INPUT-OUTPUT STABILITY ANALYSIS WITH MAGNETIC HYSTERESIS NON-LINEARITY. UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES DEPT OF ELECTRI.

M G SAFONOV ET AL. DEC 83 AFOSR-TR-84-1121 F/G 9/3
MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A
AD-A148 834

CUMULATION PAGE

<table>
<thead>
<tr>
<th>1a. REPORT NUMBER</th>
<th>UNCLASSIFIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>2a. SECURITY</td>
<td>UNCLASSIFIED</td>
</tr>
</tbody>
</table>

DECLASSIFICATION / DOWNGRADING SCHEDULE

- APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

PERFORMING ORGANIZATION REPORT NUMBER(S)

- AFOSR-TR-81-121

NAME OF PERFORMING ORGANIZATION

- University of S. California
- Dept. of Electrical Engineering

ADDRESS (City, State, and ZIP Code)

- Los Angeles, CA 90089

NAME OF MONITORING ORGANIZATION

- AFOSR/NM

ADDRESS (City, State, and ZIP Code)

- Bolling AFB, DC 20332-6448

NAME OF FUNDING/SPONSORING ORGANIZATION

- AFOSR

ADDRESS (City, State, and ZIP Code)

- Bolling AFB, DC 20332

TYPE OF REPORT

- RP

TIME COVERED

- FROM 14 Dec. 81 TO 16 Dec. 83

DATE OF REPORT

- Dec 83

PAGE COUNT

- 4

SUPPLEMENTARY NOTATION

- 22ND IEEE CONFERENCE ON DECISION AND CONTROL, 14-16 Dec 83, Marriott Hotel, San Antonio Texas

ABSTRACT

- Popov type frequency domain conditions for stability of feedback systems containing ferromagnetic hysteresis non-linearity are established.

ABSTRACT SECURITY CLASSIFICATION

- UNCLASSIFIED

NAME OF RESPONSIBLE INDIVIDUAL

- Capt. Thomas

TELEPHONE (Include Area Code)

- (202) 767-5026

DISTRIBUTION / AVAILABILITY OF ABSTRACT

- UNCLASSIFIED/UNLIMITED

DISTRIBUTION / AVAILABILITY OF REPORT

- UNCLASSIFIED/UNLIMITED

PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

- AFOSR-80-0013

PROGRAM ELEMENT NO.

- 61102F

PROJECT NO.

- 2304

TASK NO.

- A1

SOURCE OF FUNDING NUMBERS

<table>
<thead>
<tr>
<th>PROGRAM ELEMENT NO.</th>
<th>PROJECT NO.</th>
<th>TASK NO.</th>
<th>WORK UNIT ACCESSION NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>61102F</td>
<td>2304</td>
<td>A1</td>
<td></td>
</tr>
</tbody>
</table>

COSATI CODES

- FIELD
- GROUP
- SUB-GROUP

- This document

DD FORM 1473, 84 MAR

- All other editions are obsolete.

DTIC FILE COPY

- SECURITY CLASSIFICATION OF THIS PAGE
INPUT-OUTPUT STABILITY ANALYSIS
WITH MAGNETIC HYSTERESIS NON-LINEARITY

M. G. Safonov* and K. Karimlou*

Department of Electrical Engineering - Systems
University of Southern California
Los Angeles, CA 90089

Abstract

Popov type frequency domain conditions for
stability of feedback systems containing ferromagnetic
hysteresis non-linearity are established.

I. Introduction

Popov criterion and its extensions consider
non-linear elements that are memoryless and pass
through the origin, i.e., f(0) = 0. For an important
class of non-linearities, ferromagnetic hysteresis,
one of the above conditions are satisfied, i.e., it
is neither non-dynamic nor pass through the origin.
Therefore, to analyze the stability of systems con-
taining this type of non-linearity, appropriate
modifications to Popov's approach should be made.

Published material to tackle this problem is
scarc. The only work known to us is by Lecocq
and Hopkin [1], where by letting the derivative of their
input signals to belong to exponentially weighted L_2
spaces, they obtained bounded input-bounded output
stability for systems containing hysteresis non-
linearities.

In the present paper we analyze the stability of
feedback systems of the form shown in fig. (1a),
where N is a ferromagnetic hysteresis non-linearity
and H is a linear element. The analysis is done by
substitution of the model for the hysteresis proposed
by Chua and Stromsmoe [2]. Then the concept of
passivity is utilized to derive Popov type frequency
domain conditions on the linear element H for stability
of the feedback system. It will be shown that if the
same conditions as in the classical Popov criterion
are satisfied by inputs u_1 and u_2 and linear element
H then the feedback system of fig. (1a) is stable if
the non-linear element N is a ferromagnetic hystere-
sis.

II. Hysteresis Modeling

The model for ferromagnetic hysteresis of Chua
and Stromsmoe [2] is given by

$$\frac{dy}{dt} = g_0 \{ x(t) - f_0(y(t)) \}$$

(2.1)

where $x(t)$ and $y(t)$ are real-valued, continuous input
and output signals of the hysteresis non-linearity.

* Research supported in part by AFOSR Grant 80-0013
 and in part by NSF Grant INT-8302754.

\footnote{By the classical Popov criterion, we refer to the
 earliest version of the result obtained by Popov \cite{3},
 and also derived by different approaches in \cite{4,5,6},
 and not later generalizations of the result by
 Yakubovich \cite{7} among others.}

\footnote{A: Functional Composition.}

Table 1

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>R, R_+</td>
<td>Field of real and positive real numbers.</td>
</tr>
<tr>
<td>L_1</td>
<td>The space of signals such that $\int</td>
</tr>
<tr>
<td>L_2</td>
<td>The space of bounded signals.</td>
</tr>
<tr>
<td>L_2e</td>
<td>The space of signals which are square integrable on every bounded interval $[0, T]$ \cite{9}.</td>
</tr>
<tr>
<td>L_2</td>
<td>The Hilbert space of signals which are square integrable on $(-\infty, \infty)$ with inner product $\langle x, y \rangle$.</td>
</tr>
<tr>
<td>$\langle x, y \rangle$</td>
<td>$\int y^*(t) x(t) dt$.</td>
</tr>
<tr>
<td>$\langle x \rangle$</td>
<td>$\sqrt{\langle x, x \rangle}$.</td>
</tr>
<tr>
<td>$\langle x, y \rangle_T$</td>
<td>$\int T y^*(t) x(t) dt$.</td>
</tr>
<tr>
<td>$\langle x \rangle_T$</td>
<td>$\sqrt{\langle x, x \rangle_T}$.</td>
</tr>
<tr>
<td>r</td>
<td>$\langle x \rangle$.</td>
</tr>
<tr>
<td>λ</td>
<td>Set of instances of time of interest.</td>
</tr>
<tr>
<td>\mathcal{A}</td>
<td>Convolution Algebra.</td>
</tr>
<tr>
<td>$\text{Re} (\cdot)$</td>
<td>Real part of a complex quantity.</td>
</tr>
</tbody>
</table>

Approved for public release; distribution unlimited.

Fig. 1

(a) Linear

(b) Ferromagnetic Hysteresis Loop.
representing the current i(t) and the flux linkage \(\phi(t) \) of an inductor (transformer), and \(g \) and \(f \) are strictly monotonically increasing, differentiable, onto functions enjoying the important property of

\[
g(0) = f(0) = 0
\]

Equation (2.1) models the behavior of ferromagnetic hysteresis successfully and with very good accuracy. It predicts the expansion of the area of the hysteresis loop with increasing frequency and predicts minor hysteresis loops such as commonly occur when a d-c plus periodic input is applied.

After plotting the hysteresis loop for a convenient signal, simple procedures are given in [2] to determine \(g \) and \(f \) for that loop. When non-linear functions \(g \) and \(f \) are determined, they can be substituted in the model of equation (2.1) to predict, with good accuracy, the hysteresis shape and/or its output for any arbitrary input. For further detail and examples see [2].

III. Passivity and Stability

Definition (3.1) [6]: Let \(H : L_2e \to L_2e \). Then \(H \) is passive iff there exists some constant \(\delta_1 \) such that

\[
<Hx, x> \geq \delta_1 x^2
\]

for all \(x \in L_2e \).

Definition (3.2) [6]: Let \(H : L_2e \to L_2e \). Then \(H \) is strictly passive iff there exists \(\delta_1 > 0 \) and some constant \(\delta_2 \) such that

\[
<Hx, x> \geq \delta_1 x^2 + \delta_2 x^3
\]

for all \(x \in L_2e \).

Definition (3.3) [11]: The feedback system of fig. (1a) is said to be finite gain \(L_2 \)-stable if

a) \(e_1, e_2, y_1, y_2 \in L_2 \) \(\forall u_1, u_2 \in L_2 \)

b) There exists constants \(\delta_1 \) and \(\delta_2 \) such that

\[
\|e_1\|, \|e_2\|, \|y_1\|, \|y_2\| \leq \delta_1 \|u_1\| + \delta_2 \|u_2\| \forall u_1, u_2 \in L_2
\]

In the following well-known theorem, the concept of passivity is used to establish finite gain \(L_2 \)-stability of feedback system shown in fig. (1a), where \(N \) and \(H \) are considered to be operators in the general sense.

Theorem (3.1): Consider the feedback system shown in fig. (1a)

\[
e_1 = u_1 - He_2
\]

\[
e_2 = u_2 + Ne_1
\]

where \(H, N : L_2e \to L_2e \). Assume that for any \(u_1, u_2 \in L_2 \) there are solutions \(e_1, e_2 \in L_2e \). Suppose that there are real constants \(\delta_1, \delta_2 \) and \(\delta_3 \) such that

\[
\|Hx\|_T \leq \delta_3 \|x\|_T
\]

\[
<Hx, x> \geq \delta_1 x^2
\]

\[
<\phi, \phi> \geq \delta_4 \phi^2
\]

Under these conditions if

\[
e_1, e_2, y_1, y_2 \in L_2 \] \(\forall u_1, u_2 \in L_2 \)

Then the feedback system is finite gain \(L_2 \)-stable.

Proof: See for example [6].

IV. Main Results

Substitution of the model given by equation (2.1) for the hysteresis non-linearity \(N \) gives the feedback system of fig. (2). Note that although the standard magnetic hysteresis non-linearity, as shown in fig. (1b), is the plot of flux linkage \(\phi(t) \) vs. current \(i(t) \) of an inductor (transformer), but from circuit analysis point of view, the input and output of the model replaced for \(N \) as shown in fig. (2) are current through and voltage across the inductor (transformer).

Next, the main stability result is presented.

Theorem (4.1): Consider the feedback system of fig. (2), where \(h(t) \in L_2(R_1)^2 \) and \(h(t) \in \mathcal{A} \).

Assume that for any \(u_1, u_2 \in L_2 \), there are solutions \(e_1, e_2, y_1, y_2 \in L_2e \). If a constant \(q \geq 0 \) exists such that for some constant \(\delta \)

\[
\mathbb{R} \{h(t)h(t)^*\} = \delta > 0 \quad \forall \omega \geq 0
\]

Then \(u_1, u_2 \in L_2 \)

a) \(e_1, e_2, y_1, y_2 \in L_2 \)

b) There exists constants \(\delta_1 \) and \(\delta_2 \) such that

\[
\|e_1\|, \|e_2\|, \|y_1\|, \|y_2\| \leq \delta_1 \|u_1\| + \delta_2 \|u_2\| \forall u_1, u_2 \in L_2
\]

i.e., finite gain \(L_2 \)-stability.

Proof: See appendix.

Fig. 2

Upper and lower bounds of non-linearities \(\phi \) and \(f \) can be taken into consideration to obtain less conservative classes of linear element \(H(s) \). As an example, an upper bound on \(g \) is exploited in the

The voltage across an inductor (transformer) is proportional to rate of change of the flux linkage, constant of proportionality being the number of turns.

\(h(t) \) is the impulse response of \(H(s) \).
following Corollary.

Corollary (4.1): Consider the feedback system of Fig. 2, where \(g \in \text{sector } (0, k) \) and \(h(t) \in L_2([0, +\infty)) \). Assume that for any \(u_1, u_2 \in L_2 \), there exists solutions \(y_1, y_2 \in L_2 \). If a constant \(q \geq 0 \) exists such that for some constant \(\delta \)

\[
\Re \{ (1+qs)H(s) \} + \frac{1}{\delta} = \epsilon > 0 \quad \forall \epsilon \geq 0
\]

then \(\forall u_1, u_2 \in L_2 \) conclusions of Theorem (4.1) hold.

Proof. For outline of the proof, see appendix.

V. Conclusion

Popov type frequency domain conditions for stability of feedback systems containing ferromagnetic hysteresis non-linearity are established. To obtain the results, model of Chua & Stromsmoe [2] for hysteresis is employed and the concept of passivity is utilized.

VI. Appendix

To simplify the proof of Theorem (4.1) and Corollary (4.1), the following two lemmas will be proved first.

Lemma (A.1): Let \(q > 0 \), \(g \in \text{sector } (0, \infty) \). Then the system of Fig. (A.1) is passive [6].

![Fig. (A.1)](image)

Proof: \(< y, x >_T = < g(z), 0 + qz >_T \)

\(= < g(z), z >_T + q < g(z), z >_T \)

(i): \(< g(z), z >_T \geq 0 \) because \(g \in \text{sector } (0, \infty) \)

(ii): \(q < g(z), z >_T = q \int_0^T g(z) dz \)

\(= q \int_0^T g(z) dz \)

Define \(G(z) = \int_0^z g(t) dt \), where \(G : R \to R \).

Clearly \(G(z) \geq 0 \), \(\forall z \in R \). Then

\(q < g(z), z >_T \geq -q G(z) \) \(\forall z \geq 0 \)

(i) and (ii) implies \(< y, x >_T \geq -q G(z) \) \(\forall z \geq 0 \)

Passivity follows.

Lemma (A.2): Let \(q \geq 0 \), \(f \in \text{sector } (0, \infty) \), \(\frac{df(x)}{dx} > 0 \). Then the system of Fig. (A.2) is passive.

![Fig. (A.2)](image)

Proof: \(< y, x >_T = < q + q^2, z >_T \)

\(= < q + q^2, T > + q < q + q^2, z >_T \)

(i): \(< q + q^2, z >_T \geq 0 \)

(ii): \(q < q + q^2, z >_T = q \int_0^T (q + q^2) dz \)

\(= q \int_0^T (q + q^2) dz \)

Therefore, by Theorem (3.1) the feedback system of Fig. (A.3) is finite gain \(L_1 \)-stable.

Therefore, \(\forall u_1, u_2 \in L_2 \), i.e., \(\xi_1, \xi_2, \zeta_1, \zeta_2 \in L_2 \) and \(\eta_2, \eta_1 \), \(\eta_1 \), \(\eta_2 \), \(\zeta_2 \), \(\zeta_1 \), \(\zeta_2 \)

From Fig. (A.3), \(y_2(t) = m(t) + \zeta_2(t) \)

\(m(t) = L^{-1} \{ \frac{1}{1+qs} \} \), \(m(t) \in L_2 \), and \(\zeta_2(t) \in L_2 \), therefore, \(y_2(t) \), \(\bar{y}_2(t) \in L_2 \) [6, Appendix C]. Furthermore, \(\bar{y}_2(t) \), \(\bar{y}_2(t) \in L_2 \) [6, Appendix C].

But \(m(t) \) is finite (= constant C).

Therefore

\(L^{-1} \{ t \} : \text{Inverse Laplace Transform.} \)
\[y_2(t)|_{L_2} \leq C \left[y_2(t)_{L_2} \right]^2 \]
\[\leq C |u_1|_{L_2} \frac{q}{1} \frac{u_1}{L_2} + C |u_1|_{L_2} \frac{q}{1} \frac{u_1}{L_2} \]
\[\leq C |u_1|_{L_2} \frac{q}{1} \frac{u_1}{L_2} + C |u_1|_{L_2} \frac{q}{1} \frac{u_1}{L_2} \]

On the other hand, \(y_2(t) = \tilde{m}(t) + \tilde{y}_2(t) \). Then
\[y_2(t)|_{L_2} \leq \tilde{m}(t)|_{L_2} \frac{q}{1} \frac{y_2(t)}{L_2} \]
\[\leq C |u_1|_{L_2} \frac{q}{1} \frac{u_1}{L_2} + C |u_1|_{L_2} \frac{q}{1} \frac{u_1}{L_2} \]

because \(\tilde{m}(t)|_{L_2} \) is finite too.

Similarly, \(e_1(t) = m(t) - \tilde{e}_1(t) \). Therefore, similar conclusions for \(e_1(t) \) follow immediately.

(b): \(y_2, \tilde{y}_2 \in L_2 \) and \(e_1, \tilde{e}_2 \in L_2 \) implies that \(y, e \in L_\infty \) are continuous, and go to zero as \(t \to \infty \).

Since the model, i.e., equation (2.1), is a continuous mapping from input to output [2], therefore, \(e_1 \in L_\infty \), and \(e_1(t) \to 0 \) as \(t \to \infty \) implies that the same properties hold for \(y_1(t) \), i.e., \(y_1(t) \in L_\infty \) is continuous, and go to zero as \(t \to \infty \).

Similar conclusions for \(e_2 \) are immediate.

Proof Outline of Corollary (4.1): Apply a positive feedback of gain \(1 \) around \(g \). To compensate for it, apply a positive feed forward with gain \(1/k \) to \(H(s) \). Let \(\hat{g} = (g^{-1} - \frac{1}{k})^{-1} \). Then \(\hat{g} \in \text{sector} (0, \infty) \) and \(\hat{g}(0) = 0 \). Following the same procedure as Theorem (4.1), conclusions are immediate.

References

