MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963-A
Solitons and SEASAT
It has been suggested that Soliton formation might be relevant to SeaSat observations. It has also been said that there are no Solitons in more than one space dimension. The second statement is demonstrated to be false. The Kadomtsev-Petviashvile equation relevant to Internal Waves is shown not to have Soliton solutions. This lends support to the view that Solitons and SeaSat have little in common.
Solitons and SEASAT

K. M. Case

August 1984

JSR-84-203D

Approved for public release. Distribution unlimited

JASON
The MITRE Corporation
1820 Dolley Madison Boulevard
McLean, Virginia 22102
ABSTRACT

It has been suggested that Soliton formation might be relevant to SeaSat observations. It has also been said that there are no Solitons in more than one space dimension. The second statement is demonstrated to be false. The Kadomtsev-Petviashvile equation relevant to Internal Waves is shown not to have Soliton solutions. This lends support to the view that Solitons and SeaSat have little in common.
1.0 **INTRODUCTION**

The persistence of long V-shaped wakes observed by SeaSat has led to suggestions that the phenomena may be related to Internal Wave Solitons. Most observations were made under conditions for which one would have little or no reason to expect Solitons to be relevant. However, there is one case (Rev. 407) for which one might think otherwise. This was a big ship in shallow water with a strong thermidine.

A priori there is little likelihood that the equations describing internal waves generated by ships will admit Soliton solutions. (By a Soliton we mean a non-singular disturbance localized in space at any time which retains its integrity on interactions with similar disturbances.) While there are many equations in one space dimension which have Soliton solutions, little is known about spaces of higher dimensions. (Indeed it is sometimes said that there are no true solitons in case the number of space dimensions is greater than one. Below we will see this is not true.)

Since the paradigm of an equation describing Solitons is the Korteweg-deVries (KdV) equation it is natural to take as our starting point an equation closely related to this which does
describe fully three dimensional internal waves. (The class of solutions described is not exactly those we would expect to be ship produced. However, it is hoped that the results obtained will give support to our conviction that Internal Wave Solitons are not relevant for the SeaSat photographs.)

The equation we have in mind is

\[u_t + \frac{1}{2} \left(\frac{\partial}{\partial x} \right)^2 u_{yy} + \frac{1}{2} \left(\frac{\partial}{\partial x} \right) (3u^2 + u_{xx}) = 0 \]

(1)

where

\[\frac{1}{2} \left(\frac{\partial}{\partial x} \right)^2 = \frac{1}{2} \left[\int_{-\infty}^{x} - \int_{-\infty}^{x'} \right] \phi(x') \; dx' \]

Closely related to Eq. (1) is the equation

\[u_t - \frac{1}{2} \left(\frac{\partial}{\partial x} \right)^2 u_{yy} + \frac{1}{2} \left(\frac{\partial}{\partial x} \right) (3u^2 + u_{xx}) = 0 \]

(2)

The Eqs. (1) and (2) are known as the Kadomtsev–Petviashvili (1) equations. A derivation of Eq. (1) in the case of internal waves is given in reference (2). An important point is that for internal waves the sign of the term in Eq. (1) involving \(u_{yy} \) is unambiguously required to be plus. (There are physical situations...
where Eq. (2) can hold. An example is when capillarity is important.

Our main result is the following: The extension of the N-Soliton solutions of K-deV to solutions of Eqs. (1) and (2) generally break up asymptotically into K-deV Solitons moving in arbitrary directions in the x-y plane. (These are then plane waves.) They are physically unacceptable as being non-localized. However, for special values of the parameters these solutions are localized in x,y. However, for Eq. (1) these localized solutions are singular. Hence these solutions again are not physical. (This is not so for Eq. (2). True localized, non-singular, non-interacting "lumps" result. We include these primarily to show that multi-dimensional Solitons do indeed exist.)

In Section 2 the formalism used by Zakharov and Shabat (3) to integrate the K-P equations is summarized. The generalization of the N-Soliton KdeV solution is given in Section 3. In Section 4 the "lumps" which result when special relations exist between the N-Soliton parameters is presented.
2.0 FORMALISM

Zakharov and Shabat (3) have introduced a method to integrate Eqs. (1) and (2). We summarize this here.

Let \(F(x,z;y,t) \) satisfy the two equations

\[
\frac{1}{4} \frac{3F}{3t} + \frac{3F}{3x} + \frac{3F}{3z} = 0 ,
\]

(3)

and

\[
\frac{1}{\sqrt{3}} \frac{3F}{3y} - \frac{3F}{3x^2} - \frac{3F}{3z^2} = 0 .
\]

(4)

Determine \(K(x,z;y,t) \) from the Volterra equation

\[
F(x,z) + K(x,z) + \int_x^\infty K(x,s) F(s,z) ds = 0
\]

(5)

(Here we have suppressed the parametric arguments \(y \) and \(t \).)
Then they show that

$$u = 2 \frac{d}{dx} K(x, x)$$ \hspace{1cm} (6)

satisfies Eq. (1).

To find solutions of Eq. (2) we merely note that from any solution of Eq. (1) we can obtain a solution of Eq. (2) by the replacement $y \rightarrow iy$.
3.0 GENERALIZATION OF THE N-SOLITON K-deV SOLUTIONS

We follow reference (3).

A. Suppose

\[F = e^{-\kappa x - \eta z} M(t, y) \]

(7)

From Eq. (3) we find

\[M = C(y) e^{4(\kappa^3 + \eta^3) t} \]

(8)

Then Eq. (4) gives

\[C = M_0 e^{-\sqrt{3}(\kappa^2 - \eta^2) y} \]

(9)

i.e.

\[M = M_0 e^{-\sqrt{3}(\kappa^2 - \eta^2) y + 4(\kappa^3 + \eta^3) t} \]

(10)

Our Gelfand-Levitan Equation (5) becomes

\[K(x, z) + M_0 e^{-\kappa x - \eta z} + \int_{x}^{\infty} K(x, s) M_0 e^{-\kappa s - \eta z} ds = 0, \]

(11)
Clearly $K(x,z) = K(x) e^{-\eta z}$. Inserting in Eq. (11) yields

$$K(x) + M e^{-\kappa x} + \frac{M e^{-(\kappa + \eta)x}}{\kappa + \eta} = 0 \quad (12)$$

Solving gives

$$K(x,z) = \frac{-M e^{-(\kappa x + \eta z)}}{1 + \frac{M}{\kappa + \eta} e^{-(\kappa + \eta)x}} \quad (13)$$

Then

$$K(x,x) = \frac{-M e^{-(\kappa + \eta)x}}{1 + \frac{M}{\kappa + \eta} e^{-(\kappa + \eta)x}}$$

$$\equiv \frac{\partial}{\partial x} \ln \left[1 + \frac{M}{\kappa + \eta} e^{-(\kappa + \eta)x} \right]$$

and so

$$u = 2 \frac{\partial^2}{\partial x^2} \ln \left[1 + \frac{N}{\kappa + \eta} e^{-(\kappa + \eta)x} \right] \quad (14)$$

Defining x_o by

$$(\kappa + \eta) x_o = \ln \frac{M}{\kappa + \eta}$$
gives

\[x_0 = \frac{1}{\kappa + n} \ln \frac{M_0}{\kappa + n} + \sqrt{3} (n - \kappa) y + 4(\kappa^2 - \kappa n + n^2) t \]

(15)

Then Eq. (14) becomes

\[u = \frac{1/2 (\kappa + n)^2}{\cosh^2 (\kappa + n)(x - x_0)} \]

(16)

To interpret this consider \(\kappa = n \) then

\[U = \frac{2\kappa^2}{\cosh^2 \kappa(x - x_0)} \]

(17)

with

\[x_0 = \text{constant} + 4\kappa^2 t \]

This is just a K-deV Soliton. For \(\kappa \neq n \) the solution (16) is then a K-deV type soliton propagating at an arbitrary angle with respect to the x-axis. This is a plane wave - it is constant on the line

\[x - \sqrt{3} (n^2 - \kappa^2) y = \text{constant} , \]
and hence physically really not acceptable.

B) The above is readily extended to get the 2-dimensional extension of the N-Soliton K-deV solution. Thus we generalize Eq. (10) by choosing

$$F = \sum_{n} M_n(t,y)e^{\kappa_n x - \eta_n z}$$ \hspace{1cm} (18)

Since Eq. (3) and (4) are linear we have in analogy to Eq. (10)

$$M_n = M_n(0) e^{[\sqrt{3}(\eta_n^2 - \kappa_n^2)y + 4(\kappa_n^3 + \eta_n^3)t]}$$ \hspace{1cm} (19)

The degenerate integral equation for K(x,z) is then satisfied by

$$K(x,z) = \sum_{n} K_n(x) e^{\eta_n z}$$ \hspace{1cm} (20)

where

$$K_n(x) + M_n e^{\kappa_n x} + M_n \sum_{m} e^{-(\kappa_m + \eta_m)x} K_m(x) = 0$$ \hspace{1cm} (21)

This is readily solved using Cramer's rule. Thus
\[K_n(x) = \frac{A_n(x)}{\Delta(x)} \] \hspace{1cm} (22)

where

\[\Delta = \det \left(\delta_{nm} + \frac{M_n e^{-(\kappa_n + n_m)x}}{\kappa_n + n_m} \right) \] \hspace{1cm} (23)

and \(A_n \) is obtained from \(\Delta \) by replacing the \(n' \)th column of the matrix by the vector

\[(-M_1 e^{-\kappa_1 x}, -M_2 e^{-\kappa_2 x}, \ldots) \].

Suggested by the form of Eq. (14) we look at \(\Sigma A_n(x) e^{-nx} \) and verify that

\[\Sigma A_n(x) e^{-nx} = \frac{\partial}{\partial x} \Delta(x) \]

therefore \(K(x,x) = \frac{\partial}{\partial x} \ln \Delta \) and so

\[u(x) = 2 \frac{\partial^2}{\partial x^2} \ln \Delta \] \hspace{1cm} (24)

To interpret this result we consider the limit as \(y, t \) go to infinity. Assuming no special relations between the
various pairs \((\kappa_n, \eta_n)\). Then we note that for large \(|y|\), \(|t|\) there will be regions where one of the \(M_n\) (say \(M_j\)) is much larger than all others. Hence then

\[
\Delta = 1 + \frac{M_j e^{-(\kappa_j + \eta_j)x}}{\kappa_j + \eta_j},
\]

(25)

which is just the single soliton result of Eq. (14). Thus asymptotically the solution breaks up into a sum of the simple "plane soliton" solutions.
4.0 DEGENERATE CASES

It is well known that the K-deV equation has in addition to solutions like those of Eq. (24) solutions which are rational functions of the coordinates. These can be obtained by making a suitable ansatz for the form of solution. This is

\[U = \sum c_n \frac{1}{n} \left[x - a_n(t) \right]^\alpha \]

(26)

Inserting in the K-deV shows that this will be a solution if \(\alpha = 2 \), the \(c_n \) are constants and the \(a_n \) satisfy simple coupled ordinary differential equations. An alternative approach is to take the general solution of Eq. (24), specify relations between the parameters, \(\kappa_n, \eta_n \), and pass to limits. This is the procedure given in reference (4) - and the one we will follow.

We have seen that a solution is obtained from Eq. (24) with \(\Delta \) given by Eq. (23). Introduce \(\lambda_n, \gamma_n \) by

\[\kappa_n = \frac{\lambda_n + \gamma_n}{2}, \quad \eta_n = \frac{\lambda_n - \gamma_n}{2} \]

(27)

then choosing \(\gamma_n(0) = -a_n \lambda_n \) we have \(\Delta = \det \Gamma \) where
\[\Gamma_{nn} = \delta_{nn} + \frac{2 M_n}{\gamma_n - \gamma_m + \lambda_n + \lambda_m} \quad (28) \]

\[M_n = -a_n \lambda_n e_n^\dagger \quad (29) \]

\[[L_n] = [-\sqrt{3} \gamma_n y + (\lambda_n^2 + 3\gamma_n^2) \tau] \quad (30) \]

Now look at the limit as all \(\lambda_n \rightarrow 0 \).

Assuming \(a_n \sim 1 + \zeta_n \lambda_n \) we have on expanding in \(\lambda_n \) and keeping only matrix elements of first order in the \(\lambda_n \)

\[\Gamma_{nn} = \lambda_n d_n \quad (28) \]

\[n \neq m \quad \Gamma_{nm} = \frac{-2\lambda_n}{\gamma_n - \gamma_m} \quad (31) \]

where

\[d_n = x - \zeta_n + \sqrt{3} \gamma_n y - 3\gamma_n^2 \tau \quad (32) \]

Then
\[
\det \Gamma = (h \lambda_n) \det \Gamma'
\]
(33)

with \(\Gamma_{nn}' = d_n\)

\[
n \neq m \quad \Gamma_{nm}' = \frac{-2}{\gamma_n - \gamma_m}.
\]
(34)

We can then write

\[
u = 2 \frac{\partial^2}{\partial x^2} \ln \det \Gamma'
\]
(35)

The essential points are seen by considering the case of \(N = 2\). Then

\[
\Delta' = \det \Gamma' = d_1 d_2 + \frac{4}{(\gamma_1 - \gamma_2)^2}
\]
(36)

\[
= [x - \zeta_1 + \sqrt{3}\gamma_1 y - 3\gamma_1^2 t][x - \zeta_2 + \sqrt{3}\gamma_2 y - 3\gamma_2^2 t]
\]

\[
+ \frac{4}{(\gamma_1 - \gamma_2)^2}
\]
(37)

Clearly \(u\) is then a rational function of \(x, y, t\). Consider various possibilities for \(\zeta_n, \gamma_n\).

\((1) \quad \zeta_n, \gamma_n \text{ real. The solution is clearly singular.}\)
(There are points where $\Delta' = 0$.)

(ii) ζ_n, γ_n complex. For the solution to be real we must have

\[
\zeta_1 = \zeta, \quad \zeta_2 = \zeta^* \\
\gamma_1 = \gamma, \quad \gamma_2 = \gamma^*
\]

Then

\[
\Delta' = -\frac{1}{\gamma_1^2} + \left| x - \zeta + \sqrt{3} \gamma y - 3\gamma^2 t \right|^2 \quad (38)
\]

The second term can vary from 0 to ∞ and therefore Δ' vanishes at least once.

These rational solutions of Eq. (1) are physically unacceptable.

On the other hand we noted that a solution of Eq. (2) is obtained from one of Eq. (1) by the replacement $y + iy$. In such a case

\[
\Delta' + \left[x - \zeta_1 + i\sqrt{3} \gamma_1 y - 3\gamma_1^2 t \right] \left[x - \zeta_2 + i\sqrt{3} \gamma_2 y - 3\gamma_2^2 t \right]
\]
Again if the γ_r, γ_r are real the solution is singular. If these are complex we must require in order that the solution be real that $\gamma_1 \equiv \gamma$, $\gamma_2 = -\gamma^*$. In this case

$$\Delta^* = \frac{1}{\gamma_r^2} + \frac{1}{|x - \zeta + r\sqrt{3} \gamma y - 3y^2 t|^2}.$$

(40)

If γ_r (real part of γ) is non-zero this obviously gives a non-singular solution. It is also well-behaved at infinity. As $|x|$ (\(|y|\)) go infinity $U \sim \frac{1}{x} \left(\frac{1}{y} \right)$. \)
5.0 CONCLUSIONS

Two dimensional Solitons exist. However, some equations describing internal waves which might be strongly suspected of having Soliton solutions do not.

While not definitive this lends significant support to the view that Solitons have no connection with the phenomena observed by SeaSat.
REFERENCES

DISTRIBUTION LIST

Dr. Marv Atkins
Deputy Director, Science & Tech.
Defense Nuclear Agency
Washington, D.C. 20305

National Security Agency
Attn RS: Dr. N. Addison Ball
Ft. George G. Meade, MD 20755

Mr. Anthony Battista (3)
House Armed Services Committee
2120 Rayburn Building
Washington, D.C. 20515

Mr. Steve Borchardt
Dynamics Technology
Suite 200
22939 Hawthorne Boulevard
Torrance, CA 90505

Mr. Rod Buntzen
NOSC
Code 1603B
San Diego, CA 92152

Dr. Curtis G. Callan, Jr.
Department of Physics
Princeton University
Princeton, NJ 08540

Mr. Gerald Cann
Principal Assistant Secretary
of the Navy (RES&S)
The Pentagon, Room 4E736
Washington, D.C. 20350

Dr. Kenneth M. Case
The Rockefeller University
New York, New York 10021

Dr. Robert Cooper (21)
Director, DARPA
1400 Wilson Boulevard
Arlington, VA 22209

Dr. Roger F. Deshen
Institute for
Advanced Study
Princeton, NJ 08540

Dr. Russ E. Davis
Scripps Institution of Oceanography
(A-30), 301 NORPAX, UCSD
La Jolla, CA 92030

Defense Technical Information (12)
Center
Cameron Station
Alexandria, VA 22314

The Honorable Richard DeLauer
Under Secretary of Defense (R&E)
Office of the Secretary of Defense
The Pentagon, Room 3E1006
Washington, D.C. 20301

Director (14)
National Security Agency
Fort Meade, MD 20755
ATTN: Mr. Richard Foss, AOS

CAPT Craig E. Dorman
Department of the Navy, OP-095T
The Pentagon, Room 5D576
Washington, D.C. 20350

CDR Timothy Dugan
NFO10 Detachment, Suitland
4301 Suitland Road
Washington, D.C. 20390

Dr. Frank Fernandez
ARETE Assoc.
P.O. Box 330
Encino, CA 91316
DISTRIBUTION LIST
(Continued)

Mr. Richard Gasparouic
APL
Johns Hopkins University
Laurel, MD 20707

Dr. Larry Gershel
NIO for Strategic Programs
P.O. Box 1925
Washington, D.C. 20505

Dr. S. William Gouse, W300
Vice President and General Manager
The MITRE Corporation
1820 Dolley Madison Blvd.
McLean, VA 22102

Dr. Edward Harper 1101
SSBN, Security Director
OP-021T
The Pentagon, Room 4D534
Washington, D.C. 20350

Mr. R. Evan Hineman
Deputy Director for Science & Technology
P.O. Box 1925
Washington, D.C. 20505

Dr. Richard Huglund
Operations Research Inc.
Room 428
1400 Spring Street
Silver Spring, MD 20910

Mr. Ben Hunter 121
CIA/DDS&T
P.O. Box 1925
Washington, D.C. 20505

The MITRE Corporation 1251
1820 Dolley Madison Blvd.
McLean, VA 22102
ATTN: JASON Library, W002

Mr. Jack Kallish
Deputy Program Manager
The Pentagon
Washington, D.C. 20301

Mr. John F. Kaufmann
Dep. Dir. for Program Analysis
Office of Energy Research, ER-31
Room F326
U.S. Department of Energy
Washington, D.C. 20545

Dr. George A. Keyworth
Director
Office of Science & Tech. Policy
Old Executive Office Building
17th & Pennsylvania, N.W.
Washington, D.C. 20500

Mr. Jerry King [31]
RDA
P.O. Box 9695
Marina del Rey, CA 90291

Maj Gen Donald L. Lamberson
Assistant Deputy Chief of Staff (RD&A) HQ USAF/RD
Washington, D.C. 20330

Dr. Donald M. LeVine, W385 [13]
The MITRE Corporation
1820 Dolley Madison Blvd.
McLean, VA 22102

Mr. V. Larry Lynn
Deputy Director, DARPA
1400 Wilson Boulevard
Arlington, VA 22209
<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Joseph Mangano</td>
<td>121 DARPA/DEO, 9th floor, Directed Energy Office, 1400 Wilson Boulevard, Arlington, VA 22209</td>
</tr>
<tr>
<td>Mr. Walt McCandless</td>
<td>4608 Willet Drive, Annandale, VA 22003</td>
</tr>
<tr>
<td>Dr. John Penhune</td>
<td>Science Applications, Inc., 1200 Prospect Street, La Jolla, CA 92038</td>
</tr>
<tr>
<td>Mr. John McMahon</td>
<td>Dep. Dir., Gen. Intelligence, P.O. Box 1925, Washington, D.C. 20505</td>
</tr>
<tr>
<td>Mr. Alan J. Roberts</td>
<td>Vice President & General Manager, Washington C3 Operations, The MITRE Corporation, 1820 Dolley Madison Boulevard, McLean, VA 22102</td>
</tr>
<tr>
<td>Dr. Marvin Moss</td>
<td>Technical Director, Office of Naval Research, 800 N. Quincy Street, Arlington, VA 22217</td>
</tr>
<tr>
<td>Mr. Richard Ross</td>
<td>121 P.O. Box 1925, Washington, D.C. 20505</td>
</tr>
<tr>
<td>Dr. Walter H. Munk</td>
<td>9530 La Jolla Shores Drive, La Jolla, CA 92037</td>
</tr>
<tr>
<td>Dr. Julian Nall</td>
<td>121 P.O. Box 1925, Washington, D.C. 20505</td>
</tr>
<tr>
<td>Prof. William A. Mierenberg</td>
<td>National Security Agency, Fort Meade, MD 20755, ATTN: William Mehuron, DDR-FANX 3</td>
</tr>
<tr>
<td>Dr. Phil Selwyn</td>
<td>Technical Director, Office of Naval Technology, 800 N. Quincy Street, Arlington, VA 22217</td>
</tr>
<tr>
<td>Dr. Eugene Sevin</td>
<td>Defense Nuclear Agency, Washington, D.C. 20305</td>
</tr>
</tbody>
</table>
| Name | Address
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mr. Robert Shaffer</td>
<td>House Arms Services Room 2343 Rayburn Office Building Washington, D.C. 20515</td>
</tr>
<tr>
<td>Mr. Omar Shemdin</td>
<td>JPL Mall Stop 183501 4800 Oak Grove Drive Pasadena, CA 91109</td>
</tr>
<tr>
<td>Mr. Robert Shuckman</td>
<td>P.O. Box 8618 Ann Arbor, MI 48107</td>
</tr>
<tr>
<td>Dr. Joel A. Snow</td>
<td>Senior Technical Advisor Office of Energy Research U.S. DOE, M.S. E084 Washington, D.C. 20585</td>
</tr>
<tr>
<td>Mr. Alexander J. Techmendji</td>
<td>Senior Vice President & General Manager The MITRE Corporation P.O. Box 208 Bedford, MA 01730</td>
</tr>
<tr>
<td>Dr. Vigdor Teplitz</td>
<td>ACDA 320 21st Street, N.W. Room 4484 Washington, D.C. 20451</td>
</tr>
<tr>
<td>Mr. Anthony J. Tether</td>
<td>DARPA/STO 1400 Wilson Boulevard Arlington, VA 22209</td>
</tr>
<tr>
<td>Dr. Al Trivelplace</td>
<td>Director, Office of Energy Research, U.S. DOE M.S. E6084 Washington, D.C. 20585</td>
</tr>
<tr>
<td>Mr. Marshal Tulin</td>
<td>Dept. of Mechanical Eng. University of California Santa Barbara, CA 93106</td>
</tr>
<tr>
<td>Dr. John F. Vesecky</td>
<td>Center for Radar Astronomy 233 Durand Building Stanford University Stanford, CA 94305</td>
</tr>
<tr>
<td>Dr. Kenneth M. Watson</td>
<td>2191 Caminito Circulo Norte La Jolla, CA 92037</td>
</tr>
<tr>
<td>Mr. Robert Winokur</td>
<td>Director, Planning & Assess. Office of Naval Research 800 N. Quincy Street Arlington, VA 22217</td>
</tr>
<tr>
<td>Mr. Leo Young</td>
<td>OUSDRE (RAAT) The Pentagon, Room 3D1067 Washington, D.C. 20301</td>
</tr>
<tr>
<td>Dr. Fredrik Zachariasen (452-48)</td>
<td>California Institute of Technology 1201 East California Street Pasadena, CA 91125</td>
</tr>
</tbody>
</table>