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SUMMARY

An important impact on the monitoring of a CTBT has recently been made
by a renewed discussion of the decoupling problem. Specifically, since the

decoupling of an underground explosion of low yield by detonation in a cavity

is less efficient at high frequencies, the evasion of a CTBT through decoupling

becomes increasingly difficult for a test site monitored by seismic stations
recording frequencies greater than 10 Hz over high Q paths. Of particular
importance then to CTBT monitoring will be the understanding of the relative
importance of scattering versus intrinsic anelasticity to the attenuation
in the crust and lithosphere, and the factors that are important to their
regional variation. These problems are treated in this semi-annual report by
comparing the predictions of multiple scattering theory with observations of
S codas.recordeg from earthquakes in the Hindu Kush region by a local digital
array. The éomplete study is contained in the Ph.D. thesis of Ru~Shan Wu,
performed under the supervision of Profs. Aki and Toks¥z. The work included
in this report has been edited from that thesis.

The study has examined the attenuation of local/regional S codas from
0.25 Hz to 40 Hz in the Hindu Kush region. A goal of the study was to
separate the relative contribution of scattering versus intrinsic anelasticity
to the attenuation of coda waves. Coda attenuation has been analyzed in the
frequency domain using a radiative transfer equation technique, which
includes multiple scattering, and in the time domain using weak and strong
scattering approximations. The frequency band less than 1 Hz appears to be

dominated by strong, multiple scattering and wave interference that cannot be

treated using the radiative transfer equation technique in the fregquency domain.
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This band may be dominated by scattering of surface and guided mode energy
and multiple conversions of body wave energy to surface wave energy and
vice versa by boundary topography and elastic heterogeneity. 1In the band
1.5 to 20 Hz intrinsic attenuation dominates scattering attenuation. The
Hindu Kush data indicate that this intrinsic attenuation is frequency
dependent in the 1.5 to 20 Hz band. The physical mechanism of this intrinsic
attenuation is unknown. 1In the band above 20 Hz, regional phase onsets
cannot be easily distinguished and scattering attenuation is best
described by diffusion theory. Although coda Q's appear to be similar in
tectonic regions, the type of analysis described in this report should be
applied to many different regions before general conclusions can be made
about the relative importance of scattering and intrinsic attenuation in

different frequency bands.
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Abstract

In order to scparat; the scattering effect from the intrinsic
attenuation, we need a multiple scattering model for the seismic wave
propagation in random heterogeneous media. In this paper, we apply the
radiative transfer theory to seismic wave propagation and formulate in
frequency domain the energy density distribution in space for a point source.
We consider the cases of isotropic scattering and strong forward scattering.
Some numerical examples are shown. It is seen that the energy density -
distance curves have quite different shapes depending on the values of medium
seisamic albedo By = ng/(ng+n,), where n, is scattering coefficient and n,
is the absorption coefficient of the medium. For high albedo (B>0.5) medium,
the energy-distance curve is of arch shape and the position of the peak is a
function of extin?tion coefficient of the medium ng = ng + ny. Therefore we
can separate the scattering and chciabsorption based on the measured energy
density distribution curves.

We also discuss the approximate solutions in time domain: the single
scattering approximation and the diffusion approximation. We apply the
formulas of diffusion approximation for an arbitrary non-isotropic scattering
function to the coda envelope and discuss its relation with the frequency
domain solution.

The data from the digital recordings in Hindu Kush region are used as an
example of application of the theory. From the derived energy density
distribution curves and the discussion on the envelope shapes of the digitally
filtered seismograms, we conclude that, in the frequency range 1.5 Hz to 20
Hz, scattering is notthe dominant factor in the measured apparent
attenuations, i.e. By < 0.5 in the Hindu Kush region for this frequency range.
Due to the insensitivity of the shape of the energy-distance curve for the

case By, € 0.3 and the fluctuations of the data, we are not able to obtain the
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. precise Bo values. Some interesting phenomena at low frequencies (<1.5 hz) o]
4
and high frequencies (>20 Hz) need to be studied further. The results obtained e
LT 4
in this paper imply a fregquency dependent Q. R
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' Multiple Scattering and Energy Transfer of Seismic Waves
and Application of the Theory to Hindu Kush Region

1. INTRODUCTION

- - -

Are the measured apparent attenuations for short period seismic waves

caused by anelasticity of the media or by scattering of the heterogeneities in

. ——— o o

the media? 1Is the single backscattering model a good approximation to the
coda envelope decay or do we need a multiple scattering model which will have
significant differences in describing the coda behavior from the single
backscattering theory? These are long-standing problems. In order to answer
these questions, we need to develop certain multiple scattering model for
seismic waves and compare the predictions from it with those obtained from the
single scattering theory. O'Doherty and Anstey (1971) derived a
. one-dimensional multiple scattering formulae for a stack of thin layers as
- |T(w)| = e-R(w)t (1.1)
where w 1is the.angular frequency of the wave, t = Nt is the travel time of
passing through the staci, 7 is the travel time for each layer and N is the
number of the layers; T(w) is the transmission response and R(w) is the power

spectrum of the reflection coefficient series normal{zed by the travel time.

PR  TRBVRFLIPAFRPREL R

The exponential form of (1.1) itself exhibits the indiscriminability of the
multiple scattering effect from the intrinsic absorption, {f we observe only

the decay of the transmitted waves. Richards and Menke (1983) did some

LN PR AT

3 numerical experiments on this model and discussed some possibilities of using
the relation between amplitude spectra and phase spectra, the frequency
contents of the coda and that of the main arrival etc. to distinguish the
multiple scattering effects of thin layers from the intrinsic attenuation. We

note that the formulation of the problem by O'Doherty and Anstey is

essentially that of the random sladb problem (see Kay and Silverman 1958,

Hoffman 1964). The results are presented as the relations of transmitted or
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reflected waves with the slab thickness, which do not necessarily represent
the amplitude attenuation with distance or the envelope decay with time of
seismic waves.

Kopnichev (1977) formulated the double and triple scattering for 2-D and
3-D media in the case of isotropic scattering. Gao et al, (1983, 1984)
derived up to seventh order acatteriné and then obtained the approximate
formulas of multiple scattering in time domain for 2-D and 3-D media using
curve~-fitting technique. However, the formulas derived are for the case in
which the source and sensor are located in the same point. On the other hand,
the most prominent evidences of multiple scattering would be manifested if the
sensor could be situated at some place between the source and the point apart
from the source by one mean-free-path of scattering (this will be shown
later). Thersfore it may be difficult to use these formulas for
discriminating the scattering attenuation from the intrinsic attenuation,
‘though the formulation may be very useful in other calculatioms.

In this paper, we derive the formulation of seismic energy
transfer under multiple scattering by using the radiative transfer equation
technique developed in the astrophysical optics and the neutron transport
theory and explore the possibilities of using this approach to separate the
scattering and intrinsic attenuvation.

Historically, multiple scattering theory has been developed along two
independent approaches: the analytic theof§ and the transport theory (for
Tteview see Ishimaru 1977). Both are based on the statistical treatment of
wave propagation in random media. Because the complex heterogeneities are
lod;lcd with a random medium, the wavefields propagating therein are also

random wavefields. We are interested only in some statistical quantities of

the vavefield, such as the mean intensity, phase and amplitude fluctuationms,

........
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) ’ yartous correlation functions, pulse spreading, angular broadening, etc. All

of these quantities can be obtained from the moments of the random field. The
analytic theory starts with basic differential equations such as wave
equations and, by introducing the scattering and absorption characteristics of

the random heterogeneities, derives the differential or integro-differential

L UEEm. 4 W W 8 = e o

equations for the moments of the wavefields. There are basically two branches

in the analytic theory: the renormalization method and the small-angle

i approximation method. In the first branch the renormalization procedure was
used for the formal perturbation series and the exact equation for the first
moment (the mean field), known as the Dyson equation, and for the second
moment (the correlation function), the Bethe-Salpeter equations were derived.
These equations are exact in the sense that the multiple scattering of all
orders, as well as the diffraction and interference effect are all included in

- the equations. However, since the operator involved in these equations are in
the form of infinite series, there is no solution available at present,
Approximations have to be made to the operator before some practical solutions
can be obtained. The most widely used approximation is the first order

smoothing approximation as called by Frisch (1968) (see also Ishimaru 1978, v.

RN UL PLELIS N N

2), in which the local Born approximation of the fluctuating field (or
equivalently the Bilocal approximation to the mean field) is applied to the
Dyson equation and the ladder approximation is applied to the Bethe-Salpeter
equation. These approximations can be obtained by either the Feynman diagram

method or the Bogoliubov smoothing method in the operator form (Frish 1968,

o BTE T AT

Tatarskii 1971, Ishimaru 1978; for the various names of the first order
smoothing approximation, see also Wu 1982b, footnote 2). The justification

for the use of this approximation has been clarified by Frisch (1968) by

introducing the generalized Reynolds number. The basic physical condition for
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the valid use of the approximation is the scattered field within a correlation
v . length bAing weak compared with the incident field. In the case of large
scale inhomogeneities, Fante (1982) has shown that a sufficient condition for
applying the ladder approximation is the mean free path for multiple
scattering being large in comparison with the correlation length of the
medium. This condition is usually satisfied in the context of seismic wave
scattering in the lithosphere, The first order smoothing approximation to the
Dyson equation and Bethe-Salpeter equation can be shown (Frisch 1968) to be
equivalent to the Foldr-Twersky system of equations, which have been developed
independently for discrete random media, i.e., the media with randomly
distributed scatterers. There are still no general solutions for these
equations and further approximations are needed to put them into practi ..
use. For small size inhomogeneities, there are some general solutions for che
mean field, but nd useful results for the second moments (Tatarski 1971, §61,
Ishimaru 1978, ch. 14). It has been shown that the first order smoothing |
approximation of the Dyson and Bethe-Sapeter equations can lead to a radiative
transfer equation for the specific intensity which is the 3D spatial Fourier
transform of the spatial correlation function of the wavefield when the
correlation function is a slowly varying function in space (Barabanenkov 1969,
1971, Tatarskii 1971, §63, Ishimaru 1975, 1978). Similarly, a generalized

radiative transfer equation can be derived for the frequency correlationm

function (Ishimaru 1978). Thereby the link WEIdga has been established between
the analytic theory and the transport theory. :xitﬂ
The second branch of the analytic theory includes all the small-angle- :,;
scattering methods. Because of the small scattering angle approximation or ‘
forward-scattering approximation, the basic starting point of the method is "tf}
4

the parabolic wave equation. There are two approaches: parabolic equation
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11.

_approach and Feynman path integral approach. Tatarskii applies the Markov
approximation to the parabolic wave equation, so the theory of Markov process
can be used to the study of the problem (Tatarskii 1971). Uscinski, on the
other hand, uses the plane wave decomposition and phase-screen technique to
the parabolic wave equation (Uscinski 1977). At present, the parabolic
equation methods can have only approximate solutions for up to the fourth
moment equations. The path-integral approach starts with the Feynman
path-integral representation of the parabolic wave equation and makes use of
the small scattering-angle approximation and Markov approximation (Dashen
1977, Flatte et al., 1979)., It can obtain solutions for any higher order
moments for the Gaussian statistics. Flatte et al., have applied this approach
to the ocean acoustics and obtained the expressions for phase and intensity
fluctuations, various correlations and pulse wandering and spreading etc.

The transpori theory (or radiative transfer theory) is a phenomenological
approach. It does not start with the wave equation, but deals directly with
the enmergy transport process. Therefore, only energy or intensity arithmetic
appears in the theory and no wave interference is considered. This treatment
much simplifies the mathematics. Historically it appeared earlier than the
analytic theory, and has its root from Boltzmann's equations in the kinetic
theory of gases and in the neutron transport theory. It was introduced into
astrophysical optics by Schuster (1905), Chandrasekhar (1950) and others and
is now widely used in the multiple scattering treatment in the astrophysical
optics, ocean acoustics, neutron transport theory, electromagnetic wave remote
sensing, marine biology, etc. (Chandrasekhar 1950, Sobolev 1963, Menzel 1966,
Davison 1958, Bell and Glasstone 1970, Flatte 1979, Kong et al. 1984,

Jerlov 1976). This approach also has its shortcomings. It cam only deal with

the second moments, it does not account for the diffraction and interference
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12.

- ’ phenomena. However, there are some new developments recently, which
incorporate some wave interference effects into the radiative transfer
equation. For example, in deriving the transfer equations from the
Bethe-Salpeter equation, beside the ladder terms (which alone will lead to the
regular intensity transfer equation), the cyclical diagrams are also included,
resulting in a modified radiative transfer equation, which can account for the
backscattering enhancement due to the constructive interference effect caused
ii by the double passage of the backscattered waves (Zuniga et al. 1980).

E% So-called "wave radiative transfer theory" based on the second order

approximations to the Bethe;Salpeter equation is also under development (Tsang

and Ishimaru 1983).

For the coda envelopes or coda energy problems of local earthquakes, it
is apparently a wide-angle scattering problem, so that the transport theory is
probably the most effective method to treat it at present. In this paper we
use the frequency domain formulation mainly from the neutron transport theorf
and the electromagnetic wave propagation (Davison 1958, Liu and Ishimaru 1974,
Fante 1973, Ishimaru 1978) to the emergy density decay with distance of the

seismic waves from local earthquakes, and discuss the possibility of using the

decay curves to evaluate the relative strengths of the intrinsic absorption

and the scattering coefficient of the medium in the region studied. Some

-4

examples are given for the Hindu-Kush region. The results and their g

;

geophysical meaning are also discussed. ;ﬂ
2. DEFINITIONS AND NOTATIONS

It is difficult to keep all the notations and terminology im radiative
transfer theory without causing ambiguities and contradictions with the
traditional notation and terminology in seismology, when the theory is
introduced into seismology. I will basically follow Ishimaru (1978) and make i&f%'

some necessary changes to keep the notations self-consistent.
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I(E,Q): Specific intensity or directional intensity. It is the most

fundamental quantity in transport theory. 1t gives the power flowing

"~ A

within a unit solid angle in the direction Q, here Q is the unit vector,

L)

emanated from a unti area perpendicular to Q, in a unit frequency band.

The specific intensity is defined for a frequency w, which is omitted in
the notation.
In this paper we consider the S wave and its coda for small local

earthquakes. Since the P wave energy is much smaller than the S wave o

energy for a double-couple point source which is the source model for

small earthquakes, we consider here 1(5,8) as only the S wave energy by

neglecting the mode converted energy ftom P waves, We assume here also =

that the wave energy described by I(r, Q) is dcpolarized, i.e. the

energy is equally partitioned between the two orthogonal components of S ]
B wvaves. This agrees generally with the observations. Because of the free . ]

surface reflection and the scattering by heterogeneities, the S waves

from a double-couple source get quickly depolarized. From the results of ?f:"

this paper, the energy dgnaity decay curves for the two orthogonal ::::
components are very similar to each other, which further validate the %
assumptions.

In order to measure the specific intensity (or directional intensity), S
we need strongly directional sensors, which are not available in the
seismological practice. Therefore the specific intensity is not the e
quantity measured in practice, but is the important concept and quantity oo
for theoretical derivations.

T]E)s Average intensity, defined by

I(x) = 4= [ 1(r,Q)40, (2.1)

is the intensity at point ¥ averaged over all directions.
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S . E(r): Energy density, defined by

E(x) =+ [ Ir,@)d0 = 2% K(r) . (2.2)
- 4n - -

where C is the wave velocity.

J(r): Flux density vector, defined by

o) = [ 1(z,@)0dQ . (2.3)
4x

~ ~

The net flux density in a particular direction Q, is defined as Q,.J(x).

A

It is the net power transferred along the Q, direction across a unit

~

area perpendicular to Q,. In this paper, we also use the notation for the
energy flux density, i.e. the power flux density divided by the wave

velocity c.

L )

8(Q,Q,): Scattering intensity function of a random medium, which is related

A oA

to the single scattering amplitude £(Q,Q,) of an elementary volume dV of

the inhomogeneous medium by

.- <|£(2,9,)]%>
S(Q,Qo) - dv ]

(2.4)

where < > denotes taking ensemble average. S5(2,Q,) gives the scattered

A

power in Q direction within a unit solid angle by a unit volume of the

"~

random medium for a unit flux demnsity of incident wave in Q, directionm.
In this paper we will give a unified treatment for both the discrete

and the continuous random media. For a discrete random medium composed

-~ a

of randomly distributed scatterers, S(Q,Q,) is defined by the scattering
characteristics of individual scatterers; while in the case of random

continua, we can choose the volume elements small enough so that we can

~ -

derive the single scattering amplitude £f(Q,Q,) by the Born approximation.
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g(Q,05): Directional scattering coefficient, defined by
g(Q,8,) = 4xS(Q,Q,) . (2.5) e
for the definition and the derivation for elastic random media, see 31{1

paper II (Wu and Aki, 1984b).

Ng=g: Scattering coefficient of the medium defined by o

ng = [ $(2,80)40 = 1= g(2,8,)49 , (2.6)
- 4n 4%

5f which gives the total power loss due to scattering by a unit volume

_ random medium per unit flux density of incident wave under the single

;} scattering assumption.

EE Na=b: Absorption coefficient of the medium, which gives the power loss due
absorption by a unit volume random medium per unit flux density of

incident wave.

Ne: Extinction coefficient of the medium, defined by

Ne™Matng (2.7)

2o=a: Correlation lengsé of the random medium.

Le = 1/ne: Extinction length of the medium.

La = 1/ng: Absorption length of the medium. (2.8)

Lg = 1/ng: Scattering length or scattering mean free path of the medium.

De: Numerical extinction distance, which is called "optical distance" im optics.

Dg: Numerical absorption distance,

Dg: Numerical scattering distance, defined by

De = r/Le,
Dy = r/la, (2.9)

D. b l‘/L‘,

where r is the travel distance.
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| By: Medium seismic albedo, defined by
U Ng . s
B == (2.10) U

© ne ngtng ”

A M

D(Q,Q,): Scattering directivity, defined by

a A g(Q,9,) 4ns(Q,Q,)
D(Q,2,) = - (2.11)
Ns Ns

It is the aormalized directional scattering coefficient, and satisfies

+ {u D(2,0,) = 1, (2.12) i:%%

E. . that means its average over all the directions is equal to unit., 1In o
; the case of isotropic scattering

k n<5,5° =1. (2.13) v

; Its relation with the "phase function" in the radiative transfer theory R

' (Chandrasekhar 1950, Ishinara 1978) {is : _\

D(2,2,) = Byp(2,2,) . (2.14) Z::::

}(5,3,): Phase function (see 2.14). . :E;ii

In the case of a discrete random medium having statistically uniformly E;iis

distributed random scatterers with number density n, we have Et:::

0q(R,Q,): Differential (or directional) scattering cross-section of the

scatterers.

LY A A

§(2,2,) = n04(Q,8,). (2.15)

Og: Scattering cross-section of the scatterers, defined by

os =] 04(8,2,)d0 (2.16)
4

Oq: Absorption cross-section of the scatterers, '

Oe=0Ogt0g: Total cross-section of the scatterers.
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i Np: Absorption coefficient of the host medium.
Ng ®= 00y, (2.16) o
A
Na = ndginy, (2.17) e
N
- a 4xcq(Q,2,) B
D(Q,Q2,) = (2.18) =)
s <
B): Scatterer albedo, defined by

= Os Os
o _31 BRI (2.19) »
h Therefore, 3
3 N
:-“-. B ﬂ; Ms Ws 2.2 " ;
- ™ - . .20 o
© ngtng  nogindgtny  nopiny ( ) .
———d
When nN{<<ncy, we have o]

Os "h Nh

By ~ = (1- -g?:) = By(1- (2.21)

=0 -

For a perfect scattering medium B, = 1. : ——

z -
. -
. «
- .
R “
- Kl
<.
o8

o
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}: 3. ENERGY DENSITY DISTRIBUTION IN THE CASE OF ISOTROPIC SCATTERING
4
Knowing the extinction coefficient and scattering coefficient of the
.\, -~ ~
;ﬁ medium ng, Ny and the scattering directivity D(Q,Q,) or the scattering
~"‘ - ~ -~
& intensity function of the medium S(Q,Q,) defined by (2.6), (2.7), (2.il) and
‘ (2.4), we can obtain the differential equation for the specific intensity
:i: I(x,Q2), the "aquation of transfer” (Chandrasekhar 1950, I, Ishimara 1978, ch.
% 7:
; dI(_l:’Q) a a A - -
~ 5 = - Nel(z,Q) + [ s(2,2,)1(r,Q,)dQ, + W(r,Q)
o 4w - -
&
:‘, -~ ng ~ A Y -
= - neI(r,Q) *‘Hf D(Q,R4)1(r,Q4)dQo+W(r,Q) , (3.1)
% - 4n
gﬁ where W(r,Q) is the source intensity function, which defines the amount of
ﬂﬁ power emitted from the sources into the direction Q per unit solid angle. 1In
. (3.1), dt is the iength of a cylindrical elementary volume of unit cross
:fg section in the wmedium with the axis of the cylinder in Q direction (Fig. 3.1).
::3 Therefore the left hand Qide of (3.1) represents the total change of the

specific intensity for a unit travel distance. The first term in right hand

side of (3.1) is the loss of power in Q direction due to absorption and

scattering, whereas the second term gives the gain of power in that direction

> from the scattered waves for the incident intensity from all directions and

g? the third term is the energy supply from the sources. No general analytic

ﬂj solutions are available for (3.1). Some methods such as the Gauss-quadrature

'ii can be used to obtain the numerical solutions for a general scattering 2]
P K
.o function. Let us first consider the simplest case of isotropic scattering. e
.. - s
- In this case the scattering directivity D(Q,Q,)=1. Integrating (3.1) over all T
{! directions Q, we obtain equation for the average intemsity I(r) or the i
o L
- :

o "

et -
o | i
f;fuf%fﬁfufﬁrhf~f~(~fufﬁf\(%;%:~:ujmi~$%;x$\:“;-:-:.i\; et :a;u;u;-ubﬁ.;:;\j}:*:ufnjai:{:;:f;i-f~;kf*;%;:f‘
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" - energy density E(r) (2.2)

dE(r)
dx

n - -
- - n,z(:)a% ] [T: | (r,0,)dQ, + W(r,Q)]dQ
- 4 x - -

= - neE(xr) + Q(2), (3.2)

e A

e
..0.

where C is the wave velocity. (3.2) is in a form of first order differential
equation, in which the second term in RHS {s the source ternm
1 ﬂa ~ -
Q) =g [ [=[ 1) + w(r,2)lda . (3.3)
4x x -~ -

The general solution for (3.2) is

2
E(x) = Ae"Mt + [ Q(ap)eMe(2-2))ay, , (3.4)
o

where A is a constant.

The energy density (3.4) is composed of two terms. The first term is a
simple exponential decay with the extinction coefficient ng as its attenuation
coefficient; this is the coherent energy density E. or "reduced energy

density"” (Ishimaru 1978). The second term is therefore the diffuse energy

density E4 which is produced by scattering. Applying the i{nitial condition

E(zo) = Eqq, . (3.5)

where Ej, is the incident energy, we get

E(x) = Ec(x) + Eq(x)

Ec(x) = Egn e~Nel

) ]
Eg(x) = [ Q(ap)e~Ne(l=2)) 4z,
[+ ]

b n
1 s
SR

1(r,00)d0, + W(r,@)le-Me(A~2)agast) . (3.8) ]
n - - T

e

I-.'

-..'

.,

Sod

T

|

.

.~.‘

.«
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%3 : In ofdct to calculate the diffuse term (3.8), we need to know the intensity ;jiﬁ
i ) I1(r,Qo) which is 1elated to the total energy density. Therefore (3.8) is in ____j
é} the form of integral equation. To carry out the integration with reapect to _;v:
E; Q, we note that, the intensity gain in the direction 3 within dQ are ?éﬁe
ii contributed from the intensity of all the volume elements dV] at r) within the iiij

?t; elementary solid angle, and
:, dvy = dQLr.-ﬂlzdll_ . (3.9) 5
: Therefore (3.8) becomes ;ﬁ;i
. ) 1

Eq(e) = [ [ngE(rp)+eE u(ry,@)] - el t:' avy . (3.10)
- = - 4m|zoxy |

The integration i{s over the volume of the random medium. The integral

equation for the total energy density becomes (see also Ishimaru, 1978, ch.

12).
E(r) = Egpe-Mel + [ [ngE(ri)+e(ry,@)]6o(r-ry)dVy , (3.11)
- v - - - :
where
e(r,Q) = & W (r1,0) (3.12)

is the source energy density function, and

. (3.13)

Golr-r1) = 75z =

Aulr-rllz

Integral equation (3.11) can also be derived from the first order

e !
et
e

smoothing approximation of the Dyson and Bethe-Salpeter equations (Lin and
Ishimaru 1974), :
Prom (3.11), the energy density E(r) is totally defined by the incident ]
field, the source-function, and the volume of the random medium. For the fg:;
o]
1

problems of seismic coda waves of local earthquakes, the distances between the

stations and the sources are short compared to the travel time of coda waves, SR

~
~3
o

AASAY

KRR ¥
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"

As the first approximation, we consider the problem of a point source located

in an infinite randomly inhomogeneous medium. The effect of the free surface

‘

is like a mirror reflecting the half random space to a whole random space with

4

the upper half space being the mirror image of the lower half space. The

limited thickness of the lithosphere, which is supposed to be more

. s

heterogeneous than the asthenosphere beneath will have influence on the coda
2 of later part. Further discussion about the limitatiom of the model will be
' given later in this paper.

In (3.11), suppose the incident field Egn, = 0 and the point source is

located at r = 0, radiating the total power P,. Then

Po

5
h €(xr) = o= 8(x) = Eg8(r) (3.14)
X The equation (3.11) becomes
- . e-Nelz-x1|
e~Net
I E(r) = E, yrre o +f Ty E(tl) 3 avy
2 - v - 4x|z-n|
- = Ey Go(x) + [ ngE(xr1)Go(r-ry)dvy . (3.15)
' v
- This 1is a Faltung type or -convolution type integral equation o]

(Tricomi 1957, Carrier et al. 1966), Fourier transform method can be used for

solution. Assuming E, = 1, the solution can be written as (see

[ S FERICRIE LA

Davison 1958, Lin and Ishimaru 1974, Ishimaru 1978 (12-21))

’
. .
PRI
LT

: NePq Ne
. E(r) = e exp(=-ngdgyr) + yrrs | £(8,By)exp(-ners)ds Sod
.' 1 o
k 1
R = Eg(r) + Ec(r), (3.16)

5
q o

.'

g
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where ";1
Pd = 2 , (3.17) _—
Bo(d“o+By-1) )
and d,; is the diffuse multiplier determined by
Bo 1+d,
ﬁ:ln (T:-a;) = 1; (3.18)
and ]
Bo 1.,2 T Bo 2 §
£(s,B,) = {[1- re tanh'l(;-)] + G ;—) -1, (3.19) |

y, ~

The first term in (3.16) is the diffuse term Eg, which is attributed to the
pole residue in the complex spatial frequency plane, and the second term,
coherent term E. is from the branch cut integration.

Fig. 3.2 shows the relation between the diffuse multiplier d, and the
medium albedo B,. d, 1is always less than 1. When distance r is large,
especially for large B,, the diffuse term becomes dominant (see also Fig. 9),
and E(r) will be approximately an exponential decay with an apparent
attenuation coefficient doﬂe; which is less than the extinction coefficient
Nee The degree of reduction depends on the albedo Bye The diffuse term can
also be written as

nePq

4nx

Ed(r) - exp[‘(na*'dgns)r]’

do-(1-By)

B . (3.20)

dg =

dy i3 a multiplier and dyng gives the effective contributions of the
scattering coefficient to the apparent attenuations. dg is also plotted in

Fig. 2. Table L lists some values of d, and dg versus B,.
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. The coherent term can also be written as

Ne 1 Nel
Ec(r) = 7= [ £(E,Bg)exp( 3 )
o

[+
Mol

, (3.21)
g

by setting £ = 1l/s for the convenience of computation. Fig. 3.3 shows the
behavior of the two factors of the integrand for different numerical
extinction distances Dy = nr and different medium albedo B,. exp(-Dg/8)/E2
has a sharp peak for small D, when § is small; whereas £({,B,) is nearly
singular for small B, when £ is close to 1. Therefore, in doing numerical
integration, we used Romberger integration method for three separate segments
to take care of the abrupt changes of the incegtaﬁd at both ends of the
interval. The Gauss-Legendre quadrature is also used to check the results.

] It turned out that the Gauss-Legendre quadrature of order 10 gives fairly good
results.

In the following we will show some numerical results of the energy.

l densfity distribution along the travel path from the source point. In the case
of homogeneous media, the decay of energy density with distance is only due to
geometric spreading. For a isotropic point source, the decay is 1/4xx2,
Therefore, we normalize the distribution for inhomogeneous media (3.16) by the

homogeneous distribution, i.e. multiply both sides of (3.16) with 4nr?,

Ep(r) = 4xr2E(r) = nePyr exp(-nedor)+nerff(5,Bo)exp(-—z—)zz S

° -9

: L & 2
., = DePgexp(-doDe)+De | £(Z,Bo)exp(-De/E)= , (3.22) -

o £ U
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where E;(r) stands for the normalized energy demsity distribution. Fig. 3.4

gives the results for different medium albedo By. The diffuse term and the
coherent term are also plotted in the figure for comparison. The cohereat
term has little changes for different B,, whereas the diffuse term varies
dramatically with B,, especially when B4>0.5, i.e. when scattering is
dominant. This gives the possibility of using the energy density decay curves
to calculate the extinction coefficient n, and the medium albedo B,, hence to
separate the absorption coefffﬁient Na and the scattering coefficient ng. In
the case of B,>0.5, the diffuse term is dominant. There will be a peak on the
E(r) curve, the position of the peak will depend on n, and B, of the medium.
When By<0.5, the coherent term is dominant for Dg<2. Therefore the shape of
the curve is not very sensitive to the change of B,, so that the separation of
scattering from absorption becomes difficult.

By assuming 4 point source with E,=l, we get E(r) around the peak with
values greater than 1, that need some éxplanation. As shown in Fig, 3.5, the
normalized energy density En(r) = 4xr?E(r) represents the energy received by
the ring shell (hatched). In a homogeneous medium, if there is no absorptionm,
the energy received will be equal to the scurce energy. In a scattering
medium, the wave energy can go outward and inward across the shell. We denote
the outward emergy flux by F,+ and the inward energy flux by F.~. 1In the
figure, we sketched one possible path of multiple scattering. No matter how
complicated the path is and how long the time delay is compared to the direct
path, the closed ring shell will eventually receive all the energy emitted by
Therefore, in this case the F./* is equal to

the source. There is no escape!

the total energy. However, the shell will also receive the inward scattered

energy, so the total received energy Fr++Fr'is greater than E,. Of course the

net energy flux F *-F."i{s always less than E,. If there exists absorption,
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the amount of received energy will depend on the energy balance between the
absorption loss and the inward-scattering gain. Near the source, r is small,
the ring shell has a small surface area for receiving the inward-scattered
energy, so E(r) =~ E,. When r increases, the surface area of the shell also
increases, so that more inward-scattered energy can be received, resulting in
the growth of Ep(r). However, the absorption loss also grows with r due to
the increase of the path length. Upon to some distance r, the growth rate of
gain is equal to the growth rate of loss, the curve reaches its maximum.
Beyond this distance, the absorption loss prevails.

Fig. 3.6 replots the curves of Fig. 4 in a semi-logarithm coordinate
system. Fig. 7 and 8 plot some En(r) curves for cases of constant absorption
and constant scattering respectively. In this paper bSng g=ng. Fig. 3.7
shows the influence of different scattering coefficients on the energy density
distribution curve of a constant absorption medium. The distance is
normalized by the absorption.length of the medium L, = 1/n,. It is seen from
the figure that, for large distances compared with the absorption length of
the medium, the decay of the energy density s nearly expomential with an
apparent attenuation coefficient different from both the extinctions
coefficient and the absorption coefficlent. In the figure, b is the true
absorption coefficient, ; is the apparent attenuation coefficient measured
from the slope of the curve, 1t can be seen that, for stromg scattering
(Bo>0.5), the apparent attenuation is much bigger than the absorption
coefficient but much smaller than the extinction coefficient (for B, = 0.9, ;
= 4,5b = 0.45 ne). For weak scattering (Bo<0.5), the influence of scattering
to the apparent attenuation is less appreciable. When B, = 0.5, ; = 1,62b,

On the other hand, for small absorption distance (D,<l), the shape of E(r)

curve varies drastically depending on the values of B,, which provides the
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’
]
- basis for the separation of scattering effect and the absorption effect. Fig. _‘ R
3.8 in a similar way shows the influence of absorption on the E(r) curve of a :;h_:
constant scattering medium.  %
E In order to compare the relative contributions of the diffuse term and _1ﬁ
i the coherent term, we plot them on Fig., 3.9 and Fig. 3.10 with the distance :Q:;j
8 normalized by the extinction length L, and scattering length Ly respectively. A~~j
Now, we will derive the radial emergy flux density J.(r). We know the ;fi
energy conservation relation (see Ishimaru 1978, (7.28)) ) . j
) Na N 1 N (3.23) _‘j
div J(r) = - = [ Ur,@da + 3 [ W(r,Q)d, ]
- % S b - :
where J(r) is the emergy flux density vector, C is the wave velocity and ;Li”é
W(g,;) is the source intensity. For isotopic scattering in the source free }
region ‘
) div J(xr) = ngaE(r). (3.24) ]

In view of the spherical symmetry, there is no transverse component of J(r),

therefore (3.24) becomes

atv J(r) = 27 3= (£237) = - ngE(r) . (3.25)
R 1
Then *
Na T Na ®
Jp = - = [ E(r)x2dr = = | E(r)rdr (3.26)
o T

Normalizing J,. by the homogeneous case, we get

Jar(r) = 4nr23 (r) = n, [ 4nr?E(r)dr = n, [ Ep(r)dr . (3.27)
T T

..........
.....
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- Substituting (3.22) into (3.27) ylelds
Jar(r) = 4xr2J ()
: Pa 1 De :
- (I-Bo){'d-;(ng','d_o)exp(doDe) +I f(E,Bo)(l- a—)exp(-De/E)dE (3-28) B
[+] . :
.! Fig. 3.11 and 3,12 give some numerical results with the distance normalized by

the extinction length and by the absorption length respectively, together with
the results for the forward scattering approximation (see next section). It
.. can be seen that the radial net flux is always smaller than the source energy

Eg. However, the radial energy flux is difficult to measure in the practice

of seismology. The reason is the difficulty of separating the inward and
outward energy flow. Nevertheless, the comparison between E(r) and J (r)

helps us understand the multiple scattering process.

- s
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4, STRONG FORWARD SCATTERING: THE CASE OF LARGE SCALE INHOMOGENEITIES

From the analysis of coda generations for local earthquakes, we conclude
that the lithosphere in tectonically active regions may be rich in small scale
heterogeneities (less than 1 km) (paper II). On the other hand, by measuring
the phase and amplitude fluctuations in large seismic arrays as LASA and
NORSAR, large scale velocity inhomogeneities (10-20 km) underneath the arrays
were revealed (Aki 1973, Capon 1974, Berteusson et al. 1975). Therefore, the
lithosphere may have multi-scale inhomogeneities. For short period seismic
waves (around 1 Hz), the scattering by the small scale heterogeneities may be
in the Rayleigh and Mie scattering region. From the elastic scattering
pattern (paper I, II), we may approximately use the isotropic scattering
approximation. However, for the large scale velocity inhomogeneities, the
forward scattering is dominant, The energy density distribution with distance
will be quite different from the case of isotropic scattering. Since most of
t#e scattered energy is concentrated in the forward directiom within a small
cone, the focussing and defocussing, diffraction interference phenomena become
important. Most of the scattered energy arrives at the receiver point with
much shorter travel paths, so that the energy delay due to scattering is much
less severe than the case of isotropic scattering. From a reasouning similar
to that in Fig. 3.5, we can see that, the normalized energy density decay
curve will not have a peak of value greater than 1. Because the laward
scattered energy is much less than the outward scattered energy, the emnergy
density which is J;* + J.~, where J.* and J.~ is the outward and inward radial
energy flux respectively, will have no too much difference from the net
energy flux Jr = Jr+'3r'- In the following, let us examine what can be

obtained from the theory avallable in transport theory.

----------------------------
-----
.................................

.................
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Fante (1?73) has solved the transport equation under the forward
scattering approximation, and Ishimaru (1978, ch. 13) has a lucid derivation
and discussion on it, Here we only draw some main threads for understanding.
Since

-

dI(r,Q)

= Qegrad I(r,Q), (4.1)
dL -

where d is the length of an elementary segment in Q direction (Fig. 3.l1), the

transport equation (3.1) can be written as

- a Y LY ~

QegradI(r,Q) = - ngI(r,Q)4n, [ D(Q,2,)I(xr,Q5)dQ +w(r,Q) . (4.2)
- — 4t -

Because the scattered energy is mostly confined within a small angle in the
forward direction, we choose the z-axis of the cartesian coordinates as this
direction, and approximate (4.2) through the following steps.
5-1;+m;+n;, (4.3)
where x, y and z are the unit vectors in x, y and z-axis respectively, and
l,m,n, the corresponding direction cosines. In the spherical coordinate
system with z-axis as its polar axis (Fig. 4.1)
1 = sinfcosd¢, m = ginOsind, n = cosd . (4.4)
Because the angle with z-axis 6 is always small, we have approximations
n =cosd ~ 1
dQ =~ ndQ = dldm = ds,

/ dQ-} d17 dm = [ ds,

4 - ~-®

aograd 1(5,6) - %;I(z,p,s)+s-VtI(z,p,s), (4.5)

............

N R I
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s
N
i
E:; where
L‘_ ~ -~ -~ -~ )
- I = xchyybzz = p + 2z, —

Note that s is not a unit vector. Because 6 is a small angle, the magnitude
of s is much smaller than 1.

By these approximations (4.2) becomes

g—z- I(z,g,g) + ;‘VtI(Zve’ﬁ)

Ng *
= <nel(z,p,8)+— [[ D(s-3')I(z,p,s')ds"+i(z,p,s) . (4.7)
-t
here D(R,Q,) is assumed only as a function of Q-Q,. Since most of the energy e

is confined within a small angle with z-axis, the integration limits for 1l and
m are extended to *= without introducing any significant change.
Again (4.7) can be solved by the Fourier transform method (Fante 1973, ——

Ishimaru 1978, ch. 13), the gemeral solution for W(z,p,s) = 0 is

I(z,p,s) -Tz-’]%yq-f dk J dq exp(-ikep-iseq)Iqy(k,qt+kz)K(z,k,q) , (4.8)
: where —
?f Tolksg) = [f Tolp,p)exp(tieghiseq)ipds (4.9)
E: is the double Fourier transform of the incident intensty Io(p,s) at z=0, and
. z Bo ‘
: K(z,k,q) = exp{ £ m;[l.-l‘—1t D(g+k(z-2'))]dz"} (4.10)
-
ﬁ; -._
B i
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D(q) = [/ D(s)exp(iseq)ds . (4.11)

There i3 no general explicit expression for (4.8) for a general
scattering directivity D(s). If we approximate the strong forward scattering
pattern by a Gaussian functionm,

D(s) =~ 4Zexp(-Es?) (4.12)
where £ is a parameter proportional to (£,/A)2, and Lo 1s correlation length

of the random medium, A is the wavelength, substituting into (4.1l1l) and (4.10)

ylelds
2
D(g) = Auexp(-zz) , (4.13)
z ea?
K(z,k,q) = exp{ [ nell-Boexp(—za—)]dz'} . (4.14)
(]

-

Since most of the ‘emergy is confined within a small cone along z-axis, we
consider the case of a plane incident wave
Io(p,s) = I,8(s) , (4.15)
Io(k,q) = (27)21,8(k). (4.16)
From (4.8) we have

I,

-q?
I(z,p,s) = [ & [ dqq exp(-1kep-132q)6(k)exp[-nezingz exp(zg—)].(4.17)

(2%)2

When the scattering distance is large, i.e. Ngzz>>1, the main contributions to

the integral in (4.17) come from the integrands with small q's. We can set

—al 2
exp({) ~ 1- L7 . (4.18)
Therefore
I8 2
ngz - 2=
1(z,p,s) ~ s exp[-ngz n'z] . (4.19)
e T e S o e L e e e e
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E(z,p) = J(z,p) = [ 1(z,p,8)ds = I,e~M,2 , (4.20)
We see that, under forward scattering approximation, the energy density decay
with distance is only due to the absorption. That is because, in the
approximation, we neglect the backscattering and the path length differences
between the direct path and the multiple scattering paths by letting cosfw»l.
In Fig. 3.11 and Fig. 3.12 we plot the energy flux J(r) of strong forward
scattering vs. that of the isotropic scattering. If we consider the

-

lengthening of travel paths by multiple forward scattering, the decay curve

could be somewhere between these two extremes.

(4.19) gives the angle distribution of intensities. The incident wave
i:j has only intensity in z-direction, after scattering by the medium, the
- intensities with different directions have a Gaussian distributiom and the
width of the angle distribution broadens with distance. The loss due to the

scattering of energy to other directions is compensated by the gain of

scattered energy from other directions. Therefore there is no energy loss

except absorption. However, in order to calculate the real energy

attenuation, we have to take the backscattered energy into account. Wu

(1982a, see appendix C ) ‘uses a simple renormalization procedure and sums R
up all the energy scattered into the back halfspace as the energy loss. This ?tf

procedure is similar to DeWolf's "Cumulative Forward-Scatter

A

Single-Backscatter Approximation” in calculating the backscattering strength ?&
(DeWolf 1971). Since the backscattered energy is much smaller than the

forward scattered emergy, the second backscattered energy (from the backward

. S L '
h e abeded A& 4

direction into the forward direction) is one order smaller than the single
backscattered energy. Therefore the single backscattering loss with the O
renormalization of the total forward enmergy could be a reasonable

approximation of the scattering attenuation for the harmonic wave field. f}w
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From the above analysis, in the case of strong forward scattering due to
large scale inhomogeneities, the shape of the energy density decay curve is
insensitive to the medium albedo B, and the separation of scattering
attenuation from absorption becomes more difficult. However, because the
scattering loss is much smaller than the isotropic case, we can have some
constraint on the possible scattering attenuation from the strength of

inhomogeneities. The shape of the seismogram evelope in time domain can also

glve constraints on the possible values of albedo B,. We will discuss this

later in this paper.
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s e

5. SEISMIC WAVE SCATTERING AND ATTENUATION IN HINDU KUSH REGION

(l

L I IR .
R CAORIRT: TN

In this section ﬁe will calculate the energy density distribution with
travel distances for the small earthquakes {n the Hindu Kush region. The data
used are from the digital recordings from two stations in that area. Between
11 June and 13 July, 1977, 11 smoked paper recorders and 4 digital event
detector recorders were operated around the Hindu Kush Mountains of
Northeastern Afghanistan. The organization and operation of the field work as
li well as the seismicity and tectonics of that region are described by Roecker
(1981), Chatelain et al. (1980) and Roecker et al. (1982). Fig. 5.1 is the

map view of the earthquake distribut‘on and the station locations. 1In Fig.

U o RRRORH

5.2, the events are divided Into groups with 50 km depth intervals. The
digital numbered events were recorded digitallyi:agnetic tapes, which have
;ﬁ been used by Roecker et al., (1982) to calculate the coda Q and S wave Q in
i‘ that region using.Aki's single station methods. Table 5.1 lists these events.
if We will use some of those events to calculate the energ} distribution along
;: the travel path.
.' The digital event recorders were of the event detector type (for details
g: see Prothero 1976). When the received signal exceeded the pre-set level the
‘} recorders were triggered to record the event on magnetic tapes. The buffer of
E‘ the instruments also allowed us to record one second data proceeding the

triggering signal. Each digital station had four seismometers, three
components with high gain and a low~-gain vertical component. The natural

period of the seismometers was 4 seconds. The preamplifier had a gain 20 db

or 40 db (low gain or high gain). The amplifier had a gain 52 db or 58 db,

e with a 3 pole, low-pass, antialiasing filter having a corner frequency of 32
;‘ he. The response of the whole system is shown in Fig. 5.3. After

amplification the signal was digitized at 128 samples per second, multiplexed
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and then recorded if the recorder was triggered. The events recorded usually
were grcatir than magnitude 3, with the exception of a few close earthquakes,
due the pre-set trigger level,

Because there are only a few stations, it is difficult to get the energy
dcnsi?y-distancc relation from a single event. We will use a single station
method. The seismograms of different events with different distances from the
station will be Fourier-transformed to get the spectral density of the energy
density E(r) for the corresponding source-sensor distances. In order to have
a common source faétor for all the events, we use the coda spectral density of
these events as the reference levels. From observations, it is generally
acknowledged that the coda level, at the travel time greater than twice the
S wave travel time, has a very stable relation with the source energy and does
not change with the locationg of the events. This can be explained by the
theory of coda generation in which the coda waves are assumed to be formed by
the backscattered § waves from the heterogenoities in the local region of thé
lithosphere (Aki 1969, Aﬁi and Chouet 1975). A received signal can be
considered as a product of three factors:

received signal = source factor x path factor x station factor. (5.1)
Because the coda energy at a specified time interval is assumed to be the sum
of backscattered wave energy from the heterogeneities in all the directions,
therefore the path factor has been averaged over all the directions, which is
much more stable than the path factor of the direct path.

In the calculations, we took the reference coda travel time as to = 70
sec, However, for the very close events, some seismograms are shorter than 70
sec, while for the distant events, 70 sec is smaller than twice the S wave
travel times. We need to do extrapolations. The guideline for choosing coda

time t, is to have it greater than twice the S travel time and as cloge as

---------
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possible to 70 sec. In order to couvert the coda level of each t; to the

4
reference level of t, = 70 sec, we use the empirical averaged coda envelope - 4
4
decay for each frequency obtained by Roecker (1982) for this region. When :

t>2ty, where tg i{s the S travel time, the coda envelope decay can be fitted

b IR
Y 1 ®

P(w|t) = Py(w) -; exp(-b.t), (5.2) v -

t .

where P(w|t) is the coda power spectral density at frequency w, at time t,

Po(w) is a constant, by is the attenuation rate and
by = Bb, (5.3)
where b is the attenuation coefficient and B is S wave velocity. For the )
: <
single backscattering model, Po(w) is found to be (Aki and Chouet 1975) . 1
25(x)S(w) .
Po(w) = "'E---'» (5.4) ]

where g(n) is the backscattering coefficient and S(w) is the source power,
For our purpose, it is not necessary to specify P,(w), we need only use the

empirical relation (5.2). If we set t = t, as the reference coda travel time,

then
1
P(w|ty) = Po(w) == exp(-byty) . (5.5) ]
toz R
R
Suppose we measure the coda power P(wltc) at time t., the correction for °
reducing P(w|tc) to P(w|t,) is then ;2;?;{
te R -.4
P(w|ty) = P(w|te) (=)2 expl-by(ty-te)] (5.6) RONSASN

to
We can also use P (w) as the reference level:
Polw) = P(w]ty) * toZexp(bety) - (5.7)

In Fig. 5.4, the solid line is the averaged attenuation-frequency relation

obtained by Roecker, the dotted line 1s the smoothed version being used for

calculations.

------------
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We choose two stations PEN and CHS (Fig. 5.1), because there were many
close events for both stations to confine the energy-distance curves, 1In
Table 5.2 and 5.3 the events used for calculations are listed in the order of
distances. The events were located using the arrival times on smoked paper
records.

To calculate the spectral density, we use the fast Fourier transform
algorithm, and average the spectral densities over the specified bandwidths.
In order to compare with the previous results obtained using the filtering
method by other authors, we take the frequencies as octave and with bandwidths
2/3 of the central frequencies, Table 5.4 lists the 14 central frequencies
and their corresponding attenuation values. We use a 32 second window for the
S wave Fourier transforms, Fig. 5.5 shows some examples of the seismograms at
station PEN for different hypocenter distances, from which we can see that the
32 second window will include most of the S wave emergy. In the figure, for
each event first gram is the low gain vertical (Z) component, the rest are
high g in Z, E-W, and N-é components respectively. In order to avoid the
Gibbs phenomena of the rectangular window, we use a 1 second cosine taper for
both edges of the window. For the reference coda spectrum, we use an 8 second
Hamming window for Fourier transforms.

Fig. 5.6 shows the obtained 4xr?E(r) curves from the station PEN,

Totally 31 events are used and the events are grouped according to their
distances. From left to right, the cur#;s are of Z, EW and NS components, 1In
the upper part, they are for f = 0.25, 0.5 and 1 kz; in the middle, £ = 1.5-8
hz; in the bottom, £ = 12-45 hz, Except for the low frequencies f<l1 hz, the
curves can almost be fitted with straight lines. We calculated the apparent
attenuations for different frequencies for the EW components and listed in the

Table 5.5.
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Because of the fluctuations of the measured curves and the insensitivity

to albedo B, when B,<0.5, we can not determine exactly the values of B, for

each frequency. However, we can get some constraints on the B, values from

{z the comparison between the measured and the theoretical curves.
'. Since Aki introduced the single station method using S-coda ratios to

measure the apparent attenuations of short period body waves (Aki, 1980a),
various attenuation mechanisms have been examined to interpret the
=I observations, esp?cially the frequency dependence of the apparent
attenuations. After discussing different attenuation mechanisms, Aki proposed

two most promising candidates: thermoelasticity and scattering (Aki 1980a).

B of RERENES

However, it seems only the scattering mechanism survived in the literature.
. Dainty (1981) proposed a scattering model with a constafn Q medium and
attributed the observed attenuation as the sum of the intrinsic attenuations
i' and the single sc;ttering coefficient. Aésuming an intrinsic Q4=2000, he

matched the observed data in Kanto, Japan by Aki (1980a) well with the

theoretical calculations.. Let us test this model usign our theoretical

calculatuions and the data in Hindu-Kush. Fig. 5.7 gives the possible energy

density distribution curves for different frequencies if we assume the

&f. constant Q model (Qq = 2000) and use the values of apparent Q in Kanto region
F— obtained by Aki., Due to the low intrinsic attenuation at low frequencies, the

medium albedo B, will be very high, if we attribute the observed apparent

attenuations mainly to scattering. However, from Fig. 5.7 and Fig. 3.6, we

see that the E,(r) curves for B, 1 are o arch shape, only approach

]
1

approximately exponential curves when distances are much greater than the

extinction length L,. Compare the prediction of Fig. 5.7 with Fig. 5.6, they :j;j

do not agree in general. More detailed comparison is shown in Fig. 5.8 for
the Hindu-Kush data. The apparent attenuations b obtained from the curves

in Fig. 5.6 are listed in Table 5.5. For the highest frequency f = 45 hz,

e -
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Y

b= 0,03/km. If we assume this is totally due to the intrinsic absorption,
b{ the equivalent Q; will be around 2500. From this Qj, we can obtain the
- approximate By, dy, and Lg for each frequency (also listed in Table 5.5) based
ii on the measured ; values. In Fig. 5.8 the prediction of the constant Q model
f with By = 0.9 is compared with the measured data of f = 1.5 hz and 2 hz.
b There i3 no match between them. Comparing with other theoretical curves of
h - different Bo's, we found that the observations may be fitted with curves of

Bp€0.5. Since the fluctuation in the data and the insensitivity of the curve

to B, for B,<0.5, we can not determine the B, value precisely. For the

frequencies above 1.5 hz, we can have the similar conclusions (see Fig. 5.6).
Therefore, the constant Qi model may not represent the real medium in
Hindu~Kush region. Because the apparent attenuations and their frequency
dependence for some tectonically. active regions (e.g. California, Kanto region

of Japan, etc.) are alike, we might expect that these analyses would be

applicable to that region. However, we need to apply the method to other : %%
regions before we can draw any conclusionms. o
More careful studies are needed for the energy distribution curves of low
frequencies (f<1 hz). The curves at these frequencies (Fig. 3.6) have the
interesting arch shapes, which might indicate the existence of strong
scattering at these frequencies., However, these curves are more fluctuating,
which may be caused by the interference, and therefore are less reliable. ?{2@
Another consideration 1s the influence of surface waves and guided waves T

(higher mode Rayleigh and Love waves), which is stronger at low frequencies.

)
o 4

Fig. 5.9 shows two examples of seismograms of events having distances about

«
e
bdondadal

100 km from the station (A34: r = 104 km, depth = 4,57 km; AO8: r = 124 knm,

ot acdh,

depth 16.27 km). The strong low frequency components following immediately

the S arrivals are apparent. This may evidence the strong multiple scattering NS

S,
aadatedal
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t these low frequencies. Another positive 1nd1ca£:9%E multiple scattering is
emerged when we compare with the decay curves of direct S amplitudes. In Fig.
5.10 these decay curves are shown for f = 0.25, 0.5, and 1 hz, the S wave
power spectra are calculated by Fourier transform using a 4 second Hamming
window. These curves are more regular and are not of arch shape. That is
because when the window for S wave is very narrow, the multiple-scattered
waves, which have longer travel times, are not included. In 5.1l we also plot
!l the calculated apparent attenuations from both the direct S and the total S
decay curves for comparisons (the smoothed coda attenuation curve is also
;%. plotted). Above 1.5 hz, the attenuation of the total S wave is smaller than
iii that of the direct S wave. This may be due to the inclusion of part of the
jfz scattered energy in the former case. However, the differences between these
two cases are small in general, which further suggest that, the scattering is
not the dominant Eactor in the apparent attenuation for these frequencies.
Again a noticeable different behavior at low frequencis (f<l.5 hz) is

presented. For these frequencies, the attenuations of direct S waves are

smaller than that of the total S waves. Note that the attenuations of the
total S waves are estimated from only the later part of the energy
distribution curves,

If we take the energy curves for f<1 hz as controlled by multiple
scattering. A rough estimation by comparing with the theoretical curves (Fig.

3.6) can be made about the medium scattering parameters. For the vertical

component, we have )

£ Le(km) B,  Lg(km) Lg(km) Qj(equivalent) ;ijli_l

N

0.25 33.3  0.99 33.7 3330 1494 e

0.5 28.3  0.99 28,6 2830 2540 R

1 50 0.9 56 - 500 898 i

] |
e e
e e e T T e, D e ]
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In the case of the EW component,
£ Le(km) B, Lg(km) La(km) Qj(equivalent)
- 0.25 25 0.99 25.3 2500 1122
E; 0.5 26.7  0.99 26.9 2670 2396 f;f;
- 1 40 0.90 44 400 718 o
| It is interesting to note that, at 0.25 and 0.3 hz, the estimated Q4 are
close to the proposed intrinsic Q for the constant Q model. Although this may

be only a numerical coincidence, we would like to report it here for further
s tudy.

Fig. 5.12 shows the 4 r E(r) curves obtained from station CHS. The.
events used are listed in Table 5.3. The general conclusions drawn from the

analysis of the results of station PEN hold true also for CHS.
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6. DIFFUSION APPROXIMATION IN TIME DOMAIN, THE CONSTRAINT OF SEISMOGRAM
ENVELOPE ON THE SCATTERING STRENGTH

Another approach for studying the scattering and attenuation of seismic
waves is to formulate the problem of energy transfer in the time domain and
compare the envelopes of seismograms with the theoretical predictioms.
However, from the author's knowledge; the complete solution of energy transfer
in time domain is not avajlable at present, Nevertheless, there are
approximate solutions for the weak scattering and the strong scattering. In
the weak scattering case, when the propagation distance is smaller than the
scattering mean free path, the single scattering approximation can be used.
Aki and Chouet (1975) developed a single backscattering model, Sato (1977)
derived the formulation for isotropic scattering aﬁd discussed subsequently
the influence of non-i{sotropic scattering (Sato 1982). 1In the case of strong
scattering, when Ehe scattering coefficient {s much greater than the
absorption coefficient (B,>>0.5), and the propagation distance is much greater
than the scattering mean free path, the diffusion approximation can be used to
approximate the envelope variation in time domain. In the following, we
discuss the diffusion approximation and seek the constraint of the observed
envelopes on the medium scattering properties.

When the scattering mean free path is much shorter than the absorption
length in the medium, the energy transfer can be approximated by a diffusion
equation (see Morse and~Feshbach, 1953, §2.4)

0
= P(r,t) = dV2P(r,t) - bP(r,t) + q(t), (6.1)
ot
where P(r,t) is the power at distance r and time t; by is the absorption rate
by = be,
where b is the absorption coefficient and c is the wave velocity; q(t) is the

source; and d is the diffusivity

......................................................
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o
..
2
L'.;
L c
d = o= ’ (603)
Ing

where ng is the effective extinction coefficient for the diffusiom process.
In the case of isotropic scattering ng = Ne. For non-isotropic scattering, in

the case of discrete random media

ng = 0dy + nog, (6.4)
where n i{s the number density of the scatterers, 0, is the absorption

cross-gsection of the scatterers, op is defined by

op =] 0q(@)(1 - cos®)d , (6.5)
4n

Yy Ty
AR IR ANE)
K N S S

~

where g4(Q) is the differential scattering cross-section (2.15), 0 is the

scatterng angle. Oy is called the "momentum transfer cross section" by Morse

.lm. . ' "

and Feshbach (1953, p. 188). The solution of (6.1) for a point ifmpulsive

LR S
.

L 4 ——
e A .
. ¢ PR

source is (Morse and Feshbach, 1953)

o, t<0

- J .

* P(r’t) - —-—_'- exp[-(tzllodt)-btt], t)o . (6.6)
(4mde)3/2

Ishimaruy (1978) formulated the problem using the equations for the
two-frequency mutual coherency functnion and derived the two-frequency
equation of transfer. Under the diffusion approximatiomn, a solution similar
to (6.6) for a point impulsive source was obtained

r
P(r,t) ® =———me exp[-(r /4dt)-b.t], (6.7)

4md t3/2
wher; d is the same as (6.3), but with nq defined by
Nd = DOp, (6.8)
instead of (6.4). However, since o, is assumed very small, there will be no
big difference between (6.8) and (6.4) except for very strong forward

scattering. In the following we will discuss the case of 0p>>0g,, therefore
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(6.8) will be used, which can be written as
ng = ng (1-7), (6.9) o

where N, is the scattering coefficient, and 7'13 the mean scattering angle

cosine
-— 1 ~
Y == [ 04(Q)cosd dQ
gg 4m
1 -
= — [ D(Q)cost dq, (6.10)
4 4xm

-~

where D(Q) is the scattering directivity (2.1l1).

Note that, the quantity

_ Mg n n .
Ny == [ dé [ D(® ¢)cosd sind do, (6.11)
4n o o

where 6, ¢ consistute the spherical coordinates with the polar axis in the

incident direction, 1is the net scattering power flux in t#e incident ;

direction. This part of the scattered power will join the incident power flow,

and does not contribute to the diffusion process. In the case of isotropic

scattering, 7'- 0, the net scattering power flow in the incident direction is

zero, so that n4 = ng. In the case of strong backscattering, -1<§20, so

Ng>Ng. Vice versa, for the case of strong forward scattering, O<§21, ng<ng.
From (6.6), we know there is a peak in the power flow curve, which is

approximately at the maximum of the exponent of the exponential term, i.e. at

1 I T T, Y3 ng
tp = T = =t o= V]loy Vo= = t, = /o=
—_— 2 Ts 2 M,
Y4dbt
3 B,
=ty =V _ S (6.12)
2 1l-y 1-B,

where .;;

to = t/c, (6.13)
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Ta = 1/bg, Tg = l/ngc , (6.14)

are the absorption time and the scattering mean free time respectively.

e,

v

Therefore, the arrival time of the peak of the power flow is proportiomal to

the square root of the ratio between the absorption time and the scattering

mean free time., For strong forward scattering, /1-7 < 1, the power peak will

arrive earlier than the case of isotropic scattering; in the case of strong

T W

backscattering, /1=y > 1, the peak will arrive later.

:{ Note that, under diffusion approximation, the apparent attenuation, when

t Tg> toz, is approaching to the absorption coefficient n,; while in the
exact solution in frequency domain (3.16) it approaches . ne or n, + dgng.

The multiplier d, or dg varies depending on B,. Only in the case of B,*l, the
apparent attenuatfon approaches n,.

From the peak time we can derive the ratio ng/n, after doing correction
of t3/2, while measuring ﬁpparent attenuation will determine approximately n,.
Therefore the shape of the envelope provides all the parameters of diffusion
scattering.

If we assume a constant Q model, from table 5.5, we have B,20.79 for £<6
hz. Therefore, the diffusfon approximation could be applied to the wave
energy transfer for frequencies below 6 hz., Based on the estimated scattering
parameters in Table 5.5, we list in Table 6.1 the predicted arrival times of
peak power for different frequencies. Except for the strong forward
scattering case, the peak arrival times have a large delay up to several times
of the direct travel time. This contradicts the observations on earthquake
seismograms or explosion-source seismograms on the earth. The travel time

fluctuations for local earthquakes are usually less than 10-202 and the direct

S waves can be easily recognized for these frequencies in general. The
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observed seismograms are not of diffusion type in the frequency range 1-10 hz.
Fig. 6.1 shows the diffusion type envelope curves according to (6.6) at f = 2
hz for different scattering patterns (the envelopes should be symmetric about

the time axis). Since we neglected the t‘3/2 term in deriving (6.12), the

© peak times in Fig, 6.1 are different from the predictions in Table 6.l.

However, the envelopes exhibit the typical diffusioun characteristics. These
diffusion type envelopes have been observed on the moonquake seismograms and
on the seismograms of model experiments in laboratories. In Fig. 6.2, the
3-component seismograms for two events on the moon are shown (the figures are
from Latham et al, 1971), The first event (upper seismograms) is believed to
be & meteoroid impact, corresponding to the case of shallow source; the second
event is considered to be a deep moonquake (below the strong scatteriné
layer). These diffusion type seismograms are due to the existence of the high
Q, strong scattering layer below the moon surface (Dainty et al., 1974, Dainty
and Toksoz, 198l), Fig. 6.3 shows the seismograms from the model experimentv
in the laboratory (Dainty et al., 1974). (a) is the seismogram with a
homogeneous plate as the propagation medium; while (b) shows the diffusion
type seismogram for the case when the plate has many grooves as scatterers.

In order to compare with Fig. 6.1, we select two events A06 (Depth 103
km) and Al5 (depth 118 km), which have distances around 200 km from statiom
PEN and CHS. From Fig. 3.9 we know that, the diffuse term will dominate after
the travel distance exceeds twice the extinction distance for By, = 0.9.
Therefore the seismograms for these two events should be of diffusion type, if
the parameters in Table 6.1 are true, i.e. the constant Q model is true. Fig.
6.4 and 6.5 show the filtered seismograms for these two events at different
stations. The digital filter i{s a six pole, zero-phase, Butterworth filter,

the central frequencies are 0.375, 0.75, 1.5, 3, 6, 12, 24, and 46 hz, the
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bandwidth is 2/3 of the central frequency for each band (see Roecker, 1982).
From these figures, we do not see the diffusion type seismograms at low
frequencies. In Fig, 6.6 we plot the envelope decay curves for event Al5 as
an example. The power decay curves are calculated by the moving window

spectral analysis with an 8 second Hamming window and at a 5 second interval.

;i On the left are the vertical components, right, the EW components. These

: envelope curves are typical for the events in this region (see Roecker 1982).
!l They’are not of diffusion type except for some very high frequency components
(£>20 hz, we will discuss this later). In fact these curves fit the single
isotropic model fairly well., The energy density E(r,t) of the isotropically
i: scattered body waves at time t and at distance r from a poin; source can be

- expressed as (Sato 1977)

. ngW t
) E(r,t) = mm— K(=) , (6.15)

5 o
h . ' : 4nr2

o where tg is the direct wave (here S wave) travel time, n, the number density

- and 04 the scattering cross-section of the scatterers. W, is the source
factor, and ) f_f{
1 E+1 e
K(E) = =« &a [=—] . (6.16) }:;f

g g-1 s
The time function K(t/tg) is a pure geometric spreading factor for the single
isotropic scattering model, which is plotted in Fig. 6.7 for the distance of
event Al5 to CHS (r=221.85 km). Fig. 6.8 shows the power decay curves after

making the corresponding geometric spreading correction, i.e. dividing the

. P T .o
NS IR . R
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curves in Fig. 6.6 by K(t/tg). We can see that, after this geometric
correction, the power decay curves are fairly linear, which is of exponential .&I;f

decay due to attenuation.
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To compare with Fig, 6.1, we need to examine the case of strong forward

scatternig more carefully. The curve of y=0.5 is calculated by assuming the

~Hm:.. .

same scattering coefficient n, as the isotropic scattering case. Because more

-

? energy 1s concentrated in the forward direction, the effective scattering

i coefficient for diffusion ng becomes smaller than ng (see (6.9)). In our case

. ve estimated ng; from the apparent attenuation measurement in frequency domain
(section 5). Since we calculated the power spectral densities for the total S

' waves, the net scattering power flux (6.11) is included, so that the forward

scattering power flux does not contribute to the apparent attenuation.
Therefore, the estimated scattering coefficient is closer to ng than to ng, if

we consider the apparent attenuatuion is mainly due to the scattering loss.

P PR

By this consideration, the curve for strong forward scattering in Fig. 6.1

»

DA 1:7e
L R R

should have a shape close to the isotropic case with a nq closer to, but a
. & Ng greater chan.the lsotropic case. Secondly, i1f the peak of the power flow
i; is near the direct arrival time, the more elaborated diffusion formulae should
f' be appealed (Ishimaru 1978), which will i{ncorporate the direct travel time
Ii into the formulation. At any rate, if the apparent attenuation obtained in
'f section 5 1is taken as maiily from scattering loss, the envelope curve should
E be similar to a diffusion type curve of isotropic scattering.
E From above comparison and analysis, combining with the results obtained

in section 5, we can conclude that, in the frequency range 1.5-20 hz, the

scattering is not the dominant factor of the measured apparent attenuation.

In other words, the scattering coefficients is smaller than the absorption

coefficients at these frequencies in the lithosphere of this region.

N

i} More careful study is also needed for the case of frequencies higher than

=

D, 20 hz. From Fig. 6.4, 6.5 we notice that, at these high frequencies the

N seismograms become spindle-shaped as pointed out by Tsujura and Aki (see Aki :ﬁtﬁ
~ RO
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1980b). These are of diffusion type. For some stations, the P and S phase
. can no longer be clearly separated, which means also strong sc#ttering and
conversion. Since the attenuation coefficients are high at these frequencies,
the scattering coefficients must be also high. This strong scattering for
. high frequencies may be caused by the near surface very small scale

heterogeneities. Regarding Fig. 6.6, 6.8, we can find that the decay curves
. of m» and n band (f=32 and 45 hz) have flat tops, different from the other
. bands.

The time domain analysis has the advantage of easy comparison with the

data, because each seismogram is one experiment, unlike the energy density

F gl

distribution curve in frequency domain, which need many events covering a

distance range. However, in order to perform more complete analysis, we need

to develop more accurate theory and model., Besides, the shape of the envelope .
i is also sensitive-to the slip direction of the earthquake source, that makes
ff the analysis more complicated. At any rate, the combinations of time domain
> and frequency domain analysis will make the analysis more informative and
- reliable.
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7. SUGGESTION FOR FURTHER STUDIES

aad o .

It is interesting and beneficial to apply the method to other regions ®

to see the relative importance of absorption and scattering for different

regions. Especially the comparison between the results for the tectonically L%
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stable regions, such as New England area or the central U.S., and that for the Py

active regions such as the results obtained here for Hindu Kush or that for

Y

California, will give us deeper understanding about scattering and attenuation
as well as more information about the tectonic activities. i
Further improvements on the scattering theory and modeling are also

needed, such as the influences of the radiation pattern of the source, the

finite thickness of the lithosphere, the nonisotropicity of the inhomogeneities,
etc. Of course, full treatment of elastic wave scattering in both the fregquency

domain and the time domain are highly desired.
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F Table 3.1, The Diffuse Multipliers d, and dg

B 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0,95 0.99

d, 0.997 0.987 0.96%9 0.944 0.910 0.866 0.807 0,728 0.611 0,519 0.374

4, 0.97 0.94 0.90 0.86 0.82 0,78 0.72 0.66 0,57 0.49 0.37

'''''''''''




Table 5.1

DATE ORIGIN LAT LCN DEPTH  EVENT MAG
TIME N MIN E MIN (KM) NO.

77 616 1616 55.26 36 31.76 70 16.13 102.26 16
“T7T 617 8 6 32.45 35 23.30 69 28.05 1.49 18
7T 617 1714 20.46 36 32.39 70 57.20 197.00 19
77 617 1930 38,16 35 43.12 €9 40.23 77.96 20
T7 617 22 1 47.14 36 30.00 71 14.24 112.19 21
77 618 528 43.58 34 54.80 69 55.45  1.87 23
77 618 753 35.31 34 39.56 70 34.71 1,42 24
77 618 9 3 40.71 34 34,30 72 45.84 340.70 25
77 618 1150 22.64 36 6.23 69 23.71 131.94 26
77 618 2320 3.27 35 59.24 70 38.49 112.21 a7
77 620 148 49,52 36 5.63 70 26.43 98.55 28
- 77 620 4 5 56.23 36 7.01 70 26.17 105.32 29
77 620 1156 30.60 36 30.35 70 18.96 215.02 30
77 620 2335 16.51 35 30.68 69 3.71 2.50 31
77 621 316 2.84 36 33.92 71 18.30 98.13 32
77 621 2133 46.30 36 33.34 71 22.42 159.81 33
o 77 622 832 21.95 36 35.21 70 53.23 232.49 02
i;“ 77 622 1430 53.92 36 10.33 69 13.52 4.57 34
- 77 623 934 59.53 36 27.15 71 14.34 135.357 c3
.. 77 623 2054 13.26 36 2.75 70 32.94 1C6.25 04
. 77 624 2358 0.19 36 31.€8 70 22.24 218.37 05
B 77 624 2243 57.24 36 11.90 69 17.27 9.65 35
- 77 626 3824 11,00 36 18.48 70 55.67 119.35  -36
- 77 626 1833 538.79 36 47.06 71 23.74 155.23 37
T7 627 799 14.12 36 27.88 70 50.11 127.7§ 38
77 628 1034 26.75 36 7.26 70 32.94 100.CO 39
77 628 1520 4.70 36 10.48 71 8.95 86.02 40
T7 625 1623 51.79 37 11.64 71 25.61 108.66 41
77 623 17 3 36.25 35 17.53 69 16.85 8.63 42
77 629 636 27.30 36 21.49 T1 10.14 105.56 43
1031 4.37 36 28.76 71 18.43 138.44 4y
1521 33.18 37 27.539 72 21.65 221.95 45
1540 1.48 34 46.64 70 54.55 2.C4 46
16 6 30.59 36 24.C0 71 9.33 103.3? 06
220 47.74 36 29.06 70 26.98 219.25 07
333 34.032 36 37.07 71 17.'4 86.83 47
1353 29.92 36 17.64 71 11.71 98.E3 48
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77 7 1 348 32.15 34 38.56 70 23.55 16.27 08
77T 7 1 1444 10.80 36 28.05 71 6.59 264.51 09
TT 7 1 1627 3.09 36 14.58 70 19.05 1CE.83 49
77 7 2 330 48.81 36 34.45 70 39.30 174.84 50
77T 7 2 2028 19.63 35 13.97 69 25.25 8.32 51
T7 7 2 2111 49.19 35 59.39 70 43.29 93.93 52
TT 7 3170 4.91 36 56.43 71 2.82 76.67 53
77 7 4 614 15.39 36 32.71 T1 21.16 122.09 54
77 7 4 824 3.03 36 19.90 69 33.71 134.72 55
77 7 & 1128 47.08 36 26.39 70 12.86 221.59 10
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2041
21 1
47
0S5
1328
1659
620
130
525

950
1141
1211
1616

028
1347
1612
11 2
1224
1651
117
1518
1718

5.58
56.74
12.46
22.50
56.27

8.76
43.34
36.15
26.60
10.28

6.99
13.94
40.56
39.67
19.08
18.52
22.07
56.61

5.07

7.33
59.16
28.32

2.32

11.73
31.97
29.72
39.45

4.49
17.72
25.26
38.20
41.86
31.90
41.21
30.46
36.71
28.06
41.93

6.83
31.28
26.37
45.50
28.89
32.53
12.21
16.59

CShat Shah Bte mave s

69 26.72
72 0.62
69 47.10
71 5.04
71 34.93
69 50.94
70 37.26
71 8.46
71 12.24
71 20.23
71 12.71
68 52.81
71 45.78
71 12.71
68 38.41
69 21.09
69 13.05
71 20.63
71 28.64
71 9.82
70 58.27
69 15.96
70 40.23

YWY

128.00 56
157.19 1
271.19 57
229.10 58
96.33 59
9.46 60
228.386 61
214.61 12
230.79 13
94.37 62
233.80 63
38.00 64
129.68 65
143.71 66
3.74 67
17.57 69
17.04 70
104.40 14
188.43 72
118.48 15
192.49 73
5.57 74
103.88 75

......................................................

....................

...................
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Table 5.2

i

Events Used in the Calculations for PEN in the Order of Distances (31 events)

Fw)

Bl b A

Reference Record ]
Point No. Event Distance Depth Magnitude P travel S travel coda time length g
in curve No. (km) (km) time (sec.) time (sec.) t. (sec.) (sec.) ]
4
1 A42 11.12 8.68 2.1 7.29 11.83 44 4
A51 12.10 8.32 2.2 7.54 12,26 31,5 34 ]
2 q:;A69 21,52 17.57 2.3 7.54 12,52 31.5 40 .
A8 22,03 1.49 2.4 9.55 15.62 20.5 18 )
3 A70 37.76 17.04 3.6 10.10 17.03 34.1 38
31 39.15 2.5 3.1 11,67 19.42 41,7 40 ]
4 A64 63.09 38.0 2.7 11.42 19.79 40.4 38
A23 65.15 1.87 2,5 15.04 25,38 42.0 36
] A67 80.75 3.74 3.6 16.86 28,66 60.7 60
6 A20 100.16 77.98 3.7 15.94 27.87 54 f
A34 104.68 4.57 3.9 19.81 33.91 73.8 82
A‘<:;A35 107.97 9.65 3.3 19.67 33.76 68
A74 108,33 5.57 3.8 20.16 34.56 80
7 AO8 124,88 16.27 4,5 21.06 36.39 158
A68 175.74 24,21 42,61 60 ]
8 <::A04 178.52 106.25 3.5 24,78 43,42 78.7 70
A39  179.28  100.0 3.6 24.9 43,56 64 o]
9 Alé 196,42 102.36 3.9 27.16 47,47 84.0 70 o
A75 197.95 103.88 3.7 27.36 47.83 64 tsfa
10 AO6 234,53 103.31 4,7 31.95 55.72 105.9 134 C]
AlS 247,35 118.48 4,2 33.41 58.51 107.5 158 I
11 A03  259.49 136.57 3.5 34,71 61,11 62 ]
A50 295.83 174.84 4.1 34,46 61.07 90 i
AlQ 271.40 221.59 4.6 35.57 63.1 109.4 258 :
12 AOS5* 278.65 218.87 4.6 36.52 64,75 234 .
A07  279.0 219.25 4,1 36.56 64.82 100.5 76 :
A73 283,65 192.49 4.3 37.22 65.96 90 j
]
13 A02  310.97 232.49 4.1 40,23 71.32 102.1 78 o]
14 <A13* 329.59  230.79 4.7 42.47 75.29 246 o
A09* 339.32 264.91 4.9 43.36 77.06 302 T
15 A25 472.39 340,70 5.3 58.59 104.48 132.2 96 :
o8 *high gain records were clipped, only low gain vertical compoment o
- has been used. -;A
2
- 5
b ~:<'
- K
P 4
.- .
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4
Table 5.3 j
v‘.. ] |
% Events Used in the Calculations for CHS in the Order of Distances (22 events) T .‘j
:-;-Z Ny
b - :
;f Point No. Event| Distance Depth Magnitude P travel S travel Record Length ;5
% in curve No. (km) (km) time (sec.) time (sec.) (sec.) ]
1 A46 8.47 2,04 2.5 1.55 2.63
2 A24 47,77 1.42 2.4 12,85 21.48
AO8 59.54 16.27 4.5 12.98 22.09
AO4 181.43 106.25 3.5 27.08 42.69 b
3 A28 184.08 98.55 4.3 25.55 44,64
A39 184.42 106.00 3.6 28,59 44.74
A29 189.83 105.32 4.0 26.9 46.03
A06 206.22 103.31 4,7 28.42 49,64 4
Ald 211.85 104.40 3.9 29.54 . 50.88 ]
4 A34 220.58 4,57 3.9 34.71 60.37 :
AlS 221.85 118.48 4.2 30.33 53.19 O
A74 226.84 5.57 3.8 - 35.41 61.63 n
Alé 230,02 102.26 3.9 31l.4 54.74
'A66 235.26 143.71 3.3 31.33 56,0
5 <:;:50 26%,53 174.84 4.1 34.67 60.89 )
73 273.54 192.49 4.3 35.65 61.65 .
Al2 296,55 214.61 4.0 38.17 65.84 e
6 AlQ 297.63 221.59 4.6 37.62 65.62 AR
A0S 298,40 218.87 4.6 39.10 65.58 -21;
'A02 306.54 232.49 4.1 39.11 66.00 Tﬁﬁj
7 A09 323.59 264.91 4.9 41.13 70.13
8 ALl 352.37 157.19 4.7 46.24 78.24

...................

........................................................
-
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Table 5.4 The Central frequencies used and the corresponding attenuation
values of coda waves

Band Central Coda Q¢ Coda Q¢ Coda b, Coda bt Coda b
no. frequency (observed) (smoothed) (observed) (smoothed) (smoothed)

P 0.25 24,0 24,0 6.5 x 10~2 6.5 x 10~2 1.86 x 10-2
b 0.5 47.9 44,2 6.6 7.10 2.03
c 1 83.2 81.0 7.6 7.76 . 2,22
d 1.5 89.1 115.4 10.6 8.17 2.33
e 2 107.2 148.3 11.7 8.47 2.42
£ 3 125.9 211.3 15.0 8.92 2.55
g 4 190.5 271.6 13.2 9.26 2.64
h 6 281.8 386.8 13.4 9.75 2,78
1 8 446.7 497.2 11.3 10.11 2.89
3 12 707.9 708.2 10.7 10.65 3.06
Kk 16 933.3 910.2 10.8 11.04 3.16
1 24 1174.9 1296.6 12.8 11.63 3.32
™ 32 1698.2 1666.6 11.8 12.06 3.45
a 45 2238.7 22644.0 12.6 12.60 3.60
N T e e e e L e L T e e TN ]
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Table 5.5 Apparent attenuations for the EW components of station PEN
and the estimated values of seismic albedo B,'s, if we '
l assume a constant Q (=2500) medium 4
N £ | ng =w/p Q! [La(km) (for Q=2500) b na/b | Bg | do [Le (km) S
- (Q = 2500) (measured) ff}i
| 0.5| 0.036 x 10-2 2778 1.00 x 10-2{0.036 {~0.96| 0.5 | 50
1 0.072 1389 1.38 0.052 | 0.95] 0.5 36
| 2 0.144 694 1.50 0.096 | 0.90( 0.6 40 T
3 0.215 465 1.60 0.134 | 0.87] 0.6 38
6 0.431 232 2.03 0.212 0.79| 0.7 34
E 12 0.862 116 2,50 0.345 0.66| 0.8 31
o 24 1.72 58 2,73 0.63 0.37] 0.95 35
; 45 3.23 3l 3.00 1.08 0 1 33
B - = j
) o
: »
., -_.~1
- 9
)
)
: 3
) 3
B NI S I S S SR s SOOI e T e 3




- — ~ g p—————— o A e S
» 64. 1
Table 6.1 The Predicted arrival time of the peak power by the diffusion
. approximation based on the assumed constant Q(=2500) model and
' the estimated parameters in Table 5.5. )
> ]
b _ Arrival time of peak power -
& £ absorption | mean free [d(l-v) Albedo ta/to ]
._ (hz) | time tize (km?/sec) B, Le
- Tq (sec.) |1, (sec.) _
e Y = 0.5 0 | 0.5
“' 0.5 793.7 14.9 60.8 0.96 | 50 5.20 | 4.24] 3.0
o 1 396.8 10.8 44.1 0.95 35 4,62 3.77| 2.67
b
L 2 198.4 12.7 51.9 0.90 | 40 3.18 2.60] 1.84
: 3 132.9 12.5 | s1.0 0.87 | 38 2.76 | 2.24] 1.58
6 66.3 12.3 50.2 0.79 34 2.06 1.68} 1.19
)
b
-" -1
y .
.
y |
:': .}
..... R
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Figure Captions
The derivation of the transfer equation for the specific intensity
1(5_.8).
‘The diffuse multipliers d, and dg as functions of B, (the medium seismic
albedo).
The behavior of the integrand of the integral for the coherent term.
The normalized energy density distribution curves AurzE(r), where r is
the propagation distance from the point source. At the top are the
curves of the diffuse term, at the bottom are that of the coherent term;
in the middle are the curves of the sum of the two term. Here Do is the
numerical extinction distance, Ly = 1/ne is the extinction length of the
medium, ng = ng + Ny is the extinction coefficient, where ng and n, are
the scattering coefficient and the absorption coefficient respectively.
By = ng/(ngtn,) is the medium seismic albedo.
The schematic diagram of a possible multiple scattering path compared
with the direct path. The hatched shell of unit thickness will receive
the energy 4nriE(r).
The normalized energy distribution curves 4mrZE(4) in the
semi-logarithmic scale.
The energy distribution curves with the numerical absorption distance D,
= r/La, where Ly = n, is the absorption length of the medium. ; is
the apparent attenuation coefficient obtained from the slope of the
curve. By is the medium albedo.
The energy distribution curves with the numerical scattering distance
Dy = 4/Lg, where Ly = 1/ng is the scattering length of the medium. By is

the medium albedo.
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3.9 The relative strengths of the diffuse term Ey and the coherent term E.

at different extinction distances D, = r/L, for different medium albedo

By, where Ly = 1/ng is the extinction length of the medium. .: :;;j
3.10 Same as 3.9, at different scattering distances Dy = r/Ly, where Ly = 1l/n4 ;:f:;j
is the medium scattering length. ‘ ;b’ﬁi
3.11 The normalized radial energy flux density 4nr2J.(r) for the isotropic ]
scatternig case and the strong forward scattering case.
3.12 Same as 3.11l. The distance is the numerical absorption distance Dy = ; ]

r/Ly, where Ly = 1/n, is the absorption length of the medium.

4.1 The derivation for the case of strong forward scattering approximatiom.
z is along the forward direction. r is fhe position vector, p is the .’
position vector in the transverse plan; Q is the unit vector in the B

~

scattering direction, and s is projection of Q in the transverse plan.

At atdoadoid

5.1 Map view of seismicity in the Hindu Kush as determined by Chatelain et S
(1980). The digital stations are indicated by open stars, and the

smoked paper stations by solid diamonds.

e .
PRI O SR I

5.2 Map view of all the Hindu Kush seismicity on smoked paper statlonms,

divided into 50 km depth intervals. Locations of events recorded on the i
digital recorders are denoted by numbers used in Table 5.1 (from Roecker '?
1982). o
5.3 The overall response of the digital recorder (from Roecker 1981). .
5.4 The averaged coda attenuation rate b, = b, where B is the shear wave ?j}ii%
velocity, b is the attenuation coefficient. The solid line is obtained ;J> .f

by Roecker (1982) for the shallow events, and the dotted line is the

smoothed curve used in this paper.
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Some seismograms for different hypocenter distances at station PEN., A42,
r=11.12 km, A67, v = 8.75 km; Al6, r = 196.42 km; A02, r = 310.97 km.
Energy distribution curves 4xrlE(r) obtained from the data at station
PEN., From left to right: Z, EW and NS components. From top to bottom:
f =0,25-1 Hz, £ = 1,5-8 Hz, fnd f = 12-45 Hz.
The predicted 4xr?E(r) curves by the constant Q (=2000) model for
different frequencies, if the measured apparent attenuation in Kanto,
Japan by Aki (1980a) is assumed as the sum of the absorption coefficient
and the scattering coefficient (Dainty 1981).
The comparison between the observed énrzE(r) for £f = 1.5 and 2 hz at
station PEN in Hindu Kush and the theoretical predictions for different
Boia. The curve of B, = 0.9 is the prediction from the constant Q
(=2500) model, which does not match with the observation.
Examples of seismograms at station PEN (A34: tr = 104 km, depth = 4,57 km;
AO8: r = 125 km, depth = 16.27 km), which show strong low frequency
components immediately after the direct S).
The energy density curves 4xr2E(r) for direct S waves at f = 0.25, 0.5
and 1 Hz for station PEN. The curves are calculated using a 4 sec
Hamming window for the direct S arrivals. Compare to fig. 5.6. No arch
shape appears here.
Apparent attenuations derived from the slopes of the energy density
curves (Fig. 5.6) for station PEN, together with the average coda
attenuations and the direct S attenuations,

0: for EW component, total §

X: for Z component, total S

A: Z component, direct S (4 sec. window).
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Note: For f<lHz, the apparent attenuations are calculated by using omnly

/ PR OU PR

! . the last part of the curves (Fig. 5.6). -
;} 5.12 The energy density curves 4nr?E(r) for station CHS. From left to right:

T Z component and EW component. From top to bottom: £ = 0.25-1 Hz, f = i}&f
' 1.5-8 Hz, and £ = 12-45 Hz.

6.1 The seismogram envelopes of S waves predicted by the diffusion
approximation for the case of £ = 2 Hz, By, = 0.9 (Q4 = 2500). 7'13 the
mean scattering angle cosine defined by (6.10).

6.2 The seismograms of moonquakes. The event on the top is supposed to be a
meteoroid impact; the bottom event is believed to be a deep moonquake
(from Latham et al., 1971).

6.3 The seismograms from the model experiment in laboratory (Dainty et al.,
1974).
a) The seismogram with the homogeneous plate.
b) The seismogram when the plate has many grooves as scatterers.

6.4 rthe band-pass filtered seismograms of A06 (r = 235 km, depth = 103 km)
for the stations CHS, FRA, JOR and PEN. From top to bottom: f = 0,375,
0.75, 1.5, 3, 6, 12, 24, 46 Hz.

6.5 The band~pass filtered seismograms of Al5 (r = 247 km, depth = 118 km)
for the stations CHS, PEN and JOR. From top to bottom: f = 0,375, 0.75,
1.5, 3, 6, 12, 24, 46 Hz.

6.6 The eavelope decay curves of AlS (r = 247 km, depth = 118 km) for

station PEN. From left to right: Z component and EW component. From

top to bottom: f = 0,25, 0.5 Hz; £ = 1-8 Hz; £ = 12-45 Hz.
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....................................
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A
F VW R Gy L_' L .

Ei 6.7 The theoretical envelope decay curve for the single isotropic scattering

. in a lossless medium according to Sato (1977). The envelope decay is a ]
- L4

LA

- ;' e
O y s S
. U ?

pure geometric spreading effect. The distance between the source and
sensor is taken as 247 km (as the case of Al5 to PEN).

6.8 The coda decay curves at station PEN for Al5 after the geometric
correcéion. The corrections were done by taking the ratios of the

i- curves in Fig, 6.6 and that in Fig. 6.7. Note that, the curves for f =

- 1-20 Hz can be approximately fitted with straight lines, which means

that, the scattering at this frequency range can be approximated by the

single scattering theory.
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I

3.1 The derivation of the transfer equation for the specific intensity

- I(x,Q).
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3.2 The diffuse multipliers

albedo).
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do, and dg as functions of B, (the medium seismic
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De = |,2
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3.3 The behavior of the integrand of the integral for the coherent term.
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4w rzEc = Coherent term —“j

! 2 3 4

Dexr1/L,

3.4 The normalized energy density distribution curves 4nr?E(r), where r is
the propagation distance from the point source. At the top are the
curves of the diffuse term, at the bottom are that of the coherent term;
{n the middle are the curves of the sum of the two term. Here Dg is the 1h

numerical extinction distance, Lo = 1/ne is the extinction length of the

medium, ng = Ny + Ny is. the extinction coefficient,
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3.5 The schematic diagram of a possible multiple scattering path compared

with the direct path. The hatched shell of unit thickness will receive - :

the energy 4mrE(r). o
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Constant b (absorption Coefficient)
b=m,

0.1

.05

LI} llIlIl

0l ] ' N !30=Cl5

] lj[lllll
o
o]
,/gl
o
" g)
58
N3
[7;]

00l ' | | \J(.”ez )

3.7 The energy distribution curves with the numerical absorption distance D, . :
= r/La, where Ly = n, is the absorption length of the medium. b is » :

the apparent attenuation coefficient obtained from the slope of the 1
curve. By is the medium albedo. \
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= Constant g (Scattering Coefficient
E— g=g
: °F Bo=0.99
. , 09
R =
2
= S5F
H i 0.7
- O.l &
) ‘ .05 E—
e _
L i 05
Ol B
- S
005 .
- 04 - d
[~ 0.3 ]
.00 | 1 1 l L |

A doa A

3.8 The energy distribution curves with the numerical scattering distance

Dy = 4/Lg, where Lg = 1/ng is the scattering length of the medium. B, is "

|
the medium albedo. p
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3.9 The relative strengths of the diffuse term Ey and the coherent term E.
at different extinction distances Dy = r/L, for different medium albedo

By, where Ly = 1/n, is the extinction length of the medium.
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3.10 Same as 3.9
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v at different scattering distances Dg = r/Lg, where Lg = 1/ng

is the mediunm scattering length,
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_____ Forward Scattering
41rr2J|,[r] ——— Isotropic Scattering
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3.11 The normalized radial energy flux density tmerr(r) for the isotropic

scatternig case and the strong forward scattering case.
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: 412, (r) Isotropic Scattering °

Constant b

o
T

All the Forward Scattering
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3.12 Same as 3.11. The distance is the numerical absorption distance Dg =

r/Lga, where Ly = 1/n, is the absorption length of the medium.
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4,1 The derivation for the case of strong forward scattering approximation.

r is the position vector, p is the

~

z is along the forward direction.

position vector in the transverse plan; Q is the unit vector in the

-~

scattering direction, and s is projection of Q in the transverse plan.
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5.1

5.2

34N

Map view of seismicity in the Hindu Kush as determined by Chatelain et
al. (1980). The digital stations are indicated by open stars, and the

smoked paper stations by sollid diamonds,

Map view of all the Hindu Kush seismicity on smoked paper statioas,
divided into 50 km depth intervals. Locations of events recorded on the
digital recorders are denoted by numbers used in Table 5.1 (from Roecker
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5.3 The overall response of the digital recorder (from Roecker 1981).
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o d
The averaged coda attenuation rate by = Bb, where B is the shear wave
velocity, b is the attenuation coefficient, The solid line is obtained B
by Roecker (1982) for the shallow events, and the dotted line is the LA

smoothed curve used in this paper.




3.5 Some seismograms for different hypocenter distances at station PEN,
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5.6 Energy distribution curves

4nr2E(r) obtained from
I

the data at station PEN. °

e
From left to right:
Z, EW and NS components.
From top to bottom:

£ = 0.25-1 Hz, f = 1,5-8 Hz,
and £ = 12-45 Hz.
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Constant Q; = 2000
4wr2 E(r)

2 Bo=0.9 Le=78 km(f=15hz)

\

Bo=0.8 Le372km(f=3hz)

Bo= 0.7

Le=52km (f=6 hz)

Bo=0.2
Le= 37 km (£224 hz)

5.7 The predicted 4nrlE(r) curves by the constant Q (=2000) model for
different frequencies, if the measured apparent attenuation in Kanto,
Japan by Aki (1980a) is assumed as the sum of the absorption coefficient

and the scattering coefficient (Dainty 1981).
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47wr2 E(r)
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5.8 The comparison between the observed 4nr2E(r) for £ = 1.5 and 2 hz at
station PEN in Hindu Kush and the theoretical predictions for different ;ffﬁl
By's. The curve of By, = 0.9 is the prediction from the constant Q C

(=2500) model, which does not match with the observation.
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5.9 Examples of seismograms at station PEN (A34: r = 104 km, depth = 4,57 km;
AOB: t = 125 km, depth = 16.27 km), which show strong low frequency

components immediately after the direct S).
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EMERGY DENSITY DISTRIBUTIION E(r)3R¥X2
(station PEN)
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5.10 The energy density curves 4nr?E(r) for direct S waves at f = 0.25, 0.5
and 1 Hz for station PEN. The curves are calculated using a 4 sec

Hamming window for the direct S arrivals., Compare to fig. 5.6. No arch

shape appears here.
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n Coda b {smoothed)
N / A
1072 [4 ,ﬁ-—:z”
o X /
&
[ o EW component )
= S attenuation { x 2 componenf} 32 sec.window
- a- Z component 4sec. window
L 1yl L el L 11l

- 5 | 2 5 10 50 100

5.11 Appareant attenuations derived from the slopes of the energy density
curves (Fig. 5.6) for station PEN, together with the average coda
sttenuations and the direct S attenuations.

0: for EW component, total S
X: for Z component, total §

A: Z component, direct S (4 sec. window).

Note: For f<lHz, the apparent attenuations are calculated by using onmly

the last part of the curves (Fig. 5.6).
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ENERGY DENSITY DISTRIBUTIION E(r )RR

. (ot'uun cHs) ' - ongem.pl
025hz -1.5hz 025hz-1.5hz ]
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- 5.12 The energy density curves 4xr?E(r) for station CHS. From left to right: '
. Z component and EW component. From top to bottom: f = 0.25-1 Hz, f =

103-8 “‘. and ‘ - 12.65 Hs.
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f=2hz, Q;=2500
B,:09

7=05 .
forward scattering SR

70
isotropic scattering

Y=-Q5 backscattering —
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The ichno;nn envelopes of S waves predicted by the diffusion

approximation for the case of £ = 2 Hz, By = 0.9 (Qq = 2500). ¥ is the

mean scattering angle cosine defined by (6.10). .. ;,1
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Categwy € (mcteorold impact)

B:09 W, Al B, 1970

€.teuony Al tmaumydbed
13674, 13y 22,1970

Compressed time-scale records of two of the lunar seismic events befieved 1o be of natury
origin recorded. at station 12, Z is the vertical component seismometer: X and } are the :or?::'::‘::
component seismometers. The moonquake, event of 13:09 hr.. May 23, 1970, originated within the
20oneof greatest activity (A1 zone). The H-phase is prominent on the scismograms feom the horizontal
component seismomciers for category A+ events. This phasc is tentatively identitied as the direct

shear wave arrival. The event of 8:09 he., April 8, 1970, is believed ta he a metcoroid impact
{category C evenuy. -

6.2 The seismograms of moonquakes. The event on the top is supposed to be a
meteoroid impact; the bottom event is believed to be a deep moonquake

(from Latham et al., 1971).
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6.3 The scts@grans from the model experiment in laboratory (Dainty et al., W
1974).

a) The seismogram with the homogeneous plate.

b) The seismogram when the plate has many grooves as scatterers.
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The band-pass filtered seismograms of A06 (r = 235 km, depth = 103 km)

L
®s S

for the stations CHS, FRA, JOR and PEN.

From top to bottom: f = 0,375,
0.75, 1.5, 3, 6, 12, 24, 46 Hz, =——d0»

6.5 The band-pass filtered seismograms of AlS (r = 247 km, depth = 118 knm)

for the stations CHS, PEN and JOR. From top to bottom: £ = 0.375, 0.75,
1.5, 3, 6, 12, 24, 46 Hz, ~—P»
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6.7 The theoretical envelope decay curve for the single isotropic scattering -

in a lossless medium according to Sato (1977). The envelope decay is a

pure geometric spreading effect. The distance between the source and

P sensor is taken as 247 km (as the case of Al5 to PEN). .
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