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VIBRATION ANALYSIS

SOME ASPECTS OF VIBRATION CONTROL SUPPORT DESIGN*

P. Bezler, J.

Stress Analysis Group
Department of Applied Science
Brookhaven National Laboratory :

Upton, NY 11973

R. Curreri

location for all spring rates.

Transfer matrix methods were used to investigate the charac-
teristics of vibration control supports for piping systems.
Using a spring supported cantilever beam and a spring sup-
ported equal span "L" bend as analytical models data were
developed to delineate the optimum support placement and
effectiveness as a function of support spring rate.
accurate support placement was found to be imperative, the
second mode node point was found to be the best compromise

was produced with a support having a spring rate equal to thaﬁ
of the second natural frequency of the unsupported system.

Although

Also, near ideal effectiveness ’

Intermediate supports are a common
feature in piping systems. They are
introduced to provide support against
weight loadings and to effect an in~-
crease of system natural frequencies
above undesired ranges. Support hangers
are typically constant force and spring
types, liberally dispersed throughout
the system and designed to just balance
éead weight loads. As such, they pro-
duce an average stiffening of the entire
system but are not used to control gross
system vibrational characteristics.
Vibration control supports are specif-
ically designed to be rigid members,
fixing a point in space. If properly
located, they strongly affect system
vibrational characteristics.

Rigid supports are introduced in
order to raise the natural frequencies
of a system to a range of acceptable
values. It is a well understood prin-
ciple that the introduction of a single
constraint in a vibrating system cannot
raise the fundamental frequency any
higher than the second mode frequency
of the system without constraint.
Specifically, in beam or pipe structures
a rigid pin support placed at the node
point for the second mode of motion for
the unsupported system will force the
system lowest natural frequency from
the first to the second natural fre-
quency of the unsupported system. The

support in this case is 100% effective,
producing a maximum increase in fre-
quency magnitude. However, in the real
world there is no such item as a rigid
pin support. Each real support has
associated with it a calculable elastic
spring constant and a finite attachment
width. The elasticity of these supports
tends to reduce their effectiveness while
the attachment width (rotational con-
straint is added) tends to increase their
effectiveness. The effectiveness of non-
rigid pin supports and their optimal
placement is the subject of this investi-
gation. Attachment width affects are

not considered.

Using transfer matrix methods evalu-
ations were made of the first natural
frequency of a spring supported canti-
lever beam and a spring supported "L"
bend. The transfer matrix relations were
based on classical beam theory and in-
corporated a distributed mass represent-
ation of the beam element. For the canti-
lever beam the computations were performed
for spring rates ranging from 0 to 400
times the basic beam stiffness (EI/%3)
and locations from the second mode node
point (taken as .785% in this study) to
the free end. For the "L" bend only v
variations in the spring rate were con-
sidered, the placement always being taken
at the node point for the second mode.

*Work performed under the suspices of the U.S. Energy Resssrch and Development Administration.
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The cantilever beam served as the
model to investigate optimum spring
location as a function of spring rate.
It is a non-symetric structure and as
such, its node point for the second
mode motion does not coincide with it's
point of maximum motion in the first
mode (). In this regard it is con-
sidered typical of a most general struc-
ture. For these optimal support place-
ment is a function of support spring
rate. For symetric systems the point
of maximum motion in the first mode
coincides with the second mode node
point and optimal support placement is
not a function of support spring rate.

The results for the cantilever beam
investigations are shown in Figure 1.
Two sets of data are depicted, the
eigenvalue coefficient (B,) for the
first mode of motion of tﬁe spring
supported beam and the optimum spring
location both as functions of the non-
dimensional spring rate. The ordinate
scale to the left applies to the
eigenvalue data while the ordinate
scale to the right applies to the loca-
tion parameter.

The optimum spring location curve
is developed from the computed eigen-
value data. Considering the latter,
the graph depicts the variation of the
first mode eigenvalue coefficient of a
spring supported cantilever beam as a
function of spring rate. This is shown
for ten values of spring location
varying from 0.785% to the free end.
For a spring located at the free end
(X/2=1), the eigenvalue coefficient
varies from 1.875 for a null spring
rate to 3.854 for a spring rate 400
times the basic beam stiffness. As
may be seen, the free end location
curve is the upper most curve (most
effective location) at low spring
rates and the lower most curve (least
effective) at high spring rates. The
location curve which forms the upper
envelope of the curves at a given spring
rate establishes that location as the
optimum support location for the spring
rate. Following this interpretation
the optimum spring location curve was
developed.

An important general conclusion can
be drawn from the data. As can be seen,
the curve corresponding to a support
located at the second mode node point
(.785%) is never far below the upper-
most curve. A spring located here will
produce almost optimal effect. It may

then be concluded that in the absence

of detailed analyses, the second mode
node point location represents the best
compromise location for all spring rates.

Defining support effectiveness as ;
the percentage of frequency increase i
produced by a spring, 100% being the in-
crease from the first to the second
natural frequency of the unsupported
gsystem, a measure of relative support

efficiency was possible. Figure 2 de-
picts the variation of support effec-
tiveness versus non-dimensional spring
rate for the cantilever beam and for a
"L" bend with the support located at the
second mode node point for each system.
The "L" bend was selected as being
typical of a general symetric system.
The non-dimensional spring rate is formed
by taking the ratio of support stiffness
to the stiffness associated with the
second natural frequency of the un-
supported system (K=k/mm§),m—system mass,
wz-system second natural frequency and
k-support spring rate). Non-dimension-
alized in this way the curves for the
two systems are very similar. For each,
near ideal "rigid support" effect is
produced as the non-dimensional spring
rate approaches unity.

Support effectiveness was found to
be a function of both spring rate and
location. At low spring rates, 0-80
times the basic beam stiffness, the
support effectiveness was only weakly
dependent on location, provided the
spring was placed near the point of
expected maximum motion. Conversely,
at high spring rates, greater than 300,
the effectiveness was strongly dependent
on location, a variation of 40% in
effectiveness being produced from the
poorest (X/2=1) to the optimal location
(X/2=0.785). Although accurate support
placement is imperative, the second mode
node point is the best compromise loca-
tion for all spring rates. Also, near
ideal effectiveness is produced with a
support having a spring rate equal to
the spring constant associated with the
second natural frequency of the un-
supported system,

PO S
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RESPONSE OF A HARDENING SPRING OSCILLATOR TO RANDOM EXCITATION

Joseph T. Kayanickupurathu
Research Fellow

and

John R.

Curreri

Professor of M.E., Polytechnic Institute of N.Y.
Congsultant - Brookhaven National Laboratory

The mean square response of a hardening spring oscillator with
viscous damping is developed by using a transfer function method,
assuming the non-linear system is linear. The purpose is to
determine the errors incurred in treating the hardening system
as though it were linear. The transfer function solution is
compared with equivalent linearization and a Fokker-Planck solu-
tion. The equivalent linearization solutions are shown to under-
estimate the mean square response while the transfer function
approach overestimates the response.

Many investigators have worked on
the non-linear response of the one de-
gree of freedom system subjected to ran-
dom white excitation. These studies,
in general, developed the equations for
the response either from Fokker-Planck,
equivalent linearization or perturba-
tion methods. It sometimes occurs,
either by design, by assumption, or by
lack of sufficient information, that a
non-linear system is treated as though
it were a linear system. In such cases,
a knowledge of the non-linear response
by itself is not used and the question
might be raised on the magnitude of
error incurred. 1In particular, suppose
that an unknown system is dynamically
tested to develop an input-output trans-
fer function by sweeping the frequency
of a sinusoidal input. If this transfer
function is used to predict the spectral
response of the system to any random in-
put, as is done in a linear system, an
error is incurred if the system is actu-
ally non-linear. An evaluation of this
error is investigated in this paper.

The size of the error is quantitatively
developed as a function of the non-
linear magnitude.

This paper develops the mean square
response of a hardening spring oscilla-
tor by the transfer function approxima-
tion method. This is accomplished by
deriving the transfer function of a
hardening type mechanical oscillator
with viscous damping. The transfer
function is squared and numerically in-
tegrated over the frequency range to
get the response. The results show the
magnitude of error involved in the mean
square response when it is developed on
the basis of a transfer function that
is obtained from tests for a non-linear
system that is assumed linear. An equi-
valent linearization solution based up-
on less restrictive assumptions than
have appeared in the literature is also
shown.[2]1{3]1(7] All results are com-
par?d with a Fokker-Planck solution [10)
[11].

A Duffing's type mechanical oscil-
lator, having linear viscous damping
and hardening type spring elements, sub-
jected to random white excitation, is
considered. To develop a transfer func-
tion, an equivalent sinusoidal excita-

tion, is obtained. Using this, a

PREVIOUS PAGE
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frequency-amplitude relation is devel-
oped. For any assumed amplitude the

corresponding frequencies are evaluated

Making use of this, a transfer func-
tion is obtained. ' This tranggeraggnc-

tion exhibits multiple solutions depend-
ing upon the non-linearity and the

level of the exciting force. The trans-
fer function has two stable paths, one
when the frequency is swept upwards and
the other when the frequency is swept
downwards past the resonance. Using
these, the mean square response of the
system is approximately evaluated.

The equation of the system investi-
gated is of the form [1]:

2

- . (1)
y + ZEuny + wy

(y+c2y3) = F cos(wt + ¢)
where

.« _d 2 _k
y=a¥ mn si g =

¢ = non-linearity (in™%)

aa

Equation (1) can be rewritten as:

- . 2 23 (2)
y+2€nny+un (y+ey)=81m80t-azsimt

where
Bl = F Cos ¢ 82 = F 8in ¢

- -1 B2 2 _ .2 2
[} tan 51 F~ = Bl + BZ

Assume an approximate solution of the
form
y(t) = A cos uwt (3)

and substitute back to get:

2 2

® ® B
Y =(—g— A+ %-—"i—czA:’- -%) Cosut +
v ™ w

© B 2 2.3
n 2 w, e A
(‘25;—- A +;2') Sinuwt + -“T!—Cos&»t (4)

Following the Duffing procedure, the
equation relating the frequency, the
amplitide, and the excitation becomes

(‘2 2+ 02 2 2
)+ -2 + 45%- 3,22,
® . M

n n (5)

2
+(1+ ;_‘2‘2 + {-‘»c‘h‘] -(!g-) :;1-

The maximum value of A is obtained
by differtiating equation (5) implicitly
with respect to « and setting dA/de = 0.

1

mh =3 s (6)
°. £ Jia-¢%s 29

The maximum amplitude given by equation
(6) occurs at a frequency
2 2.2 .2

2 2
W' = e + %(wn e )A" - 2(€un) (N

In obtaining the mean square re-
sponse of a linear system with random
excitation the squared magnitude of the
system transfer function is multiplied
by the input spectral density and inte-
grated over the input frequency range.
This method of solution, in general, is
not legitimate for the non-linear sys-
tem. However, for very small non-
linearities it is reasonable to adopt
the above procedure to find an approxi-
mate result. The error incurred in
treating a non-linear system as though
it were a linear system is pursued here.
Once an approximate solution is obtain-
ed by the experimental determination of
the transfer function, we can determine
its variation from the differential
equation solution and hence establish
how the experimental results compare
with the analytical solution.

The temporal mean square response
of a system is given by

<y?> -f [H(w) | %G(w)du = 4-c?fln(f) | %6
(-]

- (8)
G(w) = Go

where

H = complex frequency response
G = temporal spectral density

In equation (8) a factor of 2 is
to account for the change in the limit
and 2% for the change of circular fre-
quency in rad./sec. to cps.

The integral in eq. (8) can be
viewed as a sum in the following form

<> = 416, 3" lHilz(Af)i (9)
i

where |H,| and (af), are taken as in-
dicated tn Fig. 4. 'In eq. (9) (af), is
chosen in such a way that H is appraxi-
mately linear in that range. The
average value of H in the frequency in-
terval is chosen since H has to be a
single valued function at any interval.

The approximate mean sguare re-
sponse is evaluated for different non-
linearities as shown in Fig. 5. 1In
this figure, the mean square response




obtained by the Fokker-Planck method
and by the equivalent linearization pro-
cedure are also shown for comparison.

To solve eq. (1) by equivalent
linearization, the parameter A is intro-
duced to get

v+ 2w ¥ + Ay - R = F(t) (10)
where
R =2y -o 2(y +e%y%) (1)

For an ideal white noise input,
the mean square response is E[y2] =

LN
on
2EX Using equivalent linearization,

form E[R2] and then set

2
L = 2ery?1- 20 21y?) + PRy

=0 (12)
Therefore "

= . 2 2 E[y ]
A= mn {1 + ¢ ;[527} (13)

where the terms in the bracket must be
evaluated.

By assuming that ¢ is small, an
gpproximation to E(y2]has been shown to

e
E[Y2] = 002[1 - 3:2002 + 9:4004 ER |
for |3ezo°2| <1 (14)

If the assumption is made that the
forth moment is approximately linear,
an expression for E [y2) with only the
first two terms ig obtainedA If, how-
ever, neither E[y“] nor E[y*] ara
assumed linear but are given by a
Gaussian distribution, then

Ely?] = %

1+ 3e%E[y?) (15)

which when solved and expanded in a
binominal series gives
4

2,2 + 18:40 -

E[yzl =a°2[1 - 3¢ % °

- 135 ¢80 6

+=- ... (16)
[« ]

Egs. (14) and (16) are plotted in
Fig. 5. These are compared with a
Fokker-Planck solution. It is seen
that this approximation which results

in eq. (16) is closer to the Fokker-
Planck solution. However, all three
equivalent linearization approximations
are below while the transfer function
approximation method is above the
Fokker-Planck curvs. Only for small
non-linearities (e“0“<0.01) are the
differences in the curves small. Above
this, the differences are appreciable.
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NON-LINEAR DYNAMIC RESPONSE OF A MULTI-MASS SYSTEM WITH GAPS*

Bernard Koplik** and Morris Reich***

Department of Applied Science

Brookhaven National Laboratory
Upton, NY 11973

The dynamic response of a multi-mass system with gaps
is investigated for a sinusoidal input forcing function.
Using a High Temperature Gas-Cooled Reactor core as a
model, results are obtained for the dependence of reso-
nant frequency on total clearance and distribution of
mass. Numerical results using the OSCIL computer pro-
gram show that an increase in total clearance is accom-
panied by a reduction in the peak forces developed
while the initial distribution of clearance between ad-
jacent elements has no effect on the system response.
Further investigation reveals that the non-linear re-
sponse is invariant for reduced mass representations.

The dynamic response of an "N" de-
gree of freedom in-line system of
masses and springs subjected to a sinu-
soidal forcing function has been
thoroughly investigated in the litera-
ture. In addition, the dynamics of a
single mass and spring separated by a
gap has received considerable attention
and the solutions are well documented.
However, there is little information
available on the response of a multi-
mass system in which gaps initially
exist between adjacent masses and
springs and supports. This paper is
concerned with the dynamics of an "N"
degree of freedom in-line system with
non-linearities introduced due to gaps
or clearances between elements of the
system. In particular, the ability to
analyze the response of a complex non-
linear system with gaps by using a model
with a reduced number of masses is de-
monstrated.

¥ Work performed under the auspices of
+he Reactor Safety Research Division
of the Nuclear Regulatory Commission.

*#+ Consultant, Structural Analysis Group

#4+ gStructural Analysis Group

11

Although the dynamic response of
a multi-mass system with gaps is of
general interest for a number of de-
sign applications, this present paper
utilizes a model of a High Temperature
Gas-Cooled Reactor (HTGR) core for the
purpose of obtaining numerical results.
The HTGR core under consideration con-
sists of several thousands of hexagonal
elements arranged in vertical stacks
containing about eight elements per
stack. There are clearance gaps be-
tween adjacent elements, which can
change substantially due to radiation
effects produced during their active
lifetime. Surrounding the outer peri-
phery of the core are reflector blocks
and restraining spring-pack arrange-
ments which bear against the reactor
vessel structure. The impending sinu-
soidal forcing function will result in
multiple impacts between the reflector
blocks and the restraining spring packs.
This leads to a highly complex non-
linear response associated with the
multiple collisions across the clear-
ance gaps and with the spring packs.

To stimulate the response of this
system, a model using a single row, or
slice, of horizontal elements was
adopted for the dynamic investigations.
Actual clearances as well as the total
mass of a typical horizontal slice

PREVIOUS PASE
18 BLANK
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were used. A pictorial representation
of the analytical model is shown in
Figure 1, which represents an "N" mass

DAMPING CARACTERISTICS

T

15
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*N" MASS MODEL

Figure 1

model. The input motion is supplied by
the horizontal displacement of the core
vessel. The spring packs include the
actual elastic members in the core
structure as well as the hard elastic
stop of the vessel wall itself. Inter-
elemental elastic and damping coeffi-
cients are derived from the element geo-
metry and material characteristics. Co-~
efficient of restitution data was
obtained from a model test using
graphite. The viscous interelemental
damping coefficients in the analytical
model were adjusted to duplicate the
energy dissipated during a collision

in the model test. The viscous damping
coefficients of the ground-motion dam-
pers were evaluated on the basis that
they would dissipate the same energy
per cycle as ground friction.

In order to solve for the response
of the system, a computer program, OSCIL
{1}, was developed which is capable of
handling "N" masses with gaps and in~-
cludes the interelemental elastic and
damping characteristics. The program
has the flexibility to handle the in-
puts and outputs in terms of displace-
ments, velocities, or accelerations as
well as forces. For this study, har-
monic displacements were prescribed as
the input by specifying the amplitude
and frequency at the reactor vessel wall
which is the boundary of the system.

Both numerical and graphical outputs
were obtained specifying the displace-
ments and interelemental forces devel-
oped for various mass distributions and
gap sizes.

Using the OSCIL code a lumped mass
system was investigated in which the
total mass, total clearance space, in-
terelemental damping, and forcing fre-
quency and amplitude were all held con-
stant. For these runs the total mass
was distributed into 5, 7, 9, and 30
individual lumped masses. Results of
the analysis are shown in Figure 2,
which presents graphical strip charts
for reactor vessel inputs as well as
core response outputs for the various
lumped mass models. 1In these plots, the
strip (or long axis) is the time coor-
dinate, while the dimension across the
strip (the short axis) gives the indivi-
dual mass point displacements. Each
mass is represented by a single trace. -
Where the clearance between adjacent X4
mass points goes to zero, a single -
trace then shows the path of the clumped
masses. In all the strip chart plots,
the two boundary or outermost traces,
represent the input vessel motions. A
comparison of the displacement time-
histories of the various mass systems
all excited at 11.4 rad/sec, the natural
frequency of the identical system with-
out clearance, reveals different
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response characteristics for the four
cases considered. Both the displace~-
ments as well as the forces developed
vary considerably from case to case.
Although only the first five seconds of
response are shown in Figure 2, runs
have been carried out for as long as
thirty seconds {2} with no trend to-
wards any similarity in response deve-
loping.

In Figure 3 the dynamic responses
of the identical lumped mass systems
are shown for an excitation at the re-
sonant frequency (or frequency of maxi-
mum response) with all other parameters
remaining fixed. It shows that, at this
frequency, responses of all the mass
systems have similar characteristics.
Indeed, under the conditions stated
above, the five-mass system has the
same natural frequency as the thirty-
mass system. In addition, an examina-
tion of the forces developed at the
wall of the vessel shows that the maxi-
mum forces are the same for each of the
mass representations. Therefore, at
resonance, a model using a reduced num-
ber of masses is capable of represent-
ing the dynamic response of the more
complex system. This is found to be

true despite the high degree of non-
linearity associated with a spring
characteristic which represents a stiff
structural member adjacent to a free
space.

The importance of this conclu-

B N .

sion is clearly demonstrated by the fact
that the requirements for computer time
would be prohibitive if a model using a
reduced number of masses was not appli-
cable. Further study shows that for
extended runs at the resonant frequency,
starting with different initial posi-
tions of the masses, the initial tran-
sients have largely disappeared after
only ten seconds and identical steady-
state motions are obtained. This is
shown to be true for the entire spec-
trum of initial spacing of masses, from
equally spaced to all masses clumped
together, as long as the total clearance
is held constant. This result, which
demonstrates that the resonant frequency
of the system is not altered if the
total clearance is held constant, is
also independent of the mass model
chosen.

However, the effect of varying the
total clearance has a dramatic effect on
the resonant frequency of the non-linear
system for a fixed input amplitude.
Starting with a linear system without
clearance, the resonant frequency was
shown to be reduced by a factor of four
as the total clearance was increased to
100% of nominal clearance. The results
are plotted in Figure 4 with the re-
sonant frequency dropping from 11.4
rad/sec without clearance to 2.52 rad/
sec under conditions of nominal clear-
ance. The procedure clearly establishes

N
|

&

o

ANALYTICAL ESTIMATE

H (] @
[ ]

"NATURAL" FREQUENCY (rad/sec)
N
I

1 L 1

1 1

| T

T T |

|
SR

|
(%, 0) 25%

[
75%

("NATURAL" FREQUENCY vs CLEARANCE)
Figure &




g RN oo e PR YT P, TR

= o me s U R e el ST s SEREE L S

the dependence of resonant frequency
and the development of peak forces on
total clearance. Since during the life-
time of the HTGR core clearances may
develop, further runs have been carried
our for as much as 130% of nominal
clearance {3}. As seen in Figure 4,
although a very small clearance induces
only slight departures from resonance,
as the total clearance increases, the
system becomes highly non-linear and
the resonant frequency drops off signi-
ficantly.

In conslusion, the present study
demonstrates the successful implementa-
tion of an analytical model for the dy-
namic response of a multi-mass system
with gaps such as an HTGR core, by us-
ing considerably fewer masses than the
actual system, even though the problem
is highly non-linear. The reduced mass

Discussion

Mr. Roggio (Naval Air Engineering Center):

How do you generate the stiffness and the
damping characteristics at impact?

Mr, Bezler: For our studies so far, we have
just modeled the stiffness using the length of
the block and the axial stiffness of the
material, that is we treat the block as if it
were linear spring. To model the damping we
ran some collisdon impact tests to measure

the coefficient of restitution and related
that back to an equivalent vigcous damping.

Mr. Roggio: What was the criteria for the

1019 ¢ timestep?

Mr. Beszler: We use the gear integration scheme.
It adopts a timestep consistent with what is
happening in the system. As a collision occurs,
it will adopt timesteps as small as 10-10.

As soon as the collision is over, it will then
adopt a very coarse timestep guch as 10-4 or

10-3. It is actually built into this package
and it does it automstically.

io: Does it base this timestep on the
stiffness and mass characteristics?

Mr, Begler: That is correct.

Mp. Roggio: What ratio of mass to stiffness
characteristic did he use?

¢ This is during a numerical time
integration.

>0%3 1% gk - oS

model is capable of accurately predict-
ing resonant frequencies and maximum
induced forces for clearances that vary
during the operational lifetime of the
system.

References

1. "OSCIL: One-Dimensional Spring-
Mass System Simulator for Seismic Ana-~
lysis of High Temperature Gas-Cooled
Reactor Cores", L. Lasker, Ed., BNL
21023, January, 1976.

2. HTGR Safety Evaluation Division,
Brookhaven National Laboratory,
Quarterly Report, BNL 50460, November,
1975.

3. HTGR Safety Evaluation Division,
Brookhaven National Laboratory, Quar-
terly Report, BNL 50479, January, 1976.

Mr, Roggio: What ratio of the period of the
spring mass blocks does it use to come up with

10-107 Or does it use it in your program?

Mr. Bezler: It doesn't use it at all. There

is some sort of error function that you can
specify in the beginning. It predicts the
solution and then calculates the solution and
that is the error involved. You specify how
large you will let that error be from timestep

to timestep at the outgset. This is the
criterion that it uses to select the timesteps.
That package is available in the gear integration
scheme.
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AN IMPROVED DERIVATION OF THE DUNKERLEY-MIKHLIN FORMULA

John E. Brock
Professor, Department of Mechanical Engineering
Naval Postgraduate School

Monterey,

California

A somewhat more elegant proof is given of the matrix
form of the Dunkerley-Mikhlin formula, based upon the
idempotency of the filtering matrix F.

It is the purpose of this brief re-
port to provide a modified and somewhat
more elegant derivation of the "Dunker-
ley-Mikhlin" formula which appears as
equation (12) in references El] and [2].
The present proof is self contained; the

notation is the same as in references
{1] anad [2].

We consider and undamped linear vi-
brating system characterized by NxN sym-
metrical matrices K (stiffness) and M
(mass). Suppose that there are p rigid
body motions which are known (by inspec-
tion). If p>0, K has no inverse. It is
well known that there exists an NxN
modal matrix U and an NxN diagonal mat-
rix @? in which frequency squares are
arranged in nondescending order, such
that

KU = Mug?; UTMU = I, (1a,b)

The first p columns of a valid ex-
pression for U may be constructed from
the known rigid body modes by the usual
Gram-Schmidt orthonormalization process.
The first p diagonal positions in 02
contain zeros.

Now conceptually add sufficient
constraints so as to prohibit all rigid
body modes. Let the stiffness of the
modified system be K* with inverse C.
Let k >p be given. There exist numbers
a.. (j=1,2,3,...,p) such that the dis-
pigcement vector P

Vie Tyt E a3y (2)
j=1
does not involve loading any of the new

constraints not present in the original
system. Thus

Kvy = K*vk; CKvy = CK*vk = vy (3)

The a mqy be found as follows.

For k>p aﬁs rsp,

:§: 4)
T . ..T T -
urHvk = “r"uk + j=lajkurHuj = ag

Thus, :§:
- T -
Vi Tyt j=1ujkauj = uy ¢+ Avk (5)

where k > p and

A= :g:u.uTM (6)

j=1]J

is an idempotent matrix, viz.

s uuBul
A £1 k=1uJu§MukukM
= iflu.u?n = A %))

j=133
Thus we see that
uy = ka (k> p) (8)
where the filtering matrix
F=1-A (9)

is also idempotent, viz.
F2= (I-a)(I-A) = I - 2A + A?

= I -A=F (10)
It is thus clear that

Fu = 0 (kip) (11a)

Fk = u. (k>p) (11b)

The truth of equation (10) can be
seen immediately by inspection since
once the first p components are removed
from an arbitrary vector by an initial
premultiplication by F, subsequent pre-
multiplications by F leave the result
unchanged.

+C
3=1

2 2 . 2
CHukmk + Eajkm’jwj = CHukuk

From equation (3) ghave

Vi = CKvk = CKuk ajkl(uj
P
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for k> p. Thus
FCMFuk = 0 for kp (13a)

FCMFu, = ukmE’ for k>p (13b)

and these equations may be combined into
the single matrix equation

FCMFU = UA (1y4)
where
- a3 -2 -2 ~2
A = diag{0 0 O wply Wohy cee wy }
(15)

Thus we may write
A" = (Uu-treMrU)? (16)

where n is any positive integer and by
taking traces we have

~2n = tr[An] =

“x
k=p+l
= tr[U-'F(CMPY™U] = trl(CMP)™]
= te[Q™] an
where
Q = CMF (18)
An explicit formula for Vies viz.
Vi = CKuy (k >p) (19)

may be obtained from equation (12).
Equation (17) above, obtained by noting
the idempotency of F and the equality
tr[AB] = tr[{BA], is the Dunkerley-Mikhlin
formula in matrix form, the same as equa-
tion (12) in references [1] and [2].

(One should note an error in the F,,
term on page 8 of reference [1]; this
term should be -36 rather than 36. The
error is not propagated in subsequent
calculations therein.)

It may alsoc be useful to add another
example of the application of the general
method in a case involving (one) rigid
body mode and both lumped and distributed
mass. Consider the flexural vibrations
of a uniform elastic bar of length L and
mass pM, freely hinged at the left and
having a concentrated mass (l-p)M at the
right. A constraint against rotation at
the left is conceptually added, giving
the compliance function

z(x,y) = (3xyw-w?)/6EI (20a)

w = Min{x,y} (20b)

The mass distribution is
m(x) = pM/L + (1l-p)M&(x-L) (21)
The rigid body mode is a rotation about
the left end, viz.:
u,{x) = ox; ©7%= ML2(1-2p/3) (22a,b)
the value of & being obtained by normal-

izing. Straightforward calculations lead
to

-2 3

A Rayleigh estimate based on the assumed
deflection

y = x5 - x) (2w)
gives s )
w;? > oML (2u~33p;lup ) (25)

and a mixture

-z . 2x(Formula 24) + (Formula 25)

mz - 5

- PML®(1848-2825p+10620%) (54
20160EI(3-2p)?

has a maximum error 0f 0.44% in the range
05p$1 when compared to the exact solution

w;? = pML®/EIg* (27

where B8 is the smallest positive root of
the equation

plcot(B) - coth(R) + 28] = 28 (28)

The mixture indicated in the approxima-
tion, equation (26), was obtained by
comparing with the readily available
elementary solutions for the cases p = 0
and p = 1.
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RECENT ADVANCES IN
FAILURE AMALYSIS BY STATISTICAL TECHNIQUES (FAST)

W. H. Rowan

TRW Defense and Space Systems Group
Redondo Beach, California

ABSTRACT

The FAST technique has evolved over the past ten years through its application to vulnerability
analysis of strategic systems. The technique can be used to assess the hardness of a system at any
phase in the system's development, from concept development of new systems to hardness upgrade of
existing systems. Recently, the FAST algorithm has been modified to reduce computer time by more than
an order of magnitude and to enable much more information to be extracted from the calculation.

The paper reviews the orignal FAST algorithm and then discusses the new development. The basis
of the new algorithm is presented and its application to three areas is discussed. These areas

comprise:

1) Potential development of a system of all effects target vulnerability descriptors.
2) Automated capability supporting hardness design trade studies.

3) Capability for data base evaluation, by determining the sensitivity of system
response to underlying data base inaccuracies.

1.0 Introduction

The growth of strategic weapon systems
from 1950 - 1960 brought the need for quantita-
tive techniques for assessing nuclear surviv-
ability. Failure Analysis by Statistical
Techniques (FAST) was developed for the Ajr
Force's Space And Missile System's Organization
(SAMSO) during the last decade to satisfy this
need. The evolution of the FAST methodology
has been documented in the Shock and Vibration
Bulletin [Reference 1] and as a User's Manual
sponsored by the Defense Nuclear Agency
[Reference 2]. Following a quick review of the
present documentation, this report continues
with the recent advances in the methodology.

The FAST methodology has been applied to
in-place systems to evaluate inherent system
hardness or the benefit of hardness improvements.
It also has wide applicability to the hardness/
survivabilfty evaluation of any military system
and can be applied to civilian systems as well.

In the early development of FAST there
was recognition of the need for a statistical
approach to account for modeling uncertainties
and random variatifons in geology and construc-
tion. The more recent work at TRW has demon-
strated that target vulnerability may be

adequately modeled by a simplified statistical
model that permits accurate calculation of the
probability of damage to a target attacked by a
nuclear weapon. Because of this finding, it
was possible to modify the FAST calculation and
achieve three substantial results:

1. Computation costs are significantly
reduced by as much as one or two orders of
magnitude.

2. Much more information is extracted
from a FAST calculation.

3. A multi-enviromment target vulnerabil-
ity/survivability assessment system can be
developed.

Targets may be classified in various ways.
They may be point, 1ine, or area targets. Or
they may be single entities or a complex of
similar or different entities. Furthermore, a
single target entity may be subjected to weapon
effects from a single weapon or from multiple
weapons; and the case of multiple weapons would
further complicate the analysis because in
general the probabilities of survival against
successive weapons are not independent. The
mathematical tools to be discussed apply to all
these situations. But the discussion in this
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repert will be limited to point targets attacked
by a single weapon.

Target vulnerability is defined in terms
of the damage function, which gives the prob-
ability that a specified weapon will cause a
specified level of damage as a function of
position with respect to the target, including
height of burst if appropriate., The damage
criterion is defined at any appropriate level.
Typical examples of damage criteria include
denial of partial mission capability denial of
complete missfon capability or making the target
compl:tely unavailable to the user after the
attack.

To define target survivability, we shall
assume that a single weapon of specified yield
and height of burst is delivered against a
target of interest with a random miss distance
depending on the weapon impact distribution about
the aim point. Target survivability is then de-
fined as the probability the target survives.The
next paragraph outlines the report contents.

First, the original FAST calculation as
documented in References [1] and [2] is
reviewed. Then following the probability of
damage accuracy study, which paved the way for
the new FAST method of calculation, the new
calculation procedure is described, showing the
reduction in computer cost that may be expected.
The new method is implemented by means of the
interactive FAST Data Analysis System, which
permits the user to develop the Integrated
Nuclear Damage Assessment System (INDAS), a
major result of the new method. The report
concludes by discussing the second major
result of the new method, the calculation and
use of sensitivity/correlation coefficients
for such purposes as system optimization and
data base prioritization.

2.0 Summary and Conclusions

The report first reviews the original
Failure Analysis by Statistical Techniques
(FAST) methodology (References [1] and [2]) to
describe how FAST can assess the hardness of
any military or civilian system and provide
basis for discussing the recent advances.

A system damage criteria is postulated,
such as inability to accomplish the mission
or sutmission during a specified period after
an attack. The system is functionally
analyzed to detemine all of the potential
failure mechanisms; and a system network
diagram is constructed, showing appropriate
series/parallel relationships between the
varfous failure mechanisms. Each failure
mechanism is represented by a component in
the system diagram from which FAST automatically

constructs a set of system network equations
for calculating system failure probabilities.

Three kinds of data are required for each
component: component resistances, or fragilities,
which are functions giving the probability of
component failure as a function of internal
response to a hostile environment; transfer
functions, which convert hostile free-field
environments into internal response; and scaling
laws, which relate free-field enviromments to
the position of the detonation with respect to
the target. For each of the three classes of
data, estimates of random and systematic vari-
ations and of correlations are required. The
original FAST code assumes a specified position
between the detonating weapon and the target.

Environment scaling laws and transfer
functions are applied to predict local responses
within the facility, which, in turn, are compared
with the fragility to establish the probability
of failure for each of the components. The
probabilities of failure are then combined in
system network equations to obtain the system
failure probability. At each stage of the cal-
culation, the fragilities, transfer functions,
and free-field environments, are drawn from
appropriate distributions of random and system-
atic variation.

The Monte Carlo sampling process is exer-
cised in two stages: an inner loop, in which
random variations are sampled and an outer loop
in which systematic variations are sampled. In
the inner loop an averaging process suppresses
the linear effects of random variation. The
outer loop serves to determine the distribution
of systematic variation of probability of sur-
vival induced by systematic variations on the
inputs. A damage function is generated by
repeating the process at a preselected set of
separations between the weapon and the target.

Damage functions are ordimarily input to
the calculation of target survivability when the
system is attacked by a weapon of specified yield
and delivery accuracy. TRW has studied the most
commonly used methods for calculating target
survivability to determine the effect on their
accuracy when assumptions regarding the form
of the damage function are not satisfied. To
summarize this study one of the major findings
is that a normal distribution model of the dam-
age function can provide accurate probability of
survival calculation even when the actual damage
function is far from being normal, From this,
1t follows that the FAST calculation can be
executed in a new way, estimating only the mean
and standard deviation of the damage function
since these parameters define the normal distri-
butfon, and that this would provide a number of
benefits mentioned in the introduction.
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The new FAST approach executes the calcu-
lation in the inverse mode of the original ap-
proach. The new approach randomizes on the
random and systematic variations of the fragil-
ity distribution to select a local enviromment,
which is converted, by means of an inverse
transfer function, to a free-field enviromment
and then to a damage distance by means of
envirorment scaling laws. The Monte Carlo
sampling process is used in this fashion to
generate the distribution of damage distances.
At each iteration, the system damage distance
together with other parameters of interest,
such as randomized weapon yield and height of
burst, are placed into a data vector which is
stored in a data matrix. The data matrix is
analyzed by the FAST Data Analysis System to
obtain regression coefficients relating figures
of merit such as the system damage distance to
other parameters of interest such as weapon
yield and height of burst.

For one application of the new methodology
such data are tabulated into a handbook for a
variety of strategic and tactical targets use-
ful to targeteers, weapon system designers, and
others for conveniently regenerating damage
functions for targets of interest. Such a tar-
get vulnerability system is called the Inte-
grated Nuclear Damage Assessment System (INDAS).
It organizes the regression coefficients for
each target into a coded string of alphanumeric
characters which enable a user to regenerate
damage functions for targets of interest. These
damage functions take into account all of the
nuclear weapons enviromment.

For a second applicatfon of the new ap-
proach, the data matrix can also be analyzed to
generate sensitivity data for optimization of
the system hardness. The optimization can then
be done either on a technical or cost effective-
ness basis.

Sensitivity data from the data matrix can
also be used to upgrade the data base for a
system. In the design of a system, safety fac-
tors are needed to compensate for uncertainty
in the various phenomenological and system re~
sponse models. If the uncertainty of key in-
puts can be reduced, the associated safety
factors can be reduced and, thereby, the system
cost as well, The discussion shows how the key
uncertainty factors can be identified and
prioritized to provide a basis for planning test
and analysis programs for reducing the key
uncertainties.

3.0 FAST Methodology

A brief discussion of the original method-
ology of the FAST technique is appropriate here
to show how it can be used to caiculate weapon
system damage functions. The vulnerability of
a complex system subjected to a hostile environ-
ment is evaluated or assessed by calculating the
probability of response of each component to the
hostile enviromment, detarmining the probability
of fatlure of each component to that response,

and combining the component probabilities to
obtain the failure probability of the system.
The FAST code has been designed to perform this
evaluation in such a manner that studies in
parametric sensitivity, trade-off, and optimiza-
tion can be readily accomplished.

The mission of a typical system is iden-
tified, and a leve)l of damage sufficient to
preclude mission performance is defined as sys-
tem failure. After all system components are
identified, they are cataloged. To facilitate
the cataloging, components can be grouped into
subsystems. Then the possibility of each com-
ponent or subsystem directly or indirectly con-
tributing to the system failure is ascertained.
The individual failure mechanisms and resistance
levels of the components are determined and re-
lated to parameters of the hostile environment.

A diagram describing the FAST methodology
(Figure 1) illustrates how, for a simplified
system, selected parameters of a total hostile
environment may be critical to the survivability
of a hardened system. The free-field environ-
ments are transformed by transfer functions to
establish local system responses to the environ-
ments, which are in turn used to predict com-
ponent failure probabilities.

In the FAST code, each component faflure
probability is modeled by a fragility curve that
defines for the component or subsystem the prob-
ability of failure as a function of the local
system response to the free-field environments.
Component probabilities of failure are combined
in system network equations to compute system
probability of survival. The system network is
a functional description, which specifies the
series/parallel relationship between components.
Components are in series if an essential system
function requires the performance of all com-
ponents, and they are in parallel if the essen-
tial function can be performed by any one com-
ponent .

One of the most valuable features of FAST
is its treatment of the underlying uncertainties
in predicting system hardness. Of the four
system/environment inputs, the system network is
the only one which must be known exactly. The
coding acknowledges and accommodates finite
uncertainty in modeling transfer functions,com-
ponent fragilities, and enviromments. Uncer-
tainty in environment estimates is often due to
the lack of adequate analytic or empirical models
for scaling nuclear weapon effects. This is
also true of the uncertainties ascribed to
transfer functions. In component fragflities,
uncertainties are primarily a consequence of
fnsufficient data on components at levels near
and beyond failure.

o categories of variations are recognized
by the FAST code, namely random and systematic
variations. The fundamental difference between
them is that a systematic variation represents
potential errors of a system mode! and extends
uniformly over a population of facilities;
whereas random variations extend nonuniformly
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from one facility to another. Random variations
tend to average out over a large population,
whereas systematic variations do not. It is
noted that systematic varfations may usually be
reduced by test or analysis programs which im-
prove models of the phenomenology and system
behavior. The effects of random variations
may also be reduced under some conditions. The
FAST code treats both random and systematic
variations of fragilities, transfer functions,
and environments.

Another important feature of FAST is that
the code accounts for correlation or covariance
between variables. For example, if two compo-
nents are affected by strongly correlated en-
vironments, both would either tend to fail or
tend to survive,with the probability of both
surviving being higher than if the enviromments
are uncorrelated. Alternatively, if the en-
vironments are negatively correlated (anti-
correlated), the probability of system survival
can be substantially less than for the uncorre-
lated case. Relatively strong correlation or
anti-correlation between enviromments is not
unusual. For example, a specific system might
be vulnerable to a combination of air-induced
ground shock, direct-induced ground shock, and
debris. Each of these is strongly affected by
soil stiffness and, therefore, is anti-
correlated, correlated, and anti-correlated,
respectively, with soil stiffness.

An overview of the original FAST computa-
tion process is diagrammed in Figure 2 for a
simplified system of just two components. These
components together with their associated fra-
gilities, transfer functions, and environments
are denoted by the superscripts 1 and 2. The
FAST code accomplishes the sampling process in
two stages, to distinguish between random and
systematic variations.

The first stage, accomplished in an outer
loop of the code, selects bias values from the
systematic variation distributions for the fra-
gilities, transfer functions, and enviromments.
This is §1lustrated by the point (e]. ez),

selected from the enviromment systematic varia-
tion distribution in the left-hand panel in
Figure 2, by the selection of the solid lines
labeled TF1 and TF2 from the transfer function
systematic variation distributions, and by the
selectfon of the solid lines labeled fragility
1 and fragility 2 from the fragflity systematic
distributions.

The systematic variations defined in the
outer loop are passed to the inner loop where
the second stage of the sampling process is
accomplished. The middle panel of Figure 2
shows how values are selected from the random
variation distributions for the enviromnments
and transfer functions. The enviromnment values
are chosen from the multivariate distribution
defined by the mean ("I' ‘2) and the random

covariance matrix. One such selection is indi-
cated by the symbol * inthe nner Toop distribution

diagram of Figure 2. The component probabilities
of failure are calculated by multiplying the ap-
propriate free-field environment value by the
corresponding transfer function and comparing
the resulting response parameter to the fragility
curve. Next, system network equations are used
to combine the component probabilities of fatlure
:ncillobtain subsystem and system probabilities of
ailure.

The inner loop process is repeated until
sample size or convergence criteria are satis-
fied. The mean probability of failure is com-
puted from accumulated inner loop sample stat-
istics for every component, subsystem, and sys-
tem. These sample means constitute the output
from a single outer loop iteration. The process
is repeated for many outer loop iteratfons, ac-
cumulating the probability of failure data
(inner loop sample means) in histogram format, as
shown at the right of Figure 2. This process
continues until outer loop sample size criteria
are satisfied. The histogram output from the
outer loop iterations forms the survivability
statistics.

These calculations are described for a
single miss distance. To generate the entire
damage functfon the process is repeated for a
number, typically 5 or 10, or other miss dis-
tances.

Results of FAST calculations can be dis-
played in various formats as illustrated in
Figure 3. One important display is that of
system probability of damage,together with as-
sociated uncertainty,as a function of overpres-
sure (see upper left of the Figure 3). In the
upper right of this figure is plotted the median
value of the probability of damage of the system
and its subsystems, as functions of overpressure.
This output format is valuable for identifying
subsystems which are weak-1ink items, and hence
potential candidates for hardening.

The other three diagrams of the figure
each show the median probability of damage of a
critical subsystem, together with the medians of
the components, all as functions of overpressure
This format enables components that are weak 1inks
in the subsystem to be identified. Taken to-
gether, these displays identify the subsystems
and components contributing most to the failure
of the system.

The next section reviews the TRW probabfl-
ity of damage accuracy study, which opened the
way to the new FAST calculation procedure,
subsequently described.

4.0 Probability of Damage Accuracy Study

Frequently, the FAST outputs, or damage
functions described in the previous section,
are used as an input to the calculation of tar-
get survivability, which is the most significant
figure of merit. For this reason, TRW undertook
a study of the influence of the mathematical
form of the damage function on the accuracy of
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the equations most commonly used for calculating
the probability of damage to a target attacked
by a nuclear weapon. This section summarizes
the most significant results of that study. The
discussion is limited to point targets attacked
by a single weapon which is subject to delivery
(ballistic) errors. The general approach is,
however, applicable to any kind of target.

The probability of target survival can be
calculated as the integral of the target damage
function, which takes into account threat para-
meters such as weapon yield and height of burst
as well as the target damage criterion; and the
weapon miss distance distribution, which takes
into account weapon delivery data. The calcu-
lation can be accomplished by numerical tech-
niques, which will be accurate for any form of
the damage function and weapon ballistic miss
distance distribution. For tactical and plan-
ning applications, however, it is more conve-
nient to postulate specific forms for these
functions so that the integration can be accom-
plished analytically, and yield a closed form
solution for the target probability of survival.
In the case of the ballistic error miss dis-
tance distribution, the usual assumption is that
of a bivariate normal distribution.

Two alternative forms are most frequently
used for the damage function. The first of
these, called the "cookie cutter" damage func-
tion, neglects all of the random variation in
the damage function and therefore assumes a
single value (for a given threat) for the system
damage distance. This approach is diagrammed
in Figure 4. The postulated bivariate normal
weapon-impact density function is shown together
with the postulated cookie cutter function at
the top left. The miss distance density func-
tion is shown at the top center, The probabil-
ity that the target is damaged is indicated by
the shaded fraction of the area under the miss
distance density curve which is intercepted by
the cookie cutter damage function. The cookie
cutter damage function is compared to an alter-
nate damage function in the middle of Figure 4.

The second commonly used form for the
damage function makes use of the mean and vari-
ance of the system damage distance distribution.
This is the approach employed by the Vulnerabil-
ity Number (VNg System [Reference 3], which
describes the blast sensitivity of many targets.
The approach is diagramed across the bottom of
Figure 4. At the left, the postulated circular
bivariate normal weapon-impact density function
is shown together with the system damage func-
tion, which has the form of a cumulative normal
distribution.. The density function for the
weapnn miss distance is shown again at the lower
center. The probability that the target is
damaged is obtained by multiplying the weapon
miss distance density by the damage function to
generate the shaded area indicated at the bottom
center of the figure. The normal damage func-
tion 1s indicated by the S-shaped curve in the
middle of the figure.
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A critical question regarding these two
approaches for calculating target survivability
is the potential error introduced by the forms
that are postulated for the damage functions.
This is the question to which the TRW study
addressed itself.

The study approach was to postulate actu-
al damage functions which departed radically
from normal distributions. Damage functions of
the following 1imiting forms were postulated:

PD 1.0
0 —
RANGE
STEP TYPE DAMAGE
FUNCTION
PD 1.0
0 RANGt
NOTCH TYPE OF DAMAGE
FUNCTION

The step function format of the damage
function can occur when the target population
consists of two groups of differing hardness,
or when strong azimuth sensitivity exists. The
notch type of sensitivity can occur when a
detection system is employed for protection
against some hostile enviromment and its mini-
mum sensitivity is not low enough to shield an
inherent vulnerability. For example, the
threshold setting of blast valves might be too
high so that the valves do not actuate at low,
but lethal, overpressures.

The next step was to calculate with these
damage functions the probability of target dam-
age, using the step type damage function. These
results were compared with the damage probabil-
jties obtained by the use of approximating
cookie cutter and normal damage functions. The
discrepancies between the approximate methods
and the exact calculations bound the error of
the cookie cutter and the normal methods for the
class of damage functions which are less patho-
logfcal than the step or the notch.

An example of the results of this bounding
error analysis is shown at the right in Figure 4.
At the top, the difference between the cookie
cutter and the exact calculation is plotted
against the probability of damage for the exact
calculation and 9ps where % is the coefficient
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of variation for the damage function, i.e., the
standard deviation of the damage function di-
vided by its mean. From this plot, it may be
concluded that the cookie cutter model can be
significantly in error for values of % in the

range of 0.2 or higher. Since both tactical
and strategic targets may have values of aQ in

the range of 0.2 or higher, this study suggests
that the use of the cookie cutter model may
introduce significant error.

The results for the normal model, drawn
in the same format as for the cookie cutter
model, are shown at the lower right of Figure 4.
This plot shows that the normal model is rea-
sonably accurate for values of o, up to 0.2 and
0.3. Many strategic targets, suBh as hardened
ICBM sites, fall into this range. Therefore,
it can be concluded that the use of a normal
distribution damage function is sufficiently
accurate for many strategic targets. Tactical
targets tend to have higher values of 9% and

further experience will be required before it
can be concluded with assurance that all these
can be adequately represented by a normal
distribution damage function.

The conclusion that the normal distribu-
tion model for the damage function can provide
the basis for accurate target probability of
survival calculation has a significant effect
on the manner in which FAST calculations can be
performed. The next section will describe how
the result has led to the improvements in the
FAST calculation that were mentioned in the
Introduction.

5.0 Recent Advances in the FAST Calculation

The original formulation for the FAST
calculation made no assumption regarding the
form of the damage function. Therefore, cal-
culations were done at a preselected set of
miss distances. The target damage function
could then be obtained as a function of system-
atic error distribution by joining correspond-
ing confidence levels in the distributions of
systematic. error obtained at each miss distance.
As was described, the code operated in a manner
to average out or suppress random variations in
a damage function, so that this class of infor-
mation was lost. This was appropriate for weapon
systems that employed many sites built almost
identically, as was the case for those systems
for which FAST was originally developed. For
systems which employ only one or a few sites,
however, information on random varfabflity
becomes important and so it §s significant that
the new FAST calculation preserves, analyzes,
and displays this kind of information.

The finding that, for the purpose of
target survivabi it{ calculation, the target
damage function could be adequately represented

by a normal distribution mode! means that only
the mean and standard deviation of the damage
function need be estimated (since these param-
eters completely define the normal distribu-

" shows the process, starting at the fragility of

tion). These two parameters can be obtained by
performing the FAST calculation in an inverse
mode, and this approach achieves the several
advantages mentioned in the Introduction.

A diagram describing the inverse FAST
calculation is shown in Figure 5. At the upper
left is a panel showing the four classes of
input data required for each system. These are
the same inputs required for the original FAST
calculation.

The panel labeled component 1 in Figure 5

a typical component. Random numbers are drawn
from the fragility distributions of random and
systematic variation to establish a random
internal environment from the component fragil-
ity distribution. This environment is trans-
formed to a free-field environment by the use
of the inverse transfer function. At this stage,
random numbers are also drawn to establish ran-
dom and systematic perturbations to the transfer
function. In turn, the free-field environments
are converted into component damage distances
by means of enviromment scaling laws, while
taking into account random and systematic per-
turbations to these laws determined by random
numbers drawn from appropriate distributions.
The scaling laws also take into account such
threat variables as height of burst and weapon
yield. To establish parameters describing the
influence of these threat parameters, it is
frequently desirable to randomly select threat
values from appropriate distributions, for
reasons which will be discussed more fully.

The preceding calculation determines a
component damage distance for a typical com-
ponent. This process is repeated for each of
the components in the system to obtain a random
component damage distance for each component.
These component damage distances are then com-
bined in accordance with the system network
logic to obtain random subsystem and system
damage distances.

This completes a single iteration of the
FAST calculation. The results of the calcula-
tion are collected into a vector of random
variables, as indicated in Figure 5. The vector
can contain such elements seiected by the ana-
lyst as the system damage distance, the randomly
selected weapon yield, and the height of burst;
frequently the damage distances for each of the
components will be included, and possibly se-
lected critical perturbations to the fragilities,
transfer functions, and enviromment scaling laws.

One important aspect of the calculation
not shown in Figure 5 is that the perturbations
of the fragilities, transfer functions, and
environment scaling laws are all drawn from a i
single multivarfate distribution, hence, they |
take into account the appropriate correlations. i

The vector of random var{ables from a
single iteration reflects all the correlations
of the inputs. To extract this information,
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the process just described is taken through many
interations until appropriate convergence criteria
are satisfied. The result of these calculations
is a set of vectors, one from each iteration,
which 1s assembled into a data matrix.

The data matrix is processed by the FAST
Data Analysis System to generate a wealth of
useful outputs. The outputs may be divided
into two classes: (a) data which support the
Integrated Nuclear Damage Assessment System
(INDAS), and (b) sensitivity data which support
system hardness optimization, hardness upgrade
programs, or prioritization of data uncertain-
ties for data base upgrade programs. These two
outputs will be discussed respectively in the
next two sections. Before preceding, however,
it is of interest to consider the potential
savings in computer costs, that may be
achieved by the new approach.

When a system hardness assessment is
performed at TRW, it is not unusual for the code
to execute 80 iterations on the inner loop and
625 iterations on the outer loop for a total of
50,000 iterations at each miss distance. If
calculations are done at ten different miss
distances, this means 500,000 iterations will
be performed to define one damage function. If
this process is repeated for two weapon yields,
a million iterations are performed. Some
studiess-may find it desirable to investigate
the effect of height of burst, which would fur-
ther increase the number of iterations.

The inverse FAST calculation requires
orders-of-magnitude-fewer iterations. For
example, a typical hardened strategic target
will frequently have a value of ap (damage

function coefficient of random variation) of
0.2 or less. The number of iterations required
to estimate the mean of the damage function
within a one-sigma accuracy of one percent is
400. The conclusion to be drawn here is that
the 400 iterations by the inverse FAST approach
will provide approximately the same accuracy in
the damage function as the one million itera-
tions provided by the previous FAST calculation.

As another example, consider the uncer-
tainty or systematic variation in the damage
function, which frequently is larger than the
random variation. Our experience is that, for
hardened strategic systems, the coefficient of
varfation for systematic variation is usually
Tess than 0.4, The number of iterations re-
quired to estimate the mean within a one-sigma
precision of one percent is 1600 iterations.

The number of iterations for the inverse
mode in the previous two paragraphs must be
increased by the number of degrees of freedom
(mumber of variables placed in the random
vector of Figure 5), but the increase in the
number of iterations will usually be negligible.

Needless to say, the total computer time
is not necessarily directly proportional to the

number of iterations; nevertheless, the preced-
ing remarks i1lustrate that the inverse FAST
calculation mode may reduce computer costs by
one or two orders of magnitude.

6.0 FAST Data Analysis System

The output of the FAST calculation just
described is a set of vectors of random varia-
bles from each FAST iteration arranged into a
data matrix. The FAST Data Analysis System is
an interactive code designed to allow statisti-
cal analysis of the data matrix. The operator
can perform a number of operations on the raw
data matrix. For example, he can take loga-
rithms or he can exponentiate designated columns
in the data matrix. He can also perform linear
operations such as adding, subtracting, or
interchanging columns.

When all the desired operations have been
performed, the data analysis system will compute
a covariance matrix that will contain informa-
tion on the variances of all of the variables
in the vector of random variables from the FAST
calculation, together with the correlations
among those variables.

The data analysis system permits the
operator to perform selected linear operations
on the covariance matrix. The operator can
then designate an arbitrary set of variables to i
be regressed against a second set of arbitrarily
selected variables, and the data analysis system
will then calculate the matrix of regression
coefficients. At the operator's discretion,
the data analysis system will test the coeffi-
cients within the regression matrix to determine
which, if any, of the coefficients are not sig-
nificantly different from zero. These negligi-
ble coefficients will be set equal to zero and
the resulting regression matrix will be dis-
played.

The regression matrix is a powerful tool
for the systems analyst, providing easy access
to much information which previously was un-
available either because of high computer costs
or because of the amount of physical or manual
effort that was required to extract the informa-
tion. Specific applications of this information
will be discussed in the next two sections.

7.0 Integrated Nuclear Damage Assessment
System (INDAS)

The regression coefficients discussed in
the previous section allow one to write an
equation predicting the mean of the system
damage function as a function of the weapon
yield and height of burst, and other pertinent
parameters. Indeed, the reason that these
parameters were randomized in the FAST calcula-
tion and the random values placed in the vectors
of random variables was to permit the regression
equation to be obtained. The standard deviation
for both random and systematic variation for the
system damage function can be obtained from the
covariance matrix. Thus, all the information ; :
necessary for constructing the system damage Py
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function is available from the FAST data analysis
system output. This information can be coded into
strings of alphanumeric characters for each type
of target. By performing the analysis for many
tactical and strategic types of targets, handbook
data are obtained which are useful to strategic
and tactical planners,

The damage functions constructed by means
of INDAS take into account all of the nuclear
enviromments. Furthermore, the damage func-
tions are obtained explicitly as a function of
the distributions of both systematic and random
variations. Heretofore, the influence of
systematic variations on the probability of
target damage has not ordinarily been consid-
ered. The FAST approach permits this systematic
variation in the probability of survival to be
explicitly treated in the analysis. This be-
comes important to strategic targeteers, who
wish to obtain a specified high confidence of
damaging targets. In such a situation, it is
not proper to combine the systematic variation
with the random variation and then to assume
that the probability of damage is the same for
successive weapons. Instead, it is important
to treat the random and systematic variations
separately in order to validly calculate the
damage expectancy from a given weapon alloca-
tion and to evaluate potential errors. Even
neglecting the systematic variation, it is not
valid to assume that the probability of damage
from successive weapons is identical. The rea-
son for this is that certain weapon effects
tend to have a cumulative effect; also, the
weaker targets tend to be preferentially damaged
by the initia) weapons. Further discussion of
the targeting aspects of systematic and random
variations of the damage functions is beyond
the scope of this report, but the reader should
be aware that the FAST methodology generates
data on these two kinds of variations, and
therefore, will permit their proper accounting
in targeteering calculations.

8.0 System Optimization and Data Base
Prioritization

The FAST code, which outputs the data
matrix, together with the FAST data analysis
system, provides the analyst with a powerful
tool for optimizing weapon systems. For exam-
ple, he can regress the system damage function
against the damage distances for each of the
components of the system to obtain a regression
matrix. He has the option of testing all of
the coefficients in the matrix to determine
whether they are significantly different from
zero. The nonzero regression coefficients
identify all the components that contribute to
system failure. Indeed, the relative contribu-
tion of each component is indicated by the rel-
ative size of its regression coefficient. The
analyst thus has an automated means of prior-
itizing the components in terms of their con-
tribution to system failure.

The analyst has the option of operating
on the data in the data matrix in varfous ways.

For example, he might multiply all of the dam-
age distances for a weak-1ink component by a
number less than one and then construct a new
regressfon matrix. This would correspond to
strengthening the weak-1ink component, By
proceeding in this fashion, the analyst could
quickly determine how much hardening of the
component is required in order to remove it from
the critical list. In a somewhat similar fashion,
certain other components that are not weak-link
items might possibly be weakened without con-
tributing to system failure. By proceeding in
this interactive mode, the analyst could quickly
arrive at a balanced hardness configuration for
the system. In accomplishing this end, it will
frequently be unnecessary to return to the FAST
program to generate a new data matrix.

If sufficient cost information on harden-
ing components is available, this information
can be used in the optimization process. Fre-
quently such cost information can be summarized
in the form of cost estimating relations, i.e.,
with polynomials that give the cost for differ-
ent levels of hardness for each of the components.
With cost data in this form, it is a simple
matter to prepare a computer code that will
quickly find the most cost effective system con-
figuration having a specified level of hardness.

The quality of the data base affects the
cost of developing a system. Uncertainties on
fragilities, transfer functions,and environment
scaling laws, arising from possible errors in
mathematical models call for appropriate safety
factors in system design. Clearly, the larger
the safety factors the higher the system cost.
FAST propagates systematic and random variations
through the calculations in a correct and bal-
anced way, thereby overcoming the need for the
overly conservative approach of accumulating
safety factors at each stage of the calculation
which results in costly overdesign of the system.

The uncertainties in the data base are not
all equally important. If the critical ones
could be identified then it might be possible,
say by means of test or analysis programs, to
reduce them, and thereby reduce the size of the
safety factor required. The FAST data analysis
system achieves this end by identifying all the
potentially critical uncertainty factors. As
these random and uncertainty parameters are
determined by the drawing of random numbers they
are placed in the vector of random variables.
When the simulation is complete, the data matrix
is processed in the FAST data analysis system to
regress the system damage function against the
random and systematic parameters. Those param-
eters that have a significant effect on the
system damage function are identified because
their regression coefficients are significantly
greater than zero. The result is that all the
uncertainty factors in the data base are prior-
itized according to the size of the regression
coefficient. The display of the regression
matrix then provides the basis for planning
possible test or analysis programs to reduce
key uncertaintfes.
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Thers has not yet been time to gain ex-
parience applying the new FAST techniques to a
variety of system optimization and data base
upgrade programs. From the limited experience
to date, the advance appears to be much more
significant than just an easier and more econom-
ical way of accomplishing what was done before.
The orders of magnitude improvement in both
camputer cost and information extractable from
the FAST calculation allow a truly significant
improvement in the quality and quantity of
data available for system analysis. The cap-
ability for automated filtering, prioritization,
and display of output data by means of the FAST
Data Amalysis System provides a convenient
means for managing the enhanced data flow. In
short, it is anticipated that the new FAST
technique will have extensive, and even unfore-
seen, impact on future design and analysis of
hardened survivable systems.
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ON THE MEAN LIFE EVALUATION OF A MATERIAL WITH IDEAL ELASTO-PLASTIC BEHAVIOUR, SUBJECTED

TO A STOCHASTIC LOADING PROGRAMME WITH A FINITE NUMBER OF STRAIN LEVELS

G. A. Philippin, T. H. Topper and H. H. E. Leipholz
Department of Civil Engineering
Solid Mechanics Division
University of Waterloo, Waterloo, Ontario, Canada

In a previous paper presented at the 46th Shock and Vibration Symposium, San Diego,
California, October, 1975, the authors confirmed the mathematical soundness of Miner's
rule and its applicability to mean life prediction under the assumption that a proper
damage parameter and its statistical data are being used in that rule.

If the loading programme is such that the actual damage parameter (quantity related with
the area of the hysteresis loops in the loading programme) is proportional to the res-
pective stress (or strain) peak of the programme, the statistical distribution of these
peaks may be used in Miner's rule. Such a procedure is in accordance with the classical
approach of Wohler to fatigue. This fact has been used in the paper mentioned above in
order to determine the probability densities of prescribed strain peaks for a material
remaining in the linearly elastic domain. These densities were then used in Miner's rule.

In this paper, a more realistic situation is being considered. It is assumed that the
material is elastic-plastic in the ideal sense and subjected to a loading programme with
well defined strain peaks. It is also assumed that the material returns after each
reversal to the zero-strain state. Such assumption is not restricting generality in a
severe way. Any other strain level could have been chosen as the state of rest in place
of the zero-strain level, which has only a normalizing function. Keeping in so far the
features of the loading programme very regular, and restricting the stochastic nature of
the programme to the irregular way in which the possible strain peaks are distributed
over time, makes it pissible to rigorously evaluate the probability distribution of
hysteresis loops collected in classes of equal damaging events. This is achieved using
combinatorics.

The so obtained probability densities are then used in Miner's rule and a mean life
evaluation is carried out. During these calculations it comes to light that such a
process as simple as it is, is nevertheless nonstationary, a result of great practical
importance.

Although the loading programme considered may in itself have already some value, as it
may very well be a good model of practical situations of some significance, it has in any
case a great value for the development of a sound theory of stochastic fatigue. On the
one hand it allows one to calculate probability densities accurately and to predict mean
life by means of Miner's rule as safely as this is possible for a stochastic process.

On the other hand, the proposed loading programme and the corresponding mean life can
easily be reproduced and verified, respectively, in the fatigue laboratory. Thus, oae
has a reliable means of checking reality against theory, a fact which is certainly basic
and important for any progress in the theory of stochastic fatigue.

INTRODUCTION Assume that the amplitudes %;, %2, ... are
statistically distributed according to some

Consider a material subjected to a stochas- probability law independent of time. Then, the

SR

tic loading programme P consisting of n, peaks
of amplitude 2,, n, peaks of amplitude %2, etc.
For the sake of simplicity, a loading programme

loading programme P is a stationary stochastic
process. Under these circumstances, it is
clear that the mean values E{n;}, E{nz}, ... of

shall be said to be of length k if it contains the numbers of peaks of amplitudes 2,, %2, ... e
k peaks, or if are proportional to the length k of the given n

programme P, This fact can be expressed as ;i

I n, = k. follows: %
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Let N; denote the number of peaks of amplitude
%; the specimen can resist until fracture. Nj
will be called the life time of the specimen
under constant load amplitude £;. This is a
random variable whose mean value E{Nj} will be
denoted by v; (1 =1, 2, ...). Let N denote the
maximum number of peaks the specimen can resist
under the stochastic loading programme P. N is
also a random variable called the life time of
the specimen under the stochastic loading pro-
gramme P. Its mean value E{N} will be denoted
by v. Let 1/Nj be the damage increment corres-
ponding to every peak of load amplitude £;j.

Miner (1] proposed the following rule for the
evaluation of the life time N: the sum of all
damage increments caused by each individual peak
is determined. The fracture of the specimen
occurs when this sum reaches the value one.

This rule gives the following relationship for N:

Nn,
1
k
z'—=1: (2)
i N
from which
ant
L
N=fz ok (3)
i i

is obtained, with

Zn. =k
i
i

This last expression for the life time N, as
plausible as it may appear to be, has neverthe-
less been without a proper mathematical founda-
tion for a long time. (For i = 1, i.e., for a
loading programme P; of constant amplitude %,,
(2) is trivially true. For i > 1, i.e., several
load amplitudes, (2) only represents a possible
generalization of the case i = 1). Only in 1968,
Birnbaum and Saunders have found a probabilistic
interpretation of Miner's rule [2]. Unfortun-
ately no attention was paid in engineering cir-
cles to their results published in a mathemati-
cal journal. With the intent of changing this
situation, a new version of these results have
been published by Philippin, Topper, and Leip-
holz [3]. Summarizing, the basic statement in
[3] reads as follows:

-1
E{ni}
Vs f \k’i » (4)

or with the aid of (1):

-1
E
- (f %) } )
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These two formulas show that Miner's rule is
correct if the life times are replaced every-
where by their corresponding mean values.

In writing (2), it has been assumed that
any peak of load amplitude L; is responsible for
the eame damage increment 1/N;. This hypothesis
is actually without foundation, and cannot sur-
vive in the light of arguments, suggested by the
following situation: Suppose that the material
under consideration does not behave purely eias-
tically. The state of the material will change,
even if the loading programme contains only peaks
of the same amplitude. For instance, due to an
ageing process of the material, the reversals
(of constant load amplitude) will be getting
more damaging with ongoing time. This clearly
shows that the load amplitude as a parameter is
unable to correctly partition the peaks of the
programme in classes of equally damaging rever-
sals. A parameter T able to perform this task,
cannot depend only on local properties associated
with just one peak. Such a parameter has to
depend on the complete load history to which the
material is subjected. The use of Miner's rule
in its original form (3) or in its statistical
interpretation (5), is only possible if the two
following conditions are satisfied:

(a) a suitable damage parameter T (i.e.,
adequate to collect in classes all equally
damaging reversals), has to be chosen,

(b) the stochastic structure of the damage
parameter T (correctly chosen) has to be deter-
mined from the given stochastic process of which
the loading programme P is supposed to be a reali-
zation.

The first condition states a physical pro-
blem for which no satisfying answer is known.
However, Topper, Sandor and Morrow [4], have
obtained experimentally very accurate life time
evaluations by choosing as a damage parameter
T = AcM-Ae, based on stress and strain at the
fatigue crack initiation site, where Oy is the
peak stress and Ac is the strain range. It is
not possible to define a value of the product
T = AoyeAe after each reversal of the loading
programme. Such a value of T can only be defined
after each closed hysteresis loop, as it arises
in the realization of the loading programme.

The second condition states the following
mathematical problem: for a given loading pro-
gramme P of known stochastic nature, find the
statistical distribution of the closed hysteresis
loops with respect to the value of T associated
with each loop. This problem has already been
presented and solved in [3] for the very simple
case of an elastic material subjected to strain
peaks randomly chosen from two possible values
€1 < 0 < €2 with the corresponding probabilities
M, T2, M+, = 1, This situation generates
only three kinds of hysteresis loops, so that a
combinatorial investigation was possible. In the
general case for which no restriction is made
about the possible strain levels to which the
material might be subjected, the set of different
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kinds of closed hysteresis loops is no longer
countable, and the problem cannot be treated by
means of combinatorial methods. In order to
preserve the advantages of a combinatorial
analysis, one could discretize the problem by
choosing m possible strain levels. Such a
method is however far from being satisfactory,
since the number of different kinds of closed
hysteresis loops does not only depend on m, but
also on the different values of discretization
levels! Yet such discretization process cannot
be completely disregarded, because at this time,
other approaches may not be easily available.
The technique of computer simulation, which
might be an alternative, is not supposed to be
considered in this context.

In this paper, an example of life time
evaluation will be presented for a special case
which involves only a small number of strain
levels representing the loading programme P.

A DISCRETE MODEL FOR MEAN LIFE EVALUATION

In this section, a solution of the fatigue
problem of an ideal elastoplastic material will
be presented for the special case in which the
loading programme P consists of a sequence of
strain peaks, randomly chosen from four possi-
ble values €., < €., < 0 < €} < €2 with the
corresponding probabilities mj,

+2

L ®,.=1.
i=2 !

i#0

In this model, the strain level zero is con-
sidered to be a certain event occurring after
every peak of the loading programme. The mate-
rial under consideration is supposed to be ini-
tially in the state of rest R,, (see Figure 1).
The only condition to be satisfied with respect
to the values of the possible strain levels €j,
is that the different kinds of possible closed
hysteresis loops registered in a stress-strain
diagram of the material are consistent with the
map in Figure 1.

In the situation of Figure 1, five states
of rest denoted by Rg, 1 =-2, ..., +2, are
observed. The number of different kinds of
possible closed hysteresis loops is 16. Among
these different kinds 13 are degenerated, i.e.,
their corresponding surface areas are zero.
They will be denoted by h(i,j) or by h(i,j,-j),
i,j = -2, ..., +2, where i indicates that they
are born from the state of rest Ry, j,-j indicate
the strain peaks €j, €_j, responsible for their
creation. The three remaining loops containing
a non-zero surface area will be denoted by h(x)
a=0, + 2, the values a = : 1 will be used to
designate the two positive and negative reversals
which build the h(0) - loops. If the same kind
of loops can be generated in two different ways,
what is the case for h(i,i), i = + 1, one of them
will be marked by a star. Figure 2 gives a des-
cription of these loops and shows how they arise
during the realization of the loading programme

1

P. An arbitrary enumeration of these different
kinds of loops is given in the first column of
Figure 2.

‘}TIME

Figure 1

Each point represents the accomplishment of
a new closed loop, and the preceding arrow (not
necessarily connected) indicates which parts of
the programme are responsible for the correspond-
ing loop. A location of these loops in a stress-
strain diagram is given in Figure 3.

Although Figure 1 need not be symmetric with
respect to the origin, it is worthwhile to note
that there is a one to one correspondence between
the different events occurring during the realiza-
tion of P, so that the probabilistic problem is
symmetric. This fact has been outlined by the
introduced indexation in Figures 1, 2, 3, and will
be used in the following computation.

By
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Let Py (Ri) denote the probabilities that
after k strain peaks, the material is left in
the rest states Rj, i = -2, ..., +2. From [5]
these probabilities are given by the following

formulas:
X RENURERLEE o O)

n L " n

21 i -2k _"-21 ok

P B = oA T T T T T
i=+1, (D

l-n_:
PulRag) = o3 T * is2r1, (®

with 7 = n_;+%;. From (6), (7), (8), let us
derive the following formulas to be used later:
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From 4K possible loading programmes of length
k, let NE(R ) be the expected number of pro-

granmes leading the material into the rest state
Rj. Ng(R;j) is given by

k s
Nk(Ri)-4 Pk(Ri)‘ i=-2, ..., #2,
1, 2, 3, ... . (12)

Let Hy (-**) denote the expected number of pro-
grammes of length k finishing with a h(---)-
loop. Between the various quantities Hy(*--),
the following relationships hold:

H (L 3)H, (,-5,5) = 4 N R)), (13)
H(L,3,-5) = an_H ) (5,9), (14)
H(L5) = an (B ) GLi)e ) Gadomi)e

Hy_ G-3aei)), (s)

withi=0,+1, j=+1, k=2,3,4, ...
Furthermore,

HO(L,1) = am, N (R, (16)
H (21) = 4m_,.N, . (R.), a7
Hk(Zi)'ij) = 4“-iij-1(RZi)' (18)

withi=+1, j=1,2, k=234, .... Are-
lationship involving Hy(0) is not easily derived.
For this reason the h(o)-loops will be split
into their two positive and negative reversals
denoted by h(i), i = + 1. Instead of counting
events corresponding to h(o), this will be done
with respect to h(i), i = + 1:

Ho () = amy, Ny, R0+ R

is= +1, k=2,3,4,... (19)

= H (-1)+H, (+1) is the expected number of
plograliees of*

s of length k finishing with the half
of an h(o)-loop, and must not be confounded
with Hx (o). By inserting (7), (8), (12) into
a9,

% %
Hk . ]:: 2 ‘k(l-Pk_l(Ro)), k=1,23, ... (20)

is obtained. Let Ny be the cxxcctod number of
half h(o)-loops contained in 4% possible loading

programmes of length k. Ny is determined by the
following recursion formula:

Nk = mk_l*ﬂk, k=2,3,4, ..., (21)

with the initial condition

Ny=0. (22)

The solution of (21), (22) is

k

N L 4K (23)
u=2 v

or, with the aid of (20), (6),

2n.m
2-2 .k n k-1
Ny =554 {k-1 - T a-m )},
k=1,2,3 ... . (24)

Let ny be the expected number of half h(o)-loops
contained in one programme of length k. The
expected number ny (o) of h(o)-loops containec in
such a programme is then

L

1-7 (1°"k-1)}5

n T
kK, 2:24q.,.
nk(o) = o {k-1

k=1,23, ... . (25)

Let Ny(---) be the expected number of
h(***)-loops contained in 4k possible loading
Programmes of length k. All the quantities
NR(,1), Ng(2i), Ng(2,-ij), i =+ 1, j = 1,2,
satisfy the same recursion formula already used
for the computation of Nk (see (21)),

Nk(..-) = 4Nk-l(...),Hx(--.)' (26)
with the same initial condition:
N1(~--) =0 . 27)

For the degenerated loops created from the states
of rest Rj, i = 0, + 1, the recursion mechanism
is more complicated, since an h(i,j)-loop,
i=0,+1, j=+1, born in P during the kth
peak, may very well be transformed into an
h(i,j,-j)-loop by application of the next peak.
For these loops, we have

N (L3 = N ) (4,390 (1, 5)-H, (1,3,-9),
i.on:l’j.il'
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FATIGUE ANALYSIS OF MULTI-DEGREE-OF- FREEDOM SYSTEMS
UNDER RANDOM VIBRATION

Ronald G, Lambert
General Electric Company
Aircraft Equipment Division, Utica, New York 13503

Closed form analytical solutions using Miner's cumulative damage hy-
pothesis have previously been derived quantitatively to describe several
areas of interest regarding fatigue under random vibration for single
degree-of-freedom systems. These areas include relating root- mean-
square (rms) stress to cycles and time-to-failure, the probability den-
sity function of cycles-to-failure, and the probability of failure to cycles-
to-failure., It is proposed in this paper that the above developed equa-
tions can be used for either single or multiple degree-of-freedom sys-
tems by adding both the stresses and the frequencies of the multiple
modes in the rms sense rather than the linear sense to include interac-
tion effects between the modes. That is, systems with the same rms
stress o and the same effective frequency (i.e., one-half the average
number of zero crossings per second) will have the same time to failure.
This proposal is based upon the fact that the actual number of stress
peaks above 1.5¢ is the same for the two cases and that most fatigue

of-freedom case.

parity with experimental results.

damage is done by stress peaks above 20 for at least the single degree-
The experimental data of J.T. Broch of Brifell and
Kjaer tend to confirm this proposal,
tal effort is required before firm conclusions can be made. An alterna-
tive approach which linearly summed the damage cumulated from each
individual mode independently was discarded because of the large dis-

Further analytical and experimen-

INTRODUCTION

This paper deals primarily with single de-
gree-of-freedom (SDF) and two degree-of-free-
dom (2DF) structural systems subjected to
wideband random vibration but can be extended
to multiple degree-of-freedom by inductive
reasoning. The structural elements respond as
narrow-band random functions at or near their
individual resonaiit frequencies. The static
stresses are typically much smaller than the
dynamic stresses.

Landgraf (1] has used Miner's linear dam-
age rule for analyzing complex random stress
profiles with good agreement between analytical
and experimental results, Damage was cumu-
lated by linearly summing the damage done by
each stress-strain hysteresis loop in the actual
stress-time profile, a laborious and time-con-
suming procedure. The analytical results were
numerical, not closed-form expressions.

Closed-form fatigue expressions for the
SDF case have been derived in reference [2].
However, similar rigorous expressijons for the
2DF case have not been derived and do present
a formidable task, because the probability den-
sity function of the stress-strain hysteresis
loop amplitude is difficult to calculate.

The approach taken in this paper is not to
rigorously derive fatigue expressions for the
2DF case but to extend the application of those
expressions derived in reference [2]. The av-
erage rate of stress zero crossings (i.e.,
twice the effective frequency) can be rigorously
derived and calculated for single or multiple
degree-of-freedom systems. The application
of the fatigue expressions derived in reference
[2 ] can be extended to 2DF systems, if it can
be shown that systems having the same rms
stress and the same effective frequency also
have the same fatigue life or time to failure,

It is also necessary to show that the form of the
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expressions for the probability density and dis-
tribution functions of times to failure matches
the form of the experimental data.

NARROW-BAND RANDOM FATIGUE

The following expressions were derived in
reference {2). The sinusoidal S-N fatigue curve
of a material is as follows:

S= ANB'I/B (1)

where
S = stress amplitude (psi, Pa)
A = y-intercept for Ng =1 on a log-log plot
A =true ultimate stress (psi, Pa)
Ng = number of cycles to failure

B = negative reciprocal of the slope of the
curve on 2 log-log plot

A and 8 are material constants and are always
positive values

The corresponding narrow-band random
o-N fatigue curve is as follows:

o= CNT'Vﬂ @)

]

The constant C is a function only of the
true ultimate stress A and 8 the negative
reciprocal of the slope of the sinusoidal
S-N fatigue curve. Both are material
constants., C can be thought of as the true
ultimate rms random stress, since it rep-
resents the y-intercept for N7 = 11in
equation (2) on a log-log plot

and
¢ =rms stress level (psi, Pa)

Nt = average number of stress cycles to
failure

I =gamma function

where

Cc

Therefore
N = cPr b @

Figure 1 illustrates equation (2). Figure2com-
pares the curves of equations (1) and (2) for
G-10 fiberglass epoxy. The values for the ma-
terial constants were obtained from reference
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Figure 1. Narrow-Band Random Fatigue
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Figure 2. Sinusoidal and Narrow-Band Random
Fatigue Curves for G-10 Fiberglass Epoxy

Time to failure, ty, relates to cycles to
failure as follows:

o ) ®)
tn = (seconds 5
F Ta

where
fogr = effective frequency (Hz)

= one-half the average zero crossings A
per second

In Appendix A, it is shown that the general
expression of foff for single or multiple degrees
of freedom is:

for k disjoint bandpass procesases of center fre-
quency !j and total rms stress o where

k 2 .
Ty 59 )
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where
j = resonant mode index
k = total number of resonant modes

For a bandpass process of width fp and center
frequency f,:

2
£
B <
fogr = 1o “W =t, (Hz) ()
[+

For two disjoint bandpass processes to total
rms stress o and center frequencies {3 and fp:

2 2

Om = g, +0

T 1 72 ®)
2 2
g o,
~ 1 .2 2 .2

et ¥ of TZh 2

T T

VARIABLE RMS STRESS

Thus far, A, B, and o were treated as
fixed variables. ¢ will now be treated as a ran-
dom variable, which is the typical case, The
rms stress usually varies from part to part and
subassembly to subassembly even though the ap-
plied vibration level may not vary. Stresses
vary due to dimensional and geometrical differ-
ences between parts, fabrication and assembly,
process variability, and structural damping and
stiffness variations of adjacent structures.

From equation (),
-chsB
Np =CT¢
Nt and 0 are now random variables.

From reference [2] the probability density
function of the average cycles to failure is as

follows:
. C (10)
W) = o= BT
P paamn /P
2
el
Ny
e BTt
for NTZO
P(NT) = 0 otherwise
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where
@ = average value of rms stress
8 = standard deviation of rms stress

F(N) = probability of failure in N cycles

N
F(N) = OI PN AN,

C -3
N

F(N) = 0.5 - ertp — (11)

F(0) =0; F(m) =1

F(Negian = 05
for

N=cP3)# - medianof N (12)
where

o 2
1 -y /2
rf (at) = ——— d 13
ep() J—Z_- OI e y (13)

erfp( -a) = - ertp(a)

erfp(m) = 0.5; ertp(O) =0

EXPERIMENT DESCRIPTION

J.T. Broch of Brtiell and Kjaer [4]ran a
random fatigue experiment on 200 epoxy paper
printed circuit board specimens. There were
100 SDF specimens and 100 2DF specimens.

See Figures 3 and 4. Three specimen arrange-
ments of a given type were vibrated simultan-
eously. The rms stress level was controlled by
regulating the output of an accelerometer
mounted on the center arrangement of each
group of three. (Strain gages were used to in-
itially set the vibration level but their own fa-
tigue life was shorter than those of the speci-
mens.) For the particular resonant frequencies
shown in Figure 5, the effective frequency of
the 2DF system was adjusted to be equal to that
of the SDF system (i.e,, 20.5 Hz) by adjusting
the ratio .

2 2
02 /cr1 = 0,308

The average number of zero crossings was
checked with an electronic counter and the up-
per resonant frequency excitation of the 2DF
system was slightly corrected until the desired
Then the overall levels of

g Ak 7

value was obtained.
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both frequency bands were adjusted within ex-
perimental accuracy to be the same.

RESPONSE RESULTS

The stress-time response profile of a SDF
system is that of a simple oscillator that rings
at its resonant frequency with slowly varying
amplitude in a random fashion (see Figure 6).
The corresponding response profile of the 2DF
system is that of a high frequency riding on top
of & low frequency response (see Figure 7). The
two cases have widely different profiles.

Under the conditions of equal rms stress
and effective frequency, the number of stress

TIME —o- ’ - :

Figure 8. Stress-Time Response Profile of
Single-Degree-of- Freedom System

Figure 7. Stress-Time Response Profile of
Two-Degree-of- Freedom System

peaks within stress intervals AX wide will be
the same for the two cases. See Figure 8.
Equations in reference [2 ] were used to calcu-
late the scaled probability density function G(s)
of the fatigue damage for a SDF system. As
such, it indicates how the fatigue damage isdis-
tributed as a function of stress.

1 ] g8 S /20 (14)

G(s) = [
g

G(s) is a maximum at the statistical mode S,

where
So =0 Jl + B (15)

‘G(s) = standard deviation of G(s) = 0.7¢
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Figure 8. Relative Occurrence of Stress Peaks

Figure 9 shows a plot of G(s) for G-10 ep-
oxy fiberglass, which is the material whose
properties closest match that used in the exper-
iment for which this author has fatigue data.
This figure shows that most fatigue damage is
done by stress peaks between 20 and So for a
SDF system. Additionally, the fact that the2DF
and SDF systems have the same number of
stress peaks above 1.50 (refer to Figure 8) led
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Epoxy Example

to the hypothesis that the SDF system fatigue
equations might also apply to the 2 DF system.

FATIGUE LIFE RESULTS

The time of failure for each specimen is
shown sequentially in Table 1. The effective
frequency for both systems was 20.5 Hz. The
median times to failure (i. e., the time for 50
percent of all failures) were as follows:

tm edian = 8616 seconds for the SDF system

tm edian - 14,719 seconds for the 2DF system

The corresponding median cycles to failurewere
as follows:

_ 5
N edian = 1.77 x 10" cycles (SDF)

_ 5
Nmedian =3.02 x 10" cycles (2DF)

ANALYSIS OF RESULTS

The simusoidal S-N curve for the particular
epoxy printed circuit board material is not
known. Reference [3] does have one for a simi-
lar material, G-10 glass epoxy, which can be
represented as follows:

-0,083

8 = 80. 9N KSI

=5, 58x108 S0 083 p
B=12,1
C = 33.0 KSI

=2,28 x 10a Pa (see equation (3))
-0, (BS

o =33, ON
=2.28 x 1o‘n
These curves are plottad in Figure 2.

TABLE 1. Failure Times of Occurrence

Single Degree-of- Preedom Test Two Degree-of- Freedom Test
Rank | Time (s) | Rank | Tisse (s)| Rank | Time (8) | Rank | Time (s)
1 2008 81 [ 1] 1 2088 $1 | 14993
3 20085 s2 le 2 3018 82 15303
3 204 83 [ o] 3 M 53 15449
4 2% 4 [ ] 4 M1t 4 15545
] un 88 8695 s 3720 85 15862
[} 4 ] 9016 [] 4160 6 | 15916
1 2812 87 9083 1 4321 87 16082
8 2820 ] 9394 8 4383 38 | 10128
[} 2886 59 9397 9 5641 89 | 10638
10 2998 0 9633 10 sTa7 60 | 17008
11 3046 61 9558 11 5756 61 | 17287
12 3086 02 [ 12 6316 ] 17508
13 3124 63 9080 13 6389 63 | 17674
M 3501 o4 10430 14 8014 64 17810
15 MU [ 10490 15 8050 05 | 18206
16 4078 [ ] 10723 16 8120 66 | 18229
1 4130 67 10829 17 8145 67 19728
18 4138 [ 11208 18 8200 68 | 20045
19 4177 [0 12529 19 8231 [ 20170
20 4276 10 12850 20 8265 70 20875
21 421 n 12806 21 8906 1 21457
23 44126 12 13014 22 9202 72 21879
a3 4717 13 152711 a3 718 73 21883
24 4958 Kl 15918 24 9976 74 | 22084
25 52323 ki 16140 25 10362 % 22329
28 5459 k] 16232 26 | 10390 76 | 22004
7 5742 L 16418 27 11353 ki 23628
8 5807 h{] 16838 28 11442 . 23083
29 6058 7% 17082 20 | 11516 % | 25070
30 6143 80 17787 30 11772 80 25167
£3 6194 81 17643 31 | 12318 81 | 26022
2 8194 82 17028 2 12339 82 26055
33 (1] 83 18093 383 | o1t 83 | 26300
M 6640 84 18292 “ 12475 84 | 26425
3% 0057 85 19108 35 12570 85 26865
bd 6661 1] 19133 38 | 12889 86 | 20987
3 7568 87 19200 3 13118 a7 27620
38 7814 2] 20462 38 13160 88 | 27857
39 7015 89 20796 39 13250 89 27895
40 90 20028 40 | 13251 90 | 28000
41 8016 1)} 21010 41 13330 91 28086
42 8133 ] 2133 “ 13497 [ -] 28991
43 8190 23 21937 43 13707 93 29159
4“ 8235 “ 22000 “ 13795 94 | 20245
45 8226 9 22220 45 13823 95 | 29m15
46 8355 96 22381 46 | 13982 96 | 31003
M 8357 97 23680 47 | 14014 97 | us1l
48 8387 98 24281 48 14261 28 a22m
49 8493 9 27668 49 | 14483 99 | 32541
50 86135 100 30162 50 14719 100 32891

The experimental failure data of Table 1
will be analyzed to estimate the fatigue param-
eters g and § . These parameters will then be
used to calculate the data points of the p(N) and
F(N) functions versus N curves and to compare
them with the corresponding curves through the
experimental data points. It is necessary that
the calculated curves match the experimental
curves in terms of form and shape in order for
the proposed SDF derived equations to be ap-
plicable,

SDF:

Refer to the SDF portion of Table 1. Note
that time and cycles to failure are related by
equation (5) for all cases,

7= cnmle/gm- (33.0)(1. 77 x 10%)"0- 083

G =12.1KSI = 8.34x 10 Pa
F(N) = 0.9 for t,, , = 20,925 seconds

5
NO.O - 20.5t°.° = 4,29 x 10" cycles

K&y 4 &




Using equation (11), From equation (11),

C 33
erf “ 7 =0,5-0.9 = -0.4 F(N) = 0.5 - erf ——W—N' 2
o 3 . . . b -
Therefore, N=t_xf, =205t c
= = 20, ycles
& = 0.67 KSI - 0.462 x 10’ Pa F = lett F
and This expression iscompared with the experi-
4/ = 5.5% mental cumulative failure data in Figure 11,
* Again, the calculated curve is considered to be
From equation (10), a good fit to the data. At present, no attempt

has been made to choose the calculated curve
parameters by the least squares technique; nor

2
I 33
1.63 { NG' 083 ~ 12. 1: have goodness of fit estimates been made.
e -
1.08 0.898
N .

1.0

p(N) =

1 —

N = tpx felf = 20.5tF cycles

0.9
]
In order to compare this expression with 0.0 1
failure data in histogram fashion, it was inte-
grated over small time intervals (e.g., 2000 -
4000 seconds) and the integrated value multi- 0.6 4
plied by the total number of specimens (100) and
plotted at the center of the integration time in- = 0.5 4
terval, The calculated and experimental data -
are compared in Figure 10, The calculated 0.4 4
curve is considered to be a good fit to the data,
considering the sample size in each of the inte-

gration time intervals, 02 4

P S |
3
"

=0
o

Figure 11, Probability of Failure (Single
Degree-of- Freedom)

2DF:

A technique similar to the one used for the
SDF system was used for the 2DF system for
plotting and comparing equations (10) and (11)
with the experimental data in Table 1, The ex-
pressions are briefly as follows:

-1/8 33
o =CN -
median (3.02x10°)"
= 11,6 KSI = 8.00 x 10’ Pa

o ) F(N) = 0.9 for ‘o.o = 28,000 seconds

Figure 10. Fatigue Failure Histogram (Single . 5
Degree-of- Freedom) NO. 9 5.74x10" cycles
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Using equation (11),
& = 0.468 KSI = 0.323 x 10’ Pa
L-u
]
[ (33 12
' - 11.6
o =238 o (008 J
PN = 31 @ | 0.488

[_38 116
;W! :

F(N) = 0.5-er!p L—m—-——
where

N = ‘entp = 2().5tF cycles

These equations are plotted in Figures 12 and
13. The calculated curves are considered to
show good agreement with the experimental
data,
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Figure 12. Fatigue Failure Histogram (Two
Degrees of Freedom)

The measured median endurance life for
the 2DF system is 70 percent greater than for
the SDF system. The calculated average value
of rms stress for the SDF system is 4 percent
(i.e., 0.34 dB) higher than for the 2DF system,
The standard deviations, § , of the rms stress
for the two cases are approximately the same.
Thus, the slopes of the F(t) versus time curves
have approximately the same value. (Refer to
Table 3,)

L s a T sl N YR G LA s Y 18 L

' )

Figure 13, Probability of Failure (Two
Degrees of Freedom)

TABLE 2. Experimental Result System

Comparison
SOF 2DF

tm edian (seconds) | 8616 14,719
Npogian (veles) | 1.77x10° |s.02x16°
] (K81 12.1 11.6

(Pa) 8.34x10" |s.00x 10
¢ (KSD) 0.67 0.468

(Pa) 0.462x 10' | 0.323 x 107
§/c (percent) | 5.5 4

The failure points for the two systems are
plotted in Figure 14 which shows that the two
failure points nearly coincide. The fatigue
curve for G- 10 epoxy fiberglass is much more
sensitive to stress variations than cycles to
failure (time) variations,

EXPERIMENTAL ACCURACY .
J.T. Broch {4] stated the following three %
items: 3!

1) The variation in the response of the speci-
men strain gages from the static strain
test was less than 10 percent.

2) The variation in dynamic strain between
the specimens when tested on the vibrator
was of the order of 1 dB (12%).
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Figure 14. Fatigue Sensitivity

3) The variation in average zero crossing
frequency between the specimens was less
than 2 Hz.

No mention is made of an estimation of system-
atic errors. However, this author believes a
systematic error of 0.4 dB is within the bound
of experimental accuracy for this type of ex-
periment.

DISCUSSION OF RESULTS

The expressions for p(N) and F(N) yield re-
sults that closely match the forn: and shape of
the experimental data for both the SDF and 2DF
systems, The 2DF system had a median fatigue
life 1.7 times that of the SDF system. Assuch,
both failure points on the fatigue curve nearly
coincided. If the actual average rms stress of
SDF systems was 4 percent (0,34 dB) greater
than that for the 2DF system, the two failure
points would exactly coincide. The actual sys-
tematic error in adjusting the rms stress levels
is unknown. A value of 0.34 dB is believed to
be within the bound of experimental accuracy
for this type of experiment.

By inductive reasoning, it is believed that,
under the same test conditions as above (i.e,,
equal rms stress and equal effective frequency),
multiple degree-of-freedom systems would
have the same fatigue life.

STATIC STRESS ADDITION

The effects of a static stress added to the
random stress can be included by subtracting
the value of the static stress from the value of
A in equations (1) and (3). This is equivalent to
using a Goodman diagram with the engineering

s SRS Tl

ultimate stress replaced with the true ultimate
stress [2].

In J.T. Broch's experiments, the static
stresses were very small compared with the
random dynamic stresses and hence were not
included in this analysis.

ALTERNATIVE ANALYTICAL APPROACH

An alternative analytical approach was in-
vestigated which also used Miner's rule for
damage cumulation. It differed from the pro-
posed method in that it treated the two resonant
modes for the 2DF system as acting independ-
ently. Their stress responses and frequencies
were added in the linear sense rather than in
the rms sense. Refer to Appendix B. Using
this alternative approach, the time to failure
for the 2DF system was calculated to be ten
times that of the SDF. This factor of 10 does j
not come close to agreeing with the factor of )
1.7 from Broch's | 4) experiment. Therefore, i
the alternative analytical approach was con-
sidered invalid.

CONCLUSIONS

The test results cited tend to confirm the
proposal that the fatigue eguations developed
for a narrow-band random process can be ap-
plied to multiple degree-of-freedom systems
with reasonable accuracy, given that the stress
responses and frequencies are added in the rms
sense. Further analytical and experimental ef-
fort is required before firm conclusions can be
made.

The fundamental justification for this pro-
posal is that both the SDF and 2DF systems have
the same number of stress peaks above 1.50
and these higher peaks are the cause 0! most

fatigue damage.

SYMBOLS

A material constant; true ultimate
stress

C constant of random fatigue curve

Dy proportion of damage related to
Stress

erf o error function defined by
Papoulis [5)

F(N) probability of failure in N cycles

tB bandwidth




f bandpass center frequencies

fy

feff effective frequency

G(s) scaled damage PDF

j resonant mode index

k number of resonant modes

N number of stress cycles

N number of cycles for 50 percent of
median ;) fajlures

N0 9 number of cycles for 90 percent of

* all failures
Ns

number of stress cycles to failure

Np

p(N) l

p(NT) i probability density function

PDF

R(T) autocorrelation function

R"(T)  second derivative of autocorrelation
function

rms root mean square

S sinusoidal stress amplitude

So stress at statistical mode of G(s)

SDF single degree-of-freedom system

Sx( w) power spectrum

t time

tm edian time for 50 percent of all failures

to. 9 time for 90 percent of all failures

tp

tp F time to failure

tspF

y dummy variable

zZ power ratio

2DF two degree-of-freedom system

o general variable

B fatigue curve slope parameter

r gamma function

4 standard deviation of ¢

A average number of zero crossings
per unit time

rms stress level

51

average value of ¢
G(s) standard deviation of G(8)

T time difference
w circular frequency
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APPENDIX A
EFFECTIVE FREQUENCY DERIVATION

Refer to pages 485-491 of Papoulis {5].

Consider the bandpass processes as shown

in Figure 15, This represents the 2DF case.

s (w)
x

Figure 15. Power Spectrum (2DF)

The average number of zero crossings per

unit time of a stress-time function is given by:

1
A=s W - (16)

where

R(T) = autocorrelation function as a function

R"(T) = second derivative of R()

of time difference




w = frequency (radians per second) = 27rf
sx(u) = power spectrum
t = frequency (Hz)

Refer to Figure 15. Energy is additive.
Therefore:

C - (R

1
R,(0) = "1 *Iw

; -R}(0) - R5(0))
R, 10+ Ry 107 §

(17
(u) dw

I
8.
Wq
Ry(0) = J 8, (w) dw

2
Ry(0) + Ry(0) = 0% + 0" = 0,2 (18)

Therefore

2 1 3 3
A° = S -
SRSaT! { 1y - @)

+s2("aa - wca)}

Let %1 wp
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where
o =rms stress (psi)

t =time (seconds)

NT = average number of stress cycles in
time t

{ oft = effective frequency (Hz)

There will be one stress cycle for every two
zero croasings. Therefore:

ty = A/2
2
g =8 . A
1 =SB, %'s, ; Ny =3t
2 2
o2 t o2 t
1 (,2 B 3 (,2 By
NT:t a!(fl * )’+a !‘!2 +T)
T T

2
[} [ 4
- 1,2 % ,2
NT—t -o—zfl +-01-f2
T T
2 o2
(x| ,2,72 2
eff 21 2‘2 19
A A (19)

Equation (19) applies for the 2DF system.
This derivation can be extended to SDF and
other multiple degree-of-freedom systems by
the appropriate use of equations (17) and (18).

For the SDF case, R2(0) and R§(0) are
eliminated, Equation ( 19§ then becomes:

tn = fo Hz (20)
For k quantity of resonand modes

K
= ¥ cjz stress units squared
= @1)

where j = resonant mode index and




APPENDIX B For the 2DF case:

INDEPENDENT MODE DAMAGE CUMULATION Consider that the damage cumulated for each
resonant mode acts independently of all other

modes and that the total damage cumulated is
Fatigue microcrack initiation usually oc- the linear sum of each mode's damage cumula-

curs in the very early portion of the total fatigue tion,
life. Many small microcracks undergo two

stages of crack growth, then combine into a Dmode 1 *Dmodez =1 at failure
macrocrack which eventually propagates until (25)
the specimen fractures. Fatigue damage is 1
cumulating during the entire fatigue life. Fa- —_— [11 ’lﬂ tmF + !2 azﬂ ‘mr =1
tigue failure is the catastrophic fracture at the ch
end of fatigue life. 8
Miner's hypothesis quantitatively expresses 'zor = B c B 6
damage cumulation and relates it to failure as 1. 0.F 4 lza'z (@e6)
follows:
N
D, = 'ﬁi ; ¥D, =1 (at fatlure) For SDF and 2DF cases:
T B
t fo
where lﬂ’_" - “‘—3’0__3‘ @1
N_ = number of SOF 1,0 *‘z"
o = stress cycles at stress 171 2
level ¢ 2 2 2
Ny, = number of stress cycles at stress 9% =01 +% (equal rms stresses)
level o to cause failure
Dc = proportion of damage due to stress 2 alz 022 2
level fo = -—zfl + =y tz (equal effective
% LA frequencies)
For the SDF case:
From equation (4), Detine
2 2 2
B -8 o ) S §
N.=C o _ 2 _ 0 1
T o - Z-= P Bales Sy (28)
o 2 1
N = fot
he %’ z
where = 29)
-2 T-Z
f, = SDF resonant frequency (Hz) 9
; (f, = 20.5 Hz in Broch's experiment) ation @7) b
) om
: t =time (seconds) Equation ecomes
: f
Therefore ?DF - ?%5 7 (30)
oo\B . ~ SDF fl(l - 2) +fzz
; D, =1, ('C') @3)
}
Failure occurs for D, = 1, Therefore, at For Broch's experiment:
fatlure: L=230.5H B8 -n

e u(l )(c )ﬂ 20 fy =130 tapF = 14,719 seconds
SDF (‘fo' LA f3 =44 Hs tspF = 8616 seconds

K st od<n e

A0 et




Using equation (28),
Z = 0.195
1-2Z=0.805

Using equation (30), the calculated time-to-
failure ratio is:

g PRy, T

REYH it

L AT I a7 ) SEL N S STR

LDF
=10
tsoF

This ratio of failure times does not agree
at all with the experimental value of 14,718
seconds /8616 seconds = 1.7. Therefore, the
analytical approach of treating the resonant
modes independently was discarded.




b i

A MATHEMATICAL MODEL FOR THE STRESS
AND VIBRATIONAL ANALYSIS OF THE HUMAN MITRAL VALVE

J. Mazumdar* and T. C. Hearn ;
Department of Applied Mathematics ]
The University of Adelaide, South Australia !

Visual inspection of the mitral valve ring shows a degree of asymmetry about
the line of contact of the two leaflets. This characteristic hes not been
taken into account in previous models. In the present paper, a mathematical
model, taking this asymmetry into account, has been discussed, together with i
other models, by considering the mitral valve boundary to be represented by i
the limacon of Pascal. The limacon is considered in its second mode of
vibration, with the nodal line corresponding to the line of contact of the
two leaflets and the two vibrating parts of the limacon membrane repre-
senting the two leaflets of the mitral valve. The Young's modulus of the
leaflets is determined as a function of the fundamental frequency of vibra-
tion, forming the basis for non-invasive diagnosis of valve tissue deterio-
ration. Stresses in the valve leaflets are calculated, under adverse
physical conditions, in order to obtain structural requirements for a pros-

T eds o

thetic valve leaflet.

INTRODUCTION

A detailed account of the role of the
mitral valve in cardiac function can be
obtained in reference [1). Very briefly, the
function of the mitral valve can be described
as follows.

The left side of the heart is divided into
two chambers, the left atrium and the left
ventricle. The mitral valve consists of a pair
of membranous leaflets interposed between these
two chambers. Each leaflet is attached along
one edge to a fibrous vslve ring along the
atrio-ventricular junction. The free edge of
each leaflet is attached to suspensory liga-
ments (chordss tendineae) which are anchored to
papillary muscles on the inside of the left
ventricle. During left ventricular diastole
(expansion), the mitral valve opens to permit
blood to flow in the direction from the atrium
to the ventricle. At the beginning of systole

(contraction), blood rushes towards the taut non-{nvasive determination of the state of the >
leaflets causing them to vibrate. This vibra- valve tissue, as characterized by the Young's I
tion 1is recorded as the first component of the modulus of the tissue materfsl. The Young's
first heart sound. As eystole proceeds, the modulus 1is formulated by combining the vibra- ««
pressure in the left ventricle increases, and tion analysis of the mitral valve leaflets with :&

the mitral valve closes to prevent any flow of
blood back into the atrium. The pressure
increases until the asortic valve opens, and the
blood is expelled into the arterial system of
the body.

As a result of disease, the humgn mitral
valve can become inefficient through the loss
of elasticity of the valve leaflets. (Ghista
and Reo (2,3] have shown how a mathematical
model of the leaflets can be used to determine
the extent of such deterioration non-traumati-
cally, by measuring the fundamental frequency
of vibration of the leaflets. As in these two
refer , the p t paper analyses the
valve leaflets in a quasi-static pressure-
loaded state combined with a vibrational analy-
sis to yield expressions for the stress in the
leaflet and the Young's modulus of the leaflet
material, as a function of its fundamental fre-
quency of vibration. This frequency can be
measured with the use of a phonocardiographic
record, providing an aid in the diagnosis of
mitral valve disease when elasticity of the
valve leaflets may be affected.

The present atudy has two main purposes.
Firstly, it provides an alternative method for

the spectral analysis of heart-sound frequen-
cies. The in-vivo characteristic will also
help to distinguish pathological from normal
leaflets. Secondly, it considers the effect on
the nature of this relationship by different

#* Present Address: Visiting Professor, Department of Metallurgy, Mechanics and Materials Science,
Michigan State University, East Lansing, Michigan, U.S.A.




choices of shape parameters of the mitral valve
leaflets.

ARALYSIS

It 1is the object of the mathematical
analysis of the mitral valve to yield a method
for the determination of the structural state
of the valve tissue in terms of the leaflet
dimensions, geometry and primary frequency of
vibration. This i{s achieved by a combination
of vibrational analysis of the leaflets,
together with a quasi-static pressure-loaded
stress-deformation analysis of the leaflets at
the onset of its vibration.

Consider the mitral valve leaflets at the
instant of occurrence of the first heart sound,
following the onset of ventricular contraction.
At this stage of the cardiac cycle, the mitral
valve has just closed. While the leaflets of
the mitral are fixed around its curved edge by
the fibrous valve ring, the free edges are held
in apposition to each other by the suspensory
ligaments, the chrodae tendineae.

u(x,y) = 0

Ld
e TIIEIT

For the purpose of analysis, it is suffi-
cient to analyse only one of the leaflets (say,

the anteromedial one). Each mitral valve leaf-
let is represented by an homogeneous membrane,
vhich 1is considered to be held at its boundary
(Fig. 1). The membrane is distended due to the
pressure loading q, and we denote by C ,

0 < u<u%, the family of closed curves with
the property that the membrane deflection is
constant along each curve u(x,y) ~ const. We
may view this family of i{soamplitude level
curves C, as contours of the function u(x,y),
Co representing the boundary of the membrane
and C, coinciding with the point(s) at which
the maximum u = u* {g attained.

When the membrane vibrates, the dynamic
component of the deflection Wy will be super-
imposed onto the static deflection W, to give
the total deflection of the membrane. Denoting
the density per unit area by p and tension
per unit length by T we have the frequency
equation for the normal mode of vibration (see
Appendix]

u(x,y) = u¥

VALVE RING

CHORDAE TENDINAK

e sy akenl

rig. 1 - ldealized model of the pressure-loaded leaflets

VALVE LEAFLETS




J!uik = By 1)

where By 1s the i-th zero of zeroth order
Bessel function and the quantity wvﬁﬁ is
denoted by K, ® being the mode frequency.
For the fundamental mode of vibration, it 1is
clear that

2.4048

K(Rnf,';) * T )

From the above equation it is evident that
since u* can be known and monitorable, T
can be obtained when the mode frequency w 1is
known.

The main objective of this analysis is to
express the Young's modulus E of the leaflet
material in terms of its fundamental mode fre-
quency and the leaflet size and dimensions.
This is achieved by determining the tension T
in the membrane, obtained by invoking the phy-
sical requirement that the change in membrane
surface area due to its taking up its deflected
shape, must equal the change in surface area
due to its being stretched by the tension T.
We thus have [3]

’s_['g(gw..gw‘)m - ygz—“zlhﬁlan 3

where v 18 Polsson's ratio and h 1is the
thickness of the valve leaflet. Using the fact
that u 1is related to W, by

2T

u = -T“s %)

we obtain the following expression for the ten-
sion
2 J1/3
T = Eh g uk )
16(1-v)

and then using the equation (1) for the funda-
mental mode of vibration, we obtain the desired
relationship between the Young's modulus E and
the frequency f,, (cycles/sec.) of the princi-
pal mode of vibration of the valve leaflet as
follows:

2 273
£ = [’" Pfu-‘ 16 (L) u¥?
7 )
[_(z.z.oaa)J by

(6)

The stress o 1in the leaflet is given by
o = T/h; hence, from the expression (5), we get
the expression for the stress in the valve-
leaflet membrane as follows:

2 . q1/3
- |EQu* / 0
16k (1-v)

Thus the stress in the leaflet is obtained
as a function of the pressure loading q across
the valve leaflet, the thickness h of the
valve and the Young's modulus E and the
Poisson's ratio v of the valve-leaflet
naterial.

It is clear that the above equation
involves the monitorable quantity u* which
depends on the choice of the shape of the
mitral valve leaflet. A number of geometric
models for such analysis have been considered
in the past. For example, a semi-circular
leaflet model was considered in [2]. 1In [5] a
semi-elliptic and a parabolic leaflet model
were discussed. However, in none of thesge
models has the effect of the asymmetry of the
mitral valve ring been taken into account. It
has been observed that the mitral valve ring
has a degree of asymmetry about the line of
contact of the two leaflets.

We will now take into account the effect
of the asymmetry by modelling both leaflets
simultaneously, and representing the valve
ring geometrically by the limacon of Pascal,
given by

R(E) = a(1+0.5 Cosd) (®)

The limacon is considered to be a perturbation
of a circle of radius a (Fig. 2). We con-
sider the limacon in its second mode of vibru-
tion, with the nodal line corresponding to the
line of contact of the two leaflets in the
pressure loaded state and each vibrating part
of the limacon corresponding to a mitral valve
leaflet.

Fig. 2 - The limacon of Pascal, with the
nodal line for second mode vibration.

The second mode frequency for the above
limacon can be obtained by any of the approxi-
mate methods mentioned in [6]. However, using
the result given in [7], we have

wﬁ - 3.783 )

Combining this result with equation (2) yields
the value of u* which when substituted in
expression (6) gives the following formula for
E:

(e} ))> 16(1-v)a*nd

(10)
4(3.783)% (2.4048)2¢2

where D 1is the mass per unit volume of the
leaflet material.
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NOMOGRAMS

Expression (7) gives us the Young's
wodulus-stress relationship for the limacon

model as
3 2
E = 320 Sl"\i!s3.783! B (11)
(2.4048)
where

2
h
B = (:'9 (12)

The parameter a is determined from the maxi-
mum valve diameter in accordance with Table 1
for a selected range of values of valve diame-
ter. 1f we consider adult human mitral valves,
for wvhich the maximum diameter varies from 3.5
cm. to 4.0 cm., the corresponding range for a
is from 1.5896 cm. to 1.8167 cm. The thickness
h varies from 0.05 cm, to 0.1 cm. At the
point of cardiac cycle when the mitral valve
vibrates, we take the pressure as ranging from
S mm. to 20.0 mm. of mercury (0.64 x 10% to
2.56 x 104 dyn/co?).

TABLE 1

Relationship between the Valve Diameter
and the Valve Parameter (a)

Longest valve Corresponding
diam. (cm.) value of a (em.)
2.0 0.9083
2.2 0.9992
2.4 1.0900
2.6 1.1808
2.8 1.2717
3.0 1.3625
3.2 1.4533
3.4 1.5442
3.5 1.5896
3.6 1.6350
3.8 1.7258
4.0 1.8167
6.2 1.9075
4.4 1.9983
4.5 2.0438

From the expression (12), we then deter-
mine the range of the pnr-ctts B as being
from 4.0 x 10°12 to 3.6 x 10-10, The relation-
ship (11) is then plotted over this range of B
in Pig. 3.

The normal stress-strain data for fresh
human mitral valves was obtained by Clark [8].
The equation
o = 4083.6(e}7¢-1) (13)

el NI i S B M S g

vhere ¢ denotes the strain, provides an excel-
lent fit to the experimental data. The Young's
modulus thus obtained is given by

E = %"5‘1 = 17(c+4083.6) 14)

Equation (14) is also plotted on Fig. 3 repre-
senting normal mitral valve leaflets.

Further physiological data has been pro-
vided by Ghista [3]. We take the leaflet 'C'
in this reference as being rathological. The
stress-strain curve takes the form:

o = 9714.6¢el7¢-1) as)
The expression for E thus obtained
E = 17(s+9714.6) (16)

represents the pathological condition of the
valve material. The range of values of E from
normal to pathological is shown in Fig. 3.

Now consider the Young's modulus-frequency
relationship for the limacon model which is
obtained from equation (10) as follows:

(8% ffl) 16(1-v)

E = : 5 A an
4(3.783)% (2.4048)
where
42
A= A% (18)

Using the same data for a,h and q as before,
we find that the range of the parameter is from

9 5 10-11 o 1010, "The relationship (17) is
then plotted over this range of A for various
values of the frequency f£;; to provide the
nomogram of Fig. 4. 'rnnléerring the range of
E obtained from Fig. 3 to this monogram yields
the frequency range of mitral valve vibratfion as
being between 65 Hz. and 90 Hz. for normal to
pathological valve leaflets.

In general, the nomograms can be used to
determine the frequency range of vibration of
the mitral valve wvhen a, h, q and fu are
known. Firstly, with this data the parameter B
is determined exactly and the appropriate curve
is chosen in Fig. 3. The normal to pathological
range of Young's modulus is then obtained from
the intersection of this curve with the physto-
logical data. This range is then transferred to
Fig. 4 and since the parameter A can be
obtained exactly from the values of a,h and
q, the corresponding range of frequencies for
normal to pathological can be easily determined.

CONCLUSION

The geometry descriptions and material pro-
perties of human mitral valve leaflets have been
studied with a view towards designing a pros-
thesis. Typical results obtained from the
studies are presented in a form suitable for
input into the design process. It is felt that
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reliable experimental testing as well as signi-
ficant idealization may be required to produce
results useful for design purposes.

In the study we have made a case for pos-
sible indirect determination of the Young's
modulus of the leaflet material which would
help us to characterize its structural deformi-
ties. Deformities of the valves produce two
main types of functional disturbances: Stenosis
and regurgitation. Identifying the affected
valve is important, particularly now that pal-
liative surgery for valvular deformities is
available.

ACKNOWLEDGEMENTS

The authors wish to express their grati-
tude to Dr. D. N. Ghista, Biomedical Research
pivision, AMES Research Center, California for
many valuable suggestions during the prepara-
tion of this paper. The technical assistance
of the Metallurgy, Mechanics and Materials
Science Department of Michigan State University
is also gratefully acknowledged, especially the
typing help of Mrs. Thelma Liszewski.

APPENDIX

The differential equation of motion of the
membrane at any instant of time T 1is given by
Mazumdar [4] as

v, bz"d
Tg-b-n—dl-pfg-;jm-o (A.1)
u u

which, under an assumption of harmonic vibra-
tion

= W, e (A.2)

Ya
leads to the following integro-differential
equation

Mg 2
rwiﬁd.”m j‘&wdcn =0 (A.3)
u u

where ® 1is the frequency of the mode and Wy
is the normal function determining the form

of the deflected surface of the vibrating mem-
brane wvhich is a suitsble function of u and

R T
t “x+“y (A.4)

The double integral appearing in equation (A.1)
can be simplified to yield

aw
a 2 1 .
- td¢+k“j:iid(u°)€ JE 38 | aug 0
u

0 (A.5)

where the value of kz ie given by equation
(2). HBere u = u, 1ig an arbitrary closed con-
tour. 1f we différentiate equation (A.5) with
respect to u, we obtain:

v aw
d - d 1 2 ds
’—""duz g VE ds Z—du g JE ds + k' Wd g r [}

u u u (A.6)

The values of the contour integrals in the
above equation can be obtained in the following
manner with the help of Green's theorem

gft'd- - - {EI (U + v )00 = % (u*~u)
u

u (A.7)

d d d
a;gﬁdl-g(uxx-fu”)\hé' -Zgl?.
u u u
(A.8)

vhere A 1is the total area of the membrane.
Here we have assumed the function u(x,y) to be
the Prandtl stress function for the corres-
ponding problem of the torsion of an elastic
cylinder, whose shape in cross-section is the
same as the membrane boundary. Thus we have

u_+u = « 2 in the region Q

o vy o (A.9)

with the values of the above integrals and
introducing a new independent varisble g
given by:

32 = gk -y (A.10)

equation (A.6) finally becomes

2
aw y daW

a.1% 2
b YRR AV T 0w

This is the zeroth order Bessel equation with
the general solution

Vg = AJWZke) +B Y ({Tka) (A.12)

where A and B are arbitrary constants.

In order to avoid infinite displacements,
we set B = 0. Also, since the membrane has
zero displacement around the boundary, we have

Jo(\/Zu* k) = 0 (A.13)
giving
V2ur k= B, (A.14)

where l’_ is the f{-th zero of the zeroth order
Bessel functiom, {.e.,

Rur k= 2.4048, 5.5201, 8.6537,.... (A.19)
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THE DECREMENT IN VISUAL ACUITY RELATED TO VIBRATION
OF SHAKER, SEAT, AND OBSERVER'S HEAD

Owen F. Hackett
David W. Taylor Naval Ship Research and Development Center
Bethesda, Maryland

Warren G. Lewis
Naval Electronics Laboratory Center
San Diego, California

Robert Langland and Theodore Harder
Pacific Missile Test Center
Point Mugu, California

Subjects wearing flight clothing were strapped into an aircraft ejection seat.
During steady vertical vibration of the seat at several discrete frequencies
from 3 to 33.6 hertz acceleration was measured on the shaker platform, seat,
and a biteboard. Visual acuity was measured with and without vibration and
with and without use of a helmet~mounted 3-power binocular. Visual per-
formance was related to vertical seat motion and to skull motion in each of
the degrees of freedom of the vertical plane. A single relation between the
decrement of unaided vision and the amplitude of apparent angular acceleration
of the image was demonstrated when eye response characteristics are taken into

account. It was found that above a limiting value of head pitching accelera-
tion, the binocular degrades visual acuity.

BACKGROUND

Visual detection and recognition of distant
targets is hampered when observers are vibrated
by their vehicles. This was suspected to be
the pimrary reason that detection of ground
target detail was not enhanced as much as hoped
when pilots of A4 aircraft used helmet-mounted
binoculars in flight tests at the Pacific
Migssile Test Center (PMIC). Therefore, a series
of tests was performed at PMTC to help determine
the extent optical magnification or vibration
reduction can improve the visual acuity of pilots
subjected to vibration. The laboratory tests
were sufficiently fundamental that the results
should be applicable to vibrating visual
observers in land and sea vehicles, as well as
in aircraft.

A literature search at the time of this work
uncovered many relevant studies'™ 3 of the effect
of vibration on vision and of transmission of
vibration through the body to the head.

Visual performance during observer vibra-
tion has been measured using minimum perceptable
acuity (black target on white background)lZ,
character or dial rending (speed or error
rate)14,15,17,19,25,26,31, perception of

horizontal gap?l, minimum separable acuity

(Ronchi rulingg’lo, Ives gtidll), detection of
0's in_field of C's and 0's3, Landolt "C"
ac“ity7’16'18’19'24‘32, Kholina acuity33, and
Snellen acuitys. Some of these measures of
visual acuity, though useful in a static
environment, may not be appropriate when there
is apparent vibration of the visual presentation.
For instance, during vertical vibration, a
Landolt "C" gap presented at the 12 o'clock or

6 o'clock position will not be smeared by the C,
while the C will tend to be smeared across a gap
presented at the 3 o'clock and 9 o'clock posi-
tions. Because of the relative dwell of the
image at two extreme positions during steady
vibration, two images can often be seen, and
acuity measured by the least discernable separa-
tion of two horizontal lines may thus be con-
founded during vertical vibration. More recently,
visual acuity decrements were systematically
measured by O'Brient and Ohlbaum37.

Coermannl4 reported large decrement in
visual acuity in two or three frequency baands
between 20 and 80 hz, and concluded that eye-
ball deformation was not responsible. Thomas
reported accentuated response of the eye at
about 30 and 65 hz when the head was vibrated,
and Oshimal reported eye resonance with respect
to seat vibration at 7 and 16.5 hz.
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Previous investigators had often reported
information on shaker motion and body attitude
and restraint in relation to the associated
decrement in visual acuity. None had related
the rotation of the eye or head, although in
one instancelZ a point of light was placed on
the eye and the length of standing wave on the
vibrating eye was measured, in another30 a movie
wggrgnde of a marked contact lens, and in others
1; »14,17,23,32 a single accelerometer was
mounted on the head via biteboard, tape, strap,
rubber bathing cap, helmet, or oxygen mask. One
study27 used an accelerometer attached to a con—
tact lens. Anotherl6 employed three accelero-
meters oriented orthogonally and attached to the
helmet. Guignard and Irvingzo showed that eyes
lose visual-feedback stabilization of their
sightline at 3 hz or more.

More recently, Lee and King34 reported
data on responses to vertical, while~body vibra-
tion of the point of regard and of a single
accelerometer mounted on a biteboard. Magdaleno
and Allen35 interpreted that data and recent
transmigsability results, including those of
Griffin36,

Head resonance of seated subjects  vibrated
vertically has been noted at several frequencies
between 4 and 20 hz, and sometimes at higher
frequencies (none, reported by Coermann using a
biteboard; resonance, reported by Coermann using
an accelerometer taped to the top of the subject's
head). Significant variability of head response
with changes in posture, muscle tone, and
restraint system has been demonatratedl,&,8,14,36,

Hornick, Boettcher and Simons’ reported
that transmissability of fore-aft seat vibration,
though less than unity in their tests, was
greatest at the highest frequency (5.5 hz) they
employed. Dieckmand noted head resonance at
4 hz during sideways seat vibration and found
that in the range from 1 to 40 hz, head motion
was predominantly vertical above 5 hz. He re~
ported vertical vibration transmitted to the
head from-a seat to be attenuated at least 50
percent above about 30 hz. Goldman and
von Gierke® indicate that attenuation of hori~
zontal seat excitation at the head is much greater
yet., Sideways vibration is apparently attenuated
more than 50 percent above 2-1/2 to 3 hz, while
fore-aft vibration is apparently at least halved
above 8 to 10 hz. Hence, attention was focused
on spinewise vibration in this study.

PRELIMINARY TESTS

Preliminary tests were performed in which
several seated subjects of a very wide range of
sizes, builds, and weights, with varying body-
to-seat restraints, muscle tone and posture were
vibrated up and down by an electromagnetic shaker
operated under conditions of slowly and con-
tinuous changing frequency, and approximately
constant acceleration. The frequencies at which
helmet displacement was apprecisble were found
to be between 3 and 8 hz, In earlier tests
performed at the Pacific Missile Test Center, a

helmet was fastened to a shaker and vibrated in
the heads up-down direction with binoculars
attached. The binoculars (Figure 1) resonated
at about 21 hz. When worn, the helmet slid over
the skull noticeably at 6 to 8 hz.

0 GMASE STABILZATIN
SUNCULAR WFGRD FOR WARTH £8 SRLANDO) BY BAUSCY AND LOMS £9

Figure 1 Helmet-Mounted Binocular

When the helmet and subject were strapped-
in in the manner used during the later test
series, we measured the angular response of the
helmet-mounted binoculars relative to the skull
and the vertical displacement of the image pro-
jected by the binocular onto the eye, using
motion pictures. The test setup is shown in
Figures 2 and 3, and results are plotted in
Figure 4. Measurements at 33,6 hz were too
small for accurate reduction, but showed the
trend indicated by the dashed lines. Figure &
shows that vignetting should not have occurred
often during the tests, since before each test
the binoculars were adjusted so that the spots
of light projected from them were concentric
with the subjects pupils, and overlapping thea.

To aid in interpreting flight test data of
vibration of an A4E and its seat, which showed
significant power in the region from one to
gseventeen hertz and gome power in the higher
range up to 100 hz, preliminary tests were con-
ducted in which an accelerometer was located at
the front of the cantilevered seat and oriented
for measuring near-vertical motion, as in flight
tests. The ratio of seat frant to shaker accelera-
tion is shown for a typical subject in Figure §,
which demonstrates significant magnification
between 12 and at least 60 hz. A survey showed
that within the ranges of vibration parameters
selected for the main tests, the response of the
base of the seat was essentially equal to the
shaker wotion.

Because of the above information on vibra-
tion transmissability and observed decrement in
visual acuity, attention was focused on vertical,
or spinewise vibration in the range of 3 to
33.6 hz. The upper limit of frequency was verified

b o




Figure 2. Test Se
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Figure 3. Setup for Presentation of Vieusl Stimuli
Front View Camers Positioned for Transmissability

PEAK-TO-PEAK PITCHING ROTATION,
RELATIVE TO HEAD, OF HELMET-MOUNTED
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Figure 4 Mechanical Responses of Helmet -Mounted
Binocular (Relative to the Head) to Vertical
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by testing of three subjects. Two were subjected
to shaker vibrations of 30, 40, 50 and 60 hz at
1.6 and 3.2g peak sinusoidal acceleration, and
one also experienced 70, 80, 90 and 100 hz at
the same acceleration levels (see Figure 6).
These subjects all exhibited their greatest
decrement in visval acuity below 40 hz, and head
motion diminished roughly as predicted in the
literature.

SEAT VERTICAL ACCELERATION (VECTOR, OB PEAK ¢'s)
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Figure 6.

The Experimental Conditions of Vibration, and Various
*“Fatigue/Decreased Proficiency Boudaries” for Spinewise
Vibration, Taken from Reference 36.

All conditions of vibration, including
those to be used in the main tests, were found
to be physically and psychologically tolerable,
although the higher g-levels were found to be
unpleasant at low frequencies, and rapid
changing of vibration was also quite unpleasant.
Results of daily before~ and after-test urin-
alysis showed no measurable physiological
damage due to vibration.

TEST CONDITIONS

The main tests were conducted at the values
of shaker frequency and peak acceleration
indicated in Table 1 and Figure 6. Tolerance
limits from Reference 38 are also shown in
Figure 6. Visual acuity was also measured
before and after vibration at a particular
frequency with subjects at rest. The visual
conditions and test schedule are indicated
in Table 1.

EQUIPMENT

Biteboards shown in Figure 7 were used to
measure skull vibration in the vertical plane.
Endevco model 2221C accelerometers were mounted
as shown so as to completely define rigid-body
motion in the vertical, fore-aft or medial
plane. Moisture occasionally csused shorting

of the leads and the biteboard caused some
subjects excessive discomfort (mainly an in-
ability to swallow) over protracted periods of
use, Despite these disadvantages, the bite-
board accelerometer installation provided useful
data. The effects of swallowing, clenching
teeth, and changing head orientation did not
confound the data. Resonance of the jaw and of
the clamped biteboard was not found to be a
problem. The roll-off of the Endevco signal
conditioning system was calculated to be 2 per-
cent at 2 hz,

An Escapac ejection seat and mounting rails,
furnished by the McDonnell-Douglas Corporation
were installed on a Calidyne Model 58 shaker as
shown in Figures 2 and 3. The subject's feet
rested on a stationary platform. Subjects wore
a fitted torso harness by which they were
attached to the seat just as a pilot is attached
in an A4 aircraft. The subjects wore an APH-5
helmet and an A-13A oxygen mask fitted to be
snug but comfortable.

DESCRIPTION OF VISUAL ACUITY TEST

The binoculars were prefocused and preset
to the observer's interpupilary distance and
adjusted horizontally and vertically so that
the projections of the binocular exit pupils,
two discs of light, were concentric with the
subject's eye pupils.

The subject was located near one end of a
vision alley 30 feet long, 8 feet high and 10
feet wide, which can be seen in Figure 3.
Opposite the subject a wall of neutral gray (36
percent reflectance) was illuminated by 6 photo-
flood lamps at the sides of the alley and con-
cealed from the view of the subject. The light
level was adjusted before each session as
necessary to produce an illuminance at the
center hole of 250 foot-candles, and then
monitored during testing. Three 4x4 inch
beveled holes were cut in the wall. The
visual stimuli were presented at the center of
one of these holes (the other holes were used
as "standbys" and were maintained at the nearly
uniform luminance of the general background
when not in use). Duration of presentation was
limited to six seconds by the use of a flap
shutter.

The vigual stimuli were circular discs of
neutral gray paper of 46 percent reflectance.
Their areas formed an approximate geometrical
sequence of range 0.53 to 19.6 square milli-
meters and average ratio of 1.24. The stimuli
were bonded to long strips of neutral gray
paper (reflectance 36 percent). The setup is
shown in Figure 2, wherein photographic pro-
cessing emphasizes the contrast of the holes
and flap.

The frequency of vibration of the seat was
established by comparison with a reference, then
the acceleration was adjusted to the prescribed
level. Presentation of visual stimuli was not




TABLE 1
Experimental Conditions of Visual Acuity Tests

Vertical, sinusoidal motion of the seat:

frequencies 3, 4.2, 6, 8.4, 12, 16.8, 24, 33.6 hz
displacenent* * 0.0035, 0.0069, 0.0138, 0,0277, 0.554, 0.111,

0.222, 0.443 mm

acceleration ¥ 0.1, 0.2, 0.4, 0.8, 1.6g

Visual conditions:

distance from eye to stimulus - 7.62 m (25 ft.)

area of lighted background - 7.43 sq. m. (80 sq. ft.)
luminance of lighted background ~ 90 millilamberts

range of areas of stimuli - 0.53 to 19.6 square millimeters
contrast of stimuli with background - 0.28

Average or nominal test schedule:

Time duration:

(minutes)
adaptation to illumination and completion of
test preparations 10 min
static acuities (aided, unaided) measured 5 min
first vibration session 40 min**
adaptation to illumination and completion of
test preparations 10 min
second vibration session 40 min**
static acuities (aided, unaided) measured 5 min
2 hours

* Applied peak acceleration divided by (£/2 )2. Values accurate to

within 12,

** Vibration occurred only during presentation of visual stimuli and
during intervals between presentations at a particular frequency when
the acceleration was no greater than 0.4g.

made until steady-state vibration had been
achieved.

Subjects used a hand-held buzzer to respond
positively (one buzz) or negatively (two buzzes)
for each target presentation (a forced choice).
They used more huzzes to signal for a consulta-
tion. A switch located on the right arm of the
seat was available for stopping the shaker in
the event of excessive subject discomfort. By
way of a sound-powered communications system
to the earphones of his APH-5 helmet, the
subject was instructed whether to use aided or
unaided vision and to which hole he should
direct his attention. Visual stimuli were
presented in random order, using a range of
sizes determined during the training sessions.
A sufficient number of presentations was made

to satisfy the criterion that the two smallest
target sizes shown have negative responses and
that the two largest target sizes shown have
positive responses.

The vision test data for a subject were
collected in nine sessions which provided three
replications of the experiment. In each three-
session replication 5 individual thresholds were
determined. Therefore, there were 15 threshold
determinations for each condition of interest
(aided or unaided at a particular frequency and
peak accelerstion of the seat). Subjects com~
pleted one session per day. The sessions were
counterbalanced to cancel effects of order of
presentation (aided or unaided first, high or
low frequency first, and high or low seat
acceleration first). Each subject began
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the tests with a different type of session. The
conditions of vibration were distributed so as to
make the sessions approximately equal in severity
as determined from pretests.

The subjects were ome female (M L) and two
males (RS and J W) in the 20 to 35 age bracket.
All met the vision requirements for pilots in the
U.S. Navy and were in good physical condition.
The males weighed 180 pounds and 175 pounds and
the female weighed 125 pounds. Each subject
was fitted with flight equipment by aircrew
equipment specialists. All subjects used
medium size helmets and oxygen masks. In their
briefing the subjects were informed on the
objectives of the experiment, and that blanks

would be presented randomly among the real targets.

They were cautioned not to cock their heads to
the side or lean forward or back.

DESCRIPTION OF TRANSMISSABILITY TESTS

It vas not feasible to collect vision and
transmissability data simultaneously. This was
not considered a serious drawback because each
of the subjects was given a lengthy period
(several preliminary sessions) of learning and
adaptation, so that each had developed character-
istic posture by the time data were collected.

There was insufficient time after the
vision tests to carry out a systematic experi-
ment concerning vibration transmission to the
head, as both subjects and equipment became
unavailable. However, some data were obtained
for each subject and a nearly complete get was
obtained for ML.

The biteboards and associated equipment
of the pretests were used, Distances parallel
and perpendicular to the biteboards were
measured to establish the relative position of
accelerometer axes, and of a point midway
between the subject's eyes, as indicated in
Figure 7.

In a test, a frequency of vibration was
established and increasing levels of accelera-
tion were applied. At each level of accelera-
tion the subject was instructed to look for a
stimulus and respond as in the vision experi-
ment, while he/she alternately used aided and
unaided vision. While the subject was thus
engaged (after steady-state conditions had been
established), one recording of approximately
20 seconds duration was made of the five
accelerometer outputs and of buzzer and voice
annotations.

DATA REDUCTION
Vision Data

The threshold area for one series of
responses has been taken as just larger than the
largest pair of consecutive stimuli for which
there were negative responses. The value of the
log threshold stimulus area was then calculated
as the arithmetic average of the log areas just

Figure 7. Biteboard Mounted Installation for
Meassuring Head Motion.

above and below threshold. Thus for an hypo-
thetical and rare series of response (stimuli
ordered in increasing sizes):

Stimulus: A B C D E F G H I
Responges: - - + + - - + + +

the log threshold area is the average of log
area F and log area G.

The threshold values of area were averaged
arithmetically for the five exposure sequences
(unaided or aided) of each trial of each con-
dition of vibrationfor each subject.

To assess whether correction for variation
of control conditions was necessary, the aided
and unaided averages were both compared for
each subject's replication. It was found that
all subjects were reasonably consistent in
response, although each one showed increased
variability at the two greatest levels of
acceleration. A comparison was also made of
static acuities measured before and after
vibration of a subject. The "control" or
static acuities were found to vary somewhat but
not to such an extent that corrections to the
remaining data were necessary. The trends of
the corrections were observed to improve the
consistency of the data, which was deemed
adequate without correction, so control correc-
tions were not made in the results presented in
this report.




Averagea for each trial were themselves
averaged and these pairs (aided or unaided) of

values were taken as representing the performance

of a particular subject exposed to a particular
condition of vibration. Representative varia-
bility of trial average is shown in Figure 8,

where threshold visual angle is defined in terms

of average threshold stimulus area A as n
= 1,73 x 106 A steradiams. (¢}

Visual acuity is taken to be measured by
the reciprocal of average threshold stimulus
area, but "Effective ification" is used for
ease of comparigson of results. It is defined
in this report as the ratio of visual acuity
under some circumstances of interest (e.g.,
vhen an optical aid is used) to an appropriate
reference (e.g., vhen an aid is not used, other
things being equal) value of visual acuity.
Disregarding the loss of image

PRGNS S Mt o 9 S

Figure 8 Intratrial Varisbility of Dets on Threshold
Visual Acuity. Subject ML

Visual acuity is taken to be measured by
the reciprocal of average threshold stimulus
area, but "Effective Magnification" is used for
ease of comparison of results. It is defined
in this report as the ratio of visual acuity
under some circumstances of interest (e.g.,
when an optical aid 1is used) to an appropriate
reference (e.g., when an aid is not used, other
things being equal) value of visual acuity.
Disregarding the loss of image clarity due to
transmission between the target and eye, the
effective magnification would be the ratio of
the distance at which that observer can just
resolve a detail under prescribed conditioms,
to the distance for just resolving the detsil
under reference conditions. Thus

By = Ay (2)

A, :
zn:.v - Ay &)

AW

where

A is the average threshold area indicated by
the subscripts, in square cm

EM 18 the effective magnification for super-
script conditions referenced to subscript
conditions

a indicates use of aided vision

u indicates use of unaided vision

v indicates the presence of vibration

s indicates the absence of vibration, {.e.,
the static condition

VIBRATION TRANSMISSABILITY DATA

Motion records were analyzed in intervals of
time during which the three biteboard and shaker
table accelerometer outputs had a steady rhythm
preceding buzzes. Since sinusoidal seat motion . |
produced approximately sinusoidal responses, the
accelerometer outputs A] (t), A2 (t), and A3 (t)
were processed to calculate the response of the
head parallel to the medial plane at the point
between the centers of the orbital cavities
using the following equations:

Angular (nodding) acceleration:

1
0= L—l ( Ye sin et - Yg CO8 wt) (4)

Head up-down acceleration (perpendicular to plane
of biteboard):

L
Z= (A3 cosd, - _L_Z Ye) sin wt +
1
. 1. (5) )
+ (ay sing, + L—: y) cos wt - ,.

('yc cos wt + Ye sin wt)z

Ly
)
vl

H
Head fore-aft acceleration (parallel to plane of
biteboard): ‘

L
X= (A2 cosy, ~ L—: Ye) sin ot +

[ 2

(6)

+ (Ay sing, + L—3 Ya) cos wt -
1

L
& 2
- (v, cos wt + v_ sin wt)
ug 1! [ s




Yo T Ajcose; - Ay cosyy
Yo = A sing) - Ay eing,

Al(t) - Al sin (ut +¢1) = the acceleration

along the inside vertical accelerometer
axis

Ay(t) = A, sin (ut +4,) = the acceleration
along the horizontal accelerometer axis

A3(t) - A3 ain (ut +03) = the acceleration

along the outside vertical accelerometer
axis

w = 2uf, £ = frequency (hz)

t = time (seconds)

01 02 03 are phase angles with respect to shaker
? 97 7 excitation

Ll’LZ’L3' and Llo

The sign conventions are shown in Figure 9b.

are lengths shown in Figure 9a.

Figere 9. Lougths Used in Computations of Head Motion

RESULTS AND DISCUSSIONS

Transaissability

The response of the orbital cavities to
vertical sest vibration is shown in Figures 10
through 12, 1In these figures T;,, Tg,, and Ty,
are respectively the ratios of the amplitude of
up~down, nodding, and fore~sft acceleration of
the skull (at the point midway between the eyes)
to the amplitude of accelerstion of the shaker
platform.

All the spinewise response data is plotted
together with curves from the existing literature
representing the same type of response in Figure
10d. This figure indicates a general agreement,
but a great degree of variability smong results
of these various experiments which is probably
due in part to the differences of measuring body
posture and restraint, head-mounted equipment,
etc., as mentioned above. However, data of the
present experiment (in which these latter factors
were relatively standardized) show a great degree
of variability among subjects.

All subjects tended toward nonlinear mechanical

behavior, giving lower ratios of response per
excitation as the vibration becomes more intense.
This effect could account for some of the varia~
bility between experiments which is apparent in
Figure 10d.

There are data pertaining to the use of
binoculars for only one subject (ML). These
data (Figures 10a, lla,and 12.a) show considerably
less variation between aided and unaided (vision)
mechanical response of the head than exists
between subjects that are unaided. Subject ML
had generally lower response in both translation
and rotation during use of the binoculars than
during unaided viewing, a tendency which is
most apparent at 8.4, 16.8, 24 and 33.6 hz.

A resonant condition amplifying the motion
of the orbital cavities is apparent at a low
frequency of about 6 to 8 hz for two subjects
(ML and RS) and lesa for the other (JW). Onmly
one subject (ML) exhibits a discernable second
resonance in the frequency range covered; it
exists at about 30 hz. A suggestion of a second
resonant frequency is given by RS's response.
Head rotation response results of (:x-tt'ftn36
and of Magdaleno and Allen33 (sinusoidal ex-
citation) are plotted inFigure 11 for comparison
with our results. It appears that the absence
of a back support and visual task.in Griffin's
experiment contributed to & low head rotational
response.

The head rotational response of RS was about
one-fifth that of ML and JW. RS had correspond-
ingly better unaided visual acuity during
vibration, suggesting that he found an efficient
posture for unaided vision. Indeed his calculated
Lissajous figures for the point between the eyes
was nearly circular, while those for the other
subjects were much flatter in general.
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Figure 10b. Subject RS

The response of RS is similar in magnitude
to the Griffin results for fore-aft and nodding
head response.

The equivalent magnification of the bino~
cular during vibration, referenced to the con-
dition of unaided vision under vibration, is
shown for each of the 3 subjects in Figures 1l3a,
b,c. This same equivalent magnification is
averaged for the three subjects in Figure 13d.
It is seen that use of the binocular actually
tended to degrade what unaided visual acuity is
possible duriag whole-body vibration at low
frequency where head motion 1s largest.

The effective magnification of each subject's
unaided vision during whole-body vibration is
shown in Figure 15. Averages for all the sub-
jects are shown in the bottom set of curves of
Figure 14, upon wihich data from the literature
are plotted for comparison. The latter data
do not include results of experiments in which
Ronchi rulings or horizontal gaps were used to
measure acuity, and only the distant-viewing
results of Reference 37 are shown.

Figure 14 shows that in this experiment,
the effect of vertical seat vibration on unaided
visual acuity 1s largely a monatonic function of
the acfsletation of the seat, in agreement with
Oshima’ However, Figure 8 shows a frequency-
dependence of unaided visual acuity which
develops as the vibration intensity increases.
Much of the varifability of results seen at the
bottom of Figure 14 is probably due to diff-
erences in the vibration transmitted to the
head, which seems to be borne out by Figure 15.

To obtain an estimate of the log effective
magnification for use of a binocular during
vibration at a frequency (f) and peak accelera-
tion (nz) referenced to static unaided viaion,

Figure 10d.
Data of all Subjects (Aided or Unaided)
Transmissability, and Results from the
Literature.
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Figure 13

The Effective Magnification of the Helmet-
Mounted Binocular when the Wearer was
Subjected to Vertical Seat Vibrstion.
Subject ML
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the log effective magnification for f in
Figure 13 may be added to the log effective
magnification for f and nz in Figure 14.

In Figure 15a the effective magnification
for unaided and aided vision of subject ML
during vibration (referenced to static unaided
and aided vision, respectively) is plotted
against head nodding acceleration.

A rough comparison of aided and unaided
visual performances indicates that when
amplitude of eye nodding acceleration is 40 to
400 radians/sec? (depending on frequency) or
more, three power helmet-mounted binoculars do
not improve performance of the visual task of
this experiment, e.g., discrimination of con-
trast detail viewed at a distance. This issue
will be more completely settled (for various
magnifying powers and mountings of optical aids,
restraint of viewers, motions of object viewed,
and viewing distances) through the use of models
of mechanical response adapted from models such
as those described in References 35, 39 and 40,
and the use of visual performance data, including
that given in Figure 15. Though insufficient
data was available for RS and JW, the trend of
their performance generally confirmed the trend
of the unaided performance of ML.

In Figure 15a, a marked frequency effect
can be seen in ML's performance., The gain
for the amplification of head rotation required
to unify her unaided visual response into one
curve (the curve for 3 hz and 12 hz), shown in
Figure 15b, is indicated in that figure. The
gain of eye nodding response with respect to head
nodding response estimated” from Figure 10 of
Reference 35 is shown also. The latter was based
on one set of data for eye motion and other
data for head motion, so that the values of gain
may be inaccurate, though a zero (cross-over)
at about 15 hz was obtained by Lee39.

The frequency effect in Figure 15 may thus
be due to the fact that visual performance was
plotted against rotational acceleration of the
head rather than of the eyes. If so, it appears
from Figure 15b that unaided visual acuity is
not degraded by sinusoidal head rotation at peak
acceleration values below 40 rad/sec2.

The above trend in gain is in qualitative
agreement with the range of frequency in which
the vestibular system can sense head rotation
1nert1111y4° and hence tend to compensate or
stabilize eye orientation. The frequency
effect in ML's performance does not agree
especially well with the hypothesis of resonance
of the eye and its supporting tissue as discussed

* "Gain" is defined as 20 times the log (of the
ratio of amplitudes of sngular acceleration, here).
#* Data on phase difference between head and eye
rotation were incomplete, and the difference

was assumed to drop smoothly from its 10 hz value
to a negligible value at 20 he.

B R R T

by Shoenbetgerko considering that the eye has
been shown to resonate in rotation_at about

35 hz with a damping factor of 0.539, Coermann's
analys:lsl4 presumably rules out eyeball de-
formation as a mechanism to explain the

frequency effect, and it seems unlikely that T
the eye vergence system”” caused involuntary

defocussing due to a symmetric rotational
response of the eyes about the head-up axes
(vergence).
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FREE VIBRATIONS OF UNSYMMETRICALLY LAMINATED

CANTILEVERED COMPOSITE PANELS

Earl A. Thornton

0ld Dominion University
Norfolk, Virginia 23508

Experimental and analytical data for the vibration
characteristics of cantilevered, unsymmetrically
laminated, boron-epoxy panels are presented. Vibra-
tion tests were conducted to determine the natural
frequencies, nodal patterns, and damping coefficients
of panels with a progressively increasing amount of
asymmetry. Analytical data is based on the finite
element method and three different modeling tech-
niques are investigated. Comparisons of experimental
and analytical data are made to evaluate the modeling
techniques. The effect of panel asymmetry on vibra-

tion characteristics is studied.

INTRODUCTION

Current applications of laminated
advanced composite panels are customar-
ily made with lamina filament orienta-
tions symmetrical about the middle
surface. However, applications exist
where it may be advantageous to design
unsymmetrically laminated panels. An
example of a potential application con-
cerns minimizing or avoiding flutter in
airfoil designs. Characteristic defor-
mations of symmetrically and unsymmet-
rically laminated panels are compared
in Fig. 1.

Considerable advances [1-7] have
been made in the last decade in under-
standing the vibration behavior of sym-
metrically laminated composite panels.

i During the same period analytical

3 studies [8-11) of the vibration behav-
ior of unsymmetrically laminated panels
were initiated and a small amount of
experimental data [12-14) were obtained.
Recently, a combined analytical and
experimental study [15) was made of
unsymmetrically laminated cantilevered
panels similar to the panels considered
in this study. Vibration data on unsym-
metrically laminated composites are

p generally lacking. Further, there is

L} need for evaluation of available

-~ methods for analyzing unsymmetrically
laminated panels.

This paper presents both experi-
mental and analytical data from the
finite element method on vibration
characteristics of cantileverd, unsym-
metrically laminated, boron-epoxy
panels. To investigate different ana-
lytical techniques three NASTRAN model-
ing of the panels were conducted. The
first neglected the bending-extension
coupling, the second approximately
accounted for the coupling, and the
third fully accounted for the coupling
by use of a newly developed plate bend-
ing element,

FABRICATION OF PANELS

Six composite panels of overall
dimensions of 8 in. by 11 in. were fab-
ricated from eight laminations of boron-
epoxy (Table 1). Two specimens were
symmetrically laminated, and the remain-
ing four specimens were designed to
give a progressively increasing amount
of symmetry. The two symmetrically
laminated panels were unidirectional iy
layups with a filament orientation of %
0 degrees for one specimen and 45 23
degrees for the other specimen. All of :
the unsymmetrically laminated panels 2 .
had a bottom layer of four plies orien- : i
ted at 0 degrees and a top layer of
four plies with equal filament angles

PREVIOUS PAGE
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which varied from specimen to specimen.
The filament angle of the top layer had
values of 22.5, 45, 67.5, and 90
degrees for the four unsymmetrically
laminated specimens. A control speci-
men of aluminum with the same planform
was also tested and analyzed.

For tests to determine material
properties, three beam models (Table 2)
were cut from the layup for panel 6
before it was trimmed to its final
dimensions.

EXTENSION BENDING

(a) Panels with Symmetrical Laminations

EXPERIMENTAL PROCEDURE

Vibration tests were conducted to
determine the natural frequencies and
nodal patterns of the first six modes
and the damping coefficients associ-
ated with the first three modes of the
panels. Each panel (Fig. 2) was
supported to simulate a clamped bound-
ary condition by bolting the panel
between two heavy steel supports. The
supports-panel assembly was clamped to
a massive steel-concrete backstop.

EXTENSION AND

EXTENSION AND
BENDING BENDING

{(b) Panels with Unsymmetrical Laminations

Fig. 1 - Characteristic Deformations of Laminated Panels

TABLE 1
Physical Characteristics of
Composite Panels

-~ CLAMPING SURFACE

I

8 IN.

oy

|._+._8 m._.l |

AN

TABLE 2
Physical Characteristics of
Composite Beam Specimens

j//, 8 LAMINATIONS, THICKNESS h

T :

S5

3 1IN.
0 (deg.) h
Panel
Bottom Top Thickness

Panel Layer Layer (in.)
1 (0/0) 0 0. 0.0452
2 (0/22.5) 0 22.5 0.0492
3 (0/45.) 0. 45, 0.0460
4 (0/87.5) 0. 67.5 0.0470
5 (0/90.0) 0. 90. 0.0490
8 (45./45.) 45, 45, 0.0442

i L
(] L b h
Specimen| (deg.) | (in.){ (in.) { (in.)
1 0. 6. 0.55 0.045
2 45. 6. 0.61 0.045
3 90. 5. 0.56 0.045




Natural frequencies were obtained
by exciting the panels with an air-jet
shaker. The response of the panels was
measured using a non-contact displace-
ment probe. Use of the non-contacting
air shaker and displacement probe elim-
inated effects of mass and stiffness
associated with electromagnetic shakers
and/or accelerometers. The excitation
frequency and position of the air-jet
were varied until a panel resonant
response was obtained. Nodal patterns
were determined by sprinkling fine sand
f on a panel while exciting it at a res-

onant frequency. After the sand had
accumulated at nodal lines the air
shaker was cut off and the nodal
pattern photographed. Damping coeffi-
cients were obtained by exciting a
panel at a natural frequency, abruptly
shutting off the air and recording the
decaying displacement with an oscillo-
graph. The logarithmic decrement
method was then used to compute the
percent critical damping.

Vibration tests were conducted on
aluminum and symmetrical boron-epoxy
beam specimens (Table 2) to determine
material properties for analysis of the
panels. Measured frequencies (Table 3)
were used with flexural vibration

% . theory to obtain elastic modulii (Table
- 4) for the aluminum and boron-epoxy
B panels.

Fig. 2 - Vibration Test System

The elastic moduli, E and E_,
were calculated using Bernoﬁlli-Eulei
beam theory. For a cantilever beam
vibrating in its first mode the fre-
quency is given by

_ 0.560 JgEh?2
o= S ey . W (1)

where E 1is the elastic modulus, h

is the beam thickness, L is the
length, Yy 1is the specific weight of
the material, and g 1is the acceler-
ation of gravity. The natural fre-
quencies for specimens 1 and 3 were
s\.pstituted into this equation for each
test to obtain values for EL and Et'
respectively.

The dimensions of the specimens
given in Table 2 and a measured spec-
ific weight y of 0.069 1b/in.3 were
used in these calculations. The values
of the elastic moduli in Table 4 are
the average of the results computed
from the two tests.

The value of the shearing modulus
was computed from the equation [18)

1
Gy, = 2)
Lt 1 _ (1= v) (

I S
Eys E: I}

e IR
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where E,s 1is the value of the elastic
modulus for a specimen with filaments
45 degrees to the longitudinal axis.

In this case E,s5 was calculated from
the vibration tests of specimen 2. A
major Poisson's ratio, v = 0.22, was
assumed and Glt was coﬁﬁuted from

It has been noted
is insensitive

the last equation.
(see [7]) that G

to the value of vL: so that the
assumed value of from the litera-
ture is satisfactory. The minor

Poisson's ratio was then computed
using EL' Et’ and Vey-

TABLE 3
Natural Frequencies of Beam Specimens
Frequencies, Hz
Specimen Test Mode 1 Mode 2
1 (6 = 0. deg.) 1 72.5 453
2 73.3 450
2 (0 = 45 deg.) 1 23.4 145
2 24.3 153
2 (0 = 90 deg.) 1 29.3 190
‘9 - _
TABLE 4

Material Properties

Material Parameter

Aluminum

Boron-epoxy

Young's Modulus
Ee
t

9.40 x 106 psi
E 9.40 x 106 psi

23.3 x 106 psi
1.81 x 10% psi

Shear Modulus

Gpe

3.74 x 10% psi

0.976 x 105 psi

Poisson Ratio

Vet
Vet

0.25
0.25

0.22
0.017

ANALYTICAL PROCEDURE

Three finite element analyses of
the panels were made using the NASTRAN
program. The first was an approximate
uncoupled analysis made using the
NASTRAN CQDPLT bending finite element.
This element does not permit a coupling
between bending and extension. Thus in
the first analysis using this element
the coupling effects were neglected.

A second analysis with the uncoupled
CQDPLT element used a reduced set of

bending stiffnesses which approximately
takes into account the coupled bending-
extension. The approximation [17)
consists of replacing the actual bend-
ing stiffnesses, Dj4y, by a reduced
gset of stiffnesses giveu by

(B] = (D) - [B] [A)"! (B] (3)

where [A), (B]), and [D] are
defined by the stress resultant, mid-
plane strain and curvature relation-
ship given by




(4) ment theory using the formula manipula-
tion computer language, FORMAC. FORTRAN
subroutines were developed from these
equations and the element was incorp-

‘N} "A B ‘e‘ element were derived from finite ele-
-
M B D (3

where {N} denotes the midplane forces,

] {M} denotes the bending and twisting orated into NASTRAN using the NASTRAN
: moments, {e} represents the mid-plane dummy element capability.

strains, and {x} denotes the plane
curvatures. Bending stiffnesses of the

e N R I T S e

All analyses utilized the same fin-

test panels were computed external to ite element mesh of 81 nodes (Fig. 4).
NASTRAN from lamina properties using The two analyses performed with the
standard orthotropic, laminated plate NASTRAN CQDPLT element had 3 degrees
theory.

of freedom per node; the analysis

4 performed with the coupled element had
: The third analysis was performed 5 degrees of freedom per node. For the

using a new 20-degree of freedom, CQDPLT plate element NASTRAN solved an

coupled rectangular plate bending ele- eigenvalue problem of size 216 and for

ment developed for this study (Fig. 3). the coupled element an eigenvalue prob-

The element uses as input data the lem of size 360 was solved. All eigen-
thickness and elastic constants of each value problems were solved by the
lamina. The matrix equations for the Givens method (see [18]).
$4 3 44 3
- F---
/ ! /
+
/, / // //
L ! L
1/ 1/ //
) uy —.0-/——-—24/ exl.._...p-,«._-__ﬂz
v ,/11
vy  EXTENSION (8 DOF) + eyl BENDING (12 DOF)
x ¥
u=(1, x, 5, x5l log] (1 =1, 4) w=11, x, 5, x>, xy, y°, x°, 5%,
v=1I1, % v, xy] la;) (J =5, 8 xvZ, v3, x%, x5 [ (k= 9, 20)

Fig. 3 - Displacement Fields for Coupled Rectangular Plate Element

z
v .
w
oy
x
0x

(b) Degrees of Freedom for
Uncoupled Analyses

z

] i y

! ! v

. w

A oy

: / -X x
4 ox u

(a) Finite Element Representation
for Panel
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(c) Degrees of Freedom for
Coupled Analysis

Fig. 4 - Finite Element Models for Panels
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RESULTS AND DISCUSSION

Measured frequencies are compared
with frequencies computed using the two
types of finite elements in Table 5.
The data for the aluminum panel indi-
cate that the measured and finite ele-
ment calculated frequencies are in good
agreement. The average error of the
finite element computed frequencies

using either element is less than 4 per
cent. The frequencies were also com-
puted using the Rayleigh-Ritz approach
{19]; the agreement was excellent.
These correlations established that the
test conditions accurately simulated a
fixed boundary and that the finite ele-
ment model was adequate to accurately
predict the vibration characteristics
of the composite panels.

TABLE 5
Measured and Calculated Natural Frequencies

Frequency, Hz
Panel Average %
No. Method 1 2 3 4 5 | 6 | Dpifference
Aluminum Panel
Experimental 25.2 61.0 154 208 227 -
CQDPLT Element 25.0 | 62.2 152 190 222 - 3.1
Coupled Element 24.6 60.1 149 186 224 3.8
Rayleigh-Ritz [19] 25.2 61.6 154 198 225 - 1.2
Boron-Epoxy Panels
Experimental 41.2 48.7 117 - 262 273
%0/0) CQDPLT Element 41.4 53.2 105 219 252 265 5.3
Coupled Element 41.5 53.0 103 211 256 267 5.0
Experimental 34.3 59.4 143 216 264 309
CQDPLT Element
(0/22'5) No coupling 40.4 64.0 129 248 255 288 10.0
Approx. coupling 35.0 56.6 121 216 241 259 7.8
Coupled Element 34.4 56.1 119 214 235 253 8.8
Experimental 24.4 55.1 141 157 208 281 -
CQDPLT Element
(0?45) No coupling 33.4 60.9 140 205 255 283 15.6
Approx. coupling 23.7 48.1 116 148 190 242 11.1
Coupled Element 24.3 | 48.5 118 151 193 242 9.0
Experimental 21.8 43.3 132 149 184 177 -
CQDPLT Element
(0/27.5) No coupling 32.0 52.0 172 198 247 313 29.5
Approx. coupling 23.5 47.1 141 148 192 276 4.6
Coupled Element 21.8 | 43.4 130 138 177 254 1.4
Experimental 21.4 34.3 134 157 169 283 -
CQDPLT Element :
(0?90) No coupling 29.7 44.3 183 202 194 305 26.0 ,
Approx. coupling 21.7 40.9 134 163 148 260 3.0
Coupled element 20.4 38.4 127 153 140 244 9.2
Experimental 17.4 56.1 107 143 | 209 238 -
(45745) OQDPLT Element 17.3 51.4 107 126 201 244 4.5
Coupled Element 17.1 50.7 103 124 193 237 6.0
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For the symmetrically laminated
composite panels (specimens 1 and 6)
both elements predicted results which
agreed well with the experimental
results with an average difference of

about 5 percent. For the unsymmetri-
cally laminated panels (specimens 2-5)
both the approximate method (reduced
bending stiffness) and the coupled fin-
ite element satisfactorily predicted
the frequencies. However, neglecting
the coupling gave very poor predictions
with differences up to 50 percent.

It appears from the correlation of
the predicted and measured frequencies
that the reduced bending stiffness
method is a good approximation for
cantilevered, unsymmetrically laminated
panels. The approximation [17] is
based upon the assumption that coupling
between the inplane forces, (N) and
the plate curvatures, (x) can be
neglected in the strain energy equation
if the reduced stiffness, Eq. (1), is
used. A possible explanation for the
good results of this approximation for
cantilever panels is that the inplane
forces are zero on the three free edges
of the panel. Thus, the inplane forces
never become large and their effect
upon the strain energy is not appre-
ciable. For certain other boundary
conditions, {20], it has been found
that the reduced stiffness approxima-
tion did not give satisfactory results.

The variation of the first four
vibration frequencies with increasing
asymmetry is presented in Fig. 5. For
all four modes frequencies decreased as
the asymmetry increased. The maximum
reduction in frequency occurred in the
first mode and is about 30 percent.

A comparison of experimental and

predicted nodal lines is made in Fig. 6.

Photographs of the experimental nodal
patterns are presented in ref. (21].
Agreement between experiment and analy-
sis is generally good with some excep-
tions. For example, for panel 1, mode
four was not found experimentally.

The percent critical damping for
the first three modes are presented in
Table 6. The composite panels gen-
erally had three or four times more
damping than the aluminum control
specimen. There was no correlation
between filament angle and the amount

of damping.
CONCLUDING REMARKS

Vibration characteristics of
cantilevered, unsymmetrically laminated
boron-epoxy panels have been determined
experimentally and analytically using

S 2% % %N

Pt

6 = 0 FOR BOTTOM LAYER
6 VARIES FOR TOP LAYER

LING

vy

Yo
G, (NO COUPLING)
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UPLING)

I~
<
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1.0
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ANALYTICAL-REDUCED

EXPERIMENTAL

[ 1 1 [

(a) First Mode

i 1 1 1

(b) Second Mode

(c) Third Mode
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(d) Fourth Mode

Fig. 5 - Variation of First Four
Frequencies for Unsym-
metrically Laminated Panels
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TABLE 6

Damping Coefficients
(Percent of Critical Damping)

Mode
Panel

1 2 3

(%) (%) (%)
Aluminum 0.2 0.1 0.3
1 (0/0) - 0.6 0.9
2 (0/22.5) 0.7 0.8 0.9
3 (0/45.) 0.6 0.7 0.7
4 (0/67.5) 0.7 0.6 0.8
5 (0/90.) 0.8 0.4 1.2
6 (45./45.) 0.7 0.6 1.0

the finite element method. Three
NASTRAN finite element analyses of the
panel were conducted to investigate
different analytical representations of
the panels' asymmetry.

Comparisons between experimental
and analytical results indicate that
filamentary unsymmetrically laminated
composites can be satisfactorily repre-
sented using orthotropic laminate
theory which includes coupling effects.
For the boundary conditions considered
the approximate reduced bending stiff-
ness method gave satisfactory results
and is an attractive alternative to
fully coupled plate theory since it can
be used in uncoupled plate bending ele-
ments available in most finite element
programs,

Vibration frequencies tended to
decrease with increasing asymmetry.
The largest decrease of 30 percent
occurred in the first mode. The com-
posite panels had considerably more
damping than a comparable aluminum
panel but there was no discernible
trend between panel assymetry and
damping.

REFERENCES

1. J.E. Ashton and J.D. Anderson, '"The
Natural Modes of Vibration of Boron-
Epoxy Plates,"” Shock and Vibration
Bulletin, Vol. 39, Part 4, pp. 81-
91, Apr. 1969

2. J.E. Ashton and M.E. Waddoups,
"Analysis of Anisotropic Plates,"
Journal of Composite Materials,
Vol. 3, No. 1, pp. 148-185, Jan.
1969

10.

11.

12.

"Dynamic Characteristics of
Advanced Filamentary Composite
Structures,'" Second Interim Tech-
nical Report, General Dynamics
Corporation, Jan. 1972

"Dynamic Characteristics of
Advanced Filamentary Composite
Structures,'" Supplement to Second
Interim Technical Report, General
Dynamics Corporation, Jan. 1972

R.R. Clary, '"Practical Analysis of
Plate Vibrations Using NASTRAN,"
NASTRAN Users' Experiences, NASA
T X-2378, Sept. 1971

R.R. Clary, '"Vibration Character-
istics of Unidirectional Fila-
mentary Composite Material Panels,"”
Composite Materials: Testing and
Design (Second Conference), ASTM
STP 497, American Society for
Testing and Materials, pp. 415-
438, 1971

R.R. Clary and P.A. Cooper, "Vibra-
tion Characteristics of Aluminum
Plates Reinforced with Boron-Epoxy
Composite Material," Journal of
Composite Materials, Vol. 7, pp.
348-365, Jul. 1973

J.M. Whitney, "A Study of the
Effect of Coupling Between Bend-
ing and Stretching on the Mechan-
ical Behavior of Layered Aniso-
tropic Composite Materials," Ph.D.
Dissertation, The Ohio State Uni-
versity, 1968

R.M. Jones, '"Buckling and Vibra-
tion of Unsymmetrically Laminated
Cross-Ply Rectangular Plates,"
AIAA Journal, Vol. 11, No. 12, pp.
1616-1632, Dec. 1973

R.M. Jones, H.S. Morgan, and J.M.
Whitney, "Buckling and Vibration
of Antisymmetrically Laminated
Angle-Ply Rectangular Plates,"
Journal of Applied Mechanics, Vol.
40, No. 4, pp. 1143-1144, Dec. 1973

C.C. Lin and W.W. King, "Free
Transverse Vibrations of Rectangu-
lar Unsymmetrically Laminated
Plates," Journal of Sound and
Vibration, Vol. 36, No. 1, pp. 91-
103, Sept. 8, 1974 ’

C.¥W. Bert and B.L. Mayberry, "Free
Vibrations of Unsymmetrical Lamin-
ated Anisotropic Plates with
Clamped Edges,' Journal of Com-~
posite Materials, Vol. 3, pp. 282-
293, 1969

“er o




e

N e et e o

Sarn oG e

R e

T

Y, P T

MY

T

Y. Hikami, "Transverse Vibration

of Laminated Orthotropic Plates,"
M.S. Thesis, Case Western Reserve
University, Apr. 1969

E.A. Thornton and R.R. Clary, "A
Correlation Study of Finite Ele-
ment Modeling for Vibrations of
Composite Material Panels,'" Com-
posite Materials: Testing and
Design (Third Conference), ASTM
STP 546, Williamsburg, VA, pp.
111-129, Mar. 1973

Marlin D. Minich and Christos C.
Chamis, "Cantilevered Unsymmetric
Fiber Composite Laminated Plates,"
AIAA Journal, Vol. 14, pp. 299-
300, Mar. 1976

L.R. Calcote, "The Analysis of
Laminated Composite Structures,”
Van Nostrand Reinhold Company,
1969

J.E. Ashton, "Approximate Solu-
tions for Unsymmetrically Lamin-
ated Panels,'" Journal of Composite
Materials, Vol. 3, pp. 189-191,
Jan 1969

R.H. MacNeal, editor, '"The NASTRAN
Theoretical Manual,' NASA SP-221,
1969

A.W. Leissa, "Vibration of Plates,"
NASA SP-160, 1969

J.M. Whitney, '"The Effect of Bound-
ary Conditions .m the Response of
Laminated Composite," Journal of
Composite Materials, Vol. 4, No.

2, pp. 192-203. Apr. 1970

E.A. Thornton, "Vibration Charac-
teristics of Unsymmetrically
Laminated Advanced Composite
Panels," Old Dominion University
School of Engineering Technical
Report 75-M4, prepared for NASA
under Macter Contract Agreement
NAS1-9434, Task 46, Sept. 1975.

AL Qi S - L . .




N N

TR RN I A N

B S S =

T TR S o i i Sl S S Ly
N YT ¥

FUNDAMENTAL FREQUENCIES OF ORTHOTROPIC PLATES

WITH VARIOUS PLANFORMS AND EDGE CONDITIONS

Charles W. Bert
School of Aerospace, Mechanical and Nuclear Engineering
The University of Oklahoma
Norman, Oklahoma

a many-layer plate.

In contrast to the considerable information abailable on free vibration of
isotropic plates, there is only a very limited amount of analogous informa-
tion for composite-material plates. To help satisfy this need, this paper
introduces a simple reduction method from which results of existing free-
vibrational analyses for isotropic plates of various planforms and edge
conditions can be converted to analogous results for the important class
of composite-material plates known as orthotropic plates. The method is
applied to obtain fundamental frequency data for rectangular plates with
fifteen different combinations of edge conditions, simply supported and
clamped right triangular plates, clamped isoceles plates and clamped el-
liptic plates. Also, an approximate rational design technique is intro-
duced and applied to illustrate how the orthotropic data may be used to
design a lamination arrangement to maximize the fundamental frequency of

INTRODUCTION

With the increasing use of laminated fila-
mentary composite materials in aerospace struc-
tural panels, there is a need for simple equa-
tions or curves for use by designers. Copious
amounts of such design information are already
available for isotropic-material plates; for
free-vibration information, Leissa's monograph
[1]* ts very useful. However, the free-vibration
characteristics of composite-material plates
depend upon the lamination arrangement as well
as four material properties rather than just two.
Thus, none of the information on free vibration
of isotropic plates is directly applicable to
composite-material plates.

The simplest kind of composite-material be-
havior is known as orthotropic and has two axes
of material symmetry with different stiffnesses
along each of these axes and shear stiffness
vhich is independent of the other elastic prop-
erties. The three basic lamination arrangements
exhibiting orthotropic behavior are:

1. A single aligned layer (on& with the
major-symmetry axis, the fiber direction, aligned
with an axis of geometric symmetry of the plate).

2, An aligned parallel-ply laminate with
the layers arranged symmetrically about the mid-
plane of the plate

*A number in brackets indicates a reference
at the end of the text,

3. A symmetrically-laminated cross-ply
plate, in which all plies are oriented at either
0 or 90 degrees to the major geometric axis of
the plate,

Laminated composite-material plates may have
more complicated behavior, depending upon the
lamination arrangement. For example, an unsym-
metrically-laminated cross-ply plate exhibits
an elastic coupling known as bending-stretching
coupling, in which the in-plane (plane stress)
behavior is coupled with the flexural behavior.
However, this coupling is undesirable from the
standpoint of structural rigidity, static stress,
and thermal distortion, so such a layup is gen-
erally avoided,

Another kind of elastic coupling found in
certain laminates is known as shear coupling.
In plates this coupling manifests itself as a
coupling between bending and twisting action.
This coupling i{s strongest in off-axis parallel-
ply laminates, somevhat weaker in various kinds
of angle-ply laminates with only a few layers
and decreasing rapidly as the number of layers
18 increased.

Due to the importance of orthotropic plates,
it is i{ndeed unfortunate that there is only a
limited amount of vibration information avail-
able which is directly useful to composite-
material structural designers., To remedy this
situation, s simple reduction method is intro-
duced in the present paper, It may be considered
to be an extension of the work of Wittrick [2)
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and Shuleshko [3] for plate buckling and of
Rajappa [4] for plate free vibration.

ANALYSIS

warburton [5] conducted Rayleigh-type anal-
yses of the free vibration of isotropic rectan-
gular plates with fifteen most common combina-
tions of natural boundary conditions (simple,
clamped or free), For the modal functions, he
used appropriate combinations of the character-
istic beam functions. Hearmon [6] presented
similar analyses for orthotropic rectangular
plates with all combinations of simple and clamped
supports (six cases), Lekhnitskii [7] gave re-
sults of Rayleigh analyses for clamped and sim-
ply supported right triangular plates and for a
clamped isosceles triangular plate. McNitt (8]
analyzed free vibration of clamped elliptic
plates of isotropic material. He used the Galer-
kin method in conjunction with a two-term de-
flection function. Lekhnitskii [7] gave a
Rayleigh-type solution for a clamped orthotropi-
plate.

The present investigator studied the results
of [5-8) and found that all of them can be ex-
pressed in the following generalized form:

2 4, .- 2

w? = (n/a)*(oh) l[c11011+2(c12D12+zc66D66)R
4

+ Cg,DpoR ] (¢Y)

where a,b are the major plate dimensions in the
x add y directions, R = a/b, p ® mean density
of the plate and clj are coefficients that de-
pend upon the plate planform and boundary con-
ditions. The coefficients cij are introduced
in equation (1) im such a way that they all
take on & value of unity for the case of a rec-
tangular plate with all edges simply supported.

Table 1, taken from [5-8], lists the values
of the Cii for the fundamental plate-type modes
of vibration for nineteen different cases, For
Cases 3, 8-11, 14 and 15, there are some rigid-
body and beam-type modes which do not depend
upon aspect ratio and these are not included in
Table 1 but could be deduced from [5] if desired.
It is interesting to note that even though
Warburton's work was carried out for isotropic
plates, his results were presented in such a
form that the Cg, for orthotropic plates can be
deduced. The ptzlent Ci4 are related to War-
burton's coefficients as” follows:

Cpy = € 5 €y = B ;czz"‘:;

c66 = Jny (2)

In certain cases, results from Hearmon [6])
a9 well as Warburton ts] are available. 1In

Cases 1, 5 and 7, their results coincided, while
in Cases 2, 4 and 6, Hesrmon's values are slightly
lower and thus more accurate. It is cautioned

that the cases involving free edges (Cases 3,
8-15) are especially approximate since the func-
tions used satisfy the free-edge boundary con-
ditions only approximately, as was noted by
Warburton [5].

Lekhnitskii [7] presented a Rayleigh-type
result for a clamped elliptic plate of ortho~
tropic material. However, when the results of
McNitt's two-term Galerkin analysis for a plate
of isotropic material are converted to the ortho-
tropic form, lower and thus more accurate, values
are obtained for the coefficients,

APPLICATION TO LAMINATE OPTIMIZATION

One of the major advantages claimed for
composite materials is their capability to be
tajilored by appropriate orientation of the fil-
aments in the various layers to obtain desired
structural performance characteristics, The
difficulty encountered by the designer of such

, structures is selection of the appropriate

orientation scheme. Although there are numerous
papers and some books [9~11] covering the anal-
ysis of laminated composite-material plates,
very little information directly useful to a
designer {s available, Hayashi [12] and Chen
and Bert [13-14] presented syntheses for maxi-
mizing the buckling load of simply supported
rectangular plates for uniaxial and biaxial
compression, respectively.

A rationale to synthesize for maximum
fundamental frequency was recently developed by
the present investigator and applied to simply
supported rectangular plates [15]. The present
work extends this synthesis to many-layer plates
of arbitrary planform and edge conditions.

Previous work {[15) indicated that a sym-
metric angle-ply (SAP) lamination arrangement
is the stiffest one possible from a vibratiomnal
standpoint for a laminate consisting of many
layers of equal-thickness composite material.
Here the term "symmetric' means that the layers
are arranged symmetrically with respect to the
midplane of the laminate; thus, there can be no
coupling between bending or twisting on one
hand and inplane stretching or shearing on the
other,

The plate stiffnesses Dij(l,j =~ 1,2,6) are
defined as follows:

h/2 2
D !I zqQ,,dz (€&))
o dpp U
Here h = plate thickness, z 8 thickness-direction
coordinate measured from the laminate midplane,

and the Q4 are the plane-stress reduced stiff-
ness coefficients defined as follows:

{o,} = lo )&} (1,9 = 1,2,6) O}

vhere 0, are stress components and €j are ths
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strain components. The contracted notation,
common in composite-material mechanics [11], is
used, Here 1 and 2 refer to normal stresses
(or strainsg) and 6 refers to shear stress (or
strain).

Assuming uniform macroscopic properties
through the thickness of each typical layer (de-
noted by the index k), one can rewrite equation
(3) as follows:

n

1 3 3 (k)
Dyy = 32 (7 - 3. Y (5
k=l

where z and z._} are the z-coordinatres of the
top and bottom surfaces of typical layer "k",
and n is the total number of layers.

From equation (5) and the transformation
relations for the Q4 as & function of orienta-
tion angle 6, it is noted that for a SAP lam-
inate, all of the D,, except D¢ and D¢ can be
expressed by the foI{owing simple expression:

3
Dyy = (07/12)Q;,(8) (1) = 11,12,22,66)  (6)

where Q; (9) are the stiffnesses associated with
orientation 8.

Since 016(-6) - - Q16(0) and Q, (-9) =
- 026(9), the expressions for D¢ ang Dog arxe
more complicated than equation (6). Expressions
are derived in Appendix A for the SAP laminates
with either an odd or an even number of layers,
They are the bases for Table 2, which shows that
the valges for the dimensignless ratios

12D, ./h°Q4(8) and 12D34/h~Qyg(6) diminish rather
raplgly as the number of layers is increased,
Furthermore, in practice, the quantities 016(6)
and Qpg(8) are always small compared to the
other Q;3. Thus, it can be concluded that as a
first approximation certainly adequate for pre-
liminary design purposes, the bending-twisting
stiffnesses Dyg and Dyg of SAP laminates can be
neglected. Then the form of the plate equations
simplify to those of a symmetrically laminated
orthotropic plate and equation (1) can be used

as the basis for an approximate optimization
technique for SAP laminated plates.

It can be shown that the plate stiffnesses
for the SAP lamination arrangement can be ex-
pressed in terms of the layup angle © as follows:

D11 = C(Ul + U2 cos 20 + U3 cos 46)

Dip = C(U4 - 03 cos 40) -
Dy, = C(U1 - U, cos 20 + U, cos 48)
Dgg = C(U5 = Uy cos 49)
vhere
c = h3/12) (8)

The U, appearing in equation (7) are the
invariants originated by Tsai and Pagano [16].
Expressions relating the U; and X to the usual
engineering elastic properties of an individual
orthotropic layer are presented in Appendix B,

To determine the optimal angle 6, to maxi-
mize the fundamental plate-type frequency, one
must substitute equations (7) into equation (1)
and set the derivative with respect to 6 equal
to zero. This dgtermines the following condi-
tion for which w® is an extreme (maximum or
minimum):

(K - cos 26m) sin 20m =0 (9)
where 4
“C11*CaoR Uy
k= T 4w, 0
Cll-(2C12+4C66)R +C22R 3

This leads to three different expressions
for the optimal angle 6, associated with a maxi-
mum value of w?:

0 =0°whenK 21
m

em = 1/2 arc cos K when 1 > K > -1 (11)
o = 90° when K < -1

For Case 1, all C 3= 1 and the present
results reduce to those of [15].

SPECIFIC EXAMPLE

As a specific example, an elliptic shaped
plate with clamped edges and an aspect ratio of
1.25 is to be designed to maximize its funda-
mental frequency. For economic reasons, the
plate 1s to laminated of unidirectional E-glass
fiber/epoxy matrix composite material having
the following properties:

7.8 x 10%1b£/1n?
(53.8 Gpa)

Young's modulus in fiber
direction

2.6 x 1061b€/1n2
(17.9 Gpa)

Young's modulus perpen-
dicular to fibers

Poisson's ratio associated 0.25
with loading along fibers

1.3 x 10°1b£/1n2
(8.8 Gra)

Shear modulus

0.072 1b£/in>

Specific weight
(0.195 N/cm3)

Using these properties in equations (B-1),
one can calculate the following parameters:

U, = 4,699 x 1081b€/1n2(32.4 GPa)

U, = 2.60 x 10%1be/10%(17.9 cPa)

.
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Uy = 0.501 x 10°1b£/1n2(3.45 CPa)

U, = 1151 x 10%1b£/1n%(7.94 GPa)
6 2
U5 = 1,774 x 10 1bf/in"(12.2 GPa)

A = 0.,9792

Using the above values of Uy and U3 and the
values of the Cqj from Table 1 for a clamped el-
liptic plate (Case 16) in equation (10), one
obtains a value of 5.928 for K. Thus, from con-
ditions (l1), it is clear that the optimal ori-
entation is 8, = 0°. Using equations (7) and
(8) in conjunction with equation (1), it is found
that the frequency (rad/sec) is given by:

w = 2,237 x 10° b/a2

where h and a have units of inches.
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APPENDIX A
16 AND D,¢ OF
SYMMETRIC ANGLE-PLY LAMINATES

0dd Number of Plies

Here we consider an odd number of layers of

= WHIW/D? - m/2-b/m)1g ()
+ (U3 L0/2-h/0)> - (h/2-20/0) 1y (-0

+ (1/3)[(h/2-20/n)> -(h/2-3h/n)3]016(0)+...
(a-1)

From the angular transformation relations

Qlc('e) " - 016(9) (A-2)




Using equation (A-2), one can write equa-
tion (A-l) in more compact series form as
follows:

Dlg = (2/MH’ Qg L(1/2)°
¥(n-1)
v2 ) G-5nk (A-3)
k=1,2...
or in dimensionless form
3
12D, /h7Qy () =
5(n-1)

142 Q - 2k/n)3(‘1)k (A-6)
k=1,2...

where index k refers to a typical layer.

The series expression (A-4) is exactly
equal to the following simple formula, which is
equivalent to that presented without derivation
by Tsai [17]:

12D16/h3,016(e) = (3n2 - 2)/n3 (A-5)

A similar expression for Dyg can be ob-
tained by replacing Q1(8) by Qy4(9).

It should be mentioned that an SAP laminate
with an odd number of plies is identical to what
was referred to by Tsai [17] simply as angle
ply with n odd and by Jones [10] as symmetric
angle ply.

Even Number of Plies

Taking advantage of the midplane symmetry,
one may rewrite equations (3) and (5) as follows:

h/2 2
Dij = 2 Io 2 Qijdz
n/2
32 wapdy @
k=1

Applying equations (A-2) and (A-6), we
obtain:

Dig = (/NLR/D>m/2-b/m) T (O

- @/3)[(b/2-h/0) > (h/2-20/m) *Jq g (O)+...
(A-T)
In summation form, equation (A-7) may be
written as:
Dig = (2/3)h3016(€>)[(1/2)3
n-1
+2 ) /2/m DK (A-8)
kel,2,...

or in dimensionless form:

3
12D, /h7Q ((8) =

n-1
142 Z (1-2x/my 2 (-1y* (A-9)
Kk=l,2,...

The series expression (A-9) can be written
in the following more convenient form:

120, (/h%Q ((®) = (302 - 4py/n®  (a-10)

where
0 if n/2 4is even
F = { (A-11)
1 if n/2 1is odd

A similar expression for Dyg can be ob-
tained by replacing Q16(9) by 026(6).

It should be emphasized that an SAP laminate
with an even number of plies is entirely dif-
ferent than what Tsai [17] referred to simply
as angle ply with n even and Jones [10] called
antisymmetric angle ply. This latter type of
laminate has D;¢ and Dyg identically equal to
zero, but is unsymmetric since it has non-zero
twisting-stretching coupling stiffnesses B
and Byg. The SAP laminate with n even has“all
Byy idetically equal to zero.

APPENDIX B

EXPRESSIONS FOR U1 AND A IN TERMS OF

USUAL ELASTIC PROPERTIES

The quantities U, and A appearing in equa-
tion (7) and (8) can ﬁe expressed in terms of
the usual engineering elastic properties for am
individual orthotropic layer as follows:

U= (3/8)(EL+ET) + (1/4)E + (1/2)XGLT

LT

(=]
]

2 (1/2)(EL-ET)

Uy = (1/8) (B +Ey) = (L/&)Eqviq = (L/2AGp
U, = (L/8)(E +Ep) + (3/4)Eqv 4 = (L/2)AG 4
Ug = (L/8)(E+Ey) = (L/Epy p + (L/DAGy

Ao l= vy 5oV = Opp) (/)

(8-1)
Here EL and E_ are the major and minor Young's
moduli”(L and T directions respectively parallel

and perpendicular to the fiber direction), v

is the major Poisson's ratio (ratio of transVérse
contraction to longitudinal extension when loaded
uniaxially in the L direction), and is the
shear modulus associated with the L,T axes.
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TABLE 1 Douspany-coNBITION COTFPICIENTS FOR LAVEST PLATE-TYPE NODES

L TR | g— T o [— : 3

v % @2
1 1 1
S.1»3 1 1.553
51w %7) .50
50w 1.5%7 B.YW
21 Ll L)
2.1 (LA5D) (1.453)
2M1 1356 L6
5.039 1.6 1.2%
(5.184) (1,.248) (1.268
2.1 1165 1,165
.Ml 1453 13.%3
2.4 1356 7.5%
S.m  LaM8 S
2.1 1.6 2,75
0.1270 -0.1086 0.5878
0.12720 0,90757 0.2218
5.0w 1557  6.261
0170 -0.1086 2.363
6.2 2,188 2,188
6.581) €.195) (2.195)
7. 285 2.3
AL 2.5 2.5
2@ g, 2m. 2L
sis’e  sta‘enes’y sln‘mes’y wesw

3
12D16/h3Q16(0) = 120,,/87Q,((8)

Table 2 Effect of number of plies on the di-
mensionless bending-twisting coupling
stiffnesses of symmetric angle-ply

laminates.

VO AR non v won

layers (n) Exact fraction Approx. %
1 1 100
*
3 25/27 92.6
4 3/4 75
5 73/125 58.4
6 13/27 48.1
7 145/343 42.3
8 3/8 37.5
9 241/729 3.1
10 37/125 29,6
11 361/1331 27.1
12 1/4 25
13 505/2197 23.0
14 73/343 21.3

W

-~ o>

-~

*It is impossible to have a two-layer
angle-ply laminate that is symmetric,

3
H
i
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DYNAMIC RESPONSE OF LAMINATED COMPOSITE PLATES
UNDER RESIDUAL THERMAL STRESSES

C. T. Sun
Department of Engineering Science and Mechanics
Towa State University, Ames, Iowa
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In this paper, the classical method of separation of
variables, combined with the Mindlin-Goodman procedure, is
employed to investigate the effects of residual thermal
stresses to dynamic responses of a simply-supported compos-
ite plate in plane strain. Numerical results are presented
in terms of a ratio of maximum flexural stress (with the
presence of the residual stresses) to the same quantity when
the plate suffers no temperature change. Numerical results
show that in general the residual thermal stresses will in-

o,

crease the dynamic responses.

INTRODUCTION

Composite materials are currently
used in a wide variety of applications.
Important examples include composite
materials for aircraft structural com-
ponents, composite ablative materials
for ABM and re-entry vehicles, filament-
wound solid-propellant motor cases and
nozzles, fiber-reinforced rotor blades
for helicopters, composite turbine
blades for jet engines, and fiber-rein-
forced gun tubes.

Most composite materials are fabri-
cated at an elevated temperature by a
hot working process. If the service
temperature of the composite materials
is at room temperature, then it suffers
a temperature drop of about 200°F. 1In
view of the difference of the thermal
expansion coefficients between the fiber
and the matrix materials, this tempera-
ture drop will introduce residual ther-
mal stresses to the composites. It is,
therefore, important for structural de-
signers and materials engineers to take
these residual thermal stresses into
consideration in their theoretical an-
alyses. The objective of this paper is
to investigate the effects of residual
thermal stresses on the dynamic response
of laminated composite plates.

Ly

The dynamic problem is solved b
using a method previously developed
the author {1]. This method was first
developed by Mindlin and Goodman (2]
and was subsequently used by Yu [3].

Numerical results for natural frequen-
cies of free vibrations, maximum deflec-
tion, and maximum normal stress for sim-
ply-supported glass-epoxy plates are
evaluated. The maximum dynamic response
is then compared with the corresponding
response obtained when the plates suffer
no temperature change.

Based on the preliminary investiga-
tion, it is observed that the effects of
residual thermal stresses depend upon
the materials involved (in particular,
the difference of the thermal expansion
coefficients and the degree of aniso-
tropy of the composites), the stacking
sequences, geometry, and the type of dy-
namic loadings. In general, the residu-
al thermal stresses, more often than
not, adversely affect the performance of
the composites under dynamic loadings.

ANALYSIS

Recently, a dynamic theory, which
includes the effects of transverse shear
deformation and rotary inertia, was de- 1
veloped for laminated composite plates
(1). BK the application of the classi-
cal method of separation of variables,
combined with the Mindlin-Goodman pro-
cedure (1-3]) for treating time-dependent
boundar{ conditions and/or dynamic ex-
ternal loadings, a solution for the five
displacement variables under plane
strain is assumed to be in the form

£(x6) = 2 R (DT (O
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where ry (i = 1, 2, 3, 4, 5) stands for
five displacement variables u®, v°, w,
¥x, and ¥y, respectivelg. In Eg. (1)
R%n(x) regresents the nth principal mode
of ri associated with the nt® natural
ftequenc{ wp of free vibration; £;(t)
(j =1, --- 10) represents the ipplied
forcing function at the boundaries and
Tp(t) and gia(x) are unknown functions

02 time t and the coordinate x, respec-
tivel{. Physically, the first term in
Eq. (1) represents the solution due to
surface traction under homogeneous
boundary conditions, while the second
term represents the solution generated

by the forcing functions f3(t) prescribed
at the boundary. The func%ions g1j(x)
are determined from the Mindlin-Goodman
procedure and vanished identically when
all fj(t) = (0 at the boundary [1-3].

If the plate suffers a constant
temperature drop due to a difference of
fabrication and service temperatures,
the following thermal resultants will be
introduced

n/2

T K) (K K (K

e (eief + ofpeg®
h/2

¢ of®af) ot 0z
(2

h/2
T (k) (K k) (k)
M = fhlz(Qll a{® + q¥)af

(k

+ Q0a{) 2 4z

where AT represents the temperature
drop, aj represent the coefficients of
thermal expansion, and the superscript
(k) represents the kth layer. For sym-
metric lamination M} vanishes identi-
cally. It is very easy to show_that for
a constant temperature change N} will
not enter the equations of motion: it
will, however, change the constitutive
equations of the plate. With the pre-
sence of temperature change, the con-
stitutive equations become

K (e | L0k
o = cfP(¢y - ofM1) (3

where C{4 are the components of the
stiffness matrix. Expressing the strain
tensor ejoin terms of the inplane strain

tensor €4 and the curvature tensor nj,
we have

ey = e? + zny. (4)

Using Eqs. (3) and (4) and the defini-
tions of the force resultant, Ny, and
the moment resultant, My, in plate
theory, one obtains

fi, =N, + NF = A,_.e% + B, ,n
g =Ny + Ny = Apgeq +Byyny

T . (5)
= o

where Ags, B,., and D,. are defined in
(1], and’ 1 13

T oT) o (k) , (k)
(N ,Mi) fhcij o511, 2)dz. (6)

In order to calculate the stress compo-
nents in Eq. (3), we have to express

€? and n4 in terms of Ny and Mj. This
can be aécomplished by inverting the
expressions of Eq. (5) with the result
in matrix form

N PN

where A', B', H' and D' are matrices
which can be expressed in terms of [A],
[B] and [D] matrices. They are omitted
here, but they can be easily derived.

For symmetric lamination, H% and [B]'

:anish identically. In this case, we
ave

{e®) = [A)" LR},
{n} = (01 LMy,
Substituting Eq. (8) 1?{? Eq. (3), we

have the formula for o(k)for plates with
symmetric lamination

o{® - c{?)[AS‘:(Nm + N:) + ‘Dib'n

(k)
- oy T]. 9

(8)

With the absence of the initial external
loading

ofP = cOahE - of®¥1]. o

i H?endfho plstc is subjected to dy-
namic loadings, dynamic stress compo-
nents will be produced. The tot:Tp

i etk soncl




stress colgon.nta can be determined
from Bq. (9) by solving Ny and My from
equations of motion or by solving the
c gtoblcn directly as shown in [1).

e total stress will be equal to the
superposition of the d Cc stress
plus the initial thermal stresses as
given in Eq. (10). The detailed solu-
tion of the dynamic problem can be
found in [1], and the numerical results
of a particular example are shown in
the next section.

NUMERICAL RESULTS AND DISCUSSION

Numerical results for maximum flex-
ural in-plane stress, ox, are evaluated
for glass filament-epoxy resin compos-
ites with the following stacking se-
quences:

(1) Cross-ply composites. Lami-
nate consists of constituent layers
oriented alternately at 0° and 90°. All
odd layers have one thickness hj), and
all even layers have one thickness h%.
but they are, in general, different from
the odd layers. The lamination parame-
ters include the total number of layers
n and the cross-ply ratio m, which re-
presents the ratio of the total thick-
ness of the odd layers over that of the
even layers. For the present work, only
the case of s tric lamination, i.e.,
n = odd will be presented. 00 lamina-
tion corresponds to the case when fibers
are parallel to the x-direction. We al-
so assume that the odd layers are ori-
ented at 0°.

(2) Angle-ply composites. The
angle-ply composite consists of n con-
stituent layers oriented alternately at
60 and -69, where 60 represents the an-
gle between the direction of fiber ori-
entation and the x-axis. The odd lay-
ers are oriented with an angle -6° from
the x-axis and the even layers at an
angle 6°. The total thickness of the
odd layers is equal to that of the even
layers. The lamination parameters are
the total number of layers n and the
lamination angle 6°, e mechanical and
physical properties of 00 glass-epoxy
composite are

C11 = 7.97 x 106 psi,
Cpp = 2.66 x 105 pet,
¢y, = 0.66 x 105 psi,
Cge = 1.25 x 105 pat,
a, =3.5x10°%°r,
a, = 11.4 x 10°5/°F,
ag 0.

The values of Cy4 and ay corresponding
to other orientations can be determined
from the transformation equations. The
ratio between L, the span length, and
h, the thickness of the plate, is as-
sumed to be 20.

Numerical results are presented in
terms of a ratio between oy mgx (due to
p (x,t) = 100 H(t) psi and a temperature
change AT = -2009F) and 09 (due to
the same p (x,t) with AT = as a
function of lamination parameters. Fig-
ure 1 shows the ratio ox max/o% max as
a fgnct%on of m/f§r n -13. bThe Ta;imum
ratio of oy o s about 1.9,
which occursma en mmgxl The next ex-
ample is to express the ratio of
Ox max/9% max a8 a function of n = odd
for m = 1 as shown in Fig. 2. Figure 2
shows that the ratio of 0x max/o% max
decreases as the value of n increases.
This is attributed to the fact that as
n increases the composite behaves simi-
larly to an isotropic medium in which
the temperature change introduces no
thermal stresses. In the third example,
we plot ox /69 as a function of
the laminatTg: angle 8 for n = 3, as
shown in Fig. 3. Figure 3 shows that
the ratio of ox max/o%f max is close to
unity for the 6 = 0° and 90° cases and
reaches a maximum value of about 1.7
w?en g is c&ose t: 459, T7e last exam-
ple shows the ratio o o as a
function of n for 6 -xhgsxin F?Ef 4. A
similar result is observed in Fig. 2 '
for cross-ply lamination.

In conclusion, we observe that,
more often than not, residual thermal
stresses produce adverse effects under
dynamic loading.
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Although problems of vibrations of composite plates have received
considerable attention in recent years, there are relatively few
exact solutions known. Most of the solutions available to compute
natural frequencies of composite plates are of Rayleigh-Ritz type
analysis and mostly computer oriented. The present paper pre-
sents a convenient method for the treatment of transverse vibra-
tion of composite plates and for approximate computation of the
fundamental frequency of composite plates of arbitrary shape.

It is shown that the method of constant deflection lines appears
to be a powerful tool for the investigation of those vibration
problems which could not be solved by conventional methods. As an
illustration of the method, the problem of the clamped and simply
supported elliptical composite plate is discussed. For various
composite materials the fundamental frequency of vibration is com-
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INTRODUCTION

More and more composite materials are
used for structural components on which the
primary loading may be dynamic in nature. In
such cases, it is imperative that the natural
frequencies of the components be computed.
One of the common structural applications of
composite materials is in comstructing plate
elements. Although problems of vibrations of
thin composite plates have received consider-
able attention in recent years, there are
relatively few exact solutions known. The
general methods of finding fundamental fre-
quencies are well developed. However, there
is considerable labor involved in carrying
out the details of the solution for any given
problem. An approximate method which has
found wide application recently is based on
Rayleigh-Ritz type analysis utilizing beam
function [1]. This analysis is computer
oriented.

THEORY

Derivation of Governing Differential Equation

Recently the authors presented a general
method of solving buckling of composite plates

v

by the method of deflection [2]. The

problem is approached through consider-

ations of determining the correct equa-

tion of lines of equal deflection under

various boundary conditions. This

approach makes it easy to arrive at a 3
general method as applied to plates of *
any given geometric shape., Mazumdar (3]
has utilized the concept of lines of
equal deflection for solving vibration
problems of isotropic plates of arbi-
trary shape. When an elastic plate is
bent wnder time dependent external load,
the deflection surface of the plate may
be described by a family of curves called
1lines of equal deflection, It is pos-
sible to determine equation of such lines
of equal deflection.

In this paper the constant deflection
method is generalized to compute the fun-
dasental frequency of composite plates

of arbitrary shape. When a plate vibrates
in a normal mode, the deflected form of
the plate at any instant, T, wmay be des-
cribed by a family of lines of equal
deflection and may be written as
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.u'(x.y.t) = W cos (ut + €) 1)

where w is the circular frequenacy and W is

the normal function determining the form of

the deflected surface of the vibwating pm- . ."
which is a suitable function of w, "

(x,y) = constant is _thy ewsaLigmasNir
\;fxml dofloeﬂln“’

The application of D'Alembert's prin-
ciple and the summing of forces in the ver-
tical direction of a portion of the plate
bounded by a closed contour u(x,y) = constant
at any instant T yield the following dynam-
ical equation:

2
f%n-%]dsof_gphg—r!!dﬂ'o (2)

In equation (2), the contour integral
is taken around the closed path u = constant
and the double integral is over the region
bounded by the closed contour. Substituting
the expressions for Qn and Mnt in terms of
w and making use of equation (1), one ob-
tains the dynamical equation for the free
lateral vibration of the composite plate in
the form

4° W > W dw

Ty $ Rds T f Fls e o

Gds - phw? ff Wd2 = 0 3)
Q

where R, F, and G are functions of u, and
are functions of the elastic constants of
the composite plate. These quantities are
given in Ref. [2] as well as listed in Ap-
pendix. Now the problem of finding the
fundamental frequency of a composite plate
reduces to solving the integro-differential
equation (3).

BOUNDARY CONDITIONS

Clamped Edge

Along a clamped edge the deflection and
slope normal to the boundary are zero, so
that

oo 7 @

Simply Supported Edge

Along a simply supported edge the de-
flection and moment, "n' are zero, that is

=0, P gz ¢ %I w0 "0 (5

where P and Q
elastic cong

probleu reduces to the third order dif-
ferential equation in W given by equation
(3), subject to the boundary conditions
given by equations (4) and (5). If the
exact equation of the line of equal deflec-
tion is not known, a reasonable approximate
expression for u(x,y) may be assumed in the
form

uxy) = 0Cxy) 3 A X 6
m=0
n=0

Where m and n are integers, the coefficients

can be interpreted as coordinates which
determine the form of the deflection surface,
and &(x,y) = 0 represents the boundary of
the plate. The function is different from
zero within the region of the plate.

FUNDAMENTAL FREQUENCY OF ELLIPTICAL PLATES

Figure 1 shows an elliptical composite
plate of major and minor axes of 2a and
2b, respectively. The equation of the
boundary of the plate is

xz 2

1-37 - fr=o

FIG. 1 ELLIPTICAL PLATE AND LINES OF
EQUAL DEFLECTION
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If we are interested in computing the funda-
mental frequency of this plate, the equation
of lines of equal deflection may be taken as

2 2
ux,y) =1-37- & &)

Substituting equation (7) into equation (Al) -
(A3), R, F, and G are computed as

D .
R';:'[i’c’ﬂzzL

a® b*
x2 2
+ 2(D1z + 20¢¢) 2L (8)
a*b"
D 2
F e apt {_I_[E.MJ_K“L’
a® La® b? a*p*

i x® . x'.lfz . _Dz_z [6x";:z
ab?  a?p® s a®

b®  a*h* a’*® a®b?

6 6
X_QL

au bu

+ 2

(D12 + 2Dgs) [

azbz

-x_“L’-x_’zl]

a*b® ap* 9)
G.;zL’{f’_’ FANNNES S i
ab® ' a? Lp® a® a%?
D:
- B
a%p* b2 La® p* a%?

b S At (11)

where Dij" are composite plate stiffnesses and

are defined in the Appendix substituting equa-
tions (8), (9), (10), and (11) into equation

(3) and carrying out the integrations one cb-
tains

(1-u)? a - 2(1-u) a
du?® du?
phw?a?h? If

wdn
21:[3.0” b* + 3Dz 8% + 2(Drz¢ 2Dgs) a*bﬂn

=0 (12)

The double integral in equation (12) may be
simplified in a manner similar to that given
in Reference [3] by taking a differential
area between two curves at up and ug - dug.
This results in
u
;{2 W(u)d? =-mad lj‘ W(uo)dug 13)

Substituting equation (13) into (12) and
differentiating with respect to u, a fourth
order ordinary differential equation is ob-
tained.

& 2
A-w2 % gy M, 4N ey L
du* du?!  du? 14)
where
}‘2= ab‘prhmz
2[3011 b* + 30, 8% ¢ 2(D12 + 2D¢¢) a*b‘]
(15)

In order to facilitate the solution, the
equation (14) may be written as

w4 | o € dlw_amwao
du?  du du? du (16)

Introducing an operator

2
L= -y .4
du® du an

and a new independent variable, f,
1-u = £ (18)
and assuming the general solution to be

WNe=w +w (19)

equation (16) may be written as

£ dw;  dwy
———t ——+ 40fw; = O (20)
a2 df

£ d?wa  dws
¢ = v 47fwg = 0 (21)

aft  df

D g
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The solutions of equations (20) and (21) are
Wy = A Jo(kf) +B Yo(kf) (22)
w2 = C Io(kfj +D Ko(kf) 23

where J and Yo are Bessell functions of
the first and second kinds, respectively,
lo and Ko are modified Bessel functions of
the first and second kinds, and

k? = 42 (24)
Therefore,
N=A Jo(kf) +B Yo(kf) +C Io(kf) +D l(o(kf)
(25)
Case L Clamped Elliptical Plate

For the clamped edges the boundary con-
ditions are given by,

dw

W =W =0 :‘ﬂ L
luso £-1 dulu=0 df \f=1
(26)

For finite deflection at the center of
the plate,

B=D=0 27
Substitution of equations (26) and (27) into
equation (25) results in homogeneous equa-
tions and nontrivial solution is obtained by
setting the determinant of the coefficients
of A and C equal to zero. That is
SR I N )

J; x) Io’ x)

=0

€28)

where the prime denotes derivative with re-
spect to the argument.

From equation (28) the frequency equa-
tion is obtained as

3, (K) 1; ) - 1,0k Jy (k) =0 (29

Now using

I, (&) = 1,(K)

Iy (k) = = J)(k) (30)
equstion (29) becomes

I 1,(K) + I (K J(k) =0 (31)

the first root of equation (31) is obtained
as

k = 3.1961

Now defining a frequency parameter,

Q = wa? (‘Bﬂ)l/Z
11

R R L
8 Dll 8 Dll 32)

where
a
§ = /b

numerical values of the frequency are ob-
tained for Boron-Aluminum composite plates
for various values of § and plate thick-
ness as shown in Table 1,

B e
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Table 1

Frequency parameters 3 = wa? (ph/du) 1/2 for a clamped Boron-Aluminum plate having
semi-axes a and b.

§ 1 1.1 1.2 1.3 1.5 2 3 5
25% Boron 8.711 9.483 10,396 11,433 13.890 22,125 46.801 126.990
50% Boron 8.564 9.302 10.165 11.156 13.508 21.430 45,240 122.710

and the stiffnesses Dij's for several Boron Aluminum composite plates are given in
Ta! o l-a.

Stiffness for Boron-Aluminum composite plates

D D

11 22 12 66
25% Boron, h=0.019 in. 12,785 8.261 2,301 3.321
25% Boron, h=0.025 in. 29.126 18.819 5.243 7.565
50% Boron, h=0.019 in. 19.300 11.646 2,895 4,950
50% Boron, h=0.025 in. 43,967 26.525 6.595 11,272
Case 2 Simply Supported Elliptical Plate q. =Dt Dz
imply Suppo: pt ave, — + + D2 (L‘_ l) (36)
For simply supported edges the boun- a2 »? a? b?
dary conditioms become
If we let
W oo wl = 0 (33) Diz(1 + 8%) (37
u=0 f=1 o —
D11 + Dy
2
O Ca Y (34)
du! du =0 then equation (34) reduces to
2
for elliptical plate P and Q are functions IS R D!
of elastic constants, x and y. The boun- du? 2 u=0
dary condition given by equation (34) may
be satisfied only approximately by takin or
the average values of P and Q at (¢ avI-u,o0)
and (0, sb/ 1-u). These values are oy _c_!l_l .0 39)
D 2 £
Pave, = ~2(1-u) ("_::_ . _;) (35) et £ dff.,
Substituting equations (33) and (39) and
requiring the deflection is finite at the
w !

R R R

ey

.

ol o
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center, one obtains two homogeneous equa-
tions. The condition of nontrivial solution
leads to the following frequency equation.

N , Lk | 2k (40)
Ik (k) 1-p 1

Numerical values of the frequency are A
obtained for Boron-Aluminum plates of same
properties as Case 1 and are listed in Table

Table 2

2
Frequency parameter 2 = wa® (ph/D,;) v for a simply-supported Boron-Aluminum plate having
semi-axes a and b

[\ 1 1.1 1.2 1.3 1.5 2 3 S
25% Boron 4.092 4.474 4.910 5.410 6.605 10.511 22.376 60.719

50% Boron 3.990 4,329 4.770  5.231 6.342 10.016 21.435 58.142

and the stiffnesses for Boron-Aluminum composite plates are given in Table l-a.

CONCLUSION

An approximate method to determine the
fundamental frequency of vibration of com-
posite plates of arbitrary shape has been
outlined by generalizing the lines of equal
deflection method of Reference [3]. As far
as the authors know, no closed form solutions
to determine the fundamental frequency of com-
posite elliptical plates are available. The
simplicity of the general method is shown in
solving clamped and simply supported ellip-
tical plates.
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APPENDIX

In order not to clutter the central
body of the paper with too many equations,
some of them are listed in the Appendix.
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The stiffness qusntities are defined with
reference to Fig. 2 as,

N
Dij - ékgl (Qij)k (Z: - z;-l) (A6)

here -
! » Ez 1
(Quk =
Ll' t Ver J &
[ vi2E T
(le)k = t
| 1-VoeVer |k
S
(sz)k = —t_
1VeeVee J &
(Qss)y = [G!.t]k (A7)

The subscript in equations A6 and A7 denotes
layer number.

FIG. 2 GEOMETRY OF N-LAYERED LAMINATE
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COUPLED VIBRATIONS OF TURBOMACHINE BLADES

J. S. Rao
Indian Institute of Technology
New Delh1-110029

asymmetric cross-section and mounted on a rotating
disc at a stagger angle, The three coupled equations
of the system in bending-bending torsion are solved
by the use of Galerkin's method and the results
obtained by a er progras are presented in
graphical form with non-dimensional parasmeters. l‘hour
nondimensional design charts will help in the design
of turbomachine blades, The results obtained are
checked with theorstical and experimental results

available

INTRODUCTION

Turbomachines are commonly employed
in electric power generating stations,
marine drives, aircraft propulsion
systems etc, Turbines used in electric
utility industries may produce powers
of the order of 1000 MW at fairly low
speeds and those used in aircraft may
produce relatively low powers but
rupning at very high speeds of the
order of 20,000 rpam,

From experience the failure of
turbomachine blading 15 generally
attridbuted to the fatigue that takes
glaco at or near resonant conditions,

n some of the big turdbomachines 20,000
or more statio and moving ﬂoxiirlo
blades may be yed and failure
of any one of them will force a shut
down which 1is very expensive. In the
case of aircraft engines, the failure
in addition to being expensive, will
be catastrophic in nature. Hence
determination of natursl frequencies
of turbomachine blades is an important
process in the design of a turbomachine.

A turbomachine dlade can be consi-
dered as a cantilever blade fixed at
its bYase with an asymmetric aerofoil
cross-section and pre-tvisted from
the fixed end to the free end, This
blade 1s mounted on a rotating disc
at a stagger angle, The pre-tvwist of
the blade cauges coupling in both the

i
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bending directions and the asymmetry
of the cross-section makes the coup-
ling further with the torsional
motion of the blade. When the dlade
rotates the stagger angle also
accounts for coupling between the two
bending motions, The disc rotation
causes centrifugal forces and the
bending modes are stiffened.

Sometimes the blades are grouped
together by a shroud at the end of the
blades. Also sometimes the blades are
laced at one or two intermediate
locations of the blades, These effects
are not considered in the present
analysis, Higher order effects are 1
also not considered in this analysis L
as the problem becomes more complex
in nature,

For a single turbomachine blade,
several researchers 1ied different
methods to determine the matural
frequencies and to obtain general
information on this fairly vast
subject a survey paper by the
author (1] may be referred. A historic )
reference chart cont some
10 the work Benanyt oma iaolnSiuded

r

comid:gd rotatin e - (B
aAsynme in one plane and ¢
the theoretical results uthmd
experimental values, For small aspect
ratio blades, plate or shell theories
are o be used and reference may be
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nade to the work of Lalamne and others
[(3]. For laced and packeted bdlades,
ne may refer to the work of Stuwing
Ylo_\ and Cottney and Ewins (5;who
accounted the disc flexibilit

y also.

This paper considers the coupled
bending torsion vibration of pre-
twisted blades with asymmetric cross-
section mounted at a stagger angle
on a rotating disc, The three coupled
differential equations of motion are
solved by using Galerkin's method
and the results obtained are presented
in graphical form with nondimensional
parameters, Where possible, the
results obtained from this program are
compared with avallable theoretical
and experimental values,

ANALYSIS

The governing differential equa-
tions of motion of a uniform pre-
twvisted cantilever with asymmetric
cross-section mounted on a rotating
disc at a stagger angle, neglecting
higher order-effects such as shear
deflections, rotary inertia, fibre
bending, Cariolis accoleratlona, can
be obtaimd from Cargnegie (6] and
Rao and Rao [7]. These differential
equations gre three in mumber, amd
coupled in the two bending displace-
ments x and y and torsional displace-
ment ¢ and contain integral tems due
to rotation effects.

To solve these equations, the well
known Galerkin procedure is used, The
shape functions for both bending dis-
placements and torsional displacements
~re assumed accor to those given
in reference (2] , Differentiating these
shape functions with respect to the
coordinate distance measured along the
length of the blade zi substituting
them in the differential equations and

rforming the required integrations

he errors in the differential oqu-tiom
can be found, These errors are ortho-
gonalised with respect to the corres-
ponding mode shapes, wvhich leads to
three sets of simultaneous algebraic
equations, which in turn {ho the
femiliar eigen valus problem.

The nondimensional eigen values
of this problem are obtained from a
computer program developed in Fortran
IV, using QR transformation. A five
term solution for each bending, bending
and torsion modes, is found to give
converged accurate values for the first
three uncoupled modes of each motion,
This five term solution 1s used to
study the various effects such as,
pre-twvist, rotation, disc radius

etc., on the nondimensional eigen
values.

COMP ARISON OF RESULIS

The results obtained from the
prograi are compardd with theoretical
and experimental results available in
the literature for the thres cases
given below, which account for all the
part:loten considered in the present
WOTK ¢

Case 1: Stationary pre-twisted
blades

The fonoumdatn 1s chosen to
compare the coupled bending-bending
modes and torsion modes of stationary
pre-twisted blades with the results
of Dawson [8) and Carnegie [10].

I_ = 0.0000262027 in*

XX

I,, = 0.00566667 1n*

A = 0,068 in?

L =6.01n

P = 0.284 1b/ind

E = 3.0 X 10° 1v/1n?
¢ =12,0 X 10 1v/1n?
L2 = 45 deg.

The results are compared in Table
1. ZThe bending frequencies are from
the work of Dawson 18). However, the
first co! d mode value i3 teken fros
Carnegie [10] as Dawson's chart ignores
the slight increase in this mode., The
torsional frequencies are froa
Cernegie po] without correction for
fibre bdbe €. Ibhe experimental
values are reported by Carnegie {10].

Case 2: Stationary blades with
asymmetric cross-section

The following data is chosen for
comparison with existing results as
shown in Table 2.

I,y = 0.00008% u:
1” = 0,006710 in
L = 6,0 in

A = 0.091% 1n?

I 4 = 0,20 1b/1n3
rx = 000076 in
r’ = 0.0‘070 in

. - e A - L




Table 1
Comparison of pre-twisted blade natural frequencies, Hsz,

~ Bendl ~Yorsion Iperisental
F.lo. Bom::m g:ﬁ&: uodu.{g] soct es [10) Results [10]
Modes Modes
62 oo ” Oo
2 381523 301.0 20,0
o9 .0 953.0 920,
I’t 1220,.0 1 o 1110.0
5 760.0 ?757.0 760.0
6 2279.0 2270.0 2300.0
? 333 «0 3750.0 3902.0

E =310 X 10° 1b/4n2
C  =0.3180168+ X 10* 1b 1n¥rad

The analytical and experimental
‘&.-’rgtd are %th from the work of

e and Dawson (11} .
Table 2

Comparison of asymmetric cross-section
bg:xo natural frequencies - Hg

The analytical and experimsental
results are both from Banerji and

Rao [2] .

Table 3

Comparison of rotating blade
natural frequencies - Hg

Present| Analyticel] Experimentel
o, | Results| Process results [11)
)
1 6. L] 9700
2 “?)*og 682095 610.0
B hosss |1072:9  [1309:0
s fegns |1995:0 1693.0

+«K0,] Present oroue-jixporinntﬂ
results | results(2) | results (2]
Bending modes
1. 169,9 170.0 165.0
2. 926,.3 928.0 1%.0
3. | 25u5.1 2550.0 75.0
Xorsion modss
b, 1695.4 1695.0 -
] 5109 06 5108c° Latad
. 8510.2 8518,0 -

Case 33 Rotating blades with
as tric cross-section
wvith 90 deg. stagger.

The following data is chosen to
compare the results obtained by this
program vith the existing results
as shown i{n Table 3,

L =814in

A = 0,360 1!!2

R =60 1n

I, = 0,117 4n

r’ = 0,0 4n

P = 0.283 1v/an3

1,.= 0.002408 1n*

0.04887 in

E =30 X 10% 1b/4n?

C = 1.108 X 10° 1b 1n2/red

W = 350 rpm

14 = 90 deg,

The results presented in Tables 1,
2 and 3 abowe show a good comparison
with the existing results.

General nondimensional results:

With the help of the program
developed, the effects of different
arameters vis,, speed of rotation,
s8¢ radius, pre-twist, asymsetry of
the cross-section, and stagger angle,
on the naturgl frequencies of a
single turbomachine blade are studied
and the results obtained in the
hondimensiongl form are presented in

Pigs, 1 to e  The
discussed below, — | Lts sTe

Effect of rotatiod

The effect of nondimensional
rotation parameter «<t on the frequency

paramster ratio \{/ A for flapwise
as well as chordvise modes in bending
(1.0. y-2 and x-s planes of bending
respectively) are given in Figs, 1 amd
2, The effect of rotation is pre-

L e v

o

e a
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dominant on the fundamental mode and on the frequency paramster ratio is less
more so on the flapwise modes., PFor than that compared with the correspond-
all the modes, the Mum{hwmur ing flapwise modes. There is no effect
ratio increases linearly with «*, For of rotation on the natural frequencies
chordvise modes, the effect of rotation in torsional modes.
:
, 76— |
; I mode
7S
: Joor—
3
< ’r3—
i 'R ;
: =<
. ra2r-
13
!
E (] —
i t 34
i
— 4 /mode
; ; ; ZZ moda
ro A 2
73 30 3 3o ‘
o 2

Pig.1: Effect of speed of rotation on frequenc t
flepvice benat n: y parasster ratio in




& mode
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Fig.,2s Effect of spesed of rotstion on frequency parameter ratio in
chordvise bending

for both the flapwise and chordwise

Effact _of dlsc radius
sotions and for «<“al, 2 and 3. The
1is predominant

The effect of nondimensional disc effect of disc redins
radius R on the fr ney ameter
ratio a;/i 1s p:lo:m in Pige.2 and 3 on the fundamsntal mode, again having
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Atfecy of pre-tadat first Bode in flapuiss direction, wiich
nereases s a8 R increases.
meter et itioml GIuel JIr hda offect b morerfor Lurger pre-
function of the nondimensional rn- The second coupled mode is shown
mter R -I”/In for ¥ =0, 0.8 and in Pig.6. ForRupto 39.3,the second
1.2 redian coupled mode represents the first
. . uncoupled chordwise mode, vhich
The effect 1s very small for the decreases as i increases,the effect
I-Oﬁ—
I mose
Nole: ol Sy 77odes
r2
”»
?.( 102~
Y
o>
<
o-8
amep—
ror—-
; RiP PPV

¢ apaUg

ol

for

twists,

“
° ¢ ¢ in firs
Fig.,% Effect al‘ou mm{mcnuo first coupled
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being more predominant for larger pre- ing either first chordwise or second
twists, PForhi>39.3, the second coupled flapwise modes, is lesser than the
mode represents the uncoupled seco! corresponding uncoupled mode.
m“ 'd;.n.:got;;::u.' te The third pled mode is shown in /
uency parameter cou o is o :;
values iahn transition vnu‘o, of Fig.7 and as before there is & transi- ;
1 R =39.3. In this region the coupled tion at Aad9.3., Fork upto 39.3, the
: mode increases as A increases, For all third coupled mode corresponds to the ;
: R , the second coupled mode represent- second uncoupled flapwise mode amd
: ) ror
Z coyed mode.
H .\
o-9- \ x, modes | 4, modes

ool N

o7}l .
Y o6}
=<
\
&
N‘

. o8
o \
oOf- )
Alel-2 rod.

(]
= L

ot ——d——d——d5—
3

Fig.61 Rffect of A on frequency parameter ratic im second ocoupled
mode for ftorong pre~tvists,
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increases as imcreasss, the effect
be. more predominant for larger
pre-twists. At the transition point,
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Yz modks
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g 15
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there is a small downward jump, and
fori>39.3, this mode romun{l the
first chord

wise uncoupled mode,which

.

N\

—> led mode

X, modes

Cr2
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Fig.7: Effect of R on frequency parameter

mode for different pre-t

11¢

06— 5 ot -
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decreases ash increases., However, for The fourth coupled mode is shown

all i , the third coupled mode is in lﬁ.., which for the region of N
larger than the corresponding uncoupled considered represents the third un-
modes, The transition that occurs at coupled flapwise mode, Forh < 7.85
R 239.3 1s dus to the fact that the the fourth mode corresponds to the
first chordwise frequency is lower than second ghérdvise mode and is not

the second flapwise mode for R< 39, plotted in PFig.8, as in practice such
both are ogal at R =39.3 and tha the small values orﬁ’do net occur, The
chordwise frequency is more than the fourth coupled mode increases as h

flapvise frequency for i>39.3. increases, but is howvever less than

ror- B coytled mode
D e
x Y g MROSeS
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the 1mwplogh:h1rd flapvise lod:;rl'w Bffect of asymseiry of crosa-sectiod
frequency parame -
;a d.:sﬁskner for a 1{:‘3’" pre-tvist. The effect of i, on uncoupled flap-
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Fig.9s Bffect of asymmetry i on frequency parameter ratio in flapwise
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wise bedding and torsion modes is shown maxisus percentage difference in the
3 in Figs. 9 and 10, In Fig.9, the frequency parameter ratio is of the
coupled flapwise mode shows that 1t order of 0,5% in bending modes and
decreases as increases, the effect 4% in torsion modes.
b""‘m B ne’ roomdtatt for higher The effect of i,, on the coupled i
} increases as i?lim“““,bw the chordwise bending ond torsion modes
. effect 1s of the ssme order for all 18 thown 10 Figs. 11 and 12, The trend
: the modes and 1is more for the funda- ol variasion o quency para-

meter ratio is similar to that of 1
mental mode, It may be noted that discussed above, but the effects are

the frequency change is very nominal
even for & larger velue of ,-_!L"’ the somewbat more predominant in this case.

105 }—
X mode
108 — + I mode
r > ros|—
\x p
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~
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' 7 OF —
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Fig.10: Bffect of asymmetry X, on frequency paramster ratio in

torion,
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: Bffect of Stagger angle the nuau'n g-oq‘\’nncy, :Iu goquog:y
. par T ratio decreasing linear:
) lth!t'h 'i:‘::.“n,:qmm'; ml.o-g::.- as sit¢increases. The effect is more
o ratio for both flapvise chordwise ’.:fror nioher :::oda 0?1-22:%1:5‘ ¢
| : is given in FPigs.13 and 1% & *
: :‘“ Y orxt ot "27and 3. The Again the chordwise modes sre less
‘ .fm of seagger mi. 18 to decrease effected compared to the flapwise

modes,
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——— aa— x’.’

”03-1 ———27 ?lr o
sinig
Fig.13t Effect of stagger angle :I.! mmy parameter ratio in flapwise




Since the prodlem is linear, the to determine the natural frequencies
effects of alfferent non-d:l.lomioml of a given blade. This would dbe of
paramsters such as pre-twist,rotation impense help in a rapid estimation

: etc,, considered above,on the frequency of the natural frequencies of single
. parameter ratios can be superimposed turbomachine blades. .
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Fig,1%s Bffect of stagger angle on frequency paramter ratic in
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ONCLUSION
The equations of motiom for

bending-bending-torsion vidrations of
rotating blades mounted on a disc at a
] r angle, are solved bLtho mthod
of Galerkin, to determine the coupled
natural frequencies, The results
obtained are checked with availabls
results for pre-twist, rotation,
asymmetry of cross-section, disc
radius and stagger angle ui'nch shov
god sgreement, The variation of non-

sensional parameters of the blade 1is
presented in the form of graphical
charts and vill be useful in ra
estimation of coupled natural
quencies of single turbomachine blades.

The author wishes to acknowledge
the kind hospitality extended by
Dr.Neville F,Rieger, during his short
stay at Rochsster Institute of
Technology, Rochester, N.Y., in summer
of 1975 when this work progressed
and mhn runs of the computer
program developed were made on RIT
computer. The asuthor also wishes to
thatk the Aeronautical Research and
Development Board of Government of
India for having provided the funds
to complete this program in Indis,.
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Notationss

] Torsional stiffness

B Young's modulus

(] Modulus of rigidity

Ict Polar mass moment of inertia
per unit length about the
center of flexure

1 Princi second moments of

' lyy area of the cross-section

of the bdlade.

L Length of the blade

P Natural circular frequency

R Disc radius

)3 R/L

A I!!/Ixx

b JIS x and y coordinates of center

=y of flexure with respect to
centroid of the cross~
section

ix r‘/l.

ﬁ’ r,/!.

Xy

o % b
v Yy ?’ ) .r yp ”
d'gr'!l' r e r

€

weight per unit length of the
blade

Chordwise and flapvise dynamic
bending deflsctions

o w14
e,
Pre-twvist of the blade

Torsional dynamic deflection:
w!‘d‘
9 EL, .
Value of A for stationary
iR T
alus of A" comsidering
speed o;' nshtig:m
us of X" ocons only
disc r.di!f and mtaaon
Value of »" considering only
re-tvist
alus :: :E;:ouidoru; only
as
hirof,n"ﬁeomuouu

asymmetry i,
Value of X considering ste-
gger angle and rotation

Stagger angle
Angular velocity of the disc

B 0
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ACCELERATION THROUGH RESONANCE OF MULTI-DEGREE OF FREEDOM SYSTEMS

F. H. Wolfr, A. J. Molnar, A. C. Hagg
Westinghouse Electric Corporation
Pittsburgh, Pennsylvania

Any vibration mode of a multi-degree of freedom (MDF)
system is shown to be equivalent to a single degree of
freedom (SDF) system, and the response of the MDF system
during acceleration (or deceleration) through resonance
can be readily calculated on the basis of the equivalent
SDF system. Application of Q factors (magnification num-
bers at resonance) is given for a torsional eritical speed
of a synchronous motor-fan MDF system.

NOMENCLATURE

MDF Multi-degree of freedom
SDF Single degree of freedom

t Time (sec)

1§ 1] Inertia matrix

fcl Damping coefficient matrix
ikl Stiffness matrix

{e} Aﬁgular displacement vector

($
dz

{;:5}

{T(¢)}

{r}
ie)

Angular velocity vector
Angular acceleration vector

Input torque vector

Normal mode coordinate vector
Modal matrix

g:gu-pod natural frequency (RPS,

Modal damping ratio

Instantaneous frequency of app-
11ed torque (Hsg)

lato.of change of frequenay of
applied torque (Hs/sec

Q = Quasi-resonance factor (ratio
of peak dynamic displacement to
the static displacement)

1 = Number of undamped free vibra-
tions of SDF system from time O
to time ¢t

q = Value of T at which f = f, (mea-

sure of rate at which systea is
accelerated through)

INTRODUCTION

The phenomena of accelerating and
decelerating through a mechanical reson-
ance and the large resulting vibrations
which can occur has been given comprehen-
sive treatments by F. M. Lewis [1]),J. G.
Baker [2], and others in terms of single
degree of freedom (SDF) systems. How-
ever, most practical systems involve
multi-degree of freedom (MDF) systems
where the resonances are generally asso-
ciated with system modes. Using the
analogy between SDF syatems and modes of
MDF systems, the phenomena of accelera-
ting and decelerating through resonance
in MDF aystems can be studied.

Q ourves (peak amplifications at
quasi-resonance) developed for acceler-
ating through resonance in SDF systems
are directly applicadble to modes of MDF
systems along with proper application of
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normal mode theory. The applicable nor-
mal mode theory is presented and an exam-
ple of decelerating through a torsional
resonance in a MDF system is given.

The usefulness of the Q curves in
analyzing MDF systems is predicated on
the equivalence between a SDF systea and
a particular mode of a multi mode aystena.
The classical normal mode theory uncoup-
les the original system equations of
motion formulating a set of uncoupled
second order differential equations
which are directly analogous to the SDF
equation of motion.

ANALYSIS
A MDF torsional system can be des-

cribed by a matrix set which represents
the equations of motion

2
m{:-tg} +1c1{32} + i {o} = reet

Applying the familiar normal mode trans-
formation

—
<>

—
"

fel{r}

iy
&l
——
n

OFF- (2)

——
=X
<D

St

(]

2
(o) {45
{zzgl
to Eq. (1) gives

2
(QIT[IHH{:—tE} + 1T cr 10 {§E)

(3
+ 0TI} « 1T (1)}

for the diagonal matrices
generalized inertia natrix,[olT[IIIO] =

[Igen, = jfl IJOJ,'; az1,2,...,N]

generalized stiffness matrix, lOlTlKIIOI =

(Kgen, = “.2 Igen,; a = 1,2....,!1.

|
.gor lumped parameter systeams.

Assumes proportional damping conditions.
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generalized damping matrix,[o]T[Cllol =
[Cgen, = a Igen, + BKgen,; a = 1,2,...,“]“
and

generalized torque vector, lolT{T(t)} s

N
[Tgena(t) = J;:loj.a'rj(t); a=1,2,...,N}

It {s assumed that damping coefficient
matrix [C] satisfies basic conditions of
uniformity, namely,

fcl = al1} + B8IK)

where a and 8 are real constants. Slight
deviations from this condition are gen-
erally acceptable especially where damp-

ing is small [3,4]. Therefore,
a Igen_ + B8 Kgen 2
28w, = 2 2 :a+8u
a Igen a
8%%a )
or
8w
- S
€ = 2w, + (5)

where Eq. (5) can be used to determine
the modal damping ratio.

The ath modal equation from the set
of normal mode Eq. (3) is

dar dr,
Igen, :;23 + Cgen, Y Tl Kgen,r, = ‘l‘gena( t)
(6)

{

Eq. (6) for mode (a) is analogous
to the SDF system (Fig. 1) where Igona,
Cgen,, Kgen, ;and Tgen, (t) correspond
respectively /to inertia, damping, stiff-
ness and the [forcing function. The al-
ternate form/for Eq. (6) is

i

2 !
acp dr 2 Tgen_(t)
‘_5! + zq"a T+ 9Ty = TEEE!"'

dt a 7
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For an applied torque T, (t) of the form
AupJ Sin y(t), the generalized torque is

Tgen,(t) = Tgen, Sin(y(t)),

(8)
(Tgen, = x’J,a Ampj)
where the angle of input is
y(t) = 7nt?  (rad) (9)

for an accelerating system.

Differentiating the angle of input
gives an instantaneous frequency of

3

= ht (Hz) (10)

Nli—'
E 1
[- X

t

The static or zero frequency deflection
is commonly defined as

Tgen Tgen
r_(static) = 2 - a (11)
a Kgen, Igen, ;:2

It is this definition of ra(static) and

the following definition of the quasi-
resonance factor

r_(t)

Q(t) = F:TgfifTE’ (12)

which governs a change of dependent var-
iable in Eq. (7) to the quasi-resonance
factor.

2
9 Q) » 26, FHE) + wy° QL) 2 u, *Sin(v(t)
de (13)

Using the definitions
¢ 2

Tz ftandqs= -%— (1)

to change the independent variadble of
Bq. (13) according to

2
o e 5 ana

2
t) = 1,2 o

(15)

results in a dimensionless second order
differential equation for the quasi-
resonance factor.

2
a9t d T 2.1
() + 4 (=) + 4x°Q(x-)
dt ?: " 33 fa £
(16)
- 1 Stn(s2D)
= Ux "3
Eq. (16) was solved numerically

using a fourth order Runge-Kutta inte-
gration with controlled error to gener-
ate responses similar to those illustra-
ted in Figs. 2 and 3. The peak values
of the quasi-resonance factors Q were
recorded and used to generate the subse~
quent quasi-resonance curves for uni-
formly accelerating excitation frequen-
cies - Figs. 4 and 5.

Hence, knowing the modal damping
ratio (from Eq. (5)) and the measure of
acceleration rate (Eq. (14)), Eq.(16) or
either Fig. 4 or 5 can be used to deter-
mine the amplification factor Q. Then
the peak dynamic response for a mode can
be determined from Eq. (12)

ra(peak) =z ra(static) x Q (17)

The peak physical responses in mode (ai
are determined from the mode shape {Qa

by
{84} = {o,} r (peak) (18)

From Eqs. (11), (17), and (18) the peak
physical response at any lumped inertia
(J) in mode (a) is then

QJ’.(peak) z QJ'ara(peak)
T Q(19)
gen
* QJ,.P.(St!tlc) x Q= QJ’a ii?ﬁ:-

The peak stresses are a function of the
peak physical responses. For example,
in a torsional system such as illustra-
ted in Fig. 6, the peak relative angular
displacement bhetween adjacent inertias
(3 and j+l) due to mode (a) is

IOJ'.(poak) - 01‘1"(ponk)l

T (20)
.o . | gon.q
Jra Jel,a! Kgen,

L
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Hence, for a solid shaft of diameter D
and torsional stiffness L connecting

the two inertias, the peak shear stress
due to mode (a) would be equal to

16 kg Tgen_Q
‘93 I’J,l - .J+l,l| Kgen,

rhH
Kgen,
Igen, | Toem,
c"‘.
d% ar
Igen, :2’ + c!'"a—d-l + Kgeny 7y = Tgen, () . {6)
T,
geny
{ stati  am—
I’. ic) KQH. oq. (11)
T,
r, (peak) =r, (static) x 0 =1 xQ . (0
T,
gy
0. _(pesk) = 9 xQ . (19)
b )-8 Kgeny 0

Fig. 1 - Normal mode oscillator as
equivalent SDF system

DISCUSSION OF QUASI-RESONANCE FACTORS

Pigs. 2 and 3 1illustrate the dy-
namic response of the quasi-resonance
factors as a function of (t/q) for a
uniformly increasing acceleration (q =
100) at two different damping values § =
0 and § = .05, respesctively. The peak
amplitudes Q = 36.89 (for q = 100, £ =
0) and Q = 9.3 (for q = 100, £ = .05)
both occur after the critical speed
(t/q = 1) has been reached. This appar-
ent shift in critical speed is greater
fo; the higher acceleration or lower q
values.

The undamped response (Fig. 2) con-
tinues to oscillate with increasing fre-
quency at an amplitude  ,slightly less
than the maximum while the damped res-
ponse decays rapidly once the peak res-
ponse has been reached.

T T T T Y

Q-Factor = 3. 80—

A EEEERER

-

1 s i 1 A L A s A i i 1 - A A
] 1 2
L]

Fig. 2 - Dynamic quasi-resonance factor
for SDF (q=100, £=0%)

4
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Fig. 3 - Dynamic quasi-resonance factor
for SDF (q=100, E£=5%)

The peak amplitudes are very slight-
ly greater for deceleration cases; how-
sver, the actual differences would not be
discernible on a set of design curves.
Therefore, for practical purposes, the
design curves of Figs. 4 and 5 can be
used for both acceleration and decelera-
tion through resonance.

An examination of the quasi-resonance
curves of Fig. U shows the influence of
the acceleration rate and damping ratio
on the peak magnification factor [5).
All of the curves asymptotically appro-
ach the ateady state resonance factors
corresponding to the damping ratio i.e.,
the slower the oritical speeds are being
accelerated through (large q) the more
nearly the phenomena resembles the true
steady state resonance - as q -+ =, Q+

(R rTRe
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The amplification for heavily damp-
ed asystems is relatively insensitive to
acceleration rate; for example, a system
with 5% of critical damping would be ex-
pected to amplify the static response by
a factor of Q = 10 for most practical
accelerations. On the other hand, amp-
lifications for lightly damped systems
are sensitive to acceleration rate. For
example, with .1% damping the quasi-
resonance factors very from Q = 45 for a
q = 200 to Q = 110 for a q = 1400, Not
only is the amplification factor reduced
by a high systea acceleration (small q),
but also the number of actual stress
cycles are less which is an important
fatigue consideration. Increased damp-
ing lowers the dynamic amplification;
hence, the level of stress cycles are
reduced.

T T T T T T Y
>

WO g =trequency 1HZ)
h = acceleration (Hz/sec)

| Nl curves asymplotically
aprosch ?!t

Fig. 4 - Peak magnifications vs. q for
various damping ratios £
(larger q indicates smaller
accelerations)

Another way to study the buildup due
to a uniformly accelerating excitation
is to plot the quasi-resonance factors
{6]) against the percent of critical
damping - Fig. 5. The Q-factors present-
ed in this fashion give a clearer pic-
ture of the phenomena for the lower g
(higher accelerations - h); i.e., the
quasi-resonance curves ars spread out
more for the lower q values.

An interesting application for these
curves would concern determining what
buildup could be anticipated during a
frequency sweep test. Once again, if the
system in question contains damping in
excess of 5% of critical, a limited
buildup is guaranteed (Q < 10) regard-
less of how slow the sweep is being per-
formed. However, for lightly damped sys-
tems, damaging vibrations could occur
during the sweep test. For example, a
typical rate used during a frequency
sweep test for seismic application is on
the order of 2 octaves per minute [7].
This means that going from 4 Hz to 16 Hz
(2 octaves when starting at 1 Hz) re-
quires 60 seconds; therefore, an accel-
eration of

16 - 4 _ 12 Hz

h = —

=780 " B0 sec

is indicated which, if a natural fre-
quency of 10 Hz were present, would give
a

Py 2
.2 . 100
Q== * 12760 = 390
If the equipment had as little as 1%
damping, a quasi-resonance factor of Q =
38 would be likely for linear behavior.

Curve 677967-A
1 ] 1

Steady State Q= 100/2 ¢

[
8 5 8
-

Q-Factor, Peak Magnitication at Quasi-Resonance

S 8 w3 83 38 8

1 1 1

o
(-2
—t

2 3 4 5
G, Percent of Critical Damping

Fig. 5 - Peak magnifications vs. § for
various q values (larger q
indicates smaller accelerations)
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EXAMPLE

A typical application for a 50 Hz
supply is shown in Fig. 6 which involved
a synchronous motor driven induced draft
fan system which experienced shaft fail-
ures between the control wheel and motor.

Excher Contrel Wheot Mator fan
(L= (=6 {ly=390) {1g = 10000

WA

el peexd  geaeoet

(Shat Falture)

Mot Mo, | Natural spose of Mogel Matrix
mem Inertia | Stifness {e)
el e LT T

1 oo | 220 - L0000 10O 1000 10O

2 v.% o luixut | Lo s .0 -2

3 ne w2 [Laxw | Lo .20 -.v0 0w

¢ [m % |smexwb | Loo 065 o8 o

Inertia UnRs (in-R-s0c)

Stilfness Units (in-Rr-raf)

Froguency Unlts i)

Fig. 6 - Torsional model and associated
modal data of a synchronous
motor-fan system

The envelope of a sample synchron-
ous motor air gap torque is shown in Fig.
7 as a function of slip (speed, fre-
quency, etc.). There are three main com-
ponents of the air gap torque during
startup of a synchronous motor:

(1) the initial component which oscil-
lates at line frequency (w;) and
decays rapidly;

(2) an average component which drives
the system;

(3) a variable frequency component
which oscillates at twice slip
frequency; i.e., torque a Sin (2 x
slip x w, t).

The magnitude of the variable frequency
component is nearly constant until syn-
chronous speed (slip20) 1is reached and
pull in is achieved. The twice slip fre-
quency varies, for a 50 Hz system, from
100 Hz to O Hz; therefore, this air gap
torque component is of main concern when
considering acceleration (deceleration
in terms of slip frequency) through res-
on::ool of synchronous motor driven
units.

Note, from the slope of the average
torque-speed curve the motor damping can
be estimated. Also, the motor damping is
actually negative until the knee of the
torque-speed curve is reached (pull-out
torque) and the curve starts downward.

T
Envelope of Line ! '
Hnunuy(uv
18 Component J
Slope Gives
4 Envelope of Twice Positive Motor 1
2 3 Slip Frequency Damping
S Com mM(Zﬂhoc n
5
s
=
5
&
-1F Slope Gives Average Component
Negative Motor
-2 Damping -
-3 -
-4 ] 1 1 1
L0 0.8 0.6 0.4 0.2 0
Slip

Fig. 7 - Envelope of typical synchronous
motor air gap torque curve

The particular synchronous motor in
this application required 11 seconds to
reach running speed and generated an os-
cillating component of air gap starting
torque that varies from 100 Hz to 30 Hz
(twice slip frequency) in the 11 seconds
(8]. Analytically the twice slip fre-
quency oscillating air gap torque with
uniformly decreasing frequency is defined
by

T,(t) = 172,000 sinl2r (100 - %-g t)t]

(in-1bs)
for 0 < t < 11.

The angular displacement

y(t) = 2%(100 - %g— t)t  (rad)

gives the instantaneous excitation fre-
quency of

£ = —%:100-:{%(’- (Hg)
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with a deceleration rate of

nel 92 170
2%
(Hz/sec)

The modal data (Fig. 6) shows, in
addition to the free-free mode, the pre-
sence of three torsional natural fre-
quencies - 17.58 Hz, 79.97 Hz, 196 Hz.
Because the 196 Hz is well beyond the
range of excitation frequency, there is
no significant forced vibration of this
mode. The 17.58 Hz mode is transversed
well after pull-out torque has been
reached which means (for this particular
motor) the oscillating component of air
gap torque is at a slightly lower ampli-
tude than initially. More importantly,
both the motor and fan are supplying
significant amounts of positive damping
which results from the slope of the speed
torque characteristics of the system.
Furthermore, the measure of deceleration
rate for the 17.58 Hz mode is

(r,12 2
Mol 117.58)° 4 o
Q=" *TF0711L :

which along with the large damping will
result in a small magnification.

The 79.97 Hz 3rd mode is in the
range of uniformly decelerating input
frequency and occurs early during startup
when the damping is small; accordingly,
this mode was considered to be the prin-
cipal source of response,

For the undamped case (£ = 0), the
?e:?ure of deceleration rate from Eq.
1 is

(£ | (79.9m12
LI T (74

Hence, from either Fig. 4 or 5 the amp~
lification is

Q = 116

%2: static response corresponding to Eq.
is

Tgen, ¢, , X Amp
ry(static) = 'Kg_eT} z 'lkg',n3—l
. :;Ll!.z_llz;ggg 2 -.000208 (rad)
1.482 x 10

The peak dynamic response of the third
mode from Eq. (12) is

r3(dynauic) = r3(ststic) x Q = .024076
(rad)

Accordingly, the peak physical displace-
ments of the motor-fan system due to de-
celeration through the 3rd mode can be
found from Eq. (2) using the modal data
in Fig. 6.

8 4,3

6 ¢

92 = ¢2'3 r3(dynam1c)
3 3,3

% *4,3

1.000 . 024076

N R IR

.0016 .000038

The peak angle in the shaft between the
control wheel and motor (where the fail-
ure occurred) is

92 - 03 = ,019838 - -.004189 = .024027
(rad)

which compared to .02436 (rad) found
from solving for a complete time history
of the response of the system.

If a large value of shaft damping
(91 is considered (£ = .01) for a q =
1005, the amplification is

Q = 42,4

which gives a peak displacement of the
control wheel-motor shaft of

62 - 03 = (.024027) = .008782
(rad)

This compared to a peak response of
.00896 (rad) via a complete transient
solution.

Subsequent stress and fatigue cal-
culations [8] using the values of (6, -
e;) corresponding to reasonable amounts
)

shaft damping [(9,10] explained the
fajlures.
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CONCLUSIONS

For MDF systems, once a particular
mode of vibration has been identified to
be within the range of changing input
frequency, the mechanical system can be
treated as a SDF system with the aid of
the generalized modal parameters. The
quasi-resonance curves can then be used
to determine the amount of buildup, hence
the peak response, to be expected from
accelerating or decelerating through the
resonance.
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