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Abstract/

SThis research examines the reliability and validity of the Finite

Bayesian Procedure (FBP) model through an evaluation of robust and

efficient prior probability distributions. The model, developed by

James Godfrey and Richard Andrews, presents a different approach to

compliance testing in auditing.

This study utilizes small and moderate-sized populations, four

population error rates, a fixed sample size, and four reliability

levels. In addition, four expected error rates, based on a beta prior

probability distribution and ranging from very low to high, combined

with three variance levels and a uniform distribution, are used to

evaluate the model.

The results indicate that the model is adequately reliable and

valid. However, the uniform distribution seems to perform best of all

prior probability distributions tested. Moreover, tradeoffs between

robustness, efficiency, and reliability seem a necessity when using the

Finite Bayesian Procedure model.
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AN ANALYSIS OF ROBUST AND EFFICIENT

PRIORS ASSOCIATED WITH A FINITE

BAYESIAN MODEL FOR COMPLIANCE TESTING

I. Statistical Sampling in Auditing

and the Finite Bayesian Procedure

Introduction

Despite somewhat staid appearances, the audit process has been

dynamic in recent times. Historically, auditors often performed a 100

percent examination of the records of the organization audited before

rendering an opinion as to the fairness of the financial statements

(3:2). Yet, as organizations grew, and with them, the number of

transactions generated, a complete review became what Arkin termed

"both unwarranted and uneconomical" (3:2). Statistical sampling became

a necessity for providing a reliable indication of the accuracy of

'* other similar transactions.

Concurrent with the rise of testing or sampling, auditors began

0to recognize the importance of an organization's system of internal

control. Essentially, auditors started depending on the internal

control system, as verified by tests of that system, called compliance

tests, to direct them in subsequent sampling of account balances, or

substantive tests. As a general rule, the stronger the system of

internal control, the less substantive testing required by the auditor

(29:6).
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The emergence of sampling in auditing and the rising dependence on

the system of internal control provide impetus for this research

effort. In 1982, Godfrey and Andrews proposed a model for compliance

testing of an internal control process to determine a probability

distribution for its error rate (21:304-315). The probability

distribution for the error rate could then aid the auditor in his

evaluation of the internal process. Their approach is Bayesian,

meaning that an auditor's prior knowledge and experience are

statistically incorporated into the sampling technique. Also, the

model assumes finite populations, which correctly describe those

encountered in auditing situations. When compared to other common

methods of compliance testing, Godfrey and Andrews propose that their

* model, called the Finite Bayesian Procedure (FBP), more closely

emulates the actual auditing environment and requires sample sizes

equal to or less than those required by the common alternatives, such

as the classical method or the Bayesian procedure introduced by Felix

and Grimlund (21:304-305).

Research Objectives

This study expands on Godfrey and Andrews' analytical work by

testing the model's effectiveness in evaluating the degree of

compliance with an internal control process. The research centers on

the evaluation phase of the FBP with two primary objectives:

1. To determine the model's reliability and validity in a typical

auditing environment;

2
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2. To determine if any specific prior distributions significantly

improve the model's reliability and validity.

Background

An Overview of the Auditing Process.

Auditing is a systematic process of objectively obtaining
* - and evaluating evidence regarding assertions about economic
* actions and events to ascertain the degree of correspondence

between those assertions and established criteria and
communicating the results to interested users [11:18].

Depending on the perspective, the purpose of the audit varies.

For the independent public accountant, whose view this report takes,

the ultimate objective of the examination is the expression of an

opinion on the fairness with which the financial statements present

the financial position of the organization audited in accordance with

generally accepted accounting principles (2:5). For the internal

auditor, the concern is an examination and appraisal of the internal

control system's integrity and the efficiency of financial, accounting,

and administrative operations, to assure compliance with established

procedures and to provide the basis for improvement in operations

* (2:5). The governmental auditor's goal is similar to that of bothL. the independent public accountant and the internal auditor, but also

includes "auditing the economy, efficiency, and achievement of desired

results" (12:2). Though the final objectives vary somewhat, each

- auditor must evaluate the actual degree of compliance with the

organization's system of internal control.

3



The study and evaluation of the system of internal control

provides the starting point for independent auditors in defining the

nature, timing, and extent of subsequent audit procedures required

for the expression of an opinion on financial statements (25:10-3).

Statements on Accounting Standards formally defines "internal

control":

Internal control comprises the plan of organization and
all of the coordinate methods and measures adopted within
a business to safeguard its assets, check the accuracy and
reliability of its accounting data, promote operational
efficiency, and encourage adherence to prescribed managerial
policies. . . . [A] "system" of internal control extends
beyond those matters which relate directly to the functions
of the accounting and financial departments [l:Section
320.09].

This broad definition encompasses both internal accounting control and

administrative, or operational, control, though the distinction is

often not clear cut.

Administrative or operational controls refer to the plans,

methods, and measures used to provide operational efficiency and

adherence to prescribed policies in all departments of the organization

(25:10-7). Generally, controls of this nature do not bear directly on

the financial statements and, consequently, probably do not directly

interest the independent auditor.

Internal accounting controls, on the other hand, do directly

interest the independent auditor because they bear directly upon the

dependability of the accounting records and the financial statements.

SAS No. 1 defines "internal accounting controls" as:

%4N
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the plan of organization and the procedures and records
that are concerned with the safeguarding of assets and
the reliability of financial records and consequently are
designed to provide reasonable assurance that:

a. Transactions are executed in accordance vith
managements' general or specific authorization.

b. Transactions are recorded as necessary (1) to
permit preparation of financial statements in conformity
with generally accepted accounting principles or any other
criteria applicable to such statements and (2) to maintain
accountability for assets.

c. Access to assets is permitted only in accordance
with management's authority.

d. The recorded accountability for assets is compared
with the existing assets at reasonable intervals and
appropriate action is taken with respect to any differences
[l:Section 320.281.

The independent public accountant's examination focuses on these

accounting controls.

The examination extends beyond defining and reviewing an internal

control system. Before deciding on the nature and extent of subsequent

auditing procedures, the auditor must gain some assurance of the

system's protective quality (3:3). Superficially, the internal control

system may appear excellent, but given the requirement for objective

* evidence on which to base the auditor's judgment, an evaluation of

the degree to which the system operates as prescribed is needed.

Errors may occur deliberately, such as by fraud or embezzlement, or

* inadvertently, by random clerical failures (3:3). Also, they may arise

in areas not adequately protected by the internal control system (3:3).

Only by examining records processed through the system can the auditor

gain assurance that it operates effectively. A sample, rather than a

4F5



complete inspection of all records, may serve as the basis for the

evaluation. These samples are called "tests of transactions," or more

commonly, "tests of compliance."

Arkin notes that,

Apart from the possible failure or inadequacy of the internal
control system is the auditor's direct determination of the

* accuracy and reliability of the values that appear in the
financial statements [3:4].

Again, auditors typically perform tests. These tests of account

V. balances are referred to as "substantive tests."

The audit process, therefore, is integrated and multi-phased and

can involve numerous tests, both compliance and substantive. Kenneth

P. Johnson summarizes the approach:

Under the profession' s standards, auditors first review a
company's system of internal accounting control and make an
evaluation of it. Based on the evaluation, they determine
whether to perform functional (compliance) tests of internal
accounting controls, or to proceed directly to the validation
(substantive) testing of account balances. If the evaluation
of internal accounting controls indicates that a control

procedure has been established, the auditor has the option of
functionally testing the control to gain reasonable assurance
that the procedure is in effect, is operating as prescribed,
and can be expected to continue to do so throughout the
period under examination, and thus can appropriately reduce

* the validation testing of related account balances. If, on
the other hand, the evaluation uncovers a control weakness,
the auditor cannot rely on the control and has to select
validation tests of the appropriate nature, extent, and
timing to compensate for the control weakness, and apply
them to the related account balances [25:10-3].

Figure I provides a simplified view of the audit process and

illustrates the stages when sampling techniques may prove useful to

the auditor.

6



L Y% I

Step 1:
Describe the

internal control system.

Step 2:
Evaluate the

internal control system.

Step 3:
Test the internal

control system description.

%'

Step 4:
Perform detailed Al

-. tests of transactions
, for comphance with controls .

Step 5:
Evaluate compliance

with internal controls.

Perform- substantive testsVaibeS plnpls
ot Itaement balances mln ln

(including analytic review).

Step 71
0 auclit evide-ce

aved form an opinion
as to statement fairness.

c Compliance tests are no! reqjirej If the system o ,nternal control is not to be rehec on in determining the nar te, 't.
and timng of subsequent tests

(Adopted from 4:6)

Figure I. The Audit Process
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The Role of Sampling in Auditing. Due to the tremendous amount of

transactions processed through modern organizations, auditors must rely

on partial examinations or samples on which to base their evaluation.

Meigs, et al., defines sampling as "the process of selecting a sample

from a larger field of items (called the population) and using the

characteristics of the sample to draw inferences about the character-

istics of the entire population" (29:238). Sampling can take two basic

forms: judgmental and statistical. In judgmental sampling, the auditor

uses his discretion in predetermining the size and composition of each

audit sample (29:227). Bailey notes, "Convenience, availability,

whim, or any other factor may be applied" (4:30). Judgmental sampling

provides no means for verifying that the sample represents the

population, or for measuring the possibility that it does not (29:239).

On the other hand, with statistical sampling the auditor selects

- . desired levels of risk and precision and estimates the expected number

* of exceptions for each sample. He then refers to statistical sampling

tables to determine the appropriate sample size and, in some cases,

the specific transactions for inclusion in the sample (29:227).

Because statistical sampling involves randomness, where every unit

* of the population has an equal chance of selection, it offers several

distinct advantages. Most notably, statistical sampling enables

measurement of the risk of material errors occurring purely by chance

and allows justifiably smaller sample sizes -- both of which are not

possible with judgmental sampling (29:329, 268-269).

8



Statistical sampling refers to a broad classification of the many

statistical methods available to the auditor. Two basic types of

methods separate this classification: 1) attribute sampling plans,

-, normally associated with compliance tests; and 2) variable sampling

plans, usually relating to substantive tests. When conducting

attribute tests, concern lies with the qualitative aspects of sample

units, usually expressed in dichotomous groupings (4:47). These are

tests of the YES/NO form, such as error or no error, authorized or not

authorized, and so on (4:47). Variable sampling plans address the

quantitative aspects or values of the sample units, usually in dollar

amounts (4:47). Normally, the concern rests with estimating the dollar

value of errors associated with the sampled account balances. This

study focuses on a procedure for compliance testing using an attribute

sampling plan.

Auditors have several methods of attribute sampling available to

them. Traditionally, these techniques are of the classical statistics

variety; however, research over the past several years suggests a

* separate classification for attribute sampling using Bayesian

procedures. The distinction seems especially appropriate for the

purposes of this research effort, which evaluates a Bayesian procedure

proposed by Godfrey and Andrews.

Classical procedures use techniques derived from classical

statistics similar to those methods used widely in business, industry,

and science. Briefly, the general procedure is as follows:

9
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After specifying a desired precision (reliability) and
confidence level (risk) for the sample estimate, the auditor
makes a preliminary estimate of the fraction or percent
in error in the population. The auditor may derive this
estimate from previous data or through a preliminary sample,
or pilot study. By referencing various precomputed tables
readily available, the auditor then estimates the initial
sample size. He then randomly draws this sample and computes
the fraction in error. Iteratively, he repeats the process
until attaining the desired precision and confidence (i.e.,
the auditor re-determines the required sample size, randomly
draws this redetermined sample, and recomputes the fraction
in error until the error rate falls within the specified
reliability and risk parameters). Alternatively, the
auditor may reevaluate and relax the specified precision and
confidence levels to preclude additional sampling
[16:208-211; 29:253-260].

Apparently, several weaknesses exist in the use of classical

procedures for auditing. As a practical matter, the auditor may find

it difficult, if not impossible, to conduct the additional sampling

~1 often required by the classical procedure. The auditor normally imust

relax the specified reliability and/or confidence level when the

ampling results so warrant, forcing an ad hoc evaluation (29:269-270).

Furthermore, auditors often find it difficult to incorporate the

results of the classical procedure, usually expressed as confidence

intervals or tests of significance, into final subjective judgments

concerning the quality of the organization' s internal control system

(32:265).

Bayesian procedures have emerged in response to problems with the

classical approach. The Bayesian method incorporates a subjective

assessment of the internal control process into the analysis. The

p rocedure recognizes that the auditor may have a significant amount

of experience which can aid in making estimates and in selecting sample

sizes, that the auditor considers certain qualitative factors in making

10
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Judgmental Classical

Sampling Attribute

- " Statistical Bayesian

(FBP)

< Variable

(Adopted from 27:2)

Figure 2. Relationship of FBP to Sampling Classifications

his estimates, and that sampling is costly in both time and money

(5:115). Using Bayes Theorem, this approach provides a methodology for

explicitly including subjective assessments into the analysis, and

thereby provides a framework for the ultimate decision on the quality

of the organization's system of internal control. Figure 2 illustrates

the relationships and positions this study of a Bayesian approach among

the various sampling methods discussed thus far.
S

The Bayesian Approach: An Overview. The potential advantages of

a Bayesian approach relating sample evidence to auxiliary information

have been recognized in the accounting literature for some time. The

pioneering efforts by Birnberg and by Kraft highlighted not only the

possible benefits in sample size and sample design, and the associated

reduced cost, but also the significance of formally incorporating the

auditor's intuition into the decision process (5:108-116; 26:50) By

11



recognizing and quantifying this prior information and by providing a

methodology for explicitly including it in the decision process, the

Bayesian approach tends to prevent haphazard use of this experience

(5:114).

Several researchers, including Tracy, Sorensen, and Godfrey and

Andrews, emphasize the importance of this explicit incorporation of

subjective evidence, comparing it to classical statistical inference

procedures (34; 33; 21). The Bayesian view explicitly weighs, in the

form of a prior distribution, the auditor's beliefs concerning the

probability of events (e.g., population error rates). On the other

hand, the classical procedure implicitly assumes equal probability

for various population error rates. A uniform distribution of errors

seems highly unrealistic, however, in the typical low error rate audit

environment (34:93; 33:555-558; 21:305). Scott, Ijiri and Leitch, and

others cite legal reasons favoring the Bayesian approach as well (31;

24:106).

Sorensen explains the Bayesian framework for discrete variables:

In general terms, the Bayesian theorem is a given set of
mutually exclusive and collectively exhaustive events
El, E2, . . En) and an experimental outcome, e, such that

P(eIE.) P(E.)
P(E.e) 1]S n

P(eIE.) P(E.)
4 i=1

for j 1, 2, 3,.... n

12
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where

P(E.le) - posterior probability of E. being the

state of the world, given experimental

outcome, e

P(eIE.) = conditional probability of experi-

mental outcome, e, given E. is the
J

state of the world

P(E.) = prior probability on E. being theJ J

state of the world

P(eIE.) P(E.) - joint probability

.P(eIEj) P(E.) = marginal probability of experimental
Joutcome, e, summed over all possible

states of the world [33:557] t

, A more rigorous description of the general Bayesian

approach for the continuous case can be found in Godfrey
and Neter's report in the Audit Research Working Paper
Series (Report No. 83-001), entitled "Bayesian Bounds
for Monetary-Unit Sampling in Accounting and Auditing,"
University of Georgia, 1983.

Two assumptions concerning the prior probabilities are often made

throughout the literature relating to attribute sampling. First, it

is assumed that auditors can use their judgment and other evidence to

formulate specific probabilistic estimates of the population error rate

(e.g., P(E.) (19:26). Crosby, Chesley, Felix, Corless, and others have

demonstrated in assessment studies that this elicitation is possible,

though much variability exists (7-10; 13; 14; 15; 18). Furthermore,

the particular elicitation technique used appears to play a key role

in the obtained probability, though training seems to improve the

confidence in these assessments (14:356). To date, the research

evidence is inconclusive in assessment of prior probabilities.

13



The second assumption concerns the case of a beta-binomial model.

Blocker, Corless, Crosby, Felix and Grimlund, and others have used the

beta family of probabilities to represent the auditor's prior beliefs

(6; 13; 14; 15; 19). Though initially chosen for its reasonableness

and analytic simplicity, Crosby demonstrated that the beta probability

distribution did adequately model the auditor's beliefs, indicating

its descriptive validity as well (14:364).

The beta-binomial model also assumes that the underlying process

from which the sample is taken (e.g., some internal control procedure)

can be represented as a Bernoulli process. As a result, the binomial

probability distribution expresses the likelihood of finding r errors

in a sample of size n (15:588). Crosby notes:

A Bernoulli process involves independent samples with

replacement or sampling from an infinite population, so that
the probability of selecting an error transaction remains
constant from trial to trial. However, such is not the case
in auditing. In general, sampling in an audit context is
without replacement from a finite population. The formula
analogous to the binomial probability function which applies

to sampling without replacement, in which successive trials
are not independent, is the hypergeometric distribution.
[15:588-589].

The Finite Bayesian Procedure. Godfrey and Andrews recently

proposed a Finite Bayesian Procedure (FBP) for compliance testing

using the hypergeometric distribution. Inspired by Ericson's work on

applying Bayesian procedures to finite population sampling, the Godfrey

and Andrews model improves on the Infinite Bayesian Procedure (IBP)

introduced by Felix and Grimlund (17; 19). The FBP correctly assumes

a finite population in the auditing environment and thus, more closely

emulates that environment than either the classical method or the IBP

14
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(21:304-305). Furthermore, for typical auditing populations, the FBP

requires smaller sample sizes than the classical procedure and sample

sizes less than or equal to those required by the IBP (21:305).

Godfrey and Andrews take a three-phased approach toward making

a conclusion on the finite population error rate, or the percentage

of time the internal control process erroneously processes a given

attribute in the population. This three-phased approach involves

planning, random sampling, and evaluation (21). In the pianning phase,

the procedure assesses the auditor's prior information and judgment

concerning the probable distribution of errors and subsequently uses

this information for determining the required sample size, relative

to specified parameters. In random sampling, the procedure directs

the use of some random sampling plan to draw the required sample size.

In the evaluation phase, the model incorporates the prior distribution

and sample evidence to make a statistical statement on the population

process error rate. This statement then provides the auditor with

objective evidence on which to base his ultimate judgment on the

,. quality of the internal control process.

Though mathematically complex, a brief outline of the three-phased

.. procedure follows:

Planning.

1. Specify the desired parameters for the sampling plan.

* A. Population size (N)

B. Reliability (REL*) or confidence level

C. Maximum Tolerance Error Rate (u)

E Based on auditor judgment, set u such that if the true population

15
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error rate exceeds u, the attribute tested would be considered out

of control. The specified u represents the materiality, or upper

precision limit. This limit is the maximum error rate the auditor

will permit and still rely on the controls of the system. The value u

is transformed to reflect R*, the maximum tolerable number of errors

in a finite population of size N, such that

R*/N < u [2]

2. Assess the prior distribution on p, the process error rate.

-a..Based on the auditor's prior information, an elicitation method derives

a prior distribution on the anticipated error rate. The technique

requires the auditor to directly and subjectively judge the probability

of zero errors, (P Cr = 0) ), and the probability of one error,

(P Cr = 1) ), based on an arbitrary sample size, n (e.g., n =100).

From the direct elicitation or assessment of these probabilities, the

prior distribution, assumed to be a beta distribution, is indirectly

assessed by an iterative procedure, solving for parameters r' and n',

using:

n :) W + r)[(n'W [(nW r' + n-r)
P~r) [3Cr

r [Cr) [Wn + n) [ Wn r')

where

[Cct is the gamma function given by

[Ca e S ae dt, a> 0 [4]
0

Essentially, the two values, P Cr 0) and P Cr - 1), define the prior

distribution mathematically transformed into values for r' and n.

16
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The prior distribution on p, the process error rate, is then fully

described in terms of parameters r' and n', such that

E(p) r'In' [51

2 r'(n' - r')

or 2(p) [6]
n (n' + 1)

3. Determine the minimum required sample size, n. Based on the

previously specified values and assessed prior parameters, and using

(N- :) rr' + R) rcn' + n) [(n' - r' + N - R)
P"(RIr) . ( [7]

R r(r' + r) [(n' + N) [(n' - r' + n - r)

for r r*,

where

4 r* is the maximum number of errors allowed in the sample
for acceptance of the internal control procedures,

solve for the minimum n such that

R*

R P"(Rjr = r*) > REL* [81

E~r..R --r*

Random Sampling.

4. Randomly draw the required sample size, n, and count the

number of errors, r, in the sample.

01.
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Evaluating.

5. Given the sample data, determine if the control procedure is

acceptable using the decision rule:

R*

" P"(Rlr) > REL*

R r

where

N- n Po+ R) [(n' + n) [(n' - r' + N - R)

P"(RIr) [9]
R - r Rr' + r) R(n' + N) [(n' - r' + n - r)

for R r, r + 1, . . , N -n+ r

Essentially, this rule states that, given the planned sample size and

specified confidence level, if the observed number of errors, r, is

less than the maximum allowable number of errors in the sample, r*,

(i.e., r < r*), then the internal control procedure will be accepted

(21:308-309).

The data from the planning and sampling phases determine all the

values required for these later computations. The conclusion of this

evaluation phase provides a statistical statement on the process error

rate which can aid the auditor in the ultimate decision on the quality

of the internal control process.

Research Questions

The complexity of the FBP requires a computer software package or

tabulated values to afford any practical significance to the auditor.

These conveniences have not yet been developed. However, before doing

18



so, the validity of this procedure warrants testing. This research

analyzes the effectiveness of the FBP, centering on the evaluation

phase of the procedure. Specifically, the research questions address:

1. How reliable and valid is the FBP at estimating population

error rates in typical audit environments?

2. Are there any robust and efficient prior distributions that

significantly improve the model's reliability and validity?

>-
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II. Research Design

Overview

- The essence of the FBP is the decision rule it provides auditors

for determining whether to accept or reject the particular population

under examination. This decision rule results from the inferential

procedure which occurs in the evaluation phase, given by Eq [9],

wherein a statistical statement on the population process error rate

is made to guide the auditor in the ultimate judgment on the quality

of the internal control process. This study assumes the previous

accomplishment of the planning and sampling phases of the procedure and

concentrates, rather, on the evaluation phase, specifically targeting

* the reliability and validity of the inferential procedure.

Intrinsic to the inferential procedure are the parameters r' and

n' which define the specific prior probability distribution associated

with the particular population under investigation. As previously

discussed, these "pir"represent the auditor's beliefs, based on

* past experience and judgment, concerning the expected error rate and

its variance. The particular prior probability distribution chosen

hence, the decision on accepting or rejecting the internal control

procedure. It seems reasonable, therefore, to search over several

different priors to find those that are "robust" and "efficient" for a

given set of audit populations.

20



Robustness.. The concept of "robustness" is linked with

reliability and validity. As Huber notes, "robustness signifies

insensitivity to small deviations from the assumptions" (23:1). This

s insensitivity directly influences the ability of a model to approximate

the true underlying situation. Huber elaborates on the significance of

robustness, stating:

Therefore, any statistical procedure should possess the
following desirable features:

(1) It should have a reasonably good (optimal or nearly
optimal) efficiency at the assumed model.

(2) It should be robust in the sense that small
deviations from the model assumptions should impair the
performance only slightly, that is, the latter . . . should

- -~ be close to the nominal value calculated at the model.

(3) Somewhat larger deviations from the model should
not cause a catastrophe 123:5].

As used in this study, robustness involves the insensitivity of

* the model's inferential procedure to slight variations in the

population from the assumed prior probability distribution. A robust

prior distribution provides coverage, such that its influence on the

posterior probability distribution is correct for any actual population

* encountered. That is, though the actual population error rate may

differ substantially from the expected one, a robust prior probability

* * distribution correctly provides, through the model, a bound on the

* population error rate that equals or exceeds the actual population

error rate. This bound represents the minimum error rate in the

population for the specified reliability and given number of observed

errors in the sample.

21
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From the auditor's perspective, denoting those priors which

provide coverage as robust seems appropriate. The auditor' s concern

lies with estimating the probability that the population under

investigation has an error rate that exceeds some predetermined

materiality, u, with reasonable assurance of the results. In practice,

the actual number of population errors may not be known. The FBP aims

at estimating the true, but unknown, population error rate through a

probabilistic statement, such that the likelihood of an actual

population rate exceeding the computed error rate is less than or equal

to 1I REL (i.e., a ).Mathematically, then, acceptable priors are

those for which

%P(R > R**) < 1 - REL [10]

where

R the total number of population errors

R* the FBP computed bound

REL =specified reliability

*The determination of robust priors provides a general indication

of the model's reliability and validity. For example, if the selected

S prior distribution describes an expected error rate of 10 percent and

10 errors are observed in a sample of 100 (resulting in a bound

approximating a 10 percent estimated population error rate), the actual

* population error rate should be no greater than 10 percent for the

model to be considered reliable and valid. If the actual population

- - error rate exceeds 10 percent with a probability exceeding 1-REL, then

S. the model is not providing coverage and its reliability and validity

22



are suspect. For the purposes of this study, the number of robust

priors served as a general barometer of model reliability and validity.

From Godfrey and Neter's discussion of robustness one can infer

its significance to the usefulness of the model: "A robust . . . [prior

probability distribution] . . . could be used by auditors with

confidence even when they have doubts about the nature of the prior

distribution" (22:27). Thus, though an auditor may feel quite

uncertain about the correctness of the assumed population error rate,

expressed as a prior distribution, he could confidently use a robust

prior distribution with reasonable assurance that it would provide a

correct bound on the actual population error rate.

Efficiency. Equally important as robustness is "efficiency."

Efficiency involves the tightness or closeness of the bound to the

actual population error rate. Tradeoffs between efficiency and

robustness may be necessary. For example, the most robust prior may

provide coverage for all anticipated populations, but may drastically

overestimate the true population error rate. A prior distribution with

a90 percent expected error rate, for example, would cover most all

4. populations possibly encountered in the audit environment. Yet, even

* with a relatively low error sample outcome, the computed error rate, or

bound, would probably severely overestimate the true error rate.

Efficiency, therefore, should be balanced with robustness.

0 Three-Phased Methodology. This study focuses on an analysis of

various prior distributions to determine those that are robust andLII~ efficient for a given set of audit populations. The approach follows

23



1. Determination of those prior distributions compatible with

the beta distribution assumed in the model, and the selection

-2 of test values;

2. Determination of those compatible prior distributions that are

robust;

3. Determination of those robust prior distributions that are

efficient.

Phase 1: Determining Compatible Priors ansi Selection of Test Values

Analyzing Compatibility with the Beta Distribution. The FBP

assumes the beta distribution models both the prior and the posterior

probability distributions. As noted earlier, Crosby shoved the

descriptive validity of the beta distribution in modeling auditors'

beliefs (14:364). Further, the beta distribution represents a

"conjugate prior" with respect to the Bernoulli likelihood function,

which models the dichotomous situation faced in the compliance testing

* process (35:148-149). The beta distribution, however, imposes some

limitations on the selection of priors by auditors.

Winkler explains the beta distribution as follows:

Generally, the beta distribution on p (the process error

rate, in this case) with parameters r and n, where
n > r>O0, is given by

(n -1)!Z-1 n-r-l

( r 0 ! ( n r 0

for 0 < p (

elsewhere, 0

24



This represents a continuous distribution where parameters r
and n need not be integers. However, if r and n are not
integers, the factorial terms (n - 1)!, (r - 1)!, and
(n - r - 1)! must be replaced by gamma functions, denoted by
r(n), r(r), and [(n - r). Formally,

r(t) = S xt-le-Xdx, for t > 0 [12]

0

For integer values of t,

r(t) = (t - 1)! [131

The mean and the variance of a beta distribution with
parameters r and n are:

r
E(pjr,n) = - [141

n

r(n -r) [5
or2 (pl r,n) = r~ )[15]

pr n2 (n + 1) 135:149-1501

The parameters r' and n', as used in the FBP, can be expressed in

terms of the mean and the variance as follows:

(1 - E(p)) E(p)
r 2 - 1 E(p) [16]

a (p)

(1 - E(p)) E(p)
no - 1 [171

2 (p)

The limitations on the parameters, where n' > r' > 0, imply that

. 1.) E(p) > (p) [181

2.) E(p) (1 - E(p)) > LT2(p) [191
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Generally, these requirements for selecting "compatible" priors do not

impose serious constraints on the model, but do demand some vigilance

in the selection of prior probability distributions. The various

prior distributions chosen for analysis in this study were tested for

compatibility before evaluation.

Selection of Priors for Evaluation. Efforts were made to select

a wide range of priors which adequately represent typical audit

situations. Under the assumption that the normal audit environment

involves relatively few errors, four corresponding expected error rates

- were chosen. These values represent a range of error rates from very

low (.005), to low (.01), to moderate (.05), to high (.10). Error

rates in excess of .10 would indicate a defective internal control

process, on which the auditor could not rely. In such cases, auditors

would likely proceed directly to substantive testing (20).

Defining a particular prior distribution requires the speci-

fication of variance, a measure of dispersion, in addition to the

expected error rate. Generally, if a great deal of homogeneity in

the data exists, and thus, small deviations from the expected error

rate, then the corresponding variance is small. The specific variances

* studied were determined using the coefficient of variation, C, such

that

C [20]
E(p)

where

O(p) is the standard deviation, or the square root of

the variance.
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The coefficient of variation is a dimensionless statistic useful for

comparing the dispersions of two or more different types of data

(28:211-212). Three values for the coefficient of variation were

selected for each error rate analyzed, resulting in a large variance

(C -2), a moderate sized variance (C - 1), and a small variance

(C = .10).

Table I summarizes the thirteen prior distributions investigated

in this study. The first twelve depict those previously discussed, and

* the last, where r' = 1 and n' = 2, describes a uniform distribution.

This uniform distribution defines the non-informative prior judgement

implicitly assumed in classical techniques and provides a means for

comparison of those techniques with the FBP.

Selection of Sample Size, Test Populations, And Reliability

Levels. Each of the thirteen selected prior distributions were

individually tested against a variety of assumed populations at several

reliability levels using a constant sample size. As with the selection

of priors, the values chosen for test populations and reliability

emphasized what a practitioner could possibly encounter in audit

situations. The selected values correspond to variables in Eq [91

O and fall within four categories: 1) sample size; 2) population size;

3) actuaL population error rate; and 4) reliability.

Sample Size (n). Fixing sample size at n = 100 throughout

*the study limited the computational requirements of the research. This

single value follows the assumption mentioned earlier concerning the

previous completion of the planning phase. In practice, the planning

phase of the FBP would dictate the actual sample size required to

J. 27



~- TABLE I

Prior Parameters Selected for Analysis

Coefficient 2 Priors
E(p) of Variation O(p) a (p)rn

.005 2.0 .0100 .00010000 .24375 48.75

.005 1.0 .0050 .00002500 .99000 198.00

.005 0.1 .0005 .00000025 99.49500 19899.00

.010 2.0 .0200 .00040000 .23750 23.75

.010 1.0 .0100 .00010000 .98000 98.00

.010 0.1 .0010 .00000100 98.99000 9899.00

.050 2.0 .1000 .01000000 .18750 3.75

.050 1.0 .0500 .00250000 .90000 18.00

.050 0.1 .0050 .00002500 94.95000 1899.00

.100 2.0 .2000 .04000000 .12500 1.25

.100 1.0 .1000 .01000000 .80000 8.00

.100 0.1 .0100 .00010000 89.90000 899.00

.500 0.577735 .288675 .08333333 1.00000 2.00
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-'"- accomplish the statistical objective, based on the specified prior

distribution. Here, the selection of n = 100 provides a sample large

enough to adequately represent the population and coincides with the

samples used in comparable studies, such as by Felix and Grimlund

(19:34-35).

Population Size (N). Two population sizes were selected:

1) N = 1000, representative of a relatively small population, and

2) N = 5000, representative of a moderate-sized population.

Actual Population Error Rate (u). Four population error

- -
o rates were chosen, representing limits on the materiality, u, and

include very low (.005), low (.01), moderate (.05), and high (.10)

error rates. The values match those chosen for expected error rates

expressed in the prior distributions. Using u = R/N, as in Eq [2], the

selected error rates can be shown as actual population errors, R, for

the two population sizes.

Reliability (REL). The selected reliabilities, or confidence

levels, ranged from lower confidence (.85) to moderate confidence

(.90 and .95) to high confidence (.99). These values represent the

various probabilities that the model results are correct (i.e., that

*the actual number of errors in the population are equal to or less than

the amount the model predicts). The higher the reliability, the more

confidence the auditor can have in the results. Formally,

REL = 1 - a [211

where a represents the probability of committing a Type I error. In

this study, a Type I error implies accepting the population as having

29
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an error rate equal to or less than the materiality level, u, when it

actually contains more errors than the specified value.

Table II summarizes the various populations and reliabilities

against which each prior distribution was tested. The diverse range of

test values encompasses those the auditor might encounter when using

the FBP. The research results, then, should indicate the reliability

and validity of the model.

Phase 2: Determining Robust Priors

For each of the test populations specified in Phase 1, the FBP

results were compared to those of the hypergeometric distribution to

determine robust prior distributions. These robust priors show the

reliability and validity of the model and provide a stepping stone for

subsequent determination of efficient prior distributions.

The Hypergeometric Distribution as Comparative Instrument.

Determining the robustness of prior distributions required comparison

with accounting populations. Three methods were initially considered.

First, actual populations with identified errors could have been

employed, but data was not readily available. Second, simulated

populations with randomly distributed errors could have been used.

Other studies used this technique, such as those by Felix and Grimlund

and by Neter and Loebbecke, among others (19; 30). The third method

involves a direct determination of the probability of sample outcomes,

based on a specified error rate, using the hypergeometric distribution.

This technique provides more accurate results than a simulation study

and enables broader generalization than a study of individual

populations.
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TABLE II

Summary of Test Populations and Reliability Levels

*N -1000 N -=5000
n =100 n =100

u R REL u R REL

.005 5 .85 .005 25 .85

.90 .90

.95 .95

.99 .99

.01 10 .85 .01 50 .85

.90 .90

.95 .95

.99 .99

.05 50 .85 .05 250 .85

.90 .90

*.95 .95

.99 .99

.10 100 .85 .10 500 .85

-.. 90 .90

.95 .95

.99 .99
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The hypergeometric distribution models the compliance testing

process, using random sampling from a finite population without

replacement. This conditional distribution represents the probability

- of observing r errors in a sample of size n from a population of size N

containing R errors, given by:
9.

.. r n r
- P(rln,N,R) [ [221

n

The hypergeometric distribution was used to measure model

reliability. The exact probabilities of observing r errors in a sample

of n = 100 were computed, conditional on the assumed populations given

by N and R as discussed in Phase 1 (i.e., P(r = On,N,R), P(r - lin,

N, R), . . . , P(r = 100)In,N,R). These probabilities varied across

populations. For any particular population, however, a specific sum of

these hypergeometric probabilities was compared with the designated

reliability to determine the robustness of the priors.

Procedure for Determining Robust Priors. The procedure followed

* -three steps for each prior distribution.

Step 1. Per the FBP, determine the minimum number of errors

in the population, R**, based on the number of errors observed in the

sample, r. Initially, the observed number of errors incremented from

r - 0 to r 1 100 and, with each iteration, the following inequ-";ty was

computed:
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P(R < R**Ir', n' N. r, n) =

* N- n r(r' + R) [n' + n) [(n' - r' + N - R)
' N-n > REL [23]

Ir \R-r I r' + r) rn' + N) r(n' - r' + n - r) -
, '2 _.R M r

where

R** represents the minimum value of R for which

the inequality holds.

This first step provides, for each value of r, the minimum number of

errors in the population, per the FBP, at the designated reliability

level.

* Step 2. Determine the values of r for which R** > R. After

computing the values of R** for a given prior distribution, these

values were then compared to the assumed number of errors, R, for that

particular population size, N. The minimum R** that equals or exceeds

-C, ,R provides a bound for this population, and is based on a specific

.. number of observed errors in the sample, r**. The value for r**

represents the minimum number of observed errors required to establish

this bound (i.e., where min R** > R). Generally, as r increases from

r = r** to r 100, the maximum possible number of observed errors, the

*bound increases (i.e., the computed number of population errors

increasingly exceeds the actual number of population errors). The

value of r**, therefore, is directly associated with the bound, R**,

and those values of r from r = r** to r = 100 specify the realm in

which the model's computed number of errors equals or exceeds the

actual number of population errors.
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Step 3. Determine the hypergeometric probability of the

sample outcome and compare to the specified reliability. Given the

value of r** for a particular test population, the hypergeometric

* -. probabilities associated with that population were summed over the

range from r r** to r 100, as shown:

100

P(r > r**In, N, R) = P(r) [241

r =r**

The resultant probability represents the likelihood of sample outcomes

where the model provides coverage, or, when subtracted from one, the

probability that the model does not provide coverage.

This hypergeometric probability, when compared with the specified

reliability level, determines the robustness of the prior distribution.

*Specifically, if

100

P(r) > REL [251

r = r**

or, equivalently, if

-" r** - 1

P(r) < 1 REL [26]

r 0

then the specified priors, r', n', were considered robust for the

population under consideration.

Phase 3: Determining the Efficiency of Robust Priors

After analyzing the various prior distributions for robustness,

those identified as robust were evaluated for efficiency. As discussed

earlier, efficiency measures the tightness of the bound to the actual

34



number of population errors. To enable comparison between population,

a normalized measure was devised based on the expected bound.

The expected bound, E(R**), was computed by multiplying the

hypergeometric probability of observing r errors in a sample, P(r), by

the R** value associated with the particular r, and summing these

values for r 0 to r = 100. That is,

100
E(R**) = R** P(r r [271

i 0-i=O * ~ .

where

0 < Efficiency < oo

This value provides the expected number of errors in the population

computed by the FBP, for given values of r', n', and N.

The numer of errors by which the FBP overestimated the actual

number of population errors was determined by subtracting the actual

numer of errors, R, from the expected bound, E(R**). Dividing this

value by the actual number of population errors resulted in the

tightness of the bound, expressed as a percentage of actual population

errors. The measure of efficiency, therefore, is given by:

E(R**) - R
Efficiency = [28]

R

Only robust priors were evaluated for efficiency. Those with the

ii tightest bound, such that efficiency was minimum, were considered most

useful in the sense that the practitioner could use them confidently

*; because they provide coverage with minimum overestimation of the

population error rate.
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III. Findings and Analysis

The research objectives, as previously stated in Chapter I, were

to evaluate the reliability and validity of the FBP and to determine if

any specific prior distributions improved the model effectiveness. A

three-phased design was operationalized through use of a CDC Cyber 750

computer and programs, written in the Fortran language incorporating

International Mathematical and Statistical Language (IMSL) subroutines.

*The methodology required the determination of the compatibility,

robustness, and efficiency of selected priors. All thirteen prior

distributions were compatible with the model. This chapter examines

the robustness and efficiency of those priors relative to the selected

study populations and draws conclusions concerning model reliability

and validity.

Performance Trends

The Appendix, entitled "Performance Data," contains tables

summarizing test results of each prior distribution for eight study

populations. Four different error rates were examined for a relatively

small population (1000), and a moderate-sized population (5000). These

* tables depict values for r**, R**, and the hypergeometric probability

associated with each study population at various reliability levels.

Further, they show the expected bound, E(R**), of the priors relative
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to the test values. Before elaborating on the analysis of robustness

and efficiency, some apparent trends in the test data were noted.

Effects on Minimum Estimated Population Errors (R**). The R**

.values represent the FBP minimum estimated number of errors in the

population, as per Eq [23], for each possible number of observed

". errors, r. The performance tables in the appendix illustrate the

increasing values for R** as the study population error rate and

specified reliability increased. The relative R** values remained

similar as population size increased. For example, as the population

size increased from 1000 to 5000, the associated R** values also

increased by approximately 500 percent. These trends were expected

and indicate the adjustments the model makes for varying population

sizes, reliability, and sample outcomes.

Effects on Hypergeometric Probability. The hypergeometric

probabilities shown in the appendix were computed, as per Eq [24], and

represent the likelihood of sample outcomes where the model provides

* . coverage. These probabilities were compared with the specified

"' reliability, as in Eq [25], to determine the robustness of the priors

for the study populations.

_. In general, the hypergeometric probabilities decreased as the

population error rate increased. That is, as the actual error rate

increased, the FBP bound increased and, accordingly, a higher number

of observed errors, r**, were needed to establish that bound. As such,

the likelihood of these larger sample error outcomes grew more remote.

Within each study population the hypergeometric probability

tended to increase as the reliability level increased. This trend was

%[., 37



directly attributable to the decreasing r** values associated with the

increased reliabilities.

* Generally, the hypergeometric probability for the larger

population size was smaller than for the population size of 1000 for

the same actual error rate and reliability. This trend did not affect

the performance of priors across the population sizes.

The hypergeometric probability corresponding to a particular bound

had to exceed the specified reliability for the priors to provide

adequate coverage relative to the study populations. Those prior

distributions supplying coverage were considered robust.

Robustness

Information from the Performance Data was consolidated into

Tables III and IV, which depict robust prior distributions for the

two population sizes. The tables reflect the expected bound, E(R**),

computed from Eq [271, for the robust prior distributions.

Additionally, those priors providing coverage for the particular

population size illustrated in the table, but not for the other study

population size, are noted.

* Overall, the selected priors were robust for the study populations

in slightly more than half the cases. With a population size of 1000,

108 of 208 possible cases (51.9 percent) were robust. For a population

size of 5000, 105 of the 208 cases (50.5 percent) were robust.

Effect of Popultion Error Rate (u) Chne on Robustness. With

*few exceptions, when the actual population error rate exceeded the

* expected error rate, the model did not provide coverage and the prior
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distribution was not robust. When the prior expressed an anticipated

error rate that equaled or exceeded the actual error rate, the priors

* . were robust. For example, given a .01 population error rate and an

- anticipated error rate of .01, the prior distribution is robust for

population error rates less than or equal to .01. However, given an

anticipated error rate of .01 and an actual error rate of .05 or .1,

the prior distribution is not robust.

This trend suggests some conclusions regarding model reliability

and validity. The model generally produced robust priors when the

~ population contained errors equal to or less than the amount antici-

pated. Yet, when the population error rate exceeded expectations,

the model almost never generates robust priors.

The exceptions to this tendency partially accounted for robustness

in slightly over 50 percent of the cases. At very low expected error

rates (E(P) = .005) and higher reliability levels, the model did

provide coverage for population error rates double those anticipated.

This trend occurred at the REL - .99 level for all three different

%%% variances. This provides favorable support for model reliability and

validity at these levels. For example, assuming an auditor specified

* a reliability of 99 percent and expected an error rate of one-half

percent, this finding indicates that the FBP would provide coverage

despite an actual error rate of 1 percent, or double that anticipated.

* Effect of Population Size (N) on Robustness. Other trends are

apparent when comparing Tables III and IV. With the exceptions noted

\A. by asterisks, the same coverage was provided for smaller and moderate-

sized populations. Two cases were not robust at N u1000 but were
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- robust at N = 5000; three cases were not robust at N =5000 but were

robust at N = 1000. Despite these minor deviations, the performance

of priors seems to occur independent of population size.

Effect of Reliability Level (REL) on Robustness. In general, as

the reliability level increased, increased robustness occurred. For

example, with N = 1000, 21 of 108 (19.4 percent) were robust at the 85

percent reliability level. This compares to 34 of 108 (32.4 percent)

at the 99 percent reliability level. The results are similar for the

5000 population size. Though not obvious at the small variance level,

this trend became more apparent as the variance increased to moderate

* and high levels. As expected, an increasing expected bound, E(R**),

accompanied the increases in reliability.

2
* Effect of Prior Probability Variance (Or) on Robustness. Model

coverage decreased as expected error rate variance increased from small

to high. This deteriorating robustness occurred initially at the lower

* reliability levels and then moved to the moderate and high levels as

the variance on the priors increased. Data in the Appendix illustrates

* the cause for this trend, which was mainly due to the lover hyper-

geometric probabilities associated with the high r** values needed at

* the lover reliability levels. Since these values did not exceed the

specified reliability, the priors did not provide coverage.

As the variance in the priors increased along with the higher

* actual error rates, a trend was noted in values of the expected bound,

E(R**). Initially, the E(R**) values tended to increase as the

* variance increased, for a given reliability level. This general trend

* existed for both very low and low expected error rates. Yet, as the
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expected error rates increased to moderate and high, an apparent

reversal occurred when tested against the lower actual error rates.

Increasing E(R**) values for increasing variance continued when the

expected error rate equaled or exceeded the actual error rate; however,

when the actual error rate was less than that expected, the E(R**)

values generally decreased (for the same reliability level) as the

variance on the priors increased. This tendency becomes significant

in the discussion of efficiency.

Uniform Distribution and Robustness. As discussed in Chapter II,

the uniform distribution represents the non-informative prior

implicitly assumed in classical sampling techniques. This assumed

prior was tested to enable some conclusions regarding a comparison of

classical techniques with the FBP model. As shown in Tables III and

IV, this prior distribution performed adequately, with only one case

where coverage was not provided (i.e., N = 5000, u =.10, REL - .90).

This exception may have been partially due to roundoff error. The

t2 performance of this distribution, however, appears to detract from the

* model's utility. It would appear that using a lower expected error

rate would be more effective; however, the research data indicate the

uniform distribution is more robust. Despite this finding, the FBP

* utilizes smaller sample sizes than the classical approach.

* Efficiency

As explained in Chapter II, efficiency measures the tightness of

the expected bound relative to the actual number of population errors.

The efficiency measure, given by Eq [28], indicates the average amount
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the particular prior distribution will overestimate the number of

13 actual population errors. Since auditors wish to minimize this

overestimation while assuring coverage, efficiency becomes an important

model characteristic.

Tables V and VI depict the efficiency values for robust priors.

As with the tables of robustness, these efficiency tables are separated

by population size. The values shown are expressed as percentages.

Hence, a value of 50 implies that the expected bound overestimates

the actual population error rate by 50 percent (i.e., efficiency

(E(R**) - R) x 100). Several trends evolve from an examination of

these tables.

Effect of Population Error Rate (u) on Efficiency. As the

actual population error rate increased for specific priors, efficiency

improved. When the expected error rate equaled the actual error

* rate, efficiencies were relatively good, ranging from 10.6 percent

to 391 percent. Howevev, the efficiency of the prior distributions

dramatically deteriorated as the difference between the expected error

rate and the actual population error rate increased. For example, for

p. a prior with an expected error rate of 10 percent and a small variance,

* the amount of overestimation was 2156 percent, or 539 errors, for a

population of 5000 having only 25 actual errors.

Effect of Population Size (N) on Efficiency. The change in

population size from 1000 to 5000 had relatively minor effects on

the efficiency of priors. In general, the efficiencies were slightly

better for the larger population at small variance levels, and slightly

better for the smaller population at moderate and high variance levels,
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except at the very loy expected error rates. For example, the larger

population/small variance values overestimated the actual error rate

by an average of 646 percent. In contrast, the small population/small

variance values overestimated the actual error rate by a 743 percent

average. On the other hand, the small population overestimated by

an average of 276 percent and 301 percent for moderate and large

variances, respectively, compared to an average of 289 percent and

344 percent for the same variances in the larger population. These

differences, however, were not considered a weakness of the model.

Effect of Reliability (REL) on Efficiency. As expected, the

efficiency values increased with increasing reliability levels,

implying that the model consistently and increasingly overestimated the

actual number of population errors as the desired confidence increased.

This result followed from the previous observation where the expected

bound increased as reliability increased. This trend highlights an

apparent tradeoff between reliability and efficiency (efficiency tends

to suffer at the expense of reliability).

Effect of Prior Probability Variance (a ) on Efficiency. As with

the effects on robustness discussed earlier, changes in prior distri-

* bution variance seemed to result in a reversing trend on efficiency.

Generally, the smaller variance level performed more efficiently than

either the moderate or high variance level when the expected error

rate equaled the actual error rate. When the expected error rate

increasingly exceeded the actual error rate, the efficiency degenerated

'is forall three variance levels. However, particularly for the moderate

* and high expected error rates, when the actual population error rate
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was substantially lower than anticipated, the moderate and high

variance levels performed more efficiently. For example, given a

population size of 1000, REL =.99, and an expected error rate of 10

percent, if the actual number of population errors was only 5, versus

the 100 anticipated, then the small variance level would result in 111

estimated errors, whereas the large variance level estimated 30 errors.

a-'. Apparently, when the actual error rate is significantly less than the

expected error rate, the moderate and high variances were markedly more

efficient at the reliability levels for which they provided coverage.

* Need for Tradeoffs

These findings seem to support the necessity for tradeoffs between

robustness, efficiency, and reliability. For example, based on the

values shown in Table V, if the auditor expects an error rate of 10

percent, he may receive better coverage by specifying a small variance,

particularly when the actual population error rate approaches 10

percent. If, however, the actual population error rate is signifi-

cantly less, specifying a moderate or high variance would seem to

provide a much more efficient estimate of population error rate.

* Furthermore, at these higher variance levels, the model does appear

to provide coverage, and fairly good efficiency, when the actual error

rate approaches 10 percent, but only at the 95 percent reliability

* level.

It would appear that an "ideal" prior probability distribution was

not found. That is, no prior was identified which provided coverage

with good efficiency across all study populations. Instead, the
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findings indicate the importance of specifying an expected error

rate which closely matches the actual error rate. Further, analysis

,-.* shows the apparent requirement to balance robustness, efficiency,

and reliability. These considerations would become another of the

subjective judgments the auditor must make when planning the audit.

The uniform distribution seems to emerge as the best overall

candidate with regard to balancing the required tradeoffs. With near

perfect robustness, this prior also performed efficiently, particularly

with higher error rate populations. Though not especially encouraging,

* -. this finding would imply that, in the absence of a fairly strong and

well-founded expectation of the probable error rate, a more conser-

vative approach may be to specify a non-informative, uniform prior

distribution.

Summary of Primary Findings

Several findings emerged from this study which appear relevant to

the research objectives. These significant findings must, however, be

tempered with an understanding of the methodology used in the research.

.- They result from a practical analysis of the data, as opposed to a more

rigorous statistical evaluation.

The primary findings were:

1. The beta prior distribution assumed in the model does not

impose serious constraints on the selection of prior distributions,

but does require some selection.

2. The model reliability and validity appears adequate, as

evidenced by the robustness and efficiency of priors, when the actual

error rate matches the expected error rate.
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* 3. The model reliability and validity is suspect when the

expected error rate significantly exceeds the actual error rate,

because of the poor efficiency, and vhen the expected error rate

underestimates the actual error rate, due to the lack of coverage.

4. The model provides coverage when the actual error rate equals

or doubles an anticipated very low error rate at a high reliability

level.

5. Population size does not significantly impact model

performance.

6. Selection of priors with a small variance appears to provide

better coverage across populations and more efficient performance

when the actual error rate matches that expected, but moderate and

high variances perform more efficiently when the expected error rate

significantly overestimates the population error rate. These larger

variances often do not, however, result in adequate coverage,

particularly at lower reliability levels and higher actual error rates.

7. The uniform distribution is robust and relatively efficient

across all study populations and reflects perhaps the most conservative

prior distribution evaluated.

8. Tradeoffs between robustness, efficiency, and reliability seem

a necessity when using the FBP.
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IV. Conclusions and Recommendations

The findings presented in Chapter III provide some information to

practitioners considering the use of the Fb? and reveal several areas

for continued study. This chapter examines the potential usefulness

of the model and provides recommendations for future research.

Potential Use of the FBP

Given that the auditor can closely approximate the population

error rate, the FEP could be incorporated into an efficient audit

process, enabling reduced sample sizes, as demonstrated by Godfrey

and Andrews (21:308-313). Using Tables V and VI, presented in Chapter

III as a judgmental guide, the auditor could evaluate the possible

tradeoffs and ramifications involved in the selection of particular

prior distribution. Borrowing from Felix and Crimlund's suggestions

for a similar model, the method of application would appear fairly

facility, and algorithm incorporating the FBP could be developed.

Once established, the operational use appears straightforward for a

qualified auditor. The anticipated error rate and variance could be

prespecified, along with the population size, materiality, and desired

reliability. The computer could return a corresponding sample size

and, after entering the number of errors detected, could return the

probability of a material error. The material error's sensitivity to
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prior judgment could then be tested through repeated applications of

this procedure (19:39).

Perceived Shortcomings

The Finite Bayesian Procedure appears to have deficiencies.

Several researchers address the shortfalls of attribute testing in the

audit environment, emphasizing the need to estimate the dollar value of

errors rather than the error rate. T. M. F. Smith states, "There is no

obvious way of turning the error rate ... into an upper limit for the

money value of the errors" (32:269). Anderson and Teitlebaum state

that "the methods which focus on error frequency seem to provide no

meaningful conclusions in dollars" (32:269-270). These criticisms

appear well-founded for substantive testing but inappropriate for

compliance testing. As long as the compliance testing objective is

to evaluate internal control systems guiding subsequent substantive

* testing, the need for quick and efficient methods such as the FBP

should continue (20).

Other perceived shortcomings relate to the complexity of Bayesian

models and their relative usefulness within the judgmental context

of auditing. In part, this criticism apparently stems from general

resistance to change, perhaps due to a lack of understanding. Bayesian

methods, particularly the FEP, recognize the subjectivity of the audit

* environment and attempt to incorporate these judgments in a more

objective fashion. The resultant benefits in smaller sample sizes also

seem to warrant their continued consideration. The efficiency provided

0 by the FB? appears even more appealing in light of the findings in
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this study, where a non-Bayesian uniform distribution performed veil.

Coupled with the smaller sample sizes, the FBP seems to provide a more

advantageous approach than the classical technique. Computational

complexities could be overcome with increased use of computer

procedures.

Additional possible weaknesses with the FBP concern prior

probability distributions elicitation. The assessment of priors remain

a major stumbling block to the use of Bayesian techniques (21:313).

Though this study provides some insight into the performance of

specific priors against selected populations, it also highlights

the need for an accurate and verifiable means of eliciting auditor'ss

subjective beliefs. The model's inability to estimate population error

rates greater than those specified seems to be a major weakness. This

apparent failure does not tolerate errors in auditor judgment during

the assessment process and deserves more scrutiny. The accounting

profession seems to recognize this shortcoming and research literature

continues to address it (7-10; 13; 14; 15; 18).

Another value requiring predetermination by the auditor using

V Bayesian methods is materiality. Again, judgment influences the

- auditor's choice. Though current research aims at determining the

effects of auditor decisions in this regard, more work is required

(15:589).

Recommendations for Future Research

This study represents an analysis of selected prior probability

distributions and populations in the evaluation phase of the FBP;LI; 53
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however, there seems to be opportunities for future research.

An appropriate area for continued effort seems to be in statis-

tically evaluating the results of this study. The analysis phase of

this research centered on practical implications. Specifically, the

analysis focused on the robustness and efficiency of selected priors,

drawing implications concerning the model's reliability and validity.

Future research could possibly use analysis of variance (ANOVA) and

regression to test relationships of the variables and provide more

objective conclusions regarding prior probability distributions and

model reliability and validity. Future efforts could focus on the

* tradeoffs among robustness, efficiency, and reliability, presenting

the information in more easily comprehensible form, such as in tables

or on graphs.

Research design variation could provide additional information on

model performance. For example, changes in sample size may impact the

reliability and validity of the FBP. Also, testing the model against

actual populations, rather than the hypergeometric distribution, may

increase external validity of research results.

Moreover, an extensive study examining the range of priors between

* an expected error rate of one-half percent and 5 percent appears to be

justified. As noted previously, a serious drawback in the model exists

because of its general inability to provide coverage at error rates

* greater than those expected. However, the coverage provided at double

the expected rate for the very low error rates, as shown in Tables III

and IV, reverses this trend and may indicate that the FEP does tolerate

auditor misjudgment under certain circumstances. Consequently, more
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research in this area would seem relevant.

Another area for study is the reversal in efficiency as the

variance on the priors increases. Moderate and large variance priors

seem to provide more efficient coverage when the actual and expected

error rate differ significantly. Small variance priors perform more

efficiently when the actual and expected error rates match. An

4. in-depth evaluation of this tendency may supply useful information

with which auditors can temper their judgment in prior distribution

selection.

The possible benefits in smaller sample sizes accruing from the

planning phase of the FBP were not examined in this study. Continued

research in this area could result in more persuasive evidence on the

usefulness of the model, particularly through a comparative study with

classical techniques. The uniform distribution appears as a reasonable

starting point from which to extend this work, and emphasizing the

different efficiencies may prove enlightening. Further, by focusing on

the elicitation technique proposed by Godfrey and Andrews, future study

could expand the knowledge base of subjective assessment research.
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