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Abstract • .

A parallel development of the semiclassical and quantum statistics of

multi-spatiotemparal mode direct, homodyne, and heterodyne detection using ani

ideal (except for its sub-unity quantum efficiency) photon detector is presented.

Particular emphasis it placed on the latter two coherent detection configurations.

The primary intent is to delineate the semiclassical theory's regime of validity

and to show, within this regime of validity, how the quantum theory's signal

quantum noise, local oscillator quantum noise, the quantum noise incurred

because of sub-unity detector quantum efficiency, plus (for heterodyning only)

image band quantum noise produce the quantitative equivalent of the semiclassical

theory's local oscillator shot noise. The effects of classical fluctuations

on the local oscillator, and the recently suggested dual-detector arrangement

for suppressing these fluctuations, are treated. It is shown that previous

studies of this arrangement have neglected a potentially significant noise

contribution.
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I. INTRODUCTION

In coherent optical detection [1] * [3], the optical field to be measured
is combined on the surface of a photodetector with the field of a strong

local oscillator laser whose center frequency is offset by an amount av from

that of the signal field. The detection scheme is referred to as optical

homodyning if va,0, and optical heterodyning if N-iF>O, with vIF being the

intermediate frequency in the latter case. For both schemes, electrical

filtering of the photocurrent is used to select the beat frequency components

in the vicinity of av, yielding an output that contains a frequency translated

replica of the signal field components that were coherent in space and time

with the local oscillator field. Heterodyne detection is now widely employed

in coherent CO2 laser radars [4), C51, and is being vigorously researched for use

with semiconductor injection lasers in fiber optics [61 - [8] and space

communications [9], [10]. Performance analyses in these areas routinely employ

the semiclassical statistical model for photodetection, which implies that the

fluctuations observed in coherent optical detection with signal and local

oscillator fields of perfect amplitude and frequency stability comprise an additive

white Gaussian noise, representing local oscillator shot noise.

It has long been known [11] that the semiclassical statistics for photodetec-

tion are quantum mechanically correct only when the total field illuminating the

detector is in a Glauber coherent state or a classically random mixture of such

states. Inasmuch as ordinary light sources, including lasers and light emitting

diodes, obey this classical state condition, there is no need to abandon the

semiclassical approach in the vast majority of photodetection sensitivity

calculations. However, non-classical light has been generated via resonance

fluorescence, as confirmed by observations of its photon anti-bunching [12] and

sub-Poissonian behavior [13] in Hirer-t detection. Moreover, there is great
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theoretical interest in squeezed states (also called two-photon coherent states)

[14), [15), which are non-classical states of considerable potential for optical

communications [16) - [19] and precision measurements [20],- [23]. For these

states, the quantum theory of photodetection is essential, and coherent optical

detection schemes are the most interesting.
/

In [18), Yuen and Shapiro developed the quantum/descriptlons of single-/
detector optical homodyne and heterodyne receiver,'. They employed a quasimono-

chromatic approximation, and assumed a coherent,/state local oscillator,

corresponding to perfect local oscillator ampyltude and frequency stability.

Within these limitations, complete statistiF' for multi-spatiotemporal mode detection

are available from [18), More recently [), the fact that photodetectors respond

to photon flux rather than power [24) ha been used to relax somewhat the

quasimonochromatic approximation in [18 .Thus, were high power, highly stable

local oscillator lasers available at a 1 wavelengths of interest, the quantum

photodetection theory of [18] would pr vide a sufficiently general foundation for

all optical homodyne and heterodyne se sitivity calculations. Unfortunately,

such is not the case.

Driven by heterodyne-detection proI ems arising from the excess noise of

semiconductor injection lasers, Yuen an, Chan [25] proposed a dual-detector

arrangement for coherent optical detection, akin to the balanced mixer concept of

microwave technology [26), [27). They gaýe a direct quantum analysis of single-

mode dual-detector homodyning, showing tha local oscillator quantum and excess

noises can be balanced out, hence allevlati injection laser problems that would

have plagued a single-detector system, In subsequent work by Chan and his

collaborators, the basic dual-detector excess rise cancellation concept was

demonstrated experimentally [28], and a variety •f non-ideal device effects (quantum

efficiency mismatch, etc.) were analyzed using seri',classical multi-temporal mode
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techniques [29]. Also, Schumaker [30] has shown that the dual-detector single-

mode homodyne arrangement is better than single-detector homodyning for making

non-classical squeezed state observations, as a result of its ability to cancel

out local oscillator excess noise.

Because the quantum treatments in [25] and [30] are confined to single-mode

situations, and the multi-mode results in [28], [29] are in essence semiclassical,
there is as yet no fully quantum treatment of multi-mode dual-detector coherent

optical reception. This paper will develop such a model by generalizing the

results of [18]. Simple explicit representations for all of the relevant output

terms in coherent optical detection with a strong but classically random local

oscillator field will be derived. It will be seen that the previous dual-

detector analyses [25), [28] - [30] neglect excess-noise modulation of the signal

and quantum noise terms, and the first of these modulation effects may significantly

degrade output signal-to-noise ratio in some circumstances. Moreover, because

of the calculational power afforded by [18], our rather general Quantum results are

more directly comparable with those of the multi-mode semiclassical theory than

are the more limited results of [25], [30], Indeed, that comparison is the

primary purpose of this paper.

The paper's core, Section II, is a parallel development of the semiclassical

and quantum statistics of multi-spatiotemporal mode direct, homodyne, and heterodyne

detection using an ideal (except for its sub-unity quantum efficiency) photon

detector. The formulation therein for the coherent optical detection schemes will

assume perfectly stable local oscillators in the semiclassical models, and the

corresponding coherent state local oscillators in the quantum models. We use

Section II to delineate the semiclassical theory's regime of validity, and to show,

within this regime, how the combination of the quantum theory's signal quantum

noise, local oscillator quantum noise, the quantum noise incurred because of

~. .....
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sub-unity detector quantum efficiency, plus (for heterodyning only) image band

quantum noise produce the qudntitative equivalent of the semiclassical

theory's local oscillator shot noise. In Section III we address coherent

optical detection with classically random local oscillators, The technique of

iterated expectation is used to readily obtain both semiclassical and quantum

results for this case. Single-detector and dual-detector systems are considered,

and our results are compared, in the case of dual-detector quantum homodyning to

those of [25], [301. Finally, in Section IV we briefly discuss the implications

of our work for squeezed state generation experiments, which is the application

that motivated our analysis,

11. SEMICLASSICAL VS, QUANTUM PHOTODETECTION

The central element of all the photodetection configurations we will consider

is shown in Fig, 1. It is a surface photoemitter with active region

X a (x,Y) C Ad in the z-O plane, illuminated by a quasimonochronomatlc (center

frequency v) paraxial scalar electromagnetic wave from the half space z<O over

an observation time interval t c T. This detector is assumed to have a constant

quantum efficiency n over the frequency band containing the illuminating

field. Th'e output of the detector is a scalar current density J(7,t) for

i Ad, t c r. As will be described below, the field characterization we

must employ for the illumination is either classical or quantum mechanical, according

to whether semiclassical or quantum photodetection statistics are sought. Although

we shall neglect internal time constant and noise effects, which are present in

real detectors, our direct detection results will be applicable to photomultlplier

tubes (for which the current gain permits internal noise to be overcome) at

post-detection bandwidths up to the reciprocal anode response time of the tube,

Furthermore, our results will be applicable to coherent optical detection systems

using semiconductor photodlodes (for which the mixing gain overcomes the internal

noise) up to the post-detection bandwidth of the detector. No particular loss of
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generality is entailed by the use of scalar rather than vector fields, with

the caveat that all the coherent optical detection work herein presumes that

the actual signal and local oscillator fields are co-polarized. Finally, by

appropriate spatial integrations, we can collapse our current density observation
to photocurrent observations for a single detector or a multiple-detector

array.

A. Direct Detection

In direct detection, the electromagnetic field to be measured comprises the
entire illumination, and the basic observation quantity is the current density J(i,t). 4
Semilassical Model Let E 1(7,t) be the positive-frequency complex

field (V/m units) associated with the classical scalar electric field incident

on the detector, ie., E(+)(7,t) is the analytic signal of this electric field.

Because of our quasimonochromatic assumption, the Fourier transform of ()

EH *7) fdt E(+)(7,t) eiZWvt (1)

ii non-zero only for jv - vo. B, where the bandwidth B is much less than the

center frequency •o Because of our paraxial assumption, the short time average

power density falling on the point 7 at time t is

I(7,t) - (cc • 2) E(')(7,t)E(+) (,t), (2)

where c In the speed of light, c0 the permittivity of free space, and F") (

is the negative-frequency complex field, with denoting complex conjugate.

The standard semiclassical photodetection model [313, in our notation,

presumes that J(7,t) is a conditional space-time Poisson impulse train with

rate function i(Z,t) - RI(7,t)/e where e is the electron charge, and R

is the detector's responsivity (A/W units) at the illumination's center

frequency vo . This means that:
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1) the current density- which is of the form

J(xIt) Z ed(7-7n) 6(t-tn), 3

n

has shot effect noise, i.e., it consists of instantaneous

emissions of an electron charge e at the random space-time

points ((7n'tn) : 7 ncAd, tneT};

2) conditioned on knowledge of the rate function (u(V,t) : 7aAd~tCT},

the number of photoemissions occurring within a spatial region

A'C. Ad during a time interval 71' C T is a Poisson random variable

with mean value J dX J dt u7(1t);

A' V'

3) conditioned on knowledge of (u(7,t) : 7 cAd , tcr7, the photoemissions

occurring in disjoint spalal regions, A', A"l Ad are statistically

independent processes,

S4) conditioned on knowledge of Ct((7,t): 7cAdtc7), the photoemissions

occurring in disjoint time intervals T',T""C are statistically

independent processes,

Even though the semiclassical theory of photodetection employs classical

fields, it is customary to recognize in this theory that light of frequency

is quantized into photons of energy hv , where h Is Planck's constant. Thus,

for the quasimonochromatic case at hand, the responsivity is ordinarily written

as R - an/h 0, in terms of the detector's quantum efficiency n and the

photon energy at the field's center frequency, so that u(7,t) - nr(7,t)/hVo,

In fact, because we are concerned with detectors that, quantum mechanically,

respond to photon-flux density rather than power density [24], [22], it is more

proper to write

*(7,t) • n ph(X,t), (4)
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where Iph is the classical photon-flux density

Iph{(,ti l•'tE•t) (5)

obtained from the (photons/s) /m units positive-frequency complex field

E(7,t) a { dv(Cco/2ha) 1/2 E(+)(Ze-t)e- (6)

For all practical purposes in the semiclassical theory, with quasimonochromatic

light we can use p(7,t) - nI(7,t)/hv0  and ,•(•,t) a nIph(3,t) inter-

changeably. This amounts to using v in the square-root term of (6),

an approximation whose validity is guaranteed by (1). In the quantum theory,

even with quasimonochromatic light, it is critical to employ the photon-flux

density formulation, see [222.

.uantum Model In the quantum photodetection theory, the classical positive-

frequency complex field E(+)(7,t) is replaced by a positive-frequency field

operator, (7,t), whose quantum state is qpecified by a density operator Q.

The quasimonochromatic and paraxial conditions of the semiclassical theory

become conditions on the density operator, namely, that the excited (non-vacuum

state) modes of k(+)(7,t) lie at frequencies within 8 of v and propagate

at small angles to the z axis. As in [17], [18], [22], we shall regard the

current density J(Z,t) as a classical quantity, corresponding to the macroscopic

output 2 of the quantum measurement performed by the detector of Fig. I on

the field E(+)(7,t). To provide an explicit representation of this quantum

mea:j;urement, we must first develop the quantum effective photon-flux density.

ýet us convert E ()(,t) to a photon-units field operator by defining

.... . .. ... .- . . .... ........... .. . . ...
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(cf. Eqs. (1), (6)

•()C.) dt i(÷)(7.t) eJ2wyt .(7)

and

E(7,t) * dv (ca,/2hJ)'/2 E(+)(7,v)e j2vt (8)

Equation (8) defines the same basic field operator used in [16] - [18], [223.

We can made a modal expansion

E(Z,t) ( t Ad ter

of this operator, where (a } are modal annihilation operators satisfying the

commutation rules

[n, m n' , nam÷ •nm' (0

and (gn) are a complete orthonormal set of classical functions over

7CA d, teT. In Eq. (Vn), the C an+I are the adJoints of the (a n); they

are modal creation operators.

For a detector of sub-unity quantum efficiency we must adjoin to (9) a fictitious

field

vac n 1 d
E•v 8C(Tt) - • n,(.) VAd, tc,. (11)

n

where Cn I are modal an;,ihllation operators that commute with (an
wn ne

and (an ),viz.
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EC.CJ *d(12)

n ,Cm nm.

The fields E and E are quantum-mechanically Independent, with the latter

having all its modes in the vacuum state. In terms of E and Evac,

the effective photon-flux density operator for the detector is

with

i'•,) •/2(•t)+(1-,)l1/2i a(7,t) (14)
vac

The representation theoremof quantum photodetection [l8, theorem 1] can

now be stated (in our notation) as follows. The classical current density

J(7,t) obtained from photoemissive detection measures the quantum operator

3(7,t) ' elpthC(,t) , (15)

I.e., it is proportional to the effective photon-flux density. In somewhat

more detail this means (cf. the semiclassical case):

1) the current density obeys
J(7,t) e 6 e 7 • -7n)6(t-tn) ,(16)

n

so it is still a collection of instantaneous emissions of an electron

charge at random space-time points ((Xn,tn))
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2) if F(J(7,t)) is an arbitrary functional of the current density, then

the classical average of this random variable <F(J(V,t))> equals

the quantum average tr(p'F(J(7,t))), where tr denotes trace and

,' VP vac gives the Joint density operator for E and Evac in

terms of the density operator p for E and the vacuum-state

%vac I0>,O0I density operator fnr Evacn

Note that we cannot dispense with the vacuum state field Evac unless nal,
even though its average value obeys tr(pvac E vac(7,t)) 0 regardless of thet

value of n. This is because the zero-point fluctuations (vacuum-state quantum

noise) in E vac can contribute to F(J(W,t)). Indeed the noise in J(7,t) has

nothing to do with the shot effect associated with the discreteness of the

electron charge, Rather, it is the quantum noise in E' being observed through

measurement of the effective photon-flux density,

3
Comparison Let us suppose that the density operator for E is a classical state3

i.e.,

3 I(17)

with

anl= Ict' (18)

defining the multi-mode Glauber coherent states of the field E in terms of

the modal expansion (9), and P(a;a*) being a classical probability density

function P(C;*)>..0, Id2 2 P(M;) a 1. It was shown in [18] that this is a

necessary and sufficient condition for the semiclassical statistics to be
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quantitatively correct, In particular, under this condition the quantum model

predicts that J(it) is a conditional space-time Poisson impulse train with

conditional rate function

u(,t nE (x.t)E(i,t) (19)

for

E(7,t) 1 QnCn(7,t) ( , (20)
n

the average field illuminating the detector given the state of E is the multi-mode

coherent state j= ,

To illustrate the above behavior, let us examine the statistics of the

observed photon count 4

N e' fA d7 fdt J(iZt)

d

assuming single-mode illumination, and n 1 1. In the semiclassical theory we

shall take

E(•,t) * [a/(AdT)l/2]e o t, icAd tcr , (22)

where a is a complex-valued random variable with probability density function

p(a), Ad is the area of Ad, and T is the duration of T. We then obtain

Mandel's rule [32] for the probability distribution of N

Pr[N n] d fd2: p(O) ( 2n/n!) exp (-IaI2) (23)
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viz. N is a conditionally Poisson random variable. Equation (23) qlves

the mean and variance of the observed photocount to be

<N> d2a a I 2  - (1•l2> (24)

and

var(N) • <N> + var (Ia1), (25)

respectively, where the first term on the right in (25) represents shot

noise and the second term on the right in (25) represents excess noise.

in the quantum theory we let cl(;,t) - (AdT)"l/ 2 e' 2  0ot be the only

excited mode in (9), so that the density operatur for E is

0 1 n I0>41 (26)

for P, the density operator of mode 1. We then find for the probability

distribution of N [ll], [l7]

Pr[N- n] - <nIl 1InI , (27)

where

a Ian: nln> (28)

defines the photon number states of the flrst mode of E. If is the

classical state.

wt *d2) P(b ) OIl><d1 (29)

with p(a) being the probability density from the semiclassical theory
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(cf. Eq. (17)), then (27) reduces to (23) as expected. Thus, in this case the

semiclassical theory is quantitatively correct in its prediction of the photon

counting probability distribution. It is nevertheless physically incorrect, In

that it ascribes the photon counting fluctuations to shot noise, whereas they are

actually a manifestation of the illumination field's quantum noise. For

example, were P1 - Ik><kj where jk> is the k-photon number state (a

non-classical state), then we would get

Pr[Nwn] Snk (30)

from (27), whence

<N> •k , (31)

and

var(N) - 0 , (32)

for the photon count mean and variance. Here the field state Is an eigenket of

our observation operator, so there is no uncertainty in the measurement

outcome. This sub-Poissonian behavior cannot be obtained from the semiclassical

theory, because for all p(a) the excess noise term in (25) will be non-negative,

forcing var(N)! <N> to prevail.

B. Homodyne Detection

The configuration we shall consider for single-detector multi-spatiotemporal

mode homodyne detection is shown in Fig. 2. The signal field to be detected is

combined, through a lossless beam splitter of intensity transmission C, with a

perfectly stable local oscillatov' field on the surface of the Fig. 1 photodetector.

The resulting current density, Jhom(7,t), is our homodyne detection output,

whose statistics we shall characterize below. By spatial integration of our results

over the detector's active region Ad, we can use our model to describe single-

dU
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detector hornodyning; the extension to dual-detector homodyning will be nmade in

Section III.

Semiclassical Model The total classical photon-units complex field incident on the

photodetector is given by 5

E(,,t) / 2  t) ES (71-0)I/ELO(0,t) , (33)

for 7cAd , tcr, in terms of a (potentially random) weak signal field

Es( 7 ,t), and a deterministic strong local oscillator field ELO(',t). The

latter has a classical photon-flux density

rphLO(7,t) = •L*(Zt )E LO(7',t) , (34) .•'".

that greatly exceeds that of the former

IphS(79t) U ES*(Z,t)Es(',t) , (36)

for 7cAd,tcT . Thus, the rate function driving the photodetector is, from

(4), (S), (33)-(35), approximately

S(, n(l)PhLO(xt)+LCt(l-c/Re(ES(',t)ELO*(,t))3 (36)

It then follows, from the Central Limit Theorem for high density shot noise £33],

[34]. that at very large values of the local oscillator classical photon number

NPhLO 7d Jdt tphLO(Ct) (37)

d

the homodyne detection current density Jhom(,t) is a conditional Gaussian

process. Specifically, conditioned on knowledge of the signal field
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(ES(7,t) x•cAd, tetT} Jhom(7,t) is the sum of three current densities:

1) a homodyne-mixing current density signal term 2enEc(l-c)]I/ZRe(ES(;,t)ELO*(7,t)):

2) a diract-detection local oscillator bias current density er(l-c)IphLO(Vt)

and

3) a local oscillator shot noise current density, which is a zero-mean

spatiotemporal non-stationary white Gaussian noise process J (7,t) with

covariance function

'Jshot(7xltl)Jshot(T2'tz)> "

e~~-)ph LO (71,tl 6 (71 .72)(t ~t 2) . (

In order to connect the preceding multi-spatiotemporal mode formulation with

more familiar single-detector multi-temporal mode results, let us consider the

statistics of the single-detector homodyne photocurrent

ihom(t) JAd d Jhom(7,t) (39)

d

assuming that

ELO(Ct) ' (PLo/h~oAd)I/2 *0J2 dt ,0  (40)

corresponding to a normally-incident plane wave local oscillator of power PL0

Here we find that, conditioned on knowledge of the signal field, i Wt)

comprises a signal current

isig(t) • 2enEPLoc 0-c)/hvoAd]I/2Re(r d7Es(I,t)ej 2ot) , (41)
JAd
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plus a zero-frequency bias current

Ibias ' en( 1-C)PLO/hvo (42)

plus a zero-mean stationary white Gaussian process shot-noise current

ishot(t) with spectral density OtbIas (A /Hz)

The signal current Is a frequency-translated (to haseband) replica of the

normally-incident plane wave c.omponent of Es(C,t) that is in phase with the

local oscillator field. The bias current is the zero-frequency photocurrent

produced by the local oscillator field. The noise current is the local-oscillator

shot noise, whose spectrVm follows the well known Schottky formula [35].

Quantum Model rn the quantum model, Eq. (33) becomes an operator-valued expression

•(7,t) • C E ~(7,t) +. (-,)lZO(,, (43)

giving the field operator E that drives the detector in terms of the signal
field operator ES and the local oscillator field operator E LO The density

operator P for E is assumed to be

s O"S 0 OLO (44)

where Ps is an arbitrary signal field density operator and Co IQ >.to

"LO "LO

is a multi-mode coherent state local oscillator density operator. The latter

corresponds to a mean local oscillator field

ELO(7,t) 1 40LOIELO(•,t)ILO> O LOn Cn(M't) , (45)
n

when ELO is expanded using the mode set (gn) as was done for E in Eq. (9).

...,~ ~ ..........--



The strong local oscillator condition of the quantum theory,

2p E (s ,t)ES(7,t)) << JE (46)

Is assumed to prevail (cf, Eqs. (34), (35)), with a very large average local

oscillator photon number

Ni NLO a J dZJ IdtJELo(';'t)'12" 1 (47)

:• (cf. Eq. (37)).

To obtain the effective photon-flux density operator measured hy the detector

we adjoin to E from (43) a quantum-machanically independent vacuum-state

field operator Evac see Eqs. (11) - (14), We can now give a fully quantum

characterization of the classical homodyne current density Jhom(7,t) ,by

translating the results of [18, theorem 2] into our notation, The strong local

oscillator condition implies that this classical current density measures the

quantum operator

Jhom(7,t) aen(l-c) LO(7,t)ELO(,"Zt) * 2eEn(l-c)]I/ Re (E(MC)/ S(7,t)

+ (n) {vac(71t)] E ELO (7,t) /

MW'reover, because NLO>>l, the local oscillator direct detection term in (48),

en(l-c)cL(•,t)ELO(i,t) , yields classical observation values comprising a bias

current density en(l.c)JELo(,t)I2 plus a local oscillator quantum noise current

density, which is a zero-mean spatiotemporal non-stationary white Gaussian noise i

process JLOq(7,t) with covariance function

..L.q(.. ..... )dLOq (,2 ,t2) > •

.........( 'l t ) ! , (X l - ' ), l - 2 ...... ......
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Furthermore, under this same condition6 , the second term on the right in (48)

simplifies to a homodyne-mixing signal operator 2en[¢(l-c) l/ 2 Re(Es(7,t)ELo(xt)

plus a sub-unity quantum efficiency (nrl) quantum-noise current density. The latter

current density is a zero-mean spatiotemporal non-stationary white Gaussian

noise process Jvac(it) with covariance function

<Jvac(7l'tl)jvac(C2,t2) -

6 ,n(l-n}(lC1-, ,e1'l) 12(71_72)d (t l- tZl50

dvac s statistically independent of JLOq' Thus, the classical homodyne current

density Jhem( 7 ,t) measures the operator

JhonmC(,t) a eIr(.-,)ELO(7',t)l2 4 jLOq(7,t)

+ GC•lt3/ Ri(RS(7,t)ELo*(Zt)) 4. Jvac(7,t), 51

The first term on the right in (ST) is the local oscillator bias current density,

the second term is the classical representation of the local Oscillator'S quantum

noise contributed by the e¶(l-O)ELO ELO measurement, and the last term is the

classical representation of the n<l quantum noise contributed by th"

2e*n(l.n)(l-t)3I/2Re(Evac(7,t)E * 7,t)_ ) measurement. The signal field

contribution to Jhom( 7 ,t) cannot be simplified further without knowledge of

the density operator OS - In general, this term will contribute signal field

quantum noise to the homodyne observation, as will ýe seen below.

Comparison To facilitate comparison of the semiclassical and the quantum theories

of homodyning, we shall restrict our consideration to the single detector case,

First, we need the quantum characterization of the homodyne photocurrent (39),

which can be obtained by spatial integration of the results just presented. We

assume a normally-lncldent plane wave mean local oscillator field
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, LO(Xt) . (PLO/hv oAd) /2 e' 0Jvot (52)

and we find the ihom (t) measures the operator

hom(t) U 
1bias + iLOq(t)

4- 2mnIEPLoe(l-c)/hvoAd3i/ 2Re(JA dds(7,t) Ij2'V Ot + 2 vac() , i(53)

Here, ibias is given by (42), and iLOq and tvac are statistically

independent zero-mean stationary white Gaussian noise processes with spectral

densities en(1-Cl)Ibt and 4(1 -n'tbias ,respectively.

Physically, 1bias is the local oscillator bias current, tLOq is the local

oscillator quantum-noise current, and ire€ is the nrl quantum-noise current.

Equation (53) differs from the semiclassical description in two respects: the

homodyne-mixing signal tevr involves the quantum field operator, Ei rather
than the c.lassical field Es ; the noise in the homodyne observation is a

combination.o0" local oscillator quantum noise, 'ncl quantum noise, and signal

quairtum noise, rather than simply being local oscillator shot noise, We know,

from the direct detection discussion, that the semiclassical photodetection model

is quantitatively correct If the density operator p for the field i illuminating

the detector represents a classical state. This situation occurs, under (44),

if and only if pS ,the signal field density operator, is a classical state

Os U (54)

for JaS> the multi-mode signal field coherent state in modal expansion of

Es similar to Eq. (9), with Ps being a classical probability density. When (54)

applies, the homodyne-mlxing signal term in (53) can be given a classical

ripresentatlon akin to that employed for the Evac mixing term in going from

'--• ,stvac
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(48) to (51). in particular, for a classical signal field state, the quantum

theory of homindyning predicts that

Sham (t) a I bias + I Loq(t) +

2e[PL c(1-)/hvoAd]l/ 2 Re(J d-s(7,t)* 2•vot) 4L~ c ( ' -c)J A d
isq(t) 4 iva8 (t) (55)

where

Es(7,t) , sI t) as) (56)

is the classical mean signal field when the state of E is *aS> and

tSqt) is a zero-mean stationary white Gaussian noise current of spectral

density anctbias that Is statistically independent of tLOq and ivac ,

The classical field ES is, in general, a random process with probability

density PS(aS;S) In modal expansion form, The current iSq(t) is the

classical representation of the coherent state signal field quantum noise as

observed through the measurement operator (53), Note that

i'(t) a I Oq(t)W isq 1 W vac (t) (57)

is a zero-mean stationary white Gaussian noise process of spectral density

eibias ,in quantitative agreement with the semiclassical ishot(t) result.

Of course, the Interpretation of the origin of the noise in homodyning Is

different in these two theories. Local oscillator shot noise is a semiclassical

Fiction; the noise seen in homodyne detection (with an ideal local oscillator)

is local oscillator quantum noise, plus n~l quantum noise, plus signal quantum



r7 '•__ ___

-22-

noise. Moreover, in the limit 1C -6 1 with n(l-c)NLo >> 1 ,the two former

contributions disappear, and homodyning gives a direct quantum measurement of

the signal field component that is coherent in space and in phase with the

local oscillator [18J. It is this characteristic that makes homodyning

attractive for squeezed state applications E161 - Cl9].

C. Heterodyne Detection

The configuration for single-detector multi-spatiotemporal mode heterodyne

detection, shown in Fig, 3, mimics that employed for homodyne detection. The

only differences are that the signal field is centered at frequency vo

the local oscillator is centered at frequency v. ,and peassband filtering of

the current density Is used to select beat frequency components in the vicinity

of the IF frequency vIF (vIFT>>l will be assumed). The bandwidth B of

the signal field will be taken to be much less than IF, ,and we shall concern

ourselves with characterizing the statistics of the current density

Jheat(,t), The results we need are easily developed by injecting the frequency

offset vF into the preceding homodyne work,

Semiclassical Model In Eq. (33) let us make the frequency offset of the signal

field explicit by writing

ES(;,t) - FS(;,t)e'j(vo+\JIF)t , (58)

where Fs is a baseband complex signal field of bandwidth 3 . The results

following (37) now provide the semiclassical statistics for heterodyning, namely,

conditioned on knowledge of the baseband signal field (FS(7,t)

TcAdo tcT} , Jhet(',t) is the sum of three current densities:

1) a heterodyne-mixing current density signal term

2 e r [ € 1 ( 1) / 2 R e( S ( i lt )e ' J 2A . (\ o•.F., .

LL
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2) a direot-detection local oscillator bias current density

en(l-C)IphLO(;.,t) ; and

3) a local oscillator shot noise current density Jshot(7,t) characterized

by (38).

The single-detector heterodyne photocurrent

ihot(t) - fAdhet(t)t) , (S9)

assuming ELO is given by (40), then comprises a signal current

ii hvo0AdI/Re( d~x-F(7,t)e'JZfVFt) (60)
Ad

plus a bias current ibias from (42), plus a zero-mean stationary wh'ite Gaussian

process shot-noise current ishot(t) with spectral density elbias'

The hetarodyne current (59)'is thus a frequency translated (from

Vo +VIp to ) version of the normally incident plane wave component of

ES plus the usual bias and shot noise terms, Because of the frequency offset

1'IF between the signal and the local oscillator fields, both the in-phase and

quadrature (relative to the local oscillator) components of the signal field

contribute to the output observations,

Quantum Model Here we suppose that the only non-vacuum state modes of the

field operator Es lie within a bandwidth B of the frequency vJ÷+lF.

However, because of zero-point fluctuations, the quantum version of (58) is

is((,t) , FS(,t)j 27r(vo+UvF)t F7.(it)e'j2(•0oIF)t (61)

where F$ and are baseband complex signal and image field operators.

Physically, the image band, being vIF Hz below the local oscillator's frequency,

contributas quantum noise to Jhet even when it is unexcited [18], [22],

We shall assume that Fs and F, are quantum-mechanically independent, with
S
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7the latter having all its modes in the vacuum state . We now find, from

the quantum homodyning work, that Jhet(iT,t) measures the operator

het C.t) • en(1-c ELO(Zt)12 + jLOq(7,t)

÷2en[c(J-€)]l/Re(FS(!,t)e'J2TrCVo •F•LO"(v',t))

÷2en[c(l-€)]l/Re(F,('Zt)e'j21(v o'vlF)tE LO*(It)] + Jvac('71t) , (62)

where ELO' jLOq I and Jvac are as given in (51). We can use the vacuum-state

nature of FI to obtain the classical representation

2en~~~c (l0 ]I2eri('IeF (V' )tE LO *'(.t))

- J~q(7.t)/Zl/ , (63)

where JIq is a zero-mean non-stationary white Gaussian classical process

corresponding to the image-band quantum noise, with covarlance function

<J Iq (7i ,tl )J1(72,t2),•

(@n)2E,(l.,)jE •Lo(Tj, t•) j 2S(,Zl.Z)6•(tl.t2) (64)

Thus, the quantum description of the single-detector heterodyne photocurrent

ihet(t) from (59) Is that it measures the operator

lhet(t) * 'bias + iLOq(t) + ilq(t)/2'/Z vac(t)

+ 2n[PLO(l v )/hJoAd] /2Re(J d7Fs(x,t)e§ 2 rft) (65)
oAd

._ .... ..... ..
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where ibias * I LOq , (53) and iIq is a zero

mean white Gaussian noise process (the classical representation of image-band

quantum noise) of spectral height en*ibias'

Comarison Suppose the density operator for F is a classical state, i.e.,

Its density operator 0F obeys
F3

d ds P (cis s ;M S>ISI , (66)

where P is a classical probability density, and ja Is the multi-mode
F -

Glauber coherent state for the modal expansion

s(,t) a S no+F)t , (67)
n

with ' denoting summation over modes Cn lieing within bandwidth B of

frequency vo 4 vF, Here we can obtain a classical r'presentation of the

F term in (66) which reduces the quantum description of the heterodyne

photocurrent to

lhot(: -blia + I L~q(t) + I iq (t)/2 1/2 + I vac(t)

h dd7 FS(,t)e "J 2vI Ft)

4 i 1q(t) /2 (68)

where the total noise current, 1LOq + I q /2 1!12 •sq/2 1121 +vac a
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is a zero-mean white Gaussian process with spectral density eibias

in quantitative, agreement with the semiclassical theory, and

Fs(7,t) a QslIFs(Wt) 0 (69)

is the classical baseband signal field envelope FS associates with the

coherent state I Note that half of the ES quantum noise entering

e comes through the signal field operator Fs and the other halfihet Soe hog

comes through the image field operator F.8

:I1. EXCESS NOISE EFFECTS AND DUAL-DETECTOR OPERATION

In this section we shall extend the results of Section II for coherent optical

reception to include classical excess noise on the local oscillator field and

dual-detector operation. It is convenient to begin with a presentation of

dual-detector results in the absence of excess noise.

A. Dual-Oetector Coherent Uptical Reception

Suppose the homodyne/heterodyne configurations of Figs. 2 and 3 are augmented

by the use of another quantum efficiency n detector on the previously unused

output port of their beam splitters, see Fig. 4. We take the classical output

field for this port to be

E(7,t) 1 -(l-)/ 2 ES(7,t) 1 /2 ELo(7t) (70)

in the semiclassical model, and use the corresponding operator-valued

expression in the quantum model, Rather than treat the full multi-spatiotemporal

mode situation, we shall restrict our attention to the photocurrents

i1 (t) and i 2 (t) obtained by spatial integration of the current densities

J%(Ct) and J,(x,t) produced by detectors 1 and 2. We shall assume a

perfectly stable (i.e, deterministic) classical local oscillator field
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ELO(7,t) eLo(xt)e r0t (71)

with baseband complex envelope FLO in the semiclassical model, and a

Glauber coherent state quantum local oscillator with mean field

tr(FLOELO(x,t)) FLoC,t)e-J2(7oL (72)

with baseband complex envelope FLO in the quantum model. Under these

conditions the results of Section II can be used to show that the following

statistics apply.

Homodyne Detection In homodyning, the signal field is centered on jo, so,

because of (71.),(72), It is convenient to introduce baseband signal complex

envelopes via

ES(7,t) •FS(7,t)e' 0•o (73)

and

ES(3Z•) FS(7,t)eJ 2 vot (74)

for the semiclassical and quantum cases, respectively. Now we have, semi-

classically, that

I (t) W en(l-F) A d7iFLO(7't)1 2

Ad

2e~n[(l- / d s) 6FO11(12))(75)
+ en~-€)~d•[Lo(';,t) 2l2shotl(t),75

Ad
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and

i 2(t) • ericj dilFLo(7-t) 
2

Ad
.2en[¢ (I-=)3 /I IRe(fAI dx Fs(7,t) F LO*(-,t) )

d• (76)

d

for the homodyne photocurrents, where nshotl(t) and nshot2(t)are statistically

independent identically distributed zero-mean stationary white Gaussian noise

processes of unity spectral density, Equations (75) and (76) have the usual

bias plus mixing signal plus local-oscillator shot noise interpretation. Note

that the beam splitter phase shift between the output ports forces the mixing

signals to be 1O80 out of phase. Also, the independence of the local-

oscillator shot noises follows because they are generated from, detmrminlstlc

illumination of two different detectors.

For the quantum case, we have that ie(t) and 12 (t) measure the operators

if(et an(li-)f d7IFLO( 2t) 2

kd

d
C 1/2o•,~2I/nal~)(?+ Zer[(l-n)3l-e) f dxý(,)ý*

and

+(t) a e(I0c d7IFLo(XIt)I L

d A

.2e[€(-,]I/LO dZyacl)•O (xt))

d

A d
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Ad4@teln=cJ dd FLo(• ,t)1 2  J'2n o (t) ,

+A n(l-n), 6 F LO(t) 12] /2nvac2(t). (78)

where nLoq(t). nvac'(t), nvac2(t) are statistically independent identically

distributed zero-mean stationary unity-spectrum Gaussian processes. The familiar

bias plus quantum mixing signal plus local-oscillator quantum noise plus

nl quantum noise interpretation applies to (77), (78). As in the semiclassical

model, the mixing term appears 1800 out of phase in the two photocurrents. No

such phase shift appears on the LOq term, as this noise arises out of the

direct detection of ELO' Indeed, except for scale factors, the local-oscillator

quantum noise contributions to if(t) and i 2 (t) are completely correlated. The

n~l quantum noises are, on the other hand, statistically independent because they

arise from different detectors. Finally, when the signal field is in a classical

state these quantum results can be shown to be in quantitative agreement with

the foregoing semiclassical formulas.

Heterodyne Detection For heterodyning we use (58), rather than (73), to introduce

a baseband signal complex envelope for the semiclassical analysis. We then find

that

- 211 (t) en(1-C) d~lFLo(;,t)l

d

+2en[c(l-c)]l/2Re( dxFs(x,t)FLo I,t)eJZwvF:)
Ad

Sd

+.t1.n 0 CZfLl..L..(79)

LO(7-)123/2nshtlit
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and

*2e~lc))' 2 e(d-FS(7,t)FLO*C-,t)eJ 2 "rvIFt)

L A L~sOt\i
dd

Awith interpretations as given following (75), (76), In the quantum case we

use (61) instead of (74) and obtain the measuremient operators

d

+Zen~(l-cj/2%( d -IFFo(7.t)I)F' flLfqvt I
d d

+encl-c dxjF Q9)I~/n qt)

151  ClE dILO(Xt) I Z ~
d

Ad
fo eenctrf ad~lL(tI2/

/2 2 2/2M ,jc IFt)
4e9nCO,(1-r,)c d6IýL( 7. t )F 2 1/2 t)

Ad
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for detector 2. In Eqs (81), (82) the interpretations and comments following

(77), (78) are applicable. The noise niq(t), which represents image-band

quantum noise, is another zero-maen stationary unity-spectrum white Gaussian

process. It is statistically independent of nLoq(t) and nva•(t) for

j a 1,2, and appears with a sign reversal in i1  and 12 oecause it arises

from the mixing term involving F1.

9. Local-Oscillator Excess Noise

The extension of the results of Section IIIA to incorporate classical

excess noise on tho local oscillator is extraordinarily simple, because of the

form the preceding results have been cast in. Specifically, for the semiclassical

theory we need only make the baseband local oscillator complex envelope FL0

in (71) a complex-valued random process with known statistics. Then the homodyne

and heterodyne results of the semiclassical theory, namely Eqs. (75), (76)

and Eqs. (79), (80), respectively, become conditional statistics assuming FL0

is known. 9  Unconditional statistics follow, via iterated expectation [383,

from averaging over the local oscillator fluctuations, as will be illustrated

below. In a similar manner, classical local-oscillator excess noise can be

injected into the quantum model by making PLO a classical-state density operator

for which FLO' the average baseband local-oscillator complex envelope given the

local oscillator is known to be in the multi-mode coherent state IL0>, is. a

complex-valued classical random process. The quantum homodyne and heterodyne

results, Eqs. (77), (78), and (81), (82), respectively, are now conditional

criaracterizations given FLO. Unconditional statistics are again obtained by

averaging over the local oscillator fluctuations. 10

To Illustrate our excess noise results, and compare them with relevant prior

work [25E , [28)-[30], we shall consider a single spatia mode/multi-temporal

.. ... ...... ....
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mode local oscillator, for which FLO In the semiclassical theory and FLO in
the quantum theory are both of the form (P / A , where

t htLOe/hVo d) exp(iJLO(t)) w
PLO(t) and OLO(t) are classical random power and phase fluctuations. For

convenience, we shall assume that these fluctuations are the polar decomposition

of a stationary complex-Gaussian random process. We shall also assume that the

signal field, in both the semiclassical and quantum pictures, is statistically

independent of the local oscillator, Finally, we shall limit our consideration

to the differenced output currents i1l(t) - i2(t),

Homndyne Detection Under the preceding conditions we have the semiclassical

result

l(t) " 12(t) " an(l'2c)PLO(t)/hV ]
4&Cc(I-c) P0 1/2R( dX-FS(Z' t)eJ0L~o(t)). .:'

+•n(' L (t)/h o Ad e(A

d
+e[W('-C)PL 31~/ho!2111~ l() ~
-etP�~ )LO(t)/hvo) 2nshotl(t)

and the quantum result

1eer) - i 2(t) - en(l-2z)PuO(t)/h\o

+4enre (1 -c)PLO(t)/ hv A d]112Re(f d-iS(';,t)eJ4L.O(t))

Ad

1/2+en(1-2i)(PLO(t)/hvo) 1/ 2nLOq (t)

• ~n(l n (1 , LO( t ,ho II vaoi is

-e[n0l.n)CP IV)/ho1/2I na2() (84)
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In both (83) and (84), the first term on the right equals a mean bias current

e*(1-2cPLo(t)P/hvo plus a local oscillator power-fluctuation excess

noise en(l-2c)(PLO(t)-<PLo(t)> )/hvo. Both of these are exactly nulled when

the beam splitter is 50/50, I.e., when c- 1/2. The second term on the right in

(83) and (84) is the homodyna-mixing signal current; local oscillator randomness

both amplitude and phase modulates this term. The remaining terms in the

semiclassical result (83) are the shot noises, now modulated by local oscillator

power fluctuations. The remaining terms In the quantum result are the local

oscillator quantum noise and the 11 quantum noises; these too are modulated

by the local oscillator power fluctuations. Note that when c v 1/2 the local

oscillator quantum noise contribution vanishes.

Let us further specialize the quantum results by supposing that the only

excited mode of Fsis the monochromatic plane-wave pulse (AdT)'"/2 for

Zckd 9 tcr , and that as Is the annihilation operator for this mode. Matched

filtering of the differenced output currents then yields a measurement of

, ,.l 0 l(t) - i2(t):dt (85)

where normalization by the electron charge has been used, for convenience, to

make the observation values dimensionless. We assume that the mean function

and covariance function of the stationary complex-Gaussian local-oscillator

random process
•.(t) a (P LO( t)/hvoAd)/ x(JL~) (86)

are

m . (I-y)<N>/Ad , ((7)

and
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Ky(r) (y.<NLO>/AdT)k(r) , (88)

respectively, where <NLO; is the average number of local oscillator photons

present over AdXT , yl/2 is the fractional root-mean-square (rms) local

oscillator amplitude fluctuation level, and k(T) is a'real-valued

normalized covariance (k(O) • 1). It then follows that

4÷ n ((l-)(ly)<NLo,11/2 C asA(9

and
O n (12c) <1LO>* + 'n 6 2 (1.c)(1ly),NLO a 4,AS1>

+ Cn(1-)N TY (,) 2y(l-y)k() (T'ITI)

S(2 2a <;S dTk(T)(T-ITI)

T
+ (2n/T)2c(l-c)Y<N o>[T2+2<i t; >ýd~k(T)(T-ITI)] , 9)

give the mean and variance of the M measuremnnt from which a signal-to-noise

ratio
21SNR M 2 (91)

may be calculated. In Eq. (89), the first term is the average local oscillator

bias current contribution, and the second term is the average signal field

mixing term contribution, where is, - (as+as )/2 for as the annihilation

operator of the sole excited $ mode. In Eq. (90), the first term Is due to

the n<l noises nvacl and nvac2 , the second term is due to the local

oscillator quantum noise nLOq , the third term Is the signal field quantum

noise, the fourth term Is due to the local-oscillator power fluctuations, and



the last terms are due to the random modulation of the mixing current by the

local oscillator fluctuations.

The previous dual-detector homodyne studies of Yuen and Chan (253 and

Schumaker '303 assume c w 1/2, (1.y)4NLo>>.I, and a slowly fluctuating local

oscillator (corresponding, in our case, to k(-) u 1 foriTILT). In this limit both

prior studies find (in our notation)

'AS1,

SNRA • , (

whereas we obtain

SN•M " - (93)<• 8S > ÷( -•)/ n( ] - ) + y( +2 > )/ 4 ( 1 - y )

For small fractional rms local-oscillator amplitude fluctuations (y<4l),

(931 differs from (92) because of an additional noise term in the denominator

that is approximately Y(l + 2<aS aS>)/4. Physically, this term arises from the

random local-oscillator modulation of the mixing current, an effect neglected by

the earlier studies. In order for this term to be insignificant compared to the

signal quantum noise of a coherent state (44a;s2> * 1/4), we require that

Y<aS aS> <<I (94)

i.e., the fractional rms local oscillator amplitude fluctuation must be much

smaller than the square root of the reciprocal of the average number of signal

field photons!l This requirement becomes even more stringent if a squeezed state

is being probed, for which asl 2> c 1/4 prevails.



-36-

In addition to exhibiting the potentially significant random modulation

of the mixing term, our formulation, (8,,), shows another effect suppressed

In [25] and [30J. This is the random amplitude modulation of the local oscillator

and m < 1 quantum noises by the classical amplitude noise of the local

oscillator. Although this modulation does not explicitly enter the signal-to-

noise ratio it does make the last three terms in (84) non-Gaussian random
processes, an effect which will modify digit:al communicat:ion error probabilit:y

calcuiations somewhat.

Heterodyne Deecin The semiclassical description for the differenced output

currents In heterodyne detection is

i1(t) - t) - l(l-2c)PLO(1t)/h\o

+4en{= (l-c)P .(:lh~o A ]1Re( ~daFs (T, )§'J (2v v Ft"'LO (t)))

+4EMO(-=)PLO( t)/hvOlI/2 MshotlI ()

.eCncP LO(t)/hvo 0 h1/2 nsht2(t) (95)

and the quantum description is

ii•) - i2(t) - en(1-2c)PLo(t)/hvo

+40rnLc 0 -c )PLO t)hvo A ]1/2Rea (dd-x-Fs (•',1:)e'J(2ffv'&Ft:'LO(t:)))

4n~(1 -2€) (P LO( t)/hvo)l1/2nmLoq(t)

+9~n(-n)(0-&)PLO W)/hJo~l /2n vaci(t)
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-Q~n(l-n)CP4o(t)/hvojI/2nva2t

+enl2e(l-c)PLO(t)/h o1/ 2n (t) , (96)

These results differ from the corresponding homodyne results, (83) and (84), In

only two respects. First, the mixing terms (second terms on the right In (95)

and (96)) beat the signal field to an intermediate frequency not baseband,

and so they sense both quadratures of the signal field, Second, the quantum

result (96) gains a noise contribution from the Image band quantum noise through

nIq(t) . The local oscillator excess noise (and itts cancellation when ca 1/2)

and the random modulation of the signal and noise terms by the local oscillator

fluctuations thus continue to be present in the heterodyne case, i.e., the

Interpretations given for the homodyne situation apply here as well, Once again,

the relevant previous work on dual detector systems [251, [283, E29] does not

include all the effects contai-ned In our treatment; the random local oscillator
modulation of the signal and noise terms is absent in the above analyses,

As an Illustration of these omissions, let us compare our semiclassical answer (96)

assuming a deterministic monochromatic plane-wave pulse signal FS(Tt)

aS(AdTP '/ 2  for 7tAdltgr, with the corresponding co1/2, equal quantum

efficiency result of Abbas and Chan E29]. The latter claim, In our notation, that

the dlfferamnced output currents consist of a mean current

1(t1) - i 2 (t))>- 2enT1 <NLO> 1 /2Re(,.Se-JWIFt) (97)

embedded in an additive zero-mean white Gausslan noise process with bilateral

spectral density

S(f) - I n NLo>/T (98)

We have, using (86) - (87) In (95), that the differenced output currents consist
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of a mean current

l(t) 12(t))>-2enT 1 L(l-y)<NLO.i1/2 Re (0SaJ2vIFt) , (99)

plus a conditionally non-stationary zero-mean white Gaussian shot noise process

that, given the local oscillator power waveform, has covariance function

K(ts) - e2n(PLO(t)/hv,)s(t-s) (100)

plus a signal dependent zero-mean stationary Gaussian noise process

i"(t) 2en(Ad/T) / 2 ReLaS((t) - m )*jZ7•IFtJ (10T)

with covariance function

Ki,(k) 2(n/T)2y<N 2k() cos(2() (102)

When Eq.(l00) is averaged over the P statistics it reduces to a stationary

white noise spectrum (98) , however the random PLO fluctuations make the

noise non-Gaussian, albeit in a minor way if y,<1. The noise current

i"(t) comes from the random modulation of the mixing term and may present a

significant degradation. Consider a high quality (y(<l), slowly fluctuating

local oscillator (k(T) 1 for T1.1 T) and the matched filter processor generating

M a a' J (11(t) - i2 (t))21/2 os 2 ) t -rg(as) (103)

then the Abbas and Chan model gives a signal-to-noise ratio

SNRM "2nII 02 (104)

whereas we have that
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SNRM * . (i1S)

As in the quantum homodyne example given earlier, at high average detected

signal levels there is a very stringent requirement on local oscillator

amplitude fluctuations if SNR degradation is to be avoided.

IV. DISCUSSION

At this point, we have clearly estdblished how the quantum theory for

coherent optical detection subsumes the familiar semiclassical statistics in

a natural way, We have also seen that the quantum approach is essential for

studying the photodetection statistics of non-classical field states. There

is now considerable interest in a particular class of non-clhssical states,

called the two-photon coherent states [14] or the squeezed states [15], These
states are In essence minimum uncertainty product states for the quadrature

components of the photon-units field operator E(x,t). In particular, for a

single field mode with annihilation operator a, the two-photon coherent state

; obeys the eigenket relation

2 2
where sw,v are complex numbers and uv satisfy Iul - 1. W1ith

al " (a +l)/2 snd a 2 "( - a+)/2j denoting the quadrature comoonents of a,

we then find that the state S@i,' gives

< 2> L, - v 2/11 (107a)

and

2 + +. 12/4 (107b)
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When u,v are real valued, (107) implies that IB;u,v> satisfies the

Heisenberg relation

> 1 /16 (108)

with equality, as does the familiar coherent state [' >, Unlike the coherent

state, which gives < 'i - < : 1/4, (107) shows that there is an
2

asymnmetric noise division between the quadratures (a noise squeezing) in the

state jB;,'v'with the low-noise quadrature being less noisy than a coherent

state. This noise reduction can be used, in principle, to effect important

performance improvements in optical communications [16] - [19: and precision

measurements L201 - [23).

As yet, there have been no experimental observations of squeezed state

light. Theoretical studies, which employ varying degrees of idealization,

indicate that such states may be generated by degenerate four-wave mixing (DFWM)

139] - [4Z2, as well as a number of other- nonlinear optical processes [141, [15],

C432 - [461. We are presently working on a continuous-wave OFWM experiment using

homodyne detection to generate and verify the quadrature noisa squeezing. In

this experiment, a single frequency-stabilized laser will be used to provide

all the input beams to the four-wave mixer, as well as the local oscillators

for dual-detector homodyne detection. The results of this oaper permit the

expected photocurrent statistics for this experiment to be derived, including

the efrects of the laser's residual amplitude and phase fluctuations. Specifl-

cally, an iterated expectation approach is used, as in Section Ill. The photo-

current statistics are first obtained assuming the laser output to bc a par-

ticular coherent state. This entails a calculation of the four-wave mixer

output state, along the lines of C401, followed by a calculatiun of the sort

performed here in Section ILIA. To average over the input laser fluctuations,

-L_
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we assign to the coherent state value for this laser a classical probability

distribution. We can then proceed as in Section 11B, except that the state

of the signal field operator in the homodyne apparatus is now dependent on the

coherent-state value of the local-oscillator field in that apparatus, because

both fields are derived from the same laser.

A
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Footnote?

1. The convention we use for this Fourier transform is necessitated by

the accepted quantum-optli definition for what constitutes a positive-

frequency field.

2. For a photomultiplier tube, the internal current gain amplifies the current

we are analyzing by a sufficient amount to warrant its treatment as a classical

entity. In the coherent optical detection cases that follow, the mixing gain

produced by the strong local oscillator has a similar effect, see C22].

3. A classical state is either a Glauber coherent state or a classically random

mixture of such states. In either case, the density operator o has a

proper P-repreientation (17). The terminology arises, see below, because a

classical state P gives rise to the same statistics in quantum photodetection

theory as foUnd for a classical field in semiclassical photodntection theory,

4. Because our Idealized detector model neglects internal noise sources (dark

current shot noise, thermal noise, etc.) N from Eq. (Zl) corresponds to the

output of a pulse-di1scriminator/counter applied to the output current

di JC(,t). In other words, Eq. (21) models the output of an ideal (unity

quantum efficiency) photomultiplier-tube/pulse-counter setup.

5. Our choice for the beam splitter transformation agrees with that employed In

[18:, and implies that the field leaving the other port of this optical element

is -(l-z)I/2E (7,t)+z /2E Other beam splitter relations (see, e.g.

[253 , [30]) are equivalent to ours after redefinition of the input and

output planes.

6. A critical aspect of the strong local oscillator condition acting through the

measurement operator (48) is that the mean local oscillator field and its
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quantum noise both contribute to Jhom through the direct detection

term, but only the mean local oscillator field (not its quantum noise)

contributes to Jhom through the mixing term.

7. Very Interesting noise reductions can accrue when the signal and image

bands are quantum-mechanically dependent C22],,

a. Because the In-phase and quadrature component of are non-commuting

observables, the image band noise enters Into heterodyning in order to enforce

the Heisenberg uncertainty principle on Ideal simultaneous observat 4ons of

these incompatible quantities (see [363, [37]),

9. Implicit in this conditioning statement is the fact that the local oscillator

must, with very high probability, remain sufficiently strong to ensure the

validity of the Section It theory. Also note that the signal field statistics

may depend on the value of the local oscillator field, such as occurs in a

laboratory experiment when the same laser is used to obtain both the signal i

and local oscillator beams (see Section IV).

10, The local oscillator fluctuations must not be such as to invalidate the

Section ri theory for any state IL that occurs with appreciable probability.ILO> hi
Also, the signal state (density operator) may depend on the value of the local

oscillator field, if, for example, both beams originate from the same laser

(see Section LV).

11. For example, to keep this added noise below 10% (in standard deviatlon) of

the coherent-state signal quantum noisi when 4a S+> • 104 , we can tolarate no

more than 0.3% local oscillator amplitude fluctuation. This limitation may

be significant in precision mensurement apolications for which signal-to-noise

ratios far in excess of 40dB are sought.
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Figure Cations

Fig. I Geometry of an idealized surface photoemitter of active reglon Ad.

Fig,. 2 Configuration for optical homodyne detection.

Fig. 3 ConfiguratIon for optical heterodyne detection.

Fig. 4 Conflguration for dual-detector coherent optical detection.
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