ESTIMATING THE SCALE PARAMETER OF AN EXPONENTIAL DISTRIBUTION FROM A SAMPLING (U) GEORGE WASHINGTON UNIV WASHINGTON DC INST FOR MANAGEMENT SCI. S ZACKS

UNCLASSIFIED 09 OCT 84 GWU/IMSE/serial-T-495/84
ESTIMATING THE SCALE PARAMETER OF AN EXPONENTIAL DISTRIBUTION FROM A SAMPLE OF THE-CENSORED r-th ORDER STATISTICS

by

S. Zacks
Department of Mathematical Sciences
SUNY at Binghamton

STUDENTS FACULTY STUDY RESEARCH DEVELOPMENT FUTURE CAREER CREATIVITY COMMUNITY LEADERSHIP TECHNOLOGY FRONTIER DESIGN ENGINEERING APPLICATIONS GEORGE WASHINGTON UNIVERSITY
ESTIMATING THE SCALE PARAMETER OF AN EXPONENTIAL DISTRIBUTION FROM A SAMPLE OF TIME-Censored r-th ORDER STATISTICS

by

S. Zacks
Department of Mathematical Sciences
SUNY at Binghamton

READINESS RESEARCH
GWU/IMSE/Serial T-495/84
9 October 1984

THE GEORGE WASHINGTON UNIVERSITY
School of Engineering and Applied Science
Washington, DC 20052
Institute for Management Science and Engineering

Research Supported in Part
by
Contract N00014-83-K-0216
Project NR 347-131
Office of Naval Research

This document has been approved for public sale and release; its distribution is unlimited.
The problem of estimating the mean, θ, of an exponential distribution is studied, when the data available are a random sample of time-censored r-th order statistics. Examples for such empirical situations are cited in the paper. Maximum Likelihood (MLE) and Moment Equation (MEE) estimators are studied. Theoretical derivations are provided for the large sample variances and distributions of these estimators. The efficiency of the MEE compared to the MLE is studied.
ESTIMATING THE SCALE PARAMETER OF
AN EXPONENTIAL DISTRIBUTION FROM A SAMPLE
OF TIME-CENSORED r-th ORDER STATISTICS

by

S. Zacks
Department of Mathematical Sciences
SUNY at Binghamton

Abstract
of
READINESS RESEARCH
GWU/IMSE/Serial T-495/84
9 October 1984

The problem of estimating the mean, \(\theta \), of an exponential distribution is studied, when the data available are a random sample of time-censored r-th order statistics. Examples for such empirical situations are cited in the paper. Maximum Likelihood (MLE) and Moment Equation (MEE) estimators are studied. Theoretical derivations are provided for the large sample variances and distributions of these estimators. The efficiency of the MEE compared to the MLE is studied.

Research Supported in Part by
Contract N00014-83-K-0216
Project NR 347-131
Office of Naval Research
0. Introduction

Methods of estimating the scale parameter of exponential life distributions are generally based on complete information of the failure times, with or without censoring. More specifically, the estimation is based on life testing of \(n \) identical systems which are subjected to similar experimental conditions. The failure times of the systems are recorded, and the experiment is censored either at the \(r \)-th failure \((1 < r < n)\), which is called censoring of Type II, or at a fixed time, \(t_0 \), which is censoring of type I. In some cases the minimum of \(t_0 \) and the \(r \)-th failure is used. The reader is referred to any one of the textbooks on statistical methods in reliability for the details of the estimation procedures (see for example W. Nelson [5]). The present
paper has been motivated by two papers of Epstein et al [2,3], which discuss photodynamic bioassays for estimating the potency of benzo-soluble organic extracts from particulates in air samples. In these experiments various dosages of organic extracts and of their derived fractions (basic, acidic, aliphatic, aromatic, oxygenated and water soluble) were applied on n = 30 living organisms (Paramicium coudatum) under ultraviolet irradiation. In each application the measured biological response was the time required (in minutes) to immobilize 90% of the cells. This response variable was called the lethal time 90 (LT90). Each trial was censored at t_o = 90 minutes, and the number of cells still living at the time of censoring was not recorded. Empirical fitting of a dosage-response curve was done by Epstein et al [2]. Serious questions arise concerning the validity of such an empirical analysis, which is performed without sufficient theoretical justification. The present paper is devoted to a theoretical analysis of two possible estimators of a scale parameter, when the data are the censored r-th order statistic. More specifically, let X_{n,r} denote the r-th order statistic of a sample of n i.i.d. random variables from an exponential distribution with mean \theta. Let \X_{n,r} = \min(X_{n,r}, t_o). A random sample of m observations on \X_{n,r} is available. In Section 1 we present the model and define some basic notions. In addition we provide formulae of the expected value and variance of \X_{n,r}. On the basis of these formulae we study in Section 2 the structure and properties of a moment-equation estimator (MEE) of \theta. This is the value of \theta for which E_{\theta}(\X_{n,r}) is equal to the sample mean of the m observations on \X_{n,r}. We show that if at least one observation is not censored then the MEE is unique. We further show that as m grows, the asymptotic distribution of the MEE is normal. Formulae for the asymptotic bias and asymptotic variance of the MEE are also derived. In Section 3 we study the structure of the maximum likelihood estimator (MLE) of \theta and show that it is unique, provided at least one observation is uncensored. The Fisher Information Function and the asymptotic normal distribution of the MLE are derived.
in Section 4. In Section 5 we discuss the asymptotic relative efficiency of the NEE compared to the MLE, and provide some simulation results which illustrate the performance of these estimators in samples of size \(m = 20(10)50 \). The results of the present study can be applied not only to the analysis of the photodynamic bioassays data of Epstein et al [2,3] but also to reliability studies, in which the observed failure times of systems are based on censored r-th order statistics. This is the case, for example, when \(n \) identical components within a system function independently, and the system fails when the r-th component failures happen. The times of the component failures are not available.

1. The Model and Moments of the Censored Observations

Consider a sequence of independent replicas of an experiment in which \(n \) systems are subjected to life testing (possibly accelerated). Each experiment is terminated either at the r-th failure (1 < r < n), or at a fixed time point, \(t_0 \), whichever comes first. The recorded random variable is the time-censored r-th order statistic. We further assume that the life distribution of the individual systems is an exponential distribution, i.e., \(F(x/\theta) = 1 - \exp \{ -x/\theta \} \), \(0 < x < \infty \) and \(0 < \theta < \infty \).

Let \(X_n, r \) denote the r-th order statistic in a sample of \(n \) i.i.d. random variables, having a common distribution \(F(x/\theta) \). The observed random variable in the time-censored experiment is \(X^* = \min(t_0, X_n, r) \).

Since the life-time distribution \(F(x/\theta) \) is exponential, the p.d.f. of \(X_n, r \) is (see David [1])

\[
(1.1) \quad f_{n, r}(x; \theta) = r(n) \frac{1}{\theta} \exp\{-(n-r+1) X/\theta \} \{1-\exp\{-X/\theta\}\}^{r-1},
\]

for \(0 < x < \infty \). Let \(U_{n, r} = X_n, r / \theta \) be the standardized r-th order statistic, and let \(f_{n, r}(u) \) denote the standard density, i.e.,

\[
f_{n, r}(x; \theta) = \frac{1}{\theta} f_{n, r}(x/\theta).
\]

Let \(G_{n, r}(x; \theta, t_0) \) designate the c.d.f. of \(X^* \). This c.d.f. is absolutely continuous on \([0, t_0) \) and has a jump point at \(t_0 \), i.e.,
The height of the jump of this c.d.f. at \(x = t_0 \) is

\[
(1.3) \quad P_\theta \{X_{n,r} > t_0\} = B(r-1; n, F(\frac{t_0}{\theta})) ,
\]

where \(B(j; n, p) \) designates the c.d.f. of the Binomial distribution with parameters \((n, p)\). We derive now formulae for the expected value and variance of the censored variable \(X^* \). It is well known (see David [1]) that if \(t_0 = \infty \), (no censoring) then

\[
E \{X^* | \theta, t_0 = \infty\} = \theta \sum_{j=0}^{r-1} \frac{1}{n-j}
\]

and

\[
V \{X^* | \theta, t_0 = \infty\} = \theta^2 \sum_{j=0}^{r-1} \frac{1}{(n-j)^2} .
\]

This is due to the fact that the \(r \)-th order statistic in the exponential case can be represented as a sum of \(r \) independent random variables, having exponential distributions with means \(\theta/(n-j) \), \(j=0, \ldots, r-1 \). In the time censored case one obtains

Lemma 1.1. The first two moments of \(X^* \) in the time censored case are:

\[
(1.4) \quad E\{X^* | \theta, t_0\} = \theta \sum_{j=0}^{r-1} \frac{1}{n-j} \left[1 - B(j; n, F(\frac{t_0}{\theta}))\right]
\]

and

\[
(1.5) \quad E\{X^2 | \theta, t_0\} = 2\theta^2 \left\{ \sum_{j=0}^{r-1} \frac{1}{n-j} \sum_{k=0}^{j} \frac{1}{n-k} \left[1 - B(k; n, F(\frac{t_0}{\theta}))\right] - \frac{t_0}{\theta} \cdot \sum_{j=0}^{r-1} \frac{1}{n-j} B(j; n, F(\frac{t_0}{\theta})) \right\}
\]
Proof:

According to (1.2),

\[
E[X^* | \theta, t_0] = \int_0^t x f_{n,r}(x; \theta) \, dx + t_0 B(r-1; n, F(\frac{r}{\theta}))
\]

(1.6)

and

\[
E[X^* | \theta, t_0] = \int_0^t x^2 f_{n,r}(x; \theta) \, dx + t_0^2 B(r-1; n, F(\frac{t_0}{\theta}))
\]

(1.7)

Let \(\eta = t_0 / \theta \) then

\[
\int_0^t x f_{n,r}(x; \theta) \, dx = \theta \int_0^\eta u f_{n,r}(u) \, du \equiv \eta \mu_{n,r}(\eta).
\]

(1.8)

Moreover, by interchanging the order of integration we obtain

\[
\mu_{n,r}^{(1)}(\eta) = \int_0^\eta \left(\int_0^\eta f_{n,r}(u) \, du \right) \, dt
\]

(1.9)

\[
= \int_0^\eta \left(\int_0^\eta f_{n,r}(u) \, du \right) \, dt
\]

\[
= \int_0^\eta \left[B(r-1; n, F(\frac{t_0}{\theta})) - B(r-1; n, F(\frac{t_0}{\theta})) \right] \, dt
\]

\[
= \int_0^\eta B(r-1; n, 1-e^{-t}) \, dt - \eta B(r-1; n, 1-e^{-\eta}).
\]

(1.10)

Furthermore,

\[
\int_0^\eta B(r-1; n, 1-e^{-t}) \, dt = \sum_{j=0}^{r-1} \binom{n}{j} \int_0^\eta (1-e^{-t})^j e^{-(n-j)t} \, dt
\]

(1.11)
Finally, substituting (1.9) and (1.10) in (1.6) we obtain (1.4). Notice that \(\lim \limits_{\eta \to \infty} B(j; n, 1-e^{-\eta}) = 0 \) for each \(j < n \). Hence, the well known formula of \(E[X|\theta, t = \infty] \) is a limiting case of (1.4). In a similar fashion, we derive the formula

\[
(1.11) \quad \mu _{n,r}^{(2)}(\eta) = \int \limits_0^\eta (\int \limits_0^u f_{n,r}(u) \, du) \, du
- \int \limits_0^\eta (\int \limits_0^u f_{n,r}(u) \, du) \, du
- \int \limits_0^\eta (\int \limits_0^t f_{n,r}(u) du) dt
- \int \limits_0^\eta (\int \limits_0^t B(r-1; n, 1-e^{-t}) dt) - \eta ^2 B(r-1; n, 1-e^{-\eta})
\]

Furthermore,

\[
(1.12) \quad \int \limits_0^\eta (t B(r-1; n, 1-e^{-t}) dt = \sum \limits_{j=0}^{r-1} \binom{n}{j} \int \limits_0^\eta (1-e^{-t})^j e^{-t(n-j)} dt
\]

\[
- \int \limits_0^\eta t f_{n,j+1}(t) dt
- \int \limits_0^\eta \left[\sum \limits_{k=0}^{j} \frac{1}{n-k} (1-B(k; n, 1-e^{-\eta})) - \eta B(j; n, 1-e^{-\eta}) \right].
\]
Substituting (1.11) and (1.12) in (1.7) with the proper scale factor, we obtain formula (1.5).

(Q.E.D.)

From formulae (1.4) and (1.5) one obtains immediately the following formula for the variance of X^*_n, namely:

$$\sigma^2(\theta; t_0) = \text{Var}(X^*_n; \theta, t_0)$$

$$(1.13) \quad \sigma^2(\theta; t_0) = \sum_{j=0}^{r-1} \frac{1}{n-j} \sum_{k=0}^{j} \frac{1}{n-k} \left[1 - B(k; n, F(-,)) \right]$$

$$- 2 \frac{t_0}{\theta} \sum_{j=0}^{r-1} \frac{1}{n-j} B(j; n, F(-,)) - \left(\sum_{j=0}^{r-1} \frac{1}{n-j} \left[1 - B(j; n, F(-,)) \right] \right)^2$$

One can easily check that \(\lim_{t_0 \to \infty} \sigma^2(\theta; t_0) = \theta^2 \sum_{j=0}^{r-1} \frac{1}{(n-j)^2} \).

In the following section we apply the above formulae for the study of the moment-equation estimator, MEE.

2. The Moment Equation Estimator and its Asymptotic Properties

In the case of no time censoring, i.e., when \(t_0 = \infty \), an unbiased estimator of \(\theta \) is obtained by equating the sample mean

$$\bar{X}_m = \frac{1}{m} \sum_{i=1}^{m} X(i)_{n,r} \text{ to } E(X^*_\theta, t_0 = \infty)$$

and solving for \(\theta \). In other words, if \(t_0 = \infty \) then

$$\hat{\theta} = \frac{\bar{X}}{m^{r-1} \sum_{j=0}^{r-1} \frac{1}{n-j}}$$
is an unbiased estimator of θ, having a variance

$$(2.2) \quad V(\hat{\theta}(\bar{X}_m) \mid \theta, t_o = \omega) = \theta^2 \frac{1}{(n-j)} \sum_{j=0}^{r-1} \frac{1}{(n-j)^2} \frac{1}{m} \left[\frac{1}{n-j} \right]^2.$$

In the present section we generalize this estimator for the case of $0 < t_o < \infty$ and determine its asymptotic properties. Since t_o is fixed, we simplify the notation by letting $E(\theta) = E(X^* \mid \theta, t_o)$.

Since the sample represents m i.i.d. random variables $X_1^*, ..., X_m^*$, the sample mean $\bar{X}_m^* = \frac{1}{m} \sum_{j=1}^{m} X_j^*$ is an unbiased, strongly consistent estimator of $E(\theta)$. Accordingly we say that $\hat{\theta}(\bar{X}_m^*)$ is a moment equation estimator (MEE) of θ if it is the root of the equation

$$(2.3) \quad \theta \sum_{j=0}^{r-1} \frac{1}{n-j} \left[1 - B(j; n, 1-e^{-t_o/\theta}) \right] = \bar{X}_m^*.$$

The left-hand side of (2.3) is the function $E(\theta)$, which is defined on the domain $(0, \infty)$.

Lemma 2.1

(i) $E(\theta)$ is a strictly increasing function on $(0, \infty)$;

(ii) $E(\theta)$ is concave on $(1, \infty)$;

(iii) $\lim_{\theta \to \infty} E(\theta) = t_o$.

Proof:

(i) straightforward differentiation yields

$$(2.4) \quad \frac{d}{dp} B(j; n, p) = \frac{-(n-j)}{1-p} b(j; n, p), \quad j=0, ..., n$$

and every $0 < p < 1$, where $b(j; n, p)$ is the Binomial p.d.f., i.e.,

$b(j; n, p) = B(j; n, p) - B(j-1; n, p)$.

- 8 -
Thus,

\[
\frac{d}{d\theta} E(\theta) = \frac{r-1}{\theta} \sum_{j=0}^{\infty} \frac{1}{n-j} \left[1 - B(j; n, 1-e^{-t_o/\theta}) \right] \\
- \frac{t_o}{\theta} \sum_{j=0}^{r-1} b(j; n, 1-e^{-t_o/\theta}) \\
= \frac{r-1}{\theta} \sum_{j=0}^{\infty} \frac{1}{n-j} \left[1 - B(j; n, 1-e^{-t_o/\theta}) \right] - \frac{t_o}{\theta} B(r-1; n, 1-e^{-t_o/\theta}).
\]

Comparing (2.5) with (1.9) - (1.10) we obtain that

\[
\frac{d}{d\theta} E(\theta) = \mu_1 \left(\frac{t_o}{\theta} \right) > 0 \text{ , for all } \theta \text{ in } (0, \infty).
\]

This proves that \(E(\theta) \) is a strictly increasing function over \((0, \infty)\).

(ii) Differentiating (2.5) we obtain

\[
\frac{d^2}{d\theta^2} E(\theta) = -\frac{t_o}{\theta^2} B(r-1; n, 1-e^{-t_o/\theta}) + \frac{t_o}{\theta^2} B(r-1; n, 1-e^{-t_o/\theta}) \\
- \frac{(n-r+1)t_o^2}{\theta^3} b(r-1; n, 1-e^{-t_o/\theta}).
\]

Thus, for every \(\theta > 1 \), \(\frac{d^2}{d\theta^2} E(\theta) < 0 \), which proves the concavity of \(E(\theta) \) over the interval \((1, \infty)\).

\[
\lim_{\theta \to \infty} E(\theta) = \lim_{\theta \to \infty} \theta \sum_{j=0}^{\infty} \frac{1}{n-j} \left[1 - B(j; n, 1-e^{-t_o/\theta}) \right]
\]

Starting with \(j = 0 \) we obtain

\[
\lim_{\theta \to \infty} \theta \left[1 - B(0; n, 1-e^{-t_o/\theta}) \right] = -t_o \theta
\]

\[
\lim_{\theta \to \infty} \theta (1-e^{-t_o/\theta}) = nt_o.
\]
On the other hand, for every \(j \geq 1 \),

\[
(2.10) \quad \lim_{\theta \to \infty} \theta \left[1 - B(j; n, 1-e^{-\theta}) \right] = \lim_{\theta \to \infty} \theta \left(1 - e^{-\frac{t_o}{\theta}} \right)
\]

\[
- \lim_{\theta \to \infty} \sum_{i=1}^{j} \left(i \left(1 - e^{-\frac{t_o}{\theta}} \right)^{i} e^{\left(-\frac{(n-i)t_o}{\theta} \right)} \right) = 0 .
\]

Indeed,

\[
(2.11) \quad \lim_{\theta \to \infty} \theta \left(1 - e^{-\frac{t_o}{\theta}} \right)^{i} e^{\left(-\frac{(n-i)t_o}{\theta} \right)}
\]

\[
= \begin{cases} t_o, & \text{if } i=1 \\ 0, & \text{if } i \geq 1 \end{cases}
\]

Thus, from (2.8), (2.9) and (2.10) we obtain the result.

\[\text{(Q.E.D.)}\]

Corollaries:

(i) There exists a unique solution to equation

\[
(2.3), \hat{\theta}(\bar{x}^*)
\]

for each \(0 < \bar{x}^* < t_o \).

(ii) \(\hat{\theta}(\bar{x}^*) \) does not exist if \(\bar{x}^*_m = t_o \).

The solution of equation (2.3) can follow the Newton-Raphson iterative procedure

\[
(2.12) \quad \hat{\theta}(i+1) = \hat{\theta}(i) - \frac{E(\hat{\theta}(i)) - \bar{x}^*}{E'(\hat{\theta}(i))}, \quad i=1,2,\ldots
\]

where \(\hat{\theta}(1) \) is any initial solution, and \(E'(\theta) \) is the derivative of \(E(\theta) \), given by (2.5). If \(M_s \) denotes the number of censored observations in a sample of \(m \), then \(\hat{\theta} = M_s / m \) is a strongly consistent estimator of \(B(r-1; n, 1-e^{-\theta}) \), as \(m \to \infty \). Thus, a solution, \(\theta_s \), of
\[(2.13) \quad \hat{F}_s = B(r-1; n, 1-e^{\theta}) \]

is a consistent estimator of \(\theta \) and could serve as an initial value \(\hat{\theta}^{(1)} \) in the sequence defined by (2.12). If \(M_0 = 0 \) we can start with the "unbiased" estimator \(\hat{\theta}^{(1)} = \bar{x}^*_m / \sum_{j=0}^{r-1} \frac{1}{n-j} \).

We derive now formulae for the asymptotic mean and variance of \(\hat{\theta}(\bar{x}^*_m) \), as \(m \to \infty \).

According to the Central Limit Theorem, \(\sqrt{m} (\bar{x}^*_m - E(\theta)) \xrightarrow{d} N(0, \sigma^2(\theta; t_0)) \). Let \(E^{-1}(x) \) denote the unique inverse of \(E(\theta) \). Notice that the MEE is the value of \(E^{-1}(\bar{x}^*_m) \). Moreover, since \(E^{-1}(E(\bar{x}^*_m; \theta, t_0)) = E^{-1}(E(\theta)) = \theta \), we consider the Taylor expansion of \(E^{-1}(x) \) around \(E(\theta) \) and obtain

\[(2.14) \quad \hat{\theta}(\bar{x}^*_m) = \theta + (\bar{x}^*_m - E(\theta)) \frac{1}{E'(\theta)} + o \left(\frac{1}{\sqrt{m}} \right), \quad \text{as } m \to \infty. \]

Thus,

\[(2.15) \quad \sqrt{m} (\hat{\theta}(\bar{x}^*_m) - \theta) \xrightarrow{d} N \left(0, \frac{\sigma^2(\theta; t_0)}{(E'(\theta))^2} \right). \]

Moreover, since \(\bar{x}^*_m \xrightarrow{a.s.} E(\theta) \), and since \(E^{-1}(x) \) is a continuous transformation, \(\hat{\theta}(\bar{x}^*_m) \) is a strongly consistent estimator of \(\theta \), as \(m \to \infty \). The asymptotic variance of \(\hat{\theta}(\bar{x}^*_m) \) is thus,

\[(2.16) \quad AV(\hat{\theta}(\bar{x}^*_m); \theta, t_0) = \frac{\sigma^2(\theta; t_0)}{m(E'(\theta))^2}. \]

This asymptotic variance will be compared later with the asymptotic variance of the MLE, to determine the asymptotic relative efficiency of the MEE.
In order to obtain an expression for the asymptotic bias of the MEE, we add another term to the expansion (2.14).

The second order derivative of \(E^{-1}(x) \) is

\[
(2.17) \quad \frac{d}{dx} \frac{1}{E(E^{-1}(x))} = - \frac{E''(E^{-1}(x))}{(E(E^{-1}(x)))^3}
\]

Hence, we obtain the expansion

\[
(2.18) \quad \hat{\theta}(\bar{x}^*_m) = \theta + (\bar{x}^*_m - \theta) \frac{1}{E(\theta)}
\]

\[- \frac{1}{2} (\bar{x}^*_m - \theta)^2 \frac{E''(\theta)}{(E'(\theta))^3} + O \left(\frac{1}{m} \right),
\]

as \(m \to \infty \). It follows that the asymptotic bias of \(\hat{\theta}(\bar{x}^*_m) \) is

\[
(2.19) \quad B(\theta; t_o) = -\sigma^2(\theta; t_o) \cdot \frac{E''(\theta)}{(E'(\theta))^3}
\]

According to Lemma 2.1 (ii), \(B(\theta; t_o) > 0 \) for all \(\theta > 1 \).

3. **Maximum Likelihood Estimation**

Let \(X^*_m = (X^*_1, \ldots, X^*_m) \) be a vector of \(m \) i.i.d. random variables. The likelihood function of \(\theta \) based on \(X^*_m \), up to a factor of proportionality, is given by

\[
(3.1) \quad L(\theta; X^*_m) = \prod_{i=1}^{m} [f_{n_i, r_i(X^*_i; \theta)}] I_i [B(r-1; n_i, F_{\theta} (t_o))]^{1-I_i}
\]

where

\[
(3.2) \quad I_i = \begin{cases}
1 & \text{if } X^*_i < t_o \\
0 & \text{if } X^*_i = t_o
\end{cases}
\]

Let \(K_m = \sum_{i=1}^{m} I_i \) and let \(\ell(\theta; X^*_m) \) denote the log-likelihood.
function, then

$$\ell(\theta; x^*_m) = -K_m \log \theta + (m-K_m) \log B(r-1; n, F_{\theta_0})$$

$$+ \sum_{i=1}^{m} I_i \left[(r-1) \log (1-\exp(-x^*_i/\theta)) - (n-r+1) x^*_i/\theta \right]$$

The maximum likelihood estimator of θ (MLE) is the value of θ in $(0, \infty)$ which maximizes $\ell(\theta; x^*_m)$.

Consider the score-function, $S(\theta; x^*_m)$, which is the partial derivative of $\ell(\theta; x^*_m)$, with respect to θ. According to (2.4) we obtain that

$$S(\theta; x^*_m) = -\frac{K_m}{\theta} + (m-K_m) (n-r+1) \frac{t_0}{\theta^2}$$

$$+ \frac{b(r-1; n, 1-e^{-t_0/\theta}) - t_0/\theta}{B(r-1; n, 1-e^{-t_0/\theta})}$$

$$+ \sum_{i=1}^{m} I_i \left(\frac{(n-r+1)x^*_i}{\theta^2} - \frac{(r-1)x^*_i e^{-t_0/\theta}}{1-\exp(-x^*_i/\theta)} \right)$$

Lemma 3.1. If $K_m = 0$ then there is no MLE of θ.

Proof: If $I_i = 0$ for all i then, according to (3.4)

$S(\theta; x^*_m) > 0$ for all θ in $(0, \infty)$.
Theorem 3.1. If \(K_m \geq 1 \) then there exists a unique MLE.

Proof:

The equation \(S(\theta; X^*_m) = 0 \) is equivalent to the equation

\[
(3.5) \quad \theta = \frac{n}{K_m} \sum_{i=1}^{m} I_i X_i^* - \frac{r-1}{K_m} \sum_{i=1}^{m} \frac{I_i X_i^*}{-X_i^*/\theta} + \frac{t_0}{K_m (m-K_m)} (n-r+1) \frac{b(r-1; n, 1-e_0)}{\frac{t_0}{\theta}} B(r-1; n, 1-e_0)
\]

Let \(H(\theta; X^*_m) \) denote the R.H.S. of (3.5). We show first that, for

(i) \(\lim_{\theta \to 0} H(\theta; X^*_m) = \frac{n-r+1}{K_m} \left[\sum_{i=1}^{m} I_i X_i^* + t_0 (m-K_m) \right] \)

and

(ii) \(\lim_{\theta \to \infty} H(\theta; X^*_m) = -\infty \).

Indeed,

\[
(3.6) \quad \frac{b(r-1; n, 1-e_0)}{\frac{t_0}{\theta}} = \frac{-t_0/\theta}{-t_0/\theta} B(r-1; n, 1-e_0) \left[\frac{r-2}{1 + \sum_{j=0}^{n} \left(\begin{array}{c} n \\ 1 \end{array} \right) \left(e_0^{(r-1-j)} - (r-1-j) \right) \right]^{-1}
\]

Thus,

\[
\lim_{\theta \to 0} \frac{b(r-1; n, 1-e_0)}{\frac{t_0}{\theta}} = 1
\]

(3.7) \(\lim_{\theta \to \infty} \frac{b(r-1; n, 1-e_0)}{\frac{t_0}{\theta}} = 0 \)

- 14 -
From (3.5) and (3.7) we obtain (i) and (ii). We show now that
\[\frac{\partial}{\partial \theta} H(\theta; X^*_m) < 0 \] for all \(\theta \) in \((0, \infty)\). This will prove that there is a unique finite \(\theta \) satisfying (3.5).

Indeed,
\[\frac{\partial}{\partial \theta} H(\theta; X^*_m) = -\frac{r-1}{K m \theta^2} \sum_{i=1}^{m} \frac{x^*_i}{1 - e^{-x^*_i/\theta}} + \frac{t_r}{K m^2} (m-K) (n-r+1) \frac{3}{\partial \theta} \left[1 + \sum_{j=0}^{r-2} \left(\begin{array}{c} n \\ r-1-j \end{array} \right) \left(\frac{t_r}{\theta} - 1 \right)^{-(r-1-j)} \right]^{-1}. \]

But
\[\frac{\partial}{\partial \theta} \left[1 + \sum_{j=0}^{r-2} \left(\begin{array}{c} n \\ r-1-j \end{array} \right) \left(\frac{t_r}{\theta} - 1 \right)^{-(r-1-j)} \right]^{-1} = \]
\[-\frac{t_r}{\theta^2} e^{t_r/\theta} \left[1 + \sum_{j=0}^{r-2} \left(\begin{array}{c} n \\ r-1-j \end{array} \right) \left(\frac{t_r}{\theta} - 1 \right)^{-(r-1-j)} \right]^{-2} \]
\[\cdot \sum_{j=0}^{r-2} \frac{\left(\begin{array}{c} n \\ r-1-j \end{array} \right)}{\left(\begin{array}{c} n \\ r-1 \end{array} \right)} \frac{t_r}{\theta} - 1 \right)^{-(r-j)} \]

substituting (3.9) in (3.8) we obtain that \(\frac{\partial}{\partial \theta} H(\theta; X^*_m) < 0 \) for all \(\theta \) in \((0, \infty)\).

(Q.E.D.)

Numerical examples have illustrated that the function \(H(\theta; X^*_m) \) might be very steep in the neighborhood of \(\theta \), and the Newton-Raphson method has proven to be instable. We have used therefore a search procedure for the maximum of the log-likelihood function, which provided good numerical results.
4. The Fisher Information Function and the Asymptotic Distribution of the MLE

The time-censored r-th order statistic X^* has a c.d.f. $G_{n,r}(y; \theta, t_o)$, which is specified in (1.2). The corresponding generalized p.d.f. is

\[
(4.1) \quad g_{n,r}(y; \theta, t_o) = \begin{cases}
\frac{1}{\theta} f_{n,r}(\tilde{X}_{(\theta)}) & , \quad 0 < y < t_o \\
B(r-1; n, F(0)) & , \quad y = t_o
\end{cases}
\]

We observe that these p.d.f's have the following properties:

(i) The support of $g_{n,r}(u; \theta, t_o)$ is $[0, t_o]$, independently of θ.

(ii) $g_{n,r}(y; \theta, t_o)$ has continuous partial derivatives, with respect to θ, at every $y \in [0, t_o]$. Moreover, since their support is independent of θ,

\[
\frac{\partial^i}{\partial \theta^i} g_{n,r}(y; \theta, t_o) \text{ is a uniformly integrable function of } y \text{, for every } i=1,2,\ldots \text{ and all } \theta.
\]

(iii) The p.d.f's satisfy:

\[
(4.2) \quad \frac{\partial}{\partial \theta} \int_0^{t_o} dG_{n,r}(y; \theta, t_o) = \int_0^{t_o} \frac{\partial}{\partial \theta} \{dG_{n,r}(y; \theta, t_o)\} = 0
\]

for all $\theta \in (0, \infty)$. This is proven by the following

\textbf{Lemma 4.1}

\[
(4.3) \quad E_\theta\left\{\frac{\partial}{\partial \theta} \log g_{n,r}(X^*; \theta, t_o)\right\} = 0 \quad \text{all } \theta \in (0, \infty).
\]

\textbf{Proof:}

As in (3.3) we obtain

- 16 -
Thus,

\begin{equation}
\frac{\partial}{\partial \theta} \log g_{n,r}(y; \theta, t_0) =
\begin{cases}
- \frac{1}{\theta} - \frac{r-1}{\theta^2} \frac{y e^{-y/\theta}}{1-e^{-y/\theta}} + \frac{n-r+1}{\theta^2} y, & 0 \leq y < t_0 \\
\frac{t_0}{\theta^2} (n-r+1) \frac{b(r-1; n, 1-e^{-t_0/\theta})}{B(r-1; n, 1-e^{-t_0/\theta})}, & y = t_0.
\end{cases}
\end{equation}

Furthermore, according to (1.9),

\begin{equation}
E_0 \left\{ \frac{\partial}{\partial \theta} \log g_{n,r}(X^*; \theta, t_0) \right\} =
\begin{align*}
- \frac{1}{\theta} \left[1 - B(r-1; n, 1-e^{-t_0/\theta}) \right] + \frac{t_0}{\theta^2} (n-r+1) b(r-1; n, 1-e^{-t_0/\theta}) \\
- \frac{n-r+1}{\theta^2} \int_0^t y f_{n,r-1}(y; \theta) dy + \frac{n-r+1}{\theta^2} \int_0^t y f_{n,r}(y; \theta) dy.
\end{align*}
\end{equation}

Finally,

\begin{equation}
\int_0^t b(r-1; n, 1-e^{-x/\theta}) dx = \left(\frac{n}{r-1} \right) \int_0^t (1-e^{-x/\theta}) r-1.
\end{equation}

\begin{align*}
e^{-(n-r+1)x/\theta} dx &= \frac{\theta}{n-r+1} \int_0^t f_{n,r}(x; \theta) dx \\
= \frac{\theta}{n-r+1} \left[1 - B(r-1; n, 1-e^{-t_0/\theta}) \right].
\end{align*}
Substituting (4.7) into (4.6) we obtain (4.3).

(Q.E.D.)

According to Lemma 4.1, the Fisher Information Function is

\[
I(\theta; t_0) = E_0 \{ \left[\frac{\partial}{\partial \theta} \log g_{n,r}(x^*; \theta, t_0) \right]^2 \}.
\]

Equivalently,

\[
I(\theta; t_0) = Q(\theta) / \theta^2
\]

where

\[
Q(\eta) = \int_0^\eta f_{n,r}(y) \left[1+(r-1) \frac{e^{-y}}{1-e^{-y}} \right] - (n-r+1) y^2 dy + \eta^2 (n-r+1)^2 \cdot \frac{b^2(r-1; n, 1-e^{-\eta})}{B(r-1; n, 1-e^{-\eta})}
\]

Expansion of the quadratic form in (4.10) and some algebraic manipulations yield the formula

\[
Q(\eta) = -[1-B(r-1; n, 1-e^{-\eta})]
+ 2\eta \ (n-r+1) b(r-1; n, 1-e^{-\eta})
+ \eta^2 (n-r+1)^2 b^2(r-1; n, 1-e^{-\eta})/B(r-1; n, 1-e^{-\eta})
+ n \ \frac{n-r+1}{r-2} \ \mu^{(2)}_{n,r;2}(\eta)
+ (n-r+1)^2 \ \frac{\Delta^2}{r} \ \mu^{(2)}_{n,r}(\eta)
\]

where the second incomplete moment \(\mu^{(2)}_{n,j}(\eta)\) is given in formula (1.11)

and \(\frac{\Delta^2}{r} \ \mu^{(2)}_{n,r}(\eta) = \mu^{(2)}_{n,r}(\eta) - 2 \ \mu^{(2)}_{n,r-1}(\eta) + \mu^{(2)}_{n,r-2}(\eta)\).
It is interesting to study the effect of the time-censoring on the Fisher Information Function. For this purpose we prove that when \(t_o = \infty \) then

\[
(4.12) \quad I(\theta) = I(\theta; \infty) = Q/\theta^2 ,
\]

where

\[
(4.13) \quad Q = \int_0^\infty \frac{e^{-y}}{1-e^{-y}} f_{n,r}(y) \left[1+(r-1) \frac{ye^{-y}}{1-e^{-y}} - (n-r+1)y \right] dy
\]

\[
= 1 + (r-1)^2 \int_0^\infty y^2 \frac{e^{-2y}}{(1-e^{-y})^2} f_{n,r}(y) dy
\]

\[
+ (n-r+1)^2 \int_0^\infty y \frac{e^{-y}}{1-e^{-y}} f_{n,r}(y) dy
\]

\[
+ 2(r-1) \int_0^\infty y e^{-y} f_{n,r}(y) dy
\]

\[
- 2(n-r+1) \int_0^\infty f_{n,r}(y) dy
\]

\[
- 2(r-1) (n-r+1) \int_0^\infty y^2 \frac{e^{-y}}{1-e^{-y}} f_{n,r}(y) dy .
\]

Substituting

\[
(4.14) \quad \frac{e^{-y}}{1-e^{-y}} f_{n,r}(y) = \frac{n-r+1}{r-1} f_{n,r-1}(y) ,
\]

and

\[
(4.15) \quad \frac{e^{-2y}}{(1-e^{-y})^2} f_{n,r}(y) = \frac{(n-r+1)(n-r+2)}{(r-1)(r-2)} f_{n,r-2}(y)
\]
and applying the formulae

\[\int_{0}^{\infty} y f_{n,j}(y) \, dy = \sum_{i=1}^{j} \frac{1}{u_{i-1}+1}, \]

\[\int_{0}^{\infty} y^2 f_{n,j}(y) \, dy = \sum_{i=1}^{j} \frac{1}{(n-i+1)^2} + \left(\sum_{i=1}^{j} \frac{1}{n-i+1} \right)^2, \]

we obtain after some manipulations

\[Q = 1 + 2 \frac{n-r+1}{n-r+2} \sum_{i=1}^{r-2} \frac{1}{n-i+1} + 2 \frac{n-r+1}{(n-r+2)^2} + \frac{n(n-r+1)}{r-2} \left[\sum_{i=1}^{r-2} \frac{1}{(n-i+1)^2} + \left(\sum_{i=1}^{r-2} \frac{1}{n-i+1} \right)^2 \right] \]

As shown in the present section, all the conditions for the consistency and asymptotic normality of the MLE, \(\hat{\theta}_m \), are satisfied (see Lehmann [4]). Thus, for a fixed \(\theta \),

\[\hat{\theta}_m - \theta = o \left(\frac{1}{\sqrt{m}} \right), \text{ as } m \to \infty \]

and

\[\sqrt{m} (\hat{\theta}_m - \theta) \xrightarrow{d} N \left(0, \frac{\theta^2}{Q \left(\frac{\theta}{\hat{\theta}} \right)} \right) \]

The convergence, however, is not uniform. For values of \(\theta \) close to \(t_o \) the probability \(P_\theta \{ K_m = 0 \} \) could be close to 1. For example, if \(\theta = t_o, n=30, r=27, B(26; 30, 1-e^{-1}) = .999 \).

Thus, in a sample of size \(m=50 \), \(P \{ K_m = 0 \} = (.999)^{50} = .9512 \). Thus, the probability is over .95 that the MLE would not exist. But, in a sample of size \(m = 1,000 \) this probability drops to .368.
5. Some Numerical Comparisons of the MLE and the MEE

In the present section we numerically illustrate the asymptotic variances of the MLE and MEE, and provide some simulation results. These simulations demonstrate the actual behavior of these estimators in samples of size \(m = 20, 30, 40 \) and 50. The numerical computations of the present section are restricted to the case of \(n = 30 \) and \(r = 27 \). These are the parameters used by Epstein et al. [2] in the photodynamic bioassays.

The MLE estimator \(\hat{\theta}_m \) and the MEE estimator \(\hat{\theta}(\bar{X}_m^*) \) are both scale equivariant in the sense that, if \(X_{n,r} + \beta X_{n,r} \) for some \(\beta > 0 \),

and correspondingly \(t_o + \beta t_o \) then \(\hat{\theta}_m + \beta \hat{\theta}_m \) and \(\hat{\theta}(\beta \bar{X}_m^*) = \beta \hat{\theta}(\bar{X}_m^*) \).

Moreover, since \(\rho = t_o / \theta \) is invariant under such transformations, the (asymptotic) variances of \(\hat{\theta}_m \) and \(\hat{\theta}(\bar{X}_m^*) \) under \(\theta \) are equal to \(\sigma^2 \times \) the corresponding variances under \(\theta = 1 \). We therefore report here the variances of the estimators under the case of \(\theta = 1 \) and different values of \(\rho = t_o / \theta \). In Table 5.1 we provide values of \(Q(\rho) \) for some values of \(\rho \). This function was determined according to (4.11) for \(0 < \rho < \infty \) and according to (4.17) for \(\rho = \infty \) (uncensored). Notice that \(Q(\rho) \) is the value of the Fisher information function at \(\theta = 1 \), i.e., \(I(1; \rho) = Q(\rho) \).

<table>
<thead>
<tr>
<th>Table 5.1</th>
<th>Values of (Q(\theta)) for (n = 30, r = 27)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho)</td>
<td>1.80</td>
</tr>
<tr>
<td>(Q(\rho))</td>
<td>10.6275</td>
</tr>
</tbody>
</table>
As seen in Table 5.1, the amount of information per observation is maximal when there is no censoring ($p = \infty$). Moreover, if $p > 3$ the amount of information is close to the maximal one. The asymptotic efficiency of the MLE, under p, compared to the no-censoring case is

\begin{equation}
AE(p) = \frac{Q(p)}{Q}
\end{equation}

Thus, as seen in Table 5.1, $AE(1.8) = 0.564$. On the other hand, $AE(3) = 0.99$. Thus, for θ values close to the censoring point t_0 we need considerably larger samples, than in the uncensored case, to attain a specified asymptotic precision.

In Table 5.2 we present the values of the asymptotic variances of the MEE and the MLE, which have been determined according to formulae (2.16) and (4.19), respectively. The asymptotic relative efficiency (ARE)

\[\text{Table 5.2} \]

\begin{center}
\begin{tabular}{|c|c|c|c|}
\hline
ρ & MEE & MLE & ARE \\
\hline
1.80 & 2.2723 & 1.8819 & 0.828 \\
2.00 & 1.6549 & 1.4574 & 0.881 \\
2.25 & 1.3153 & 1.2269 & 0.933 \\
2.57 & 1.1450 & 1.1152 & 0.974 \\
3.00 & 1.0809 & 1.0729 & 0.993 \\
\hline
\end{tabular}
\end{center}

of the MEE relative to the MLE is defined as the ratio of the asymptotic variances, i.e.,

\begin{equation}
\text{ARE}(\rho) = \frac{\text{AV}(\hat{\theta}_m; 1, \rho)}{\text{AV}(\hat{\theta}(\tilde{X}_m^*); 1, \rho)}
\end{equation}

- 22 -
As seen in Table 5.2, as ρ increases the value of the ARE approaches one. In other words, the asymptotic efficiency of the MEE is close to that of the MLE when the value of θ is considerably smaller than that of t_o, i.e., $\rho > 3$. If we suspect that θ is close to t_o, the MLE is a more precise estimator than the MEE.

It is also interesting to study how the two estimators perform when the samples are not very large. For this purpose we have conducted a series of simulations. In these simulations we generated random samples of m values of X^*_n,r, for $n = 30$, $r = 27$, $t_o = 90$ and $\theta = 30$, 35, 40, 45 and 50. For the sample size, m, we considered the values $m = 20$, 30, 40 and 50. For each of these samples we computed the values of the MEE, $\hat{\theta}(\bar{X}_m^*)$, and of the MLE, $\hat{\theta}_m$. These trials were repeated $M=500$ times independently. If all the values of X^*_n,r were censored, a message "NO-EST." was printed. It is interesting to notice that in the case of $m=20$ and $\theta=50$ (\(\rho=1.8\)) we obtained this message two samples out of 500 independent samples. This conforms to the theory, since in the case of $\rho=1.8$, the probability of censoring is $B(26; 30, .8347) = .7543$. Thus, the probability that all $m=20$ observations will be censored is $(.7543)^{20} = .0036$. If such samples are simulated independently $M=500$ times, the expected number of samples with complete censoring is 1.8.

In Table 5.3 we present the means and mean square-errors of the simulated values of the MEE and MLE. It is interesting that in all cases the bias is negligible. In addition, the MSE's of the MEE are not significantly larger than those of the MLE when $\theta \leq 40$ (\(\rho \geq 2.25\)). Furthermore, when $m=50$ the MSE's of the MLE and of the MEE are not significantly larger than the corresponding asymptotic variances, even if $\theta > 40$ (\(\rho < 2.25\)). For example, when $m=50$, $\theta=50$, $\rho=1.8$ and from Table 5.2, the asymptotic variance of the MLE is $2.5 \times 1.8819 = 4.705$.

- 23 -
Table 5.3

Means and MSE of $M=500$ simulated values of the MEE and MLE, for $n=30$, $r=27$, $t_0=90$, $\theta=30(5)50$, and $m=20(10)50$

<table>
<thead>
<tr>
<th>M</th>
<th>θ</th>
<th>MLE</th>
<th>MEE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>MSE</td>
</tr>
<tr>
<td>20</td>
<td>30</td>
<td>30.25</td>
<td>2.358</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>35.25</td>
<td>3.445</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>40.36</td>
<td>5.475</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>45.49</td>
<td>8.444</td>
</tr>
<tr>
<td></td>
<td>50*</td>
<td>50.54</td>
<td>18.938</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>30.21</td>
<td>1.779</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>35.21</td>
<td>2.520</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>40.28</td>
<td>3.854</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>45.37</td>
<td>5.824</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>50.50</td>
<td>9.400</td>
</tr>
<tr>
<td>40</td>
<td>30</td>
<td>30.27</td>
<td>1.325</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>35.28</td>
<td>1.866</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>40.30</td>
<td>2.642</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>45.33</td>
<td>3.943</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>50.41</td>
<td>6.972</td>
</tr>
<tr>
<td>50</td>
<td>30</td>
<td>30.29</td>
<td>1.044</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>35.31</td>
<td>1.457</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>40.30</td>
<td>2.077</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>45.35</td>
<td>3.101</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>50.43</td>
<td>5.240</td>
</tr>
</tbody>
</table>

*The estimates are based on $M=498$ samples.

Two samples were completely censored.
The corresponding standard-error of the variance estimate is approximately
$SE = 4.705 \frac{2}{500}^{1/2} = 0.298$. Thus, $4.705 + 2 \times SE = 5.300$, which is
above the MSE value of the MLE in Table 5.3. Similarly, the MSE of
the MEE, for $m=50, \theta=50$, is within the .95-confidence interval
constructed around the corresponding asymptotic variance. This is not,
however, the case, when $m=20$ and $\theta \geq 45$. The MSE's of the MLE and the
MEE are significantly larger than the corresponding asymptotic variances.
For $m=20, \theta=50$, the asymptotic variance of the MLE is 11.762. On the
other hand, the estimated MSE is 18.938. This shows that the actual
variances of the MLE and the MEE are considerably larger than the
asymptotic variances if the samples are not sufficiently large and
$\rho \leq 2.00$.

Acknowledgment:
The author is indebted to Professor V. Susarla for many
stimulating discussions on the present study.
REFERENCES

<table>
<thead>
<tr>
<th>Copies</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistics and Probability Program (Code 411(SP))</td>
<td>Navy Library National Space Technology Laboratory</td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td>Attn: Navy Librarian</td>
</tr>
<tr>
<td>Arlington, VA 22217</td>
<td>Bay St. Louis, MS 39522</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>U. S. Army Research Office</td>
</tr>
<tr>
<td>Cameron Station</td>
<td>P.O. Box 12211</td>
</tr>
<tr>
<td>Alexandria, VA 22314</td>
<td>Attn: Dr. J. Chandra</td>
</tr>
<tr>
<td>12</td>
<td>Research Triangle Park, NC</td>
</tr>
<tr>
<td>1</td>
<td>27706</td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>Director</td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td>National Security Agency</td>
</tr>
<tr>
<td>Eastern/Central Regional Office</td>
<td>Attn: R51, Dr. Maar</td>
</tr>
<tr>
<td>Attn: Director for Science</td>
<td>Fort Meade, MD 20755</td>
</tr>
<tr>
<td>Barnes Building</td>
<td>1</td>
</tr>
<tr>
<td>495 Summer Street</td>
<td>1</td>
</tr>
<tr>
<td>Boston, MA 02210</td>
<td>ATAA-SL, Library</td>
</tr>
<tr>
<td>1</td>
<td>U.S. Army TRADOC Systems</td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>Analysis Activity</td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td>Department of the Army</td>
</tr>
<tr>
<td>Western Regional Office</td>
<td>White Sands Missile Range, NM</td>
</tr>
<tr>
<td>Attn: Dr. Richard Lau</td>
<td>88002</td>
</tr>
<tr>
<td>1030 East Green Street</td>
<td>1</td>
</tr>
<tr>
<td>Pasadena, CA 91101</td>
<td>1</td>
</tr>
<tr>
<td>U. S. ONR Liaison Office - Far East</td>
<td>ARI Field Unit-USAREUR</td>
</tr>
<tr>
<td>Attn: Scientific Director</td>
<td>Attn: Library</td>
</tr>
<tr>
<td>APO San Francisco 96503</td>
<td>c/o ODCSPER</td>
</tr>
<tr>
<td>1</td>
<td>HQ USAEREUR & 7th Army</td>
</tr>
<tr>
<td>1</td>
<td>APO New York 09403</td>
</tr>
<tr>
<td>Applied Mathematics Laboratory</td>
<td>Library, Code 1424</td>
</tr>
<tr>
<td>David Taylor Naval Ship Research and Development Center</td>
<td>Naval Postgraduate School</td>
</tr>
<tr>
<td>Attn: Mr. G. H. Gleissner</td>
<td>Monterey, CA 93940</td>
</tr>
<tr>
<td>Bethesda, Maryland 20084</td>
<td>1</td>
</tr>
<tr>
<td>Commandant of the Marine Corps (Code AX)</td>
<td>Technical Information Division</td>
</tr>
<tr>
<td>Attn: Dr. A. L. Slafkosky</td>
<td>Naval Research Laboratory</td>
</tr>
<tr>
<td>Scientific Advisor</td>
<td>Washington, DC 20375</td>
</tr>
<tr>
<td>Washington, DC 20380</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>OASD (I&L), Pentagon</td>
</tr>
<tr>
<td></td>
<td>Attn: Mr. Charles S. Smith</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20301</td>
</tr>
</tbody>
</table>
Mr. F. R. Del Priori
Code 224
Operational Test and Evaluation
Force (OPTEVFOR)
Norfolk, VA 23511