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ABSTRACT

Based on right-censored data from a lifetime distribution FO' a kernel

type estimator of the quantile function Q°(p) = inflt: Fo(t) 2p}l, 0spsi,

1is proposed. The estimator is defined by Qn(p) -_h;l ft Qn(t)K((t-p)/hn)dt,
which is smoother than the usual product-limit quantile function
Qn(p) = inf{t: Fn(t) 2 p}, where Fn denotes the product-limit estimator of - ]

Fo from the censored sample. Under the random censorship model and general

Avdad b

conditions on hn,K, and FO’ it is shown that Qn(p) is strongly consistent,

In addition, an approximation to Qn is shown to be asymptotically equiv- i_«f&

alent to Qn with probability one. A small Monte.Carlo simulation
study shows that for several values of the bandwidth hn’ Qn performs better

than Qn in the sense of estimated mean squared erruvrs. The estimator is

illustrated by an application to data from a mechanical-switch life test.

Key Words: Random censorship; Product-limit quantile function; Kernel

estimation; Median survival time estimation; Nonparametric quantile estimation.
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1. INTRODUCTION

P

Arbitrarily right-censored data srise naturally in industrial life
testing and medical follow-up studies. In these situations it is important
to be able to obtain nonparametric estimates of various characteristics of
the survival function S. Based on such right-censored data, Kaplan and Meier
,’E;~{1953)/gave the nonparametric maximum likelihood estipator of S, called the
N
product-limit estimator, and, among others, Reid (1981) has proposed methods
of estimating the median survival time from the product-limit estimator.
Recently, Nair Ei;;z;\studied the problem of confidence bands for the survival
function obtained from the product-limit estimator. Also, Padgett and McNichols
,S;L”TI98#7’and McNichols and Padgetff(iggz;\have discussed estimation of a density
for the survival distribution based on right-censored data.
One characteristic of the survival distribution that is of interest is the
quantile function, which is useful in reliability and medical studies., For any
5;,/’ ~ -

probability distribution function G, the quantile function is defined by " L
~

Qlp)

wedian of G. For a random (uncensored) sample Yl,...,Yn from G, the sample

G-l(p) = Ep = inf{x: G(x) 2 p}, 0 < p € 1. In particular, EO 5 is a

quantile function G;l(p) = inf{x: Gn(x) 2p}, 0 <p <1, has been used to
estimate Ep, where Gn(x) denotes the sample distribution function. Note that
G;I(p) = Y([np])’ the [np]th order statistic among Yl,...,Yn, where |+¢]
denotes the greatest integer function. Csorgd” (1983) gives many of the known
results concerning G;l(p). Also, Falk (1984) has recently studied the relative
deficiency of the sample quantile with respect to kermel type estimators.

Cther nonparametric estimators of the quantile function from uncensored

data have been proposed which are smoother than the sample quantile function.
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For example, Kaigh and Lachenbruch (1982) considered a '"generalized samnle

quantile” obtained by averaging an appropriate subsample quantile over all

subsamples of a given size. Also recently, Yang (1984) has studied the

properties of kernel-type estimators of Ep which smooth the sample quantile

function. Parzen (1979) had mentioned kernel estimators as a possible class
of quantile estimators, but did not investigate their properties.
For arbitrarily right-censored data, Sander (1975) proposed estimation of
Ep by the quantile function of the product-limit estimator of 1-S, and she j
and Cheng (1981) obtained some asymptotic properties of that estimator. Csorgo i:f:fﬂ
\ (1983) presented strong approximation results for this estimator. |
~%) The quantile function of the product-limit estimator is a step function @
with jumps corresponding to the uncensored observations. The purpose of this
paper 1s to present a smoothed nonparametric estimator of the quantile function
from arbitrarily right-censored data based on the kernel method. It will he
shown that under general conditions this estimator, mentioned briefly by larzcn
(1979, p. 119)5 is strongly consistent, and based on the results of a small
Monte Carlo simulation study, performs better than the quantile
function of the product-limit estimator in the sense of smaller mean squared
error. In particular, better estimates of the median survival time are obtainable.
In addition, an approximation to the kernel estimator will be shown to bc almost
surely asymptotically equivalent to it under certain conditions. Finally,

estimates of the quantile function from the randomly right-censored data piven

* by Nair (1984) are presented as an illustration.
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2, ARBITRARILY RIGHT-CENSORED DATA

ol
L0 PP

Let X:.....X: denote the true survival times of n items or individuals

which are censored on the right by a sequence Ul’UZ""'Un’ which in general

may be either constants or random variables. It is assumed that the Xg's

are nonnegative independent identically distributed random variables with common

ey

- “e 8 o«
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unknown distribution function Fo and unknown quantile function

Qo(p) = E: Z inf{t: Fo(t) 2p}, 0<p =<1, Also, Qo(p) is sometimes denoted

AP Y VPR

-1
by Fo (.
The observed right-censored data are denoted by the pairs (Xi,Ai),

i=l,...,n, where -

A

(o]
1 if Xi < Ui

o]
xi = min{Xi,Ui}, A

o if xX°>vu, .

170 gr?

—id

Thus, it is known which observations are times of failure or death and which ;v‘_
ones are censored or loss times. The nature of the censoring depends on the i{;iy
U,'s. (1) 1f Ul,...,Un are fixed constants, the observations are time- _;::

i

truncated., If all Ui's are equal to the same constant, then the case of

Type I censoring results. (ii) If all Ui = X?r), the rth order statistic tiu

of xi....,xﬁ, then the situation is that of Type II censoring. ({ii) If

N
A

: Bl ook A

Ul""’un constitute a random sample from a distribution H (usually unknown)

Q* and are independent of xi,...,xz, then (Xi,Ai). i=1,2,...,n, 1is called a

ij . randomly right-censored sample.

The random censorship model (iii) is assumed for the results presented

;3. here. For this model, Al,...,A.n are independent Bernoulli random variables,

i
|
t
I L

and the distribution function F of each Xi, i=1,,..,n, 1is given by

F=1- (l-Fo)(l-H).
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: Based on the censored sample (xi’Ai)' i=1,2,...,n, a popular estimator i

of the survival function l-Fo(t) at

proposed by Kaplan and Meier (1958) as

[AF R aF SR~ W4

estimator".

consistent". Let (Zi,Ai), i=1,...,n,

PARPORY AF R A

their corresponding Ai's. A value of

and ordered sample, respectively. Then

The product-limit estimator has pl

i l-Fo(t) is defined by :~ji
. 1 0st sz, SR
i - 8! ) -
- 2 - n-i i z <t<2, k=2,...,n S
- P (t) = I (— -, k-1 k’ ’ ’ , ,
X n g=1 M i+l - B
- 0. 2 <t. . . 1
. Denote the product~limit estimator of Fo(t) by Fn(t) =1- Pn(t), and let -
% sj denote the jump of Pn (or Fn) at Zj, that is f?ﬁﬁ
i 1-P(2,), j=1 ]
~ A -~
; sj = Pn(zj) - Pn(zj+1)’ j=2,.4.,0-1 :;
= A 4
” 1
o Note that sj=-0 if and only if 65 =0, j <n, that is, Iif Zj is a censored S
:‘: PN i :‘:{
g observation. Also, denote S1 = Fn(zi) = z sj, i=1,2,...,n. fﬂ?
i=1 A
- ]

censored survival data (Miller, 1981).

many authors, for example, Breslow and

Efron (1967) showed that this estimator, defined next, is "self-

t 2 0 is the product-limit estimator,

the 'nonparametric maximum likelihood

denote the ordered Xi's along with

the censored sample will be denoted by

the corresponding lower case letters (xi,Gi) and (zi,éi) for the unordered

the product-limit estimator of

ayed a central role in the analysis of
Its properties have been studied by

Crowley (1974), Foldes and Rejtd (1981),

~
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Foldes, Rejto and Winter (1980), and Gill (1983).

Based on randomly right-censored data, it is natural to estimate the
quantile function Qo(p) by the product~limit (PL) quantile function
an(p) H Ep = inf{t: ?n(t) 2 p}. Cheng (1981) obtained asymptotic normality
results for Ep and gave an asymptotic expression for Ep in terms of E:,
;n’ and fo, a density function of Fo- CsOrgd” (1983) presented strong approxi-

' ~

mation theorems for the PL quantile process Qn'

B PRLATRTALARTY,

3. THE QUANTILE ESTIMATOR

In this section the kernel estimator of Qo(p). 0 <p <1, from the
randomly right-censored observations (xi’Ai)' i=1,...,n, will be defined.
Similar to Yang's (1984) estimators for the uncensored case, an approximaftion
which is often easier to compute will be given. First, some assumptions and
notation concerning the kernel, the bandwidth sequence, and the lifetimc and
censoring distributions will be listed.

Let {hn} be a "bandwidth'" sequence of positive numbers such that
(h.1l) hn +0 as n > o,

Let K be a real-valued function defined on (-=»,»}) such that

(K.1) K(x) 2 0, all real numbers x, .

]
X.2) [ K(x)dx =1, -
(K.3) K has finite support, that is, K(x) = 0 for |x| > ¢

for some c¢ > 0,

(K.4) sup |K(x)| < », that is, K 1is bounded, SRR
x -




7
(X.5) K 1is symmetric about zero, and
(K.6) K satisfies a Lipschitz condition, that is, there exists

a constant I such that for all x,y,

|K(x) - K(y)| sT|x - y]|.

Notice that conditions (K.1) - (K.2) simply say that K must be a probsh. lity
J:msity function. Also, assume that the lifetime distribution FO ar? the

censoring distribution H are such that

(F.1) FO is continuous with density function fo,

(F.2) fo is continuous at Eg = Qo(p) and fo(E;) >0,
(F.3) Fo has a finite mean, and

(F.&) H(Tp ) < 1, where T, = sup{t: Fy(t) < 1}.

0 0

It should be noted that the conditions (F.l1l) - (F.4) are not prohiuw ive

and are similar to those assumed by Cheng (1981). Condition (F.4) is usually
required for asymptotic results with random right-censorship and guarautees
that observations can be obtained from the entire support of the distribution

F The conditions (h.1), (K.3 - K.6), and (F.2) - (F.4) are requirc @ :r

o
the asymptotic results of Section 4.

Now, for 0 < p <1, define the kernel type quantile function est ..

Q(P) = B} [T Q (IK((E-p)/n )dt 4
ol ! "
= hn 121 Z; 151_5((t-p)/hn)dt' (3.1) tg

.
. Yt
RPN W S S WY

A
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where Si = Fn(Zi). It should be noted that only those Zi which are uncen-

sored appear in the sum (3.1) since

Vi

0, if Zi is censored

R

)
R

W
—
w

K((t-p)/hn)dt =

i-1 * *
h [K'((S;=p)/h) - K ((5,_, =p)/h_],

N e

if 2i is uncensored,

e, A
L v B SRR

*
where K denotes the cumulative distribution function of K.
An approximation to the estimator (3.1) can be cobtained by noticins that

*
the derivative of K at (Si"P)/hn is approximated by

*
(hy/sy) R'((S; =p)/h) = K'((S,_; ~p)/h_] % K((S, =p)/h ).

Hence, when Si - S is small, (3.1) is approximately equal to

i-1
* ) s ,
Q(P) = h 1;-12151 K((S; -P)/h ). (3.2)

Again, since s, = 0 when 61 = 0, i < n, only the uncensored observations explicitly
appear in the sum (3.,2).

In the case of no censoring, (3.1) and (3.2) reduce to the kernel estimators
of Yang (1984). He has shown that his estimators are asymptotically cquivalent

in mean square and obtained rates of convergence for the variance and bi.:

Due to the censoring, similar results for the variance, bias, and mci: @
consistency of (3.1) and (3.2) seem to be difficult, if not impossible,to coi o F;;
under general conditions on FO and H. Some asymptotic results, however, hawv:

been obtained under reasonable conditions and are presented in the next section.




4, ASYMPTOTIC RESULTS

*
Here two asymptotic results for Qn and Qn will be obtained.
First, the almost sure consistency of the kernel estimator Qn(p) is

stated. The proofs of Theorems 1 and 2 are given in the Appendix.

Theorem 1. Suppose the conditions (h.1), (K.1l) - (K.6), and (F.1:
(F.4) hold., If (log log n/n)3/4 h;l + 0 as n + o then for each

0<p<1, Qn(p) - Qo(p) as n + «© with probability one,

The two estimators Qn and Q: can be shown to be asymptotically
almost surely (uniformly in p) equivalent under general conditions.

First, define u(t) = fg P_(x)dx, t > O,

Theorem 2. Suppose Fo and H are continuous and that (h.1l), (K.}),
(K.2), (K.6), (F.3), and (F.4) hold. If 1lim sup ﬁ(zn) <o with
probability one, then
PL]Q* () - 0 ()] = O(h-2(log log n/n)H)] = 1
Qn P Qn p n g log - .
Thus, if h;z(log log n/n)% + 0 as n + o, then under the above
conditions Q: and Q, are (uniformly in p) asymptotically equivalent

with probability one.

It should be remarked that limnsup ﬁ(Zn) < © almost surely

under the conditions given by Susarla and Van Ryzin (1980), for examlc,

.................
...................
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Also, 1if hn = D n-b for 0 < b <} and some positive constant

D, the condition that h;z(log log n/n)li + 0 holds, It seems to

be quite difficult to obtain the exact mean squared error of Qn

or Q; and to be able to choose {hn} to minimize this mean squared
error or to choose an optimal {hn} in some other sense. Some
simulation results presented in the next section indicate a range

of possible hn values for which the mean squared errors of Qn

(and Q;) are less than those of the PL quantile estimator,

5. SOME SIMULATION RESULTS AND AN EXAMPLE

A small Monte Carlo study was performed in order to provide some

small-sample comparisons of Qn and Q; with the PL quantile estimator,

and with each other, in the sense of mean squared errors. The study
also provides some insight into the choice of reasonable values for

hn which might be used in practice. The random censorship model

with Fo(t) = 1 - exp(-t) and H(t) =1 - exp(-At) was used with X
chosen to give 507 censoring or 30% censoring as in Reid (1981)., The
ratios of the mean squared error of an(p) to the mean squared errors
of the smoothed estimators Qn(p) and Q:(p) were computed for various
0 < p <1 and sample sizes n = 50 and 100. For each case, 1000 censorcd R
samples were generated using the uniform random number generator GGUBS ‘

in the International Mathematical and Statistical Libraries (1982) on

P . ", 5

a DEC VAX 11-750 cowmputer. The standard errors of the simulated mean

squared errors ranged from 10.1 to 10'4.

’ .
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Table 1 shows some of the results for the triangular kernel
RK(x) =1 - |x], |x] < 1, which satisfies the conditions (K,1) - (K.6)
of Section 3, The simulations were run for values of hn = 0,01 (0.02)
0.61. For the estimator Qn(p), for each value of p 1listed there is
an hn which gives smaller estimated mean squared error than the ]
quantile estimator. In particular, this is true for several hn
values for the median estimators Qn(O.S) and an(O.S). The appioxi
mat ion Q:(p) performs well for several hn values when p < 0.5,
but not so for larger p. As would be expected for more severe
censoring, the performance of either estimator at large values of p
is not as good as for values near 0.5. Notice that hn values of
0.09 to 0.13 appear to be best for Qn(p) over all p in Table 1 (a)
with n = 100, whereas for Q:(p) the h  should be somewhat larycr
(0.15 to 0.21) for a good estimator over all p. Generally, the bes
hn for Q:(p) is larger than that for Q,(p), indicating that Q:
requires slightly more smoothing than Qn'

The results of Table 2 are for the uniform kernel K(x) = 1,
|x] <k This kernel does not satisfy condition (K.6), but the sim-
ulation results are quite similar except perhaps for the best choice«
of values of hn'

It was mentioned in Section 4 that it is difficelt 1if not impossiblc,
to calculate in general the exact mean squared error of Qn or

*

Qn for small n due to the right-censorship. Also,

the mean square convergence (with a rate)
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has not yet been obtained. Hence, to find an optimal hn in the sen- of
*
minimum mean squared error of Qn or Qn seems to be quite difficult. These

simulations, however, indicate reasonable ranges of hn values which give

small mean squared errors under the assumed models and censoring percentages.

As an example of the quantile estimators, the life test data for =40
mechanical switches reported by Nair (1984) are used. Two failure modes, A and B,
were recorded and Nair (1984) estimated the survival function of mode A,
assuming the random right-censorship model. Table 3 shows the 40 observations
with the corresponding 61 values (Gj.sl indicates failure mode A and 6i_=0
denotes a censored value). There are seventeen uncensored observations, slightly
more than 50% censoring. From Table 1(a) with n =50, the values of hn chosen

*
for this example were 0.03 for Qn(p) and 0.15 for Qn(p). (Also, respeciive

values of 0.05 and 0.19 were tried yielding similar estimates.) Figurc ) o
* -
shows the estimates Qn(p) and Qn(p), calculated using the triangular kernel,
~ -
along with the PL quantile function Qn(p). Due to the large number of censored iﬂﬁ%

observations, the estimates for large p reflect the small estimated mean
squared error ratios in Tables 1 and 2 for p 2 0.90. In particular, the
estimate Q: is not very smooth for moderate to large p and could be smoothed
more by taking larger hn' say hn = 0.35, However, as indicated by Table 3,
the performance deteriorates for larger p with such hn’ and the estimate Q: }55
falls much below Qn and an for this data. The estimates of median lifctime

are Qn(O.SO) = 2,5478, Q:(O.S) = 2.4354, and Qn(O.S) = 2.5480.

.......................................
......................
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‘. TABLE 1. Ratios of MSEs with Triangular Kernel .

S
PRPCR]

(a) 50% Censoring

LR L

o
o

n = 100
.03 .05 .07 .09 .11 .13 .15 .19 .21 .25 .31 .35 .41

.10 a.]1.16 1.18 1.31 1.34 1.43 1.40 1.51 1.40 1.27 1.17 0.84 0.65 0.38
b.| 1.29 1.37 1.52 1.55 1.66 1.68 1.85 1.75 1.66 1.58 1.15 0.88 0.50

.25 a.{1.04 1.07 1.09 1.12 1.16 1.21 1.16 1.23 1.22 1.17 1.15 1.08 0.93
b.|1.17 1.20 1.22 1.27 1.31 1.35 1.35 1.40 1.44 1.43 1.50 1.47 1.40

. MR
. 2T R

a.{1.04 1.07 1.10 1.12 1.14 1.17 1.14 1.16 1.15 1.10 1.03 0.89 0.73
b.{1.14 1.24 1.34 1.34 1.39 1.47 1.46 1.50 1.61 1.72 1.74 1.85 1.83

a.|{1.07 1.19 1.23 1.41 1.41 1.31 1.20 1.43 1.34 1.3]1 1.60 1.85 2.64
b.} 0.33 0.63 1.16 1.53 1.51 1.69 1.27 1.47 1.31 1.30 2.40 2.66 2.65

a.|1.11 1.13 1.23 1.30 1.40 1.5]1 1.45 1.14 0.94 0.92 0.50 0.51 0.37
b.| 0.10 0.16 0.21 0.22 0.37 0.64 0.79 0.76 0.70 0.76 0.45 0.48 0.36

a.{1.02 1.02 0.88 0.69 0.57 0.49 0.41 0.34 0.29 0.28 0.22 0.22 0.19
b.| 0.09 0.10 0.37 0.55 0.57 0.54 0.49 0.40 0.33 0.31 0.24 0.24 0.20

n =50
a.| 1.08 1.12 1.22 1.26 1.29 1.38 1.41 1.47 1.34 1.24 0.91 0.87 0.59
b.] 1.48 1.52 1.58 1.75 1.79 1.92 2.06 2.17 2.04 1.97 1.54 1.43 0.98

a.| 1.04 1.09 1.11 1.13 1.16 1.16 1.19 1.20 1.22 1.21 1.21 1.17 0.97
b.[1.27 1.32 1.32 1.48 1.45 1.53 1.57 1.57 1.71 1.71 1.90 1.88 1.80

a.] 1.09 1.07 1.07 1.10 1.15 1.17 1.26 1.21 1.10 1.21 1.04 0.96 0.97
b.| 0.34 1.08 1.34 1.57 1.73 1.92 2.09 1.89 2.00 2.40 2.14 2.)1 2.25

a.|1.13 1.10 1.19 1.19 1.33 1.29 1.41 1.56 1.42 1.62 1.92 2.35 2.65
b.| 0.17 0.36 0.61 0.76 1.07 0.93 0.95 1.29 0.98 1.22 2.16 2.74 2.20

a.|1.06 1.11 1.13 1.15 1.16 1.16 1.08 0.90 0.77 0.69 0.51 0.48 0.34
b.| 0.11 0.13 0.17 0.16 0.25 0.45 0.60 0.70 0.63 0.63 0.50 0.48 0.34

a.| 1.00 0.99 0.88 0.75 0.63 0.55 0.51 0.41 0.39 0.36 0.3) 0.31 (.29
b.| 0.12 0.13 0.47 0.66 0.67 0.68 0.68 0.55 0.53 0.46 0.38 0.36 0.32

(MSE F;1)/(MSE Q,), b = (MSE F.l)/(MSE Q) i
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TABLE 1. Ratios of MSEs with Triangular Kernel
(b) 30% Censoring
n = 100 '
>3a | .03 .05 .07 .09 .11 .13 .15 .19 .21 .25 .31 .35 .e1

.10 a.}1.10 1.15 1.24 1.26 1.32 1.34 1.41 1.37 1.19 1.11 0.8C 0.62 0,35
b.}{1.22 1.30 1.39 1.44 1.50 1.55 1.66 1.64 1.49 1.42 1.02 0,78 0.43

.25 a./1.04 1.08 1.09 1.13 1.14 1.17 1.17 1.20 1.21 1.22 1.22 1.09 0.94%
b.{1.09 1.16 1.17 1.22 1.22 1.25 1.28 1.29 1.35 1.38 1.43 1.31 1.19

.50 a.|1.04 1.05 1.07 1.09 1.10 1.11 1.12 1.16 1.09 1.11 1.06 0.94 0.74
b.{1.10 1.11 1.15 1.19 1.20 1.21 1.22 1.26 1.24 1.29 1.29 1.22 1.05

.75 a.{1.02 1.15 1.10 1.10 1.08 1.11 1.12 1.05 1.00 0.79 0.82 0.98 1.41
b.|1.02 1.38 1.27 1.33 1.35 1.40 1.43 1.53 1.57 1.50 1.39 1.46 1.68

.90 a. | 1.11 1.23 1.34 1.21 1.23 1.67 1.71 1.73 1.21 1.05 0.55 0.52 0.36
b. | 0.69 0.97 1.25 1.15 1.34 2.07 1.72 1.61 1.10 0.98 0.53 0.50 0.35

.95 a. | 1.23 1.27 1.61 1.66 1.18 0.94 0.69 0.51 0.40 0.34 0.27 ¢.26 0.21 ———
b.{0.32 0.38 1.18 1.50 1.08 0.94 0.70 0.53 0.42 0.36 0.28 0.27 0.22 .

n = 50
.10 a.| 0.9 1.00 1.06 1.12 1.15 1.21 1.20 1.34 1.17 1.17 0.83 0.77 0.55 T
b.| 1.17 1.26 1.29 1.44 1.46 1.54 1.59 1.80 1.61 1.66 1.23 1.10 0.77
.25 a./1.07 1.07 1.08 1.12 1.14 1.10 1.17 1.17 1.21 1.18 1.23 1.23 1.12
b.!1.21 1.21 1.18 1.28 1.29 1.27 1.351.37 1.45 1.42 1.59 ).60 1.55
.50 a. | 1.05 1.04 1.08 1.09 1.11 1.08 1.12 1.18 1.08 1.13 1.10 1.06 0.93
b. | 1.13 1.12 1.21 1.24 1.28 1.25 1.33 1.40 1.42 1.42 1.48 1.55 1.46
.75 a./1.08 1.07 1.12 1.14 1.13 1.151.12 1.04 1.25 0.92 1.11 1.2¢ 1.79
b.| 0.62 1.16 1.24 1.42 1.50 1.54 1.74 1.6S 2.11 1.64 2.01 1.8} 2.15
.90 a. | 1.10 1.24 1.39 1.23 1.42 1.69 1.83 1.84 1.59 1.22 0.94 0.67 0.51
b.| 0.22 0.53 0.76 0.65 1.08 1.53 1.78 1.68 1.44 1.17 0.92 0.66 0.50
.95 a. | 1.13 1.24 1.21 1.14 0.96 0.83 0.65 0.49 0.42 0.39 0.36 0.28 0.24
.| 0.19 0.21 0.71 1.04 0.98 0.91 0.72 0.56 0.47 0.42 0.39 0.30 0.25

a = (MSE F.1)/(MSE Q ), b = (MSE F 1)/ (MSE Q%)




TABLE 2. Ratios of MSEs with Uniform Kernel

(a) 50% Censoring (n=100)

7"5i\, .03 .05 .07 .09 .10 .13 .15 .20 .25 .30 .35 .40 °
.10 a. {1.12 1.13 1.25 1.26 1.29 1.30 1.40 1.52 1.53 1.50 1.19 0.99 ’i
b. {0.83 1.10 1.35 1.41 1.42 1.50 1.64 1.81 1.88 1.90 1.5/ 1.35 .
.25 a. [1.02 1.05 1.06 1.08 1.10 1.15 1.13 1.17 1.24 1.24 1.29 1.15 L ‘}
b. {0.66 0.83 1.03 1.08 1.12 1.17 1.23 1.30 1.43 1.42 1.47 1.40 o |
1
a. [1.03 1.06 1.09 1.10 1.06 1.13 1.13 1.12 1.17 1.16 1.18 1.03 -
b. {0.26 0.54 0.83 0.95 0.96 1.07 1.17 1.31 1.32 1.40 1.60 1.50 : _
a. {1.06 1.14 1.19 1.35 1.13 1.25 1.14 1.32 1.52 1.48 1.31 1.16 Z;.;;
b. | 0.13 0.27 0.54 0.74 0.73 1.02 0.84 1.15 1.39 1.28 1.21 0.88 '
a. {1.08 1.08 1.17 1.21 1.26 1.35 1.47 1.46 1.22 0.93 0.71 0.50 ]
b. | 0.06 0.10 0.17 0.20 0.22 0.23 0.23 0.20 1.32 1.12 0.83 0.56 S
a. {1.02 1.01 1,02 1.01 1.01 0.68 0.53 0.36 0.29 0.26 0.24 ©.22 R
b. {0.08 0.10 0.09 0.10 0.10 0.53 0.73 0.53 0.38 0.31 0.27 0.24 »
(b) 30% Censoring (n=100) ;,fﬂf
RS
" J

a. |/1.08 1.07 1,18 1.19 1.22 1.24 1.34 1.46 1.46 1.40 1.14 0.92
b. |1.14 1.28 1.39 1.41 1.17 1.40 1.56 1.73 1.73 1.72 1.43 1.18

a. |1.03 1.07 1.07 1.09 1.09 1.12 1.15 1.17 1.26 1.22 1.26 1.18
b. | 0.61 0.90 1.03 1.07 1.09 1.16 1.19 1.26 1.35 1.34 1.41 1.35

a. |{1.04 1.04 1.05 1.07 1.08 1.08 1.10 1.13 1.14 1.13 1.13 1.08
b. |0.47 0.74 0,90 0.94 1.03 1.09 1.09 1.17 1.21 1.26 1.32 1.22

a. |1.01 1.02 1.08 1.08 1.04 1.11 1.18 1.10 1.03 0.91 0.80 0.71
b. {0.24 0.56 0.76 0.93 0.87 1.11 1.26 1.20 1.29 1.27 1.2] ).28

a. [1.07 1.23 1.28 1.19 1.21 1.35 1.24 1.34 1.77 1.07 0.78 0.43
b. | 0.23 0.44 0.69 0.80 0.77 0.99 0.94 0.75 1.82 1.21 0.85 0.46

K

Lt O
. s et
STt et L,

I R

¢ ra _As_ 8 awtieaas

a. |1.16 1.27 1.35 1.53 1.51 1.55 0.96 0.59 0.46 0.32 0.28 0.24
b. | 0.18 0.31 0.37 0.38 0.29 1.63 1.19 0.72 0.51 0.35 0.30 0.25
(MSE F;1)/(MSE ), b = (MSE F;l)/(MSE Q&) o
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TABLE 3, Failure Times (in Millions of Operations) of Switches

' ' ’ f
z, 61 Z, 51 2, 84 z; Gi
1,151 0 1,667 1 .2.119 V] 2.547 1
1.170 0 1.695 1 2,135 1 2.548 1
1,248 0 1,710 1 2,197 1 2,738 0
1,331 0 1.955 0 2,199 0 2.794 1
1,381 0 1.965 1 2,227 1 2,883 0
1,499 1 2,012 0 2,250 0 2.883 0
1,508 0 2,051 0 2.254 1 2,910 1
1.543 0 2.076 0 2.261 0 3.015 1
1.577 0 2.109 1 2.349 0 3.017 1
1.584 0 2.116 0 2,369 1 3.793 0

6. CONCLUSION

The kernel type quantile estimator given in this paper (and the approxi-

mate estimator) are smoother than the PL quantile function which has bec:
used for estimation from right-censored data in the past. Based on the unall
Monte Carlo simulation study, however, the approximate estimator Q:(p) Jdoes
not seem to perform overall as well as Qn(p) for p > 0.5, even though the
two estimators are asymptotically equivalent almost surely under the statcd
conditions. Thus, Qn(p) seems to be the better small-sample estimator.
The integrals involved in computing Qn(p) are easily calculated for the
simple kernels used in Section 5,

Still under study is the problem of mean square convergence of the cst i
mators Qn(p) and Q:(p) along with possible rates. Also, the choice of an

optimal bandwidth sequence {hn] in the sense of minimum mean squared «r.

or minimum bias is still being investigated. However, a practical choice of

hn can be obtained based on results of simulations such as those given in ‘-?:;_w
Tables 1 and 2. For a particular set of right-censored data, h, can eas il RN
be changed computationally to give as "smooth" an estimate as desired. g o

~ R
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.
APPENDIX

The proofs of Theorems 1 and 2 are presented here.

i Proof of Theorem 1. First, write
h-t 11 Q (0R((e-p)/h ddt - Q°(p)
n OQn P n P
’ 1,2 o -1
I = o 1 (®) - Q(©)Ih " K((t-p)/h )dt
+ -t [ Pk ((e-p)/h yat - Q(p))
. n 0 n P
EI+13.

Now, following the first part of the proof of Yang's (1984) Theorem } wri»

the sample quantile function replaced by Qn’ under the assumption: giver,
expression I can be integrated by parts to obtain
9 :
&y F_(x)
I"f - - n -1 -
1 1 [o { B ) h " K((t-p)/h_)dt}dx
S
' + Io [; (x) - F (X)]h-l K((F,(x) - p)/h_)dx
—~ 0 "'n 0 n 0 n
Fn(x) -1 N
- - [ po P K /B)dE = [F, (0
: 1
- - Fo(x)Ih | K((Fy(x) - P)/h_)}dx
.Y

2 -1
- [o [F,(0) = F@x)Ih " R((Fy(x) - p)/b_)dx

=-11-120

SR Y e

Using condition (F.4) and the law of the iterated logarithm (LIL) result for

F  given by Foldes and Rejto (1981), the same argument used to obtain Yany's

A
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(1984) inequality (4) can be used to show that

/2 .;. PO

3
l1.] s 0 (max{12810KT ?, {log logn)” }) almost surely. (A.1) .-..
1 nh 3/2.2 .
n n"'"h .
n
Also, with probability one, ;fi .
2 1 -1 o . '4
IIZI < "Fn - FOH IO hn K((Y'P)/hn)/fo(Q (Y))d)'9 :4
1
~ ~ o
where ]an - Foll z supll-‘n(x) - Fo(x)l, and thus, by conditions (h.l),
p 3 - 4
(K.3), and (F.2) and again using the LIL for F_ (with condition (F.4)) »
it can be shown that asymptotically N
B
log logn. % , i 5]
[12| - 0((——1—-5—n Y*) with probability onme. (A.2) .
1

Finally, using conditions (h.l), (K.1) - (K.3», (F.1l), (F.3), and (F.4)

and Theorem lA of Parzen (1962), it fcllows that
' »
1 o -1 0, i I
[1,1 = 1[5 @(e)n ™" R((e=p)/h )de = Q" ()| = o(1). (a.3) ]
]
Therefore, combining (A.1l), (A.2), and (A.3), since (log logn/n)3/4h;l-*0 '.'
as n +» implies that (loglogn)/(n h ) >0 and (log 1031‘1/:1)3/2 hn-l + 0 ’. j
as n + », Theorem 1 is proved. 11/ . 4
Proof of Theorem 2. For O s p s 1, . .
4
n S

" - e =t Tz (s, K((S,-p)/h ) - [ b R((e-p) /B yar)
R % n by ZatS RUBTRIRY) = s n) 0 _
g
When s, > 0, that is, Zi is uncensored, let s: be an interior point oi » ‘
-
the interval (51-1'51) with probability one so that ;.;:,-}:.
. S \ 4

i RS
s, K((S, -p)/h ) = [* R((t-p)/h )dt  a.s. A
n S n

i-1 LI

J s "e e '>- “a .
..-..1_'1’.'9 ..i'!::. <




Then using condition (K.6),

n
loa®) = Q@ £ h1 ) 2,8, [RUS,7RV/y) = KU(ST =PI /)]

=2 E | *I
sTh z, s,]s, -S
n 4 %L T
-2 ¢ 2
sTh'® ] z s a.s. (A.4)

i=]

Now, by the continuity of Fo (F.1), using the definition of s; and Si,

(A.4) can be written as

n -~ ~ ~
LXOREROIES G RERLNCRER ACRILNCR

=l re

ig x';n(x) - gn(x-)den(x)

-2 - ,
s Th-® [ x[[F_(x) = Fy(®)]

+ iro(x-) - ;n(x-)]]d;n(x)

<2 42 -~
s 2 " |k - Foll [Qx4F (x)  a.s., (A.5)

where g(x-) denotes the limit from the left at x of the function g and
IF -F.!l = " -
1 Fy = Foil = sup [F 00 = Fy(o .

Now, since Pn(x) =0 for x > Zn’ f; x«iFn(x) = P(Zn), and by the

assumptions of the theorem and the LIL for Fn of Foldes and Rejtd (1981),

from (A.5)
]Q:(P) - Qn(P)l = 0((1c>glc>gn/n)!i h“2) a.s. (A.6)
n

Noting that the right-hand-side of (A.5) does not involve p, the conclusion

of the theorem follows., 117

PR
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