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1
I. INTRODUCTION : ]
During the grant period 5/15/83 - 8/14/84, the efforts of our group were - —.~-—~1
directed towards investigating surface scattering of ions for the purpose of _V-..;_-' :.* ‘
;_ obtaining stimulated emission of soft x-rays, as well as scaling of free j
b electron laser to x-ray wavelengths, and nuclear spectroscopy in the x-ray - . SRR
t regime.
3 The following report consists of three sections and six apperdices. The
; first section summarizes scattering of ions from different types of surfaces and " :
stimulated emission of light from scattered ions. The second section summarizes
; our continuing work in the area of an x~ray free electron laser. Another
t continuing effort of our group has been in nuclear spectroscopy with x-ray ' - ;".'“'“‘:
! lasers and intense fields. The work in this area, correspording to the relevant
grant period, is summarized in the third section. The papers which detail the .
results of these investigations either in published or preprint form are '——‘——'4

reproduced in the appendices.
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II. SURFACE SCATTERING OF IONS AND SOFT X-RAY EMISSION

Coherent excitation of ions by the periodic potential of a crystal proposed
by Okorokov sometime ago arises from the fact that an ion moving in a crystal
with speed v experiences a time dependent potential with harmonics
Qn = (27vn)/d, where n is a positive integer and d is the lattice spacing in the
direction of ionic motion. If v and 4 are such that Qn matches an ionic
transition frequency, then ions are rescnantly excited by the nth harmonic. The
probability that ions are in an excited state becomes a periodic function of the
thickness of the foil, which can be viewed as a consequence of the Rabi
oscillations of ions in their rest frame. One can expect the same physical
picture to hold for ions scattering from crystal surfaces at grazing incidences.
This may be called the surface-Okorokov effect and offers interesting
possibilities for obtaining stimulated emission of soft x-rays from ions. One
can coherently excite a beam of ions into certain high lying states by an
adjustment of the beam velocity to the crystal periodicity, and obtain an
effective population inversion relative to some low lying states. For such a
purpose, the grazing angle surface scattering geometry has considerable
advantages over the beam foil geometry in that the damage to the surface
resulting from ion bombardment is minimized at grazing incidences and the same
surface can be used repeatedly. YFurthermore, stopping powers of surfaces can be
lower than stopping powers of bulk materials, which means that ions can
resonantly interact with surfaces for longer distances than with foils.

We analyzed the scattering of hydrogenic ions, such as Li+2, Be+3, etc.,
from crystal surfaces at grazing incidences, and showed that ions execute
extremely rapid Rabi oscillations in their rest frame (NlO17 sec !). We assumed

that the ionic beam simultaneously interacts with a coherent electromagnetic

field whose frequency matches one of the ionic transition frequencies
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corresponding to an effective population inversion, and showed that the
inhomogeneously broadened gain of the signal can be substantial, on the order of
1 cm”!, for reasonable beam currents such as 4.8 ampere/mm?. The analysis is detailed
in the preprint in Appendix A, which is accepted for publication in Phys.Rev. Letters.
In the free electron laser, lasing occurs at the wavelength A = 2Aq/y,
where Aq is the wiggler wavelength of the magnetic selonoid and y is the ratio
of the electron's energy to its rest mass energy. In principle one can decrease
v X either by increasing the electronic energy or by decreasing the wiggler
wavelength Aq. The latter method is not very practical with mechanical systems
used in free electron lasers. There are, however, systems which are periodic on
atomic scale, and which might be used as short wavelength wigglers for electrons
or ions. An interesting idea is to use antiferromagnetic crystals as wigglers
for ions. These crystals have strong internal magnetic fields that are periodic

with some lattice constant and can be used to excite ions cocherently. Excited

R\

ions can then decay radiatively and thus convert the virtual photons of the

. material magnetic field to real photons.

We analyzed the problem for a beam of hydrogenic Be*3 ions scattering from

the surface of an antiferromagnetic material such as reF, or MnO. In the
geometry we considered, Be'3 ions penetrate just below the surface of the

material, travel some distance I, and then come out. They simultaneously R

Ty

interact with soft X-Ray signal of frequency fiwg v 30 eV which matches the

frequency w3, of the n=3 » n=2 transitions of Be*3. we first considered the

3 magnetization fields inside an antiferromagnet and deduced the general form of
the fields from a simple argument. We then obtained a simple set of equations

of motion for the ionic amplitude from the Schrodinger equation in the rest

frame of an ion. ‘These equations show that ions in their rest frame execute

Rabi oscillations between the states n = 1 and n = 3, if the ion velocity is
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properly adjusted. ‘lhe Rabi frequency R is proportional to Bo, the amplitude
of the magnetization of one of the sublattices of the antiferromagnet, and to v,
the ion velocity. &, is on the order of 4x10!’ sec’! for v = 10% cm/sec, which
is nearly four orders of magnitude larger than the spontaneocus radiative decay
rate of the n = 3 states of Be'’., Because ions are actually moving with
velocity v, the Rabi oscillation in the rest frame become spatial oscillations
in the lab frame. If LR designates the spatial interval for half a Rabi cycle
(i.e., LR is the minimum distance required for an ion to travel in the material
in order to get the ion fully excited into the n = 3 states, if it is initially
in the ground state), then L, is on the order of 10 * cm. We also analyzed the
gain of the signal field in the weak signal regime. Due to the coherent
excitation of ions, the expression for the gain differs from the usual
small-signal swept-gain, and have a number of novel features. It turns out that
only for a narrow region of detuning between W and .3, can one get finite gain.

1

The maximum gain is about 10 cm ! if the ionic density is on the order of 10!-

cm °. Appendix B reproduces a preprint which gives the details of these

investigations.

Our work with magnetic surfaces has yielded another idea which might lead
to a new class of lasers. In diatomic molecules formed by the group VI elements
(e.g., 0z, S>, SO) and by a combination of group V and group VII elements (e.g.,
NF, NC1, PCl), the spin selection rule \S = O leads to highly metatable states
which can be very useful for high power laser systems. A well-known case 15 the
lAg state of the oxygen molecule. Due to spin and parity symmetry, its decay to
the ground state *5; 1s highly forbidden with spontaneous decay rate 2.6 x 107"
sec !. This fact is used in oxygen—-iodine lasers to store the energy in the 13u

state of 0., which 1s then collisionally transferred to atomic 1odine via the

reaction O, (lﬁg) + l(sz/z) > O:(’ﬁé) + I(7P1/‘). Radiative emission takes
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place on the iocdine through its decay back to 2P1/2’ which is a magnetic-dipole
allowed transition with a spontaneous transition rate of 7.7 sec !. The
frequencies of 1Ag - 32; and 291/2 - 293/2 transitions match, which makes it
possible to resonantly transfer energy between O; and I. In practice it is
difficult to find such matching partners for other metastable systems which
might have applications to high power lasers. For this reason, as well as to
avoid loses involved in collisional energy transfers, there has long been an
interet in cbtaining radiative emissions directly from the excited metastable
system itself. To achieve direct radiative emission, it is necessary to break
the various symmetries of the metastable system. For instance, the parity
symmetry can be broken by applying static electric field or nonresonant
radiation, or by means of nonresonant collisons with another molecular or atomic
system. On the other hand, breaking of the spin symmetry requires application
of either a spatially varying magnetic field as in a Stern-Gerlach device, or a
direct spin~spin coupling another system. This latter possibility can be
realized by putting the singlet delta oxygen in contact with a magnetic surface,
where the electrons of the singlet delta oxygen will couple to the external
spins through their internal magnetic moments. By means of a simple
perturbation analysis, we showed that both parity and spin symmetries are broken
and that an electric dipole moment is induced between 1Ag and 3Eé which is on
the order of 10 2 Debye. This implies a spontaneous transition rate of about

102 sec” !, which is nearly six orders of magnitude larger than the corresponding

rate for isolated O,. The analysis should also hold for NF which has an
ultraviolet transition frequency between the electronic ground states and the
first excited singlet delta states. This work is already published (Phys. Rev.

A 29, February, 1984). 'he paper is reproduced in Appendix C.
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II1. FREE EI-CTRON [ASER AT X~-RAY WAVELENGTHS

An x-ray free electron laser must operate with large gain per pass because
of the poor quality of available mirrors at x-ray frequencies. Moreover, the
effects of inhomogenecus broadening, start-up from noise, coherence development,
and quantum recoil can be important in determining whether and how such devices
will operate. We performed one-dimensional classical and semiclassical analyses
of the gain regimes for x-ray free electron lasers. Based on these analyses, we
determined some of the constraints on such devices imposed by effects such as
diffractive spreading of the laser beam, energy spread and emittance of the
electron beam, and transverse variations in the wiggler field. These

constraints are discussed in the preprint reproduced in Appendix D.
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IV. NUCLEAR SPECTROSCOPY

In two recent papers [Phys. Rev. C 27 (1984), 1229], Reiss claimed that
forbidden nuclear beta decay can occur in the presence of an intense but low
frequency electromagnetic field. His approach treats the weak coupling to first
order, and the electromagnetic field as nearly as possible to all orders. Thus,
he describes electron states by Volkov wavefunctions, whereas he approximates
nuclear states by the so-called momentum-translation-approximation
wavefunctions. We have now shown by explicit calculation that within this
model, the total beta decay is essentially independent of the external
electromagrietic field. This conclusion holds both in nonrelativistic and

relativistic treatments of the problem. Moreover, by comparing the “F . E"

and
"5 . R" form of the interaction Hamiltonian, we have shown that the wavefr .on
in the momentum translation approximation is the unperturbed state in the
Coulomb gauge. This work is reported in a preprint and a paper which appeared
in Phys. Rev. C 29, March 1984. These are reproduced in Appendices E and F,

respectively.
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APPENDIX A

STIMULATED EMISSION FROM SUREFACE SCATTERED IONS
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Abstract

We discuss coherent excitation of ions incident on crystal surfaces at - L fjﬁ::
grazing angles and show that substantial gains for soft x-rays can be achieved - .~t',:;i;'§'

| for reasonable beam currents. 'Y :
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Coherent excitation of ions by the periodic potential of a crystal was
proposed by Okorokov sometime ago [1] and has been observed by different groups
who passed highly ionized atoms through thin foils (2,3]. The effect arises
from the fact that an ion moving in a crystal with speed v experiences a time
dependent potential with harmonics Q = (27vn)/d, vwhere n is a positive integer
and d is the lattice spacing in the direction of ionic motion. If v and d are
such that Qn matches an ionic transition frequency, then ions are resonantly
excited by the nEh-harmonic. The probability that ions are in an excited state
becomes a periodic function of the thickness of the foil {4], which can be
viewed as a consequence of the Rabi oscillations [5] of ions in their rest
frame. When one goes to the laboratory frame in which the crystal is at rest,
the Rabi oscillations in time become thickness dependent oscillations in space.
The Okorokov effect depends critically on the finiteness of the probability that
ions keep their charge states constant without further ionization or
neutralization in the crystal.

One can expect the same physical picture to hold for ions scattering from
crystal surfaces at arazing incidences. This may be called the surface-Okorokov
effect and offers interesting possibilities for obtaining stimulated emission of
soft x-rays from ions. One can ccherently excite a beam of ions into certain
high lying states by an adjustment of the beam velocity to the crystal
periocdicity, and obtain an effective population inversion relative to some low
lying states. For such a purpose, the grazing angle surface scattering geometry
has considerable advantages over the beam foil gecmetry. The damage to the
surface resulting from ion bombardment is minimized at grazing incidences so
that the same surface can be used repeatedly [6]. Furthermore, stopping powers
of surfaces can be lower than stopping powers of bulk materials, which means
that ions can resonantly interact with surfaces for longer distances than with

foils.
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In this paper we consider the scattering of hydrogenic ions, such as Li+2,
Be+3, etc., from crystal surfaces at grazing incidences, and show that ions
execute extremely rapid Rabi oscillations in their rest frame. We assume that
the ionic beam simultanecusly interacts ith a coherent electromagnetic field
whose frequency matches one of the ionic transition frequencies corresponding to
an effective population inversion, and show that the inhomogeneously broadened
gain of the signal can be substantial.

The geometry of the problem is shown in Fig. 1. An ion is incident from
the left, moving in the z'—direction (primed coordinates refer to the laboratory
frame, unprimed ones to the rest frame of the ion). In the laboratory frame,
the periodic crystal potential can be described by

Jprae
Vi(x') = 8(xq - X)L @ LACE (1)
[

Here, xo designates the distance between the c.o.m. of the ion and the surface
(xo is negative if the ion is above the surface; x; is positive if the ion
penetrates the surface, and is actually inside the crystal). G's are the
reciprocal lattice vectors. We have assumed that the crystal terminates sharply
on a plane at xg. This plane need not coincide with the plane of the first
layer of surface atoms; rather, it should be considered as an effective plane
where the influence of surface atoms and electrons of the crystal on the ion
begins to be appreciable.

1f one goes to the ionic rest frame, Vé(;‘) is transformed into a vector
(Zc) and a scalar potential (VE). Kt is purely longitudinal, and can be
eliminated by a gauge transformation on the wavefunction of the ionic electron,

p(x,t) = exp[iA(;,t)] . ¢(;,t), such that VA = (e/hc)xc. One finds that ¢

satisfies the Schrddinger equation
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-7 > > oy 2 > -
ihat¢ = [(2m) 1(p - eASc Ly - Zezlxl 1y V_L + V”]¢ (2a)
where

{ R g o
r V(X)) = ey8(xp - x)zslcvE e, sl ={Clz-C=0}, (2p)
|
I
- Vi (1) = exte(xp - x)ZS”ch R I P T (2¢)

and KS = ;(As cos(ksz - wst) is the signal field. vy is the relativistic factor
(1 - v2/c2)'!i and essentially equals 1 for all v's of interest here. V| is a
static potential that depends only on the transverse coordinates of the ionic
electron. Note that going from the laboratory frame to the ionic rest frame is
equivalent to taking a time average of the crystal potential along the
trajectory of the ion; V; is this time averaged potential. V; is obtained from
this perspective in Refs. 7 and 8, and the level shifts induced by V, on ionic
spectra in foils are estimated in Ref. 8. Here, however, we will ignore V|,
assuming that it produces negligible perturbations. For our discussion, the
important term is the time dependent potential V“ . If the basis vectors of the
reciprocal lattice space are 61, 52 and 33, that is G = 151 + naz + n53, where
2,m,n are integers, then the harmonics of V) are given by

Yv::: . (251 + l'lE?_ + n53). In the following, we will consider the case in which
one of the fundamental frequencies obtained from this expression equals or is
near an ionic transition frequency. Specifically, we will assume that only
n=1and n = 3 levels of the ion are involved in the transitions induced by the

crystal, and that an effective population inversion occurs between n = 3 and

.............
------------------------
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n = 2 levels as shown in Fig. 1. One can then ignore all G's in the set s
¥ except for those which give a constant frequency @ which is either resonant or L4
nearly so with the ionic transition frequency w3i. Thus we define the set of jﬁ}ij: 
o > > ~ a ~ > n .
. vectors g such that g = xGx + YGy + zYGZ and {g*z| = constant = Q/v. Ignoring o
the signal field for the moment, the amplitude equations in the rotating wave ®
approximation are
. i(Q-w31)t ‘.
€100 = € Mioo;32m S3em ° (3a)
. -i(Q-w3)t - o
C3m = € Mio0;32m C100° (3b)
where el
-9 _
= -1 > (s i—g'?{ s (3c) ' o
Mogmsnrerme T €M zgcvg dx Uy (X2 (xo - xJe Uprgrm () c RN
and unlm's are the hydrogenic wavefunctions. Assuming c;0(0) =1 and ::i;?f“—
csgm(O) = 0, the solution of (3a,b) is
+ -iQ"t igtt), o+ - L
Cloo(t) = [Q e-l -Q e ]/(Q -Q), (4a) N o 7
.+ . - .‘
o in’t  iq t) £
Com(t) = Mwo;sm{e e /@ -a), (ab)

1, e
* = (w11 ~ + - %4 + %> J%and 0 = ;
where o~ (&m) (w33 Q)/2 ((w3y )=/ le] d Rem “‘4100;32“" is the . .
Rab: frequency. e
..

P S W W




If the ion penetrates the surface and |x4l ~ 1A > (aB/Z), one can
essentially ignore the step function in (3c) since unzm's are localized to a ‘

radius of approximately (naB)/Z. One then finds

(p) - 1 4 (g2 2 -y
My0o;300 = 3V/3m e(4hy)” Z‘V..Bg By + 3 (B, + 1) (5a) -
Ml(g) = i/m e(2hy/5) 1 @ 83 (82 + 2)(83 + 7Y (@) , (5p) -
0;31lm &
g g
y(P) - \/_ 51g3 o
Mi00;5im = ZhY Z Y2m (g)8, , -
s+ 2
8,382+ 4) I‘[s+%}r‘[s--2—] 8, ] 2
) 6(82 + 1)4 \/‘— 25 7 - \2 . ’ -_— —
(Bg + 1) T|s+1|T|s+5 .\/eg + 1J (5c) ~
where Bg = 4Z/(3gaB) and the superscript p is meant to imply a penetrating ion.
Note that only M§8%.310 describes an electric dipole transition; the other 2y :“ff

transitions violate the dipole selection rules since they arise from higher
order multiple transitions. This is in contrast to the formulation of the
Okorokov effect in Rfs. 4 and 9, where the dipole approximation is assumed to

hold. In justification of (5a-c), we note that whether one can make the dipole . a;i

approximation depends on the ratio of the crystal period to the radius of the

ion's electronic orbital, that is on whether Ial(aBn/z) << 1. For typical ;
crystals one can easily obtain lal(aBn/Z) n 1 even for low lying orbitals. The \ itii
dipole approximation breaks down. Incidentally, this fact can be exploited to ) _xff
populate those states which are not dipole connected to the ground state and -.

therefore, relatively long-lived. After leaving the surface, the ion remains in




T —— " o aam e
AN N N N - . P —— T m— Lo e an mo 4 uon are oen gun o |

~L

~.|""._'-'
y e

A.7

a superposition of these long-lived excited states with the ground state. This
‘E superposition is stable relative to radiative decays to the ground state. » :

If one takes the pseudopotential values ofcu* that are used in structure

g Lo
calculations {10], and uses just the smallest and the next smallest §‘s in the o

- sums of (5), one finds for a crystal like Si that |M§%%,300|, IM£%%-3°m | ~ 10!

b -1 | (v) | 1017 -1 Th diti - > -
, sec’l and IMjia 5 01 o sec’!. The resonance condition vz + (G; + G, + G3)
’
3

L BN

- v w3] v 193 eV can be satisfied for a Be'” ion moving with speed v ~ 10°

. -
S

! cm/sec. It follows that the ion can be completely excited after traveling a .

L1} . 3 " 2 = - 2 .
Rabi distance R2m WV/QRzm v 3 - 30A

An interesting feature of (5b,c) is that the contributions of different

LA

-t .

components are proportional to Ylm(g). There are, therefore, orientation
dependent interferences among @ components. By varying the direction of the

g
ionic beam, it is possible to pick different sets of J-vectors, and thus obtain

g
corresponding to these sets.

information about different §J components from a comparison of Rabi frequencies » ~i
We now consider the coupling of the ion to the coherent signal field and i
{

treat this coupling as a perturbation imposed upon the evolution described by (R
(4a,b). In the calculation of the gain the steps are: a) determine c22m(t) to ‘ E
first order in As using c3£m(t) given by (4b); b) calculate the transverse ;
current density resulting from (3am)~(22'm') transitions; c) substitute this ) )

transverse current density into the Maxwell equation for A to obtain a

dispersion relation between a real wg and a complex ks. The imaginary part of
ks gives the small signal gain for ions moving at a fixed velocity v. Finally, j'.'u‘

d) multiply the resulting gain with the probability distribution of ion

velocities, oion(v), and replace by vli-al. We assume that the width of
oion(v) is sufficiently narrow as not to effect the overall choice of the set of )

3's, and integrate over the interval - «< v < ». In the limit that the
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lifetimes of the states in the n = 2 shell go to «, the resulting

inhomogeneously broadened gain is given by

272heP N, 2 +2 D p. (v.)
cS 10n Lm 1on Lm
g = - D) A (6a)
w meC 20 m=-2 [(mS - w32) + Qle]

where Nion is the density .of ions, PCs is the probability that the charge state

of ions remains unchanged, and Vom is a tuning velocity given by

. 92
v =—1-——m-m -?;Lm—*-w (6b)

Dzm is a coefficient related to the momentum matrix elements,

* *

- P _
Dom = zJ?,'m' zl”m"%l’m' ;3w 22'm' ;3em M100;3Slm M100;357~"m" ’ (6c)
where
-> * .
929,m;39,'m' B qu uZilm(.lv)u.'il'm'
= - (@/ag)ey oGy * Sne Dy o8gr 1/ 8y 1800 p7n2 )
(ed)

Here n; = 213 . 32 . 5710 = 7,6x10 3 and n, = 21% - 33 . 5710 = 0.72 are pure
numbers {11j. A representative gain curve vs. wg is depicted in Fig. 2 just for
one particular (2m) inthe sum (6a), and for a gaussian probability distribution
of average velocity vg and width av: o; (V) = (avV/7) 1 expl—-(v-vg) ¥/ av?]. as
seen from the figure, the gain curve has double peaks surrounding the exact

resonance at Wy = Wy where it vanishes. Qg is the sum of several such curves

e T e e e e e e et e T e e e e e e T e T S e e e e e
e e T T N T T e e e e e e e e e (e e e e e e T T T e e T e (T et T e L
P A A P AL S AT A R A P VR IAL VAR WAE WAL A A WA Pl JHE WAL VA W W WA WA DU DI W WS WA P S W v
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which have differing heights and widths, but always vanish on exact resonance,

Another interesting feature of Q; given by (6a) is that instead of the
usual population iiwersion factor (N -~ N ), it has an effective
upper lower

population inversion factor W /Cug = w3,)2 + Qﬁlm]’ Thus all ions

1oan
participate in the photon emission and absorption processes. The degree of this
participation is determined by the coherence of ions and the corresponding Rabi
frequency caused by the crystal.

Going back to the ge*? example, one finds ( assuming P .5)
g (Nion/lo12 cm 3)x(v/av)x10™% cm’! for a signal of wg v 30 eV. Thus, for
av/v ~ 10™"% and an ionic current density jion ~ 4.8 ampere/mm<, one has
. gs'\,lc:n-l.

As an ion moves inside the crystal or on its surface, it loses energy to
the material electrons, and its c.o.m. slows down. This can cause the ion to
move away from the resonance with the crystal field. Scaling from the stopping

powers of protons in bulk materials [12], one finds S ~ 109 eV/cm for Be*3

with
v ~ 10° cm/sec for a Si target. For grazing angle scatterings one can expect S
to be lower since the number of material electrons may be depleted near the
effective plane at xp due to the formation of inversior layers further down in
the interior [13]). It is also possible to choose the beam direction in such a
way that ions can move between the crystal planes, avoiding heavy concentration
of material electrons. Such a channeling of ions can decrease S by orders of

magnitude [14]. For an ion moving the Rabi distance zR, the minimum energy loss

is Eloss ~ SER. Taking S ~ 108 eV/cm for channeled ions and RR v 3 - 30%, one

finds AEloss/Eion A 1076 - 1075 for Be'”, which is quite small.
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FIGURE CAPTIONS
| e
FIG.1. The schematic of the grazing incidence surface scattering. -
'» FIG.2. The gain for a particular (im) vs. 6= (w_=w,,) (lz-§]:,v)-l. For illustrative _
I A, o] | Al o] -
purposes, 6R=.QR(|z-g}Av) and oC=(w3l~v0[z-g[) ({zeg]ov) — are taken
to be 3 and 1,respectively.
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APPENDIX B

3
SOFT X-RAY AMPLIFICATION BY IONS SCATTERING
FROM ANTIFERROMAGNETIC SURFACES
b
by
b
F A. Elci
s
Institute for Modern Optics, Department of Physics and Astronomy,
L University of New Mexico, Albuquerque, New Mexico 87131, U.S.A.,

and
M.0. Scully

Max-P lanck-Institut fur Quantenoptik, Garching D-8046, BRD.

abstract

We show that hydrogenic ions scattering from antiferromagnetic surfaces execute

rapid Rabi oscillations in their rest frames, which can be used to amplify X-rays.
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I. INTRODUCTION

The subject of the present paper was inspired by the free
electron lasers. In free electron lasers, the laser action, or -l
amplification, occurs at the wavelength X = ZAq/Y , where Xq is the
wiggler wavelength of the magnetic selonoid and Y is the ratio of the
electron's energy to its rest mass energy [l]. In principle, one can =
decrease A either by increasing the electronic energy, or by

decreasing the wiggler wavelength A The latter is not very

q°
practical with the mechanical systems that are used in free electron T

lasers. There are, however, systems which are periodic on atomic
scale, and which might be used as short wavelength wigglers for

electrons or ions. A particularly interesting idea i1s to use - -

antiferromagnetic crystals as wigglers for ions. These crystals have
strong internal magnetic fields that are periodic with some lattice :ﬁ i275
periodicity [2-4) and can be used to excite ions coherently. Excited f k“
ions can then decay radiatively and thus convert the virtual photons

of the material magnetic field to real photons, just as in the case of

free electron lasers.

In the following we discuss the physics of this problem in detail E;
for hydrogenic ions. Specifically, we consider a beam of Be '3 jons
scattering from the surface of an antiferromagnetic material like Feﬁ
or MnO. Be® ions penetrate just below the surface of the material,
travel for some distance L, then come out. They simultaneously

interact with a soft X-Ray signal of frequency hwsfb30 eV which

matches the frequency w3, of the n=3 - n=2 transitions of Be 3. 1In

Section II, we first consider the magnetization fields inside an
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antiferromagnet and deduce the general form of the fields from a
simple argument. We then obtain a simple set of equations of motion
for the ionic amplitudes from the Schrodinger equation in the rest
frame of an ion. These equations show that ions in their rest frame
execute Rabi oscillations [5] between the states n=1 and n=3, if the

ion velocity is properly adjusted. The Rabi frequency QR is

proportional to BO, the amplitude of the magnetization of one of the
sublattices of the antiferromagnet, and to v, the ion velocity. QR is
; ' on the order of 4x10!3 sec ! for v=10° cm/sec, which is nearly four

i orders of magnitude larger than the spontaneous radiative decay rate
of the n=3 states of Be*3[6]. Since ions are actually moving with
velocity v, the Rabi oscillations in the rest frame become spatial ——me

oscillations in the lab frame [7]. If LR designates the spatial

interval for half a Rabi cycle (i.e., LR is minimum distance required

for an ion to travel in the material in order to get the ion fully B?i:
excited into the n=3 states, if it is iﬁitially is in the ground

state), then LR is on the order of 10™" cm. We also give a detailed
discussion of the validity of the model. In Section III we calculate

the gain of the signal field in the weak signal regime. Due to the

coherent excitation of ions, the expression for the gain differs from

the usual small- signal swept-gain [8], and has a number of novel

features. It turns out that only for a very narrow region of detuning o
between w_ and w3, can one get finite gain. The maximum gain is about if#;
10 cm "' if the ionic density is on the order of 10!“ cm ™3, Section IV ,

gives a further discussion of the results and our conclusions.




II. ANTIFERROMAGNETIC SURFACE SCATTERING

The schematic of ion scattering from an antiferromagnetic
material is shown on Fig. 1. A beam of Be'3 ions grazes the surface
of an antiferromagnetic material at an angle wi typically less than
0.5° [9], penetrates the surface, and, after traversing the material
for some distance L, comes out. Simultaneously, the beam interacts
with a soft X-ray signal of frequency hws A~ 30 eV, which corresponds
to the transition frequency between the n=3 and n=2 levels of Be 3.
This is the signal that we want to amplify. The signal propagates in
the same direction as the ion beam. In this section we analyze this
problem with the aid of a simple model. We first discuss the
description of the fields of the antiferromagnetic material, then
write a simple set of equations of motion for Be 3 ion and explore the
implications of these equations.

An antiferromagnetic crystal is composed of two interpenetrating
identical sublattices which are shifted relative to each other by some
spacing d. In each sublattice, spins are localized at the lattice
points and are parallel to each other; however, they are antiparallel
to the spins of the other sublattice. The vector potential induced by
the intrinsic magnetic moments of these spins has, therefore, the

periodicity of the sublattice and can be written as

(2.1)

......................

-




where G refers to the reciprocal lattice vectors of the sublattice.

The primes are meant to indicate that these gquantities are in the rest
frame of the material medium.
translational symmetry normal to the surface and modifies (2.1).

However, this modification is relatively simple once one has an

expression
simplified
gives rise

yields the

where gsis the gyromagnetic ratio of a given spin, Mg

magneton,

are the lattice vectors of one of the sublattices.

direction of magnetization of this sublattice.

> -

of A'(x') can be written as

The presence of a surface breaks the

for A(G). To see what the form of A(G) is, we use the

picture of rigidly fixed spins. Each localized spin then
to a magnetic dipole field, the superposition of which

overall vector potential:

is the Bohr

- -> - - .
R={a+mb+nc £,m,n=integers

v designates the

The Fourier transform

...........................
....................

- ey
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A'y(q)=/dr e Aty (x") -
e
; =/, e Ry 2
g R (2.4)
i; -
where V is the volume, N is the number of the sublattice points, and
-> >
A(q) is defined by
r
2
-> - . -> -— -> ->
K(@y=2mn(1-e""9"%) (v]q] ) T e [le_su) (z+Q) = (z+p) (e_+3) ]
L
~ ~ ~ ~ _,) _ A . ~ A >
—e_[le u)(z:q)~(2-u) (e _-q)] :
+zl(e,ow) (e_*q)=(e_-n) (e~ 1} T
(2.5)
and
e, =x'tig’ . (2.6)
When the number of sublattice points N is sufficiently large (N- ), -
the sum over R gives %
'
(
--------------- e e S e T e




[ S v o I Lty e g AR Pt it it ]
) o
B.6
N BTN
| r, e T Nz 822 °
R g 9= - S
(2.7) e
- ;;' '
' Inverting the Fourier transform, we then find
> > o
Ryl 8 R g
I\
q 0
> >
! iGex! (2.8) . .
=1, e K(G) . ®
G - ‘
Consider now the special case in which : is along Q, the reciprocal : @
. lattice is cublic, z coincides with one of the lattice directions, and . Sl
s .

3 is midway along R; such that

27 .
G3=(§%) x (integer)= %ﬂ. (2.9)
The factor
1 - e-iG-d =1~ (-1P (2.10)

is nonzero only for odd n, and (2.8) becomes

.................................

. e et
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S T 42 _ 1 iR A
Ay (x')= l6ngsuBNV Za e
- K ~ G, cosK z'
x I _o[ -y' D sinK z' -iz'—2 n) {
o n=0 2 2 2 22 '
| (K_+G"7) (KS+G*) (2.11)
n n
F
where e
B
K = 1(2n+1) '
n- q " ’ (2.12)
—-‘ [ et
L
> 2 ~ 2L, " . SR
= 4
~ - - .
Let the ion beam propagate in the z-direction with a uniform cross -]
4
section. A given ion then samples a vector potential that is .
approximately the average of (2.11) over the transverse coordinates. _'7'1

when such a spatial average is taken, only the EL = 0 terms survive in

(2.11), and the vector potential becomes

N N ~ sinan' = .
A.M'(X')=—Y'Bo En=0——._(_— ’ (2-14) R
“n D
1
where B, = lG:NgS;B/V. The corresponding magnetic field is given by Ci‘ &
-
R
¢
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d
> A
B,,' =x' ®
Mo X 8o Inog cosKiz' . (2.15)
When a surface is introduced, the basic modification occurs in
(2.7). Let the surface be the y-z plane. We separate the sum in
- (2.7) into two parts, cne part is a sum over the sublattice points on
the y-z plane and the other part is a sum over the sublattice points
along the x~-direction:
®
R Y - .
5 e-lch =(Z o l(mbq2+2ndq3) —lqlaz
R m,n Y(I, e )
E =(N.Z 8 8
S ) ,
- where NS is the total number of sublattice points on the y-z plane and
. p1(q;) is the spin line-density fluctuation normal to the surface.
Note that Nspl(O) is the total number of sublattice points. Eq. (2.8)
is now replaced by
i(g,x'"+G, y'+G 2"
: Ay G=z_ o e R R )[01(“1)] 2(q..6..6.)
- 915253 p1 (0 1°62:6G4) . (2.17)
| If one ignores the spatial varjation in transverse coordinates and ;55
L takes an average over them, (2.17) reduces to (2.14). If the beam is T;J
of small cross—-section or of small thickness in the ;-direction, then _5551Lg
5 R
.-
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transverse variations are important and (2.8) and (2.17) give
different results. In the following we ignore the transverse
variations in the vector potential and use (2.14). This simplifies
the algebra and allows us to concentrate on the essential physics of
coherent excitation of ions.
In order to couple the electron of Be*3? to the antiferromagnetic -
vector potential, one needs to transform the field given by (2.14) to
the rest frame of an ion moving with velocity v in the z-direction.

In the rest frame of the ion, :

> - __" © -1 .
Ay(x)=-yyBgy L _, k7 sin(k z+w t) , (2.18)

where

y=(1-v2/c?)~1/2 -3

’

Thus the ion experiences a time-dependent field in its rest frame,

whose harmonic frequencies can be matched to one of the ionic

transition frequencies by varying the beam velocity. 1In particular,

if one matches one of w to w3;, the transition frequency between the \

ground state and the n=3 states, then the magnetic field of the

‘.'A'q . -~ - -'“ ! -- --. ‘- - -
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material can resonantly pump the ions to the n=3 states. The ion then
executes Rabi oscillations in its rest frame. The frequency matching

woom w3y requires that

2 2 2
\/{%LJ + K 2 /{ﬂgi] + 37 (Zn+1)?2 (2.19)

For Be'®, w3, ~ 3x10'7sec”!. For an antiferromagnet like MnO, d ~ 4A.

Substituting these values into (2.19), one finds v(n=0) = 3x10? cm/sec
and v(n=1) = 10° cm/sec, etc. Finally, if the matching conditions are
met kor the beam and ions are coherently excited to the n=3 states,
then some of these excited ions can decay into the n=2 states by
emitting hwy, ~ 30 eV photons, which will amplify the signal. It is
clear that the proposed scheme uses the same type of excitation
process as in the Okorokov effect [7,10-14]}.

In order to simplify the equations of motion we assume that
pumping is strong but that the signal is weak. We first consider the
Rabi equations for the n=1 and n=3 states coupled by the material
field alone. We then use the solutions of these equations to
calculate the amplitudes of the n=2 states which are coupled to the
n=3 states by the weak signal. Let the ion wave function in its rest

frame be

vix,t) = T ¢ (t)e u ., (X], (2.20)

® e e e, T
o 'vl_'...t'
e .




where unzm(f) are the hydrogenic wavefunctions for Be >, We assume

that the frequency matching condition is satisfied only for the nth
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-

harmonic of the material field. Neglecting the lifetimes and the

counter-rotating terms,

n=3 states of Be+3:

iE‘{Br\
€100 mck
n

[}

[o ¥ f= N
rt

ievBjy
3im MCK
n

We have kept just the B.i terms in the above equations. Performing

the indicated integral in (2.23) for n=3 and n=1 states, one obtains

the matrix elements

Py[SLm;lOOik:)

+ 102,:F3(;)] ,

i

onge then has the Rabi equations for n=1 and -

-i(way-o )t ) py(loo;sz'm'lkng)csl.m. '
. (2.21) ‘
(wyr-w Jt A
P (32m;100}-k_2)cigq,
b n {2.22) P
L
S oiKex e -
fdx e unzm(~lV)Un,Z'm,. (2.23) .. A

Ctedateit b s : ._]
L - ‘ EECER e e .

S+
B m, 1 m,-1

o

YL, (F (8 -

(2.24)
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where Z is the nuclear charge of the hydrogenic ion and aB is the Bohr

radius. The other quantities are defined as follows:

4z
£ = , (2.25)

> 3 5 5
£4(3+422) | g3(1-22) ) ria-3)riz+311-¢)

Fple) = 3o T e

1]
(e}

P(2+2)T(2+1)2" ]

(2.26)

5

$5(1-22) *[(6-v3) g2 + (VAe-1)] (2.27)

Fo(g)

=
(]
ln

Assuming that the ions are initially all in the grodnd state (i.e.,

Cirg = l, ¢ = 0 at t = 0), the solutions of (2.21) and (2.22) are

3lm
- +
-i2 - -iQ
Cloplt) = —— (ate 7 U T R Yy (2.28)
(o -1)
eyB. . 1“#t 07t

c., (t) = - P (3im;100)-k z) e ™ & - '™ b, (2.29) .
>im meh (o =07y 7 n L N
]
]
where SRR
° !
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1 2
w3zp - w W3] - w
sﬁ=__ﬂx\[(___ﬂ} Caz
2 R (2.30)

~

is the Rabi frequency given by

el !

R
eyBgDy eBgDpoyv
-y = = 2.3 -
o QR mck mcwjy ( b
n
-/ 1,
= Lr= 2 2173
: Do = 35 L(PiCe 2 v (P2l 0)?]F (2.32)
e

P WY

When wy; = w_  exactly, the populations of upper and lower states

il oscillate with the Rabi frequency Qp- R depends linearly on the
amplitude B; of the magnetic induction of the material. For
antiferromagnets FeF, and MnO, B, ='2x 1076 and 5.4x10%, respectively

il [15]. Taking B, = 5x10% as typical, and assuming that the zeroth

‘e
P S T W) >

harmonic wy is matched to w;;, we find D, ~9x107 cm”! and

QR >~ 8.9x10!3 sec”! for Z=4. Thus if the ion moves for a distance of

) L= "v/g in the material with constant velocity v = 3x10° cm/sec,

then the population of ions, which is initially in the ground state,

lalala el ety

is completely excited to the n=3 states. Table I lists some of the
;' relevant numbers for matching .3; to some of the harmonics.
It follows from (2.24) that only certain states of the n=3 shell
are coupled to the ground state. These are the states with ¢=1 and
{- €=2, and m=*1. The coupling of {=2 states obviously arises from

higher multipole transitions than the dipole, since the change in the

f Sl
v aatatatala’ara

. s
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angular momentum 4£=2. However, F;(:) which corresponds to 4f=1 in
(2.24) also has contributions from the higher multipoles. To be
precise, the electric dipole transitions correspond to the limit ;-1
of Py. In this limit the sum in (2-26), as well as F,, vanish, and
the first group of terms in (2-26) yields F;(l) = 0.1l. The importance
of the contribution of the higher multipoles depends sensitively upon
the size of kn via the relation (2-25).

Let us now consider the amplitudes of the n=2 states. Let the
signal field be described by

-

-
= 2 - .33
AS yAS cos(k: wst) . (2 )

If the lifetime of the n=2 states is r,, then

4, ). : ieAs e-i(w34—ws)t (2.34)
dt 2 2im m¢

cIotmt | o -
) l,m,Py(Zim,ol m' | Kedes vy

Substituting the solution for Cipipe from (2.29) and integrating the

result (assuming c:£m=0 at t=0), one finds

- Te .

a2
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Coyn () = > (.,  Po(2em;32'm' |-k _2)P_(32'm';100]-k_=)]
m m2c¢2(Q -Q—)kn im! "y s y ’ " Tn

- + . - —
i(a -m32+ws)t 1(Q2 -wi3p+w )t
s
x € - €
+ . T - . T
Q -(.L)32+u)s-l _%‘ Q —m32+ms-1 —2-2]
X
*
3
1 2.35
L] ( ) '
3
We note that kS is at least two orders of magnitude less than kn, and

therefore, one can let ksaB + 0 and use the dipole approximation in R
!

the evaluation of the momentum matrix element with ks. In this limit,

-
L

Py(Sﬂm;Zz'm'[O) = - ;; Gm',O(dm,l + (5m’_1) y
< 18y 1850 0 1t 8y K8, 17Ny (2.36) "
. - 4
where n; and njare pure numbers given by . Z;iﬂ
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213.52 -3
n, = g = 7.55x1077,
5
18 .3
2185
n, = 2=+ 0.72.
2~ .10 (2.37)

It is worth pointing out that the solution (2.35) indicates a Raman
type coupling, since the amplitude is proportional to AMAS as in the
Raman scattering.

In the preceding discussion we assumed that the velocity of the
ion remains the same as at the time of the entry of the ion into the
material. This is of course a gross approximation. As soon as the
ion enters the surface region, it begins to lose energy, particularly
to the electrons of the target material, and slows down. We can
estimate the error involved in the assumption of constant ion velocity
from the stopping power of electrons in solids, which depends on the
speed of the ion, its charge number Z, and the charge number of the

target atoms 2. {16-18]. The stopping power scales as
5 * = 5
- = 77 - __—Z (V) -
SELEpv) = 275y (o v) [z:p(v)_} (2.38)

where Sp is the stopping power when the projectile is a proton, and
Z*x(v) and zp(v) are the effective charges of the ion and the proton,
respectively, in the material [16]. These effective charges arise

from the screening effects due to the electrons of the material and

...................................
..........................
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are dependent on the projectile speed [20-22]. Let the target atoms
be Mn and v = 10° cm/sec. For this speed Sp ~ 10_1“ev.cne/atom, '
z*/(zzp) ~ 0.6, and therefore, S ~ 6x10 '“ eV.cm?/atom. The number of S
target atoms per unit volume in MnO is on the order of N = 1022 cm 3,
which translates into an energy loss per unit length NTS ~ 9x10°8

eV/cm. If the distance travelled by the ion is LR ~ 0.8 um, which is -

the minimum necessary distance needed to get the ion completely

excited into the n=3 states, then the total energy loss is
§E = NTSLR* 50 keV. The relative decrease in speed is given by
§v/v = SE/2E ~ 4x10-2. These numbers show that the constant velocity
assumption is not too bad, in the sense that the error in velocity is
on the order of 4% per Rabi cycle. We should point out these are bulk - - -
estimates, and are therefore likely to be much larger than the
corresponding surface rates. As the ion slows down, w3] and W become
detuned. 1In terms of the stopping power, the detuning from the pump
frequency is given by
vN LRan |

2E (2.39)

(>
1

k §v =
n

Estimates of ha,; and ha; are given in Table I.

Another important assumption in the above discussion is that Be*3 ;
ion remains Be+3 inside the material medium, that is, it keeps to its
original charge state. There 1is some conflicti~a opinion and evidence

on the states of an ion or atom while it travels inside a solid

....................................................................
..........................................................................
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material [23-27]. The projectile may lose its original electron and ¢
be completely stripped, or it may capture electrons, losing them only
while leaving the solid material [21]. At any rate, the charge states
of a projectile may not be entirely determined. 1In view of this *
situation, how reliable is the above assumption and the consequent
analysis? There are three possible answers to this question. First,

e

the charge state of the ion is clearly dependent on the ion speed. At
low speeds the charge state appears to remain unchanged with
relatively high probability [24]. One can, therefore, reduce the
ionic speed by matching the relevant ion transition frequency to a
higher harmonic of the material fieid. There is probably some trade
off point in this procedure, since the Rabi frequencies of the higher
harmonics of the material fields are lower, leading to larger energy
losses. Second, even for swift ions, the ion spends some of its time
inside the solid in its original charge state due to repeated capture
and loss of electrons of the medium. From the cross sections for
electron capture or loss [14,28,29], one can estimate the probability
of the {on being in its original charge state, and accordingly find
the expected values of the desired quantities from this probability.
This picture of ions being partially in their original charge states
is supported by the correlations observed between ions and a coterie
of electrons that are emitted secondarily [30]. Finally and third, in
the treatments of the Okorokov effect, one uses the picture of the

projectile being in its entry charge state {7,10,11]. One then
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v calculates the probability of excitation of the projectile as a
function of its speed. The model apparently works, and there is a
iE fair agreement with experiment [12-14].

The cross sections for the electron capture and loss are on the
order of o_ ~ o, ~ 10719 cm? [14,24,28]. The target mobile electron
density for MnO is on the order of N~ 107 em~3. It follows that ¢
the probability of the ion changing its charge state is roughly
(5. + 9,)N,L, ~ 107 ° per half Rabi cycle.

III. GAIN FOR THE X-RAY SIGNAL

In order to calculate the gain for the signal field, we follow
] the well known procedure used in traveling wave amplifiers and free
iw t

S

Fi electron lasers {31]. We calculate the transverse charge current e
density of the ionic electrons which oscillates as e , and

substitute it into the wave equation. The wave equation yields a

dispersion relation which requires either temporal or spatial growth.
The latter yields the small signal gain for the X-ray signal.
The n=3 > n=2 transitions cause a particle current density that
is given by
—lw.,,t

k4
.0 he °° * 2
Jy(ks:'t) = = zzmz,m,CZZm(t)Py(ZKm;ax’m'IO)c3£,m,(t) . (3.1)
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It follows from (2-29) and (2-35) that the component which oscillates Lo
iw_t L
as e ° is T
- 'Y
3 .22 4
j(s) - e hy Bo's‘le 1 . 1
y 45 + -2 2 i,
- mc (Q-0)7k + ils Q ~w  +w_+ ——
n Q -w-2+w + 2 2 2 °
(3.2)
1 where .
. [
4 s T0ttmt
D, = ngﬂ'm'Mm,,Py(Zlm;oﬁ'm' IO)Py(oﬂ. m'';22m|0)
] e
x Py(sz-m';1oo|-kn:)Py(1oo;3;"m" Ikn:) ] (3.3) o
] .
Using (2.24) and (2.36), D; becomes C
D, = == [n (F, (5007 + ny(F (5 N7 3.4
. js(s) is the transverse current density of just one ion. If there are
* Ni ions per unit volume in the ion beam moving with velocity v, then °
the total transverse charge density component is given by ejv“ﬂNi. and e
the wave equation becomes S
’ °
) .

)

P
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‘ o
[32 1 32 |+ s . 47re;\4'i (s) iksz -iwst . .:-f___]
— - = A = -y [—— j e e 3.5 RS
laz2 2 a2} S © )y (3.3 - i
-4 a iks: -iw t - . ‘

where A s = yAse e ° is the positive frequency component of the

signal. Performing the indicated operations in (3.5), one obtains the
dispersion relation - A
J
-]
'»}' 2 4,22 4 . r, r, P
_ 2, wo  4me WYTB(N.D, I A I S ]

- == - . 2 2
s 2 .
c
4 44 + -2 + 2 1.2 - 2 1.2 )
moe k(=207 5 (@ ugre )T 375 (R —wgarug) ™+ 373

w— _‘,'_‘.4
LA
(3.6) 2
.:::‘
=Y
v.~-~1
R
For an amplifier, one lets the frequency be real but allows the 5 =
e
wavevector to have an imaginary part in order to determine the growth S
or the decay of the signal in space. Thus, let .f
]
Ys - 1
k=== - ig , (3.7) Co
s ¢ :
Here a positive g means that the signal wave grows as exp(gz) and thus - ‘:}
g is the gain due to the jions moving with velocity v. g is generally lﬂ
RS AS
quite small compared to . /c: therefore, RN
L T
‘ -
)

.v?‘—-r—rv —
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-
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) 4
* 2 W wz w ¢
2 Y os S 2 S . S .
. ks =5 - 2ig - g™ = :7 - 2ig el .
W; ¢ (3.8) 4
k- 1
R
. 4
- ®
and
i
4 2 2 4 T
\ T ]
L - mihe Y BN, Dy 2 . 2 ] ] o]
4,23 + -2 2 1.2 - 2 1.2 *. .
4 wgm ke (@ -0 ) (Q+’“3v*ws) * 37 (2 ~wgyrw) 3 Ty (3.9) :
f - e -
i
: . 1
K_ In the limit T, > 0, the terms bracketed are reduced to a pair of - 4
® )
: delta functions:
"
2n%hey BN D .
g= [6(9 -u3,+ws)+6(9‘-w3 +ws)] . o
4,23 -2 - : B
wgm knc°(a*-a ) (3.10) el
PORIRNE
R
In an ionic beam, ions will in general have a dispersion of ;‘fi,i
- 4

velocities around an average velocity voi. Ions moving with slightly L
different velocities will be differently tuned to the material field
and contribute to the overall gain with different strengths. Assuming Sl

that the beam of Be* has a narrow Gaussian distribution of velocities

-~

in the z-direction described by

’ el

"
L 1 ' (v-vo)"-
Di(\) = er exp - . J ’ (3.11)
av”

the net gain is given by

aa e e et T e e I SRt LT T ST SRR . PR ST S .
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;; B pgs £_4v 800 83
[ -0
. (3.12)

where we have multiplied the average over the velocity profile with
P.s = the probability of the Béaion being in the charge state +3
(roughly 0.5). 1If T, < knAv, one can use the simpler form of the gain -
given by (3.10). The integral in (3.12) is then readily done and one
finds

2,4 2 2 4

5 dn"He 'y BONiDlpCsoi(Vt) i 1a
- 14
k3mie [(w_—w,,) 2+ oo
WgtpMm € WsT¥32 R

where v, is some tuning velocity given by -

W TWsy QR Wsq - o
v = - + == . 3.14) RS |
n(wg .32) kn (3. S

Ol

The expression (3.13) for g can be put into a more recognizable

form in order to compare it with the usual small signal swept-gain

[8]. Define an "effective" Einstein A-coefficient -

v T
e ‘T"
9

2 2 2 {

_ 29stest _ T2 eidiees =
Bore™ 3 ! Hefgse™ D (3.15) R
3Hc mw32%p .

and the Doppler broadening half-width

St e
.
AR b nih

(3.16)
AwD=(knAv)2/Kn2 . R
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(3.13) can be written ' .
3 ,2n2,1/2 .2 A ff Q; (k_v -w0)24£n2 E
=_ 3 (£n2 e . ‘
9= 3 ( . ) As (AwD ) Nl [ Z 2] exp[- nt n 1, ®
- 2
(ws m32) +QR (AwD) -
(3.17) o
¢
where wno- anO' It is seen that (3.17) differs from the usual gain 1
expression in two ways. First, instead of the usual population . l
o
inversion factor AN = N -N . (3.17) has a density factor 4
excited ground

that refers to the total density of the ions modulated by the Rabi
frequency and the detuning Ofus from w.,,. In other words, the entire
collection of ions participate in the excitation and emission
processes. This is the origin of the phrase "coherent excitation."
Second, (3.17) has a Doppler factor that has complicated ws—dependence
and goes to zero exactly at woo = w3 Thus the following

correspondences exist when compared with the usual gain:

(k v.- w))? 4en2 2
n t n - S
exp [- n - exn [— ((A)S UJ32) 4Cn2 . .
2 ) )
(dwy) (AwD)2 o
. k
Q2
)
N R 3.18
* : 2.2 ] ” (Nekcit a~N ) . ( )
(W =w..)%+0 : e ground R
s 732 R ®
. ” :_:.f \
SN
BRI
A
¢ :
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The fact that the excitation is coherent is quite important, since
essentially all ions in the beam contribute to the gain and the
question of population inversion does not arise. Instead, the
qguestion becomes one of tuning relative to the Rabi frequency, which
determines the effective ion density that contributes to the gain.
Since this tuning should be achieved with relative ease, coherent
excitation has a significant advantage over the conventional
incoherent excitation of a laser medium.

An interesting feature of (3.13) is that the gain scales as some
frequency detunings per unit Rabi frequency, and the maximum possible
gain is independent of the size of magnetization. To be precise, we

can normalize the ion beam density to N, = 10!% em 3 and write g as

2.2
N, v (1-88 _-6%)
- i 0 1
g=g, (= ) (=) (———) egp[ - 1% , (3.19)
0 Nio Av l+52 2 2 ]
w' s
where
3/2 2 4
47
94" i AN oP1Pcs
2 2 ' | 3.2
" VOcknwsDO (3.20)
6=(ws-w32)/QR , (3.21)
= - (3.22)
6p (m3l knvo)/QR ,

......
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and
w=knAV/QR (3.23)

As seen from Table I, g0 ~ 107" em~! for low harmonics. Due to
slowing down of ions, one can expect ¢, to be on the order of An/QR
which is a number generally larger than 10. Because of the factor
(vo/Av), it is desirable to have as small (Av/vo) as possible. By
pushing to the limits of the present ion beam technology it is
possible to get a high velocity resolution on the order of

(3v/vy) ~ 10-5. w is then 0.04 and 0.15 for the zeroth and first
harmonic frequency matching, respectively. Clearly, the maximum gain -

is obtained when § is approximately given by

__ 1, /1,2 1 R
§.=- 3o Vsl =3 (3.24)

which makes the exponential factor unity. For § = ém,

N. v 8§ + 4+62 »é
J=g.( =) ( =) ( 2 ) 3
%00 Ny A 2/3+5? SRR
P 3
N v 1
0 1

=g, (5= ) () (- =3 *

“i0 8o (3.25)
Thus, for N, = 10'* cm ® and AN 10°°, g ~ 10 cm ! which is a ® J

significant gain. Note that the gain is confined to a narrow tuning
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f
' range between W and ,,.. Near s the exponential factor can be
< m
expanded as
4
| 8 _
1,2
expkl—-% ( 8- g) . (3.26)
w P

r It follows that for § - Gmr»(w2/5i) which is on the order of 10~ “ or -
1

less, g is substantially reduced.
IV. CONCLUSION

With slight modifications the preceding analysis applies to
non-hydrogenic ions and neutral atoms. We therefore conclude that
ion-antiferromagnetic surface scattering is a promising and quite
general scheme for X-ray amplification and X-ray lasers. - -

Note that for Ni = 10l% cm~™3, the charge current density of the -
ions is ]e]NivOZ ~ 6.5x10% amp/cm? for v=10° cm/sec. Or in terms of

)

the power contained in the ionic beam, Pi - @NiMionv3 A 9x10% MW/cm2. -

Clearly, in an actual experiment, the particle beam would have to be
pulses of a nearly neutral plasma beam. L |

Admittedly the beam densities required to achieve g ~ 10 cm™! are 1
high [32]. However, presently there are sources for Li ions that can

yield such high densities [33]. Furthermore, ion beams can be focused

PN oo
OV
‘o daAas "

on the surface to obtain high densities [34]. The experimental ;,"‘

difficulties may lie with combining a high velocity resolution with

high densities. ".:Qiﬁﬁ
Another possibility is to increase the effective range of . \

interaction L ce between the signal and the excited ions. The actual .
ett --
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[ S
amplification of the signal amplitude is given by e ‘'’ If L .. is
sufficiently large, much smaller g can be tolerated to obtain
significant signal amplification. L can be increased in a storage

eff
ring configuration, where both the particle beam pulses and the X-ray

signal repeatedly scatter from surfaces that are placed in a circular
fashion (with a large radius to allow for grazing angle scatterings).
Between surface scatterings, the velocity spread of the particle beam
can be adjusted by means of external fields.

Finally, the preceding analysis shows that the antiferromagnetic
surface scattering is an extremely efficient pump mechanism to create
an inverted population. QR which determines the rate of production of
the excited states is four to five orders of magnitude larger the
radiative lifetimes of the relevant excited states.
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FIGURE CAPTION

Fig.l The schematic of the antiferromagnetic surface scattering.
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We show that a sizable electric dipole moment can be induced between the *Z; and 'a, states of
O; when oxygen is placed in an environment of particles with spin +

1. INTRODUCTION

In diatomic molecules formed by the group-VI elements
(e.g., 02,8;50) and by a combination of group-V and
group-VII elements (e.g., NF,NCI,PCl), the spin selection
rule AS =0 leads to highly metastable states which can be
very useful for high power laser systems. A particularly
well-known case is the A state of oxygen molecule. Ow-
ing to spin and parity symmetry, its decay to the ground
state ° Zx is highly forbidden with spontaneous decay rate
2.6x10™* sec™'.? This fact is used in oxygen-iodine
lasers to store the energy in the 'Ag state of O,, which is
then collisional]y transferred to atomic iodine via the reac-
tion 0,('a;) +1(2Py ) —0,(°2;) +1(*P, ;). Radiative
emnssnon takes place on the iodine through its decay back
to *P,, which is a magnetic-dipole-allowed transition
with a Spontaneous transmon rate 7.7 sec™'.> The fre-
quencies of 'A,-'3; and ’P,,,-'P;,; transitions match,
which makes |t possible to resonantly transfer energy be-
tween O, and 1. In practice it is difficult to find such
matching partners for other metastable systems which
might have applications to high-power lasers. For this
reason, as well as to avoid losses involved in collisional en-
ergy transfers, there has long been an interest in obtaining
radiative emissions directly from the excited metastable
system itself. To achieve this it is necessary to break the
various symmetries of the metastable system. For in-
stance, the parity symmetry can be broken by applying
static electric field or nonresonant radiation, or by means
of nonresonant collisions with another molecular or atom-
ic system.*~% On the other hand, breaking of the spin
symmetry requires application of either spatially varying
magnetic field as in a Stern-Gerlach device, or a direct
spin-spin coupling to another system.

In this paper we consider the latter possibility for the
singlet oxygen, where the electrons of O, are coupled to a
set of external spins through their internal magnetic mo-
ments. This situation can be realized by putting O,('A,)
in contact with a magnetic surface as discussed in Sec. IIl.
By means of a simple perturbation analysis, we show that
both parity and spin symmetna are broken and that an
electric dipole moment is induced between 'A, and %/
which is on the order of 10~2 D. This implies a spontane-
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ous transition rate of about 10? sec~!, which is nearly 6
orders of magnitude larger than the corresponding rate for
isolated O,.

II. INDUCED DIPOLE MOMENTS

Consider the situation illustrated in Fig. [. To simplify
the problem, we take into account just two of the valence
electrons of O,. These electrons are coupled to spin-+
particles at sites R, (A=1,2, ..., N} by means of magnet-
ic dipole-dipole interactions

V=2gu} 2 2

—[35,-(R,—X))
=1j=12 |R1—x,| ! !

X 6.1'(]?1—?])
—|R=X; |2&’j-6'A] ,

(n
where ujp is the Bohr magneton, OA are the Pauli spin
operators of the external spins, and g is their gyromagnet-
ic ratio. & and &, are the Pauli spin operators for the O,
electrons. In the following, we assume that the external
spins and O, are fixed in space and ignore all other in-
teractions between the two systems.

To first order, the perturbed states of the combmed sys-
tem is given by

gy (a' MV ]a M)
Ia,M) =[ayM)+ ayM) ’
Y 2 E,+Wy—E,—Wy
MM
(2)

5 -
A1

b

FIG. 1. Diagram for the notation of the coordinates.
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where {a,M)=|a>® |M), |a) and E, designate the unperturbed states and energies of O,, and | M) and W,,. the
unperturbed states and energies of the external spin system. Each M refers to a set of N parameters,
, |M)=]|s.53 ...,sy) where s, can take on only two values +1, corresponding to spin up and down at the Ath site. It
;_. follows from (2) that the induced matrix elements of the dipole moment operator D°P= —e (¥, + X,) are
. , , ,M ~ op u’ ”M V ’,M , n“ II,‘ = op I"
Va1 D7 0 M)y =byy 3, [{2MIBTNC MM VIS M) | (aM |V a"M)lal.M Do M)
a” e La” a —Lg”
(3)
. Because of the form of the operator D, the sums over the intermediate states can be performed in an approximate -
way as follows.” Let us define
.- (a,M |V |a"M)(a" M lexpl —i(E,'T1+E;T)]|a’ M)
S<§u§z)=2 14 = PI[; Eirti+£, 1] ’ (4a)
a” a— La”
' . (a,M |exp[ —i(&, T+ &y T)]|a" M) (a" M|V |a'.M) -
(N T(§|,§z)=2 | exp( E1Ti+6,1)]| |V , (4b)
a” Ea'_Ea"
such that
'. N | I T
. y(d,MlD ‘a,M)v—-~le — 4+ — (S +T) (4c)
° 9§, a¢&, £1=5,=0
Let us also define the operators F and G such that
{[F,Hol+(E,—E,)F)|a") =exp[ —i (£ T1+ EyT]|a’) , (52)
: (@ | { =[G, Hol +(Ea —E;)G =(a |expl —i (&' Ti+ £ T, (Sb)
E where Hy, is the unperturbed Hamiltonian of O,. One then has S =(a,M | VF |a’,M ) and T =(a,M ]@V la', M). To N

evaluate F and G, we assume that they depend only on position variables. This approximation permits us to replace H,
in (5a) and (5b) with the kinetic energy operator (P 2/2m + P 3/2m) of the valence electrons. F and G are then readily
evaluated in the plane-wave representation, and S and T become

Sk L KX LM | 77K =K K=K 5) [ MOX o 1,2)0,4K 1 + ELK 3+ &)

“ 3

— — — s (63)
- =, o, (k)2 (k;+&;)?
T A —Eo— i iTSj

: Fortar j=2:.z 2m +i=21.2 2m ]
: - s e (ki — £, Ka— EXS(1L,20(M | 77K, — K 1, Ky = K 3) | MOX,(1,206,(K 1, < 3) ) 1

; TLELELE: (K;— £, (K,)? ' ‘

i kpkykjk) E.—E, + J i ]
?. e e j=21.2 2m =2 2m b
: Here 77(K, k) is the Fourier transform i
» 3
. 7,.(i(‘l’l‘(’z)___ fd.x.ld_xze—l(k|-x|+ kpxz)V(i.h,x,z) 4:
10mgu3 ~iT, K 51K (G k)
_ 10mgus S (5. qe it R, G4_;_(_&_3(_01 1—). gk
O 3k ]
ST R L {(Frk)EKY
+6L7 b.e ik R, 52_01_3 g3 2_. ’\ 2 (7a) E
" lkai” !
We also separated the O, wave ‘unctions into spatial and spin parts as in ¥,(X,,X;)Y,(1,2), and ¢, is the Fourter j
transform of ¢,: T
,'_-4
$alK K= [dRdRe Ty 5 %) (7o) -
It follows from (4c) that 1
1
e el e e e e e T e a a et At P I e aaia A i » P P W W P | A tad




2_9 MAGNETIC SURFACE-INDUCED SPIN-FLIP TRANSITIONS IN ... 137
.,<a,M|l'5°"|a',1w)y=—~ﬁ—2 T (KK ek =Ky Ky — KK +k3)
m(Ea —Ea') -i- -k- e —ko,
rr2E 1R
XXIL,24M | 27K\, K,) | M)X,41,2)] - 8

Now let a be the state 'A, with M; = +2, and a’ the state ’S;” with Mg = + 1. The O, wave functions for these states

are given by'!

'IIJ =Ty (Xl)TT‘ (Xz)
x,=7E[x+(1>x_(z)—x_(1)x+(z)] ,
¢,-=—‘/l—i[1r:(ii)1r;(i°z)—1r;(i|)17;(1'2)] ,

X¢'=X+(1)X+(2) »

(9a)

(9b)

(9¢)

(9d)

where 17,"(3(’) are molecular orbitals for individual electrons, and X + are the electronic spinors for spin up and down. A

straightforward algebra then yields
D=y ('ap .M, =2;M | D®*3, Ms=1;M),

iTSeguif?
" 32nrm(AE)?

where AE =E, —E, is the unperturbed energy difference
and €. are the complex vectors €,=X+ip. The matrix
element (M |0y, |M)=s,. m;(X) can be written in
terms of the n =2, =1, m=21 atomic orbitals p.(X)
as®

73 (X)=p+(X—F)—p,(X—b), (1
where @ and b are the positions of the oxygen atoms. To
obtain an &sumate for (10), we first simplify (11) by ap-
proximating 1r, with

n;(x):-—-r,,,-th(X') R (12a)

where r,,,—a—g is the internuclear distance of O,.
Second, we assume that external spins are relatively far
from O; and use the expansion

[12(R X)12— R2x2]
R8

(12b)

Using Egs. (12a) and (12b), the integral in Eq. (10) can be
readily evaluated. The result is somewhat long; however,
it can be simplified by taking an average over the orienta-
tions of the molecular axis (i.e., over 7, ), and also over
the orientations of the external spins (i.e., over ﬁ;' ) if Nis
sufficiently large and the spins are distributed around the
molecule. One then finds

— i 75eguifitr
(DY~ —EHBT Tab (3 +z)2sA

3 (13)
14rm (AE) Ry

The sum in Eq. (13} can be replaced by an expression
which involves the probabilities of finding the spin up

zwlahw)—k— [ dz(=} )

Ry
_____‘+"‘ Mo, (10)

|X~Ry|*

r
(P, ) or down (P_) at a given site, and a structure factor
for the external spin system,

S A (P, —P_ )2—’0—5 ~P) %z, s
x R R3 ro

A

where ry is a scaling length such that 7o=10"% cm. Z
may be calculated in a similar manner to the calculation
of a Madelung constant. For an order of magnitude deter-
mination, however, one may replace the sum over A by a
three-dimensional volume integral, and Z is approximate-

ly given by
3
? ] ’

where r, is the average distance between two spin sites
(hence r, is the smallest length in the set {R;}). For
many magnetic materials r,/ro~2.° Setting g=2,
AE =1,eV,and r,, /ro~1.5, we find

417

~3 (15)

zZ= E

RA

DN =(3x107? debyeli(3e_+2NP, —P_). (16)
In other words, the induced moment is on the order of
10~? debye, and the induced spontaneous decay rate is on
the order of 10% sec™!. Furthermore, if the perturbed O,
is in a Jaser field of power p, then its Rabi frequency is

«DYE D [4mp |
A . 1T -
===~ —;P- ~10°sec™!, (17

for p =10" W/cm?.
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III. CONCLUDING REMARKS

It is clear from the preceding discussion that if the
external spins have no preferred direction and are com-
pletely random, the induced dipole moment vanishes
within the approximations made above. In order to obtain
dipole moment between 'A, and 32," states, the singlet ox-
ygen must interact with a collection of particles which has
net magnetization over some finite volume.

The best way to establish contact between the singlet
oxygen and a magnetic surface may be by means of
grazing-angle scattering. We have in mind the situation
in which slowly moving (v~ 10°—10° cm/sec) singlet oxy-
gen molecules scatter from a ferromagnetic surface at
grazing angles ( < 1°), and the stimulated emission occurs
while molecules are in the vicinity of the surface. This
type of scattering permits maximum exposure of the
metastable molecules to the localized spins of the magnet-
ic material, and minimizes the damage to the surface.
The same surface can therefore be used repeatedly.'®

An important advantage of the above scattering scheme
is that it cuts down on possible chemical reactions be-
tween the singlet oxygen and the surface by restricting the
duration of the contact. In chemical reactions between
the singlet oxygen and the ferromagnetic materials, the
quenching rate kg is typically 10® mol~'sec='.!! Let us
consider a single O, molecule and assume that it follows a
straight line trajectory on the surface with a constant velo-
city v for a distance I. Let o, be the effective cross-
sectional area of this molecule. The number of effective
moles of the material atoms that it sees on this trajectory

is oolpy /N4, where py, is the number of atoms per unit
volume of the target material and N, is the Avogadro’s
number. Thus the overall transition rate is kgoo/py /N4.
Since the duration of the interaction is ! /v, the probability
of quenching is given by

kQUQIsz

N, (18)

pro~
on the basis of this simple model. Taking N, =6x 10%,
[=1cm, g5~ 107" cm? py, ~ 10* atom/cm’, and v ~ 10°
cm/sec, one finds that prg ~ 10~'", which rules out chem-
ical quenching.

There are, of course, other types of quenching mecha-
nisms, such as electron pick-up or electron loss by the
scattering molecule, exchange of the molecular rotational
energy with the surface, etc. Furthermore, the surface
may partially be demagnetized as a result of the scatter-
ing. However, we do not expect these processes to alter
the order of magnitude results presented above. We con-
clude that the scheme proposed here appears to be quite
promising to obtain an oxygen laser. More importantly,
the scheme may be used in obtaining lasers from other
metastable species for which collision partners are not
known at the present time.
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field are small. When this is the case, Egs. (1)-(3) may be
linearized to obtain

3Kz (z,7tg,mp)/3z = Ky (z,1q,ug) (7)
* inZ
Ky (z,1g,u0)/9z = KA, e Es(z,r) . (8)
‘iUoZ
aEs(z,T)/az =.iD A, JdUOJ(TO»UO)e . Ka(z,To,m0) - (9

Kz = -(1/2n)£d90 exp(-164) 88 and K; = -(1/2n)Id80 exp(-i8g) (¢ - ug)
are respectively the density and energy bunching amplitudes. We
expect the FEL to saturate when [K3| becomes comparable to one. The
initial values of K; and K; are zero.

If there is no inhomogeneous broadening, we set
I(To,Hp) = I(Tg)8(Hg). Then Egs. (7)-(9) may be solved by Laplace
transforming in z to give

E (z,7) = ES(0,T)

A
. fdz' L Fo(xE (0,7 -2"/2v2¢)
0 (10)

where Fg(x) is a generalized hypergeometric function given by the
series expansion

* 1 n
= § —
Fo(x) oAt - D L)

and
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T-2 /Zysc 7
X = iKD[A1122y§cz'2 Jdro I(tg) d
. r-z/2y§c (12)
Equation (10) expresses the field at position z as the sum of the
incident field at time 1t and an integral over the incident field at . @

earlier times. We see explicitly that coherence cannot develcop in
one pass over more than the slippage time L/2y§c, where L is the
wiggler length. This is true also in the strong-signal regime. In
other words, an FEL operating without mirrors by ASE cannot be
coherent over more laser periods than there are wiggler periods.

In the case that both the current and the laser field are cw we Y
put Es(z,T) = Es(z) exp(iZchibt) in Eg. (10) to obtain

z 1 -iugz!
E (z) = E_(0)[1 + f 2! = FpliCz'?(z - z'))e 1, (13)
0 ®

where C = xD|A, |2I. Since the power series (ll) is very rapidly
convergent, the field can generally be calculated accurately by
keeping only a few terms in the expansion. Only the first temm is
needed to obtain the well-known antisymmetric small-gain formula with

peak gain .27 CL3 at ugL = 2.6. T e
An alternative approach to cw theory is to drop the dependence o
on t and 14 in Egs. (1)-(3) and (7)=-(9). In this case we take J(ug) S
to be centered at ug with width U. That is, the detuning Wy from n
resonance is included in J rather than E.. If we define the o
normalized distribution £(ug) by d= If, then Egs. (7)-(9) become 2
e

]

dKz(z,u0)/dz = X} , (14) ]
. iugz -E;;
dKy(z,u0)/dz = kA, e E_, (15) i

- o ]

. - h

’ ,

’_ . - N ‘-\

r -iug:z 3 .:.~;ﬂ,1

dE_(z)/dz = iD A1 Jduof(uo)c Kr(z,ug) - (16) T

"t 9

. -

o

»>‘~1

® !

.

o :1

----- - <4

o T U I R I TR, . ':5.'7-5':\_';1‘"&'.;(;'.;_' RO S ¥




- L‘A_L.I;LAJ

: D.5 !
P There equations may be solved by Laplace transforming to give B
L4 1
\' 1 ari= 8z _ :::,‘a‘:-j
3 Es(z) = 577 B (0) I a_iiﬁe [8 - ic Jduof(uo)/(ﬁ** ing)217Y, A B
- where the contour is to be taken to the right of all singularities. ® %
The simplest case is where f(ug) is a Lorentzian,
o 1 ]
f(ug) = U — . (18) [ |
' 1
Then the integral over uy in Eq. (17) gives (B + ing + U) 2. We may
L close the contour integral over 8 around the three poles at the roots ) 1
B; of the equation ° {
| — . .
' B(B + ipg + U)2 = iC (19) T

L]

L ]

i
A

and evaluate the integral to express Es(z) as a linear combination of

the three exponentials exp(Biz). In the case U = 0 it can be shown o
that this solution is equivalent to that in Eg. (13). In general at TR
most one of the three roots has a positive real part, and the BOURASE
corresponding mode will dominate near the end of a sufficiently long -
wiggler (unless saturation sets in first). The detuning giving
maximum growth of the unstable mode is up = U/3’%. The gain is
greatly reduced if U R Cc%. 1In the case that U << C"3and Uy = U/31/'-’
the three modes contribute about equally at the entrance of the
wiggler and the gain in the limit of very large gain approaches

i'. AN
P . .

1 RERI :
G=g5exp[(3CT- zUL] . (20) °

-

ha il

Graphs showing the dependence of 2Re(8) on wy and U may be found in
Reference 4. The condition that the FEL saturates when K, = 1 can be

b . : " = 2 73 1
b used to infer a saturation power Psat (I Ai/4kq) (c/cql)%s.
5 SEMICLASSICAL FEL GAIN R B
When electrons emit a laser photen, they undergo a recoil .;'_‘_-_.‘Z'. '..‘_:
‘ SE =f\ws. If we let the recoil in energy detuning units be 2q, we RN,
}; see from Eq. (4) that et
@

E - . R . . -
e ot at e . e PR LR P T AL P - - P S SR AR R
e PO, a A A AN Tk ar Ay T D AT AL U DI U D D S, S S S S U . A Sk SR Vi Sy S Y T S S e N A T A Y




g

PP T o - T Ty

= B2 3
q hks/ZMcys . (21)

If 2q is comparable to or larger than the homegeneous broadening /L,

then the classical gain formula becomes incorrect and seriously -
overestimates the true gain. The quantum recoil can be important for

an electromagnetic wiggler at infrared wavelengths. 1In this case ¥

is typically < 50 and @ - 1 is small. Note that L for an 1
electromagnetic wiggyler is only half the wiggler pulse length (L = 5

cTy), since the wiggler pulse and the electrons pass through each —_
other. The product 2qL may be written as

T (nsec)
2qL = 5827

% 2
[ (m) 1*[A  (R)] (22)

As an example, for a CO, laser pulse 1l nsec long used to generate
radiation of A, = 100&,"Eq. (22) gives 1.67.

It has been shown by Renieri-® that the condition 2gL > = implies
that the quantumn-mechanical spreading of the wave packet describing
the electron is larger than the laser wavelength. Ths is another
irdication that a quantum-mechanical treatment of the electrons is
reguired. '

We present here a semiclassical theory of the FEL in which the
electrons are described quantum mechanically, while the field is
treated classically. This approach accounts satisfactorily for the
quantun recoil but (as in Lamb's semiclassical theory of the laser®)
. ves not include the noise needed to produce laser start-up when no
laser field is initially present. In the laboratory frame the
semiclassical theory can be developed by coupling the Klein-Gordon
equation for the electrons with the Maxwell equation for the field.
An equivalent approach is obtained by recalling that 8 and u are
proportional to the position and momentum of an electron in a frame
moving at the speed of the pondercmotive potential. In quantum
theory these become operators 8 and u whose commutator is

[6,2] = 2iq . (23)

Restricting our attention to cw operation, Egs. (1) and (2) become
the operator equations

-~

do/dz = u, : (24)




LR E gl ge ~wa e an o

-

- * i6
duy/dz = -K[Ai Es(z)e + c.c.] . (25)

We consider here only the case of a uniform wiggler, so A; is
constant. For a wiggler field which is a high-~power Gaussian beam,
the wiggler is effectively tapered by the slowing of the electrons in
the vicinity of the beam waist." This is an important source of
additional homogeneous broadening if the pump laser power exceeds
Ten m2c5/2e2 = 1GHW.

Equations (24) and (25) may be interpreted as Heisenberg
equations of the "Hamiltonian"

H = % u2 - iKAi* fsseié . iKAiES* e'ié (26)
with the following rule for the evolution of operators:

3A/3z = (i/2q) [H,A] . ' 27
Similarly the Schrddinger equation for state vectors becomes

H|y> = 2iqd]y>/dz . ' (28)

This formulation is equivalent te nonrelativistic quantum mechanics
in the moving frame. The semiclassical generalization of Eq. (3) is
obtained by replacing the averages on the right side by the quantum
expectation value, yielding
-6

dEs(z)/dz = DAiI tr(pe ) ., (29)
where p is the density matrix. If we assume that the initial density
matrix is diagonal in the u representation,

p(ug,up) = £(uglS(ug ~ 1) , (30)
we can use first-order perturbation theory to obtain a quantum

generalization of Egs. (14)-(16). It turns out that only Eg. (15) is
altered. It beccmes
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dky(z,ug)/dz = xA, e E_ - q?K, . (31)

If f(rg) is Lorentzian, the cubic dispersion relation (19) is
generalized to become

B((8 + iug + U)2 + q2] = iC. (32)

We show in Reference 4 that the quantum recoil acts to reduce 2Re(8)
for the unstable mode below its classical value, as well as to reduce
the range in Hg over which there is an instability.

For the case of small gain per pass, the gain can be written
quite generally as

2
sinugL/Z]

G = C‘%E Jduo[f(uo +q) - f(ug - Q)][

ug/2 (33)

If 2q is very small comparsd to either the homogeneous broadening m/L
or the inhomogeneous broadening U, then G reduces to its classical
value. The condition U < 2g is rather restrictive; it is equivalent
to the condition that the energy spread of the electrons be less than
hwg. For 1008 x rays this is less than 1 keV. Even if low energy
electrons are used (as would be the case with an optical wiggler),
the relative energy spread needed to produce quantum modifications in
the gain would still be less then .01%. However, even in the regime
U > 2q, if 29 > /L, quantumn effects should be manifested, for
example, in the statistics of the emitted photons or in the electron
energy distribution at saturation. When 2q > /L, one expects the
FEL to saturate when one photon has been emitted per electron.

The validity of first-order perturbation theory depends on the
smallness of the product of the interaction energy with the
interaction time divided by h. In terms of the Hamiltonian (26) one
requires x|AiEs|L < 23. Substituting for the values of x and q, this
becomes (e<|AjEg|/2Mcyshks)L < 1. For an x-ray FEL (in contrast to,
say,an infrared FEL) this condition will hold for relatively large
laser intensities (Eg of the order of 10°V/m with an optical
wiggler), making first-order perturbation theory appropriate to deal
with at least the small-signal regime. 1In the class:cal regime
(2L << @) it turns out that the gain predicted by perturbation
theory is correct even for conditions where perturbation theory would
be expected to break down, but it remains to be secen whether this is
true of the quantun regire.
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Further discussion of the quantum regime for an FEL with an
infrared laser pulse as the wigglez may be found in Reference 4,
where nurerical examples are given for which the gain per pass may be
as high as 40% at S, 7A.

CONSTRAINTS ON A LONG-WIGGLER X-RAY FEL

One can anticipate that the extension of FEL operation to x-ray
wavelengths by using high-energy electrons and a long conventional
wlggler will be a gradual and evolutzonary one, in which one builds
on the experience gained by previous experiments at longer
wavelengths. Electron beam quality appears to be the greatest
problem, although there are also difficult problems in resonator
optics and wiggler construction. For soft x-rays storage rings
prov1de an acceptable beam quality, and exper1ments using a storage
ring to drive a 100A FEL are being planned. Below about 60& the
storage-ring approach becomes untenable because of the quantum energy
spread in the electron beam induced by synchrotron radiation in the
ring.*’? 1In principle one could get a better quality beam at high
energy by using a linear accelerator, but suitable accelerators have
not yet been built. It appears that rf linacs give too much energy
spread, but induction linacs may offer a possibility.!d

We now list several constraints on the operation of a high-gain
FEL, referring to a numerical example from Reference 4, the
parameters of which are summarized in Table 1. Many of these
constraints may be expressed as limitations on the length L for which
a cold-beam classical one-dimensional gain calculation is correct.

Table I Parameters for a 5 & X-Ray FEL

Quantity Symbol Value
Wiggler wavelength Aq 3.2 am .
Magnetic field - B 24T
Mass shift A 1.512
Laser wavelength As 54
Electron energy E 3.554 Gev
Current I 10 A
Laser mode area z .16 mm?
Wiggler length L 276 m
Gain G 1000
Saturation power Psat 1.7 M.
Slippage time L/2v > 1.44 x 10 l"sec
Characteristic gain length 3c™ s 30.29 m
Filling factor .
Electrons per laser wavelength I\xg/ec 104

A. Reciprocal quantum width: 7/2q = mMcyg 3/Pk“ = 11.5 km.
Since this is >> L, the device is ccmpletely claqslcal
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B. Diffractive spreading of laser beam: Rayleigh S
range = /A, = 320 m. This is of the same order as L, so diffraction
is a significant effect.

C. Reciprocal energy spread: 1/U = (A,/4nm)(E/SE). 1If we take
the energy spread 6E to be 10keV we obtain 1/0 = 900 m, which is
larger than L. Equation (20) indicates that the gain is reduced from
1000 to 664. The difficulty is whether one can obtain such a small
energy spread at this high energy. This is presently unclear. -

D. Wiggle amplitude: One must check that the wiggle amplitude
does not exceed the assumed cross-sectional dimension of the beam.
In the present case the wiggle amplitude is eBi2c/4n2E = .5 um, SO
there is no problem. a

E. The characteristic distance over which the electron beam —
spreads due to Coulomb repulsion!! is (4comc3Y3Z/Ie)é = 5.4 km. This
is clearly no problem.

F. The characteristic distance over which the electron beam
spreads due to emittance € is L/me. If ve assume that the normalized
emittance e, =~ je is the same as for the Stanford superconducting »
linac, then € = .06 mm mrad (43MeV/3.554 GeV). Then I/me=70 m. - -
This is small enough to be a problem. However, it is a problem which :
should be correctable by placing quadrupole focusing elements along
the wiggler. .

G. The condition that electrons with emittance stay in phase
with the ponderomotive potential imposes a constraint on the length _
of the wiggler. The phase angle change for electrons of velocity —
component v, is U —

L
88 = fodz[kq - k (e/v, - 1] S

L
= | [k. - (k./2v2)(1 + |P - eA.|%/m?c?)] ,
J'O q S 1 (34)

where P is the transverse cancnical momentum.

Since kq - (k§/2y2)(l + e?a?/m%c?) = k; - kg/2y%= 0, only the
tems P - Aj; and P¢ survive in the integrang. However, P - A; is
oscillatory and averages to zero. Therefore

86 = (ky/3y2) P?/neHL = (k P2/m2DL . (35)

We may relate P to the emittance by
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P2 = (EZ/Z)pi = (e2/8)m2c2y2 = mzczei/z ,

so that if we require |56| < 21, we get [.<Ekq/€§ = 201 m. This is
small enough to be significant.

H. Transverse dependence of the wiggler field leads to
dephasing of electrons which sample the field at different transverse
positions r, Let us assume that the wiggler field varies
quadratically off axis, such that 6A /A = r2/A2. fThe actual
electron motion is rather complicated (betatron oscillations), but we
can get a rough estimate by letting Aj; vary with r in Eg. (34) (now
setting P = 0). This gives |§8] = quS(e2|A§|2/m2c2). If we assume
that e |A1|2/m‘c2 is of the order of unity, which is typically the
case for magnetostatic wigglers used in FEL's, and let the variation
in r2 be I, then |86] = quZ/Aé. The condition [§6] < 27 now becomes
L < Xa/i = 205 m. This is small enough to be a problem. Note that
the length constraint here is proportional to 1/I, in contrast to the
constraints in items B, E, F and G, which are proportional to L.

I. To operate without a resonator by ASE, there must be
sufficient noise to get the lasing started. For conventional lasers
there is a characteristic delay time after which the lasing starts.
For the FEL there is an analogous delay distance. According to
Bonifacio, Narducci and Pellegrini,!2? the delay distance zZ, is given
by the product of the characteristic gainlength 37 % and
(ln|N| + 1), where N is the number of electrons per laser wavelength.
This criterion gives z, = 10lm, which means that lasing should occur
without a resonator, at least on most shots.

A disadvantage of operating without a resonator is that the
temporal coherence is limited to the slippage time, which is only
1.44 x 10~ l%sec for the present example. Perhaps an order of
magnitude increase in temporal coherence can be cbtained by using a
Bragg crystal resonator, simply because of the narrow wavelength band
81 over which the resonator is a good reflector.!3 This will extend
the optical wave packets to a minimum length A%/cé) after
reflection., Nevertheless, it is unlikely that an x-ray FEL can
approach the coherence obtainable by free-electron harmonic
up-conversion of an already coherent laser signal.

In conclusion, it appears that extension of FEL operation down
to the 5 & range will be difficult, but maybe not impossible. It
will depend on experience gained by doing high-gain FEL experiments
at longer wavelengths and on developments in accelerator technology
motivated by FEL applications. An FEL with a long conventional
wiggler is capable of higher gain than one using an infrared
electromagnetic wiggler. On the other hand, the latter type of
device is more compact, uses low-enargy electrons, and presents an
opportunity to explore the quantum regime of the FCL.
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APPENDIX E

FORBIDDEN NUCLEAR BETA-DECAY IN AN INTCNSE PLANE WAVE FIELD
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Abstract

We present the nonrelativistic theory of nuclear beta-decay of arbitrary
forbiddeme;s in the presence of an external plane wave field. Emphasis is on
the question of whether the field is able to break the common selection rules,
so that forbidden decays could be significantly enhanced. It turns out that
while this is true in principle the required field strength is of the order of
the critical one which is far beyond experimental possibilities. Recent claims
to the contrary are contested. In particular, in the case of the first order

as
forbidden decay of ‘“Sr, we cbtain an enhancement which is smaller than a

previously published estimate by twenty~four orders of magnitude.
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I. Introducticn

lNuclear decay rates are usually considered to be, on earth and under even
extreme labcratory conditions,almost on the same footing with fundamental
constants. Ecr example, they are commonly supposed to be essentially
independent of changes in their environment as specified by temperature,
external electromagnetic fields, etc. .

Recently, however, it has been claimed [1,2] that total decay rates of
forbidden nuclear beta-decay can be significantly enhanced by an intense plane
wave field. The idea was that external fields be able to change the selecticn
rules of the decay or, at least, to generate contributions to the decay rate
which are of the same type and order of magnitude as those which usually allcw
for forbidden decays. Whereas it is beyond any doubts that this can be achieved
with fields of the order of the critical field strength Ecp 4 = (mzcg/et)
=’1.3x10’b Volt/cm, the claim is that experimentally accessible fields are
already sufficient in order to render the effect observable, e.g., focused
intense laser fields with a field strength of about 10lo Volt/cnm or radio fields
of a transmission line with even much smaller field strengths. The original
estimates [2] suggesting enhancements by many orders of magnitude for highly
forbidden decays were shown to be errcneocus [3]. However, in Refs. 4 and 5,
significant enhancements are still predicted. The present authors contested
these statements on the basis of general arguments in Ref. 3. However, neither
in Ref. 3, nor in Refs. 4 and 5 were quantitative estimates of the total decay
rate given.

In this paper, we derive and evaluate explicitly the total rate for a decay
of arbitrary forbiddenness in the presence of an intense plane wave field. Our
theoretical model will be essentially that of Refs. 1 and 2. The electren will

be described by the Volkov solution for a charged particle in the presence of a
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plane wave field. The nuclear model will be the shell medel with an inert

i
Aok adoaia o o3 A.'-_'.-‘_'!.'-_j

d+;core, which is affected neither by the decay nor by the external field, and : °
one or more valence nucleon in an angular momentum coupled sgate, so that the

nuclear wave functions are specified by an effective one-particle Hamiltonian.

However, as will be pointed cut later, we disagree with Réfs. 1 and 2 on the 3';
interpretaticn of the nuclear wave functicns in the external field. We shall

achieve great formal simplification by restricting ourselves to a : BN
nonrelativistic treatment in the spirit of Fermi's fundamental paper [6].
Hence, our results are not immediately applicable to real decays. However, the

purpose of this note is to give simple and explicit results for an albeit . T

idealized situation, which, if positive, would encourage a more realistic
treatment. Moreover, we have initiated an analogous relativistic treatment [3],
the conclusicn being that the field dependence is much the same in ths
relativistic and nonrelativistic case.

It should be menticned, that we shall entirely disregard effects which are
due to the atomic envircnrment. It is well known that external pararmeters such
as temperature do affect observed nuclear decay rates via their impact on the
electron's wave functicn, in particular, if it is bound, like in electron
capture, bound state beta-decay or internal conversion. These effects have been
estimated and been found to be of relative order of 10“2, at best, under
favorable ccnditicns; for a review see [7], see also {8]. In contrast, the
effects predicted in [1,2] are rmuch larger.

In Section II we shall set up the general framework. In contrast to Refs.

1, 2 and 4, 5 we shall directly calculate the total decay rate. 7This means, we
first square the S-matrix element for the decay, then integrate over the final Qj.;fff
phase space, and do the integraticns over time last. This procedure which has

previously been found to be advantageous in external field problems (see, e.g.,

U - . R .

L N T S W ST L R ALY R UL L S




i Ref. 9) leaves the dependence on the external field transparent throughout the
ri calculation and bypasses the cumbersome and errcr prone integration over the
differential decay rate. In Section III we proceed to an explicit evaluaticn of
the total decay rate for a monochromatic plane wave field with circular
polarizaticn studying the possible enhancement of decays of arbitrary
forbiddenness.

In any case, enhancements will be seen to be of the order of (E/Eirif)
with E being the applied electric field strength. This renders the effects
entirely uncbservable, given the limited field strength that can for a limited ]
time be obtained under laboratory conditions. In particular, under the ) ,;
conditions envisicned in Ref. 2 the enhancement will be found to be of the order
of 10-2¢. In concluding, we shall discuss the possible reason for the huge |
discrepancy between Refs. 1, 2 and our results. ]
II. BASIC FOR:ALISH

In order to make this paper self-contained and to introduce our notaticn we i;f%*
will here cutline the basic formalism which has been more extensively presented A; ;fﬁ}
in a previous paper [3]. We shall exclusively employ the Coulonb gauge and . fi;;;
adopt the long wave length approximation for the electromagnetic field so that
‘é = fl(t)' in accordance with cur nonrelativistic treatment. We use units such :i ]
that 5 = ¢ = 1, and the electren charge is e = ~|el. To lowest order in the
weak interaction gV and to all orders in the electromagnetic interaction the

S-matrix element for nuclear beta—decay is




~ (2.1)

Here
(6t -9 )
L %’W('r'f)i/ = e ~ & =191 (2.2)

4

is the wave function of the neutrino with momentum g, and

t _

| Tt - epen (e
.
/@{’t (626’4&:‘)/0 - EQJ ag )]

vV

(2.3)

2
with E = p /2m is the nonrelativistic Volkov solution describing the electren

&) /
with momentum p. an are the initial and final nuclear wave

functions, which are soluticns of a one particle Schraainger equaticn

) Sz;(t',f”/ . - 2 =4/
! 1 Y = — ( -e; .4 ) 4 L/ ] (2.4)
: )¢ ZJML;%, p-éps) el Y

~

with a self-ccnsistent nuclear potential V(r) and reduced charges and masses [1]
~ . \ . -
bl[{ and e;f , respectively. Following Ref. 1, we shall replace the nuclear

wave functicns by

v T T T T
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v JF ) oF ~ étz’h .
= = € 7 (2.3) T

T . . .
with (p a solution of the Schrodinger equation with the Hamiltonian L
fe) . RO

2 - »:.J
47/0 = £ L Vo (2.6) =

—

< My

The wave function (2.5) would be exact if §0 were derived from the Hamiltonizn

Ho - erk(t) with E = —AA/)t, rather than from Eq. (2.6). It is important to
A S lad Ar

note that the wavefunction (2.5), as it stands, does not include, contrary to

{Q appearance,any interaction with the external field, but is rather the correct

i noninteracting wave function in the Coulomb gauge. It is here that our _ ]

-
interpretation deviates from Ref. 1, where it is assumed that the Vo( 7/

represent a fair approximation to the interacting nuclear wave functicns. Ve R
have previously discussed this point at length [3]. Here we shall be content

with pointing out that the operatcr p = - i¥in Eq. (2.6) represents the

canonical momentum p = MV + €A, which does not, since we use the Coulcmb gauge
~ ~ ~

withA # 0, agree with the mechanical momentum. Hence an eigenfunction of Hy A

does not appropriately describe the state in the absence of the field. 1his is

evident from the expectation value of the velocity in an eigenstate of HO' -

CE My [ Gs = <& -iT-E4 [,

(o™

which dces depend on the field, whereas the expectaticn value in a state (2.5),
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does not, as it shculd be for a noninteracting state. Hence one has to be awure
that by using Eq. (2.5) cne entirely ignores the interaction between the nuclzus
and the external field.*

The total decay rate per unit time is cbtained frem

£3 053 <

c . / -
= /(_Z) \—Lf? . ()-tu -7-: /’J;i [ ) (2.7)
(9?0'/"? Q?ﬁ'/‘f T —

/"7

The standard procedure is now to first evaluate the differential decay rate

I§F\| and then to do the integration over phase space. This would require to
1

specify the external field A(t) from the outset so that the integraticn over
Cad

time in can be carried out. The final integration over phase space is

S,,
2
formidable [1,4,5] and has not been done yet in Refs. 4 and 5. Since we are not
interested in the differential decay rate, we shall here reverse the ovder of
integrations: we shall first integrate over phase space expressing the total -
decay rate in terms of the electron's and neutrino's Green functions, and do the
integraticns over time afterwards. The integraticn over r in S,, need not

~

X

concern us here; it will be absorbed into a nuclear matrix element which is left -

untouched. Hence we write

%. * 1In view of the fact that the frequency and field strength of the external
- field are very small on a nuclear scale one would expect this to be at leas*
. a fair approximaticn. Unicrtunately, no exactly solvable model seems to be
4 availaple in order to test this assumption. The only excepticn is the
s harmcnic oscillator which can be solved exactly in the presence of a periodic
b exterral field. This solution corrcborates the above assumption. However,
%. ) the harmenic cscillator is rot a very realistic example, given the
equidistance of its levals and the lack of a continuum. So the questicn of
i whether the field-nucleus interacticn might produce noticeable effects,
. remains cpen to scme extent, in particular, if the nucleus has a very low
w lying excited state or if he nuclear ener3y release in the beta decay is very
small. In any event, to improve on the approximation (2.5) will be very
hard.
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In the precading equaticn we introduced Eo =E, - EF - m as the nuclear energy
release minus the electron mass and have taken the charge difference [1] 3; - E;

to be e, as required by charge ccnservation. The Green functions are
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In BEq. (2.12) we introduced the free electron Green function

- ° = —2 E(r— ¢ _
G e /C(E e (- /J’v_%k Ved €

T X = —
e, ( ’ j X
o <
)
a \; 2 71’) )_<__
N £ N e
=[ — ) e
2 (T-7¢ ) (2.14)
}‘ The Green functions allow for explicit representations as exhibited in the last
|
} lines of igs. (2.10) and (2.14); however, the preceding integral representations A
1 . ‘ L
| with respect to energy will turn out to be more convenient. RS
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we can now rewrite Eq. (2.9) as e )
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This representation has some pleasant features. The entire field dependence is
contained in the functions}z (te',t) andJ?Z(t',t) so that by dropping them we
recover the free decay rate (for an arbitrary degree of forbiddenness). ‘the o 1
— 4
quantity'zz is more than just a convenient abbreviation. It is the cnly term 3
which depends both cn the field and on r and r'. Hence it is the prime .
candidate for a possible field induced removal of forbiddenness. However, Eq. ~ e J

(2.15) shows remarkable cancellations: all the individual terms on the left
hand side are of the order of elAch with Ro the nuclear radius. For the

~
experimental conditions envisioned in the introducticn this can readily be of ] '

order unity or even larger. In contras , the right hand side involves the
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ele ¢ f£ield E rather than the vector potential, and we have
’ /
Kl+) ~ elhl B wr
<, ~
(2.19)

If we assume that the integrals over time receive significant contributicns caly
for Tl = It'- ¢t < E;’,as suggested by the uncertainty relation, we have in Eq.
(2.18)0)?“%LU/E0 << 1 so that the impact of the function?ﬁl(r',t) should be
marginal. Even if we do not invoke the uncertainty relation, we notice frem
Egs. (2.10) and (2.14) that the integrand of Eq. (2.17) is proporticnal to

Qf— 4% tha51y, this rapid drop—off is independent of the external field. This
fact makes it very unlikely that the integral (2.17) will receive any
significant contributicns from larger values of 7. With regard to the seccnd
field-dependent function in Eg. (2.17) we note its power series expansion

e (€)= (e ‘{:(l*{ // e (2.19)

v‘w

<

W

This starts with the cubic pcwer of T, so that it is not likely to play any

significant role, either.

The preceding argurments suggest already that any field induced effects
should be fairly small. Yet, hand waving estimates of the double integral
(2.17) might seem to be unreliable. Because of that, and in order to get
explicit numbers, we shall turn to an explicit evaluation in the next Section.
III. EXPLICIT CALCULATTICN OF THE TOIL DECAY RATE FOR CIRCULAR POLARIZATION
We shall now evaluate Eq. (2.17), explicitly for a monochromatic circularly

pelarized field
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With slightly more algebra, linear polarizaticn could be treated alcng ths saxe o
lines. The field dependent functions (2.13) and (2.15) are ncw e
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Note that nb(t ,£) does only depend on T, ard the integrand of Eq. (2.17) cnly

depends on ’(" =

now be done:

(t + £')/2 via the quantity?;’(t (t). The integral over 7' can .
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i where‘57_= (x,v), r},= (x',¥'). Eq. (2.17) can now be rewritten as
, WG ) : — 0
Fez) = e Vo (ea fo(-cana) )

( )
< K T

where‘fz is the field independent part of Zg. (2.17), i.e., the right hand sile

(8}
(e}

with & (t',¢t) =JT¢(t',t) = 0. In Eq. (3.6) we exploited the particular By~

dependence of Eq. (2.17) in csder to replace (0T by -n»EVégQ in the field o
dependent terms. Hence we could pull the latter terms out of the integral cver

T. No assumpticn as to the smallness of (yi"is involved. Hence, barring a

. couple of differentizations, the problem is reduced to the field free one.

The quantityj;(r,r‘) is now most easily evaluated by inserting the j
integral representations (2.10) and (2.16) and expanding everything with resoect
ii to x = jr - r'}. The result is -
~ ~ ‘.A

) . -

; . / g 2 02’ 0
polzorso= ok = 7y /m’ ¢ Co,Cx) G, @x

‘ oo
e tele A Aln.

_ P

v -
= — -‘m/"t
7/-\?

(o0 k) ! (Ao 2202 2) 0] 32

One of the two sums can be carried out in a multitude of ways, but the explicit

form (3.7) is the most useful one.

:t We ncw have to insert Eq. (3.7) into Eq. (3.6) and to carry out the
required differentiations. Needless to say, Eq. (3.6) would be entirely useless
if the differential operators could not be expanded into power series with

' respect to:)/ghb. We shall first write down and then discuss the expansions of

exp (~i}) and \J’D(ea JZ); with the abbreviations

S = 'f. .
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’ . -
In applying the differential operators (3.9) and "("3.10) to Eq. (3.7), we first ‘.’-
note that each & will effectively be replaced by a very small nurber, “ j:‘;j'-:.:::::
’
< & - v Lo Y RS
= ¢ Lo
0 02 to ) - :-A‘;«_' -4
since the ratio Lu/E:o is very small in any case; for Ey~ m we have LU/EO ~10 - ..

_ -1y
for a laser field and W/Eo ~ 10 for the radio frequency fields with { ~ 100m
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’ which are ccensidered in Ref. 2. The effective expansion parameter in Eq. (3.2) -
Y
F is then - -.'- - 4
o 2 n
¢ 3 (ca) L 3 Wi
- /[o( — (=) (—") (‘_’ ) (2.11) RROEaN
g™ €o Cerit ‘
& o ]
and ;
” 2 L <p ]
9 D M ‘
(Cakw ) ~ (80.2 = ) = ( — C""‘ ) (3.12) o
ta CYL{'
"’3 )/‘r
& in Egq. (3.10) with RO/\'l.l x 10 cmxA the nuclear radius. Both
J‘ quantities are very small for experimentally available fields so that the ) ° 1
|
{ expansions (3.9) and (3.10) are very well justified. With respect to Eq. (3.7) ]
e
we note that the main expansion parameter . -]
. o
— o ») <L ~ 2 S‘ L’ T
Em™ = Em e, = Jtxte A7 = (3.13) e
is again small. Hence, it will be sufficient in most applications to keep only "ir“”i
the lowest power of x which is necessary in view of the forbiddenness of the S
decay. The sum over € is then restricted to a few terms. :; $_1:'j
Let us first ccnsider the field induced enhancement of allowed beta decay. " ’

Since the expansion parameter (3.12) is in general smaller than (3.11) we can

ignore Jo(ea JZ). Keeping only the lowest order terms in Eq.(3.9) and using

BEq.(3.7) (with x = 0), (3.6) ard (2.8) we arrive at
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Apparently, the field induced enhancement is unobservably small*. In Eq. (3.13%)

we included the next-to-leading terms in order to be able to make the compariscn

{. with the nomélativistic limit of a fully relativistic calculation [13,14] of

laser enhancement of allcwed beta—decay. Equation (3.14) agrees with Eg. (113)

of Ref. 14. Actually, the next-to-leading terms as exhibited in Eg. (3.14) are
incomplete, because additional terms resulting from Jb(ea\f27 (Bq. (3.10)) are —_
of at least the same order of magnitude. Since the leading term is extremely

small already, we did not care to write them down.

We will ncw turn to a first order forbidden decay. In the absence of the
field the leading contribution to the decay rate comes from the term with k = 1
’ 2
in Eq. (3.7). Recalling that iz = (r - E:) and that we need one power of r in
o d

each nuclear matrix element to render if mnonzero, we obtain

[ - (f‘/ 7 e
. ard / .

) _ ; " e T
- I, = / <9, /; vr ? A
o % e % (3.15) 7
v N /{ \/04 1 t qpf ' 1
% . RS
9¢¢ 7 7z DR
v T _\‘ L. 1
- ¥ previous conclusicns to the contrary [10,11] were flawed and due to an RO
e inadequate apgroximation in evaluating sums over Bessel functions. The

' present authors have corrected this mistake in the general form of a no—go - -
N theorem [12]. SR
:' g
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Considering ncw the external field we know already from the previous exampl.
- .
that the enhancement with is formally due to the operator??i, is extremely

small. Hence, we shall rather consider the operator Jo(eaJ7Z} wnich, via its

dependence cn r and r', generates the kind of field induced modificaticns of the
a4 o d N

selection rules which are proposed in Refs. 1 and 2. Hence in the presence of

the field we do obtaln a non zero contributicn to the decay rate from the tern

with k = O in Eq. (3.7), which we shall call

va
. S v "‘(7‘1/;‘ oy
/—j = \/)'XET C( (g f T ;L/ P j
' (i/ 1/9 ‘ __
‘ X Z> 27; 7, o l/ - J (ea /2 ]
O(N//" __35:‘ 0/} o(t,\/ /Zd)’wm v=o
(3.16)
l’ Keeping just the leading term in the expansion (3.10) we get*
& _ 3 «
iy G A S REA )
— - (7‘/ (2/ < 1% J (6—0. ({)
loo = [(¢ [V, | ¢, >] (3.17)
O/C( ¢ d ~r Ly . ?
- /&7 *
2 2
If we assume that I /ﬁ£> = 2/3, the enhancement is
e hoS (eal«)} e 7!
/. (/ + % )
g 512 4?1 /!l
/ 0
- -/
S = 4 -
- L E ) e ts ) (3-13)
RV = Eori+ /] M ’

* The last term in the square bracket in Eq. (3.10) seems at first glance to
yield an imagirary ccntribution to the decay rate. Actually it cancels when
integrated over with the nuclear wave functions.
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Hence we arrive at much the same conclusion as in the case of allowed
beta-decay: the enhancement which is due to field induced modifications of the
selection rules is by far tco small to be cbservable.

In order to cbtain the tctal enhancement of a first forbidden cecay we

still have to add the modification of / due to the operatoraTZ, viz.

— : (£ - @ J LB 3/4 ‘?.Q 55 [ ~
e = S &1 gvz 1 g5 7 VI e
A

/

> (/ + Q_D_t_" ) (3.19)
Gy, )
so that the total enhancement is
- — _ _
/0(2 + //Q_ 22/ 'n,.,aq""(;u Vi S £ <
’ ’ = T (E) (= ) C(3.20)
I, 6y yw o+ ¢5, Ecre

To give a specific example, let us lock at the first order forbidden deca
of ?OSr which was ccnsidered in Ref. 2. In that paper an enhancement of the
half life from the usual 29 years to about 10 years is predicted to occur in a
radio frequency field environrent with E'~48xlOE,Volt/cm. Corrected estimates
have not been given yet, but it is argued [4,5] that enhancements of first order
forbidden decays should stay mcre or less like they were. In contrast, Eq.
(3.20) yields for this case a relative change in the decay rate of about

2 x 10_2%

The precedirg calculation was for circular polarization. With slightly . ry ]

<

mora2 labor, it can be done for linear polarization as well, with qualitatively
the same results. lioreover, it can be shcwn that for an arbitrary plane wave o ‘ﬁEIﬂ

field (arbitrary polarizaticn and pulse shape) the total decay rate is entirely ®

o

independent of the field as long as the quasiclassical limit applies [15].
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IV. CQONCLLSIQNS

We have shown that the effect of an intense plane wave field cn forbidden
beta-decay is much the same as it is on allowed beta—decay. There ars two types
of field-induced contributions to the total decay rate: one that dees, via its
dependence on the nuclear coordinate, change the selecticn rules of the decay
and one that does not. Both terms lead to an enhancement of the decay, but in

4
either case the enhancement is proportional to the squared ratio (E/ECnsé) of

16
the applied over the critical field E5754 =1.3 x 10 Volt/cm. For an intense
(2
focused laser field we have E/EC7i4’3 lO—g_at best, for a radio freguency field

the ratio is very much smaller.

Our results for the enhancement differ from previous recent estimates
[1,2,4,5] by twenty-four orders of magnitude. The reascon for this large
discrepancy seems to be the following: the original explicit estimates for
variocus specific examples [2] were later shown to be faulty [3] and withdrawn
[4,5]. Hcwever, in Rars. 4 and 5 the conclusion is maintained that there should
be an enhancement of the order of unity without explicit numbers being given.
This conclusion is drawn from the observation that there is a significant effect
of the extarnal field cn the differential decay rate. This, however, does not
necessarily reflect any substantial changes of the total decay rate. We have
shown previcusly [12] that the total decay rate of a neutral particle decaying
into varicus charged particles in the presence of an intense plane wave field,
is in the semi-classical (WKB) limit entirely independent of the field. This is
notwithstanding the fact that the eneryy spectrum of the decay products is
ccmpletely distorted by the field as ccmpared to the field-free one ( for
examples in the case of allcwed beta-decay see Ref. 13). The latter effect is
due to the essentially classical interaction between the field and the charged
decay products once the decay has already taken place. The decay itself is not

affected until the field becomes comparable with the (genuinely quantum

el ke S SRS P PEPES P T T T G SIS S N SR SRV DAP PR T WU WA AT Iy
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mechanical) critical field E Reference 12 does not strictly arzply to tha

Crit’
r] present situation because the decaying nucleus is not neutral and there is =2
3 - . . . .
A allowance for bound particles. It is, however, easily extended to the presszn:

situation [15]. The oottom line is the same: enormous effects on the

differential decay rate do not correspond to any significant enhancement o7 the

total rare. The calculaticn initiated in Refs. 1, 2, 4, and 5 should, if

4 finished, lead to the same conclusion.

We should add a critical remark regarding our calculational apprcach -—
{ exhibited in Section 4. Equation (3.0) which displays the decay rate as tha

E result of applying a differential operator to the free decay rate is exact as it

E. stands. However, the following ev luation proceeds via perturbaticn theory with
respect to the external field. This is at a stage where the quantitative

legitimacy of perturbation theory is obvious; yet, the exact result is likely to

contain terms which are quantitatively minute, but nonanalytic with respect to — e
the coupling to the external field. This is known to be the case for allcwed
beta—decay {13,14]. These terms camiot be obtained by our procedura. It shculd BRI

be emphasized that we do not apply perturbation theory to the differential deca

<

rate; the latter containing multiphoton interacticns of extremely high order (up
to lOb) between the field and the electron is clearly inaccessible by
perturbation theory of any reascnable finite order. However, the total decay
rate is a different matter: for fields belcw the critical field perturbaticn
thecry yields a safely ccnvergent asymptotic series.

We menticn, finally, that the situation is entirely different, if there is
a significant interacticn between the nucleus and the field. This happens, for
instance, if an intense x;ray laser is nearly resonant with an excited nuclear
level. In this case substantial enhancerents of the total decay rate are found

[16].
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Comment on enhancement of forbidden nuclear beta decay by high-intensity
radio-frequency fields

W. Becker, R. R. Schlicher, and M. O. Scully
Max-Planck Institut fiir Quantenoptik, D-8046 Garching bei Miinchen, West Germany
and Institute for Modern Optics, Department of Physics and Asironomy,
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A recent claim that forbidden nuclear beta decay can, by the application of a high-intensity radio-
frequency field, be enhanced by many orders of magnitude is contested. The effect is shown to be nonex-
istent, at least within the theoretical model which has been adopted thus far.

1. INTRODUCTION

In two interesting recent publications™? Reiss claims that
forbidden nuclear beta decay can, in the presence of an in-
tense, but readily achievable radio frequency field, be
enhanced by many orders of magnitude, the more so the
higher forbidden the decay is. Of course, this would be a
fascinating effect, both from a theoretical and a practical
point of view. Unfortunately, we find, at least in the frame-
work of the approximations and idealizations underlying this
work, his conclusions to be incorrect and the effect nonex-
istent.

The approach of Ref. 1 to nuclear beta decay in the pres-
ence of a strong external electromagnetic field treats the
weak coupling to first order of perturbation theory, but is
supposed to take into account the coupling with the external
field to all orders, at least approximately. Hence in Reiss’s
model the state of the emitted electron is described by the
Volkov wave function,’ whereas the nuclear states are to be
well approximated by the so-called momentum translation
approximation (MTA) wave function. We shall show in
Sec. 11 by explicit calculation that within this particular
model the total beta-decay rate is essentially independent of
the external electromagnetic field. Our argument turns out
to be independent of whether or not we employ a relativistic
description of the decay. Hence, for the sake of simplicity,
we shall first turn to a completely nonrelativistic description
within a long wavelength approximation for the applied
field. Once we have made our point, the generalization to
the f_lly relativistic problem is conceptually straightforward
and will be presented in Sec. III. Our conclusion that the
lifetime of a nucleus cannot be influenced by an external
field in the framework of the model adopted by Reiss leads
us to suspect that Ref. 1 includes a calculational error. In
Sec. 1V we point out such an error. In order to understand

t

why Reiss’s model cannot yield an enhancement of the nu-
clear decay rate we critically review the derivation and justi-
ﬁcatlon of the MTA wave function in Sec. V. By comparing
the “T-E” vs “F- A form of the interaction Hamiltonian
we obtam an indication of why the MTA method is an un-
justified approximation. We then point out with the helip of
gauge arguments® that the MTA wave function is nothing
but the correct unperturbed state in the Coulomb gauge.®
This statement can be corroborated by writing the S matrix
for the beta decay in different gauges. In this way we see
that in Reiss’s theory only the interaction of the field with
the electron is incorporated exactly, whereas the interaction
with the nucleus is completely neglected. This fact is in
strict contrast to the statements and intentions of Ref. | and
leads to a completely different interpretation of the model.
If the interaction of the nucleus with the external field is
not incorporated into the model, a modification of the total
decay rate can only originate from the coupling of the elec-
tron to the field. It was recently shown’ that decays of neu-
tral particles are unaffected by the application of optical and,
even more so, radio frequency fields, to an excellent ap-
proximation. Consequently, since Reiss’s approach to the
problem does not contain any genuine interaction of the nu-
clei with the field, it cannot yield any impact on the nuclear
lifetime. In Sec. VI we summarize our various criticisms of
Ref. 1.

Il. FIELD INDEPENDENCE OF THE TOTAL
TRANSITION PROBABILITY

The starting point of the formalism of Refs. 1 and 2 is the
S matrix for nuclear beta decay. If we denote the weak in-
teraction, which causes the transition, by (gV ), the nonrela-
tivistic limit to the S-matrix element to first order in the
weak coupling reads

Sp=~i fd’r fdr VAT OV TPV T.LD (V)W TL0) QD

The various terms in Eq. (2.1) are discussed below. ¥,
denotes the neutrino wave function, which is a plane wave
with momentum Q. Following the procedure outlined in
Rel. 1, we take the wave functions of the charged particles,
i.e., the electron and the nucleus in the initial and final
state, to be in the Coulomb gauge. The electron wave func-

29
. . . . N
. . . . e
. ,‘- . . .. .
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r
tion is then a solution of the Schrodinger equation
LW (T =L (PR (T . (22)
& 2m

We use here natural units #=¢ = 1. Unlike the convention
in Ref. 1 where e = |e|, we denote the electric charge of a
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particle by e, so that, for instance, the electron charge is e = —f{e|.

tivistic Volkov wave function with momentum 7,

F) =expl—ilE =57 =< [ [2eA(r)5 —e?A?
VY T.1;9) exp[ :lEr T 2mf[ZeA(r)p e’Al(r)dr

where E=p¥/2m, so that our nonrelativistic theory is only
consistent for low energy emitted electrons.

The underlying nuclear model of Ref. 1 is the shell model
with an inert 0* core, which is affected neither by the beta
decay nor by the electromagnetic field, and one or more
valence nucleons in an angular momentum ccupled state.
The nuclear wave functions ¥’ and ¥*/? are then derived
from a one-particle Hamiltonian. The initial and final nu-
clear states are approximated in Ref. 1 by the so-called
momentum translation approximation (MTA) wave func-
tion. This wave function is given by

The exact solution of Eq. (2.2) is the nonrela-

» (2-3)

f
with

Ho=——52+V(F) . (2.6)
2m,

V(T) denotes the nuclear binding potential, and m, is the
reduced nuclear mass [Eq. (5) of Ref. 1}. Since we consider
the nucleus initially and finally to be in an eigenstate ¢,( )
(n=if) of Hy with energy E,, we shall later use @, in the

form
PN )=e g, (T) . Q.7

For the time being we shall adopt the MTA wave function

P

<4

in the same way, as it is used in Ref. 1, and postpone a de- - -]
tailed discussion on this subject to Sec. V. o
The total transition probability per unit time is calculaled 4

= from the S-matrix el t@Db
3 where &y is the reduced nuclear charge [Eq. (6) of Ref. 1] rom the §-matrix elemen y e

and @, denotes the nuclear wave function in the absence of
the external electromagnetic field, i.e.,

VYural( Tor) =explidnA (1) Fldo(Tot) , . - (2.9)

= Lis.i2 . .
fuﬂ, (2”), sim Lisype . @8
If we insert the S-matrix element (2.1) into Eq. (2.8) using

,-iq,o( T.0)=He®o(To1) . (2.5) the wave functions (2.3), (2.4), (2.7), and plane waves for

9t the neutrino, the total rate I' takes the form o
- .

i - - - T

r= (2 Gnye fim — fd’r d*r' I_mdt d'expliEo(¢' —t)expl—ie[A(L) T —A() T - o -.jj

XG( T TG T T ) o '“:-;Z::‘

x[87(F)(gV)e, ()67 (F)(gV) e, (T)] . Q9 ]

Here Eo= E,— E; denotes the nuclear energy released in the beta decay. We furthermore used the relation é,—é,=e [see
Ref. 1, Eq. (49), and our convention for the sign of ¢]. In fact, this relation is only approximate, since the minor impact of
the external field on the nuclear core is neglected. The sum over the neutrino states is expressed in terms of a plane wave
Green's function with a dispersion E,=|q],

G (T, T.t)= fd’q YL AT.HDY (T )= fd’q expl —ilqle' ~ ) lexpliQUT' - 7)) . .10
All the electronic contributions to the total rate I' are contained in the nonrelativistic Volkov Green's function

G(,)(l’ l T l)- fd ‘l’(g)(r t, p)‘l’(g)(l‘ l,p)

_.ez £ =, 3 s l'-l-z__ P ‘C ‘2 - .
-exp[ IHJ: A (r)dr] fdpexp N3P T +-;J: Alr)dr|Plt . . (2.11) -‘

The integral (2.11) can be reduced to a Gaussian integral and we find

31
- = 2mm m (7 —r)’ e A
Ga(T.0(,T,t)= IW:'_)I ex p[/— lexp[.‘ C j: A(T)df]
e} 3] 1 ‘- ?

xexpl—lm J: A(r)dr - ’,_'[j: .A(r)dr] . (2.12) _
The A?term in Eq. (2.11) contributes to an effective mass (see Sec. I11). e
The essential fielc dependence of the total rate T is concentrated in the factors R

explie[A(¢) T -

A()TY
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and the Volkov Green's function G). In Ref. 1 the entire
effect of changing the degree of forbiddenness__of the nu-
clear decay is derived from the factors exp(ieAT) in Eq.
¥ (2.4). We shall now show explicitly that these factors actu-

Y

ally cancel out of the total decay rate against corresponding
terms in G () and hence cannot give rise to the effects cal-
culated in Ref. 1.

By inserting Eqs. (2.12) and (2.10) into the total decay

COMMENTS

AL SR e SSaC SN e e oo g aan

The estimate (2.13) is not significantly affected by the
external field, in particular, when there is no energy transfer
from the field to the electron, as Reiss assumes.

It was shown in Ref. 7 that in the classical limit ¥ — 0
only times ¢’ infinitesimally close to ¢ contribute to the total
transition rate I'. In this limit the fieid-dependent exponen-
tials in the integrand of Eq. (2.9) are unity and only the
field-independent part survives. Thus in the classical limit

['_ rate (2.9), we see that in the field-free limit the major con-  the total decay rate would be unaffected by the external
1 tribution to the time integral in Eq. (2.9) comes from time field. This is in agreement with the results of Ref. 7.
L differences ¢’ — ¢, for which the phase of the integrand is sta- The remaining field dependence in T is then only due to
tionary: quantum effects. It will be found to be very small for the
[ parameters of Ref. 1, as we shall now demonstrate. We can
' g 2 rewrite the space- and field-dependent exponential in the
[t'—t]= [”'(';'), . (2.13)  electron Green's function (2.12) with the help of integration
2(E0—E,) by parts and find
J
-
— 'y - —
exp[:e f drA(r)|=explie(A() T A(l)?]lexp[ie J: dr R(T)E(T)] . (2.14)
with
R(r)=T7 (2.15)

rate and we obtain

=

1
(Qn)é 71~wT

5 n ”
mm .
x[i(',_t)] e)vtp[l2

In Ref. 1, Eq. (74), the nuclear intensity parameter z,
z=(e]AlR0)? . 2.17

which specifies the magnitude of the phase exp(ieA 7)), was
assumed to be of order of unity. The actual remaining ex-
ponential with a field and space dependence in Eq. (2.16)
contains the integral

Iej:' R(1)E(r)dr|~ eRo|Ellr -1l
172
- | mry |l w
eRowlAl £, l 80 . << 1
(2.18)

Here R, denotes the nuclear radius, and the length of the
time interval was estimated by Eq. (2.13). We fu_{lhermore
determined the amplitude of the electric field by |E| = w|Al,
corresponding to a monochromatic plane wave with fre-
quency w, and applied Eq. (82) of Ref. 1. Eguation (2.18)
shows that the field- and space-dependent exponential in
Eq. (2.16) is unity to an excellent approximation, i.e., the
factors exp(ieAT), which are the origin of the large
enhancement obtained in Refs. 1 and 2. cancel. The A?

x[67(T) (V). (T) s (

By inserting Eq. (2.12) with Eq. (2.14) into Eq. (2.9), we realize that the phase factors exp(ieA T') cancel in the total decay

lim — fd’ d*r 'fdldl exp[:Eo(t —DIG (Tt T.1)

(r ’,:r)z]eXP‘lef dTR(T)E(T)'

» xexp[—iﬁ[ j:"drK’(r)—7'_—‘[’["‘1&(:),2”

') gV )eé,(7)] . 2.16)

{

terms in Eq. (2.16) do not depend on T and can therefore
not change the degree of forbiddenness of the decay.

We also see from the estimate (2.18) that the actual
parameter that governs the field impact on the nuclear life-
time is

= (ewlAlR$) = z(wR()? (2.19)

which is much smaller than z. This means that one needs a
much higher field intensity, or fields with a much shorter
wavelength than the one applied in Refs. 1 and 2, to pro-
duce a noticeable effect of the external field on the nuclear
lifetime.

III. RELATIVISTIC THEORY

We shall now address ourselves to a relativistic treatment
of the electron in analogy with Ref. 1. For a quantitative
analysis this is indispensable because the electron energy
will, in general, be relativistic, and because the entire decay
process is intrinsically relativistic. However, the crucial
point of the preceding analysis, the actual replacement of
the superﬁcnal appeanng gauge factors exp(ieAT) by
explie fdr R(7)E(7)] in the total decay rate, will proceed
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29 COMMENTS -4 :
! completely analogously in the relativistic treatment. We  (2.8). The decisive point is that any Green's function in the
: then shall have to examine the remaining expressions for  presence of an external field 4#(x) can be split as®
. possible additional terms incorporating AT which might . , ,
. yield the large enhancements claimed by Reiss. These will G x) =4 (x'x)G(x'x) 6.3
: have to be relativistic quantum terms induced by a radio  ypere :
. frequency field. Hence it is not likely that they will play any , Y
‘ significant role, and, in fact, they will not turn out to do so. &(x'.x) -exp[— ie f’ a“Au(f)] (3.4) -
: The starting point will now be the relativistic S-matrix * . ‘
\ element S, as given in Eq. (7) of Ref. 1. As we did in Eq.  is Schwinger’s line integral which is to be integrated over a .
(2.8), we shall again sum over the electron’s final momenta  straight line connecting x with x’ [the definition can be
' p and spins s, obtaining given in a path-independent way (see Ref. 8)), and N
: F5 G (x’,x) is gauge invariant, i.e., depends only on E and B. =
R _f_p_ 3 Ispl? Hence the entire gauge dependence is isolated in the line in- —
I 2P0 spns tegral (3.4). Collecting now all the TA-dependent ex-
. ials i . (3.1) w tai
_ fd‘p 8(r)5(p = m?) AP ponentials in Eq. (3.1) we obtain ,
z expliel FA() - PRI - e [¥ &,a02)) . =
: --407 fd‘x d‘x'[‘?;(x)y,.(l—-xys)‘l’,(x)] (3.5) -— =
x[T,(x)(1 +xy5)y, ¥ (x)] Evaluating the line integral yields ‘: ‘:‘__ -
I PPN et SN I ATt S S
X[ W) (x)(1+y5)y°G ) (x' x) f’ & pd (%) k(x'=x) fh d(EINE) T
xy*(1—ys)¥W(x)] . @a.1) ’
where k, denotes the wave vector of the field 4, (kx). In :
Here the long wavelength approximation, which is finally also R
adopted in the relativistic treatment of Ref. 1, Eq. (3.6)
Gt x x)= fd‘p 8(pa)d(p*—mNE(x'.p)(r+m)E(x,p) reproduces the expression which we already encountered in }:_' ’ K
the nonrelativistic treatment. The exponential (3.5) is then )
‘ (3.2)  identical to the corresponding exponential in Eq. (2.9) with i
is the homogeneous positive frequency Volkov Green's the nonre:lauvnsnc Green§ function (2.12), and the argu- N .
function replacing Eq. (2.11), and we have written the Vol- ments peinted out, following Eq. (2.12), apply to the rela- ’
kov solution in the form tivistic case as well. R
Finally, in order to make sure that the gauge-invariant LT
Vi(xp)=E(xplulps) , remainder G‘*’ in Eq. (3.3) does not, so to speak by the - T
. . . back door, reintroduce corresponding exponentials, we shali St
where u(p,s) is the free Dirac spinor so that now write down the complete Green’s function G**'(x'.x). o
E-mulps)=0 . The easiest way to obtain it is by straightforward evaluation S : 4
’ of Eq. (3.2), given the Volkov wave functions £(x,p). The R
We are again using the Coulomb gauge so that the nuclear analogous approach has been followed, e.g., in Ref. 9, in -
wave functions are given by Eq. (2.4). the case of the Feynman propagator. The result (for arbi-
The quantity R, when summed over the final states of the trary polarization, i.e., A*= 32 ,e*4,(£), é=kx, ke,=0, _. ..
I nucleus and the neutrino, yields the total decay rate of Eq.  e¢;= —8y) is very closely related to the former and reads : L
" | ' L

G (x'x)= f:_-‘g-e)(p[—is(m’f T)—i(x ::I)z]

xlo[s(f'—f)]lzls({—xnm = 2mske:M;

—lp(f'"f)LH'i(E'—f)stﬁuM/"'K

+i75‘[ —eu(x"—x’)M/+2s(£'—€)€,,L,M]]+isgn(5)xs(f'—f)l .

— (x"=xYL, +s(E' =€) L}~ M}) - ?i?

an

Here x’ denotes the two vector components of x* transverse to k*. We adopt a summation convention for the indices i/ and
J extending from 1 t0 2, and €, = —¢,, €13~ 1. The functions L, M, s.xd T are given by
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» -_e_.’ f’ ) L l " ’ 3 (38)
T€.0-2 41,4,(7;)[4,(1,, ) dr;A,(n)] :
' E)m = — (3.9)
M(¢.¢) T f)[A(f) A48,
Lig. 6~ ——|aeraco - ——-f‘ dnA(n)] (3.10)
’ 2(6'-¢)

We incidentally note that the quantity T(£', £) in view of
Eq. (3.7) specifies a space-time-dependent mass correction.
It already showed up in the nonrelativistic treatment [cf. the
last exponential in Eq. (2.12)].

We now have to check whether Eq. (3.7) contains any
terms similar to cos(e@ T —ea T'), which is the sole cause
of the enhancement in Ref. 1 [cf. Eq. (110)]. There are

two candidates in Eq. (3.7):
‘ -K(xu"xl)[-h -iysleu(x"—x’)M, .

We notice that they are both only linear in (x''—x/).
Hence they can at best reduce the order of forbiddenness by
one. Since they are proportional to X, their order of magni-
tude is we|A|R o= w+z, which has to be compared with the
electron mass m in the square bracket in Eq. (3.7). Since
w/m << 1, in particular, for a radio frequency field, whatev-
er effect is caused by these terms wiil be very small, as was
to be expected.

IV. AN ALGEBRAICAL ERROR IN REF. 1

The above considerations strongly suggest that there is a
computational error in Ref. 1. Hence we have cursorily
checked some of the calculations. In fact, it appears that
factors ( —i)’ and /™ are missing on the right-hand side of
Eqs. (56) and (57) of Ref. 1, respectively, which should
read

exp(—ieAT) =expl —ie® T cos(kx +p)]

S JesT

Yexpl —ij(kx +p) (=)

VAT ]
(4.1a)
and
explieA'T') =explieT 7 cos(kx' +p)]
- 2 JmleT T’ )explim(kx'+p))i™ . (4.1b)
"~ -
These factors seem to be consistently missing. If they are
included, the crucial equation (110) of Ref. 1,
3(—)3(eBT —ea T )=cosleaT —ear’) , (4.2)

.
loses the factor ( — )¥ on the lefi-hand side and is changed
into

S/leTT-ea7) =1, 4.3)
[ ]

and there is no field induced enhancement of forbidden
beta decay, in agreement with the arguments previously put
forward in this paper.

V. REVIEW AND CRITICISM OF THE MTA
WAVE FUNCTION

For a review of the MTA wave function from Reiss’s
point of view we refer to Ref. 4. The MTA method claims
to be ‘‘gauge specific’” for the Coulomb gauge (C gauge;
vector potential A and vanishing scalar potential Ag=0).
The Schrodinger equation in the long-wavelength approxi-
mation for the vector potential A then has the form

B (R0 = Hot BT -1

with

- f 2.
Hom 524 V(7). H()~—-LA()F+2-A2) .
2m m m

(5.2)
If one writes an ansatz for ¥ ( 7,1) in the form

Y(F.0)=explieA(t) TIO(T.1) , (5.3

then the new wave function ¢( 7,¢) obeys the equation of
motion

;%m T.0) = (Ho+ Hi()I®(T.0) (5.4)

with

Hi(t)=—eE()T (5.5)

The so-called ‘‘momentum translation approximation”’
consists of neglecting the perturbation H; in Eq. (5.4) and
replacing @ in Eq. (5.3) by the unperturbed wave function
®o, given by

.-%qa.,( Fot) = Ho®o( To1) . (5.6)

We then obtain the MTA wave function as an approxima-
tion of the exact solution ¥:

Wo( T.t) =explieA(r) T1®o( T,t) . 5.7
This procedure is considered to be justified if H, is much
smaller than A, in particular, when A, is too large to be
treated as a perturbation with respect to Hy, whereas H, still
is a small perturbation compared with H, (i.e., the magni-
tude of H; is small as compared with a characteristic energy
of the fieid-free probiem).!® The condition ‘*#, small com-
pared with H;"' means that the transition matrix elements
from an initial unperturbed state |i) to a final unperturbed
state |f) are much smaller when the transition is induced
by the residual interaction H; instead of H,;. The states }i)




2

and 1) are eigenstates of Ho:

Holn) = E,ln) . (5.8)
By using the commutator relation

(T.Hol=iE | (5.9)

m

as well as

IEl=wlAl , (5.10)
we find

IS IHA (D) w

~ 1
KAEON  E-E G

Hence in situations where the field frequency is much
smaller than the considered transition energy, the MTA
procedure might seem to be well Jusuﬁed )

As we have noted, central to the MTA is the condmon
that the transition matrix elements for the interaction H,
are much smaller than for its counterpart H,. This applies,
in particular, to nuclear transitions in the presence of an op-
tical or even radio frequency field. But one must be careful
in drawing conclusions from or making approximations
based upon the estimate (5.11). Instead of transition matrix
elements, one actually has to compare transition probabili-
ties, which are the directly measurable quantities. As we
shall see below, the factor w/(E;— E;) does not occur after
integration over time and the two interactions H, and H,
give the same transition probabilities for any ratio of w over

Let us repeat a supposedly well known argument. In the
interaction picture the transition amplitude to first order of
perturbation theory reads

F(T)=—i j;rdr expl =i (E,—E IS Him(D)]i) .
(5.12)
If we use the interaction Hi,= H3, we find
F(Ty=ie(71T1i) [ dr expl - iCE,— EQNEW) .

For the case Hi,= H,, let us consider the situation where
the field is switched on at time 7 =0 and that we are only
interested in the transition probability at time T, when the
field is already switched off, so that

A(0)=0, A(T)=0 . (5.14)

This is the usual experimental situation. We can then
rewrite the integral in Eq. (5.12) by partial integration

(5.13)

r —
J exvt~itE - EpIRMar

-i(E-EIE()dr . (5.15)

We have now obtained a factor (E, — E) by replacing A by
in the integrand. instead of the factor w, which entered
the relation (5.11) via Eq. (5.10). By using Egs. (5.9) and
(5.15) we find for H .= H, again the transition amplitude
(5.13).
This simple calculation shows that the transition probabili-
ty is the same whether one uses the interaction H, or H,.

R

COMMENTS

F.G

This holds true to any order in the perturbation series.!!

We can furthermore drop the restriction (5.14) and obtain
equal transition amplitudes F(T) at any time T, if we take
into account that the same physical state is represented by

different state vectors in different gauges if A(0) =0 or__

A(T) =0 (see next paragraphs). The error will therefore
be of the same order of magnitude whether one neglects the
interaction H; in Eq. (5.4) or H; in Eq. (5.1) for any ratio

of the field frequency w over the typical transition energy
E,— E;. Since the approximate solution @y of Eq. (5.4) is -.°
an unperturbed wave function, these arguments indicate -

that also the MTA wave function represents a noninteract-
ing state.

In order to see that the MTA wave function represents ..
nothing but a noninteracting state, we must consider the

different gauges involved in the problem. The wave func-

tions of all charged particles participating in any reaction or -

decay process must be taken consistently in the same gauge.
The Coulomb gauge is convenient for the calculation of the
Volkov wave function of a free particle in the presence of
an external electromagnetic field. To derive the properties

1129 _

of the nonrelativistic MTA wave function it is more instruc- .~

tive to begin with the electric field gauge (£ gauge; vanish-
ing vector potential A=0 and scalar potential —eE(s) 7).
Wave functions are transformed from the C gauge (notation
¥) to the £ gauge (notation @) by the unitary transforma-
tion

—eA()TIW(T.e) . (5.16)

where A is the vector potential in long wavelength approxi-
mation for the C gauge.

The Schrédinger equation in the E gauge has the form
(5.4), which was derived at the beginning of this chapter in
a different context. If we entirely neglect the interaction of
the particle with the field to a zeroth approximation, we ob-
tain from Eq. (5.6) as an approximate solution the wave
function ¢ in the absence of the external field.

In the present example of beta decay, the nuclear state
has to be determined from the Schrodinger equation in the
C gauge, i.e., from Eq. (5.1), since the electron wave func-
tion is given in the C gauge. If we approximate the solution
of Eq. (5.1) by the noninteracting state ®q in the £ gauge
and use the gauge transformation (5.16), we obtain the
wave function ¥, of Eq. (5.7), the MTA wave _function.
Although ¥, depends on the vector potential A, it still
represents a noninteracting state since a state vector which
does not include any interaction with the external field in a
particular gauge (here the E gauge), neither does so when
transformed to any other gauge (here the C gauge).

It should be mentioned that the wave function @, is not
the correct noninteracting solution in the C gauge. In the C
gauge the operator of the canonical momentum P= —i ¥V
differs from the operator of the kinetical momentum.
Hence in the C gauge the Hamiltonian H in Eq. (5.2) does
not describe the situation, where the interaction of the parti-
cle with the field is entirely neglected. The correct pro-
cedure is first to transform from the C gauge via (5.16) to
the £ gauge, where the vector potential vanishes and the
operators of the kinetical and canonical momentum are
identical, so that p/2m is the operator of the kinetical ener-
gy. Hence in this gauge the Hamilonian in Eq. (5.6) really
specifies the field-free motion, and @, represents the state
in the absence of the field. The wave function in the C

&(7,1)=expl
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gauge, which completely neglects the interaction with the
field, is then given by Eq. (5.7), i.e., by the MTA wave
function. For a lucid and thorough discussion of gauge in-
variance in quantum mechanics see Ref. 5.

Applying this discussion to the nuclear beta decay, we see
that the S matrix (2.1) includes the exact electron state and
noninteracting nuclear states in the C gauge. In the nonrel-
ativistic approach the S matrix could also be written in the E
gauge. The unperturbed nuclear state is then given by the
field-free wave function ®, and the gauge phase
exp(ie-A' T) is incorporated in the corresponding Volkov
wave function, which we obtain from Eq. (2.3) and the
transformation (5.16). The entire field dependence is then
concentrated in the electronic wave function. This pro-
cedure yields the same analytical form of the S-matrix ele-
ment as Eq. (2.1).

The factor exp(ieAT) always appears when one con-
sistently combines the nuclear state in the absence of the
field, which is related to the E gauge, with a Volkov state,
which can be calculated in a simple way for the C gauge.
This factor can be shifted from the nuclear to the electronic
wave function in different gauges and has nothing to do
with the interaction of the nucleus with the field. The iden-
tification of the factor exp(ieA ) in Eq. (5.3) as a gauge
transformation was in the present context first pointed out
in Ref. 6. In Ref. 4, Reiss does not consider this factor as a
gauge transformation but rather calls it a *‘unitary transfor-
mation within the Coulomb gauge.”” He then claims that
due to this phase factor the MTA wave function fairly
represents the effects of the applied field on the particle to
any order of interaction. Relying on this interpretation,
Reiss attempts in Ref. 1 to derive the entire effect of chang-
ing the degree of forbiddenness of a nuclear decay and of
enhancing nuclear decay rates from this factor exp(ie A ).

If the interaction of the nucleus with the field is neglect-
ed, only the coupling of the electron with the fieid can still
modify the nuclear lifetime. But as it was shown in Ref. 7,
this can only happen for a field which is much stronger than
the one considered in Ref. 1, as long as the field frequency
is very small as compared with the nuclear decay energy.
Therefore the model used in Ref. 1 cannot result in an ap-
preciable change of the nuclear lifetime.

V. SUMMARY

The basic formalism developed at length in Ref. 1 is
essentially the same as in Refs. 12 and 13 (cf. Ref. 14).
The theory of Ref. 1 only differs from this previous work by
using the correct noninteracting wave function ¥, (2.4) in-
stead of ®g (2.5) (but with the misguided intention of incor-
porating the interaction with the field) and by considering
linear polarization of the field instead of circular polariza-
tion. Whether the field is linearly or circularly polarized is
rather immaterial for the effects in question. Considering
linear in place of circular polarization mainly increases the
calculational labor without adding additional insight.

We would like to concentrate on two central objections to
Refs. 1 and 2: (i) Contrary to its intentions, Reiss's model

F.7 -

does not include any interaction between the nucleus and
the field. Notably, the so-called momentum-translation
(MTA) wave function is nothing but the correct free wave
function in the Coulomb gauge, as was shown in Sec. V in
three different ways. (ii) The total decay rate cannot be in-
fluenced by an external field as chosen in Ref. 1, if one
describes the electron by the relativistic Volkov wave func-
tion and the nucleus by the nonrelativistic MTA wave func-
tion. This can be derived by general arguments from point
(i) and Ref. 7. We also prove this explicitly in Secs. Il and
. There we show that in a correct treatment the gauge
factors exp(ie A T') (from which Ref. 1 derives its entire ef-
fect) mutually cancel in the total decay rate. Our argument
shows that this cancellation is independent of the polariza-
tion and pulse shape of the external field. The dramatic
enhancements of Refs. 1 and 2 seem to be due to an alge-
braic error. When this is corrected no enhancement
remains, in agreement with the results of Secs. II and III.

The physical concept underlying Refs. 1 and 2 differs
from the previous work (Refs. 12 and 13) by intending to
concentrate on forbidden beta decay in the presence of an
intense radio frequency field rather than an optical field.
Some final remarks on these two new aspects: (a) Chang-
ing the degree of forbiddenness of a nuclear decay by modi-
fying the nuclear states under the impact of an external field
is an exciting idea, but cannot be achieved by Reiss’s
model, which only uses noninteracting nuclear states. In
particular, it should be emphasized that Reiss tries to treat
JSorbidden beta decay along the same lines as allowed beta de-
cay, i.e., a multipole expansion of the lepton wave functions
and relativistic corrections to the nuclear wave functions,
both of which normally enable forbidden decays to take
place, are not considered, since the dominant mechanism of
the enhancement is supposed to originate from the gauge
factors exp(ieA 7). (b) The advantage of radio frequencies
as compared with optical frequencies seems to lie in the fact
that larger values of the parameter (ea/m)? can be achieved
at much lower field strengths. But if very high intensity ra-
dio frequency fields with a wavelength of A ~100 m (Ref.
2) are applied, the applicability of the Volkov solution,
which assumes a plane wave field of infinite extent in space
and time, seems very doubtful and certainly requires some
justification. A relativistic electron which moves freely in
such a field performs an osciliatory motion over a distance
of A. Such electromagnetic fields also raise experimental
problems, since the atomic electrons tend to shield an exter-
nal low frequency field, reducing its field strength at the site
of the nucleus by orders of magnitude.'s

We would finally like to emphasize that it remains an
open question as to whether properly including the interac-
tion between the nucleus and the field might yet lead to
some enhancement of forbidden beta decay, although we
believe that the orders of magnitude stated in Refs. 1 and 2
are very unlikely to be achieved by the latter mechanism.

We benefited from discussions with D. H. Kobe and P.
Zoller. This work was supported in part by the Air Force
Office of Scientific Research under Contract No. AFOSR-
81-0128.
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