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(e During the period of Grant No. AFOSR-82-0176M ending in September 1984,
e

E:E:: the development of algebraic and adaptive grid techniques were continued and

E}S brought into a more refined state. Included were the topics of multisurface
V) transformations together with Boolean operations, pointwise distributions on
[ \‘{

n“-

s curves, two-dimensional surface grids embedded in three-dimensions, three-
05

‘1, dimensional volume grids and the adaptive strategies of mean value relaxation,
. alternating direction, and center of mass relaxation for triangular meshes.

"o e

Sji Of paramount importance in the various adaptive strategies was the utilization

~

of weighting functions which was studied and still requires further develop-
. ment.

N:\:

NN In addition to the specific developmental tasks, a major review article
N

2::: was prepared for the Annual Review of Fluid Mechanics [1]. This prestigious

' publication operates on an invited-only basis and produces one book each Jan-
-'_‘/.

:,. uary in which various topics of importance are surveyed for the typical prac-
S

I Ay

N titioner in fluid mechanics. More important than the prestige is the rather
’ " wide readership, and therefore, the opportunity to solidly establish the role
-:';:-:f of grid generation in fluid mechanics simulation and to present the funda-
-f"n':

“'- mental structure and concerns of the topic. The guidelines appropriately
’.._, given by the publisher were to develop the significant aspects of grid genera-
I:'J

SN tion rather than to attempt a cawprehensive account of everything that was

™

::ZZ; done. It is interesting to note that previous reviews had taken the campre-
::.; hensive route and had resulted in samewhat lengthy and unwieldy manuscripts.
oo

::sé The current review, by contrast, was shorter and I believe is easier for an
10

A :_. uninitiated person to follow and to quickly gain a suitable perspective of
A

(R grid generation.

oA

;, - After a short introduction, a general setting is established so that the
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.- reader can see what the basic issues are without the constructive technicali-

::'f ties of the various methods. The two major classes of methods correspond to

:j: constructions in terms of explicit algebraic formulas and in terms of implicit

:\: definitions given by solutions to differential equations of various sorts.

:f: The class of algebraic methods was presented first with the development lead-

; ing up to the multisurface transformation and its cambination with Boolean

\ operations. Next, the differential equations approaches were examined with an

o emphasis on those of the elliptic type. In each development, the central role

was played by the element of control which is necessary to address the various |
*' constraints that arose fram the general setting established for arbitrary ap- ;
bt plications. The aspect of control was further amplified in the adaptive con-
::; text in which all of the prior development cames together. As a unifying |
\ theme, the general concept of a monitor surface was presented and was seen to

= be the common part of all adaptive methods regardless of their internal con-

; “5\ tructive technicalities.

.": ‘ A further project which was related to the specific developmental tasks

" was the selection of suitable camputer equipment to use for those tasks in the

.? future. The funds are being supplied by a DoD equipment funding grant under a

:_ program for DoD research at universities. Due to the long lead time between

3 the proposal stage and the funding stage combined with a rapidly changing

h“ technology, an evaluation had to be conducted to obtain the best possible

P equipment for the allotted funds. For the generation of three-dimensional and

5 adaptive grids, the IRIS 1500 by Silicon Graphics was selected over the orig-

inally proposed Appolo System. The IRIS is called the "geametry camputer”:

it does geametric manipulations at a very rapid rate because of specially ded-
icated VLSI chips. Moreover, it is also a camwputer which is as fast as a VAX
11/750, has 8.5 Mb of CPU memory, 24 bit planes, and a file serving capabili-
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ty. Because of the built-in geametric powers, the basic computational power

remains virtually unburdened. This cambination is ideal for the grid problems

where camputing can be dynamically and locally combined with geametric manipu-

\’ lations. For example, the interplay between an adaptive grid movement strate-

:;-:: gy and a solution algorithm can be examined in real time.

.._, For the adaptive triangular mesh strategy, a paper was written, was pre-

\" sented at a conference, and was submitted to the associated societal journal

{1]1. This was co-authored with my earlier graduate student Gordon Erlebacher

Y, who is now a scientist at NASA Langley Research Center in the Computational ‘
"; Methods Branch. :
':’, For the mean value relaxation technique, the conference version (3] was !
:- revised for the ASME Journal of Fluids Engineering to include a more detailed |
: N explanation of terminology (to satisfy reviewers) and, more importantly, to

i include the establishment of motion barriers. The need for such barriers was

:\ not seen by reviewers. This need stems fram the use of local bilinear map~-

2 pings to uniquely define a continuous monitor surface at any instant fram

. grid-like data. Under the action of the movement molecule, the central point

is moved to a parametric location contained within the Cartesian parameter

'.", space molecule. When the surface quadrant points not in the molecule are not

3 out of scale with other such points, the new point on the surface is within

' the geametric surface molecule. However, the new point must be connected to

‘ its nearest coordinate points. If unchecked, such a connection could possibly

"“ intersect such an existing condition. The check established was to create mo-

i tion barriers by extending segments at concave corners of the molecule to

':- place constraints upon the choices of maximum movement distances along coor-

J dinate curves. In the paper these were denoted by da, dg, dc and dp. wWhen

one guadrant point severely stretches its quadrant, further limitation is re-
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quired on the maximum movement distances. Wwhen the transformation is evolving
in a reasonably smooth way, however, this latter limitation is not required.
This is almost invariably the case. The only exceptions would came fram situ-
ations such as highly distorted and stretched initial conditions which would
also be unsuitable for a solution algorithm on virtually any simulation of a
physical problem. In summary, the motion barriers pemmit us to adapt grids
with any strength of weight without any worry about a possible grid overlap.

For the variational strategy, work has proceeded jointly with P.J. Roache
and S. Steinberg. Steinberg has focused primarily on symbolic manipulation;
Roach, on the interaction with solvers; and myself, on surface integral form-
ulations. All of us have interactively worked together on various planar in-
tegral formulations. Proposed formulations are tested rapidly due to the use
of symbolic manipulation to generate the necessary FORTRAN code which produces
a local difference molecule. With the molecule, standard numerical techniques
are amwployed to generate the grid.

In the alternating direction strategy ([4) and in the adaptive multisur-
face applications under current development, the use of weight functions along
curves is crucial. Considering distributions only on curves, a method of lo-
cal manipulation was developed and a method for the generation of arbitrary
distributions was extended. The local manipulation allows one to specify a
region in which points are clustered into a strictly smaller subregion. This
is accamplished with a continuous weight which pushes region points into the
desired subregion. Outside the main region, the distribution of points re-
mains unchanged. The resulting transtormation is globally derivative continu-
ous. When used within the interactive enviromment, pointwise distributions

along curves can be locally manipulated and tine tuned for an application

while elsewhere a satisfactory distribution is not destroyed or moved away




-

- r fram its appropriate location. When used in the adaptive context, it is ex-
pected that we will obtain the capability to locally adapt the grid while

:.-_,-_f maintaining derivative continuity everywhere.

i In the method for arbitrary distributions along curves, an extension was
bt made to bring the geametric construction of distributions to curves in sur-
., faces rather than just in planes. This geametric construction provides a
' natural interpretation of implicitly contained intrinsic quantities and rep-
.' resents an alternative to the linear weights used in (4]. A paper detailing
E the construction and the extension is in preparation.
,:"“ With the multisurface transformation, a tensor product construction [1]
B has been examined and will be explored further. The idea is to specify a
:,:.3 coarse sparse control grid which approximates but does not precisely match a
f:‘: region. The tensor product defines a smooth analytical transformation which
*-r also approximates the region. The internal points are free to move about and
o are thus free to manipulate the grid. This manipulation is local if the mul-
“:: tisurtace interpolants are also local. The payoff here is that with a modest
’% awount of specified data, we can approximate a desired grid structure and the
i:j boundaries of our region. This is particularly attractive in three dimensions
;“: where specified data could reach enormous proportions. To cbtain an exact
- match to given boundaries, a local blending would then be required.
:.‘ In the same spirit as the tensor product structure for coordinate genera-
E?'-. tion, surfaces can also be mathematically represented. This represents an al-
' ternative to existing techniques for free-form surface design. In summary,
:: what is being considered here is free-fomm coordinate generation as well as
i:i that of surface design. i- T ] ] e
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