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A parallel development of the samiclassical and quantum statistics of
multi-spatiotemporal mode direct, homodyne, and haterodyne detection using an

{deal (except for 1ts sub-unity quantuin efficiency) photon detactor is presented.

Particular emphasis i¢ placed on the latter two coherent detaction configurations.

The primary intent is to delineate the semiclassical theory's regime of validity
and to show, within this regime of validity, how the quantum theory's signal
quantum noise, local oscillator quantum noise, the guantum noise incurred

bacause of sub-unity detector quantum efficiancy, plus (for heterodyning only)
image band quantum noise procduce the quantitative equivalant of the semiclassical
theory's local oscillator shot noise. The effects of classical fluctuations

on the Tocal oscillator, and the recently suggested dual-detector arrangement
for suppressing these fluctuations, are treated. [t is shown that previous
studies of this arrangement have neglected a potentially significant noise

contribution.
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[. INTRODUCTION

In coherent optical detection [1] - [3], the optical field to be measured
is combined on the surface of a photodetector with the field of a strong
local oscillator Taser whose center frequency is offset by an amount Av from
that of the signal field. The detection scheme is referred to as optical
homodyning 1f av=0, and optical heterodyning if av '“IF’O’ with ViF being the
intermediate frequency in the latter case, For both schemes, electrical
filtering of the photocurrent is used to select the beat frequency components
in the vicinity of av, yielding an output that contains a frequency translated
replica of the signal field components that were coherent in space and time
with the local oscillator field. Heterodyne detection is now widely empioyed
in coherent CO, Taser radars (4], (5], and is being vigorously researched for use
with semiconductor injection lasers in fiber optics [6] « [8] and space
communications [9], [10]. Performance analyses in these areas routinely employ
the semiclassical statistical model for photodetaction, which implies that the
fluctuations cbserved in coherent optical detection with signal and local
oscillator fialds of perfect amplitude and frequency stability comprise an additive
white Gaussian noise, representing local oscillator shot noise,

[t has Tong been known [11] that the semiclassical statistics for photodetec-
tion are quantum mechanically correct only when the total field {1luminating the
detector is in a Glauber coherent state or a classically random mixture of such
states. Inasmuch as ordinary light sources, including lasers and light emitting
diodes, obey this classical state condition, there is no need to abandon the
semiclassical approach in the vast majority of photodetection sensitivity
calculations. However, non-classical light has been generated via resonance
fluorescence, as confirmed by obsarvations of its photon anti-bunching [12] and

sub-Poissonian behavior [13] in direct detoction. Moreover, there is great
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theoretical interest in squeezed states (also called two-photon coherent states)
(147, (18], which are non-classical states of considerable potential for optical
communications [16] - [19] and precision measurements [20].- [23]. For these
states, the quantum theory of photodetection is essent1§1. and coherent optical
detection schemes are the most interesting. ;/

In [18], Yuen and Shapiro developed the quantuq/éescr1ptions of single-
detector optical homedyne and heterodyne receivers., They employed a quasimono=-
chromatic approximation, and assumed a coheran;gétata local oscillator,
corresponding to perfact local oscillator amp}étuda and frequency stability.
Within these 1imitations, complete stat1st1g§ for multi-spatiotemporal mode detection
are available from [18], More recently Egé], the fact that photodetectors respond
to photon flux rather than power [24] hag been used to relax somewhat the
quasimonochromatic approximation in [18]. Thus, were high power, highly stable
local oscillator lasers available at a]l wavelengths of interest, the quantum
photodetection theory of [18] would prpvide a sufficiently general foundation for
all optical homodyne and heterodyne sensitivity calculations. Unfortunately,
such is not the case.

Oriven by heterodyne-detection problems arising from the excess noise of
semiconductor injaction lasars, Yuen an¢ Chan [25] proposed a dual-datector
arrangement for coherent optical detect1¥n. akin to the balanced mixer concept of
microwave technology (26], [27]. They g#\f a diract quantum analysis of single-

noises can be balanced out, hence alleviating injection Taser problems that would

mode dual-detector homodyning, showing thakk;oca1 oscillator gquantum and excess

have plagued a single-detector system, In sdhsequent work by Chan and his
collaborators, the basic dual-detactor excess >91se cancellation concept was
demonstrated experimentally (28], and a var1ety\xf non-ideal davice effects (quantum

efficiency mismatch, etc.) were analyzed using seﬁic1ass1ca1 multi-temporal mode
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techniques [29]. Also, Schumaker [30] has shown that the dual-detector single-
mode homodyne arrangement is better than single-detector homodyning for making

non-ciassical squeezed state observations, as a result of its ability to cancel
out local oscillator excess noise. |

Because the quantum treatments in [25] and [30] are confined to single-mode
situations, and the multi-mode results in (28], [29] are in essence semiclassical,
there 1s as yet no fully quantum treatment of muliti-mode dual-detector coherent
optical reception, This paper will develop such a model by generalizing the
results of [18]. Simple explicit representations for all of the relevant output
terms in ccherent optical detection with a strong but classically random local
oscillator field will be derived. It will be seen that the previous dual-
detector analyses [28], (28] - [30] neglect excess-noise modulation of the signal
and quantum noise tarms, and the first of these modulation affects may significantly
degrade output signal-to-ncise ratic in some circumstances. Morenver, because
of the calculational power afforded by [18], cur rather general quantum results are
more directly comparable with those of the multi-mode semiclassical theory than
are the more Timited rasults of [25], [30], Indeed, that comparison {s the
primary purpose of this paper.

Tha paper's ccore, Section II, is a parallel development of tha samiclassical
and quantum statistics of muiti-spatiotemporal mode direct, homodyne, and heterodyne
detection using an ideal (axcept for its sub-unity quantum efficiency) photon
detector. The formulation therein for the ccherent optical detection schemes will
assume perfactly stable local oscillators in the semiclassical models, and the
corrasponding coherent state local oscillators in the guantum models. We use
Saction II to delineate the semiclassical theory's regime of validity, and to show,
within this regime, how the combination of the quantum theory's signal quantum

noise, local oscillator quantum noise, the guantum noise incurred because of
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sub-unity detector quantum efficiency, plus (for heterodyning only) image band
quantum noise produce the quantitative equivalent of the semiclassical

theory's local oscillator shot noise, In Section IIl we address coherent

optical detection with classically random local oscillators, The technique of
iterated expectation is used to readily obtain both semiclassical and quantum
results for this case. Single-detector and dual-detector systems are considered,
and our results are compared, in the case of dual-detector guantum homodyning to
those of [25], [30]. Finally, in Section IV we briefly discuss the implications
of our work for squeezed state generation axperimants, which is the application
that motivated ocur analysis,

IT. SEMICLASSICAL VS. QUANTUM PHOTODETECTION

The central alement of all the photodatection configurations we will consider

is shown in Fig, 1. It {s a surface photoemittar with active region

X = (x,y) ¢ A4 in the 2«0 plane, i1luminated by a quasimonochronomatic (center
fraquency vo) paraxial scalar alactromagnetic wave from the half space z<Q over

an obsarvation time interval ¢t ¢ T, This detector 1s assumed to have a constant
quantum efficiency n over the fraquency band containing the {lluminating

field. The output of the detector is a scalar current density J(X,t) for

X e Agr t € T. As will be described below, the field characterization we

must employ for the illumination 15 either classical or guantum mechanical, according
to whether semiclassical or quantum photodetection statistics are sougnt. Although
we shall neglect internal time constant and ncise effects, which are present in
raal detectors, our direct detection results will be applicable to photomultiplier
tubes (for which the current gain parmits internal noise to be overcome) at
post-detaction bandwidths up to the reciprocal anode response time of the tube,
Furthermore, our rasi;lts will be applicable to coherent optical detection systems
using semiconductor photodiodes (for which the mixing gain overcomes the intarnal

noisa) up to the post-detection bandwidth of tha detector. No particular loss of
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generality 1s entailed by the use of scalar rather than vector fields, with
the caveat that all the coherent optical detection work herein presumes that
the actual signal and local oscillator fields are co-polarized. Finally, by
appropriate spatial integrations, we can collapse our current density observation
to photocurrent observations for a single detector or a multiple-detector
array.
A. Direct Detection
In direct detection, the elactromagnetic field to be measured comprises the
antire 11lumination, and the basic obsarvation quantity is the current density J(X,t).
Semiclassical Model Let E(+)(7.t) be the positive-frequency complex

field (V/m units) associated with the classical scalar slectric field incident
on the destactor, 1.e., E(+)(Y.t) 1s the analytic signal of this electric field.

Because of our quasimonochromatic assumption, the Fourier transform 1 of E(+)

ez, = jdt e(t) (%) oJ2mvt (1)

1% non-zaro only for |v « °o| < B, where the bandwidth B is much less than the
center fraquency Vo' Because of our paraxial assumption, the short time average

powar density falling on the point X at time t s
T = (ey/2) V@M E, (2)

where ¢ {5 the speed of light, £, the permittivity of fres space, and Fem) e(E(+))*
is the negative-frequency complex field, with * denoting cemplex cnnjugate,
The standard semiclassical photodetection model [31], in our notation,
presumes that J(X,t) 1s a conditional space-time Poisson impulse train with
rate function u(X,t) = RI(X,t)/e where e is the elactron charga, and R
s the detector's responsivity (A/W units) at the i1lumination's center

freguancy Vg - This means that:
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1) the current density. which is of the form

J(xot) = Jed(x-xp)é(t-t ), (3)
n

" has shot effect noise, 1.e., it consists of instantaneous
emissions of an electron charge e at the random space-time
points (X .t,) : XaeAgs £t T
2) conditioned on knowledge of the rate function (u(X,t) : iiAd.tcT}.

the number of photoemissions occurring within a spatial region

A'C Ay during a time interval T' G T is a Poisson random variable

-y ¢ -
with mean value J dx J dt u(x,t):
AI Ti

3) conditioned on knowledge of {u(X,t) : EkAd s teT}, the photoemissions
cccurring in disjoint spaial regions, A', A" Ay are statistically
independent processes,

4) ‘conditioned on knowledge of (u(X,t): XeAqoteT), the photoemissions

occurring fn disjoint time intarvals T',T"CT are statistically
independent procasses.

Even though the semiclassical theory of photodatection employs classical
fields, ft {s customary to recognize in this theory that light of frequency v
is quantized into photons of energy nhv , where h 1{s Planck's constant. Thus,
for the quasimonochromatic case at hand, the responsivity is ordinarily written
as R = en/hvo, in terms of the detector's guantum efficiency n and the
photon energy at the field's center frequency, so that u(X,t) = nl(?.t)/hvo.
In fact, because we are concarned with detectors that, quantum mechanically,
respond to photon-flux density rather than power density [24], [22], it is more

propar to write

s(F) =l (Rat), (4)

i e cag S
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whore Iph is the classical photon-flux density

Lp®t) = E(ROERL) (5)

T T RT T

¢btained from the (photons/s)1/2/m units positive-frequency complex field
ERit) « [ dulaeg/zne) M2 e (R eI, (8)

For all practical purposes in the samiclassical theory, with quasimonochromatic
Tight we can use u(Xx,t) = nI('x'.t)/hvo and  u(X,t) = nxph(?.t) inter-
changeably. This amounts to using v 3 Vo in the square-root term of (6),

an approximation whose validity is guarantsed by (1). In the quantum theory,
aven with quasimonochromatic 1ight, 't 1s critical to emplay the photon-flux
density formulation, see [22].

Quantum Model In the quantum photodetection theory, the classical positive-

P

fraquency complex field E(+)(§}t) is replaced by a positive-frequency field
aperator: §(+)(§\t). whose quantum state 1s spacified by a density operator o,

The quasimonochromatic and paraxial conditions of the semiclassical theory

RN E W LS PR

bacome conditions on the density operator, namely, that the excited (non-vacuum

o s

state) modes of E(+)(§.t) 1ie at frequencies within B8 of Yy and propagate
at small angles to the z axis. As in (17], [18], [22], we shall regard the

current density J(X,t) as a classical quantity, corresponding to the macroscapic

2

output® of the quantum measurement performed by the detector of Fig. 1 on

the field é(+)(?,t). To provide an explicit representation of th1s'quantum
measurament, we must flirst develop the quantum effective photon-flux density.

Let us convert E(+)(7.t) to a photon-units field operator by defining




(cf. Egs. (1), (6) )

B xy) = jdt 8 (x,8) oIVt (7)
and

E(?.t) - J dv (C:Q,’Zhv)]/z ‘é(-l-)(,-‘"v)e-ﬂwt ' (8)

Equation (8) defines the same basic field operator used in [16] - (18], [22].

We can made a modal expansion

E(Rt) = Jag (G,t), Xedy, teT (2)
n

of this operator, where {Qn} are modal annihilation operators satisfying the

commutation rules
- - LK )
[Sn,am] s Q, [an.am ]s= Sam? (10)
and {en} are a complaete arthonormal set of classical functions aver

?iAd. teT. In Eq. (10}, the {3n+} are the adjoints of the {En}; they

are modal creation operators.

For a detector of sub-unity quantum efficiency we must adjain to (9) a fictitious
fleld

-

(X,£) = T cg (Xit)y XeAy teT, (1)

m?

whare (&n} are modal aniihilation operators that commute with {;n}

N 2
and (an by oviz,

PPN
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[&n'EmJ " l:Z:n'%n] : [&n’%n*] =0,

. (12)
a N 1. -
s E"r’t":m ] Snm.
E The fields E and Evac are quantum-mechanically independent, with the latter
4 having all its modes in the vacuum state. In terms of E and Evac.
; the effective photon-flux density operator for the detector is
i L) = ETROE R (13)
with
Eat) s nBEEL (e V(R (14)

vac

The representation theorem of quantum photodetection [18, theorem 1] can ' !
now be stated (in our notation) as follows. The classical current density i

J(X,t) obtained from photocemissive detaction measures the quantum operator

T e ek R | (15)

i.e., 1t is proportional to the effective photon-flux density. I[n somewhat
more detail this means {cf. the semiclassical case):
1) the current density obeys

J(t) = Te s(X =X )s(t-t) (16) :
n

e ML L b s i i Lt

so 1t 1s sti11 a collection of instantaneous emissions of an electron

charge at random space-time points ((x .t )} ;
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2) if F(I(X,t)) is an arbitrary functional of the current density, then
the classical avarage of this random variable <F(J(X,t))> equals

the quantum average tr(p'F(a(Y.t))), where tr denotes trace and

~ -

o' *p @0, 9ives the joint density operator for E and Epge 11

terms of the density operator o for E and the vacuum-state

vac * |0><0|  density operator far E .

Note that we cannot dispense with the vacuum state field évac unless n=l,

-

even though its average value gbeys tr(pVac E,,.(X,t)) = 0 ragardless of the

vac
value of n . This is because the zaro-point fluctuations (vacuum-state quantum
noise) in Evac can contribute to F(J(X,t)), Indeed the nofse 1n J(X,t) has
nothing to do with the shot effect associated with the discreteness of the
glactron charge, Rather, it is the quantum noise in E' being observed through

measurement of the effective photon-flux density. ' f

Comparison Let us suppose that the density operator for E is a classical state3.

11"!

o = szg P(u;et) la><a| (7
with

;n|?> s lo> (18)

defining the multi-mode Glauber coherent states of the field € in terms of

the modal expansion (%), and P(u;a*) being a classical protability density
X b

function P(aja )>0, Idza P(u;a*) a1, It was shown in [18] *hat this is a

necessary and sufficient condition for the semiclassical statistics to be
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quantitatively correct, In particular, under this condition the quantum model
predicts that J(x,t) is a conditional space-time Poisson impulse train with

conditional rate function
- * o -
u(X.t) s nE (X.t)E(X,t) ' (19)

for

E(X,t) 3 ] apg,(Xit) = «alE(R,t)la> , (20)
k : 2

the average field i1luminating the detector given the state of € is the multi-mode

coherant state |a >

To 11Tustrate the above behavior, let us examing the statistics of the

observed photon count4

N o= ] f di'I at J(X,t) (21)
A T
d
assuming single-mode 1llumination, and n = 1, In the semiclassical theory we
shall take

ERot) = [w/(AgT) /20720 &, oA teT (22)
where a {s a complex-valued random variable with probability density function
pla), Ay 1s the area of Ag» and T 1s the duration of T. We then obtain

Mandel's rule [32] for the praobability distribution of N

Pr(N = n] = [azq pla) (Jal2Vn!) exp (-al?) , (23)
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viz. N is a conditionally Poisson random variable, Equation (23) gives

the mean and variance of the observed photocount to be
N> w Idza pla) [al? = <[a|® (24)
and
var(N) = <N> + var (|a|2). (25)

respectively, where the first term on the right in (25) represents shot
noise and the second term on the right in (25) represents excess naise.
In the quantum theory we let 51(T.t) = (AdT)'l/ze'Jz’“’ot be the only

excited mode in (9), so that the density operator for E is
o ®oy nf% [0><0| ' " (28)

for 0y the density operator of mode 1. We then find for the probability
distribution of N [M], [17] '

Pr(N = n] = <nloq[n>, (27)
where
;1*a1|n> = nln> (28)

defines the photon number states of the first mode of é. If P is the
classical state.
oy ® sza pla) |a><al ’ (29)

with p(a) being the probability density from the semiclassical theory

13D s
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(cf. Eq. (17)), then (27) reduces to (23) as expacted. Thus, in this cise the
% semiclassical theory is quantitatively correct in its prediction of the photon
counting probability distribution. It 1s nevertheless physically incorrect, in
that it ascribes the photon counting fluctuations to shot noise, whereas they are

actually a manifestation of the i1lumination field's quantum noise, For

axample, were R |k»<k| whare |k> is the k=-photon number state (a

non-classical state), then we would gat

from (27), whence

g <N> =k, (31)
| and 1
var(N) = 0 , (32) 'g

for the photon count mean and variance. Hers the fleld stats is an eigenket of

4 our observation operator, so there {s no uncertainty in the measurement

qutcoma. This sub-Poissonian behavior cannot be obtainaed from the semiclassical

theory, because for all p(a) the excess ngise term in (25) will be non-negative,

forcing var(N)> <N> to pravail.

8. Hamodyne Detection

LT P -

The configuration we shall consider for single-detector multi-spatictemporal

mode homodyne detection is shown in Fig. 2. The signal field to be detected is

combined, through a lossless beam splitter of intensity transmission ¢, with a

[ ek bR e

perfactly stable local oscillator field on the surface of the Fig. 1 photodetector.
The reasylting currant density, Jhom(I.t). is our homodyne detection output,
whose statistics we shall characterize below. By spatial integration of our results :

over the detector's active region Ad' we can use our model to describe single- 1

e s e s aideinn i " v J
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detector homodyning; the extension to dual-detector homodyning will be made in
Section III.

? Semiclassical Model The total classical photon-units complex field incident on the

] photodetector is given by5

ETe) = o 2E®,0) + (1) 2 p(Tt) (33)

for iiAd » teT, 1n terms of a (potantially random) weak signal field

ES(E}t), and a deterministic strong local oscillator field ELo(i.t). The
Tatter has a classical photon-flux density

Lpo(Ret) = o (RtIE (Rt (38)

that greatly exceeds that of the formar

Lps(®ot) = & (REg(Roe) (38)

for ikAd-t:T . Thus, tha rate function driving the photodetactor is, from
(4), (5), (33)=(35), approximately

w(Rot) @ nl(1e) L o(Fot)2le(1¢)]" Ra(E (R, 08 ) "(K,E))T . (36)

It than follows, from the Cantral Limit Theorsm for high density shot noise [33], N

[34], that at very large valuas of the local oscillator classical photon number

Noneo IAd" ]Td" LonLo(*»t) (37)
¢

the homodyne detaction current density Jhom(f.t) 1s a conditional Gaussian

process. Specifically, conditioned on knowledge ot the signal field
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(ES(I.t) : EEAd. teTY , Jhom(f,t) is the sum of three current densities:

1) a homodyne=mixing current density signal term 2en[c(1-¢)]1/2RQ(ES(§.t)EL°*(7,t)):

2) a diract-detection local oscillatar biis current density en(1-c)rphL0(Y.t) :

and

S

e

3) a local oscillator shot noise current density, which is a zero-mean
spatiotemporal non-stationary white Gaussian naise procass Jshot(?.t) with

covarianca function

ghot{*1 181 Wgnot (Xa1ta)>

T T P T T P R AR g R O

on(lee) Ly oKy 8 )6(R Tp)a(tyety)) . (38)

In ordar to connect the preceding multi-spatiotamporal mode formulation with

mors familiar single-detector multi-temporal mode results, let us consider the

statistics of the singla-detector homodyne photocurrent

TP I T P Y S S O

fpgmlt) ® J'Addi' Ingn(Trt) (39)

assuming that

Eo(Ret) = (Pg/mug) /2 adBmet (40)

corresponding to a normally-incident plane wave Tocal oscillator of power PLO'

Here we find that, conditioned on knowledge of the signal field, 1, (%)
comprises a signal currant
e :
fepqlt) @ Zen[PLoc(1-:)/hqud]1/2Re(JAdx Eg(X.t)ed 270ty | (41)

d
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plus a zero-freguency bias current

lpias = en(1=)P g/hvy (42)

plus a zero-mean stationary white Gaussian process shot-noise current

fenop(t)  With spectral dansity af,,,. (A%/Hz)

The signal current is a frequency-translated (to haseband) replica of the
normally=incident plane wave component of Es(?.t) that is in phase with the
Tocal oscillator field. The bias current {s the zero-frequency photocurrent
produced by the local oscillator field. The noise current is the local-oscillator
shot noise, whosa spectrum follows the well known Schottky formula [35].

Quantum Model In the quantum model, Eq. (33) becomes an operator-valued exprassion

BTe) = VAR ¢ (108 (R, (43)

giving the field operator E that drives the detector in terms of the signal
field oparator &S and the local oscillator f4eld operator ELO v Tha density

operator o for E i3 assumad to he

pe as ® OLO (44)
whare og 1s an arbitrary signal field density oparator and o " la ><a |
L0 ~LO
is a multi-mode coherant state local oscillator density oparator. The latter

corresponds to a mean local oscillator field

ELO(-X—’t) 2 <9L01EL0(;|t)'gL0> " rz‘ uLOn En(;'t) ) (45)

when éLO is axpanded using the mode set (g} as was done for E in Eq. (9).
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The strong local oscillator condition of the quantum theory,

tr(p TRV EEG(R,)) <e [ g(Rut) |2, (46)

is assumed to prevail (cf, Eqs, (34), (35)), with a very large average local

oscillator photon number

N ® I di'J dtleLo(?.t)‘lz» 1, (47)
A
(cf. Eq. (37)),
To obtain the effective photon-flux density operator measured ty the detector

we adjoin to E from (43) a quantum-machanically indepandent vacuumestate
field operator Evac ,See Eqs. (11) - (14), We can now give a fully quantum
characterization of the classical homodyne current density Jham(?.t) ,by
translating the results of [18, theorem 2] into our notation, The strong local
oscillator condition implies that this classical curreant density measuras the

Guantum operator
Jpon(Trt) = an(1-)EF(Rit)E o(Rot) + 280n(1-c)1'/2Re ([(ne)!/2Eg(R,t)

eV G0 BN (¢8)

vac

Moreover, because NL0>>1. the local oscillator direct detection term in (48),

en(1-c)éL6(?.t)ELo(§\t) , yields classical observation values comprising a bias
current density en(1-c)|EL0(7.t)l2 plus a local oscillator quantum noise current
density, which is a zero-mean spatiotamporal non-stationary white Gaussian noisa

process JLOq(I.t) with covariance function

len(T-e) 1216 (R oty ) (25 (Fy Ry s(eyoty) o (49)

AT o e g i = e g

i Pl T

Iy .
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Furthermore, under this same cond1t1on6. the second term on the right in (48)

simplifies to a homodyne-mixing signal operator ZenEc(1-c)]1/2Re(ES(T.t)EL;(f,t))

plus a sub=unity quantum efficiency (n<l) quantum-noise current density, The latter
currant dansity 1s a zero-mean spatiotemporal non-statfonary white éauss1an

noise process J . .(X,t) with covariance function

vac

Jyac(X 8 Wyae(Xaitay)> =

Jvac ‘s statistically independant of JLOq' Thus, the classical homodyne current

density dhom(Y.t) measures the aperator
Sron(Fet) = an(1=e) (g (Kot 12 ¢ 3 g0 (Rot)

+ 2nfe(1-)1"72 Re(Eg(RDIE SRt)) + J,0c(Rt). (s1)

The first term on the righf in (57) is tha local oscillator bias current density,
the second tarm is the ¢lassical reprasentation of the local nscillator's quantum
noise contributed by the nn(T-:)ELg éLO measurament, and the last tarm is the
classical represantation of the n<l quantum noise contributed by the
ZBCH(T-n)(l't)]1/2Rl(évac(r.t)EL;(;.t)) measuremant. The signal fiald
contribution to Jhom(T.t) cannot be simplified furthar without knowlaedge of

the density operator 0g In general, this term will contribute signal field
quantum noise to the homodyne observation, as will be seen below.

Comparison To facilitate comparison of the semiclassical and the quantum theories
of homodyning, we shall restrict our consideration to the single detector case.
First, we need the quantum characterization of the homodyne photocurrent (39),
which can be obtained by spatial intagration ¢f the results just presantad. We

assume a normally-incident piane wave mean local oscillator fi{eld
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Eo(Rt) = (P g/t p )1 2e7d2mogt (52)

and we find the 1h°m(t) measures the operator

Thom®) * Toras * TLogt®

1/2 R,
+ 2en[P T=¢)/hv A Re dXEq(X ot
enlP e (=) /v h ) (I*d §(Tot) o

JZﬂVOt) .4

vactt) . (83)
Heres 1.0 is given by (42), and 1'_0q and 1. are statistically
independent zero-mean stztionary white Gaussian noise procasses with spectral
dengitiag ‘“(1*‘)1b1as and '(1'”)1b1as yrespectivaly,

Physically, 1b1as is the local oscillator bias current, 1Lo is the local

q

oscillator quantum=noise current, and 'va {s the n<1 quantum=noise current,

¢
Equation (53) differs from the samiclassical description in two respacts: the
homodyne=mixing signal tarm involvas the quantum field operator Es rather

than the classical field Es ;  the noise in the homodyne obsarvation is a
combination. oY local oscillator quantum noisa, 'n<l quantum noise, and signal
quantum noise, rather than simply being local oscillator shot noise. We know,
from thndiruét detaction discustion, that tha samiclassical photodetection mode)
{s quantitatively correct 1f the density operator o for tha field £ {1luminating
the detactor represents a classical state. This situation occurs, under (44),

{1f and only if og ythe signal fleld density operator, 1s a classical stata
»
og . Idzgsps(gsies )[as><asl (54)

for |u5> the multi-mode signal field coharent state in modal expansion of
és similar to Eq. (9), with PS being a classical probability density. Whan (54)
applies, the homodyne-mixing signal term in (53) can be given a classical

rapresantation akin to that employed for the &vac mixing tarm in go1n§ from
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(48) to (57). In particular, for a classical signal field state, the quantum
theory of homndyning predicts that

from(®) * Thias * fLoglt) *
e-ncpme(1-:)/hvdad]’/zau(jAai'es(;.t>-JZ"“o") .
fgglt) * fypel®) d (55)
where
E(Tht) 1 <ag|Eg(Xit)|ag> (56)

is the classical mean signal field when the state of Es is |as> v and
1sq(t) is a zero-mean stationary white Gaussian noise current of spectral

density '“'1b1as that 1s statistically independent of 1L0q and 1vac .

; The classical field Es is, in geaneral, a random process with probability
% density Ps(assus*) in modal expansion form, The current 1sq(t) is the
! classical representation of the coharent state signal field quantum noise as

: cbserved through the measurement operator (53). Note that

T

r(e) @ A gqlt) + Aglt) + 4, (¢) (57)

Sq

s a zero-mean stationary white Gaussian noisa procass of spactral density

°1b1as ,in quantitative agreement with the semiclassical 1shot<t) result.

- St

0f course, the interpretation of the origin of the noise in homodyning is j
different in thesa two theories. Local oscillator shot noise 1s a semiclassical
fiction; the noiss saen in homodyne detection (with an ideal local oscillator)

is local oscillator quantum noise, plus n<l quantum noise, plus signal quantum
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noise. Moreover, in the limit e + 1 with n(T-e)NLO >> 1 ,the two former
contributions disappear, and homodyning gives a direct quantum measurement of
the signal field component that is coherent in space and in phase with the
local oscillator [18]., 1t is this characteristic that makes homodyning
attractive for squeazed state applications [16] - [19].
C. Heterodyne Detection

The configuration for single-detactor multi-spatiotemporal mode heterodyne
detection, shown in Fig, 3, mimics that amployed for homodyne detection., The
only diffarences are that tha signal feld is centered at frequency Vg * VIF

the local osc111ator {s centerad at frequency v. ,and passband f{ltering of

the curvant density is usad to select beat frnqu:ncy compenents in the vicinity
of the IF frequency v (vIFT>>1 will be assumed). The bandwidth B of

the signal field will be taken to be much less than ViE ,and we shall concearn
ourselves with characterizing the statistics of the current density

dh.t(Y.t). The results we need are easily daveloped by injecting the frequency
offset ViF into the pracading homndyne work,

Semiclassical Model In Eq. (33) let us make the frequency offset of the signal

fiald explicit by writing

ES(?.t) . Fs(?.t)e'dz“(“o+”IF)t ) (58)

whare Fs 15 a basaband complex signal field of bandwidth 3 . The results
following (37) now provide the semiclassical statistics for heterodyning, namely,
conditioned on knowledge of the baseband signal field (Fs(i.t) :

iiAd. teT} Jhat(i}t) is the sum of three current densities:

1) a hetarodyne-mixing curreant density signal tarm

2anc (1-¢)1/ ZRa(F (%, £)e 32 (Vo ™ip e "(RLe))
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2) a diract-detection local oscillator bias current density

en(1-c)IphL°(7,t) i and

_ 3) a local oscillator shot noise current density Jshot(i't) characterized

by (38).

: The single-detactor heterodyne photocurrent i
f frag(t) = JAddx Inat(Trt) 4 (59)

assuming ELo is given by (40), then comprises a signal current

tg1g(t)e20n(P ge(1=¢)/ hvoAdJ"zae(jAji‘Fs(?.t)e‘“"“rF‘) \ (60)

plus a bias current 1b1as from (42), plus a zero-mean stationary white Gaussian

§ process shot-noise current i, ..(t) with spectral density el ..

The heterodyne current (59) s thus a frequency translated (from

i Vo *Vip %0 “IF) version of the normally incident plane wave component of

' Eg Plus the usual bias and shot noisa terms. Because of the frequency offset
x Vip between the sfgnal and the local oscillator fields, both the in-phase and
quadrature (relative to the local oscillator) components of the signal field
contribute to the output obsarvations,

Quantum Mode] Here we suppose that the only non-vacuum state modes of the
field operator ES 11e within a bandwidth B8 of the freauency “o+VIF'

Howevar, bacause of zaro-point fluctuations, the quantum version of (58) 1s

E(Rit) = (T I Ooielt e B muned ot L (e 1

where %S and %I are basaband complex signal and imaga field operators,
Physically, the image band, being Vif Hz below the loca) oscillator's frequency,
contributes quantum noise to Jhet aven when 1t 1s unexcited [18], [22],

A

Wa shall assume that }S and F, are quantum-mechanically independent, with

T
i
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the latter having all its modes in the vacuum state7. We now find, from |

the quantum homodyning work, that Jhet(I.t) measures the operator

gt (Fot) = en(1-e)Eg(Rot) £ + 9 (Rot)

+ zentcu-e)]1“Re(%s('i.t)e'““("o*“rr)"e,_o*('x'.t))

+2an(e (1-¢)1' 2Ra(F (%, 2)8 92 (0 VRl E M(Rit)] ¢ 0, (Kt) 4 (82)

where ELO' JLOq

nature of ?I to obtain the classical representation

2anle(1-c) 1" 2Re (F (X, £ e 42 Ve 1p) B (R, 8))

(Re)/21/2 (63)

JIq
where JIq 1$ 4 zaro-mean non-stationary white Gaussian classical process

corresponding to the image-band quantum noisa, with covarianca function

Jpg (Xt (Rputy)> =

(en) % (1ne ) |Eg(Ry o) 26 (Ry=Tp) 6 (B oty) (6)

Thus, the quantum description of the singla-detactor heterodyne photocurrent

1het(t) from (59) 1s that {1t measures the operator

+ + 1 (t)/2”2+ 1 t)

Thet(®) * Toias ¥ fLog(t) 19 vac!

1/2 - - =J2nu,et
+ 2en(P Ac(1=e)/hy A R dxFe(X,t)e IF*y (65)
Q“t Lo ( t) \)o d] '(jAd s

, and Jvac are as given in (81). We can use the vacuum-state

R SO
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where ... 1L0q , and ivac(t) are as in (53) and 1Iq(t) fs a zero
mean white Gaussian noise process (the classical representation of image-band
quantum noise) of spactral height e”‘1b1as'

Comparisan Suppose the density operator for ?S is a classical state, 1.e.,
its density operator pFS obeys

]

r .2 *
e T 9 Prlasig ) lagressl (68)

S

where P 1s a classical probability density, and |a.> 1s the multi-mode

S
G'auber coherent state for the modal expansion

?S(I.t) . Z'i ﬁn(Y.t)eJZ"(“onF)t . (67)
n S

n

with X' denoting summation over modes £, 1ieing within bandwidth B of
n

fraquency “o+”IF‘ Hers we can obtain a classical represantation of the

%S term in (68) which reduces the cuantum description of the heterodyne

photocurrent to

(g)/2V72 4 1, (%)

That(E) * Thias * 1L0q(t) * g vac

- - =42
+zenLPLoc(1-:)/hchd1"2Ra< ng Fo(X,t)e J2moget)
¢

s 1o ()2, (68)

tsq

1/2 1/2
where the total noise current, 1L0q + 1Iq/2 + ‘Sq/Z + 1Vac ,
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is a zero-mean white Gaussian process with spectral density e‘bias ,

in quantitative agreement with the semiclassical theory, and

Fg(Rot) 2 <aglFg(Xt) lag> (69)

is the classical baseband signal field envelape F. associates with the

w

-~

é coherent state Ias> . Note that half of the ES quantum noise entering

1het comes through the signal fiald operator ?S and the other haif
8

comes through the image field operator %I‘
[I1. EXCESS NOISE EFFECTS AND DUAL-DETECTOR OPERATION

In this section we shall extend the results of Section Il for coherent optical

reception to include classical excess noise on the Jlocal oscillator field and

£
3
i
E
:
E
z

dual-detector aoperation. It is convenient to begin with a presentation of
dual-detactor results in the absence of excess noise,

A. Oual-Detector Coherent (ptical Reception

3 5
: Suppose the homodyne/heterodyne configurations of Figs. 2 and 3 are augmented ?
2 by the use of another guantum efficiency n detector on the previously unused ‘
] output port of their beam splitters, see Fig. 4. We take the classical output g

field for this port to be

E(K,t) = - (1) /2 (R,t) + /28 (Ro) (70)

: in the semiclassical model, and use the correspending operator-valued

L

; expression in ihe quantum mode!. Rather than treat the full multi-spatiotempyral
mode situation, we shall restrict our attention to the photocurrents

11(t) and 12(t) obtained by spatial integration of the current densities

J1(Y,t) and Jz(?,t) produced by detectors 1 and 2. We shall assume a

perfectly stable (1.e, deterministic) classfcal local oscillator field
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£ o(Kst) = Fo(T,e)erdemiot (1)
with baseband complex envelope FLO in the semiclassical model, and a
Glauber coherent state quantum local oscillator with mean field
trio gf o(Tot)) = F o(R, e d2mvot (72) |

with baseband complex envelope FLO in the quantum model., Under these
conditions the rasults of Section II can be used to show that the following
statistics apply.

Homodyne Detection In homodyning, the signal field is centered on v $0,

°l
because of (71),(72), it 1s convenient to introduce baseband signal complex

envelopes via

-JZuvot

Eg(Xit) = Fo(Ryt)e (73)

and
Bg(Rot) = Fg(Rit)edomyt , (74)

for the semiclassical and quantum cases, respectively. Now we have, sami-

classically, that

f,(¢) = en(1-¢) jA d?lFLO(Y.t)lz ]

. 2en[e(1-c)]”2Re(jA dRFG(Tot) Flo (Rut))
d
: etnu-e)jAd&lFLo(h) 121 20y s (8, (75)
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and
1yt) = mjA & |F g(xet) |2
-ZenEc('I-c)]VzRQ(L 0% Fg(Rt)F g (Rot))
d

velse L 1P t) (21 Fngoen(®) (76)
d

for the hamodyne photocurrents, where "shotl(t) and "shotz(t) are statistically
independent 1dentically distributed zero-mean stationary white Gaussian noise
processes of unity spectral density, Equations (75) and (76) have the usual
bias plus mixing signal plus local-oscillator shot noise intarpretation. Note
that the beam splitter phase shift between the output ports forces the mixing
signals to be 180° out of phase. Also, the independence of the local-
oscillator shot noises follows bacause they are generated from deterministic
11lumination of two different detectors.

For the guantum case, we have that 11(t) and 12(t) measure the operators

T(e) = an(‘l-de QRIF o (Frt) |2
) A
+ 2&n[c(1-c)]1/zRe(J d;%s(;’t)FL0*<;'t))
A
d

(t)

; .nu.c;ch RIF g(Fot) 2112

d
f - -
+ e[n(1-n)(1-e)J dx\FLo(x,t
A
d i
and E
]

"Log

112120 () (77)

“

i(8) -mjA &RIFp(xt) |2

.zenﬁcﬂ-s)]sze(L & F(X,t)F " (K,8) )
) .
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such phase shift appears on the hLo
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+ene[JA GRIF o (Ft) 1V 2y g )
d

+0[n(1-n)tJA dleLO(f.t)|2]1/2n
d

vaca{t)» (78)

whare nLoq(t). "vac1(t)' n 2(t) are statistically independent identically

distributed zero-mean stat1o:::y unity-spectrum Gaussian processes, The familiar
bias plus quantum mixing signal plus local-uscillator quantum noise plus
n<l quantum noise interpretation applies to (77), (78). As 1n the samiclassical
model, the mixing tarm appears 180° out of phase in the two photocurrents. No
q term, as this noise arises out of the
direct detection of ELO' Indead, except for scale factors, the local-oscillator
quantum noise contributions to 11(t) and 12(t) are completely correlated. The
n<l quantum noisas are, on the other hand, statistically independent because they
arise from diffarent detectors. Finally, when the signal fiald is in a classical
state these quantum results can be shown to be in quantitative agreemant with
the foregoing semiclassical formulas.
Heterodyne Detection For haterodyning we use (58), rather than (73), to introduce
a baseband signal compTex envelope for the samiclassical analysis. We then find
that

1,(t) = en(1~s)JAddI|FL0(§‘,t)|2

+23n[e(1-c)]1/2Ra(J dRFS (T, 0)F o (% 0)a I2MVIFE)
Ad

aln(1e)| &7 A1 oo (61 (79)
d
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and
ih(t) = ench deLO(I't)Iz
.a.nlic(1-:)]'/"’|vza(JA dRF(R,t)F " (% t)e™d8rvIety
¢

walne [, IR g(Rt) 121 200,00 (0), (80)
. .

with intarpretations as givan following (75), (76)., In the quantum case we

use (61) instead of (74) and obtain the measurament operators

1(e) = -n(1-=)de§|FL0<i‘.t)|z

wanle(1-6)1"/2ret | SRR G(Rit) 0" I2ver )
d
ran(1-c) Edei'lFLo(?.t)lzluz L0q (t)
+aln(1=n)(1-¢) jkamrm(sr.t)|21‘/2nm1<t>
wnle(1-0)2” | d¥lr o700 21 20 ) (a1)
d

for detector 1 and

d

-2enle(1-e)1/2Re( | REg(R,00F 0" (R, t)a™d2 e
Ag

+ 47| F_o(%,t) 121 8, oo ()
°”‘ELd”| LotXot) "1 gq
waln(1=n)e| dRIF (Rt} (2172
Ad
-an[m-c)z"L & |F (%8120 20y (t) (82)
d

(t)

vac2

Bl d

e matiet e AR F i, B Ul e e
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for detector 2. In Eqs (81), (82) the interpretations and comments following
(77), (78) are applicable. The noise an(t), which represents image-band
quantum noise, 1s another zerc-mean stationary unity-spactrum white Gaussian
process. It is statistically independent of nL°q<t) and "vacj(t) for

J = 1,2, and appears with a cign reversal in 11 and 12 because 1t arises

from the mixing term involving ?I'

B. Local-Qscillator Excess Noise

The extension of the results of Section [IlA to incorporate classical
excess noice on the local oscillator is extraordinarily simple, because of the
form the precading results have been cast in. Specifically, for the semiclassical
theory we nesd only make the baseband local oscillator complex anvelope FLo

in (71) a complex-valued random procass with known statistics. Then the homodyne

.and haterodyne results of the semiclassical theory, namely Eaqs. (75), (76)

and Eqs. (79), (80), respactively, become conditional statistics assuming Flo

s known.” Unconditional statistics follow, via fterated expectation (38],

Trom averaging over the local oscillator fluctuations, as will be {1lustrated
below. In a similar manner, classical local-oscillator excess noise can be
injectad into the quantum model by making oLg @ classical-state density operator
for which FLO' the average baseband Tocal-oscillator complex anvelope given the
Tocal oscillator is known to be in the multi-mode coherent state |?LO" 1s. a
complex-valued classical randem procass. The quantum homodyne and hetarodyne
results, Eqs. (77), (78), and (81), (82), respectively, are now conditional

characterizations givan F 4. Uncondftional statistics are again obtained by
averaging over the local oscillator f1uctuat1ons.1°
To 11lustrata our ex-ess noisa results, and compare them with relevant prior

work [25], [28]-[30], we shall consider a single spatial mode/multi-temporal
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mode Tocal oscillator, faor which FLO in the semiclassical theory and FLO in

the quantum theory are both of the form (PLo(t)/h“oAd)1/2 exp(-J¢L0(t)) , where

PLO(t) and ¢Lo(t) are classical random power and phase fluctuations, For
convenience, we shall assuma that these fluctuations are the polar decomposition
of a stationary comp1ex-Gauss%an random process, We shall also assume that the
signal field, in both the semiclassical and quantum pictures, 1s statistically
indapendent of the local osciilator. Finally, we shall 1imit our consideration
to the diffarenced output currents 1,(t) - 1,(t},

Homodyne Detection Undar the preceding conditions we have the semiclassical
result

f08) = 1,(t) = an(1-26)P 4(t)/hy,

anle(1-0)P g (5)/hvg Agl "/ 2ha(| | afFg(R,tyatLol®))
d

*0[n(1-c)PLQ(t)/hv°]1/2n,hot1(t)
-alneP o (8) /hy 1 Engy olt) (83)

and the quantum result
f08) = T5(8) = en(1-2¢)P (8} /My,

wdanfa (101981 /hvg gl Fret [ aRFg(X,e)e®ot™))
d

+en(1-2c)(PLO(t)/hV°)1/2nL0q(t)

“aln(1+n)(1e)P o(t)/hvy 3/ 3n,, 4 (2)

vacl

~eln(T=n)eP o(t)/ho 12 0, (%) (84)

PRI - . L e L anbtae b B s e e
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In both (83) and (84), the first term on the right equals a mean bias current
tn(1-2t)<PL°(t)>/hv° plus a local oscillator power-fluctuation excess
noise en(1-2¢)(PLo(t)-<PL0(t)>)/hv°. Both of these are exactly nulled whan

the beam splitter is 50/50, 1.e., when c¢= 1/2. The second term on the right in
(83) and (84) 1s tha homodyne-mixing signal current; local oscillator randomness
both amplitude and phase modulates this term. The remaining terms in the
semiclassical result (83) are the shot noises, now modulated by local oscillator
powar fluctuations, The remaining terms in the quantum rasult are the local
oscillator quantum noise and the n<l quantum noises; these too are modulated
by the local oscillator power fluctuations. Note that when ¢ » 1/2 the local
oscillator quantum noise contribution vanishes.

Let us further specialize the quantum results by supposing that the only
excited mode of 35 is the menochromatic plane-wave pulse (AdT)'W2 for
iiAd y teT , and that Qs s the annihilation operator for this mode. Matched
fi1taring of the differenced output currents then yields a measursment of

T

M ."Jo (1,08 = 3508020t (88)
whare normalization by the electron charge has been usad, for convenience, to
make the obsarvation values dimensionless. We assume that the mean function
and covariance function of the stationary complex-Gaussian local-oscillator

random procass

L(8) 1 (Py(t)/hu Ay 172 exp(do o(t) (86)

are

n, * L(1-v)eN /AT, (87)

and

-
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Kﬂ(T) - (Y‘NLO>/AdT)k(T) ' (88)

respactively, whare ‘NLO’ is the average numbar of local osciilator photons

present over Ade ’ 71/2 1s the fractional root-mean-square (rms) local
oscillator amplitude fluctuation leval, and k(r) {s a real-valued

normalized covartance (k(Q) = 1). It then follows that
M n(1=2¢)<N 4>
# dnle(1=c) (10N 21172 <agp> (89)
and

s = a(lan)el g + n2(1-26)2e > + 16nZe(1g) (T=v) el oty >

.
+ En(1-2c)<NLo>/T]z£dr[ 2(x) + 24(1=V)k(0)] (T-]2])

R T
( - (211/T)2('I-.2:)yl:t-.(1-|-.)<l‘{l_°>3(1-%)]”z 2 <as1>£ drk () (Tel<|)

# (20/T) 2 (1-e ye [ To42chg Ta> ldrk (T=leN] (0)

give the mean and variance of the M measuremant from which a signal«to~noise

ratio

N
SNR& 3 <M> JeaMS> ' (91)

may be calculated. In Eq. (89), the first term is the average local oscillator

B

bias current contributicn, and the second term i3 the average signal field
mixing tarm contribution, whare 351 . (Qs+is*>/z for ;S the annihilation
operator of the sole excited %S mode, In Eq. (90), the first term is due to
, the sacond term is due to the local

the n<1 noises n and n

vacl vac2
pscillator quantum noise "Loq the third tarm {s the signal field quantum

| noise, the fourth term is due to the local-oscillator power fluctuations, and

[ N 2= SO
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the last terms are due to the random modulation of the mixing current by the

local oscillator fluctuations.

The pravious dual-detector homodyne studies of Yuen and Chan (25] and
Schumaker T30] assume ¢ = 1/2, (1-Y)<NL0>>>1. and a sTowly fluctuating local
: . oscillator (corrasponding, in our casa, to k() = 1 for|t|<T). In this 1imit both

prior studies find (in our notation)

<851>2

T ' (%)
<Als12:+(1'ﬂ)/4n

[
e
g SNR& .
3
: wheraas wa obtain

2
<as.l >

SNRy (83)

cadgy»+(1n)/dn(1-y)y(142cadie>)/4(1y)

For small fracticnal rms localeoscillator amplitude fluctuations (y<<1),

(93) differs from (92) because of an additicnal noise term fn the denominator
that 1s approximately () + 2<;s+;s>)/4. Physically, this tarm irises from the
random local-os¢illator modulation of the mixing current, an affect neglectad by
the earlier studias. In order for this term to be insignificant compared to the
signal quantum noise of a coherant state (<Ais12> w 1/4), we require that

- +A
y<as as> << ' (94)

i.e., the fractional rms Jocal oscillator amplitude fluctuation must be much

smaller than the square root of the raciprocal of the average number of signal

field photons!1 This requirement beccmes even more stringent {1f a sgueezed stata

is baing probed, for which ‘°;S12 > <1/4 prevails,
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In addition to exhibiting the potentially significant randem modulation
of the mixing term, our formulation, (8+), Shows another effect suppressed
in [25] and [30]. This {s the random amplitude modulation of the local oscillator
and n < 1 quantum noises by the ¢lassical ampiitude noise of the local

AR S e g e L

oscillator. Although this modulation does not explicitly entar the signal-to-
noise ratio , 1t doas make the last three terms in (84) non-Gaussian random
procasses, an effect which will modify digital communication error probabiiity
calcutations somewhat.

Heterodyne Detaction The semiclassical description for the differenced output
currents in hatervdyne detection is

11(t) - 1z(t) n Gn(1-2¢)PL0(t)/hv°

+4¢nt=(1~e)PLou)/hqudJ”zR-(jA dRFg (T, t)ed (2myppton g(8)))
A

saln(1-¢ )P o(8)/hy 1172 ngp oo 8)

-c[ncPLO(t)/hv°J1/znsh°t2(t) , (98)

and the quantum description is 1
1908) = To(8) = an(1-20)F (8} /hy,

+danle (1 )P o(t) /My, Ad]‘/zru(jA diF (R t)e~d (2miptreLole)))

+In(1-2:)(PLo(t)/hvo)Vancq(t)

valn(1=n) (1= )P g(6)/hug /20 o (8)

vacl




-‘[n('l-n)GPLo(t)/h\J°]1/znvacz(t)

TET

+|n[2t(1-t)PLo(t)/hu°]1/2an(t) , (96)

These results diffar from the corresponding homodyne results, (83) and (84), in
only two respacts. First, the mixing terms (second tarms on the right n (95)
and (96)) beat the signal field to an intermadiate frequency not baseband,

and so they sanse both quadratures of the signal field. Second, the guantum
result (96) gains a noise contribution from the image band quantum noise through
“Iq(t) . The local oscillator excess nofse (and 1ts cancellation when c¢= 1/2)
and the random modulation of the signal and noise terms by the Tocal oscillator
fluctuations thus continue to be present in the heterodyne case, i.e., the
interpretations given for the homodyne situation apply hers as well, Once again,
the relevant previous work on dual detactor systems (25], (28], [29] does not |
include 811 the effects contained in our treatment; the random local oscillator

modulation of the signal and noise tarms is absent in the above analyses.

As an 111ustration of thase omissions, let us compare our semiclassical answer (95)

assuming a detarministic monochromatic plane-wave pulse signal Fs(iﬂt) n 3

aS(AdT)'1/2 for §iAd.tcT. with the correasponding c=1/2, equal quantum

efficiency result of Abbas and Chan [29]. The latter claim, in our notation, that

the differenced output currents consist of a mean current

<14 (8) = 1y(t))>m z-nr"<NL0>1/2Ro(usa‘iz"”rF‘) . (97)

embedded in an additive zero-mean white Gaussian noise procass with bilateral i

spectral density

S0 = et /T (98)

We have, using (86) - (87) in (98), that the diffarenced output currents consist
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of a mean current

<(11(8) = 1,(t) ouzent L(T-y)eh 1 PRe(age I2MIRY) (99)

Plus a conditionally non-stationary zero-mean white Gaussian shot noise procass

that, given the local oscillator powar waveform, has covariance function
K(t,s) = e2n(P o(t)/hv, )6(ts) | (100)

Plus a signal dependent zero-mean stationary Gaussian nofse process

£1(t) = 20n(A /) PRelag (y(t) - mx)*é'Jz"“rth ' (101)

with covariance function

Kjngu(e) = 2(en/T) v oo fag| %k(e) cos(engr) (102)

When Eq.(100) 1s averaged over the PLo statistics 1t raducas to a stationary
white nofse spectrum (98) , however the randem PLg fluctuations make the
notse non-Gaussian, albeft in a minor way if ve<<l. The noise current

1"(t) comas from the random modulation of the mixing term and may present a
significant degradation. Consider a high quality (ve<1), slowly fluctuating

lTocal oscillator (k(x) = 1 for |v|< T) and the matched filter processor generating

T

M - e'1j0 (4508) = 102" Zeoslary - arglag)1 1)

then the Abbas and Chan model gives a signal-to-noise ratio
SNRy, * 2nac|? (104)
M S '

whereas we have that
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we then find that the state |[8:u,v> ¢lves

2
zﬂ‘cil

3
SNRM . . ; (108) A j
1 +nY|Gs|‘ ’.4

As in the quantum homodyne example given earlier, at nigh average detected ]

signal levels there i{s a very str1ngent requirement on Tocal osc111ator i
amplitude f1uctuat10ns {f SNR deqradation is to be avo1ded.

IV. DISCUSSION

At this point, we have clearly established how the quantum theory for

coherent optical detection subsumes the familiar semiclassical statistics in k
a natural way, We have alsa seen that the quantum approach 1§ essential for g
studying the photodetection statistics of non-classical field states. Thers :
s now considerable interest in a particular class of non-classical statas,
called the two-photon coherent states [14] or the squeezed states [15], These
states are in essence minimum uncartainty product states for the quadraturas
components of the photon-units field operator E(i.t). In particular, for a
single fleld mode with annihilation operator 3. the two-photon coherent state E

|8;u,v> obeys the eigenket ralation
(ua + QQ*)]s;u.v> = g8, (106)

.
where g8,u,v are complex numbers and p,v satisfy [ul2 - lvlz = 1, With

£ - o] -

31 = (3 +3%)/2 1nd 3, = (2

- 2%)/24 denoting the quadrature components of a,

<A312> = |u-vlz/4. (107a)

<A:3?2> = Iu + v|2/4. (1079)
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When u,v are real valued, (107) implies that |Biu,v> satisfies the

Heisenberg relation

<83y%> <ai?> 3 1/16 (108)

with equality, as does the familiar coherent state [a>, Unlike the coherent

2

state, which givas <A37 > = <Aizz> = 1/4, (107) shows that there s an

asymmetric noise division between the quadratures (a noise squeaezing) in the

state |8iu,v>, with the low-noise quadrature being less noisy than a coherent
state. This noise reduction can be used, in principle, to effect important
performance improvements in optical communications [16] - [19] and precision
measurements 207 - [23].

As yet, thare have been no experimental observations of squeezed state
1ight. Theoretical studies, which employ varying degrees of idealization,
indicate that such states may be generated by dagenerate four-wave mixing (DFWM)
[39] - [42], as well as a number of other nonlinear optical processes [14], [15],
(43] - [46]. We are presently working on a continuous-wave OFWM experiment using
homodyne detaction to generate and verify the quadrature noise squeezing. In
this experiment, ; single frequency-stabilized laser will be used to provide
all the input beams to the four-wave mixer, as well as the local oscillators
for dual-detector homodyne detection. The results of this paper permit the
expected photocurrent statistics for this experiment to be derfved, including
the efrects of the laser's residual amplitude and phase fluctuations., Specifi-
cally, an iterated axpectation approach is used, as in Section III. The photo-
current statistics are first obtained assuming the laser outout to be a par-
ticular coherent state. This entails a calculation of the four-wave mixer
output state; along the lines of [40], followed by a calculatiun of the sort

perfarmed here in Section IIIA, To average over the input laser fluctuations,
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we assign to the coherent state value for this Taser a classical probability
distribution. We can then proceed as in Section IIIB, except that the state
of the signal fiald operator in the homodyne apparatus is now dependent on the
coherent-state value of the local-oscillator field in that apparatus, becau;e

both fields are derived from the same faser.
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Footnotes

1.

3.

The convention we use for this Fouriar transform is necessitated by

the accepted quantum-opti.c definition for what constitutes a positive-
frequency field.

For a photomultiplier tube, the internal current gain amplifies the current

we are analyzing by a sufficient amount to warrant {its treatment as a classical
entity. In the coherent optical detection cases that follow, the mixing gain
produced by the strong local oscillator has a similar effect, see [22].

A classical siate 1s either a Glauber ccherant state or a classically random
mixture of such states. In either case, the density operator o has a
proper P-reprasantation (17), The terminology arises, see balow, because a
classical state o gives rise to the same statistics in quantum photodetection
theory as found for a classical field in semiclassical photodetection thecry,
Because our {dealized detector model neglects internal noise sources (dark
current shot noise, tharmal noise, etc.) N from Eq. (21) corresponds to the
output of a pulsa~discriminator/countar applied to the output current

JA‘d; J(X,t). In other words, Eq. (21) models the output of an ideal {unity

quantum efficiency) photomultiplier-tuba/pulse-counter setup.

Qur choice for the Leam splittor transformation agrees with that employed in
(18], and implies that the fiald leaving the other port of this optical alemant
is -(1-:)I/ZES(?.t)+c1/ZELO(7.t). Other beam splitter relations (see, e.g,
(28] , [30]) are equivalent to curs after redefinition of the input and

sutput planes.

A critical aspact of the strong local oscillator condition acting through the

measurament operator (48) is that the mean local osc¢illator field and its
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quantum noise both contribute to 'Jhom through the direct detection
tarm, but only the mean local oscillator field (not its quantum noise)
contributes to Jhom through the mixing term,

7. Very interesting noise reductions can accrue when the signal and image
bands are quantum-machanically dependent [22],.

i A T i A, REESTLR  mab iiea

8. Because the in-phase and quadrature components of ES are non~commuting

obsarvables, the image band noise entars into heterodyning in order to enfurce

i

the Heisenberg uncertainty principle on ideal simultaneous obsarvations of }E

: these incompatible quantities (see [361, [37])., i§

E 9., Implieit in this conditioning statament is the fact that the local oscillator fg
; f must, with very high probability, remain sufficiently strong to ensure the ?g
1 validity of the Section Il theory. Also note that the signal field statistics :
3% may depend on the value of the local oscillator field, such as occurs in a f%
: . laparatory experiment whan the 3ame laser is used to obtain both the signal .
;E and local oscillator beams (see Section V). | %E
¥ i 10.  The local oscillator fluctuations must not be such as to invalidate the 15
: Section I theory for any state |aj > that occurs with appreciable probabilfty. !

Also, the signal state (density opaerator) may depend on the value of the local

oscillator field, 1f, for axample, both beams originate from the same laser
(see Section V).

11, For example, to keep this added noise balow 10% (in standard deviation) of '

the coherent-state signal quantum noiss when ‘;S+‘s’ = 104 , we can tolarate no

more than 0.3% local oscillator amplitude fluctuation. This limitation may |
be significant in precision measurement applications for which signal-to-noise

ratios far in excass of 40d8 are soughs.
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Figure Captions

Fig. 1 Geometry of an idealized surface photoemittar of active region Ago
Fig. 2 Configuration for optical homedyne detection.
Fig. 3 Configuration for optical heterodyne detection.

Fig. 4 Configuration for dual-detector coherent optical detaction.
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