SHORT RANGE ORDER - LONG RANGE ORDER IN SUPERCONDUCTING MATERIALS (U) WISCONSIN UNIV-MILWAUKEE DEPT OF PHYSICS
M LEVY 05 NOV 84 AFOSR-81-0002

UNCLASSIFIED
Short Range Order-Long Range Order in Superconducting Materials

Author: Moises Levy

Performing Organization: University of Wisconsin-Milwaukee, Department of Physics, Milwaukee, WI 53201

Contract or Grant Number: AFOSR 81-0002

Report Date: Nov 1984

Number of Pages: 28

Distribution Statement: Approved for public release; distribution unlimited.

Abstract:

Surface waves propagating through NbN films which are columnar in nature and which therefore may behave like inhomogeneous two dimensional superconductors with localized electronic states show attenuation curves which yield an effective superconducting energy gap which saturates at about one third the usual value. A model has been proposed that ascribes this order parameter reduction to the localization of electronic states in the columnar regions.
20. Abstract - continued

The piezoelectrically induced attenuation curve in a superconducting NbN film is shifted by almost 5 K below the resistivity curve of the film. This shift may be attributed to the resistance in the cores of the Kosterlitz-Thouless vortex-antivortex flux pairs which may exist in an inhomogeneous superconductor.

A superconducting granular lead film has been investigated with surface acoustic waves propagating on the piezoelectric substrate. Most of the piezoelectrically induced attenuation in the normal state is quenched when the film becomes superconducting. The residual attenuation that remains in the superconducting state may be related to the fact that the surface acoustic wave samples the sheet resistivity of a small number of granules.

Bulk wave measurements have been performed on polycrystalline samples of ErRh₄B₄, Er₀.088Ho₀.912Rh₄B₄ and Er₀.4Ho₀.6Rh₄B₄.

19. Key Words - continued

piezoelectrically induced attenuation
Kosterlitz-Thouless
twist-antivortex dipole
granular lead film
piezoelectric substrate
sheet resistivity
ErRh₄B₄
ErₓHo₁₋ₓRh₄B₄
BCS
superconducting energy gap
order parameter
lithium niobate
surface wave attenuation
fluctuations
ultrasonic attenuation coefficient
normal cores
700 MHz
interdigital electrodes
electron phonon interaction
Josephson Coupling
magnetic field
phonons
ferromagnetic phase transition
magnetization
staggered susceptibility
magnetization curves
Er₀.088Ho₀.912Rh₄B₄
ferromagnetic state
mean field theory
Er₀.4Ho₀.6Rh₄B₄
ferromagnetic transition temperature
Er sublattice
He³
RESEARCH OBJECTIVES AND ACCOMPLISHMENTS

The objective of this research project was to initiate a program to study the interplay of short range order and long range order in superconductors using both surface acoustic waves and bulk waves.

Surface waves propagating through NbN films which are columnar in nature and which therefore may behave like inhomogeneous two dimensional superconductors with localized electronic states show an attenuation curve versus temperature in the superconducting temperature range which may be described by the superposition of a typical BCS attenuation curve and another curve which displays a maximum. These data may be placed in the BCS expression for the attenuation in order to deduce the temperature dependence of the superconducting energy gap or order parameter. The resulting curve follows the BCS energy gap temperature dependence up to a third of the value of the zero temperature energy gap and then it remains at this value for lower temperatures. Thus, it appears that the effective energy gap is reduced. A model has been developed which proposes that this order parameter reduction may be produced by the localization of electronic states in the columnar regions. The localization of the electronic states may broaden their energy levels. This may in turn reduce the energy gap which is effective for producing attenuation due to electron-phonon interaction.

An extremely large attenuation change is observed in one of the NbN films when it goes from the normal to the superconducting state. The normal state sheet resistivity of the film is about 30 KΩ/sq. The value of the attenuation change is too large, 27 dB/cm, to be produced by electron phonon interaction. However since the film was deposited on a piezoelectric substrate, lithium niobate, a model has been proposed that ascribes this attenuation to piezoelectric coupling of the surface acoustic wave to the sheet resistivity of the film. In the normal state the attenuation is proportional to the sheet resistivity.
A model which uses the existence of Kosterlitz-Thouless vortex-antivortex dipoles is being proposed to describe the behavior of both the sheet resistivity and the surface wave attenuation below the superconducting transition temperature T_c. Above T_c the resistivity starts to decrease due to the fluctuations of the superconducting order parameter which are associated with a two dimensional second order phase transition. Below the superconducting transition T_c, the resistivity continues decreasing until it gets to zero at about $1/2 T_c$. This is the value of the Kosterlitz Thouless transition temperature, T_{KT}. Below this temperature the vortex-antivortex dipoles are bound; and, therefore a dc current does not produce a net force on them, so they do not move and therefore do not contribute to the resistance. Above T_{KT}, the vortices are unbound and therefore are free to be moved by a Lorentz force and can contribute to the resistance.

The ultrasonic attenuation coefficient, however, does not follow the resistivity curve but remains constant down to about T_{KT}, and then it decreases smoothly to zero. According to our model, the attenuation in the superconducting state should be proportional to the fraction of the area which is occupied by the normal cores of the vortices regardless of their orientation. We have calculated the density of these dipoles as a function of temperature and computed theoretical curves which describe the temperature dependence of both the attenuation and the resistance of this film with the same set of parameters.

A granular lead film with a sheet resistivity of 1000 Ω/square was deposited between the interdigital electrodes of a lithium niobate 700 MHz surface acoustic wave device. Both the sheet resistivity and the ultrasonic attenuation coefficient were measured simultaneously in the superconducting temperature range of the film. There was rounding in both the attenuation and resistivity curves above the superconducting transition temperature, T_c.
Both sets of data are proportional to each other above T_c. Below T_c the resistance drops by two orders of magnitude and then gradually drops to zero at about $0.8 T_c$. However, the attenuation drops to about three tenths of its normal state value immediately below T_c, and then gradually goes to zero at about $0.3 T_c$.

The value of the attenuation is too large, 4.4 db/cm, to be produced by electron phonon interaction. Again, it is proposed that this attenuation is produced by piezoelectric coupling to the sheet resistivity of the film. However, the attenuation in the normal state is twice as large as would be expected from the simultaneous measurement of the d.c. sheet resistivity and the attenuation coefficient. A model has been developed in collaboration with theorists at Technion University which provides qualitative agreement with the observed results. It is proposed that a d.c. electrical current measures the sheet resistivity of a sample whose dimensions encompass all the granules in the film. A surface acoustic wave measures the sheet resistivity of a sample whose dimensions are comparable to the acoustic wavelength, λ. It is postulated that this dimension is $\lambda/2\pi$. Such a length would contain only about sixteen grains. The average sheet resistivity both in the normal and superconducting states of such small samples is predicted to be higher than that for the whole sample by the use of percolation theory. Josephson coupling of the grains is assumed in the superconducting state. Qualitative agreement is found with the attenuation data in the superconducting state.

Bulk wave measurements were continued on the ternary ferromagnetic superconductor ErRh$_4$B$_4$ and initiated on (Er$_x$Ho$_{1-x}$)Rh$_4$B$_4$ superconductors.

Measurements on the ferromagnetic superconductor ErRh$_4$B$_4$ show maxima as a function of magnetic field at constant temperatures. The presence of the maxima may be described by the following model. Attenuation may be produced by the interaction of phonons with fluctuations associated with the ferro-
magnetic phase transition. This attenuation is proportional to the magnetization squared times the staggered susceptibility squared. At low fields the magnetization is linearly proportional to the magnetic field, saturating at higher fields, while the staggered susceptibility is only slightly affected by low fields and quenched by high fields. The product of these two quantities yields a maximum. In addition, as a function of temperature, for several constant applied magnetic fields, the attenuation also exhibits a maximum. These maxima may be viewed as magnetically shifted ferromagnetic transitions. Their position can be quantitatively evaluated from theoretical magnetization curves.

Measurements have been performed on a polycrystalline Er$_{0.088}$Ho$_{0.912}$Rh$_4$B$_4$ sample. This sample appears to have a ferromagnetic transition at $T_m = 6.2$ K. The ultrasonic attenuation coefficient exhibits a maximum at 9.3 K. At temperatures below this maximum the attenuation is higher than at temperatures above this maximum. Thus the attenuation is higher in the ferromagnetic state than in the normal state. No evidence is obtained for a fluctuation peak in the attenuation at the ferromagnetic phase transition. This is in agreement with specific heat data which also does not display a peak at the transition. It thus appears that the phase transition for purely ferromagnetic Er$_x$Ho$_{1-x}$Rh$_4$B$_4$ compounds can be described by a mean field theory without a contribution due to fluctuations.

Measurements have been performed using shear waves on a polycrystalline sample of Er$_{0.4}$Ho$_{0.6}$Rh$_4$B$_4$ which has a superconducting transition temperature $T_c = 6.7$ K and a ferromagnetic transition temperature $T_m = 3.5$ K. A drop in attenuation is observed immediately below T_m. This drop is associated with the quenching of spin fluctuations by the ferromagnetic state. In the superconducting state, the attenuation increases as the temperature is lowered. The increase in attenuation may be due to the appearance of fluctuations in the
Er sublattice. If a magnetic field is applied which is sufficient to remove superconductivity, the attenuation increase disappears.

A new He3 probe has been designed and assembled. Preliminary ultrasonic measurements have been performed in it on an ErRh\textsubscript{4}B\textsubscript{4} polycrystalline sample down to 0.8K. As expected, a peak in attenuation is found close to the temperature at which the sample undergoes a transition from the superconducting state to the ferromagnetic state.
PUBLICATIONS

TECHNICAL PERSONNEL

In addition to the principal investigator, the following technical personnel have worked on this grant. The university has supported some of them as part of their matching commitment.

Mr. Chris Figura (Graduate Research Assistant - 2 yrs.)
Preparation of surface wave devices for surface wave investigation of inhomogeneous granular superconductors and amorphous superconductors.

Dr. Hans Fredrickesen (Graduate Research Assistant and Post Doc - 1-1/2 yrs.)
Surface wave investigation of NbN.

Dr. Charles Kuper (Visiting Professor - 4 months)
Theoretical interpretation of measurements on ErRh$_4$B$_4$ and on thin films of NbN.

Mr. Guo Tai Lee (Graduate Research Assistant - 1 yr.)
Preparation of surface wave devices for surface wave investigation of NbN and inhomogeneous superconductors.

Ms. Ruby Chen Lee (Graduate Research Assistant - 1 yr.)
Ultrasonic Investigation of pure vanadium single crystals and ternary alloys.

Mr. Anders Schenstrom (Graduate Research Assistant - 1-1/2 yrs.)
Surface wave investigation of inhomogeneous NbN films.

Mr. Jeff Schmidt (Graduate Research Assistant - 3 yrs.)
Preparation of surface wave devices for surface wave investigation of amorphous superconductors.

Dr. Susan C. Schneider (Graduate Research Assistant and Post Doc - 1 yr.)
Ultrasonic investigation of superconducting ternary alloys and analysis of magnetization of ErRh$_4$B$_4$.

Mr. Keun-Jenn Sun (Graduate Research Assistant - 3 yrs.)
Ultrasonic investigation of pure vanadium single crystals and ternary alloys.

Mr. Hiroshi Tejima (Visiting Scholar sponsored by Brazilian Government - 3 yrs).
Surface Wave Investigation of inhomogeneous superconductors.
Dr. Susan C. Schneider received her Ph.D. on May 17, 1981. Her thesis advisor was the principal investigator. The title of her thesis is "Ultrasonic Attenuation Study of the Re-entrant Superconductor ErRh₄B₄."

Dr. Hans P. Fredricksen received his Ph.D. on December 13, 1981. His thesis advisor was the principal investigator. The title of his thesis is "Ultrasonic Attenuation of Surface Acoustic Waves in Thin Films of High Transition Temperature Superconducting Nb₃Sn and NbN."

Dr. Hiroshi Tejima received his Ph.D. in September 1983 from the University of Sao Paulo in Sao Carlos, Brazil. The principal investigator was his thesis advisor. The title of his thesis is "Attenuation of Surface Acoustic Waves in Thin Granular Films of Superconducting Pb/PbO."
COUPLING

1. Nb₃Sn and Nb₃Ge Films
 b. Discussion and collaboration (continuing).
 c. Robert Hammond will attempt to deposit Nb₃Ge films on aluminum nitride substrates. He will also attempt to deposit Nb₃Sn and Nb₃Ge films on passivated lithium niobate substrates.

2. Niobium Nitride Films
 b. Collaboration and discussion (continuing).
 c. John Gavaler, Westinghouse Research Laboratory has deposited NbN films of different thicknesses on lithium niobate substrates. Eleven of these substrates have been measured and the data have been analyzed and are being reported.

3. Kosterlitz-Thouless Vortex-Antivortex Model
 b. Discussion and collaboration (continuing).
 c. Held continuing discussions with Martin Ashkin, Westinghouse Research Laboratory, concerning a vortex-antivortex model to interpret some of the data obtained from the ultrasonic surface wave measurements of the superconducting niobium nitride films prepared by John Gavaler.

4. Ternary Alloys
 b. Discussion and collaboration (continuing).
 c. Polycrystalline Samples of HoₓEr₁₋ₓRh₄B₄ have been obtained from Brian Maple, U.C.-San Diego. These samples have a ferromagnetic transition temperature that is accessible with a He⁴ cryostat. Therefore, the interplay of ferromagnetism with superconductivity can be more easily investigated ultrasonically.
5. Amorphous Superconductors
 b. Discussion and collaboration.
 c. Have obtained from Ted Geballe and Robert Hammond, Stanford University, amorphous molybdenum films stabilized with a small amount of niobium, which were deposited on quartz and lithium niobate substrates. Interdigital electrodes will be deposited on the substrates and preliminary measurements will be initiated.

6. Chevrel Phase Superconductors
 b. Discussion and collaboration.
 c. Powder samples of the Chevrel phase superconductors will be obtained from F. Fradin, Argonne National Laboratory, in order to determine if it is possible to propagate ultrasonic waves through them which will provide information about their superconducting energy gap and electron mean free path.

7. Tin Based Ternary Single Crystals
 b. Discussion and collaboration.
 c. Obtained from J. P. Remeika, Bell Laboratory, single crystals of tin based ternary single crystals that are both magnetic and superconducting. These crystals will permit the transmission of higher frequencies than in the polycrystalline ternary alloys. The frequency dependence of the attenuation coefficient should make it possible to distinguish between different models that have been proposed to explain the observed effects. Initial attempts at polishing the samples have shown them to be extremely brittle. New samples have been obtained from J. P. Remeika. A ^3He probe has been built and tested for these measurements.
8. Magnetization Curves of Ternary Superconductors
 b. Discussion and collaboration.
 c. Initiated a program of collaboration with George Crabtree, Argonne National Laboratory and Feredoon Behroozi, University of Wisconsin-Parkside, to measure the d.c. magnetization curves of the ternary superconductors.

9. Magnetization Curves of Superconductors
 b. Discussion and collaboration (continuing).
 c. Magnetization curves of ultrasonically measured vanadium single crystals have been obtained by Feredoon Behroozi, University of Wisconsin-Parkside.

10. Single Crystals of the Ternary Alloys
 b. Discussion and collaboration.
 c. Continued discussions with David Hinks, Argonne National Laboratory, concerning the possibility of obtaining single crystals of the ternary alloys. The first crystals will be of ErRh$_4$B$_4$. These crystals will also be measured with the He3 probe.

11. Single Crystal of Cu$_2$Mo$_6$S$_8$
 b. Discussion and collaboration.
 c. Continued discussions with Renee Flukiger, Solid State Institute, Karlsruhe, concerning the possibility of obtaining a single crystal of Cu$_2$Mo$_6$S$_8$ which he has already prepared.
12. **Array of Josephson Coupled Superconductors**
 b. Discussion and collaboration.
 c. Continued the discussion with R. S. Newrock, University of Cincinnati, concerning the deposition of an array of Josephson coupled superconductors on a piezoelectric substrate. Interdigital electrodes will then be evaporated on this substrate in order to investigate the array with surface acoustic waves in the 700 MHz frequency range.

13. **Artificially Produced Layered Superconducting Materials**
 b. Discussion and collaboration.
 c. Initiated discussions with Ted Geballe, Stanford University about the possibility of obtaining layered superconducting films of Nb and Zr in order to investigate them with surface acoustic waves.

14. **Films of V$_3$Sn**
 b. Discussion and collaboration.
 c. Initiated discussions with John Gavaler, Westinghouse, about obtaining thin films of which will be measured with surface acoustic waves. Two substrates covered with films have been obtained.

15. **Artificially Produced Superlattice**
 b. Discussion and collaboration.
 c. Initiated discussions with Ivan Schuller and Cornell Chung, Argonne National Laboratories, about the possibility of obtaining superlattice made of Nb and Cu in order to investigate their characteristics with surface acoustics waves.
16. **1980 Applied Superconductivity Conference**
 b. Conference (September 20 - October 2, 1980, Santa Fe, New Mexico) and discussion.
 c. A paper was presented
 Discussions were held with Martin Ashkin and Gohn Gavaler concerning the theoretical interpretation of the data obtained on the NbN films. Discussed with Robert Hammond the possibility of obtaining Nb₃Sn films deposited on passivated LiNbO₃ substrates. Also discussed with him the possibility of obtaining amorphous molybdenum films stabilized with a small amount of Nb.

17. **1980 IEEE Ultrasonic Symposium**
 c. Attended conference.

18. **Westinghouse Research Laboratory Visit**
 b. Discussion (December 4, 1980).
 c. Held discussions with Martin Ashkin concerning the Kosterlitz-Thouless vortex-antivortex model for explaining the excess surface wave attenuation in superconducting niobium nitride films.
19. **Westinghouse Research Laboratory Visit**
 c. Continued discussions with Martin Ashkin concerning the model for explaining the excess attenuation in superconducting niobium nitride films. Started discussions with John Gavaler about obtaining films that are composed of alternating layers which are superconducting and insulating.

20. **Ultrasonic Investigation of the Ferromagnetic superconductor ErRh$_4$B$_4$1**
 b. Lecture (March 6, 1981).
 c. A lecture was given on this topic to the Physics Department, Carnegie-Mellon University, Pittsburgh, Pennsylvania.

21. **1981 APS March Meeting**
 c. A contributed paper was presented.

22. The Chemistry and Physics of Solids Gordon Conference
 c. Attended conference. Held discussions with Ted Geballe, Stanford, concerning the inhomogeneous superconducting film samples. Held discussions with John Gavaler concerning the ultrasonic measurement of NbN. Held discussions with Kazumi Maki (USC), H. Gutfrund (Racah Institute) and Art Freeman (Northwestern University) concerning the interpretation of the ultrasonic attenuation data obtained on the NbN superconducting films. Discussed the possibility of obtaining a single crystal of a one dimensional organic conductor which shows a spin-density wave transition and another which shows a superconducting transition from K. Bechgaard, H. O. Oersted Institute, Copenhagen.

23. International Conference on Low-Dimensional Conductors
 c. A paper was presented.

24. 16th Low Temperature Physics Conference
 c. Two papers were presented.
25. **1981 IEEE Ultrasonics Symposium**
 b. Conference (October 14-17, 1981).
 c. Attended conference, chaired a session and presented a paper.

 "Electron-Phonon SAW Attenuation of Nb₃Sn on LiNbO₃,"

 S. C. Schneider, H. P. Fredricksen and M. Levy.

26. **Energy Conversion Devices Laboratory Visit**
 b. Discussion and collaboration (Nov. 20, 1981).
 c. Initiated discussions with Frank Missel concerning the possibility of obtaining films of amorphous superconductors on piezoelectric substrates in order to measure their properties with surface acoustic waves. Two samples have been obtained and preliminary measurements have been made.

27. **Ultrasonic Investigation of the Ferromagnetic Superconductor ErRh₄B₄**
 b. Lecture (March 29, 1982).
 c. A lecture was given on this topic to the Physics Department,
 University of Toronto, Toronto, Canada.
28. **Visit to Instituto Venezolano de Investigaciones Científicas (Venezuelan Institute of Scientific Research)**

 b. Colloquia and discussion.

 c. Gave seven different colloquia to the Physics Department and the Electrical Engineering Department.

 2. Ultrasonic Attenuation in Type I and Type II Superconductors - June 11, 1982.

 3. Ultrasonic Investigation of the Magnetic Superconductor ErRh_4B_4 - Part I - June 14, 1982.

 4. Ultrasonic Investigation of the Magnetic Superconductor ErRh_4B_4 - Part II - June 16, 1982.

 5. Surface Acoustic Wave Measurements of Superconducting Films of Al and Nb_3Ge - June 18, 1982.

 Discussed with Dr. Romer Nava and Dr. Marcos Rodriguez, Physics Department, measurements on the thin film superconductors. Also discussed with Dr. Miguel Octavio, Electrical Engineering Department, the measurements on NbN superconducting films.
29. **Josephson Coupled Superconducting Arrays - Visit to Physics Departments at the University of Cincinnati and Ohio State University (July 6, 1982)**

a. Moises Levy, University of Wisconsin-Milwaukee

b. Discussion and collaboration.

c. Visited the Physics Department, University of Cincinnati and the Physics Department, Ohio State University in order to initiate a collaboration and discussion with R. S. Newrock, Physics Department University of Cincinnati and Dr. J. C. Garland, Physics Department, Ohio State University. Dr. Newrock will photolithographically produce the pattern of an array of Josephson coupled superconductors on a piezoelectric substrate. Dr. J. C. Garland will then evaporate the array. After these are prepared, interdigital electrodes will be deposited on the substrate and surface acoustic wave measurements will be made on the films.

30. **Visit to the Research Institute for Iron, Steel and Other Metals, Tohoku University, Sendai Japan (August 20 - September 5, 1982)**

b. Discussion and collaboration.

c. Discussed with Professor Masashi Tachiki the surface acoustic wave measurements on superconducting NbN films. A tentative simplified model wherein strong localization of the normal electrons may explain the observed effects was developed. Also discussed with him the measurements on ErRh$_4$B$_4$ in the absence of an applied magnetic field. It is possible that the maximum in ultrasonic attenuation observed in the superconducting phase may be attributed to a relaxation mechanism associated with the two lowest magnetic energy levels of this ferromagnetic superconductor. Also discussed the possibility of obtaining single crystals of ferromagnetic superconductors.
31. **International Conference on Magnetism 1982**
 b. Conference, Kyoto, Japan (September 6-10, 1982).
 c. Attended conference.

32. **The 10th International Colloquium on Magnetic Films and Surfaces**
 b. Conference, Yokohoma, Japan (September 13-16, 1982).
 c. Presented an invited paper
 "Giant Attenuation of Surface Acoustic Waves by Ferromagnetic Films."

33. **1982 IEEE Ultrasonic Symposium**
 c. Attended conference, chaired session and presented a paper "Ultrasonic
 Attenuation Determination of Superconducting Energy Gap Anomalies in
 Thin Films of NbN," H. P. Fredricksen, M. Levy, M. Tachiki,
 M. Ashkin, and J. R. Gavaler.

34. **Materials Research Society 1982 Annual Meeting**
 c. Attended conference. Discussed the possibility of obtaining new single
 crystals of the tin based ternary magnetic superconductors with
 J. P. Remeika, Bell Laboratory. Discussed the NbN data and analysis
 with Martin Ashkin, Westinghouse R & D. Discussed the possibility of
 making surface acoustic wave measurements on intercalated compounds
 with M. S. Dresselhaus, MIT.
35. **March Meeting of the American Physical Society**
 b. Conference and discussion (March 21-25, 1983).
 c. Attended conference and presented paper
 "Residual Piezoelectrically Induced Attenuation Produced by Flux Pairs in a Granular Pb-PbO\textsubscript{x} Film," Hiroshi Tejima, Jeffrey Schmidt, Chris Figura, and M. Levy.
 Discussed with Ted Holstein, R. Meservey, David Paul, Walt Thomash, Art Hebard, Ken Grey and Alan Goldman measurements made on granular Pb-PbO\textsubscript{x} films.

36. **Visit to Argonne National Laboratory**
 b. Colloquium and discussion (April 26, 1983).
 c. Gave the following colloquium to the Materials Science Group
 "Ultrasonic Investigation of Superconducting Ferromagnets", also discussed with George Crabtree and David Hinks the possibility of obtaining a single crystal of ErRh\textsubscript{4}B\textsubscript{4}.

37. **Visit to Northwestern University**
 b. Colloquium and discussion (April 27, 1983).
 c. Gave the following colloquium to the Physics Department "Surface Acoustic Wave Investigation of Superconducting Films."
 Discussed with John Ketterson techniques for making surface acoustic wave measurements.
38. **Gordon Research Conference**
 b. Conference and discussion (July 4-15, 1983).
 c. Attended conference on Chemistry and Physics of Solids. Discussed with Ted Geballe possibility of obtaining layered superconducting films of Nb and Zr in order to investigate them with surface acoustic waves.

39. **Argonne National Laboratory Workshop**
 b. Workshop and discussion (August 1-2, 1983).
 c. Participated in workshop and presented paper "Ultrasonic Attenuation Measurements of the Re-entrant Superconductor Er\(_{0.4}\)Ho\(_{0.6}\)Rh\(_4\)B\(_4\)." Keun-Jen Sun, Moises Levy and Brian Maple. Discussed with David Hinks and George Crabtree their attempts for producing single crystals of ErRh\(_4\)B\(_4\) and the information that ultrasonic measurements could provide.

40. **Visit to University of Sao Paulo, Sao Paulo, Brazil**
 b. Discussion (August 9-11, 1983).
 c. Discussed with Frank Missel techniques for measuring amorphous superconducting strips with surface acoustic waves.

41. **Visit to Federal University at Sao Carlos, Brazil**
 b. Colloquium and discussion (August 18, 1983).
 c. Gave the following colloquium at the Physics Department "Giant Attenuation of Surface Acoustic Waves by Ferromagnetic Films." Discussed with the faculty there, the possibility that some of them would spend sabbatical leaves at UWM to work on the surface wave investigation of superconducting films, platelets and strips.
42. **Visit to University of Sao Paulo in Sao Carlos, Brazil**
 b. Colloquium and discussion (August 19, 1983).
 c. Gave the following colloquium at the Physics Department "Ultrasonic Attenuation in the Ferromagnetic Superconductor ErRh$_4$B$_4$."
 Discussed ultrasonic measurements being performed on chromium crystals to which different amounts of vanadium had been added.

43. **Visit to University of Campinas, Sao Paulo, Brazil**
 b. Colloquium and discussion (August 22, 1983).
 c. Gave the following colloquium at the Physics Department "Ultrasonic Attenuation in Thin Film Superconductors."
 Discussed with Dr. Cerdeira measurements of ultrasonic attenuation near the upper critical field of very pure type II superconductors.

44. **Visit to University of Cincinnati**
 b. Discussion and collaboration (September 22, 1983).
 c. Visited the Physics Department in order to discuss with Dr. R. S. Newrock and his research assistant Mr. Ken Brown the design of the surface acoustic wave device that will be used to measure the array of Josephson coupled superconductors which they will deposit on the substrate of the device.
45. IEEE 1983 Ultrasonics Symposium
 c. General Chairman of conference. Presented two papers
 "Surface Acoustic Wave Investigation of Granular Films,"
 Hiroshi Tejima, Jeffrey Schmidt, Chris Figura, and Moises Levy.
 "Ultrasonic Attenuation Measurements of the Re-Entrant Superconduc-
 tor Er$_{0.4}$Ho$_{0.6}$Rh$_4$B$_4$, Keun J. Sun, Moises Levy and M. B. Maple.
 Held discussions with John Ketterson concerning dilution
 refrigerators.

46. Visit to Technion University
 b. Colloquium, Seminar, discussion and collaboration
 c. Gave a colloquium on
 "Surface Acoustic Wave Investigation of Superconducting Films,"
 December 15, 1983.
 Gave a seminar on
 "Interaction of Ferromagnetic Films With Surface Acoustic Waves,"
 December 20, 1983.
 Initiated discussions with Boris Shapiro, Charles Kuper,
 Michael Revzen, and Amiron Ron, theorists in the Physics Department
 at the Technion, about the surface acoustic wave data obtained on
 granular lead films. A model was developed to explain the discrep-
 ancy between the d.c. resistance of a granular film and the apparent
 resistance deduced from surface acoustic piezoelectric coupling to
 the local sheet resistance of the film. A paper is being prepared
 for publication. A short paper was presented at the 17th
International Low Temperature Conference. Initiated discussions with Charles Kuper, Michael Revzen and Jozy Ashkenazy about the anomalously large change in ultrasonic attenuation that is observed for pure single crystals of niobium, lead and mercury close to the superconducting transition. This anomaly disappears in impure crystals of these superconductors. A preliminary model that ascribes this discrepancy to the fact that the energy gap in the superconducting state may round out the sharp features of the Fermi surface in a pure metal is being investigated.

47. **Visit to Tel Aviv University**
 b. Seminar and discussion (January 19, 1984).
 c. Gave a seminar on "Surface Acoustic Wave Investigation of Superconducting Films."
 Held discussions with Guy Deutsche, Joseph Imry, and David Bergman about the theoretical interpretation that was developed at the Technion to describe the experimental results obtained on a granular lead film.

48. **Visit to Ben Gurion University, Beer Sheva**
 b. Seminar and discussion (January 26, 1984).
 c. Gave a seminar on "Surface Acoustic Wave Investigation of Superconducting Films."
 Saw Professor Gady Goroditsky's lab and talked to his technician about surface acoustic wave techniques. Discussed localization in thin films with Dr. Obadia.
49. Visit to Hebrew University, Jerusalem
 c. Gave a seminar on
 "Ultrasonic Investigation of the Ferromagnetic Superconductor ErRh$_4$B$_4".
 Visited Professor Avram Many's surface studies group. Dr. Yehuda Goldstein described in detail their new enhanced surface Raman apparatus.

50. March Meeting of the American Physical Society
 c. Attended conference and chaired session on "Superconducting Materials." Discussed with J. L. Smith, Los Alamos Nat. Lab. and H. Ott, ETH, Zurich, possibility of obtaining single crystals of the heavy Fermion superconductors. Discussed with John Ketterson, George Crabtree and David Hinks, Argonne National Labs, possibility of obtaining single crystals of the heavy Fermion superconductors. Continued discussions with George Crabtree and David Hinks about obtaining their single crystals of ErRh$_4$B$_4$. Discussed with Horst Stormer the possibility of obtaining a GaAs-GaAlAs heterostructure which displays the fractional Hall effect for experiments which couple the piezoelectric fields of a surface acoustic wave to the Hall resistance of a two dimensional electron gas. Continued discussions with Rick Newrock concerning the possibility of obtaining the arrays of Josephson coupled superconductors.
51. **Gordon Research Conference**
 c. Attended conference on Quantum Solids. Continued discussions with Ted Geballe about the possibility of obtaining layered superconducting films of Nb and Zr in order to investigate them with surface acoustic waves. Obtained GaAs-GaAlAs heterostructure structure from Horst Stromer, Bells Labs. Discussed with Mel Pomerantz percolation model proposed for explaining anomalous acoustic surface wave attenuation in granular superconducting lead film.

52. **Westinghouse Research Laboratory Visit**
 b. Discussion (July 31, 1984).
 c. Continued discussions with John Gavaler, about measuring thin films of V$_3$Sn with surface acoustic waves. Obtained two more samples from him.

53. **Group of Sonics and Ultrasonics**
 b. Discussion.