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YOLUME III
PRINCIPLES OF DYNAMIC ANALYSIS

INTRODUCTION

3-1 Purpose

The purpose of this six volume manual 1is to present methods of design for
protective construction used in facilities for development, testing, produc-
tion, mafntenance, modification, inspection, disposal and storage of explosive
materials.

3-2 Objectives

The primary objectives are to establish design procedures and construction
techniques whereby propagation of explosion (from one building or part of a
building to another) or mass detonation can be prevented and protection for
personnel and valuable equipment will be provided.

The secondary objectives are:

(1) Establish the blast load parameters required for design of
protective structures;

(2) Provide methods for calculating the dynamic response of struc-
tural elements including reinforced concrete, structural steel,
etc.;

(3) Establish construction details and procedures necessary to
afford the required strength to resist the applied blast loads;

(4) Establish guide lines for siting explosive facilities to obtain
maximum cost effectiveness in both the planning and structural
arrangements; providing closures, and preventing damage to
interior portions of structures due to structual motion, shock,
and fragment perforation.

3-3 Background

For the first 60 years of the 20th century criteria and methods based upon the
results of catastrophic events have been used for the design of explosive
facilities. The criteria and methods did not include a detailed or reliable
quantitative basis for assessing the degree of protection afforded by the
protective facility. In the late 1960's quantitative procedures were set
forth in the first edition of the present manual, "Structures to Resist the
Effects of Accidental Explosions.” This manual was based on extensive
research and development programs which permitted a more reliable approach to
design requirements. Since the original publication of this manual, more
extensive publication, more extensive testing and development programs have
taken place. This additional research was directed primarily towards
materials other than reinforced concrete which was the principal construction
material referenced in the initial version of the manual.

_____________

............




Modern methods for the manufacture and storage of explosive materials, which
include many exotic chemicals, fuels, propellants, etc., required less space
for a given quantity of explosive material than was previously needed. Such
o concentrations of explosives increase the possibility of the propagation of
h accidental explosions (one accidental explosion causing the detonation of

other explosive materials). It {is evident that a requirement for more
accurate design techniques has become essential. This manual describes
rational design methods to provide the required stuctural protection.
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These design methods account for the close-in effects of a detonation
including associated high pressures and nonuniformity of the blast loading on
protective structures or barriers as well as intermediate and far-range
effects which are encountered in the design of stuctures which are positioned
away from the explosion. The dynamic response of structures, constructed of
various materials, or combination of materials, can be calculated, and details
have been developed to provide the properties necessary to supply the required
strength and ductility specified by the design. Development of these
procedures has been directed primarily towards analyses of protective
structures subjected to the effects of high explosive detonation. However,
this approach is general and is applicable to the design of other explosive
environments as well as other explosive materials as numerated above.

The design techniques set forth in this manual are based upon the results of
numerous full- and small-scale structural response and explosive effects tests
of various materials conducted in conjunction with the development of this
manual and/or related projects.

3-4 Scope of Manual

This manual is limited only by variety and range of the assumed design
situation. An effort has been made to cover the more probable situations.
However, sufficient general information on protective design techniques has
been included in order that application of the basic theory can be made to
situations other than those which were fully considered.

This manual is generally applicable to the design of protective structures
subjected to the effects associated with high explosive detonations. For
these design situations, this manual will generally apply for explosive
quantities less than 25,000 pounds for close-in effects. However, this manual
is also applicable to other situations such as far or intermediate range
effects. For these latter cases the design procedures as presented are
applicable for explosive quantities up to 500,000 pounds.

Because the tests conducted so far in connection with this manual have been
directed primarily towards the response of structural steel and reinforced
concrete elements to blast overpressures, this manual concentrates on design
procedures and techniques for these materials. However, this does not imply
that concrete and steel are the only useful materials for protecitve
construction. Tests to establish the response of wood, brick blocks,
plastics, etc. as well as the blast attenuating and mass effects of soil are
contemplated. The results of these test may require, at a later date,the
supplementation of these design methods for these and other materials.
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Other manuals are available which enable one to design protective structures
against the effects of high explosive or nuclear detonations. The procedures
in these manuals will quite often complement this manual and should be
consulted for specific applications.

Computer programs, which are consistent with the procedures and techniques
contained in the manual, have been approved by the appropriate representative
of the U.S. Army, the U.S. Navy, the U.S. Air Force and the Department of
Defense Explosive Safety board (DDESB). These programs are available through
the following repositories:

1. Department of the Army

Commander and Director

U.S. Army Engineer

Waterways Experiment Station
Post 0ffice Box 631

Vicksburg, Mississippi 39180

Attn: WESKA
2. Department of the Navy

O0fficer-In-Charge

Civil Engineering Laboratory

Naval Battalion Construction Center
Port Hueneme, California 93043

Attn: Code L51
3. Department of the Air Force

Aeorspace Structures

Information and Analysis Center
Wright Paterson Air Force Base
Ohio 45433

Attn: AFFDL/FBR

Limited number of copies of the above program are available for each
repository upon request. The individual programs are identical at each
repository. If any modifications and/or additions to these programs are
required, they will be submitted by the organization for review by DDESB and
the above services. Upon concurrence of the revisions, the necessary changes
will be made and notification of these changes will be made by the individual
repositories.
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3-5 Format of'Hanual

This manual 1is subdivided into six specific volumes dealing with various
aspects of design. The titles of these volumes are as follows:

Volume I - Introduction

Volume Il - Blast, Fragment and Shock Loads

Volume III - Principles of Dynamic Analysis

Volume IV - Reinforced Concrete Design

Volume v - Structural Steel Design

Volume VYI - Special Considerations in Explosive Facility Design

Appendix A pertinent to a particular volume and containing illustrative
examples of explosive effects and structural respcnse problems appears at the
end of each volume.

Commonly accepted symbols have been used as much as possible. However,
protective design involves many different scientific and engineering fields,
and, therefore, no attempt has been made to standardize completely all the
symbols used. Each symbol has been defined where it is first introduced, and
a list of the symbols, with their definitions and units, is contained in
Appendix B of each volume. ’

VOLUME CONTENTS

3-6_ General

This Volume contains the procedures for analyzing structural elements subject
to blast overpressures. These procedures are contained in the next eleven
sections; Section 3-7 deals with a simplified discussion of the basic
principles of dynamics as well as the procedures for calculating the various
components used to perform the dynamic analyses. Presented in Sections 3-8
through 3-15 are resistance-deflection functions for various elements
including both one- and two-way panels as well as beam elements. These
functions include the elastic, elasto-plastic, and plastic ranges of
response. In addition, a discussion of dynamic equivalent systems is
presented in Sections 3-16 and 3-17. These include single- and multi-degree-
of-freedom systems. Presented in this Section also are methods for
calculating load and mass factors required to perform the dynamic analyses.

Sections 3-18 through 3-20 include both a step-by-step numerical integration
of an element's motion under dynamic loads utilizing the Acceleration-Impulse-
Extrapolation Method or the Average Acceleration Method and design charts for
idealized loads. Presented also in these Sections are methods for analyzing
elements subjected to impulse type loadings; that is, loadings whose durations
are short in comparison to the time to reach maximum response of the elements.

.................




BASIC PRINCIPLES

3-7 General

The principles used in the analysis of structures under static load will be
reviewed briefly, since the same principles are used in the analysis and
design of structures subjected to dynamic loads. Two different methods are
used efther separately or concurrently in static analysis: one is based on
the principle of equilibrium, and the other on work done and internal energy
stored.

Under the application of external loads, a given structure is deformed and
internal forces developed in its members. In order to satisfy static
equilibrium, the vector sum of all the external and internal forces acting on
any free body portior of the stucture must be equal to zero. For the
equilibrium of the structure as a whole, the vector sum of the external forces
and the reactions of the foundation must be equal to zero.

The method based on work done and energy considerations is sometimes used when
it is necessary to determine the deformation of a structure. In this method,
use is made of the fact that the deformation of the structure causes the point
of application of the external load to be displaced. The force then does work
on the structure. Meanwhile, because of the structural deformations,
potential energy is stored in the structure in the form of strain energy. By
the principle of energy conservation, the work done by the external force and
the energy stored in the members must be equal. In static analysis,
simplified methods such as the method of virtual work and the method of the
unit load are derived from the general principle of energy conservation.

In the analysis of statically indeterminate structures, in addition to
satisfying the equations of equilibrium, it is necessary to include a
calculation of the deformation of the strucuture in order to arrive at a
complete solution of the internal forces in the structure. The methods based
on energy considerations such as the method of least work and the method based
on Castigliano's theorems are generally used.

For the analysis of structures under dynamic loading, the same two methods are
basically used; but the load changes rapidly with time and the acceleration
velocity and, hence, the inertia force and kinetic energy are of magnitudes
requiring consideration. Thus, in addition to the internal and external
forces, the equation of equilibrium includes the inertia force and the
equation of dynamic equilibrium takes the form of Newton's equation of motion:

F - R =Ma 3-1

total external force as a function of time
total internal force as a function of time
total mass

acceleration of the mass

where

F
R
M
a
As for the principle of conservation of enerqgy, the work done must he equal to

the sum of the kinetic energy and the strain energy:

WD = KE + SE 3-2




where WD = work done
KE = kinetic energy
SE = strain energy

and the strain energy includes both reversible elastic strain energy and the
irreversible plastic strain energy. Thus, the difference between structures
under static and dynamic loads is the presence of inertial force (Ma) in the
equatfon of dynamic equilibrium, and of kinetic energy in the equation of
energy conservation. Both terms are related to the mass of the structure;
hence, the mass of the structure becomes an important consideration in dynamic
analysis.

In the dynamic analysis of structures, both the energy balance equation and
the force balance equation are applied with explicit description of the
external forcing function F, and the internal resisting forcing function R.
The difference between these forcing functions is the inertia force as
described above. The following is a discussion of the details of how these
forces are utilized in the design of structures which respond in the ductile
mode.

In the design of a structure to resist the blast from an HE explosion, the
total external force acting on the structure can be obtained by the principles
discussed Volume II. The design method also consists of the determination of
the total internal force, i.e. the resistance of the structure required to
1imit calculated deflections of the individual members and the structure as a
whole under the external force (blast loading), to within prescribed maximum
values. The determination of the resistance of the individual members of the
structure is presented in Sections 3-8 through 3-17. Subsequent sections of
this manual present the principles and methods of dynamic analysis and
equations, charts, and procedures for design.

RESISTANCE - DEFLECTION FUNCTIONS
3-8 Introduction

Under the action of external loads, a structural element is deformed and
internal forces set up. The sum of these internal forces tending to restore
the element to its unloaded static position is defined as the resistance. The
resistance of a structural element is a reactive force associated with the
deflection of the element produced by the applied load. It is convenient to
consider the resistance as an equivalent load in the same manner as the
applied load, but opposite in direction. The variation of the resistance vs.
displacement 1is expressed by a resistance-deflection function and may be
represented graphically. An idealized resistance-deflection function for an
element spanning in two directions and covering in the complete flexural range
to incipient failure is shown in figure 3-1.

As load is applied to a structural element, the element deflects and, at any
instant, exerts a resistance to further deformation, which is a function of
its units stiffness K, until the ultimate unit resistance r, (total resistance
is r A where A is the element area) of the element is reached at deflection
Xp. uThe intial portion of the resistance-deflection diagram is composed of

it 1 p——
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the elastic and elasto-plastic ranges, each with its corresponding stiffness,
the transition from one range to another occurring as plastic hinges are
formed at points of maximum stress (yield 1lines). The number of elasto-
plastic ranges required before the ultimate resistance of a particular element
is reached depends upon the type and number of supports, and the placement of
reinforcing steel (in the case of reinforced concrete elements). For example
a beam with simple supports subjected to uniformly distributed loads needs
only one plastic hinge to develop the ultimate resistance (or full plastic
strength) of the element; whereas for the same beam fixed at both ends, more
than one plastic hinge is required.

In subsequent paragraphs, various procedures, equations and illustrations are
presented to enable the designer to determine the resistances of both one- and
two-way elements. The procedures outlined apply mainly to reinforced concrete
elements and so do the equations appearing in the text, unless the equations
are given as part of an illustrative example. However, they can also be used
for structural steel elements as well as other structural elements such as
aluminum, plastics, etc. Equations have been derived for specific cases most
often encountered in practice. These are applicable for structural steel and
reinforced concrete elements of uniform thickness in both the horizontal and
vertical directions. Before the equations and fiqures can be used for
reinforced concrete element, however, the reinforcing steel across any yield
line must have a uniform distribution in both the vertical and horizontal
directions; however, the reinforcement across the positive yield lines can be
different from that across the negative yield 1lines and the reinforcing
pattern in the vertical direction different from that in the horizontal
direction.

Regardless of whether it is reinforced concrete or structural steel element,
any opening in the element must be compact in shape and small in area,
compared to the total area of the element.

3-9 Ultimate Resistance
3-9.1 General
The ultimate resistance of an element depends upon:
(1) The distribution of the applied loads.
(2) The geometry of the element (length and width).
(3) The number and type of supports.
)

(4) The distribution of the moment capacity or reinforcement in the
case of reinforced concrete elements.

The distribution of the loads depends upon the design range of the element;
i.e., high, intermediate or low pressure. For intermediate and low pressure
ranges, it can be assumed that the pressure is uniform across the surface of
the element although it varies with time. At high pressure ranges, however,
the blast loads are variable across the surface of the element. However, for
structural steel elements and concrete elements utilizing laced reinforcement,
or for concrete elements with standard shear reinforcement which sustain
relatively small deflections, a good estimate of the resulting deflections can
be made using the resistance functions conforming to those of uniformly loaded
elements.
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The other factors that affect the ultimate resistance of an element are
predetermined by the requirements of the protective structure (where the
element is used) and the magnitude of the blast output.

3-9.2 One-Way Elements . ~.

The ultimate resistance of a one-way reinforced concrete element with an

elastic distribution of its reinforcing steel is based on the moment capacity

at first yield since all critical sections yield simultaneously. For one-way

reinforced concrete elements (such as beams or slabs) with non-elastic Sl g s
distribution of reinforcing steel and for structural steel elements, the e
ultimate resistance is a function of the moment capacity at the first yield

plus the added moment capacity due to subsequent yielding at other critical

sections.

ST
SPGB BP PP

Values of the ultimate resistance for one-way elements are shown in table 3-1
where the following symbols are used: o

My = ultimate negative unit moment capacity at the support.

M ultimate positive unit moment capacity at midspan.

E = length

ry = ultimate unit resistance

R, = total ultimate resistance o )

4

Table 3-1 applies to both beams and slabs. However, special attention must be i
paid to the units used for the respective element. The moment capacity of a Y
slab is expressed for a unit strip of the.slab (inch-pounds per inch) whereas -]
the total moment capacity (inch-pounds) is <considered for a beam. Al i
Consequently, the resistance of a slab is expressed in load per unit area el

(psi) where the resistance of a beam is expressed in load per length along the
beam (pounds per inch).

3-9.3 Two-Way Elements

FEALHEA T NG O
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£

The amount of data available on the limit analysis of retangular steel plates T
is very limited. However, an elementary approach imagines a mechanism formed o
of straight yield 1lines, as is customary in reinforced concrete. This

approach for reinforced concrete elements will be considered appropriate for e
structural steel elements. USRI S

‘adh

PRy

In the design of two-way reinforced concrete elements, it is not necessary to
define accurately the stress distribution during the initial and intermediate ° !
stages of loading since the ultimate load capacity can be readily determined £ o
by the use of yield 1ine procedures. The yield line method assumes that after BETRN S,
inital cracking of the concrete at points of .maximum moment, yielding spbreads A e

until the full moment capacity is developed along the length of the cracks on L N
which failure will take place. Several illustrative examples of the 7111"5“£{§
simplified yield or crack lines for two-way elements are illustrated in figure 0 ;

In using the yield line solution, the inital step is to assume a yield line
pattern (as shown in figure 3-2) applying the following rules:

(1) To act as plastic hinges of a collapse mechanism made up of
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Table 3-1 Ultimate Unit Resistances for One-Way Elements
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Idealized yield line locations for several two-way elements
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plane segments, yield lines must be straight lines forming axes
of rotation for the movements of the segments.

(2) The supports of the slabs will act as axes of rotation. A yield
1ine may form along a fixed support and an axis of rotation will
pass over a column,

(3) For compatibility of deformations, a yield line must pass
through the intersection of the axes of rotation of the adjacent
slab segments.

Tests 1indicate that the actual location and extent of these lines on
reinforced concrete elements differ only slightly at failure from the
theoretical ones. Use of the idealized yield lines results in little error in
the determination of the ultimate resistance and the error is on the side of
safety.

The corner sections of two-way elements are stiff in comparison to the
remainder of the member; therefore, straining of the reinforcement which is
associated with the reduced rotations at these sections will be less. To
account for the corner effects, the design of any one particular section of a
two-way element should consider a variation of the moment capacity along the
yield lines rather than a uniform distribution.

This variation is approximated by taking the full moment capacity along the
yield lines, except in the corners where two-thirds of the moment capacity
over the lengths described in figure 3-3 are used. The variation applies to
both the negative moments along the supports and the.positive moments at the
interior.

The ultimate unit resistance can be determined from the yield line pattern
using either the principle of virtual work or the equations of equilibrium.
Each approach has its advantages; in general, the virtual work method is
easier in principle but difficult to manipulate algebraically since it
involves differentiating a usually complex mathematical expression for a
minimum value of resistance. The equilibrium method, which is used in this
manual, also has its disadvantages. Since equilibrium requires that the shear
forces acting on each side of a yield line have to he equal and opposite,
correction forces (also known as nodal forces) have to be introduced around
onenings in two-way members and at free edges, and these correction forces may
not be available from simple analysis. However, in three of the six cases
shown in fiqure 3-2, (cases c, e, f), nodal forces exist; hut their effects
are negliagible.

In order to calculate the ultimate unit resistance r, of a two-way element,
the equation of equilibrium of each sector formed lﬁy the yield lines is
expressed in terms of the moments produced by the internal and external
forces. The sum of the resisting moments acting along the yield lines (both
positive and negative) of each sector is equated to the moment produced by the
applied load about the axis of rotation (support of the sector), assuming that
the shear forces are zero along the positive yield lines.

EMN + ZMp = Rc = rjAc 3-3
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where My = sum of the ultimate unit resisting moments
acting along the support (negative yield lines)

= sum of the ultimate unit resisting moments

acting along the interior failure lines (positive

yield lines)

total ultimate resistance of the sector

distance from the centroid of the load to

the line of rotation of the sector

ultimate unit resistance of the sector

area of the sector

=
I

’

Once the equations of equilibrium are known for all sectors, the ultimate
resistance is obtained either by solving the equations simultaneously or by a
trial and error procedure noting that the unit resistance of all sectors must
be equal.

To illustrate the above procedure (equation 3-3), consider the two-way
concrete element shown in figure 3-3 which is fixed on three edges and free on
the fourth, and where the nomenclature is as follows:

length of element
height of element
yield line location in horizontal direction
yield line location in vertical direction
MyN ultimate unit negative moment capacity in
the vertical direction
Myp uttimate unit positive moment capacity
in the vertical direction
Myy = ultimate unit negative moment capacity
in the horizontal direction
Myp = ultimate unit positive moment capacity
in the horizontal direction

< x &=

The nomenclature as stated in the paragraph above is strictly applicable to
two-way elements which are used as walls. However, when roof slabs or other
horizontal elements are under consideration, the preceding nomenclature will
also be applicable if the element is treated as being rotated into a vertical
position.

The first step in the solution is to assume the location of the yield lines as
defined by the coordinates x and y. It should be noted that in some cases,
because of geometry, the value of x and y will be known and therefore need not
be evaluated. In this example, the negative reinforcement in the horizontal
direction at opposite supports is assumed to be equal; therefore, the vertical
yield line is located at the center of the span and the value of x is
numerically equal to L/2 (a, fig. 3-3). However, in other cases, neither the
location of x nor y will be known, and the solution will require the
determination of both coordinates.

Once the yield lines have been assumed, the distribution of the resisting
moments along the yield lines is determined. In the case at hand, the reduced
moments, as a result of the increased stiffness at the corners, act over
lengths equal to x/2 and y/2 in the horizontal and vertical directions,
respectively (a, fig. 3-3). The equations of equilibrium are then written for
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each sector with the use of the free body diagrams (b, fig. 3-3). For the
triangular sector I:

Myy = (2/3)Myy(L/4 + L/8) + Myy(L/2)
= (5/6)My)\L 3-4
Myp = (2/3)Myp(L/4 + L/4) + Wyp(L/2)
= (5/6)MypL 3-5
Cp = y/3 3-6
Ry = ( My + Myp)/Cy
= [5L(Myy + Myp)l/2y 3-7 ]
Ap = Ly/2 3-8 S E
r,(Sector 1) = Rp/A; R
= [5(Myy + MVP)]/y2 . 3-9 ? .E. B
For the trapezoidal sector II, a similar procedure gives , ;
Moy = (2/30Mgy(y/2) + Mgl -y/2) T ii
= Myy(H - y/6) | 3-10
My = (2/3)Myply/2) + Myp(H - y/2)
= Myp(H - y/6) 3-11
Crp = (1/3)(L/2)[2(H-y) + HI/(H + H - y)
= [L(3H - 2y)1/6(2H - y) 3-12 L .

Rip = 0 Mgy + Myp)/Cpp S

= [(6H - y)(2H - y)(Myy + M) J/L(3H - 2y) 3-13 AR

Ap = (1/2)(L/2)(H + H - y) | e

= [L(2H - y)1/4 3-14 e

r,{Sector IT) = Ryp/Arq Liiiiégésgﬁ
= [8(Myy + Myp) (6H -y)I/L2(3H - 2y) 3-15 e

Equations 3-9 and 3-15 are the equations of equilibrium for the triangqular (I)
and the trapezoidal (II) sectors, respectively. As mentioned previously,
these equations can be solved simultaneously or by a trial and error
procedure. In the latter method, values of y are substituted into both SRy
equations until r, (sector I) is equal to r, (sector II). -
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If a numerical solution based on the above procedure (equation 3-3) yields o S o
1 negative values for either x, y or r,, then the assumed yield line location is Tl
L wrong. In this example, the only other possible yield 1ine pattern (x < L/2) . ]

would be as shown in figure 3-2c. - e 1

The solution of equatinn 3-3 is universally applicable for any two-way

Simultaneous solution of equations 3-9 and 3-15 reveals that the locations of
the yield lines are a function of the ratio of the spans L/H and the ratio of
the sum of the unit vertical to horizontal moment capacities as follows:

: element. If the negative reinforcement in the horizontal direction had been g
d unequal at the opposing supports, the value of x = L/2 would have changed, and AP s
L all three sectors wold have had to be considered to determine x, y and hence, N,

ro. Fao o =
i u .

e

ry(Sector 1) = r (Sector II) 3-16 = =1
S + Wp)/y? = Lelyy + Wp)lH - NINZ(H - 2y) -
L2y + Myp) /HE (Mg + Myp) =
_ Lay2(6 - y/H)1/[5HZ(3 - 2y/M)] 3-17b ° 1
(L/HC(Myy + Myp) /(M + Mp) 1172 =
(y/HIC(4(6 - y/H)/5(3 - 2y/H)11/2 3-17c

Equation 3-17c, which relates the location of the yield lines to the moment
capacity of the element, is used to plot figure 3-6. Knowing the location of
the yield lines, the resistance of the two-way element can be obtained from
either equation 3-9 or 3-15 which are also presented in table 3-2.

Using the procedure outlined above, the values of the ultimate unit
resistances for several two-way elements with various support conditions are
given in tables 3-2 and 3-3, the nomenclature confirming to that previously
listed. Table 3-2 covers the special cases where opposite supports provide
the same dearee of restraint thus resulting in symmetrical yield 1line
patterns. Table 3-3 deals with the general cases when the yield line patterns
are not symmetrical {(that 1is, when opposite supports provide different
restraints). Yield line location ratios x/L and y/H for the same elements are
depicted in fiqures 3-4 through 3-20.

Figures 3-4 and 3-5 show the location of the yield lines for two-way elements
with two adjacent edges supported and the other two free. In each of these
figures eight curves are shown which represent different ratios of the
positive to the negative moment capacities in both the vertical and horizontal
directions. Figures 3-6 through 3-16 illustrate the yield line location for
two-way elements with three edges supported and one edge free. Figures 3-6
and 3-11 covers the case when the yield line pattern is symmetrical (opposite
supports provide the same degree of restraint). Figures 3-17 through 3-20
show the yield line location for two-way elements with four sides supported.
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