Lane 4, Vollum 1B-1 (avirulent); Lane 5, Vollum VNR-1 (avirulent). Plasmids are labeled as follows: (a) pX01; (c) pX02. The large diffuse band in all lanes is chromosomal DNA.

FIG. 2. Colonies of *B. anthracis* Pasteur strain grown on bicarbonate agar in 20% CO₂. Left, strain 6602 wild type. Right, 6602 Rl (rough variant of 6602).

FIG. 3. Phase-contrast photomicrograph of cells of *B. anthracis* Pasteur strain grown on bicarbonate agar in 20% CO₂. Left, strain 6602 wild type. Right, 6602 Rl (rough variant of 6602). Bar, 2.0 μm.

FIG. 4. Agarose gel electrophoresis of plasmid DNA from *B. anthracis* and *B. cereus*. Lane 1, *B. anthracis* 6602 wild type; Lane 2, *B. anthracis* 6602 Rl (rough variant); Lane 3, *B. anthracis* 6602 tr172B-2, a transcipient carrying pX02, pX012, and pBC16; Lane 4, *B. cereus* 569R M20; Lane 5, *B. cereus* 569R M20 tr49G-4, a transcipient carrying pX02, pX012, and pBC16. Plasmids are labeled as follows: (b) pX012; (c) pX02; (d) pBC16. The extra bands in some lanes are alternative forms of pBC16.

TABLE 1. Strains used in this study

<table>
<thead>
<tr>
<th>Strain</th>
<th>Relevant Characteristics</th>
<th>Plasmids</th>
<th>Origin/reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. anthracis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ames</td>
<td>Virulent, Cap^Tox^</td>
<td>pX01, pX02</td>
<td>USDA^2</td>
</tr>
<tr>
<td>Buffalo</td>
<td>Virulent, Cap^Tox^</td>
<td>pX01, pX02</td>
<td>R. A. Packer</td>
</tr>
<tr>
<td>Colorado</td>
<td>Virulent, Cap^Tox^</td>
<td>pX01, pX02</td>
<td>A. McChesney</td>
</tr>
<tr>
<td>NH</td>
<td>Virulent, Cap^Tox^</td>
<td>pX01, pX02</td>
<td>USAMRIID^3</td>
</tr>
<tr>
<td>Pasteur 6602</td>
<td>Avirulent, Cap^Tox^-</td>
<td>pX02</td>
<td>ATCC^4</td>
</tr>
<tr>
<td>Pasteur 6602 R1</td>
<td>Avirulent, Cap^Tox^-</td>
<td>None</td>
<td>This study</td>
</tr>
<tr>
<td>Pasteur 6602 trl72B-2</td>
<td>Avirulent, Cap^Tox^-</td>
<td>pX02, pX012, pBC16</td>
<td>This study</td>
</tr>
<tr>
<td>Sterne (Weybridge)</td>
<td>Avirulent, Cap^Tox^-</td>
<td>pX01</td>
<td>MRE^5</td>
</tr>
<tr>
<td>Vollum 1B</td>
<td>Virulent, Cap^Tox^</td>
<td>pX01, pX02</td>
<td>USAMRIID</td>
</tr>
<tr>
<td>Vollum 18-1</td>
<td>Avirulent, Cap^Tox^-</td>
<td>pX02</td>
<td>This study</td>
</tr>
<tr>
<td>Vollum 18 VNR-1</td>
<td>Avirulent, Cap^Tox^-</td>
<td>pX01</td>
<td>This study</td>
</tr>
<tr>
<td>Weybridge A M23 cur 1</td>
<td>Avirulent, Ura^-</td>
<td>None</td>
<td>C. B. Thorne</td>
</tr>
<tr>
<td></td>
<td>Cured of pX01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weybridge A M23 cur 1 tr60B-1</td>
<td>Avirulent, Ura^-Cry^+Tc^-</td>
<td>pX012, pBC16</td>
<td>This study</td>
</tr>
</tbody>
</table>
TABLE 1. (Continued)

<table>
<thead>
<tr>
<th>B. cereus</th>
<th>Ant(^{\text{ str-2 }})</th>
<th>One unnamed</th>
<th>C. B. Thorne</th>
</tr>
</thead>
<tbody>
<tr>
<td>569R M20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>569R M20 tr49G-4</td>
<td>Ant(^{\text{ str-2 }}) Cry(^{+}) Cap(^{+}) Tc(^{r})</td>
<td>pX02, pX012, pBC16</td>
<td>This study</td>
</tr>
<tr>
<td>11950</td>
<td>Carries bacteriophage W4</td>
<td></td>
<td>ATCC</td>
</tr>
</tbody>
</table>

\(^{1}\)Abbreviations: Cap, capsule; Tox, toxin; Cry, parasporal crystal; tr, transcipt; Ura, uracil; Ant, anthranilic acid; Tc\(^{r}\), plasmid-encoded tetracycline resistance.

\(^{2}\)U. S. Department of Agriculture, Ames, Iowa.

\(^{3}\)U. S. Army Medical Research Institute of Infectious Diseases.

\(^{4}\)American Type Culture Collection.

\(^{5}\)Microbiological Research Establishment, Porton, England.
FIG. 2. Green, Battisti, Thorne, and Irvine
FIG. 4. Green, Battisti, Thorne, and Irvine
FIG. 5. Green, Battisti, Thorne, and Ivins
FIG. 6. Green, Battisti, Thorne, and Ivins