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The expected value of the Finite Bayesian Procedure (FBP)
computed minimum number of population errors. This value

is computed by multiplying the hypergeometric probability of
observing r errors in a sample, by the R** value associated
with the particular r, and summing these values for r = 0 to
r = 100.

The population size, set either at 1000 or 5000.
The sample size fixed at 100 for the study.

A FBP parameter derived from the expected value and variance
of the beta distribution. See Eq [16].

The hypergeometric probability of observing a certain number
of errors given a population size, a sample size, and the
total number of errors in the population,

The actual number of errors in the population.

The FBP computed minimum number of population errors, based on
the number of observed errors in a sample, and is equal to or
greater than R, the actual number of population errors.

The specific number of observed errors in the sample where R¥*¥
is equal to or greater than R.

A FBP parameter derived from the expected value and variance
of the beta distribution. See Eq [15].

The reliability of confidence level. These values represent
the probability that the model results are correct. The
higher the reliability, the higher the confidence for correct
results.

The maximum tolerance error rate or materiality. For this
study, u was equal to the actual number of population errors
(R) divided by the population size (N). .
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Abstract

[

/
\ '

-~ Tnis research examines the reliability and validity of the Finite
Bayesian Procedure (FBP) model through an evaluation of robust and
efficient prior probability distributions. The model, developed by
James Godfrey and Richard Andrews, presents a different approach to
compliance testing in auditing.

This study utilizes small and moderate-sized populations, four
population error rates, a fixed sample size, and four reliability
levels. 1In addition, four expected error rates, based on a beta prior
probability distribution and ranging from very low to high, combined
with three variance levels and a uniform distribution, are used to
evaluate the model.

The results indicate that the model is adequately reliable and
valid. However, the uniform distribution seems to perform best of all
prior probability distributions tested. Moreover, tradeoffs between

robustness, efficiency, and religbility seem a necessity when using the

Finite Bayesian Procedure model.
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)ﬁ I. Statistical Sampling in Auditing

- and the Finite Bayesian Procedure
\ -

:}: Introduction

:}: Despite somewhat staid appearances, the audit process has been

el dynamic in recent times. Historically, auditors often performed a 100
%f{ percent examination of the records of the organization audited before
iif rendering an opinion as to the fairness of the financial statements
\ | (3:2). Yet, as organizations grew, and with them, the number of

,}45 transactions generated, a complete review became what Arkin termed
;L: "both unwarranted and uneconomical” (3:2). Statistical sampling became
N
!!hh a necessity for providing a reliable indication of the accuracy of

f;f other similar transactions.

-

N Concurrent with the rise of testing or sampling, auditors began
»,._, to recognize the importance of an organization's system of internal
..'_‘.'

:1. control. Essentially, auditors started depending on the internal

5i: control system, as verified by tests of that system, called compliance
LY

.. tests, to direct them in subsequent sampling of account balances, or
'i:: substantive tests. As a general rule, the stronger the system of

SR .
- internal control, the less substantive testing required by the auditor
- (29:6).
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&E The emergence of sampling in auditing and the rising dependence on
Lij the system of internal control provide impetus for this research
‘jf effort, In 1982, Godfrey and Andrews proposed a model for compliance
i; testing of an internal control process to determine a probability

e distribution for its error rate (21:304-315). The probability

ES distribution for the error rate could then aid the auditor in his

ﬁ} evaluation of the internal process. Their approach is Bayesian,
;;: meaning that an auditor's prior knowledge and experience are

:% statistically incorporated into the sampling technique. Also, the

éi model assumes finite populations, which correctly describe those

sf encountered in auditing situations. When compared to other common
?;; methods of compliance testing, Godfrey and Andrews propose that their
5?1 model, called the Finite Bayesian Procedure (FBP), more closely

"4
‘\4 emulates the actual auditing environment aud requires sample sizes
;:: equal to or less than those required by the common alternatives, such
?2' as the classical method or the Bayesian procedure introduced by Felix
and Grimlund (21:304-305).

Ei; Research Objectives

; This study expands on Godfrey and Andrews' analytical work by
_i% testing the model's effectiveness in evaluating the degree of
5;i compliance with an internal control process. The research centers on
.‘ the evaluation phase of the FBP with two primary objectives:
ii: 1. To determine the model's reliability and validity in a typical
E;; auditing environment;

(3
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2, To determine if any specific prior distributions significantly

improve the model's reliability and validity.

Background

An Overview of the Auditing Process.

Auditing is a systematic process of objectively obtaining

and evaluating evidence regarding assertions about economic

actions and events to ascertain the degree of correspondence

between those assertions and established criteria and

communicating the results to interested users [11:18].

Depending on the perspective, the purpose of the audit varies.
For the independent public accountant, whose view this report takes,
the ultimate objective of the examination is the expression of an
opinion on the fairness with which the financial statements present
the financial position of the organization audited in accordance with
generally accepted accounting principles (2:5). For the internal
auditor, the concern is an examination and appraisal of the internal
control system's integrity and the efficiency of financial, accounting,
and administrative operations, to assure compliance with established
procedures and to provide the basis for improvement in operations
(2:5). The governmental auditor's goal is similar to that of both
the independent public accountant and the internal auditor, but also
includes "auditing the economy, efficiency, and achievement of desired
results" (12:2). Though the final objectives vary somewhat, each

auditor must evaluate the actual degree of compliance with the

organization's system of internal control.




L The study and evaluation of the system of internal control

(' provides the starting point for independent auditors in defining the

-:: nature, timing, and extent of subsequent audit procedures required

\I

ag for the expression of an opinion on financial statements (25:10-3).

s\:

- Statements on Accounting Standards formally defines "internal

3: control":

-

-,

'j- Internal control comprises the plan of organization and

A all of the coordinate methods and measures adopted within

P a business to safeguard its assets, check the accuracy and
reliability of its accounting data, promote operational
efficiency, and encourage adherence to prescribed managerial
policies. . . . [A] "system" of internal control extends
beyond those matters which relate directly to the functions

® of the accounting and financial departments [l:Section

r - 320.09].

X

~

}2 This broad definition encompasses both internal accounting control and

\. administrative, or operational, control, though the distinction is

ié often not clear cut.

:f Administrative or operational controls refer to the plans,

»

s methods, and measures used to provide operational efficiency and

_G adherence to prescribed policies in all departments of the organization

-

o (25:10-7). Generally, controls of this nature do not bear directly on

a the financial statements and, consequently, probably do not directly

- interest the independent auditor.

:ﬁ Internal accounting controls, on the other hand, do directly

. interest the independent auditor because they bear directly upon the

dependability of the accounting records and the financial statements.

AN
e

SAS No. 1 defines "internal accounting coantrols" as:

AN
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the plan of organization and the procedures and records
that are concerned with the safeguarding of assets and
the reliability of financial records and consequently are
designed to provide reasonable assurance that:

a. Transactions are executed in accordance with
managements' general or specific authorization.

b. Transactions are recorded as necessary (1) to
permit preparation of financial statements in conformity
2. with generally accepted accounting principles or any other
criteria applicable to such statements and (2) to maintain
accountability for assets.

c. Access to assets is permitted only in accordance
3 with management's authority.

d. The recorded accountability for assets is compared
with the existing assets at reasonable intervals and
appropriate action is taken with respect to any differences
[1:Section 320.28].
~ The independent public accountant's examination focuses on these

accounting controls.

The examination extends beyond defining and reviewing an internal

'i: control system. Before deciding on the nature and extent of subsequent
auditing procedures, the auditor must gain some assurance of the

- system's protective quality (3:3). Superficially, the internal control
system may appear excellent, but given the requirement for objective

evidence on which to base the auditor's judgment, an evaluation of

+
1 "a

the degree to which the system operates as prescribed is needed.

s
At

Errors may occur deliberately, such as by fraud or embezzlement, or

BAOh
vaja) s epise

inadvertently, by random clerical failures (3:3). Also, they may arise

o

in areas not adequately protected by the internal control system (3:3).

¥
.

[4 ,. Ry .'. )

Only by examining records processed through the system can the auditor

0

gain assurance that it operates effectively. A sample, rather than a
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complete inspection of all records, may serve as the basis for the

evaluation., These samples are called "tests of transactions," or more

commonly, "“tests of compliance."

Arkin notes that,

Apart from the possible failure or inadequacy of the internal
control system is the auditor's direct determination of the
accuracy and reliability of the values that appear in the
financial statements [3:4].

Again, auditors typically perform tests. These tests of account
balances are referred to as "substantive tests."

The audit process, therefore, is integrated and multi-phased and
can involve numerous tests, both compliance and substantive. Kenneth

P. Johnson summarizes the approach:

Under the profession's standards, auditors first review a
company's system of internal accounting control and make an
evaluation of it. Based on the evaluation, they determine
whether to perform functional (compliance) tests of internal
accounting controls, or to proceed directly to the validation
(substantive) testing of account balances. If the evaluation
of internal accounting controls indicates that a control
procedure has been established, the auditor has the option of
functionally testing the control to gain reasonable assurance
that the procedure is in effect, is operating as prescribed,
and can be expected to continue to do so throughout the
period under examination, and thus can appropriately reduce
the validation testing of related account balances. I1f, on
the other hand, the evaluation uncovers a control weakness,
the auditor cannot rely on the control and has to select
validation tests of the appropriate nature, extent, and
timing to compensate for the control weakness, and apply

them to the related account balances [25:10-3].

Figure 1 provides a simplified view of the audit process and
illustrates the stages when sampling techniques may prove useful to

the auditor.
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Step 1:
Describe the
interna! control system.

v

Step 2:
Evaluate the
interna! contro! system,

v

Step 3:
Test the internat
contro! systemn description.

Y |

Step 4:

Perform detailed . .
tests of transactions — Attribute sampling plans

for compliance with controls *

v

Step 5:
Evaluate compliance
with interna! controls.

»
.

+

3
Ry
z
K Step 6:
i Perform substantive tests e .
of statement balances | o Variable sampling plans
(including analytic review),

v

Step 7.
Evatuatie 21l authit evidence
ang form an opinion
as to statement fairnesy.

® Comphiance tests are notrequired 1! the system of internal control 18 Mot 10 be reliec On in determining the nature. eatent
snd timing of subsequent lests

(Adopted from 4:6)

Figure 1. The Audit Process




The Role of Sampling in Auditing. Due to the tremendous amount of

transactions processed through modern organizations, auditors must rely
on partial examinations or samples on which to base their evaluation.
Meigs, et al., defines sampling as "the process of selecting a sample
from a larger field of items (called the population) and using the
characteristics of the sample to draw inferences about the character-
istics of the entire population" (29:238). Sampling can take two basic
forms: judgmental and statistical. 1In judgmental sampling, the auditor
uses his discretion in predetermining the size and composition of each
audit sample (29:227). Bailey notes, "Convenience, availability,

whim, or any other factor may be applied" (4:30). Judgmental sampling
provides no means for verifying that the sample represents the
population, or for measuring the possibility that it does not (29:239).
On the other hand, with statistical sampling the auditor selects
desired levels of risk and precision and estimates the expected number
of exceptions for each sample. He then refers to statistical sampling
tables to determine the appropriate sample size and, in some cases,

the specific transactions for inclusion in the sample (29:227).

Because statistical sampling iavolves randomness, where every unit
of the population has an equal chance of selection, it offers several
distinct advantages. Most notably, statistical sampling enables
measurement of the risk of material errors occurring purely by chance
and allows justifiably smaller sample sizes —- both of which are not

possible with judgmental sampling (29:329, 268-269).
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Statistical sampling refers to a broad classification of the many
statistical methods available to the auditor. Two basic types of
methods separate this classification: 1) attribute sampling plans,
normally associated with compliance tests; and 2) variable sampling
plans, usually relating to substantive tests. When conducting
attribute tests, concern lies with the qualitative aspects of sample
units, usually expressed in dichotomous groupings (4:47). These are
tests of the YES/NO form, such as error or no error, authorized or not
authorized, and so on (4:47). Variable sampling plans address the
quantitative aspects or values of the sample units, usually in dollar
amounts (4:47). Normally, the concern rests with estimating the dollar
value of errors associated with the sampled account balances. This
study focuses on a procedure for compliance testing using an attribute
sampling plan.

Auditors have several methods of attribute sampling available to
them. Traditionally, these techniques are of the classical statistics
variety; however, research over the past several years suggests a
separate classification for attribute sampling using Bayesian
procedures. The distinction seems especially appropriate for the
purposes of this research effort, which evaluates a Bayesian procedure
proposed by Godfrey and Andrews.

Classical procedures use techniques derived from classical
statistics similar to those methods used widely in business, industry,

and science. Briefly, the general procedure is as follows:

ot g ¥y & EE A I R L RNy . ) e TR
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After specifying a desired precision (reliability) and
confidence level (risk) for the sample estimate, the auditor
makes a preliminary estimate of the fraction or percent
in error in the population. The auditor may derive this
estimate from previous data or through a preliminary sample,
or pilot study. By referencing various precomputed tables
readily available, the auditor then estimates the initial
sample size. He then randomly draws this sample and computes
the fraction in error. Iteratively, he repeats the process
until attaining the desired precision and confidence (i.e.,

—
ot

A
]

f: the auditor re-determines the required sample size, randomly
;ﬁ draws this redetermined sample, and recomputes the fraction
o in error until the error rate falls within the specified
':5 reliability and risk parameters). Alternatively, the
auditor may reevaluate and relax the specified precision and
‘.. confidence levels to preclude additional sampling
e [16:208-211; 29:253-260].
!..‘
308
c: Apparently, several weaknesses exist in the use of classical
®
e procedures for auditing. As a practical matter, the auditor may find
XS
. it difficult, if not impossible, to conduct the additional sampling
) ‘i'
':{ often required by the classical procedure. The auditor normally must
\_, relax the specified reliability and/or confidence level when the
:ﬁ sampling results so warrant, forcing an ad hoc evaluation (29:269-270).
,J Furthermore, auditors often find it difficult to incorporate the
o results of the classical procedure, usually expressed as confidence
N
3;} intervals or tests of significance, into final subjective judgments
':: concerning the quality of the organization's internal control system
=t (32:265).
- , , :
=" Bayesian procedures have emerged in response to problems with the
N
'J: classical approach. The Bayesian method incorporates a subjective
= assessment of the internal control process into the analysis. The
i . . e
" procedure recognizes that the auditor may have a significant amount
Y

)
P

of experience which can aid in making estimates and in selecting sample

sizes, that the auditor considers certain qualitative factors in making

)
b
-

WY
i~
Y

:.\ 1 0
\

L <

O N S Ut S IR L L L L Rt S LR R '.’,\“."
. i W8,




; e
..................

Judgmental Classical

Sampling Attribute
Statistical Bayesian

(FBP)

Variable

(Adopted from 27:2)

Figure 2. Relationship of FBP to Sampling Classifications

his estimates, and that sampling is costly in both time and money
(5:115). Using Bayes Theorem, this approach provides a methodology for
explicitly including subjective assessments into the analysis, and
thereby provides a framework for the ultimate decision on the quality
of the organization's system of internal control. Figure 2 illustrates
the relationships and positions this study of a Bayesian approach among
the various sampling methods discussed thus far.

The Bayesian Approach: An Overview. The potential advantages of

a Bayesian approach relating sample evidence to auxiliary information
have been recognized in the accounting literature for some time. The
pioneering efforts by Birnberg and by Kraft highlighted not only the
possible benefits in sample size and sample design, and the associated
reduced cost, but also the significance of formally incorporating the

auditor's intuition into the decision process (5:108-116; 26:50). By
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recognizing and quantifying this prior information and by providing a
methodology for explicitly including it in the decision process, the
Bayesian approach tends to prevent haphazard use of this experience
(5:114).

Several researchers, including Tracy, Sorensen, and Godfrey and
Andrews, emphasize the importance of this explicit incorporation of
subjective evidence, comparing it to classical statistical inference
procedures (34; 33; 21). The Bayesian view explicitly weighs, in the
form of a prior distribution, the auditor's beliefs concerning the
probability of events (e.g., population error rates). On the other
hand, the classical procedure implicitly assumes equal probability
for various population error rates. A uniform distribution of errors
seems highly unrealistic, however, in the typical low error rate audit
environment (34:93; 33:555-558; 21:305). Scott, I1jiri and Leitch, and
others cite legal reasons favoring the Bayesian approach as well (31;
24:106).

Sorensen explains the Bayesian framework for discrete variables:

In general terms, the Bayesian theorem is a given set of

mutually exclusive and collectively exhaustive events
El, EZ’ o« o e En’ and an experimental outcome, e, such that

P(elE.) P(E.)
J i

P(Ejle) = (1]

)3 P(elEj) P(Ej)

i=]

for j=1,2,3, ....n
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where

P(Ejle) = posterior probability of Ej being the
state of the world, given experimental
outcome, e

P(elEj) = conditional probability of experi-
mental outcome, e, given Ej is the
state of the world

P(Ej) = prior probability on Ej being the

state of the world

P(elEj) P(Ej) joint probability

}:P(elzj) B(E,)

marginal probability of experimental
outcome, e, summed over all possible

states of the world [33:557]t

A more rigorous description of the general Bayesian
approach for the continuous case can be found in Godfrey
and Neter's report in the Audit Research Working Paper
Series (Report No. 83-001), entitled "Bayesian Bounds
for Monetary-Unit Sampling in Accounting and Auditing,"
University of Georgia, 1983.

Two assumptions concerning the prior probabilities are often made
throughout the literature relating to attribute sampling. First, it
is assumed that auditors can use their judgment and other evidence to
formulate specific probabilistic estimates of the population error rate
(e.g., P(Ej) (19:26). Crosby, Chesley, Felix, Corless, and others have
demonstrated in assessment studies that this elicitation is possible,
though much variability exists (7-10; 13; 14; 15; 18). Furthermore,
the particular elicitation technique used appears to play a key role
in the obtained probability, though training seems to improve the
confidence in these assessments (14:356). To date, the research

evidence is inconclusive in assessment of prior probabilities.
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The second assumption concerns the case of a beta-binomial model.

Blocker, Corless, Crosby, Felix and Grimlund, and others have used the
beta family of probabilities to represent the auditor's prior beliefs
(6; 13; 14; 15; 19). Though initially chosen for its reasonableness
and analytic simplicity, Crosby demonstrated that the beta probability
distribution did adequately model the auditor's beliefs, indicating
its descriptive validity as well (14:364).

The beta-binomial model also assumes that the underlying process
from which the sample is taken (e.g., some internal control procedure)
can be represented as a Bernoulli process. As a result, the binomial
probability distribution expresses the likelihood of finding r errors
in a sample of size n (15:588). Crosby notes:

A Bernoulli process involves independent samples with
replacement or sampling from an infinite population, so that

the probability of selecting an error transaction remains

constant from trial to trial. However, such is not the case

in auditing. 1In general, sampling in an audit context is

without replacement from a finite population. The formula

analogous to the binomial probability functiom which applies

to sampling without replacement, in which successive trials

are not independent, is the hypergeometric distribution.
[15:588-589].

The Finite Bayesian Procedure. Godfrey and Andrews recently

proposed a Finite Bayesian Procedure (FBP) for compliance testing
using the hypergeometric distribution. Inspired by Ericson's work on
applying Bayesian procedures to finite population sampling, the Godfrey
and Andrews model improves on the Infinite Bayesian Procedure (IBP)
introduced by Felix and Grimlund (17; 19). The FBP correctly assumes

a finite population in the auditing environment and thus, more closely

emulates that environment than either the classical method or the IBP

14
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(21:304-305). Furthermore, for typical auditing populations, the FBP

LA requires smaller sample sizes than the classical procedure and sample

- sizes less than or equal to those required by the IBP (21:305).

L_;i Godfrey and Andrews take a three-phased approach toward making
l_) a conclusion on the finite population error rate, or the percentage
ii% of time the internal control process erroneously processes a given

ii: attribute in the population. This three-phased approach involves

LS
&¢~ planning, random sampling, and evaluation (21). 1In the planning phase,
:E; the procedure assesses the auditor's prior information and judgment

- concerning the probable distribution of errors and subsequently uses

this information for determining the required sample size, relative

.iiz to specified parameters. In random sampling, the procedure directs

:;ki the use of some random sampling plan to draw the required sample size.
In the evaluation phase, the model incorporates the prior distribution

t}: and sample evidence to make a statistical statement on the population

3;5 process error rate. This statement then provides the auditor with

!;V. objective evidence on which to base his ultimate judgment on the

Ea_ quality of the internal control process.

i_'v Though mathematically complex, a brief outline of the three-phased

‘i! procedure follows:

fiﬁ Planning.

t;: 1. Specify the desired parameters for the sampling plan.

-

._: A. Population size (N)

;3;’ B. Reliability (REL*) or confidence level

Eki C. Maximum Tolerance Error Rate (u)

]ii Based on auditor judgment, set u such that if the true population

o

:E:: 15

o0

4

.
"

e

’
LR
.
.




< 3

e error rate exceeds u, the attribute tested would be considered out

';: of control. The specified u represents the materiality, or upper

:}{ precision limit, This limit is the maximum error rate the auditor

'i:f will permit and still rely on the controls of the system. The value u
_.:_‘.

is transformed to reflect R*, the maximum tolerable number of errors

- in a finite population of size N, such that

.~

T R*/N < u (2]

:\'ﬁ\

::i; 2, Assess the prior distribution on p, the process error rate.

%:{ Based on the auditor's prior information, an elicitation method derives

1.\~-,

-i?l a prior distribution on the anticipated error rate. The technique
requires the auditor to directly and subjectively judge the probability
of zero errors, (P (r = 0) ), and the probability of one error,

(p (r = 1) ), based on an arbitrary sample size, n (e.g., n = 100).

:;ﬁ From the direct elicitation or assessment of these probabilities, the

tii prior distribution, assumed to be a beta distribution, is indirectly

~ T : . . \ \

- assessed by an iterative procedure, solving for parameters r' and n',

C;{ using:

. a\ TG+ )T )T (" -¢' +n-1)

. P(r) = (3]

r FreHlT @+ )T (-1

?f} where

i;: J(a) is the gamma function given by

d _

", a-1 -

o Ma)=§ ¢* letar, a>o0 (4]

o 0

by

Tt Essentially, the two values, P (r = 0) and P (r = 1), define the prior

B

o O

)
N

distribution mathematically transformed into values for r' and n'.

. .
o

16

.

LR
P
» '

-
¥

(AN

.l
3

[ XA

B T T T R A R T P U IR e S O P R T
A P S A Iy G (o G R S S R SO 0 T S U S N A A R VL A R VG

.
.




...... L

The prior distribution on p, the process error rate, is then fully

described in terms of parameters r' and n', such that
E(p) = r'|n' [5]

9 r'(n' - ')
o (p) = [6]

n'z(n' + 1)

3. Determine the minimum required sample size, n. Based on the
previously specified values and assessed prior parameters, and using
N-n\ TG +R [ +0)[(a" -r' +N-R)

P"(R|r) = (7]
R-r/ (' + )T + M) T(a* =" +n -1)

for r = r¥,
where

r* is the maximum number of errors allowed in the sample
for acceptance of the internal control procedures,

solve for the minimum n such that

R*
z P"(Rlr = r*) > REL* (8]

R = r*

Random Sampling.

4. Randomly draw the required sample size, n, and count the

number of errors, r, in the sample.

SO L
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Evaluating.

5. Given the sample data, determine if the control procedure is
acceptable using the decision rule:
R¥*
z P"(R|r) > REL*
R=1r
where
N-n\T(c' +R) T(n' +0) [(a' -¢'+N-R)

P"(R|r) = (9]
R-r /TG +)Ttn' + M T =" +0 -1)

for R=r, r+1, . « « , N-n+r

Essentially, this rule states that, given the planned sample size and
specified confidence level, if the observed number of errors, r, is
less than the maximum allowable number of errors in the sample, r¥,
(i.e., r < r*), then the internal control procedure will be accepted
(21:308-309).

The data from the planning and sampling phases determine all the
values required for these later computations. The conclusion of this
evaluation phase provides a statistical statement on the process error
rate which can aid the auditor in the ultimate decision on the quality

of the internal control process.

Research Questions

The complexity of the FBP requires a computer software package or
tabulated values to afford any practical significance to the auditor.

These conveniences have not yet been developed. However, before doing

18
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;;T so, the validity of this procedure warrants testing. This research
L:' analyzes the effectiveness of the FBP, centering on the evaluation
';if phase of the procedure. Specifically, the research questions address:
‘{55 1. How reliable and valid is the FBP at estimating population
\:} error rates in typical audit environments?

le. 2. Are there any robust and efficient prior distributions that
25% significantly improve the model's reliability and validity?
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I1. Research Design

Overview

The essence of the FBP is the decision rule it provides auditors
for determining whether to accept or reject the particular population
under examination. This decision rule results from the inferential
procedure which occurs in the evaluation phase, given by Eq [9],
wherein a statistical statement on the population process error rate
is made to guide the auditor in the ultimate judgment on the quality
of the internal control process. This study assumes the previous
accomplishment of the planning and sampling phases of the procedure and
concentrates, rather, on the evaluation phase, specifically targeting
the reliability and validity of the inferential procedure.

Intrinsic to the inferential procedure are the parameters r' and
n' which define the specific prior probability distribution associated
with the particular population under investigation. As previously
discussed, these "priors" represent the auditor's beliefs, based on
past experience and judgment, concerning the expected error rate and
its variance. The particular prior probability distribution chosen
by the auditor influences the posterior probability distribution and,
hence, the decision on accepting or rejecting the internal control
procedure. It seems reasonable, therefore, to search over several
different priors to find those that are "robust" and "efficient" for a

given set of audit populations.
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Robustness. The concept of "robustness" is linked with
reliability and validity. As Huber notes, "robustness signifies
insensitivity to small deviations from the assumptions" (23:1). This
insensitivity directly influences the ability of a model to approximate
the true underlying situation. Huber elaborates on the significance of
robustness, stating:

Therefore, any statistical procedure should possess the

following desirable features:

(1) It should have a reasonably good (optimal or nearly
optimal) efficiency at the assumed model.

(2) It should be robust in the sense that small

deviations from the model assumptions should impair the

performance only slightly, that is, the latter . . . should

be close to the nominal value calculated at the model.

(3) Somewhat larger deviations from the model should

not cause a catastrophe [23:5].

As used in this study, robustness involves the insensitivity of
the model's inferential procedure to slight variations in the
population from the assumed prior probability distribution. A robust
prior distribution provides coverage, such that its influence on the
posterior probability distribution is correct for any actual population

encountered. That is, though the actual population error rate may

differ substantially from the expected one, a robust prior probability

distribution correctly provides, through the model, a bound on the

‘@ population error rate that equals or exceeds the actual population
T

ta; error rate. This bound represents the minimum error rate in the
ﬁQﬁ population for the specified reliability and given number of observed
Lo

*i. errors in the sample.
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é; From the auditor's perspective, denoting those priors which
%
(:‘ provide coverage as robust seems appropriate. The auditor's concern
“»
?% lies with estimating the probability that the population under
E% investigation has an error rate that exceeds some predetermined
' materiality, u, with reasonable assurance of the results. In practice,
ﬁ;’ the actual number of population errors may not be known. The FBP aims
i; at estimating the true, but unknown, population error rate through a
\ probabilistic statement, such that the likelihood of an actual
'EE population rate exceeding the computed error rate is less than or equal
ig; to 1 - REL (i.e., a ). Mathematically, then, acceptable priors are
.f: those for which
._’
o P(R > R¥*) < 1 - REL f10] !
o i
{2 where |
%f. R = the total number of population errors
f& R** = the FBP computed bound
~;5 REL = sgpecified reliability
Eii The determination of robust priors provides a general indication |
‘S; of the model's reliability and validity. For example, if the selected
;_‘ prior distribution describes an expected error rate of 10 percent and
,%; 10 errors are observed in a sample of 100 (resulting in a bound
és approximating a 10 percent estimated population error rate), the actual
.

’a

population error rate should be no greater than 10 percent for the

o]
.
'

model to be considered reliable and valid. If the actual population

.
s

error rate exceeds 10 percent with a probability exceeding 1-REL, then

the model is not providing coverage and its reliability and validity
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are suspect. For the purposes of this study, the number of robust
priors served as a general barometer of model reliability and validity.

From Godfrey and Neter's discussion of robustness one can infer
its significance to the usefulness of the model: "A robust . . . [prior
probability distribution] . . . could be used by auditors with
confidence even when they have doubts about the nature of the prior
distribution" (22:27). Thus, though an auditor may feel quite
uncertain about the correctness of the assumed population error rate,
expressed as a prior distribution, he could confidently use a robust
prior distribution with reasonable assurance that it would provide a
correct bound on the actual population error rate.

Efficiency. Equally important as robustness is "efficiency."
Efficiency involves the tightness or closeness of the bound to the
actual population error rate. Tradeoffs between efficiency and
robustness may be necessary. For example, the most robust prior may
provide coverage for all anticipated populations, but may drastically
overestimate the true population error rate. A prior distribution with
a 90 percent expected error rate, for example, would cover most all
populations possibly encountered in the audit environment. Yet, even
with a relatively low error sample outcome, the computed error rate, or
bound, would probably severely overestimate the true error rate.
Efficiency, therefore, should be balanced with robustness.

Three-Phased Methodology. This study focuses on an analysis of

various prior distributions to determine those that are robust and

efficient for a given set of audit populations. The approach follows

three phases:




.u
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R _— e o

A 1. Determination of those prior distributions compatible with

A

Lt the beta distribution assumed in the model, and the selection

:fJ of test values;

2y

o 2, Determination of those compatible prior distributions that are
robust;

1-\I

e 3. Determination of those robust prior distributions that are

:{: efficient.

N

1:} Phase 1: Determining Compatible Priors and Selection of Test Values

o

O

Yo Analyzing Compatibility with the Beta Distribution. The FBP

0y assumes the beta distribution models both the prior and the posterior

.'.’_x

,t} probability distributions. As noted earlier, Crosby showed the

.:\-

b descriptive validity of the beta distribution in modeling auditors'

};, beliefs (14:364). Further, the beta distribution represents a

53; "conjugate prior" with respect to the Bernoulli likelihood function,

o which models the dichotomous situation faced in the compliance testing

o process (35:148-149). The beta distribution, however, imposes some

el

23 limitations on the selection of priors by auditors.

y

Ll; Winkler explains the beta distribution as follows:

‘;\ Generally, the beta distribution on p (the process error

. rate, in this case) with parameters r and n, where

AR n>r >0, is given by

o

e (n - 1!

> £(p) = prl (1 - pyo Tl

) (r-1! (n-r - D! [11)

e for 0 < p <1

S elgewhere, 0

T

\‘.;.

e 24

ﬁﬁ'Fﬂﬂf'fﬁ?h???“???\?m‘\?'--un-uv?-m\%vvbvh"\%ﬂMV\#&y*Nm




r.'
L3
._:'
S This represents a continuous distribution where parameters r
" and n need not be integers. However, if r and n are not
S integers, the factorial terms (n -~ 1)!, (r -~ 1)!, and
o (n - r - 1)! must be replaced by gamma functions, denoted by
I(n), T(r), and [(n - r). Formally,
-
[ ©
x T(e) = S xt—le—xdx, for t > 0 [12]
W, 0
- For integer values of t,
3% T(e) = (£ - 1! [13]
N
.;u The mean and the variance of a beta distribution with
o parameters r and n are:
:: T
- E(ple,n) = - [14]
P
n
<
N
o 9 r(n - r)
> o°(plr,n) = ——— [15]
. a"(n + 1) {35:149-150]}
'__*,.: The parameters r' and n', as used in the FBP, can be expressed in
e
_ terms of the mean and the variance as follows:
e
» ol
~ (1 - E(p)) E(p)
2y r' = 7 -1 E(p) [16]
o o°(p)
b
2% (1 - E(p)) E(p)
o ,
-\_ n = - 1 [17]
:‘;: dz(p)
&
oo The limitations on the parameters, where n' > r' > 0, imply that
O
s 2
1.) E(p) > ¢° (p) [18]
= 2.) E(p) (1 - E(p)) > a2(p) [19]
v,
e
N
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- Generally, these requirements for selecting "compatible" priors do not
impose serious constraints on the model, but do demand some vigilance
in the selection of prior probability distributions. The various

prior distributions chosen for analysis in this study were tested for

compatibility before evaluation.

- Selection of Priors for Evaluation. Efforts were made to select

»%h a wide range of priors which adequately represent typical audit

N ' situations. Under the assumption that the normal audit environment
:H involves relatively few errors, four corresponding expected error rates
":; were chosen. These values represent a range of error rates from very
low (.005), to low (.01), to moderate (.05), to high (.10). Error
L%
"-‘ . . Y . .
> rates in excess of .10 would indicate a defective internal control
- -
s
;;% process, on which the auditor could not rely. 1In such cases, auditors
"
{ would likely proceed directly to substantive testing (20).
i§i Defining a particular prior distribution requires the speci-
fkf fication of variance, a measure of dispersion, in addition to the
N
- expected error rate. Generally, if a great deal of homogeneity in
e
b the data exists, and thus, small deviations from the expected error
~c‘
.
’:} rate, then the corresponding variance is small. The specific variances
XN
@ studied were determined using the coefficient of variatiom, C, such
I.\n
e that
Y
NN o(p)
[ ) c=— [20]
N E(p)
NS
where
S}t 0(p) is the standard deviation, or the square root of
. the variance.
4.':'
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The coefficient of variation is a dimensionless statistic useful for

comparing the dispersions of two or more different types of data
(28:211-212). Three values for the coefficient of variation were
selected for each error rate analyzed, resulting in a large variance
(C = 2), a moderate sized variance (C = 1), and a small variance

(c = .10).

Table I summarizes the thirteen prior distributions investigated
in this study. The first twelve depict those previously discussed, and
the last, where r' = 1 and n' = 2, describes a uniform distribution.
This uniform distribution defines the non-informative prior judgement
implicitly assumed in classical techniques and provides a means for
comparison of those techniques with the FBP.

Selection of Sample Size, Test Populations, and Reliability

Levels. Each of the thirteen selected prior distributions were
individually tested against a variety of assumed populations at several
reliability levels using a constant sample size. As with the selection
of priors, the values chosen for test populations and reliability
emphasized what a practitioner could possibly encounter in audit
situations. The selected values correspond to variables in Eq [9]

and fall within four categories: 1) sample size; 2) population size;

3) actual population error rate; and 4) reliability.

Sample Size (n). Fixing sample size at n = 100 throughout

the study limited the computational requirements of the research. This
single value follows the assumption mentioned earlier concerning the
previous completion of the planning phase. 1In practice, the planning

phase of the FBP would dictate the actual sample size required to

27
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TABLE 1
Prior Parameters Selected for Analysis
Coefficient 2 Priors
E(p) of Variation g(p) o (p) r' n'
.005 2.0 .0100 .00010000 +24375 48.75
.005 1.0 .0050 .00002500 .99000 198.00
.005 0.1 .0005 .00000025 99.49500 19899.00
.010 2.0 .0200 .00040000 +23750 23.75
.010 1.0 .0100 .00010000 .98000 98.00
.010 0.1 .0010 .00000100 98.99000 9899.00
.050 2.0 .1000 .01000000 .18750 3.75
.050 1.0 .0500 .00250000 .90000 18.00
.050 0.1 .0050 .00002500 94.95000 1899.00
.100 2.0 .2000 .04000000 .12500 1.25
.100 1.0 .1000 .01000000 .80000 8.00
.100 0.1 .0100 .00010000 89.90000 899.00
.500 0.577735 .288675f .08333333 1.00000 2.00
28
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accomplish the statistical objective, based on the specified prior

distribution. Here, the selection of n = 100 provides a sample large
enough to adequately represent the population and coincides with the
samples used in comparable studies, such as by Felix and Grimlund
(19:34-35).

Population Size (N). Two population sizes were selected:

1) N 1000, representative of a relatively small population, and

2) N = 5000, representative of a moderate~sized population.

Actual Population Error Rate (u). Four population error

rates were chosen, representing limits on the materiality, u, and
include very low (.005), low (.01), moderate (.05), and high (.10)
error rates. The values match those chosen for expected error rates
expressed in the prior distributions., Using u = R/N, as in Eq [2], the
selected error rates can be shown as actual population errors, R, for
the two population sizes.

Reliability (REL). The selected reliabilities, or confidence

levels, ranged from lower confidence (.85) to moderate confidence

(.90 and .95) to high confidence (.99). These values represent the
various probabilities that the model results are correct (i.e., that
the actual number of errors in the population are equal to or less than
the amount the model predicts). The higher the reliability, the more

confidence the auditor can have in the results. Formally,

REL = 1 -« [21}

where a represents the probability of committing a Type I error. 1In

this study, a Type I error implies accepting the population as having




o~
o \
o
L an error rate equal to or less than the materiality level, u, when it
< actually contains more errors than the specified value.
T . . . iases |
. Table Il summarizes the various populations and reliabilities
Si' against which each prior distribution was tested. The diverse range of ]
test values encompasses those the auditor might encounter when using ,
S |
j? the FBP. The research results, then, should indicate the reliability
"
'i% and validity of the model.
o !
~ 1
A . . .
" Phase 2: Determining Robust Priors
5
't- For each of the test populations specified in Phase 1, the FBP
N
i: results were compared to those of the hypergeometric distribution to
[
L determine robust prior distributions. These robust priors show the
- reliability and validity of the model and provide a stepping stome for
o subsequent determination of efficient prior distributions.

i ””

The Hypergeometric Distribution as Comparative Instrument.

4

:E Determining the robustness of prior distributions required comparison
‘;j with accounting populations. Three methods were initially considered.
:_ First, actual populations with identified errors could have been

'i% employed, but data was not readily available. Second, simulated

.ié populations with randomly distributed errors could have been used.

.' Other studies used this technique, such as those by Felix and Grimlund
';1 and by Neter and Loebbecke, among others (19; 30). The third method
~3t involves a direct determination of the probability of sample outcomes,
;E based on a specified error rate, using the hypergeometric distribution.
;; This technique provides more accurate results than a simulation study
E; and enables broader generalization than a study of individual

populations.




Summary of Test

TABLE II

Populations and Reliability Levels

N = 1000
n= 100

N = 5000
n = 100

REL u R

REL

‘ina u
v
- .005

501
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10

50

100

.85 .005 25
.90
.95

.99

.85 .01 50
.90
.95

.99

.85 .05 250
.90
.95

.99

.85 .10 500
.90
«95

.99

.85

.90

+95

.99

.90

.95

.99

.90

.95

.99

................
......
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{il The hypergeometric distribution models the compliance testing

Lt process, using random sampling from a finite population without

-5 replacement. This conditional distribution represents the probability

-3

o of observing r errors in a sample of size n from a population of size N

g

- .

containing R errors, given by:

~ ~

X<

"

2% R ) ( N ~-R )

.?% r n-r

- d P(r|n,N,R) = [22]) |

| (1) ;

oy n i

$..- i

Mo :

c:_' ;

:;’ The hypergeometric distribution was used to measure model ;

AL i
\

reliability. The exact probabilities of observing r errors in a sample

::: of n = 100 were computed, conditional on the assumed populations given !
. \
.f}f by N and R as discussed in Phase 1 (i.e., P(r = 0|n,N,R), P(r = 1l|n, }
A ' N, R), . .., P(r =100)In,N,R)., These probabilities varied across
%& populations. For any particular population, however, a specific sum of
0
EE' these hypergeometric probabilities was compared with the designated
;; reliability to determine the robustness of the priors.
ES Procedure for Determining Robust Priors. The procedure followed
‘;i three steps for each prior distribution.
‘ Step 1. Per the FBP, determine the minimum number of errors
/ in the population, R**, based on the number of errors observed in the
sample, r. Initially, the observed number of errors incremented from
. r =0 tor = 100 and, with each iteration, the following inequ~’’ty was
Ei computed:
o
.;?
-
‘: 32
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e P(R { R¥*|r', n', N, r, n) =
3 -
- R N-n (' +R)T(n' +0) [(n' - ¢' + N-R)

L z > REL  [23)
oD R = R-r Me' + )T + D Ta' - ¢' +0-1)

Y _r"‘- r
55

K) where

-ﬂ?ﬂ R** represents the minimum value of R for which

- the inequality holds.
v This first step provides, for each value of r, the minimum number of
-$§: errors in the population, per the FBP, at the designated reliability
D8
- level.
l~ '\

N
S Step 2. Determine the values of r for which R*¥* > R. After
‘}}} computing the values of R** for a given prior distribution, these
. 1
‘N values were then compared to the assumed number of errors, R, for that
A particular population size, N. The minimum R** that equals or exceeds
iiﬂ R provides a bound for this population, and is based on a specific

e

LN number of observed errors in the sample, r**, The value for r¥**

G
- represents the minimum number of observed errors required to establish
S
o this bound (i.e., where min R** > R). Generally, as r increases from
%:a r = r*% to r = 100, the maximum possible number of observed errors, the
",
}!w‘ bound increases (i.e., the computed number of population errors

fif? increasingly exceeds the actual number of population errors). “The

e

fﬁf value of r**, therefore, is directly associated with the bound, R¥**,
e.",.\~
el and those values of r from r = r** to r = 100 specify the realm in

S

which the model's computed number of errors equals or exceeds the

v
LR
eleta

oo
s *a
P

actual number of population errors.
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Step 3. Determine the hypergeometric probability of the

sample outcome and compare to the specified reliability. Given the
value of r** for a particular test population, the hypergeometric
probabilities associated with that population were summed over the
range from r = r** to r = 100, as shown:

100
P(r > r**|n, N, R) = z P(r) [24]

r = rk%
The resultant probability represents the likelihood of sample outcomes
where the model provides coverage, or, when subtracted from one, the
probability that the model does not provide coverage.
This hypergeometric probability, when compared with the specified
reliability level, determines the robustness of the prior distribution.

Specifically, if

100
Z P(r) > REL [25]
r = rk*
or, equivalently, if
r¥* - ]
> B <1 -rEL [26]
r=0

then the specified priors, r', n', were considered robust for the

population under consideration.

Phase 3: Determining the Efficiency of Robust Priors

After analyzing the various prior distributions for robustness,
those identified as robust were evaluated for efficiency. As discussed

earlier, efficiency measures the tightness of the bound to the actual

34
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number of population errors. To enable comparison between population,
a normalized measure was devised based on the expected bound.

The expected bound, E(R**), was computed by multiplying the
hypergeometric probability of observing r errors in a sample, P(r), by
the R** value associated with the particular r, and summing these
values for r = 0 to r = 100. That is,

100
ERe) = > RE*P(r = 1)) [27]

i=0

where

0  Efficiency < oo

This value provides the expected number of errors in the population
computed by the FBP, for given values of r', n', and N.

The numer of errors by which the FBP overestimated the actual
number of population errors was determined by subtracting the actual
numer of errors, R, from the expected bound, E(R**), Dividing this
value by the actual number of population errors resulted in the
tightness of the bound, expressed as a percentage of actual population

errors. The measure of efficiency, therefore, is given by:

E(R**) - R
Efficiency = —m8 ———— [28]
R

Only robust priors were evaluated for efficiency. Those with the
tightest bound, such that efficiency was minimum, were considered most
ugseful in the sense that the practitioner could use them confidently
because they provide coverage with minimum overestimation of the

population error rate.
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:,‘::? I1I. Findings and Analysis

The research objectives, as previously stated in Chapter I, were

-_-: to evaluate the reliability and validity of the FBP and to determine if

N
_’-E any specific prior distributions improved the model effectiveness. A
three-phased design was operationalized through use of a CDC Cyber 750

4 computer and programs, written in the Fortran language incorporating
s j International Mathematical and Statistical Language (IMSL) subroutines.
! The methodology required the determination of the compatibility,
\‘ robustness, and efficiency of selected priors. All thirteen prior
: distributions were compatible with the model. This chapter examines
A - the robustness and efficiency of those priors relative to the selected
":.:' study populations and draws conclusions concerning model reliability
-. and validity. !
|
't- Performance Trends
"«. The Appendix, entitled "Performance Data," contains tables
::J summarizing test results of each prior distribution for eight study
: populations. Four different error rates were examined for a relatively
small population (1000), and a moderate-sized population (5000). These
:.' tables depict values for r**, R¥* and the hypergeometric probability i
; associated with each study population at various reliability levels. |
\:’ Further, they show the expected bound, E(R**), of the priors relative
o
B3
o 36
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to the test values. Before elaborating on the analysis of robustness

and efficiency, some apparent trends in the test data were noted.

Effects on Minimum Estimated Population Errors (R**)., The R**

values represent the FBP minimum estimated number of errors in the
population, as per Eq [23], for each possible number of observed
errors, r. The performance tables in the appendix illustrate the

increasing values for R** as the study population error rate and
specified reliability increased. The relative R** values remained
similar as population size increased. For example, as the population
size increased from 1000 to 5000, the associated R** values also
increased by approximately 500 percent. These trends were expected
and indicate the adjustments the model makes for varying population
sizes, reliability, and sample outcomes,

Effects on Hypergeometric Probability. The hypergeometric

probabilities shown in the appendix were computed, as per Eq [24], and
represent the likelihood of sample outcomes where the model provides

coverage. These probabilities were compared with the specified

iiﬁ reliability, as in Eq [25], to determine the robustness of the priors
%E; for the study populations.

};; In general, the hypergeometric probabilities decreased as the
?;; population error rate increased. That is, as the actual error rate
;ﬂ; increased, the FBP bound increased and, accordingly, a higher number

of observed errors, r**, were needed to establish that bound. As such,
the likelihood of these larger sample error outcomes grew more remote.
Within each study population the hypergeometric probability

tended to increase as the reliability level increased. This trend was

37
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directly attributable to the decreasing r** values associated with the
increased reliabilities,

Generally, the hypergeometric probability for the larger
population size was smaller than for the population size of 1000 for
the same actual error rate and reliability. This trend did not affect
the performance of priors across the population sizes.

The hypergeometric probability corresponding to a particular bound
had to exceed the specified reliability for the priors to provide
adequate coverage relative to the study populations. Those prior

distributions supplying coverage were considered robust.

Robustness

Information from the Performance Data was consolidated into
Tables III and IV, which depict robust prior distributions for the
two population sizes. The tables reflect the expected bound, E(R*¥),
computed from Eq [27], for the robust prior distributionms.
Additionally, those priors providing coverage for the particular
population size illustrated in the table, but not for the other study
population size, are noted.

Overall, the selected priors were robust for the study populations
in slightly more than half the cases. With a population size of 1000,
108 of 208 possible cases (51.9 percent) were robust. For a population
size of 5000, 105 of the 208 cases (50.5 percent) were robust.

Effect of Population Error Rate (u) Changes on Robustness. With

few exceptions, when the actual population error rate exceeded the

expected error rate, the model did not provide coverage and the prior

38
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distribution was not robust. When the prior expressed an anticipated
error rate that equaled or exceeded the actual error rate, the priors
were robust. For example, given a .0l population error rate and an
anticipated error rate of .01, the prior distribution is robust for
population error rates less than or equal to .0l. However, given an
anticipated error rate of .0l and an actual error rate of .05 or .1,
the prior distribution is not robust.

This trend suggests some conclusions regarding model reliability
and validity. The model generally produced robust priors when the
population contained errors equal to or less than the amount antici-
pated. Yet, when the population error rate exceeded expectations,
the model almost never generates robust priors.

The exceptions to this tendency partially accounted for robustness
in slightly over 50 percent of the cases. At very low expected error
rates (E(P) = .005) and higher reliability levels, the model did
provide coverage for population error rates double those anticipated.
This trend occurred at the REL = .99 level for all three different
variances. This provides favorable support for model reliability and
validity at these levels. For example, assuming an auditor specified
a reliability of 99 percent and expected an error rate of one-half
percent, this finding indicates that the FBP would provide coverage
despite an actual error rate of 1 percent, or double that anticipated.

Effect of Population Size (N) on Robustness. Other trends are

apparent when comparing Tables III and IV. With the exceptions noted

by asterisks, the same coverage was provided for smaller and moderate-

sized populations. Two cases were not robust at N = 1000 but were
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‘ robust at N = 5000; three cases were not robust at N = 5000 but were

robust at N = 1000. Despite these minor deviations, the performance

\f‘ of priors seems to occur independent of population size.

5. Effect of Reliability Level (REL) on Robustness. In general, as

v the reliability level increased, increased robustness occurred. For

.':_ example, with N = 1000, 21 of 108 (19.4 percent) were robust at the 85

;:; percent reliability level. This compares to 34 of 108 (32.4 percent)

; ] at the 99 percent reliability level. The results are similar for the

:;:: 5000 population size. Though not obvious at the small variance level,
‘ this trend became more apparent as the variance increased to moderate

Q and high levels. As expected, an increasing expected bound, E(R**),

,: accompanied the increases in reliability.

\ Effect of Prior Probability Variance ) on Robustness. Model
coverage decreased as expected error rate variance increased from small

’:: to high. This deteriorating robustness occurred initially at the lower

- reliability levels and then moved to the moderate and high levels as

. the variance on the priors increased. Data in the Appendix illustrates
\ :: the cause for this trend, which was mainly due to the lower hyper-
-- geometric probabilities associated with the high r** values needed at

. the lower reliability levels. Since these values did not exceed the

specified reliability, the priors did not provide coverage.

. As the variance in the priors increased along with the higher

' actual error rates, a trend was noted in values of the expected bound,

E(R**), 1Initially, the E(R**) values tended to increase as the
- variance increased, for a given reliability level. This general trend
,f existed for both very low and low expected error rates. Yet, as the |
o *‘
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expected error rates increased to moderate and high, an apparent
reversal occurred when tested against the lower actual error rates.
Increasing E(R**) values for increasing variance continued when the
expected error rate equaled or exceeded the actual error rate; however,
when the actual error rate was less than that expected, the E(R¥*¥)
values generally decreased (for the same reliability level) as the

variance on the priors increased. This tendency becomes significant

in the discussion of efficiency.

b=, .

*{;- Uniform Distribution and Robustness. As discussed in Chapter II,
.

e

e the uniform distribution represents the non-informative prior

-

ﬁi* implicitly assumed in classical sampling techniques. This assumed

< prior was tested to enable some conclusions regarding a comparison of
classical techniques with the FBP model. As shown in Tables III and
IV, this prior distribution performed adequately, with only one case
where coverage was not provided (i.e., N = 5000, u = .10, REL = .90).
This exception may have been partially due to roundoff error. The
performance of this distribution, however, appears to detract from the
S model's utility., It would appear that using a lower expected error

S rate would be more effective; however, the research data indicate the

uniform distribution is more robust. Despite this finding, the FBP

s

utilizes smaller sample sizes than the classical approach.

T
.l ‘I ‘l ‘l N
stet et et

-

Efficiency

As explained in Chapter II, efficiency measures the tightness of

@
’

.
B ,
ettt

»
.

the expected bound relative to the actual number of population errors.

Y

The efficiency measure, given by Eq [28], indicates the average amount
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the particular prior distribution will overestimate the number of

:g actual population errors. Since auditors wish to minimize this
overestimation while assuring coverage, efficiency becomes an important
model characteristic.

Tables V and VI depict the efficiency values for robust priors.
As with the tables of robustness, these efficiency tables are separated

by population size. The values shown are expressed as percentages.

Hence, a value of 50 implies that the expected bound overestimates

the actual population error rate by 50 percent (i.e., efficiency =

(E(R**) - R
R

these tables.

) x 100). Several trends evolve from an examination of

Effect of Population Error Rate (u) on Efficiency. As the

actual population error rate increased for specific priors, efficiency
improved. When the expected error rate equaled the actual error

rate, efficiencies were relatively good, ranging from 10.6 percent

to 391 percent. Howevei, the efficiency of the prior distributions
dramatically deteriorated as the difference between the expected error
rate and the actual population error rate increased. For example, for
a prior with an expected error rate of 10 percent and a small variance,
the amount of overestimation was 2156 percent, or 539 errors, for a
population of 5000 having only 25 actual errors.

Effect of Population Size (N) on Efficiency. The change in

population size from 1000 to 5000 had relatively minor effects on
the efficiency of priors. In general, the efficiencies were slightly
better for the larger population at small variance levels, and slightly

better for the smaller population at moderate and high variance levels,
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f:f except at the very low expected error rates. For example, the larger
Lt population/small variance values overestimated the actual error rate
Efz by an average of 646 percent. In contrast, the small population/small
:ﬁ variance values overestimated the actual error rate by a 743 percent
ké average. On the other hand, the small population overestimated by

‘f: an average of 276 percent and 30l percent for moderate and large

Eig variances, respectively, compared to an average of 289 percent and

N 344 percent for the same variances in the larger population. These
'éi differences, however, were not considered a weakness of the model.

EE$ Effect of Reliability (REL) on Efficiency. As expected, the

-; efficiency values increased with increasing reliability levels,

{;i implying that the model consistently and increasingly overestimated the
'EEE actual number of population errors as the desired confidence increased.
A : This result followed from the previous observation where the expected
'%& bound increased as reliability increased. This trend highlights an
jE;; apparent tradeoff between reliability and efficiency (efficiency tends
!!r. to suffer at the expense of religbility).

i;; Effect of Prior Probability Variance (62) on Efficiency. As with
%é; the effects on robustness discussed earlier, changes in prior distri-
!‘i bution variance seemed to result in a reversing trend on efficiency.
E;S; Generally, the smaller variance level performed more efficiently than
E?} either the moderate or high variance level when the expected error

i?; rate equaled the actual error rate. When the expected error rate

Eéz increasingly exceeded the actual error rate, the efficiency degenerated
Eés for all three variance levels. However, particularly for the moderate
igt and high expected error rates, when the actual population error rate
=
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was substantially lower than anticipated, the moderate and high
variance levels performed more efficiently. For example, given a
population size of 1000, REL = .99, and an expected error rate of 10
percent, if the actual number of population errors was only 5, versus
the 100 anticipated, then the small variance level would result in 111
estimated errors, whereas the large variance level estimated 30 errors.
Apparently, when the actual error rate is significantly less than the
expected error rate, the moderate and high variances were markedly more

efficient at the reliability levels for which they provided coverage.

Need for Tradeoffs

These findings seem to support the necessity for tradeoffs between
robustness, efficiency, and reliability. For example, based on the
values shown in Table V, if the auditor expects an error rate of 10
percent, he may receive better coverage by specifying a small variance,
particularly when the actual population error rate approaches 10
percent, If, however, the actual population error rate is signifi-

cantly less, specifying a moderate or high variance would seem to

provide a much more efficient estimate of population error rate.
Furthermore, at these higher variance levels, the model does appear
to provide coverage, and fairly good efficiency, when the actual error
rate approaches 10 percent, but only at the 95 percent reliability
level.

It would appear that an "ideal” prior probability distribution was
not found. That is, no prior was identified which provided coverage

with good efficiency across all study populations. Instead, the
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findings indicate the importance of specifying an expected error

rate which closely matches the actual error rate. Further, analysis
shows the apparent requirement to balance robustness, efficiency,
and reliability. These considerations would become another of the
subjective judgments the auditor must make when planning the audit.

The uniform distribution seems to emerge as the best overall
candidate with regard to balancing the required tradeoffs. With near
perfect robustness, this prior also performed efficiently, particularly
with higher error rate populations. Though not especially encouraging,
this finding would imply that, in the absence of a fairly strong and
well-founded expectation of the probable error rate, a more conser-
vative approach may be to specify a non-informative, uniform prior

distribution.

Summary of Primary Findings

Several findings emerged from this study which appear relevant to
the research objectives. These significant findings must, however, be
tempered with an understanding of the methodology used in the research.
They result from a practical analysis of the data, as opposed to a more
rigorous statistical evaluation.

The primary findings were:

1. The beta prior distribution assumed in the model does not
impose serious constraints on the selection of prior distributions,
but does require some selection.

2. The model reliability and validity appears adequate, as
evidenced by the robustness and efficiency of priors, when the actual

error rate matches the expected error rate.




3. The model reliability and validity is suspect when the
expected error rate significantly exceeds the actual error rate,
because of the poor efficiency, and when the expected error rate
underestimates the actual error rate, due to the lack of coverage.

4. The model provides coverage when the actual error rate equals
or doubles an anticipated very low error rate at a high reliability
level.

5. Population size does not significantly impact model
performance.

6. Selection of priors with a small variance appears to provide
better coverage across populations and more efficient performance
when the actual error rate matches that expected, but moderate and
high variances perform more efficiently when the expected error rate
significantly overestimates the population error rate. These larger
variances often do not, however, result in adequate coverage,
particularly at lower reliability levels and higher actual error rates.

7. The uniform distribution is robust and relatively efficient
across all study populations and reflects perhaps the most conservative
prior distribution evaluated.

8. Tradeoffs between robustness, efficiency, and reliability seem

a necessity when using the FBP.
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IV. Conclusions and Recommendations

The findings presented in Chapter III provide some information to
practitioners considering the use of the F52 and reveal several areas
for continued study. This chapter examines the potential usefulness

of the model and provides recommendations for future research.

Potential Use of the FBP

Given that the auditor can closely approximate the population
error rate, the FBP could be incorporated into an efficient audit
process, enabling reduced sample sizes, as demonstrated by Godfrey
and Andrews (21:308-313). Using Tables V and VI, presented in Chapter
III as a judgmental guide, the auditor could evaluate the possible
tradeoffs and ramifications involved in the selection of particular
prior distribution. Borrowing from Felix and Grimlund's suggestions
for a similar model, the method of application would appear fairly
simple: Assuming the auditor has access to an adequate computer
facility, and algorithm incorporating the FBP could be developed.

Once established, the operational use appears straightforward for a
qualified auditor. The anticipated error rate and variance could be
prespecified, along with the population size, materiality, and desired
reliability. The computer could return a corresponding sample size
and, after entering the number of errors detected, could return the

probability of a material error. The material error's sensitivity to
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prior judgment could then be tested through repeated applications of

this procedure (19:39).

Perceived Shortcomings

The Finite Bayesian Procedure appears to have deficiencies.
Several researchers address the shortfalls of attribute testing in the
audit eunvironment, emphasizing the need to estimate the dollar value of
errors rather than the error rate. T. M, F. Smith states, "There is no
obvious way of turning the error rate . . . into an upper limit for the
money value of the errors" (32:269). Anderson and Teitlebaum state
that "the methods which focus on error frequency seem to provide no
meaningful conclusions in dollars" (32:269-270). These criticisms
appear well~-founded for substantive testing but inappropriate for
compliance testing. As long as the compliance testing objective is
to evaluate internal control systems guiding subsequent substantive
testing, the need for quick and efficient methods such as the FBP
should continue (20).

Other perceived shortcomings relate to the complexity of Bayesian
models and their relative usefulness within the judgmental context
of auditing. In part, this criticism apparently stems from general
resistance to change, perhaps due to a lack of understanding. Bayesian
methods, particularly the FBP, recognize the subjectivity of the audit
environment and attempt to incorporate these judgments in a more
objective fashion. The resultant benefits in smaller sample sizes also
seem to warrant their continued consideration. The efficiency provided

by the FBP appears even more appealing in light of the findings in
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this study, wnere a non-Bayesian uniform distribution performed well.
Coupled with the smaller sample sizes, the FBP seems to provide a more
advantageous approach than the classical technique. Computational
complexities could be overcome with increased use of computer
procedures.

Additional possible weaknesses with the FBP concern prior
probability distributions elicitation. The assessment of priors remain
a major stumbling block to the use of Bayesian techniques (21:313).
Though this study provides some insight into the performance of
specific priors against selected populations, it also highlights
the need for an accurate and verifiable means of eliciting auditor's
subjective beliefs. The model's inability to estimate population error
rates greater than those specified seems to be a major weakness. This
apparent failure does not tolerate errors in auditor judgment during
the assessment process and deserves more scrutiny. The accounting
profession seems to recognize this shortcoming and research literature
continues to address it (7-10; 13; 14; 15; 18).

Another value requiring predetermination by the auditor using
Bayesian methods is materiality. Again, judgment influences the
auditor's choice. Though current research aims at determining the
effects of auditor decisions in this regard, more work is required

(15:589).

Recommendations for Future Research

This study represents an analysis of selected prior probability

distributions and populations in the evaluation phase of the FBP;
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however, there seems to be opportunities for future research.

An appropriate area for continued effort seems to be in statis-
tically evaluating the results of this study. The analysis phase of
this research centered on practical implications. Specifically, the
analysis focused on the robustness and efficiency of selected priors,
drawing implications concerning the model's reliability and validity.
Future research could possibly use analysis of variance (ANOVA) and
regression to test relationships of the variables and provide more
objective conclusions regarding prior probability distributions and
model reliability and validity. Future efforts could focus on the
tradeoffs among robustness, efficiency, and reliability, presenting
the information in more easily comprehensible form, such as in tables
or on graphs.

Research design variation could provide additional information on
model performance. For example, changes in sample size may impact the
reliability and validity of the FBP. Also, testing the model against
actual populations, rather than the hypergeometric distribution, may
increase external validity of research results.

Moreover, an extensive study examining the range of priors between
an expected error rate of one-half percent and 5 percent appears to be
justified. As noted previously, a serious drawback in the model exists
because of its general inability to provide coverage at error rates
greater than those expected. However, the coverage provided at double
the expected rate for the very low error rates, as shown in Tables III
and 1V, reverses this trend and may indicate that the FBP does tolerate

auditor migjudgment under certain circumstances. Consequently, more
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research in this area would seem relevant,

Another area for study is the reversal in efficiency as the
variance on the priors increases. Moderate and large variance priors
seem to provide more efficient coverage when the actual and expected
error rate differ significantly. Small variance priors perform more
efficiently when the actual and expected error rates match. An
in-depth evaluation of this tendency may supply useful information
with which auditors can temper their judgment in prior distribution
selection.

The possible benefits in smaller sample sizes accruing from the
planning phase of the FBP were not examined in this study. Continued
research in this area could result in more persuasive evidence on the
usefulness of the model, particularly through a comparative study with
classical techniques. The uniform distribution appears as a reasonable
starting point from which to extend this work, and emphasizing the
different efficiencies may prove enlightening. Further, by focusing on
the elicitation technique proposed by Godfrey and Andrews, future study

could expand the knowledge base of subjective assessment research.
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